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ABSTRACT OF THE THESIS

Deformable Image Registration for Hyperspectral Images

by

Rui Liao

Master of Science in

Washington University in St. Louis, May 2019

Research Advisor: Professor Joseph A. O’Sullivan

Image registration is one of the basic image processing operations in remote sensing. A

hyperspectral image has two spatial dimensions and one spectral dimension. There are

many hyperspectral sensors used in remote sensing. Traditional intensity-based registration

methods may fail for hyperspectral images because of the different spectral sensitivities

for different sensors. In addition, not all spectral bands are required to achieve accurate

registration. This thesis develops a modification of the large deformation diffeomorphic

metric mappings (LDDMM) algorithm in order to deal with the challenges when applied

to hyperspectral images. The transformation generated by our method that deforms one

image to match the other is differentiable, isomorphic and invertible. We also propose a

mutual information based band selection algorithm to reduce the data redundancy of the

hyperspectral images. The approach is applied to two hyperspectral images from OMEGA

instrument, with a better matching result than original LDDMM method with respect to

mutual information.
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Chapter 1

Introduction

Image registration is the process of aligning two or more images of the same scene taken at

different times, from different viewpoints or by different sensors [21]. For the two images

registration problem, we will denote one image as a fixed image to provide a reference to the

other called a moving image. The registration algorithm will generate an optimal transforma-

tion so that corresponding coordinate points in two images will be matched. It is a classical

problem in several image processing applications in which the final information is obtained

from the combination of various data sources such as motion detection, image fusion, and

multichannel image restoration. Registration methods are very sensitive to different image

conditions. Given the diversity of the data, it is unlikely that a single registration scheme

will work satisfactorily for all different applications.

The purpose of this thesis is to provide an automatic image registration algorithm for hy-

perspectral images obtained from OMEGA [4]. In this section, we will first introduce some

existing methods for registration problems, then focus on related topics for hyperspectral

data.

1.1 Image Registration Methodology

Image registration is widely used in remote sensing, medical imaging, computer vision, and

other fields. In general, its applications can be divided into two main groups according to

different matching focuses: Intensity-Based and Feature-based.
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1.1.1 Intensity-Based Methods

Intensity-based methods, sometimes called correlation-like methods or template matching

[11] align images without attempting to detect salient objects. A classical method like cross-

correlation (CC) is used for matching directly image intensities, without any structural

analysis. Consequently, is sensitive to the intensity changes, introduced by noise, different

illumination conditions or by using different sensor types.

These methods share the same framework that minimizes the distance between the moving

and fixed images. The core part for different intensity-based methods is the definition of

distance or similarity of images. Here are three commonly used distance functions.

1. Correlation-like methods. The similarity of fixed and moving images is defined as

CC(i, j) =

∑
(I − E[I])(Ji,j − E[Ji,j])√∑

(I − E[I])2
√∑

(Ii,j − E[Ii,j])2

, (1.1)

where i, j is the pixel coordinates for image I and J .

This measure of similarity is computed for window pairs from the fixed and moving

images and its maximum is searched. Two main drawbacks of the correlation-like

methods are the flatness of the similarity measure maxima (due to the self-similarity

of the images) and high computational complexity. Most of the methods deal with

translation-only images, more complicated geometric deformations will dramatically

increase the computational load.

2. Cross-power Spectrum. This registration method is performed in the Fourier domain.

It computes the cross-power spectrum of the fixed and moving images and looks for

the location of the peak in its inverse [5].

F(I)F(J)∗

|F(I)F(J)∗|
= e2πj(ux0+vy0), (1.2)

where F represents the 2D Fourier transformation and ∗ is the conjugate function.

This method is strongly appreciated when an acceleration of the computational speed

is needed or the images are acquired under varying conditions or they are corrupted
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by frequency-dependent noise. The method shows strong robustness against the cor-

related and frequency dependent noise and non-uniform, time-varying illumination

disturbances.

3. Mutual Information. Mutual information is a concept from information theory, which

measures the dependence between two random variables. The definition is given by

MI(I0; I1) = H(p(I0)) +H(p(I1))−H (p(I0), p(I1)) , (1.3)

where p(I0), p(I1) is the marginal distribution (histogram) of image I0 and I1 and

H represent entropy. This method represents the leading technique in multimodal

registration and we will discuss it in detail in Section 2.1.

1.1.2 Feature-Based Methods

The majority of the feature based methods consists of the following four steps [21]:

1. Feature detection. Salient and distinctive objects (closed-boundary regions, edges,

contours, line intersections, corners, etc.) are manually or, preferably, automatically

detected. For further processing, these features can be represented by their point

representatives (centers of gravity, line endings, distinctive points), which are called

control points (CPs) in the literature.

