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Abstract

In automated negotiation systems consisting of self-interested agents,
contracts have traditionally been binding. Leveled commitment con-
tracts — i.e. contracts where each party can decommit by paying a
predetermined penalty — were recently shown to improve Pareto ef-
ficiency even if agents rationally decommit in Nash equilibrium using
inflated thresholds on how good their outside offers must be before
they decomnit. This paper operationalizes the four leveled commit-
ment contracting protocols by presenting algorithms for using them.
Algorithms are presented for computing the Nash equilibrium decom-
mitting thresholds and decommitting probabilities given the contract
price and the penalties. Existence and uniqueness of the equilibrium
are analyzed. Algorithms are also presented for optimizing the con-
tract itself (price and penalties). Existence and uniqueness of the
optimum are analyzed. Using the algorithms we offer a contract opti-
mization service on the web as part of eMediator, our next generation
electronic commerce server. Finally, the algorithms are generalized to
contracts involving more than two agents.

*This material is based upon work supported by the National Science Foundation under
CAREER Award IRI-9703122, Grant IRI-9610122, and Grant II1S-9800994.



1 Introduction

In multiagent systems consisting of self-interested agents, contracts have tra-
ditionally been binding [Rosenschein and Zlotkin, 1994, Sandholm, 1993,
Kraus, 1993]. Once an agent agrees to a contract, she has to follow through
no matter how future events unravel. Although a contract may be profitable
to an agent when viewed ex anfe, it need not be profitable when viewed after
some future events have occurred, i.e. ez post. Similarly, a contract may
have too low expected payoff ex ante, but in some realizations of the future
events, it may be desirable when viewed ez post. Normal full commitment
contracts are unable to take advantage of the possibilities that such future
events provide.

On the other hand, many multiagent systems consisting of cooperative
agents incorporate some form of decommitment in order to allow agents to
accommodate new events. For example, in the original Contract Net Proto-
col [Smith, 1980], the agent that contracts out a task could send a termination
message to cancel the contract even when the contractee had partially ful-
filled it. This was possible because the agents were not self-interested: the
contractee did not mind losing part of its effort without a monetary compen-
sation. Similarly, the role of decommitment among cooperative agents has
been studied in meeting scheduling [Sen, 1993].

Contingency contracts have been suggested for utilizing the potential pro-
vided by future events among self-interested agents [Raiffa, 1982]. The con-
tract obligations are made contingent on future events. In some games this
increases the expected payoff to both parties compared to any full commit-
ment contract. However, contingency contracts are often impractical because
the space of combinations of future events may be large and unknown. Also,
when events are not mutually observable, the observing agent can lie about
what transpired.

Leveled commitment contracts are another method for capitalizing on fu-
ture events [Sandholm and Lesser, 1996]. Instead of conditioning the contract
on future events, a mechanism is built into the contract that allows unilat-
eral decommitting. This is achieved by specifying in the contract the level
of commitment by decommitment penalties, one for each agent. If an agent
wants to decommit—i.e. to be freed from the obligations of the contract-—it
can do so simply by paying the decommitment penalty to the other party.
The method requires no explicit conditioning on future events: each agent
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can do her own conditioning dynamically. No event verification mechanism
against lying is required either.

Principles for assessing decommitment penalties have been studied in
law [Calamari and Perillo, 1977, Posner, 1977], but the purpose has been
to assess a penalty on the agent that has breached the contract after the
breach has occurred. Similarly, penalty clauses for partial failure—such as
not meeting a deadline—are commonly used in contracts, but the purpose is
usually to motivate the agents to follow the contract. Instead, in leveled com-
mitment contracts, explicitly allowing decommitment from the contract for
a predetermined price is used as an active method for utilizing the potential
provided by an uncertain future.! The decommitment possibility increases
each agent’s expected payofl under very general assumptions [Sandholm and
Lesser, 1996].

We analyze contracting situations from the perspective of two risk neutral
agents each of which attempts to maximize his own expected payoff: the
contractor who pays to get a task done, and the contractee who gets paid
for handling the task. Handling a task can mean taking on any types of
constraints. The method is not specific to classical task allocation. The
contractor tries to minimize the contract price p that he has to pay. The
contractee tries to maximize the payoff p that she receives.

