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Abstract

This paper proves that the revenue equivalence
theorem ceases to hold for auctions without
common knowledge about the agents’ prior be-
liefs. That is, different auction forms yield dif-
ferent expected revenue. To prove this, an auc-
tion game is converted to a Bayesian decision
problem with an infinite hierarchy of beliefs. A
general solution for such Bayesian decision
problems is proposed. The solution is a gener-
alization of the standard Bayesian solution and
coincides with it for finite belief trees and for
trees representing common knowledge. It is
shown how the solution generalizes the fre-
quently used technique of backward induction
for infinite belief trees. The solution can be ap-
plied to any game with infinite belief trees.
Computation of the solution does not rely on ap-
proximating the infinite trees with finite ones.
The methed can be used, for example, to analyze
the expected revenue of alternative auction
forms.

1 Introduction

Auctions have been a subject of continuous interest in
multiagent systems and electronic commerce [Monderer
and Tennenholtz, 1998; Sandholm, 1996]. The allocative
efficiency of auctions ensures their pervasive use in
electronic markets. One of the main advantages of auc-
tions as a form of market organization is their ability to
cope with market imperfections. The most typical imper-
fections of electronic markets are the small number of
market participants and the existence of incomplete and
asymmetric information.

Usually in electronic commerce and multiagent sys-
tems, an auctioneer faces several possible buyers and has
imperfect information about how much the buyers might
be willing to pay. The problem of the optimal auction
design [Myerson, 1981; Monderer and Tennenholtz,
1998] is to set up such auction rules that give the seller
the highest possible utility.

Most theoretical results on optimal auction design
draw crucially on the revenue equivalence theorem

[Vickrey, 1961}. According to the theorem, the first-
price sealed bid, second-price sealed bid, English and
Dutch auctions are ali optimal selling mechanisms pro-
vided that they are supplemented by an optimally set re-
serve price. The revenue equivalence theorem is based
on the following assumptions: the bidders are risk neu-
tral, payment is a function of bids alone, the auction is
regarded in isolation of other auctions, the bidders’ pri-
vate valuations are independently and identically distrib-
uted random variables, every bidder knows only his own
valuation and is uncertain about the other agents’ valua-
tions, there is common knowledge about the valuations’
distribution. In this context common knowledge means
that everybody knows the common prior distribution
from where valuations are drawn, everybody knows that
everybody knows, etc., ad infinitum,.

The notion of common knowledge plays a central role
in decision making, game theory and economics of un-
certain information [Bacharach et al., 1997; Fagin et al.,
1895; Geanakoplos, 1994; Brandenburger, 1993; Hal-
pern and Moses, 1990]. While in game theory and many
economic applications the common knowledge assump-
tion might be applied innocuously, in electronic com-
merce there is no sufficient justification for the ubiquity
of its use. A common feature of electronic commerce
transactions is their anonymity. Only parties involved in
the transaction have information about the transaction
terms. Third parties are usually unable to access any spe-
cific transaction information and might even be unaware
of the existence of the transaction. Therefore, tracking
other agents’ past behavior and forming expectations
about their future behavior can be difficult. This argu-
ment can be extended to an extreme if we take into ac-
count the fact that autonomous agents usuvally act as in-
termediaries in electronic markets. It is possible that the
same agent represents different parties at different mo-
ments of time. Therefore, in electronic markets where
agents do not know about or cannot recognize one an-
other, there are no sufficient grounds for applying the
common knowiledge assumption. It has also been for-
mally shown that common knowledge is unobtainable by
communication, no matter how much communication is
allowed [Halpern and Moses, 1990].

In this paper the common knowledge assumption



about prior beliefs is dropped, but all other classic as-
sumptions are kept intact. In particular, the assumption
that the agents’ valuations are drawn from the same prior
is kept. It is shown that without common knowledge the
revenue equivalence theorem ceases to hold. The failure
of revenue equivalence has significant practical impor-
tance since different auction forms lead to different ex-
pected revenues to the auctioneer.

