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Abstract 

Differential Estimation of Audiograms using Gaussian Process Active Model Selection  

By 

Trevor Jonathan Larsen 

Master of Science in Computer Science 

Washington University in St. Louis, 2019 

Research Advisor: Professor Dennis Barbour 

 

Classical methods for psychometric function estimation either require excessive resources to 

perform, as in the method of constants, or produce only a low resolution approximation of the 

target psychometric function, as in adaptive staircase or up-down procedures. This thesis makes 

two primary contributions to the estimation of the audiogram, a clinically relevant psychometric 

function estimated by querying a patient’s for audibility of a collection of tones. First, it covers 

the implementation of a Gaussian process model for learning an audiogram using another 

audiogram as a prior belief to speed up the learning procedure. Second, it implements a use case 

of Bayesian active model selection to determine whether two audiograms differ. Both algorithms 

were tested using audiometric data from the National Institute for Occupational Safety and 

Health (NIOSH). 
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1. Introduction 

Psychometric Functions 

A psychometric function is an inferential model applied to a detection or discrimination 

task. It models the relationship between a physical stimulus and a response from a human or 

animal subject. Unidimensional psychometric functions, known as psychometric curves (PCs), 

have received much attention in the literature. One of the first and most widespread methods for 

modelling PCs is the method of constant stimuli, developed by Gustav Fechner, and described in 

Elemente der Psychophysik (Fechner, 1860). The method samples a fixed number of stimuli 

from the input domain, often equally spaced. While accurate, the main drawback of this method 

is that it requires many stimuli. Newer methods have attempted adaptive approaches to overcome 

this inefficiency, by using prior subject responses to influence future stimulus delivery. 

Developments in this direction include up-down methods (Levitt, 1971), and parameter 

estimation by sequential testing (Taylor & Creelman, 1967). 

A psychometric function can either be parametric or nonparametric, though the vast 

majority of historical models are parametric. A parametric model uses a function that can be 

uniquely identified by a set of parameters, such as α, the threshold intensity at which a specific 

fraction of stimuli are observed, and β the reciprocal of the derivative of the PC with respect to 

stimulus intensity at α. A nonparametric model is defined only by the input data. Examples of 

nonparametric models include splines, K-nearest neighbor methods, and Gaussian processes 

(GP). 
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Audiometry 

One application of psychometric functions is audiometry. In pure-tone audiometry, 

subjects are presented with tone stimuli delivered at varying frequencies and intensities. This 

two-dimensional input domains makes approaches such as the method of constant stimuli 

particularly inefficient as it represents a two-dimensional grid search: an effective but inefficient 

algorithm. In 1944, the Hughson-Westlake (HW) algorithm was designed to assist in diagnosing 

hearing loss in soldiers who fought in World War II, due to the increased rates of noise-induced 

hearing loss in veterans caused by the war. A modified version is today used in the clinic for 

diagnosis. Due to the fact that the PC for hearing is sigmoid shaped, with tones having a high 

probability of being heard above some threshold intensity and a low probability of being heard 

below the threshold intensity, it is useful to find the threshold, which can be thought of as the 

middle of the sigmoid. The threshold-seeking algorithm proceeds along frequency by octaves, 

presenting tones in decreasing 10 dB increments or increasing 5 dB increments to find the 

threshold intensity for a given frequency. Once a tone is missed, the intensity is increased 5 dB. 

The algorithm terminates for each frequency after a set number of reversals (Carhart Raymond & 

Jerger James F., 1959; Hughson & Westlake, 1944). This method is therefore adaptive in 

intensity, though grid search in frequency. It is still in wide use today. 
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Figure 1. Visualization of HW procedure.  

Left: threshold is found at a given frequency by decreasing intensity until a tone is missed, then 

increasing until it is detected, for 3 reversals. Right: This process is repeated at each octave 

frequency, with resulting thresholds connected using linear interpolation 

 

The HW algorithm for audiometry has several issues that make it inefficient. First, the 

algorithm treats each octave independently, though thresholds are correlated across frequency. 

The algorithm begins each octave by delivering a tone at the same intensity. The algorithm could 

find the threshold more quickly by selecting initial tones for each octave that are closer to the 

threshold of nearby octaves. Second, the HW algorithm only gives the clinician data on where 

the threshold is located at octave frequencies. Because no data is collected between octave 

frequencies, the clinician can only guess at the shape of the threshold between octaves. Third, 

unlike the method of constant stimuli, the HW algorithm is designed to only give information 

about the location of the threshold at each frequency. It doesn’t give information about the 

spread of the psychometric curve at individual frequencies as a function of intensity. Each of 

these problems is addressed by the Active Machine Learning Audiogram (AMLAG). 
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Prior Work 

Prior work on using GPs for audiogram estimation began in 2015, using a variant of 

uncertainty sampling that selected points with maximum variance (Song et al., 2015). This work 

dramatically increased both the speed and accuracy of threshold audiogram estimation by at least 

an order of magnitude. A set of example plots from this work is included in Figure 2. 