We study a setting where the future of the agents involves uncertainty.
Specifically, the agents might receive outside offers.? The contractor’s best
outside offer & is only probabilistically known ez ante by both agents, and is
characterized by a probability density function f(&). If the contractor does
not receive an outside offer, & corresponds to its best outstanding outside offer
or its fall-back payoff, i.e. payoff that it receives if no contract is made. The
contractee’s best outside offer b is also only probabilistically known ez ante,
and 1s characterized by a probability density function g(g) If the contractee
does not receive an outside offer, b corresponds to its best outstanding outside
offer or its fall-back payoff.> The variables & and b are assumed statistically

IDecommitting has been studied in other settings, e.g. where there is a constant
inflow of agents, and they have a time cost for searching partners of two types: good or
bad [Diamond and Maskin, 1979].

2The framework can also be interpreted to model situations where the agents’ cost
structures for handling tasks and for getting tasks handled change e.g. due to resources
going off-line or becoming back on-line.

3Games where at least one agent’s future is certain, are a subset of these games. In



independent.

The contractor’s options are either o make a contract with the contractee
or to wait for &. Similarly, the contractee’s options are either to make a
contract with the contractor or to wait for b. The two agents could make
a full commitment contract at some price. Alternatively, they can make a
leveled commitment contract which is specified by the contract price, p, the
contractor’s decommitment penalty, ¢, and the contractee’s decommitment
penalty, b. We restrict our attention to contracts where @ > 0 and b >
0, l.e. agents do not get paid for decommitting. The contractor has to
decide on decommitting when he knows his outside offer & but does not
know the contractee’s outside offer 6. Similarly, the contractee has to decide
on decommitting when she knows her outside offer b but does not know the
contractor’s. This seems realistic from a practical automated contracting
perspective.

The theory of these leveled commitment protocols was presented by [Sand-
holm and Lesser, 1996], but to date no algorithms have been presented for
agents to compute when they should decommit given a contract, or for agents
to choose beneficial contracés. This paper operationalizes leveled commit-
ment contracts by presenting an algorithm for computing how the agents
should decommit (Section 2), and an algorithm for constructing the optimal
leveled commitment contract for any given setting defined by f(&) and g(b)
(Section 3).

2 Nash equilibria for a given contract

One concern is that a rational agent is reluctant in decommitting because
there is a chance that the other party will decommit, in which case the former
agent gets freed from the contract, does not have to pay a penalty, and collects
a penalty from the breacher. [Sandholm and Lesser, 1996] showed that de-
spite such insincere decommitting the leveled commitment feature increases
each contract party’s expected payoff, and enables contracts in settings where
no full commitment contract is beneficial to all parties. To set the context,
we first review their analysis of how rational agents would decommit, i.e. we
derive the Nash equilibrium (NE) [Nash, 1950] of the decommitting game

such games all of the probability mass of f(&) and/or g(b) is on one point.



where each agent’s decommitting strategy is a best response to the other

agent’s decommitting strategy. The new contributions begin in Section 2.3.
The confractor decommits if he gets a low enough outside offer, e.g., he

can get his task handled at a low cost. We denote his decommitting threshold

by @*, so his decommitting probability is

P = %, f(3)da (1)
The contractee decommits if she gets a high enough outside offer, e.g.,

gets paid for handling a task. We denote her decommitting threshold by &*,

50 her decommitting probability is

n = fi g(B)db 2)

2.1 Sequential decommitting (SEQD) game

In our sequential decommitting (SEQD) game, one agent has to reveal her
decommitting decision before knowing whether the other party decommits.
While our implementation analyzes both orders of decommitting, due to
space limitations we only discuss the setting where the contractee has to
decide first. The case where the contractor decides first is analogous. There
are two alternative leveled commitment contracts that differ on whether or
not the agents have to pay the penalties if both decommit.