The research presented in this paper is closely related
to the work in game theory devoted to games with in-
complete information [Harsanyi, 1967]. In our work the
epistemic state of each agent is modeled as an infinite
hierarchy of beliefs. Harsanyi [1967] suggested that each
hierarchy of beliefs could be summarized by the notion
of agent’s type. Later Mertens and Zamir [1985] proved
that the space of all possible types is closed in the sense
that it is large enough to include even higher-order be-
liefs about itself. Brandenburger [1993] has shown that if
agents’ beliefs are coherent the space of all possible
types is closed.

Our approach is related to the work of Gmytrasiewicz,
Durfee and Vidal {Gmytrasiewicz and Durfee, 1995;
Vidal and Durfee, 1996]. They presented a solution
method based on finite hierarchies of beliefs, The main
advantage of their recursive modeling method is that the
optimal solution can always be derived. The recursive
modeiing method is based on the assumption that once an
agent has run out of information his belief hierarchy can
be cut at the point where there is no sufficient informa-
tion. At the point of cutting, absence of information is
represented with a uniform distribution over the space of
all possible beliefs. The beliefs of order higher than the
order of cutting are ignored. This approach, however,
cannot be applied for rational agents with perfect rea-
soning abilities, We cannot prohibit such agents from
forming higher-order beliefs by applying a uniform dis-
tribution whenever there is no sufficient information.
Once an agent has run out of information at some level
of beliefs, he has also run out of information for higher-
order beliefs while continuing to mode! further the belief
tree. Unlike the method of Gmytrasiewicz, Durfee and
Vidal, our method allows such extended modeling by
applying a decision-making procedure based on infinite
hierarchies of beliefs, and leads to different resuits.

The paper is organized as follows. In Section 2 a sim-
ple auction setting is defined. The auction setting is used
to exemplify the theoretical conclusions drawn in the
later sections. In Section 3 a decision making model
based on infinite hierarchies of beliefs is introduced.
Analysis of auctions without common knowledge is pre-
sented in Section 4. Finally, the paper concludes by
summarizing the results and providing directions for fu-
ture research.

2 A Simple Auction Setting

In order to prove the failure of the revenue equivalence
theorem, a simple auction setting is considered. The set-
ting includes two risk-neutral bidders in an isolated auc-

tion for a single indivisible object. Suppose that each
bidder has one of two possible valuations of the object:
or ty (with t;<t;). Each bidder knows his own valuation,
but is uncertain about his rival’s valuation. Assume that
valuations are independent and that there exists some
objective distribution ® from which valuations are drawn.
Let t be common knowledge between bidders.

The setting so defined satisfies all the assumptions of
the revenue equivalence theorem. Therefore, the first-
price and the second-price sealed bid auctions yield for
each bidder the same expected utility.

The assumption of common knowledge about prior
beliefs does not affect the outcome of the second-price
sealed bid auction. In that auction every bidder has a
dominant strategy: bidding his own valuation. Bidding
one’s own valuation does not require anticipating the
rival’s behavior or holding any beliefs about the rival’s
beliefs.

On the other hand, the first-price sealed bid auction is
sensitive to the common knowledge assumption. In such
an auction, the agent’s utility maximizing bid is a func-
tion of his beliefs about other agents’ beliefs, The analy-
sis of optimal bidding in such auctions is usually con-
ducted using the Nash equilibrium solution concept from
noncooperative game theory [Nash, 1951], or a refine-
ment thereof. In such an equilibrium, each agent bids in a
way that is a best response to the other agents’ bidding
strategies, However, the Nash equilibrium solution con-
cept relies heavily on the common knowledge assump-
tion. Up to now there has been no satisfactory equilib-
rium concept for games without common knowledge.
One cannot derive the optimal bids in the first-price auc-
tion without such a solution concept. Therefore, one can-
not calculate the expected utility of the bidders either.
Thus, we need a solution concept for an auction game
without common knowledge. Such a concept is proposed
in the next section.

3 A Decision Making Model Based on
an Infinite Hierarchy of Beliefs

In this section we propose a solution for a first-price
sealed bid auction without common knowledge about
bidders’ prior beliefs. In Subsection 3.1 we discuss how
bidders’ prior beliefs can be represented by infinite hier-
archies. Then we convert the simple auction game into a
Bayesian decision problem based on an infinite hierarchy
of beliefs. In Section 3.2 we propose a solution for the
class of Bayesian decision problems based on infinite
hierarchies of beliefs.