 

 

Figure 2. BALV Audiogram 

Figure taken from (Song et al., 2015). Plots A and C show the posterior mean function at 

iterations 10 and 11, while plot B, the middle plot, shows the posterior variance. The star in plot 

B is the next point to be sampled, and occurs at the maximum variance value. Its effect on the 

posterior mean can be observed by comparing plots A and C. 

 

Bayesian Active Model Selection (BAMS) uses active learning to distinguish which of a 

number of predetermined models best explains a function being actively observed, and was 

introduced with an application for automated notch-shaped hearing loss detection in machine 

learning audiograms (J. Gardner et al., 2015). A depiction of BAMS can be seen in Figure 3. 

 

https://www.zotero.org/google-docs/?rYsUy7
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Figure 3. BAMS Example 

Figure taken from (J. Gardner et al., 2015). Circles are heard tones, crosses are unheard tones. 

Red tones are points delivered using BAMS, while white tones are delivered using the GP 

audiogram method described in (J. R. Gardner, Song, Weinberger, Barbour, & Cunningham, 

2015). In plot a, the red tones are spread out evenly over the frequency domain to search for a 

notch, whereas they are clustered together at the notch in plot b. 

 

 

While both of the aforementioned papers explored the use of machine learning 

audiometry in one ear, this approach was extended to exploit the shared variance between ears 

using a conjoint audiogram (Barbour et al., 2018; DiLorenzo, 2017). This approach was a 

dramatic improvement, learning the audiogram for both ears in just as much time as, or faster 

than learning a single ear individually. Performance of conjoint audiometry can be observed in 

Figure 4. 

 

 

https://www.zotero.org/google-docs/?nAyK3I
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Figure 4. Conjoint Example 

Figure taken from (DiLorenzo, 2017). Blue plusses represent heard tones, while red diamonds 

represent unheard tones. The purple line represents the ground truth threshold. Left plots 

represent ear 1, while right plots represent ear 2. Top plots are the posterior mean estimation at 

iteration 14, while bottom plots are the posterior estimation at iteration 98. After 14 iterations, 

ear 1 has been approximated to within a few dB of the threshold, while ear 2, with hearing loss, 

is getting close but still needs more tones to converge. After 98 iterations, the estimate matches 

ground truth almost completely. 
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Current methods for audiogram estimation begin without using prior information from 

the patient. The underlying psychometric function that the audiogram is meant to estimate is 

correlated with previous audiometric tests that the patient has taken, as well as other audiometric 

tests more generally. In the same way that conjoint audiogram estimation utilizes covariance 

between ears to reduce the number of tones needed to estimate the underlying function, we 

propose an algorithm for active differential estimation that is able to utilize the covariance across 

audiometric tests. We also propose to use BAMS to determine whether two audiograms are 

sampled from the same distribution. 

2. General Methods 

This thesis has two aims. The first aim is to introduce a framework that we are calling 

Bayesian Active Differential Estimation (BADE) for estimating a psychometric function using a 

prior test for that function as an input. Specifically, we will do this for the case of the audiogram. 

This allows for faster estimation of the new audiogram by exploiting correlation between 

audiograms, and is done by expanding upon the conjoint estimation framework. The second aim 

of this thesis is to develop a framework we are calling Bayesian Active Differential Selection 

(BADS). The goal of this framework is to determine whether or not a new estimated model 

differs from a prior estimated model, using BAMS (J. Gardner et al., 2015). While we are using 

the audiogram as a use case, this methodology is general and can be expanded to other domains 

as well. The BADE and BADS algorithms were tested using ground truth audiograms generated 

from the National Institute for Occupational Safety and Health (NIOSH) occupational hearing 

database (Masterson et al., 2013). 
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NIOSH Database Median Audiogram Generation 

To test the BADE and BADS algorithms, we generated ground truth data from the 

NIOSH audiometric testing (Masterson et al., 2013). Each entry in the NIOSH database includes 

7 threshold intensity values per ear at 500 Hz, 1000 Hz, 2000 Hz, 3000 Hz, 4000 Hz, 6000 Hz 

and 8000 Hz. We classified each ear into one of seven categories of hearing loss, based on the 

pure-tone average (PTA) of each ear, calculated by taking the mean of the threshold values at 

500 Hz, 1000 Hz, and 2000 Hz. These categories are indicated in Table 1. 

 

Table 1 

Hearing loss classification using pure-tone average (Clark, 1981) 

Degree of hearing loss Hearing loss range (dB HL) 

Normal -10 to 15 

Slight 16 to 25 

Mild 26 to 40 

Moderate 41 to 55 

Moderately severe 56 to 70 

Severe 71 to 90 

Profound 91+ 

 

Within each category, we generated a canonical audiogram by taking the median 

threshold value at each frequency. Ground truths were then extrapolated from these threshold 

values using a cubic spline interpolation first in the frequency domain, followed by creating a 

sigmoid in the intensity domain. The resulting ground truth audiograms are presented in Figure 

5. 
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Figure 5. Ground truth audiograms of each hearing loss class. 