2. Feature matching. In this step, the correspondence between the features detected in

the moving image and those detected in the fixed image is established. Various feature

descriptors and similarity measures along with spatial relationships among the features

are used for that purpose.

3. Transformation estimation. The type and parameters of the so-called mapping func-

tions or transformations, aligning the moving image with the fixed image, are es-

timated. The parameters of the mapping functions are computed by means of the

established feature correspondence.
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4. Image deformation/transformation. The moving image is deformed by means of the

mapping functions. Image intensities in non-integer coordinates are computed by the

appropriate interpolation technique.

The implementation of each registration step has its typical problems. For the detection

step, the required features should be distinctive objects, which are frequently spread over

images and must have enough common elements in both fixed and moving images. In the

feature matching step, a fatal problem may be caused by image degradation. Physically

corresponding features can be dissimilar due to the different imaging conditions and/or due

to the different spectral sensitivity of the sensors.

Automatic feature detection and matching can be achieved perfectly by machine learning

[16] [9]. However, a sufficiently clean training data set is required and may also involve a lot

of manual labeling. But the concept of using feature information in images for registration

is still considered as an accurate and fast approach to solving the problem.

1.2 Transformation Model

The transformation model is chosen to properly align two images, it describes how pixel

locations move after deformation. There are typically two types of transformation model

used in registration problems: parameterized and non-parameterized.

1.2.1 Parameterized Transformation

For a parameterized transformation model, the function can be determined by some low

dimensional coefficients and applied on the entire image. One of the most frequently used

models is affine transformation, which consists of rotation, translation, shear, and scaling.

Figure 1.1 shows the result of applying the affine transformation. The advantages of using

these models are they can be easily applied and represented. After setting up the metric

between images, the model can be solved by parameter estimation or search to achieve the

minimum distance. However, these models treat the whole image scene equally, and apply
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the same transformation on every pixel. But sometimes in medical or remote sensing images,

deformation only happens on some local area, for example, in a CT scan of the leg, the bone

should not share the same transformation with the muscle tissue around it. For the OMEGA

data we are dealing with, the image is kind of slim (2288 × 32), small rotation from the

bottom will cause a large empty area at the top. In these cases, we can not simply use low

dimensional parameterized transformation models.

Figure 1.1: Affine Transformation

1.2.2 Non-Parameterized Transformation

Another approach to the registration of images with considerable complexity and/or local

distortions is not to use any parametric mapping functions, where the estimation of the

geometric deformation is reduced to the search for the best parameters.

The images are viewed as pieces of a rubber sheet, on which external forces stretching the

image and internal forces defined by stiffness or smoothness constraints are applied to bring

them into alignment with the minimal amount of bending and stretching [2]. This idea is

often called elastic registration. The external forces in implementation are often considered

as a vector field with the same spatial dimension with the moving image. For each pixel,

a two-dimensional vector will represent the direction and value of the external force, an

5



example is shown in Figure 1.2. For each coordinates in image domain, a 2-dimensional

vector represents the direction and distance this pixel will move.

Figure 1.2: Vector Field on Image Domain

However, when using this transformation model, the regularization term or smoothness con-

straint will play an important part. Without any constraint, the external forces can move

any pixel to any place, which may destroy the topology of the original image. For example,

we do not want the registration algorithm to move the meteor crater initially on the left and

align it to another crater on the right. Also, the complexity of this model will bring a lot of

computational cost into the algorithm.

This idea can be further extended to diffeomorphisms, that require the transformation to be

differentiable and invertible. In this case, a path or a curve is defined to represent how a

transformation moves with time on the manifold it lives in. In addition, with this curve, a

sequence of images to show the process of deformation is available for view.
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1.3 Hyperspectral Imagery

Hyperspectral data can be regarded as a three-dimensional image cube in which the first

two dimensions are spatial and the third dimension is spectral. Figure 1.3 illustrates the

structure of the hyperspectral data set OMEGA. Hyperspectral images are important for

remote sensing applications such as mineralogy, geology, agriculture, and surveillance sensing.

Figure 1.3: Visualization of OMEGA Data in SWIR Channel

OMEGA (Observatoire pour la Minralogie, lEau, les Glaces et lActivit) is a visible and

near-IR mapping spectrometer, operating in the spectral range 0.38 - 5.1 µm. Combining

imaging and spectrometry, it will study the mineralogical and molecular composition of the

surface and atmosphere of Mars through the spectral analysis of the diffused solar light

and surface thermal emission. OMEGA will provide global coverage at medium-resolution

(2-5 km) for altitudes from 1500 km to 4000 km, and high-resolution (< 350 m) spectral

images of selected areas, amounting to a few percents of the surface, when observed from

near-periapsis (< 300 km altitude)[4].

These two optical units are supposed to be co-aligned. However, after years of operation

on the orbit of Mars, images from the two channels become deformed and some areas are

mismatched. Our purpose in this thesis is to align these two image cubes from OMEGA as

a pre-processing of the data that can be extended to further applications.