3.1 Infinifie Hierarchies of Beliefs

Consider a first-price sealed bid auction without common
knowledge about bidders’ prior beliefs. Assume that all
other strategically relevant information is common
knowledge. This means that in our sirnple auction setting
bidders have common knowledge about the two possible
valuations t; and {3, i.e. the support of the objective dis-



tribution %, but do not have common knowledge about 7t
itself. Therefore, each bidder might hold some private
beliefs about his rival’s valuation distribution, For ex-
ample, bidder i might believe that m=(q,1-q). That is,
bidder i might believe that bidder j’s valuation equals t,
with probability q and t, with probability 1-q. At the
same time bidder j might believe that n=(r,1-r), r=q.
Meanwhile it might turn out that the actual distribution &
differs from the bidders” beliefs.

The belief structure of each agent might be represented
by a hierarchy of beliefs [Brandenburger, 1993]. Figure
1 is a tree diagram that represents the beliefs of an agent
who knows that his valuation is t;.
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Figure !: An infinite belief tree.

Suppose that the agent under consideration is agent i.
First-order beliefs of agent i are represented by a discrete
probability distribution o), o;=(p,1-p). Second-order
beliefs are represented by two distributions. The first
distribution @3, ©y=(q,1-q), corresponds to the case
where agent j has valuation t). That is, agent i believes
that if agent j’s valuation is t;, then agent j beliefs that
®=0,. The second distribution o3, o3=(r,1-r) is for the
case where agent j’s valuation is t;. The belief hierarchy
shown in Figure 1 is extended to infinity. Thus, every
belief hierarchy over the space T={t;,t;} can be repre-
sented by a binary tree. The vertices of the tree are la-
beled with agents’ valuations and the edges are labeled
with probabilities. The valuation in the root of the tree
corresponds to the valuation of the player whose beliefs
are represented by the tree,

Let o, {, %.... denote trees. The tree o represented in
Figure 1 may also be represented in a list notation:

a=ti(p, B;1-p, x).
Here t; is the root of the iree, (p,1-p) is the probability
distribution on the set of the immediate descendents of ¢,
and B and g are the subtrees whose roots are the immedi-
ate descendents of t;.

Definition 1. The number of different probability distri-
butions contained in a belief tree is called belief power
of the tree.

The belief power of a tree can vary from 1 to infinity.
The belief power of a belief tree often increases expo-
nentially with the depth of the tree. It is useful to identify
the class of belief trees for which the belief power is a
linear function of the depth. In the following definitions
the class of k-uniform belief trees is introduced. An infi-

nite belief tree is k-order uniform if for every m, 1<m=k,
there is only one probability distribution at level m of the
belief tree. In the following definitions P™(a) denotes the
unique probability distribution associated with level m of
free oL

Definition 2. Every belief tree o, o=t(p,B;I-p,x). is
first-order uniform. By definition P'(ct)=(p,1-p).

Definition 3. A belief tree o=t(p,B;1-p,x), is k-order
uniform if B and y are k-1-order uniform and for every
m, 1<msk-1, PY(B)=P™(x). Then P"(o) is defined as
P" (o)=P" () for all n, 2¢n<k.

Definition 4. An infinite belief tree is uniform if it is k-
order uniform for each k>1.

Consider, for example, the tree represented in Figure
1. Since at the second level of the tree we have two
probability distributions, 6;=(q,1-q) and o3=(r,1-r), the
belief tree is not uniform. In order to make it second-
order uniform we have to set 0>=03.

The following propositions follow immediately from
Definition 4.

Proposition 1, If the prior beliefs w=(p,1-p) are common
knowledge, then any infinite belief tree is uniform.’

Proposition 2. There is common knowledge about prior
beliefs m=(p,1-p) iff for every two belief trees o and 3,
such that B is a subtree of ¢, it holds that Pl(ot)zP'([i).

Now we are in & position to convert our simple auction
game into a Bayesian decision problem based on an infi-
nite hierarchy of beliefs.

Definition 5. A Bayesian decision problem for agent i is
given by: (i} the set T={ty,t5}, the possible valuations of
the opponent; (i) S;, a compact set of all strategies
available to agent i; (iii} U; : $;xT—R, utility function of
agent i; and (iv) o, an infinite belief tree of agent 1.