If the contractee has decommitted, the contractor’s best move is not to
decommit because —¢ —a +b < —a + b (because a > 0). This also holds for
a contract where neither agent has to pay a decommitment penalty if both
decommit since —& < —é& + b. In the subgame where the contractee has not
decommitted, the contractor’s best move is to decommit if —& —a > —p, i.e.
G=p—ua (3a)

The contractee gets b - b if she decommits, b + « if she does not but the
contractor does, and p if neither decommits. Thus the contractee decommits
ifh—b> pa(\f; +a)+ {1 —p)p. If p, = 1, this is equivalent to —b > «a
which is false because ¢ > 0 and b > 0. In other words, if the contractee
surely decommits, the contractor does not. On the other hand, the above is
equivalent to

5>p+%%d§f5*whenpa<l (4a)



2.2 Simultaneous decommitting games

In our simultaneous decommitting games, agents have to reveal their decom-
mitment decisions simultaneously. We first discuss the variant (SIMUDBP)
where both have to pay the penalties if both decommit. The contractor de-
commits if py - (=& +b—a)+ (1 —ps)(—d —a) > py - (—&-+b) + (1 — ps)(—p).
If pp = 1, this equates to ¢ < 0, but we already ruled out contracts where an
agent gets paid for decommitting. On the other hand, this equates to
4<p— - 4 % when Py <1 (3b)
The contractee decommits if (1 — po)(b — b) + pa(b—b+a) > (1 — po)p +
(b + a). If p, = 1, this equates to b < 0, but we ruled out contracts where
an agent gets pa,ld for decommitting. However, this equates to
b>p+—p-~b"whenpa<1 (4b)
In a SIMUDNP game, neither agent has to pay if both decommit. The
contractor decommits if py - (—a) +(1—py)(—d—a) > pp-(—&+b)+(1—ps)(—p)-
If p» = 1, this equates to b < 0, but we already ruled out contracts where an
agent gets paid for decommitting. On the other hand, this equates to
é<p—a—i~9_13§;d:°f&*whenpb<l (3c)
The contractee decommits if (1 —p,)(d— b) + pab > (1 — pa)p + pe(b+ ).
If p. = 1, this equates to @ < 0, but we ruled out contracts where an agent
gets paid for decommitting. However, this equates to
E>p+bm%d——ejg’*whenpa<l {4c)
For each game, calculating the Nash equilibria amounts to solving the
simultaneous equations (3) and (4) which use (1) and (2).

2.3 Existence of a Nash equilibrium

We now discuss existence of the NE. Denote the support of f(&) by [&1, &),
and the support of g(b) by [by, bm).

Theorem 2.1

SEQD: A NE exists if 4y £ p—a < &,. No NE exists if p — a > &,,. Only
a trivial NE with p, = 0 exists if p—a < &;.

SIMUDBP: A NE exists if p— a > tn and p+b < by. Only a trivial NE
with p, = 0 ezists if p—a < & and p+b > by. Only a trivial NE with py, = 0
extsts if p+ b > b and p— a < dy. Otherwise a NE may or may not exist.



SIMUDNP: A NE ezists if p—a 2 &, and p+ 6 > by Only a trivial NE
with p, =0 exists if p—a < &; and p+b > by. Only a triviel NE with p, = 0
and py =0 exists if p—a < @, and p+ b > bn. No NE exists fp+b< by.
Otherwise ¢ NE may or may not exist.

Proof. TFor each of the three games, the curves defined by (3) and (4) are
continuous.

SEQD: From (3a): &* = p —a. For (4a), when &* = &, b* = p+b and in the
limit a* ~ &,, g oo. Thus the curves intersect if ¢y < p —a < &,. For
(4a) if p—a < &; then b" = p+ b, and so (3a) intersects with (4a) such that
pe = 0. For p —a > &, (3a) and (fla) do not intersect. L
SIMUDBP: For (3b), in the limit 6* — b, &* — —co and when b* = b,,, &* =
p — a. For (4b), when &* = &,,6" = p + b and in the limit &* — i, b — 0.
Thus the curves intersect if p ~a > @, and p+ 6 < b1 For (4b) if a* < al
then b* = =p+b, and S0 the two curves will intersect with p, = 0if p+b > bl
Similarly for (Sb) if & > by, then &* = = p — a, and so the two curves will
intersect with p, = 0if p—a < dn. Otherwise they may or may not intersect.
SIMUDNP: For (3c), in the limit b* — by, & = —co and when b = = by, & =
p~a. For (4c), when & = &;,b* = ,o—{—b and in the limit 4% — &n, b* = —oo.
Thus the curves intersect if p —a > &, and p+6 > by, For (4c) if &~ < 1
then b = o+ b, and so the two curves intersect with p, =0 if p+b > bl
Further if p+ 6 > by, then % also equals 0. The curves do not intersect if
p+b< b. Otherwise they may or may not intersect. O

2.4 Uniqueness of the Nash equilibrium

We now consider uniqueness of the Nash equilibrium.