1.4 Thesis Layout

In Chapter 2, we discuss a mutual information-based band selection method we use to reduce

the redundancy of the OMEGA data and choose a good pair of bands for registration. Results
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and comparison with other methods, such as PCA and entropy-based band selection will be

included.

In Chapter 3, the original LDDMM algorithm is introduced and along with the mathematical

foundation of this methodology. In the later part of this chapter, we will present our modified

LDDMM algorithm to enhance the performance of the original LDDMM method. This thesis

propose an augmented energy function with an additional penalty term for matching the

edge maps of the given moving and fixed images. This modification significantly reduces

the number of local minimums for the original energy function that will give a more robust

performance to the gradient descent algorithm (we are using gradient descent algorithm to

minimize the energy function). Results and comparison are presented in the last section.

8



Chapter 2

Band Selection for Hyperspectral

Image Registration

Hyperspectral imagery generally consists of enormous amounts of spectra or bands which

measure intensity at various wavelength. For the OMEGA data we are using, its optical part

contains two co-aligned units: a Visible Channel (VNIR) analyses the light from 0.36 to 1.07

µm; a Near Infrared Channel, named SWIR (Short Wavelength IR Channel) disperses the

light through two spectrometers from 0.93 to 2.7 µm and 2.6 to 5.2 µm [4]. For VNIR chan-

nel, it generates an image cube with dimension 2288× 32× 103, where the third dimension

represents numbers of bands. And for SWIR, the data dimension is 2288× 32× 113. Regis-

tration through all pairs of these bands is known to be computationally hard. In this part,

we are using a mutual information based band selection method to reduce data redundancy

of OMEGA data.

This part is optional because of the robustness of our registration method. An arbitrary

pair of bands could give similar result with the pair of band chose by our band selection

algorithm. Here we provide one choice of data reduction for OMEGA data set.

2.1 Basic Math Review for Information Theory

In Shannon’s information theory, entropy measures information content in terms of uncer-

tainty and mutual information is used to quantify the degree of independence between two

random variables. These two concepts provide a methodology to reduce data redundancy
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and useless information. Let us introduce some information theory concepts and properties

[8] in the following parts.

2.1.1 Information Entropy

The entropy of a random variable X is expressed as

H(X) = −
∑
x∈Ω

p(x) log p(x), (2.1)

where p(x) represents the mass probability of an event x ∈ Ω from a finite set of possible

values. The entropy of a random variable is a measure of the amount of information required

on the average to describe a random variable.

Some papers [1] ([17],chapter 6) directly use the information entropy as a criterion to select

bands in hyperspectral images. The image cube is sorted in descending order subjects to the

entropy H(I(λi)) of each individual band or wavelength interval λi.

H(λi) = −
m∑
k=1

p(φik) log p(φik), (2.2)

p(φik)
.
= p(minik ≤ I(λi) < maxik), (2.3)

where the probability mass function p(φik) is estimated via a histogram where each bin k

used to estimate a probability for a range of values of I(λi) is defined by {minik,maxik}. m
is the number of bins used in each histogram [13]. Band selection is performed by choosing

the bands with higher entropy values.

However, this information measurement does not always, as often assumed, coincide with

the requirement of image registration. For image registration between two hyperspectral

cubes, a choice is to select one particular band for each cube and register them in order to

reduce computational complexity. Thus, we are more interested in how similar are these two

selected bands.
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From Equation 2.2, it is shown that the entropy is a function of a single image cube I(λi). In

other words, H(I(λi)) is calculated on a single signal, with no reference to another objective.

This means that the amount of information measured by the entropy lacks a point of reference

or benchmark [14]. Hence, there is no guarantee that the amount of entropy always matches

the information content useful for registration.

2.1.2 Mutual Information

To improve the entropy-based band selection methods, a better approach is to introduce the

concept of mutual information (MI). The mutual information of two random variables is a

measure of the mutual dependence between the two variables. More specifically, it quantifies

the “amount of information” obtained about one variable by observing the other random

variable. The definition of MI between X, Y is

I(X;Y ) =
∑
x,y∈Ω

p(x, y) log
p(x, y)

p(x)p(y)
(2.4)

= D(p(x, y)||p(x)p(y)), (2.5)

where p(x, y) is the joint probability distribution of X, Y and p(x), p(y) are their marginal

distribution, D is the Kullback-Leibler distance.