In the next subsection we propose a solution to a Bay-
esian decision problem based on an infinite hierarchy of
beliefs.

3.2 Solution fo a Bayesian Decision
Problem based on an Infinite Belief
Hierarchy

Most of the research in Bayesian decision theory is based
on finite belief trees. Bayesian decision problems based
on infinite belief hierarchies are studied by Tan and
Verlang [1988] and Armbruster and Boge [1979]. In or-
der to cope with the infinite recursion of beliefs these
studies impose the so called minimum consistency re-
quirement. According to this requirement if the prob-
ability of an event is computed using k levels of the be-
lief tree or m levels, they must give the same result.

In this paper we propose a solution which does not
rely on the minimum consistency requirement. The solu-

! Due to space limitations the more straightforward proofs are
omitted in this version of the paper.



tion is a generalization of the solution of Tan and Wer-
lang and can be applied to finite as well as to infinite
belief trees. The solution coincides with the standard
Bayesian solution for finite trees and for trees repre-
senting common knowledge.

Let T be the set of all bidder valuations. In our exam-
ple T={t;,tz}. The class of all infinite belief trees over T
is denoted by G. Every o, 0eG, is represented as a pair
(V(o),E(0)), where V() is the set of vertices and E(0)
is the set of edges. Let r(c)) denote the root vertex of ¢.
Recall that vertices are labeled with valuations and edges
are labeled with probabilities. For a belief tree o, ceG,
we denote the vertex labeling function by n,,
n,;V(e)—-T.

Let S be the strategy set of an agent, With each vertex
of the belief tree we assign a strategy which tells what
the decision maker would do at that vertex if he were
there. Formally we denote the strategy labeling by
¢,'V(0)—8 and for every veriex v, ve V(a), ¢ (v)eS.

For each infinite belief tree there exists an infinite
number of strategy labelings. However, only few of them
(if any) meet the Bayesian rationality requirement, i.e.,
that each strategy has to be a best response to the profile
of all other strategies. In the following definition the
class of all strategy labelings is restricted to the class of
balanced strategy labelings, They satisfy the Bayesian
rationality requirement. A strategy labeling ¢, is bal-
anced if the strategy associated with each vertex is a best
response to the strategies associated with the successor
vertices, given the probabilities assigned to the succes-
sors. Formally,

Definition 6. A strategy labeling of o, ae G, is balanced
iff for each subtree B=(p,x;1-p,8) of o (including o) it
holds that ¢_(r(B)) is a best response to the mixture of
strategies [p, ¢,(r(x));1-p, ¢, (r(8))].

Definition 6 provides a solution concept for a Baye-
sian decision problem based on an infinite belief hierar-
chy. For finite belief trees this concept coincides with the
standard Bayesian solution. The concept of balanced
strategy labeling preserves the central principle of con-
sistency in the sense of Hammond [1988]. The central
principle of consistency says that the decision maker’s
decision at a vertex in a tree should depend only on the
part of the tree that originates at that vertex. The central
principle of consistency justifies the frequently used
technique of backward (bottom-up) induction (recur-
sion). The concept of balanced strategy labeling gener-
alizes the backward induction to the case of infinite
trees. If we have derived a strategy labeling for some
level of a tree we can “cut” the belief hierarchy at that
level and apply backward (bottom-up) induction starting
from the cutting level. By doing so we do not lose any
strategically relevant information, since the concept of
balanced labeling guarantees that the strategies along the
cutting line canvey all the relevant information belong-
ing to the infinite part of the tree.

The following proposition applies immediately to our

simple auction example. It provides necessary and suffi-
cient conditions for the existence of equilibrium in an
auction with two possible bidder valuations.

Proposition 3. Suppose that the prior beliefs 7wt=(p,1-p)
are common knowledge. A balanced strategy labeling
exists Hf there are two strategies s,€8,, and s,& S5 such
that:

8 is a best response to the strategy mixture[p,s;;1-p,s,]

sy is a best response to the strategy mixture {p,s;;1-p,s;].

When the prior beliefs are not common knowledge, the
following definition can be useful for finding a balanced
strategy labeling.