Theorem 2.2 For the sequential games, the NE is unique. For the simulta-
neous games the NE need not be unique.

Proof. For the sequential games, uniqueness follows from the forms of (3)
and (4): One threshold is expressed as a function of p and a penalty, and
the other is defined as a function of this threshold. Fig. 1 shows an example
where multiple equilibria exist for a SIMUDBP game. We constructed a
similar example for SIMUDNP. &

-~J
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Figure 1: Example with 3 Nash equilibria for SIMUDBP.

2.5 Algorithm for finding the Nash equilibria

We now discuss the algorithm for computing the Nash equilibria. We assume
that the probability density functions f(&) and g(b) are piecewise linear with
n and m pieces respectively. This is justified since any continuous function
can be approximated arbitrarily closely by a piecewise linear curve. Also, in
our implementation we use piecewise linear curves because they are easy for
the user to input.

The algorithm for computing the equilibrium of a sequential game is
straightforward. It simply substitutes the contract parameters (p,a,b) into
(3) and (4).

In the simultaneous games this substitution gives a system of two non-
linear simultaneous equations. These equations may have multiple solutions
and all of them need to be found. This rules out iterative procedures that
only find one solution. That motivated us to design a fast analytic algorithm
that finds all solutions. We decompose the search space into rectangles. Since
f(a@) and g(b) are piecewise linear, the simultaneous equations can be solved
analytically within each rectangle. The rectangles are [&s, dir1) X [bs, biya]
where 1 <1 <n and 1 < j < m. Within each rectangle, the algorithm

1. Solves (1) and (2) to get pa(&+) and py(b). These functions are quadratic



because f(&) and g(ub) are linear within the rectangle.
2. Substitutes p,(d+) into (4), and py(b+) into (3).
3. Substitutes @* from (3) into (4).
4. Reduces the resulting equation to a cubic polynomial in b,
5. Solves for the roots of this polynomial.
6. Calculates the corresponding values for &* using (3).

7. Accepts the solutions that lie within the rectangle.

The algorithm runs in O(nm) time because it is O(1) within each rect-
angle, and there are O(nm) rectangles.

Of all the equilibria found, it presents social welfare maximizing one(s)
to the user, i.e. the one(s) that maximize the sum of the agents’ expected
payoffs. It can also present all equilibria.

3 Optimizing the contract

So far we discussed how rational agents would decommit under a given con-
tract. Now we take this further by optimizing the contract itself—taking into
account that agents will decommit insincerely in Nash equilibrium. Specifi-
cally, we present an algorithm and analysis for finding the optimal contract
price and decommitment penalties in any given setting for all three protocols.

3.1 Analysis

We first describe the optimization problem. Let %, be the contractor’s ex-
pected utility, and m, the contractee’s. For shorthand, we define 11, T3, T3,
and T4 .

= 2 o(B)ds, T = 52 bo(ydb
T3 = [y f(@)da, Ty = 37 af(d)da
We now derive 7, and m; for each of the games.
SEQD:



o

SIMUDBP:

=
a

Ty

SIMUDNP:

=
I

Ty

i

/m g(E)f Fa)[—a + bdédb
5+ {p,a,0) —co

6" (p.a,b) —a o 5
+ [ o[ se-a- i [ 7@ -saa

—o0

PUTy ~ Eld] 4+ Ty - TTy — 8Ty + & — p

oo b(p,abb)
fb s - b]czb+f o)l (){b+a]da+ f(a pdd)db

*{p,a,b) —ca - p—
—0 T - B~ T+ T+ & T — & +p

=] i* {p.abb ) o
f o[ =5 +b - alda+ F(@) [+ bdajdb
b*{p,a,b,b&*) &(pabb)

b {p.a,0,8%) % (p,a,b,6") -
+ j o0 F@d—adi+ [ F@)[-pldads

—o0 —0o i*(p,a,b,b*)
—Bl)+ PN+ 3 (1-T) (1 - Ts) + Ty(1 = T1)
—,0(1 — T34 T;Tg)