 

Aim 1: Bayesian Active Differential Estimation 

In this section, we extend the AMLAG framework to include information from prior 

audiometric tests. This extra prior information is used to exploit the covariance between the prior 

estimated audiogram and the new audiogram in order to estimate the new audiogram in a smaller 

number of new tones.  

Feature Space 

We begin by taking the data from the prior audiogram , which is made up of 

individual observations , and augment this data matrix with a new feature column 

representing which test the data point come from  for all prior observations such that 

. All new observations will be constrained such that .  

https://www.codecogs.com/eqnedit.php?latex=X_1%0
https://www.codecogs.com/eqnedit.php?latex=x_{1i} %3D (f_{i},I_{i})%0
https://www.codecogs.com/eqnedit.php?latex=t_{i} %3D 1%0
https://www.codecogs.com/eqnedit.php?latex=x_{1i} %3D (f_{i},I_{i},t_{i}%3D1)%0
https://www.codecogs.com/eqnedit.php?latex=t_{i}%3D2%0
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Mean Function 

In this case, we use a constant mean function . While audiograms do 

not necessarily have a constant mean, prior research has shown that a constant mean function is 

sufficient for audiograms, as the covariance function captures the shape of the audiogram in the 

posterior distribution (Barbour et al., 2018; DiLorenzo, 2017; J. Gardner et al., 2015; Song et al., 

2015). 

Covariance Function or Kernel 

For our covariance function, we use a composite function made up of three parts. Recall 

that the domain of our input  has three features: frequency, intensity, and the binary variable 

‘test,’ denoting whether the given data point is from the old audiogram or the new audiogram. 

The first dimension, frequency, uses an isotropic squared exponential kernel: 

, 

where  is a scale factor, and  is a length scale, parameterizing how close two values need to 

be in order to covary (i.e. closer points in frequency space will covary more than points that are 

farther apart). This enforces the idea that an audiometric function should be continuous and 

smooth across the frequency domain. 

The second dimension, intensity, uses an isotropic linear kernel: 

 

The probability of detecting stimuli should be low at low intensities, and scale to near 100% 

probability at high intensities. At any given frequency, we expect to observe sigmoidal behavior 

for the likelihood function. This is achieved using the above linear kernel with a cumulative 

https://www.zotero.org/google-docs/?9dmfnU
https://www.zotero.org/google-docs/?9dmfnU
https://www.codecogs.com/eqnedit.php?latex=%20K_%7Bf%7D(x%2Cx')%20%3D%20%5Clambda%5E%7B2%7D%20e%5E%7B-%5Cfrac%7B(x-x')%5E%7BT%7D(x-x')%7D%7B2%5Csigma%7D%7D%20%250
https://www.codecogs.com/eqnedit.php?latex=/mu(x_{i}) %3D c /forall x_{i} /in X%0
https://www.codecogs.com/eqnedit.php?latex=X%0
https://www.codecogs.com/eqnedit.php?latex= K_{f}(x_{f},x_{f}') %3D /lambda^{2} e^{-/frac{(x_{f}-x_{f}')^{T}(x_{f}-x_{f}')}{2/gamma^{2}}} %0
https://www.codecogs.com/eqnedit.php?latex=/lambda^{2}%0
https://www.codecogs.com/eqnedit.php?latex=/ell^{2}%0
https://www.codecogs.com/eqnedit.php?latex= K_{I}(x_{I},x_{I}') %3D /frac{1}{/ell^{2}}x_{I}^{T}x_{I} %0
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Gaussian function for our likelihood. This likelihood function is explained in more detail in the 

next section. 

The final dimension, the test dimension, is a binary variable for a categorical domain. 

Thus, for the test dimension we use a discrete covariance kernel. 

, 

where  and  can be interpreted as variance parameters for their respective subsets of the 

domain, while  can be interpreted as the covariance between the two audiograms. Thus the 

test kernel, the conjoining kernel, essentially acts as a covariance matrix between the two 

functions. 

We combine these kernels into one composite kernel using the following equation: 

 

Likelihood Function 

The likelihood function of a GP parametrizes the probability of observing the data 

. For our model, we use the cumulative Gaussian likelihood for binary classification, 

which is sometimes referred to as a probit likelihood. This is parameterized as 

 and is one of the standard likelihoods for classification tasks (Rasmussen 

& Williams, 2006).

https://www.zotero.org/google-docs/?JdjuQP
https://www.zotero.org/google-docs/?JdjuQP
https://www.codecogs.com/eqnedit.php?latex=s_{11}%0
https://www.codecogs.com/eqnedit.php?latex=s_{22}%0
https://www.codecogs.com/eqnedit.php?latex=s_{12}%0
http://www.texrendr.com/?eqn=p(y|f,X)%0
https://www.codecogs.com/eqnedit.php?latex=p(y_i %3D 1|f_i) %3D /Phi(f_i)%0
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Inference Function 

Computing the exact form of the posterior distribution 

  

is intractable because of the probit likelihood function (Rasmussen & Williams, 2006). Thus, the 

posterior must be approximated. For this model, this was done using expectation propagation 

(Minka, 2001; Rasmussen & Williams, 2006).  