From Equation 2.4 and 2.1, it is easy to find out the relationship between the mutual

information and the entropy

I(X;Y ) = H(X) +H(Y )−H(X, Y ) (2.6)

= H(X)−H(X|Y ) (2.7)

= H(Y )−H(Y |X), (2.8)
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where H(X, Y ) is the joint entropy and H(X|Y ), H(Y |X) is the conditional entropy. Defi-

nitions given by Shannon are shown as

H(X, Y ) = −
∑
x,y

p(x, y) log p(x, y) (2.9)

H(X|Y ) = −
∑
x,y

p(x, y) log p(x|y). (2.10)

Mutual information is always non-negative for two random variables, being zero when the

variables are statistically independent. A higher value of MI indicates a higher dependency

between the variables. However, it is still not a wise approach to calculate all pairs of bands

between two image cubes and choose the pair with the largest value. For example, for

OMEGA data, computations for 103× 113 pairs of images are needed.

2.2 Hyperspectral Band Selection through Information-

theoretic Analysis

Based on the discussion of entropy and mutual information in section 2.1, this paper presents

a mutual information based band selection algorithm that can choose a good pair of bands

from two image cubes for registration within few seconds.

2.2.1 MI-based Band Selection with Pre-processing

The goal for band selection is to find a good pair of bands with mutual information closest

to the maximum value.

The preprocessing part of our method is the same as the entropy-based method, that is

sorting all bands in descending order with respect to the entropy. Instead of choosing the

band with the largest value of entropy, we store a small percentage of bands with higher

values, denotes as a reduced-dimension cube, for example, 10%. Then, for these two reduced-

dimension cubes, we calculate the mutual information for each pair of bands and select the

pair with the largest value.
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The detail of this algorithm is shown in the following Algorithm 1.

Algorithm 1 MI-based band selection algorithm.

Require: The moving image cube, M ; The fixed image cube, F ; Numbers of bands stored
for each image cube after preprocessing, N .

Ensure: Extract one band for each cube that their mutual information is the largest among
stored bands, M̂N , F̂N ; The value of the largest mutual information, MI(M̂N , F̂N);

1: Calculate the entropy for each band in M and F ;
2: Sort each cube M,F by entropy and store only top N bands into matrices MN , FN ;
3: Construct similarity matrix SN×N , for each entry (i, j), S(i, j) = MI(MN(i), FN(j));
4: Find the index of the pair of bands with the largest value in S, i∗, j∗ and its value, MI∗;
5: Return the pair of bands, M̂N = MN(i∗), F̂N = FN(j∗) and MI(M̂N , F̂N) = MI∗;

Proof. It is trivial for the initial condition when N = 1, that is we are choosing the band

with the largest value of entropy for each image cube. Because there are only two bands, it

is not necessary to compute the mutual information between them.

Suppose for N = m, after running the algorithm, it will return the optimal pair of band

M̂m, F̂m and their mutual information MI∗m. According to step 3 in Algorithm 1, the

similarity matrix should be Sm×m and MI∗m = max(Sm×m). When N = m+ 1, we have that

Sm×m ⊂ S(m+1)×(m+1), (2.11)

MI∗m ≤MI∗m+1. (2.12)

Therefore, according to Equation 2.12, mutual information is non-decreasing as the number

of bands N increases. When N grows to the maximum number of bands, the algorithm just

performs like calculating the mutual information for each pair of bands and return the true

optimal maximum value.

2.2.2 Experimental Result

In section 2.2.1, we presented our method in detail and showed proof of correctness. The

experimental results will consist of comparing our method with the entropy-based method

using a OMEGA dataset.
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First, we test the entropy-based method with an OMEGA data, the dimension of the VNIR

channel is 2288× 32× 103 and 2288× 32× 113 for the SWIR channel. The whole image is

too large to display in this thesis, so we only present two areas of the whole scene with some

easily recognized features in Figure 2.1.

Figure 2.1: Entropy-based band selection result

In Figure 2.1 the left two figures are from the VNIR channel selected by the entropy-based

method. Both corresponding images from two channels illustrate the same feature, but the

intensity values vary a lot with the other. The mean intensity value for the band in VNIR

channel is around 0.25, but for SWIR channel, this value is about 0.8. In terms of mutual

information, the value is 0.015, which is not at an ideal level for image registration. Results

from our MI-based band selection method is shown in Figure 2.2. The mutual information

between these two bands is 1.73, which is about 114 times larger than the value we get for

the entropy-based method.

Figure 2.3 is a plot showing that mutual information is a non-decreasing function of the

number of bands we stored. When the number of bands reaches 45 (around 44% of all

bands), the MI we get converges to the global optimal MI value. From experiments, an
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Figure 2.2: MI-based band selection result

approximate choice for percent of bands stored is 50%. We also compare our band selection

result with other dimension reduction method, such as principal component analysis (PCA).

The red dash line in Figure 2.3 shows the value of mutual information for images after PCA,

which is only 0.5067. The reason for this low mutual information acquired by PCA is that

it reduces the dimension only based on the distribution of one data set without considering

the other.