&0 i (p,a,0,5%) .
[ o[ 7@+ aai+ [ 76~ aaas
b*(p.abi*) J—oo 8+ (p,a,b,b*)

& (p.a,b,8") - a* (p,a,bb ) .
[ o T@i+dais [ syl

—o0 —c0 a*{p,a,bb*)
EB(1-T3) - PN — a7 (1 — T)(1 - Ts) + TT5
+P(1 et T3 +T1T3)

i (p.a,b.87)
/ 0] / F@—aldat [ 7(E)—d+ bldad
b (p,a,b?i

4" (p,a,bb*)

5" (p,a,b R a* (p,a,bb ) -5} .
+ [ a0 A@a - ddas [ @) -Adaa
—co - i (p,0,0,5°)
—-—E[&] + T4(1 — Tl) + (I(ml + T+ T3 — T]_T:g) + 6N TS
—p(]. - Tl)T3
o0 . i*{p,abb ") o - "
Lo et "T@baes [ s - naa
b*(p,a,b,d) 4

—co *(p,a,b b')
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= B -T)+ Ty —a{~1+ T+ T — T1T3) — by Ty
+p(1 —T1)T5

For each of the three protocols the social welfare, =, is
T =7+ = —E[i] + E[B)(1 —T3) + ToTs + Ty — Tu T4

We define the optimal contract to be the contract that maximizes social
welfare, i.c. maz(,q 7. The expression above shows that 7 is the same for

all three games. Also, 7 is a function of (4*,5*). So, the original problem of
optimizing over a 3- dlmensmna,l space (p,a,b) reduces to optimizing over a
2-dimensional space (&*,b*).

A rational agent only accepts a contract if it does not decrease his ex-
pected payoff. These individual rationality (IR) constraints, a2 E[—a] and
7y > E[b], define a feasible set in the 3-dimensional space (&, &%, p)-

We first derive the unconstrained optima, and then verify that they belong
to the feasible set. The necessary conditions for unconstrained optima are: ¢
35* =0& f(”*)( [b] Ty—& 4+ a*T3) =0
% =0& g(b*)(b*Tl Tg) =0
Four cases satisfy these equalities. 1-3 are special cases for dealing with gaps
in f(&) or g(b), i.e. regions where the probability density is 0 inside (81, &n)
or [bla m] "

Case 1: f{a*) =0, g{b*) = 0: Each such pair of gaps constitutes a continu-
ous seb of locally optimal solutions. The value of 7 is constant in that region
because the values for the definite integrals T3, Ty, 73, and Ty are constant
there. Thus, to find that locally optimal value, it suffices to evaluate 7 at
any point in that region. This is done for each pair of gaps. Satisfaction of
the IR constraints is verified for each local optimum found as follows. By
substituting the values of 71,75, T3, and T into the equations for 7, and o,
the IR constraints reduce to a system of two linear inequalities in the two
unknowns, &* and b . It is straightforward to solve this system and verify
whether any part of the resulting solution lies in the region defined by the
pair of gaps. If so, the local optimum is feasible, and is considered as a
candidate for being globally optimal.

Case 2: f(d*) =0, b*Ty — T3 = 0: The algorithm does the following for each
gap in f(&). T1 and T3 are constant within the gap. These give a value for

*In deriving the formulas on the right, the derivative of an integral with respect to its
limits is calculated using the Leibnitz formula [Arflen and Weber, 1995].
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b* via the second condition. These are used to calculate the locally optimal
7 value. Then the values for 73,75, T3, Ty, and i* are substituted in the
equations for 7, and 7. As a result, the IR constraints give two inequalities
for @*. If any part of the gap is in that feasible region, the local optimum is
feasible, and is considered as a candidate for being globally optimal.

Case 3: g(b") =0, E[b} Ty — &* + @*T3 = 0: Analogous to case 2.