Model Estimation and Hyperparameter Selection 

Let  be defined as the set of all hyperparameters for the model.  for the mean function 

and the frequency and intensity kernels are initialized to the ending values of the same 

hyperparameters of the prior audiogram. The hyperparameters for the discrete test covariance 

matrix are initialized to  for  and  for . Hyperparameter  is initialized 

Let as 1. Let be defined as  the set of all observations and associated responses. 

Each iteration, new hyperparameters are selected to attempt to maximize . Due to the 

fact that the underlying distribution of  may be multimodal, we perform gradient descent 

twice. The first iteration of gradient descent is done by beginning with the hyperparameters 

returned from the previous iteration. The second iteration is done by beginning with a 

hyperparameter selected from a Gaussian distribution centered at the final hyperparameter values 

of the prior model. The  with the higher marginal likelihood is saved, and used for computing 

the posterior. 

https://www.zotero.org/google-docs/?uytEjR
https://www.zotero.org/google-docs/?eObjQs
https://www.codecogs.com/eqnedit.php?latex=p(f|X,y) %3D /frac{1}{Z}p(f|X)/prod_{i%3D1}^{n}p(y_i|f_i)%0
https://www.codecogs.com/eqnedit.php?latex=/theta%0
http://www.texrendr.com/?eqn=/theta%0
https://www.codecogs.com/eqnedit.php?latex=exp(1)%0
https://www.codecogs.com/eqnedit.php?latex=s_{11}%0
https://www.codecogs.com/eqnedit.php?latex=1%2Bexp(1)%0
https://www.codecogs.com/eqnedit.php?latex=s_{22}%0
https://www.codecogs.com/eqnedit.php?latex=s_{12}%0
https://www.codecogs.com/eqnedit.php?latex=D %3D/{X,y/}%0
https://www.codecogs.com/eqnedit.php?latex=P(/theta|D)%0
https://www.codecogs.com/eqnedit.php?latex=P(/theta|D)%0
https://www.codecogs.com/eqnedit.php?latex=/theta%0
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Active Learning 

 Next, we use Bayesian Active Learning by Disagreement (BALD) to select the data point 

(x*,y*) that maximizes the difference in entropy between the posterior distribution of  and the 

expected posterior distribution of  given (x*, y*), according to the equation below: 

. 

Since this equation can be intractable, it can be rewritten as 

  

This form of the equation is much easier to compute, being computable in O(1) time (Houlsby, 

Huszár, Ghahramani, & Lengyel, 2011). To calculate this, we can calculate  

and pass this to the Bernoulli entropy equation . To 

calculate , we use an approximation: 

 

 

In order to stabilize the acquisition and prevent sampling issues, the BALD values are 

normalized to between [0,1] and Gaussian noise is added. Finally, the point with the maximum 

of the modified BALD values is selected for observation. 

Aim 2: Bayesian Active Differential Selection 

In this section we introduce how BAMS can be used to detect whether psychometric 

functions have changed. In BAMS the ultimate goal is to determine which of two or more 

models has the highest probability of generating the observed data. In this case, we create two 

models for use in BADS, with the goal of answering the question: Is the underlying 

https://www.zotero.org/google-docs/?cOaFXl
https://www.zotero.org/google-docs/?cOaFXl
https://www.codecogs.com/eqnedit.php?latex=/theta%0
https://www.codecogs.com/eqnedit.php?latex=/theta%0
https://www.codecogs.com/eqnedit.php?latex=/underset{x^{*}}{/operatorname{argmax}} H(/theta|D) - E_{y^{*}}[H(/theta|D,x^{*},y^{*})]%0
https://www.codecogs.com/eqnedit.php?latex=/underset{x^{*}}{/operatorname{argmax}} H(y^{*}|x^{*},D) - E_{/theta}[H(y^{*}|D,x^{*},/theta)]%0
https://www.codecogs.com/eqnedit.php?latex=p %3D P(y^{*}|x^{*},D)%0
https://www.codecogs.com/eqnedit.php?latex=H(p) %3D plog_2(p) - (1 - p)log_{2}(1 - p)%0
https://www.codecogs.com/eqnedit.php?latex=E_{/theta}[H(y^{*}|D,x^{*},/theta)]%0
https://www.codecogs.com/eqnedit.php?latex=E_{f/sim(f|D)}[H(y^{*}|D,x^{*},/theta)] %3D /frac{/sqrt{/frac{/pi ln2}{2}}e^{-/frac{/mu^2}{2(/sigma^2%2B/frac{/pi ln2}{2})}}}{/sqrt{/sigma^2%2B/frac{/pi ln2}{2}}}%0
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psychometric function generating our new observations the same psychometric function, or a 

different psychometric function that has some nonunity correlation with the prior psychometric 

function? The first model is a model that treats the underlying distribution as being the same, and 

which we refer to as the “same model.” The second model views the observed function as being 

a function correlated with, but not necessarily the same as, the prior function. We refer to this 

model as the “changed model.” More details of these models are given below. 