Definition 7. A uniform infinite belief tree o allows
common knowledge from level k, k=[, iff
PX(o)=P**!(cr)=...

According to Definition 7, a belief tree allows common
knowledge from level k if all belief subtrees which start
at level k imply common knowledge. That is, after some
nesting of beliefs the bidder “begins” to belicve that
there is common knowledge about priors.

The foliowing procedure uses Definition 7 to find a
balanced strategy labeling. Suppose that the tree o, ae G,
allows common knowledge from a given level k, k>1.
Then we may “cut” o at level k and apply Proposition 3
to all infinite subtrees of o starting at level k. By doing
s0 we find a balanced strategy labeling for the levels
greater or equal to k. After that, since the remaining part
of the tree is finite, we may apply backward (i.e., bot-
tom-up) induction starting at the level k-1 and ending at
the root of the tree.

4 Application of the Decision Making
Model to Auction Analysis

In this section we analyze the first-price sealed bid auc-
tion without common knowledge about prior beliefs, We
restrict our analysis to the auction setting defined in
Section 2. All assumptions made in Section 2 hold.

4.1 The Case with Common Knowledge

Before proceeding to the case without common knowl-
edge, we look for a solution for the first-price auction
where there is common knowledge about prior beliefs.
The solution is provided by the following proposition.

Proposition 5. Suppose that the prior beliefs p and I-p
are common knowledge. Then for the first-price sealed
bid auction the bidder’s expected utility is 0 when the
bidder’s valuation is t; and p(ty-t;) when the bidder’s
valuation is t,.

Proof. Since there does not exist an equilibrium in pure
strategies, we look for an equilibrium where each bidder
with valuation t; bids t; {t;<ty), and each bidder with
valuation t; randomizes according to a continuous cu-
mulative disiribution function F(x) with continuous sup-
port on [a;,a;), where t{;<a;2a,<t;. It can be shown that
this equilibrium is unique. Clearly, a;=t,. If a;>t;, then a



bidder with valuation t, would be better off bidding t,+¢&
rather than bidding a,. In order for a bidder with valua-
tion t; to play a mixed strategy in the interval [a;,a;] he
must be indifferent ex anre between all bids in this inter-
val. Hence, for every bid xe [a;,a;] it holds that

(t-x)(p+(1-p)F(x))=c,
where ¢ is constant. Here t,-x is the bidder’s utility if he
wins and p+(1-p)F(x) is the probability of winning. Be-
cause F(1;)=0, it follows that c=(ts-t;)p. Thus, the con-
tinuous distribution function F(x) is implicitly defined by

(t-x)(p+(1-p)F(x))=(tz-t1)p (1

Substituting a, for x in Equation (1) and taking into ac-
count that F(a,)=1, we obtain

az=pt;+(1-p)ts.
Therefore, the bidder’s expected utility equals 0 when
his valuation is t; and (t;-t;)p when his valuation is t,. O

4.2 The Case without Common
Knowledge

Suppose now that there is no common knowledge about
prior beliefs. Each bidder holds some private first-order
beliefs about t; and t,. Suppose further that the bidders
have no additional information about one another. This is
a realistic assumption, since in many electronic com-
merce applications bidders cannot identify one another.
The absence of information might be represented for ex-
ample as a uniform distribution over the set T [Gmytra-
siewicz and Durfee, 1995}.2 That is, a bidder who is not
inclined to believe that one of the outcomes t; or ty is
more likely may tend to assign equal probability to both
ocutcomes. In that case, the bidder’'s second-order beliefs
can be represented by a uniform distribution, Since the
bidders are rational, we cannot prevent them from form-
ing higher-order beliefs. The basic assumption for form-
ing higher-order beliefs is the following: once a bidder
has run out of information at level k, he also runs out of
information at all levels m, m>k. According to this as-
sumption, all higher-order beliefs are also represented by
uniform distributions. A generic belief tree for a bidder
with valuation t; is shown in Figure 5.

The solution for the case without common knowledge
about prior beliefs is provided by the following theorem.
Surprisingly, the first-order beliefs about priors do not
affect the optimal bidding strategy.