Figure 2.4 shows the function of computation time for the different number of bands. From

the previous discussion, a choice for the percentage of bands stored is 50%, and the corre-

sponding computation time is about 2 seconds. Compare with calculating all pairs of bands

in both cubes which takes 9 seconds to finish, our MI-based method only cost 22.2% of the

time but returns exactly the same optimal result.

In conclusion, our mutual information based band selection algorithm provides a suitable

approach that requires limited computation time to choose two corresponding bands from
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Figure 2.3: Correctness of MI-based method

each image cube in OMEGA dataset. For the next section, we will use the results generated

in this part for the discussion of image registration problem.
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Figure 2.4: Computational Cost for Selecting Different Number of Bands
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Chapter 3

Deformable Image Registration for

Hyperspectral Image

In this chapter, we first discuss the large deformation diffeomorphic metric mappings (LD-

DMM) method that is widely applied in the medical image area [3]. Diffeomorphic image

registration provides smooth and invertible smooth spatial correspondences between im-

ages. However, in the original LDDMM method, the sum of squared differences is used

for evaluating the performance of the registration result, which is not a suitable criterion

for hyperspectral imagery. In the second section of this chapter, we present our modified

LDDMM method.

3.1 LDDMM

Both mathematical proof and experiment results are presented in this section.

3.1.1 Math Background and Notation

There are a few fundamental ingredients in LDDMM and our goal is to review them in this

section without including the full mathematical proof. That is we will only introduce the

notions that are needed for the understanding of the rest of this thesis.
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1. A diffeomorphism of Ω is an invertible transformation from Ω to itself, which is con-

tinuously differentiable (C1) with a differentiable inverse. The identity map, id, is a

diffeomorphism and the inverse of any of them is a diffeomorphism as well. For any

diffeomorphisms ϕ and any object m ∈ Ω, ϕ · (ψ ·m) = (ϕ ◦ ψ) ·m. Properties above

imply that the set of diffeomorphisms of Ω, denoted Diff(Ω) has a group structure.

2. Displacement vector field u is defined as u : Ω → Rd such that ϕ(x) = x + u(x) for

all points x ∈ Ω. The transformation template image I0 applied with this displace-

ment field then becomes I0(ϕ(x)) = I0(x + u(x)). This transformation model is an

early attempt to compute high-dimensional non-rigid transformations resulted in the

development of the elastic matching strategy [6]. In order to meet our diffeomorphism

property, we need to introduce the concept of a velocity field to make the transforma-

tion differentiable.

3. Time-dependent vector fields. A time-dependent vector field on Ω is a function:

v : [0, 1]× Ω→ Rd (3.1)

(t, x) 7→ v(t, x). (3.2)

We will also use vt(x) to denote v(t, x). The time interval is scale to [0, 1]. The

corresponding ordinary differential equation (ODE) is

dy

dt
= vt(y). (3.3)

The flow of this ODE generates the evolution of a curve φv which depends on time and

space
∂φv

∂t
(t, x) = vt(φ

v
t (x)). (3.4)

The initial point of this curve at time t = 0 is the identity transformation id(x) =

x, ∀x ∈ Ω. The endpoint at time t = 1 is the diffeomorphism or displacement field

that has been discussed before ϕ(x) = φ(1, x), ∀x ∈ Ω. We also use the notation φvt

for φ(t, x) to show the dependence of φ on v. In this way, a displacement field or a

diffeomorphism ϕ can be generated by integral all the time-dependent vector field vt

via Equation 3.4 from time t = 0 to t = 1.
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Let the notation φs,t : Ω→ Ω denote the composition φs,t = φt ◦ (φs)
−1. The interpre-

tation of φs,t(y) is that it is the position at time t of an object that is at position y at

time s. In this case, the final diffeomorphism ϕ = φ1,0, and the initial transformation

is id = φ0,0.

4. Dot product over vector field. We now introduce a dot product norm over vector fields.

More precisely, we will consider a space V of vector fields on Ω and a dot product norm

||v||2V = 〈v, v〉V .

The norm on V is defined through a differential operator L (denoting the adjoint

operator as L†) given by

||v||2V =

∫
Ω

(Lv)T (Lv)dx, (3.5)

〈v, v〉V
.
= (Lv, Lv) = (L†Lv, v), (3.6)

where (, ) is the usual L2-product for square integrable vector fields on Ω. In our

implementation, however, the inverse of the operator K = (L†L)−1 is used most of the

time. This compact self-adjoint operator K is defined by

(v, w) = 〈Kv,w〉V . (3.7)

Together with Equation 3.6, for any smooth vector field v ∈ V , we have

K(L†L)v = v. (3.8)

This definition of norm in vector space V enforces a smoothness constraint that guaran-

tees V as a smooth, compactly-supported vector field. The technical details associated

with this construction of K and L are discussed in [18], [10]. And later in this thesis,

we will present the numerical implementation for the operator K.