Feature Space 

We begin by taking a prior audiogram, and augmenting it with all 1s for the test variable, 

as we did in BADE, such that . Also as in BADE, all future observations will 

have . 

Same Model 

The same model is very similar to the model proposed for BADE. Like BADE, It uses a 

constant mean function. The frequency and intensity covariance kernels are also the same, i.e. an 

isotropic squared exponential kernel and an isotropic linear kernel, respectively. Instead of using 

a covariance matrix, the covariance of the test dimension is always set to 1, i.e., . 

Thus the full kernel, the structure of which stays the same, is: 

 

Since , this equation can be simplified to: 

 

 

https://www.codecogs.com/eqnedit.php?latex=x_{i} %3D (f_{i}, I_{i}, t_{i})%0
https://www.codecogs.com/eqnedit.php?latex=t_{i} %3D 2%0
https://www.codecogs.com/eqnedit.php?latex=K_{t}(x_{t},x_{t}') %3D 1%0
https://www.codecogs.com/eqnedit.php?latex=K_{t}(x_{t},x_{t}') %3D 1%0
https://www.codecogs.com/eqnedit.php?latex=K(x,x') %3D K_{I}(x_{I},x_{I}') %2B K_{f}(x_{f},x_{f}')%0
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Changed Model 

The changed model, like the same model, is basically the same as as the model 

introduced in BADE, but with important differences. First, the mean function is discrete, using a 

separate constant mean function for  and . As for BADE, the covariance kernel for 

the test feature is: 

 

Unlike for BADE, the parameters of  are fixed, such that . We fix the values of 

 and  because this allows the value of  to be interpreted as correlation between the 

functions, since 

    

where  is , and  and  are  and  respectively. This is important in the 

BAMS portion of the procedure. 

Inference and Likelihood Functions 

Like for BADE, the likelihood function used for BADS is the cumulative Gaussian 

likelihood for binary classification. Also as for BADE, the inference function used was 

expectation propagation.  
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https://www.codecogs.com/eqnedit.php?latex=x_t %3D 2%0
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https://www.codecogs.com/eqnedit.php?latex=s_{11} %3D s_{22} %3D 1%0
https://www.codecogs.com/eqnedit.php?latex=s_{11}%0
https://www.codecogs.com/eqnedit.php?latex=s_{22}%0
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Hyperparameter Learning 

Early versions of BADS began with hyperparameter learning turned off with the intent of 

establishing the second model to be similarly constrained as the original model. This resulted in 

numerical stability issues, as the resulting differential entropy function returned smaller and 

smaller values, until underflow made BALD unviable. Learning new hyperparameters at each 

iteration for each model prevented this from occurring while still allowing for rapid 

discrimination between whether the underlying target function was the same or different from 

the prior model. 

Hyperparameter learning was performed in the same way as for BADE, using a double 

gradient descent approach with the last iteration hyperparameters for one iteration of gradient 

descent and a Gaussian prior centered at the prior model’s final hyperparameters for the other 

iteration. Hyperparameters were only updated for the mean function AND the frequency and 

intensity portions of the kernel, but not for the test kernel.  

Bayesian Active Model Selection 

All hyperparameters are initialized to the values used by the prior model except for 

, which is fixed to have  as described for the changed model. At each 

iteration, we calculate the mutual information between y* and the unknown model $m$ for every 

candidate point in x*, using the following equation: 

 

Like the entropy equation in Aim 1, this is often intractable and is rewritten, similarly, as  

   

Next, it is necessary to derive formulas to compute each term in the above equation.  
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To calculate , we first need to calculate . This can be expanded out 

over our models as  

 

Similarly, we need to calculate , which can be written as  

  

Calculating P(m|D) 

 is the probability of the model given the data, and shows up in both  

and  . It can be expanded out, using Bayes’ rule to give 

 , 

where  is the prior for the model probability. Assuming a uniform prior over models, this 

reduces to, for our case, 

 

Next, we must calculate  for each model. In the case of  this is 

relatively straightforward, since the hyperparameters  are fixed at each iteration, and we find 

. Therefore,  is 

easy to calculate, as expectation propagation returns the negative log marginal likelihood 

. 