Case 4: E[b] Ty — &+ & T5 = 0,51, — Ty = 0: These two conditions give
a pair of simultaneous equations:

i = (5)
- % ©

Equation (5) describes &* as a function of b* and Equation (6) gives b* as a
function of @*. A local optimum of = exists where the curves intersect. They
may or may not intersect, and they can intersect at multiple points:

Theorem 3.1 Curves (5) and (6) intersect if E[a] > b, and E[f] < &,.
They do not intersect if by > G,. Otherwise they may or may not intersect.
The intersection point is unique if b,, < E{d] or 4; > E[b].

Proof. From (5) in the limit b* — by, &* — by and when b* > bm, A )
From (6), when &* < &, b = = F[¢] and in the limit &* ~+ &,, b = 4, Both
curves represent strictly increasing functions (the first derivatives are always
positive). Note that 7y # 1 = b* > by, and Ts # 0 = &* < &y. Thus they
intersect if E[a] > b and E[l] € &,. This intersection point is unique if
bm < E[d] or 4 > E[f]. They do not intersect if §; > &,. Otherwise they
may or may not intersect. O

Figure 2 shows that (5) and (6) can intersect at multiple points, i.e. that
7 can have multiple (local) optima.

We now show that if these locally optimal solutions exist, they lie within
the feasible set, 1.e. there exists a nonempty range [L B, U B] for the contract
price p which satlsﬁes the IR constraints. We derive LB and UB using the
expressions for m,, 7y and the IR constraints, 7, > —E[d], m > E[b] to get:

SEQD: .
LB = b15Ty + E[B)Ts — ToTs — &*T5 + &*
UB = b*T3T1 + T4 - T]_T4 - é“Tg + CUL*
SIMUDBPEF:

LB _ E‘TgT}**‘“‘(‘L'*(I—Tl)(1—T3)+E[E}T3—T3T2
- I-1+T5Th
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1.7 r i : :
Jl(s)ll
fl(ﬁ)ll I )
0.958 —~0.52if 0.7 <& < 0.8 16 ¢ B
0.24 0.8 <09 g
Flay={ 1438 ~ 108 0.9 <d<1.0
Y2475 —2.09if 10 S8 < 1.8
5236 —6.22if 15 <& < 1.7 15+
a otherwise
a.02 01 <h <t 14t
g(B)=4 24:276 —34.1931 1.41 <P < L.44
0.75 if 144 < b 2.72
0 otherwise
137
12t/
/ 5
11 ¢ s

06 07 08 09 1 11 12 13 14

Figure 2: Example with 3 local optima.

UB = UGN+ (1-T)(1-Ta)+ Ty (1-Th)

1-Ty+T5T
SIMUDNP: .
LB = T —a(1=TV(A=T3)+(E[b]-T2)Ts
B BT Ty —all TT%%_?% Ty—T, T,
o Sl —a(d =10 {1 -dg)+T -1 Ty
UB = T5(1~Th)

For SIMUDBP games, 1 — Ty + 137} # 0. For SIMUDNP, (1 — T1)T3 # 0.
This occurs from the form of the integrals, and the fact that they are always
between 0 and 1 because they are defined over probability density functions.
For each game above, LB < UB reduces to Tg(E[E] — 1) STyl —=T1) &

%E’_]}TT? < % & & < b* which can be shown true by the form of (5) and (6).

3.2 Algorithm for finding optimal contracts

Our algorithm for finding optimal contracts first checks the special cases 1-
3 as described above. This takes O(nm) time because there are at most
nm pairs of gaps. The optima of case 4 are determined by computing the
intersection points of curves (5) and (6). Multiple solutions might exist,
which rules out the use of iterative methods that only find one solution.
Our algorithm uses the same rectangular decomposition as our equilibrium
finding algorithm presented above. In each rectangle it
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1. Solves T3, T3, T5s, and T to get quadratic equations for them (because

W

f(&) and g(b) are linear within the rectangle).

o

Substitutes these into (5) and (6).