20



3.1.2 Variational Minimization of the Energy Function

The image registration problem can be expressed as an optimization problem defined as

v̂ = arg min
v:φ̇t=vt(φt)


∫ 1

0

||vt||2V dt︸ ︷︷ ︸
E1(v)

+
1

σ2
||I0 ◦ φv1,0 − I1||2L2︸ ︷︷ ︸

E2(v)

 . (3.9)

The so-called energy function is the term inside the argmin function in Equation 3.9, which

consists of two parts. The second term E2(v) evaluates the metric between the deformed

moving image and the fixed image using standard L2 norm defined on Ω. The first term

E1(v) is a measurement of smoothness defined on the vector space V .

The optimizer v̂ of this energy function can generate the optimal transformation or diffeo-

morphism ϕ = φv1 by integration via Equation 3.4 with initial condition φ0 = id. Also, the

optimal solution guarantees that the flow of transformation φvs,t satisfies a sufficient amount

of smoothness on the elements of the vector space V . To solve this variational optimization

problem, we need to compute the variation of the transformation φv1,0 first.

Theorem 1. The variation of transformation φvs,t when v ∈ L2([0, 1], V ) is perturbed along

h ∈ L2([0, 1], V ) for a small amount is given by:

∂hφ
v
s,t = Dφvs,t

∫ t

s

(Dφvs,u)
−1hu ◦ φvs,udu, (3.10)

where Dφvs,t is the Jacobian of the transformation φvs,t.

Proof. From calculus of variation, we first have

∂hφ
v
s,t = lim

ε→0

φv+εh
s,t − φvs,t

ε
. (3.11)

According to Equation 3.4, the derivative of the perturbed transformation φv+εh
s,t at time t is

d

dt
φv+εh
s,t = vt ◦ φv+εh

s,t + εht ◦ φvs,t. (3.12)
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Substitute Equation 3.12 and 3.4 into Equation 3.11, an ordinary differential equation (ODE)

can be derived as

d

dt
∂hφ

v
s,t = lim

ε→0

1

ε
·
[
d

dt
φv+εh
s,t −

d

dt
φvs,t

]
(3.13)

= lim
ε→0

1

ε

[
vt ◦ φv+εh

s,t + εht ◦ φv+εh
s,t − vt ◦ φvs,t

]
(3.14)

= lim
ε→0

∂

∂ε

[
vt ◦ φv+εh

s,t

]
+ ht ◦ φv+εh

s,t (3.15)

= Dφvs,t
vt · ∂φvs,t + ht ◦ φv+εh

s,t . (3.16)

By solving the ODE 3.16, we could show that the expression in Equation 3.10 is the correct

solution with condition ∂hφ
v
s,s = 0. This is also trivial to directly compute this variation of

φvs,t by using the fact that
d

dt
Dφvs,t = Dφvs,t

vtDφ
v
s,t, (3.17)

which simply comes from the space differential of d
dt
φvs,t = vt ◦ φs,t.

Theorem 2. Given a continuously differentiable idealized fixed image I0 and a moving image

I1, then v̂ ∈ L2([0, 1], V ) for inexact matching of I0 and I1 is formulated as

v̂ = arginf
v∈L2([0,1],V )

E(v)
.
=


∫ 1

0

||vt||2V dt︸ ︷︷ ︸
E1(v)

+
1

σ2
||I0 ◦ φv1,0 − I1||2L2︸ ︷︷ ︸

E2(v)

 . (3.18)

The Euler-Lagrange equation for the matching energy function at time t is given by

2v̂t −K
(

2

σ2

∣∣Dφv̂t,1∣∣∇J0
t (J0

t − J1
t )

)
= 0, (3.19)

where J0
t
.
= I0 ◦ φt,0, J1

t
.
= I1 ◦ φt,1.

Proof. Let the velocity v ∈ L2([0, 1], V ) be perturbed by an ε amount direction h ∈ L2([0, 1], V ).

The variation ∂hE(v) of the energy function is defined by

∂hE(v) = lim
ε→0

∂E(v + εh)

∂h
. (3.20)
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The variation of E1(v) is given by

∂hE1(v) = lim
ε→0

∂

∂h

∫ 1

0

〈vt + εht, vt + εht〉2V dt (3.21)

= 4

∫ 1

0

〈vt, ht〉V dt. (3.22)

The variation of E2(v) is given by

∂hE2(v) =
2

σ2
〈I0 ◦ φv1,0 − I1, DI0 ◦ φv1,0∂hφv1,0〉L2 . (3.23)

The term ∂hφ
v
1,0 is the variation of the transformation which is given by Theorem 1. Substi-

tute Equation 3.10 into Equation 3.23, we then have

∂hE2(v) =
2

σ2
〈I0 ◦ φv1,0 − I1, DI0 ◦ φv1,0 · (−Dφv1,0

∫ 1

0

(Dφv1,t)
−1ht ◦ φv1,tdt)〉L2 . (3.24)