Next we have to calculate . This is a bit trickier since we 

now have to worry about . Recall that  can be interpreted as the correlation between the 

test domains, with correlation being measured between -1 and 1. This leads us to the integral 
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Since computing the integral analytically is intractable, we create an approximation using 

quadrature, specifically the trapezoid rule. For computational purposes, we create a vector of  

values between -1 and 1, .  Next, we calculate  

  

for each value of  in . Under a uniform prior belief for the two possibilities,  

. 

This simplifies the integral, which becomes 

. 

Like for the same model, we can calculate  using the negative log 

marginal likelihood returned by a call to expectation propagation. We create a vector of 

 values by repeatedly using the expectation propagation algorithm on each 

value  in . For the sake of numerical stability while calculating the above integral, we 

subtract out the maximum value of the vector from each element to prevent underflow. We 

follow this by exponentiating and taking the integral using the trapezoidal approximation, and 

finish by correcting our integral by multiplying by the exponent we subtracted out.  

Calculating P(y*|X*,D,m) 

The second term needed for computing the entropy in both the marginal and individual 

entropies is the predictive distribution . For the same model, calculating 

 is relatively straightforward as it is a Bernoulli distribution with: 
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. 

Calculating  is a bit more complicated. Because we have 

one free hyperparameter in our different models’  matrices , we take a weighted 

sum over the values 

. 

As when calculating P(m|D), we choose discrete values of  between -1 and 1.  

The last thing we need to do is to calculate  for each value of  in . 

This can be written as  

 

Assuming a uniform prior on , the prior terms cancel, and this becomes a simple 

calculation once we have the likelihood vector composed of  for all values of . 

We now have the predictive distribution  for both models and can compute the 

marginal expected entropy and the expected individual entropy over the models.  

Since all of the distributions involved are Bernoulli distributions, we again use the Bernoulli 

entropy function for calculating H in BADS. 

 

 

With the BALD criterion calculated, we apply a few heuristics to stabilize point 

selection. BALD values are normalized to the range [0,1]. Next, Gaussian noise is added, and an 

inverse distance heuristic is applied such that BADS avoids resampling points in extremely close 
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proximity. Finally, the  that maximizes the BALD criterion after the heuristic has been applied 

is selected as the next point to sample.  

The Bayes factor, defined as the ratio of the posterior probabilities of the models 

 is a useful metric for measuring model probabilities, as it can be computed on the fly. 

If one model exceeds a Bayes factor of 100 (interpreted as one model being 100× more likely) 

relative to the other model, this can be interpreted as BADS converging to a selected model. 

 

Experimental Setup 

To test our methods, we used the ground truth audiograms described in section 2.1. These 

ground truths were then used to compute the “prior” estimated audiograms used in both BADE 

and BADS. These prior audiograms were computed using the existing GP AMLAG framework 

(Song, Garnett, & Barbour, 2017). For these prior audiograms, hyperparameters for learning 

were initialized to the values learned in the conjoint framework (DiLorenzo, 2017). Next, 15 

points were selected using the pseudo-random Halton sampling method (Halton, 1964) to 

provide a stable basis for learning the GP model. Another 85 points were actively sampled using 

a BALD criterion (Houlsby et al., 2011) normalized to the range  with a small amount of 

Gaussian noise. The resulting GPs are shown in Figure 6. 
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Figure 6. The Prior Learned Model for all Experiments 

The prior learned model for each ground truth. X’s represent unheard tones, while O’s represent 

heard tones. These are approximations of the actual ground truths in Figure 5. 

 

Both BADE and BADS were run with each combination of a prior audiogram from the set of 

prior audiograms, above, and a ground truth from the set of ground truths for a total of 49 

combinations. For each combination, BADE was run for 60 iterations, while BADS was run for 

20 iterations. The algorithm was only run once for each combination.  
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Figure 7. Differential Estimation Example: Different 

Example experiment figure from BADE at iteration 11. Top 3 rows show ground truth, estimated 

model, and ground truth with tones superimposed, respectively. Left column shows the prior 

model, while the right column shows the target. Bottom left shows the acquisition function, 

which indicates the maximum value to sample as the next point. Bottom right shows the 

posterior RMSE of the predicted probabilities. In as few as 11 tones, the threshold has been 

almost exactly approximated, though the spread of the distribution will take a bit longer to 

identify. The posterior already has the correct shape, matching the ground truth (upper right 

plot). 
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Figure 8.  Bayesian Active Differential Selection Example: Same 

In progress experiment figure for BADS at iteration 5 of 20. Both the prior and target hearing 

loss classifications are the same: Normal hearing. Acquisition has sampled both above and below 

threshold, stabilizing the posterior probability p(M|D).  
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Figure 9. Bayesian Active Differential Selection Example: Different 

In progress experiment figure for BADS at iteration 3 of 20. Prior model classification is “Mild 

hearing loss”, while target is “Moderate-Severe hearing loss”. Acquisition has sampled below the 

prior model threshold, where the prior model would have classified the tones as heard. These 

three tones were unheard, however. This results in a quick convergence of the posterior to 

“changed”.  
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Results: Bayesian Active Differential Estimation 

 

Figure 10. BASE RMSE of probabilities 

Plot of root mean squared error (RMSE) in probability of the estimated model from the 

ground truth for each combination of hearing loss prior and target as a function of iterations. 