Proposition 6. When the prior beliefs are not common
knowledge and bidders run out of knowledge for second-
order beliefs, the first-price sealed bid auction yields
expected utility 0 to the bidder with valuation t, and
Y(ty-t;) to the bidder with valuation t». The optimal bid
and the expected utility do not depend on the bidders’
first-order prior beliefs.

% In general, our solution concept does not rely on such a
uniformity assumption.

£y ta
O.N 0.5/\.0.5
ty L ta

Figure 5: A generic belief tree.

Proof. Analogous to the case with common knowledge
we look for equilibrium where every bidder with valua-
tion t; bids {; and every bidder with valuation t; bids
some value not less than t;. Therefore a bid equal to ¢,
might be assigned to all t-vertices of the belief tree.
Since the strategies of the bidders with valuation t; are
known, all infinite trees starting at t;-vertices can be cut
off. The resulting tree is shown in Figure 6.

I/\l-p

t )
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4 ¢}
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Figure 6: The resulting belief tree.

Now we are interested in finding a balanced strategy
labeling for the tree in Figure 6. Since we have already
labeled t;-vertices, it remains to obtain a Iabeling for all
t-vertices, Consider the infinite subtree whose root is
marked with asterisk in Figure 6. This tree allows com-
mon knowledge from level 1 and therefore we can apply
Propositions 3 and 5. Thus, for this subtree there exists a
balanced strategy labeling. This labeling assigns bid t; to
each t;-vertex and randomized strategy in the interval f¢;,
Ya(t;+t;)] to each ty-vertex. The distribution function F(x)
of the randomized strategy is defined by the following
equation

(t2-x)( Va+VeF(x))=Ya(ta-ty) (2)

What remains to be done is to find a bidding strategy
b* corresponding to the root of the tree. It is clear that b*
must be a best response to the strategy mixture [p,t;;1-
p.b**], where b** is the strategy defined by Equation
{2). We can solve Equation (2) for F(x), thereby obtain-
ing

FOx)=(x-t)/(tz-x).

The expected urility of submitting bid x, given that the
rival adheres to the strategy mixture [p,t;;}-p,b**] is:



(ta-x)(p+(1-p){x-1,)/(t2-x}) when t;<x<Va(t;+12) or
t2-X when Ya(t;+t;)<x.

In order to obtain an optimal bid we have to maximize
the expected utility function. There are three possible
cases:

(i) p<Y: the optimal bid is ¥a(t;+t;). The expected

utility is ¥a(tyt});

(ii) p=Y2: every bid in the interval [t,,Ya(t;+L)] is

optimal. The expected utility is %(ts-t,);

(i) p>Y: the optimal bid is ¥2(t)+t;). The expected

utility is ¥a(ty-1,). O

Theorem 1. When there does not exist common knowl-
edge about private beliefs, the revenue equivalence theo-
rem ceases o hold, i.e., the bidder’s expected utility is
different for different types of auctions.

Proof. To prove the failure of the revenue equivalence
theorem, it is sufficient to find two auctions which give
the bidders different expected utility. Consider the first-
price sealed bid auction and the second-price sealed bid
auction. It follows from Proposition 6 that the expected
utility for the bidder with valuation t, is ¥(t,-t;) in the
first-price sealed bid auction without common knowledge
about prior beliefs. On the other hand, for the second-
price auction the optimal strategy for every bidder is to
bid his own valuation. Therefore, in the second-price
auction the expected utility for the bidder with valuation
tz 1s (ta-t;)p, where p is subjective probability that the
other bidder’s valuation is t;. Thus, when p#'s, the two
auctions yield different expected utility. O

5 Conclusions

In this paper a solution for a Bayesian decision problem
based on an infinite belief hierarchy was presented. The
solution is a generalization of the standard Bayesian so-
lution and coincides with it for finite belief trees and for
trees representing common knowledge. The computation
of our solution does not rely on approximating the infi-
nite belief trees by finite belief trees.

It was shown that without common knowledge about
prior beliefs the fundamental revenue equivalence theo-
rem ceases to hold. The failure of the revenue equiva-
lence theorem has significant practical importance. Since
different auctions yield different revenues, auction de-
signers should be careful when choosing auction rules.
This opens promising prospects for comparative analysis
of different auction forms using the solution concept pre-
sented in this paper.
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