By collecting D(I0 ◦ φv1,0) = DI0 ◦ φv1,0Dφv1,0, Equation 3.24 becomes

∂hE2(v) =
2

σ2
〈I0 ◦ φv1,0 − I1, D(I0 ◦ φv1,0) · (Dφv1,0)−1 · (−Dφv1,0

∫ 1

0

(Dφv1,t)
−1ht ◦ φv1,tdt)〉L2

(3.25)

=
−2

σ2

∫ 1

0

〈I0 ◦ φv1,0 − I1, D(I0 ◦ φv1,0)(Dφv1,t)
−1ht ◦ φv1,t〉L2dt. (3.26)

Setting φv1,t(y) = x, then φt,1(x) = y, which gives the Jacobian change of variables |Dφvt,1|dx =

dy. Thus, we have φv1,0 ◦ φvt,1 = φvt,0 and substituting in above equation, we will have:

∂hE2(v) =
−2

σ2

∫ 1

0

〈|Dφvt,1|(I0 ◦ φvt,0 − I1 ◦ φvt,1), D(I0 ◦ φv1,0)ht〉L2dt (3.27)

=
−2

σ2

∫ 1

0

〈|Dφvt,1|(J0
t − J1

t ), D(I0 ◦ φvt,0)ht〉L2dt (3.28)

=
−2

σ2

∫ 1

0

〈|Dφvt,1|(J0
t − J1

t ) · ∇J0
t , ht〉L2dt. (3.29)

With the discussion about the dot product in vector field in Section 3.1.1, the variation of

E2 can be transposed to the vector field, which is consistent with the variation of E1 in
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Equation 3.22

(∂hE2(v))V = −
∫ 1

0

〈K(
2

σ2
|Dφvt,1|(J0

t − J1
t ) · ∇J0

t ), ht〉V dt. (3.30)

Collect two terms 3.22 and 3.30, the gradient of the energy function in the vector space V

at time t is given by

(∇vtE)V = 2vt −K
(

2

σ2
|Dφvt,1|(J0

t − J1
t )

)
, (3.31)

where the subscript V indicates the gradient lives in the smooth vector space V . Set this

energy gradient to 0, the Euler-Lagrange equation in Theorem 2 can be derived.

With Theorem 2, the optimal velocity field for 3.9 is generated by standard gradient descent

algorithm by using the gradient term shown in 3.31. In the next section, we will discuss the

numerical implementation of this algorithm.

3.1.3 Numerical Implementation of the LDDMM Algorithm

The ODE of φvs,t illustrates the continuous flow of transformation or diffeomorphism, we need

to discretize the flow for implementation in our algorithm. The image domain is denoted as

Ω Let the diffeomorphism generated by discrete flow be indexed by tj ∈ [0, 1], j ∈ [0, N ],

then the size of a timestep δt = 1
N

, that is we always scale the time interval to be [0, 1] and

assume piece-wise constant velocities in the discrete time intervals. Let our moving image

I0 = J0
0 be the image at the starting point of the flow being mapped to the fixed image

I1 = J1
1 at the end time point. We use the notation vktj and φktj ,0 for the velocity field and

the transformation for the kth iteration in the gradient descent algorithm at time index tj.

The variational optimization of the energy function (3.9) is performed in a standard gradient

descent scheme

vk+1
tj

= vktj − ε · ∇vktj
E, (3.32)
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where the gradient term ∇vktj
E is acquired by discretizing the Equation 3.31 for each voxel

y ∈ Ω as

∇vktj
Ek
tj

(y) = 2vktj(y)−K
(

2

σ2
|Dφvtj ,1(y)|(J0

tj
(y)− J1

tj
(y))

)
. (3.33)

The energy for each time index tj at kth iteration is

Ek
tj

= δt ·
N−1∑
j=0

||vktj ||
2
V +

1

|Ω|
∑
y∈Ω

|J0
1 (y)− J1

1 (y)|2 (3.34)

= δt ·
N−1∑
j=0

||Lvktj ||
2
L2 +

1

|Ω|
∑
y∈Ω

|J0
1 (y)− J1

1 (y)|2, (3.35)

where |Ω| is the number of pixels for the fixed or moving image, and L is the operator we

have discussed in Section 3.1.1 that transforms the vector norm to standard L2 norm.

The first term in Equation 3.35 is also regarded as the length of the path from the identity

transformation Id to the matching diffeomorphism φ1,0 at kth iteration.