Note the model predicts a probability for each value in the frequency × intensity domain, and this 

is the error across the entire domain. The blue line in each plot is the result of BADE, while the 

orange line is the error of the prior audiogram for the first 60 iterations. In each title, the top loss 

type denotes the prior audiogram while the bottom title denotes the ground truth audiogram. 
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The first method used to analyze the results of BADE was the root mean squared error of 

the entire surface probability estimation. This metric is useful, as it evaluates model performance 

across the entire domain. The result in Figure 10 shows that BADE converges to an estimated 

model more quickly than past approaches. When the prior audiogram and the ground truth are of 

the same hearing loss type, the model converges rapidly, as expected. Even when the hearing 

loss types are vastly different, however, the shared variance between hearing loss types still 

allows for a moderate speed up. When the hearing loss types were the same, RMSE generally 

converged to low error values (<5%), whereas hearing loss types that were different managed to 

achieve an error that was slightly higher, usually 5%-10%.  

The second metric used to evaluate BADE performance was threshold error. This was 

chosen because the threshold is the relevant metric in a clinical setting for diagnosing hearing 

loss using current methods. For each frequency, the lowest intensity value with a probability 

larger than 0.5 was marked as the threshold intensity. This was done for both the ground truths as 

well as the estimated model. Next, we evaluated the performance of the model by comparing the 

root mean squared error between the ground truth and the target model. The results are shown in 

Figure 11. Also of interest is the number of iterations to 5 dB convergence, defined as a root 

mean squared error between ground truth and target model of less than 5 dB, as this is the 

approximate resolution of current methods such as Hughson Westlake. These results are included 

in Table 2 and Table 3. 
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Figure 11. BADE Threshold RMSE 

Plot of root mean squared error of threshold in dB HL of the estimated model from the ground 

truth for each combination of hearing loss prior and target as a function of iterations. The blue 

line in each plot is the result of BADE, while the orange line is the error of the prior audiogram 

for the first 60 iterations estimated with AMLAG. In each title, the top hearing loss type denotes 

the prior audiogram while the bottom title denotes the ground truth target audiogram. 
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Table 2 

Iterations to 5 dB threshold error for prior models estimated with AMLAG 

Ear Type Normal Slight Mild Moderate ModSevere Severe Profound 

Iterations 2 18 17 20 21 16 5 

 

Table 3 

Iterations to 5 dB threshold error for BADE.  

Ear Type Normal Slight Mild Moderate ModSevere Severe Profound 

Normal 1 9 9 9 14 14 3 

Slight 2 3 6 9 6 9 3 

Mild 2 9 1 12 15 11 2 

Moderate 2 5 6 5 8 7 2 

ModSevere 4 4 9 9 9 6 2 

Severe 9 6 14 10 5 5 2 

Profound 4 10 10 9 17 9 1 

Note: Rows: prior hearing loss type, columns: target model type 

 

Figure 11 shows that BADE converges on the correct threshold much faster than current 

methods. For almost all cases where the prior and target models are the same hearing loss 

classification, BADE converges to within just a few dB of the actual threshold in roughly half 

the number of observations. The threshold for the profound hearing loss ground truth, which is 

essentially nonexistent, makes the last column of plots uninterpretable for threshold error.  
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Table 2 shows that standard methods converge within approximately 16-21 tones. Recall 

the first 15 samples of the standard GP method use Halton sampling, which is necessary to 

establish stability of the GP model. The model does not converge to the true threshold until after 

Halton sampling is complete. Note that while the table says that ‘normal’ converges in 2 

iterations, this is misleading as the GP was still experiencing instability at this stage, as can be 

seen in the orange lines of the normal column in Figure 11.  

Table 3 shows that BADE converges to within 5 dB of the true threshold within roughly 

10 iterations in almost all cases. Since BALD searches for points maximizing differential 

entropy, which are usually found near the threshold, the use of the prior belief allows the model 

to search for the threshold instantaneously without being encumbered by Halton sampling for the 

sake of stability. 
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Results: Bayesian Active Differential Selection 

 

Figure 12. BADS Posterior Model Probabilities 

Posterior model probabilities P(m|D). Blue lines represent P(m=’same’|D), while orange lines 

represent P(m=’different’|D). All models converge within 5 tones to near 100% probability of 

the correct model.   
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The first metric for measuring the success of BADS is the posterior model probabilities. 