3. Substitutes &* from (5) into (6).

4. Reduces the resulting equation to a 9th degree polynomial in b=
5. Solves for the roots of this polynomial.

6. Calculates the corresponding values of &* from (5).

7. Accepts solutions (a* 5*) that lie in the rectangle.
The algorithm runs in O(nm) time because it is O(1) within each rectangle,
and there are O{nm) rectangles. Finally, the candidate set of local optima
resulting from cases 1-4 is scanned for the global optima.

3.3 The fair optimal contract

An optimal pair (&*, E") defines a set of welfare maximizing contracts (p, ¢, b)
which differ based on how the ezcess—i.e. expected gain over full commit-
ment contracts—is divided among the contract parties. Our implementation
shows all the optimal feasible contracts to the user and visualizes how the
different choices lead to different division of expected payoff (7, and #; as a
function of p € [LB,UB]). It also suggests a fair contract which divides the
excess equally. It turns out that the fair contract price is p = ZB+UE The
fair values for the penalties are then calculated using (3) and (4).

4 Implementation

Using the algorithms of this paper, we provide a client-server based con-
tract optimizing service on the web (http://ecommerce.cs.wustl.edu/
contracts.html) as part of eMediator, our next generation electronic com-
merce server. The client, a Java applet, implements the GUI and commu-
nicates to the server over the web using CGI/Perl. The server, written in
C, executes the computations. The client accepts piecewise linear functions
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f(&) and g(lva) The user can input these graphically or as text. Each proba-
bility density functions is automatically scaled so that its integral is 1. The
output interface displays either the decommitting thresholds and probabili-
ties for a given contract, or the optimal feasible contracts together with the
fair optimal feasible contract.

The server computes the roots of polynomials in our rectangular decom-
position algorithms. We use Laguer’s root finding method to compute the
roots [Press et al., 1993]. It finds all roots simultaneously and polishes roots
to reduce numerical imprecision. If the roots are close to the boundaries
of the rectangle, imprecision may result in these roots being calculated just
outside the rectangle. To accommodate for this, we extend the rectangle
in all directions by e¢. That allows us to capture all those roots that would
otherwise be overlooked.

5 Generalization to 3-agent contracts

The method can be generalized to contracts involving more than two agents.
We demonstrate this via 3-agent games. Let there be one contractor, a, and
two contractees, b and ¢. If even one party decommits the contract breaks
down between all 3 parties. Let the density functions of outside offers be
F(&), g(b), and h(&). The IR constraints are m, > E[—d], = > E[b], and
7. 2 E[¢]. The contract price, p, paid by the contractor, is paid in two parts,
p1 to b, and p— p; to e. The decommitment penalties are ap, ac, by, be, ¢q, and
¢y, see Figure 3.

The sequential game will have 3! variants depending on the decommit-
ting order. The simultaneous games differ based on whether two parties on
simultaneous decommitment pay each other or not. Due to limited space we
only present the formulae for SIMUDBP:
pe = — 2, [(@)da, py = [ g(B)db, p. = [ h(c)de

&*:p—(l—_;%gmwhenpg,<landpc<l

b= p1+ ey When pe < Land pe <1

E*:p—pl—{—%whenpa<la,ndpg,<1
These expressions are analogous to 2-agent SIMUDBP. We get similar ex-
pressions for m,, 7, 7g,and 7. Our rectangular decomposition algorithms for
computing the Nash equilibria extend by using cuboids instead of rectangles.

Nonuniqueness extends to this case. The optimization problem also has sim-
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contractor

C
contractee

contractee

Figure 3: 3-agent contract

ilar characteristics. 7 is a function of &*,5*, ¢*. Solving for the roots of the
first derivatives yields three equations in three variables. Our rectangular
decomposition algorithms for calculating the optima extend to this case by
using cuboids instead of rectangles. Similar expressions/results occur for the
3-agent generalization of SIMUDNP.

6 Conclusions

Leveled commitment contract are a practical way of capitalizing on future
uncertainties in negotiation among self-interested agents. This paper oper-
ationalizes them by presenting two algorithms. The first one takes a given
contract and computes the Nash cquilibrium decommitting thresholds and
decommitting probabilities for rational agents. The second algorithm op-
timizes the contract price and penalties so as to maximize the sum of the
agents’ expected payoffs —taking into account that agents decommit insin-
cerely. Using these algorithms, a contract optimizing service is provided on
the web.
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