BADS rapidly converged to the correct model classification within five tones in all cases, but 

usually approached the correct classification in as few as one tone, as can be seen in Figure 12. 

Some cases, such as the “Prior: Mild, Ground truth: Normal” took two tones. The “Prior: 

Moderate, Ground truth: Normal” and “Prior: ModSevere, Ground truth: Severe” combinations 

took slightly longer to converge, but only by a couple iterations. Due to the fact that convergence 

was so rapid, the logarithm of the Bayes Factor was used to further examine convergence to 

classification, as can be seen in Figure 13 and Figure 14. In Figure 14 the dashed red lines 

represent the criterion for a Bayes Factor of 100 in either model’s favor, and the number of tones 

needed to cross this threshold can be seen in Table 4. When the prior model and the target model 

were different, BADS rapidly crossed the Bayes factor significance level and continued to 

increase to extremely high values.  When the models were the same, BADS still rapidly 

converged past the significance criterion in all scenarios but the profound vs profound case. This 

can be explained by the fact that determining whether two functions are different can be proved 

by a single “counter example” where the observations between the two models do not match. On 

the other hand, showing that the models are the same requires a larger amount of points to verify 

that the threshold is similar across the frequency domain. All models were successfully classified 

in 6 or fewer tones, except for the profound vs profound case, which is a weird edge case due to 

total deafness. 
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Figure 13. BADS Bayes Factor Plots 

Plotted are  of the Bayes factor, defined as the ratio of probabilities P(m|D), as a function of 

iterations. 

https://www.codecogs.com/eqnedit.php?latex=log_{10}%0
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Figure 14. BADS Bayes Factor with cutoff 

Plotted are  of the Bayes factor. Axis scaled to -3 to 3, with red dashed lines representing 

Bayes factors of 0.01 and 100 (reflecting when one model is 100 times more likely than the 

opposing model) as a cutoff for statistical significance. 

https://www.codecogs.com/eqnedit.php?latex=log_{10}%0
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Table 4 

Iterations to Bayes Factor of 100 or 0.01.  

Ear Type Normal Slight Mild Moderate ModSevere Severe Profound 

Normal 5 3 3 3 3 3 2 

Slight 4 4 3 3 3 3 3 

Mild 4 3 3 3 2 2 2 

Moderate 4 4 4 3 2 3 2 

ModSevere 4 3 4 4 4 6 2 

Severe 3 3 4 3 3 3 2 

Profound 3 3 3 3 3 3 NaN 

Note: Rows: prior hearing loss type, columns: target model type 

Another interesting result to examine is the probability distribution of . 

Hyperparameter  was represented computationally as a vector of values between -1 and 1. 

Part of the computation of the entropy function required calculation of this statistic. Initial 

development of this model used a maximum likelihood approach to estimating the entropy and 

log evidence of the predictive distribution . Due to the fact that the ‘different’ 

model had the ability to become functionally equivalent to the same model under the maximum 

likelihood approach, this led to early versions of BADS repeatedly sampling the same point, as 

the models did not disagree on the next point to select. Integrating over values of  helped 

solve this problem. The probability distribution of  is shown in Figure 15 for each 

combination of hearing loss types after 20 iterations. When the hearing loss types were the same, 

 had extremely high probability, while other probabilities were much lower. For 

nearby off-diagonal combinations,  has a large probability mass near  is still 
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large, but not nearly as large as on the diagonal. For hearing loss types that were quite different 

(far off-diagonal),  had a much wider distribution, usually centered between 0 and 0.5, 

showing that the correlation between models was much lower. 

Across almost all combinations except those involving the profound hearing loss type, 

the vast majority of probability density is massed close to , or at the very least is positive. 

This positive covariance between models help explain the speedup that BADE and conjoint 

methods generally provide.  

 

Figure 15. Posterior Covariance Probabilities 

Plot of probability distributions of .  
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Discussion and Conclusion 

This work shows that utilizing information from previous models as a prior belief allows 

for a substantial speedup in audiogram estimation, and can even be leveraged with BAMS to 

rapidly determine whether functions are different. In the clinic, utilizing prior information from 

past audiograms, either from a specific patient, or the human population more generally, has the 

potential to drastically cut the amount of time it takes to run diagnostic tests for hearing loss as 

well as other applications. While this thesis specifically focused on hearing loss, the methods in 

this paper, specifically the exploitation of a discrete covariance matrix to link prior data to a 

fresh GP model, is widely applicable to a vast array of tasks that can be modelled using 

regression or classification with GPs.  

Future work could involve integrating the methods introduced in this paper with the 

conjoint formulation of the bilateral audiogram to run BADE and BADS on both ears 

simultaneously to speed up acquisition of a conjoint model of patient hearing. Other work could 

include representing the prior belief using a sparse set of data that accurately model the prior 

audiogram to reduce runtime. Further in the future, it would be interesting to test BADE and 

BADS on other applications outside of audiometry.  
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