Another implementation issue needs to be resolved is the choice of operator L and K. Let

discrete functions f(x) and g(x) be defined f, g : Ω ⊂ Zn → Rn on the discrete image grid

Ω ⊂ Zn and satisfy the equation

L†Lf = g. (3.36)

The operator L is chosen to be of the Cauchy-Navier type, which is given by

L
.
= −α∇2 + γI, (3.37)

where I is the identity operator and∇2 = ∂2

∂x2
+ ∂2

∂y2
is the Laplacian operator. The parameter

α enforces smoothness, higher values ensure solutions of high regularity, and the coefficient

γ is chosen to be positive so that the operator is non-singular [12]. For a given discrete

function f(x, y), to calculate the function g(x, y) via Equation 3.36

g(x, y) = (−α∇2 + γI)f(x, y) (3.38)

= −α
[
∂2

∂x2
f(x, y) +

∂2

∂y2
f(x, y)

]
+ γf(x, y). (3.39)
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Write right side term in Equation 3.39 in the discrete version using finite differences on a

periodic domain.

−α
[
f(x+4x, y) + f(x−4x, y)− 2f(x, y)

4x2
+
f(x, y +4y) + f(x, y −4y)− 2f(x, y)

4y2

]
+ γf(x, y)

(3.40)

With applying Fourier transformation for both sides of Equation 3.39, the equation becomes

G(k1, k2) = A(k1, k2)F (k1, k2), (3.41)

where A(k1, k2) = 2α
[

1−cos (2πk14x)
4x2 + 1−cos (2πk24y)

4y2

]
+ γ, 4x = 1

N1
, 4y = 1

N2
, N1, N2 is the

dimension of data on x and y-axis. Here we present the proof.

Proof. Let us first apply Fourier Transform on the first term in Equation 3.39

F
(
f(x+4x, y) + f(x−4x, y)− 2f(x, y)

4x2

)
=

1

4x2

(
ej4x2πk1 + e−j4x2πk1 − 2

)
F (k1, k2)

(3.42)

=
2 cos (4x2πk1)− 2

4x2
F (k1, k2). (3.43)

Similarly, the second term after Fourier Transform is 2 cos (4y2πk2)−2
4y2 F (k1, k2). Collect all the

terms together, we will get Equation 3.41.

For Equation 3.36, we assume periodic boundary conditions, in which case L is self-adjoint

L = L†. Then we can evaluate operator L†L as L2, that yields the Fourier Transform of

Equation 3.36:

G(k1, k2) = A(k1, k2)2F (k1, k2). (3.44)
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In this way, the effect of inverse operator K = (L†L)−1 can be expressed properly in the

Fourier domain

F (k1, k2) =
G(k1, k2)

A(k1, k2)2
, (3.45)

f(x, y) = F−1

(
G(k1, k2)

A(k1, k2)2

)
(3.46)

= Kg(x, y). (3.47)

3.1.4 LDDMM Algorithm and Experimental Results

The registration algorithm is described in following pseudo code shown in Algorithm 2. The

output diffeomorphism is φK−1
tj ,0

for ∀j ∈ [0, N − 1].

Algorithm 2 LDDMM Algorithm

1: v0
tj

= 0 for ∀j ∈ [0, N − 1]
2: ∇v0tj

E = 0 for ∀j ∈ [0, N − 1]

3: φktj ,1 = Id, φ0
tj ,k

= Id for ∀j ∈ [0, N − 1], k ∈ [0, K − 1]
4: for k = 0 to K − 1 do
5: Calculate φktj ,1 and |Dφktj ,1| for each tj
6: Calculate φktj ,0 for each tj
7: Calculate J0

tj
= I0 ◦ φktj ,0 and DJ0

tj
for each tj

8: Calculate J1
tj

= I1 ◦ φktj ,1 for each tj
9: Calculate the energy gradient ∇vktj

E for each tj

10: Update new velocity field vk+1
tj = vktj − ε · ∇vktj

E for each tj

11: end for

For each iteration, we need to integral vktj for ∀j ∈ [0, N − 1] to generate the diffeomorphism

φktj , this function is shown in following Algorithm 3.

27



Algorithm 3 Calculate Diffeomorphism from Velocity Field

φktj ,0 = Id

φk1,tj = Id

for j = 0 to N − 1 do

φktj+1,0
= 1

N
· φktj ,0 ◦ v

k
tj

+ φktj ,0

φktj+1,1
= 1

N
·Dφktj ,1 · v

k
tj

+ φktj ,1

end for

Parameters should be carefully selected, the following Table 3.1 shows the effect of changing

some parameters and values we used in our implementation. The parameters set up may

not be the optimal but is the best among our experiments.

Table 3.1: Parameters Set Up for LDDMM

Parameter Name Description Value

α in L, K operator Enforce smoothness to the vector field 1.5

σ in the energy function Weight coefficient for image metric 0.06

N Number of discrete time intervals between [0, 1] 50

K Maximum number of interactions for gradient descent 50

ε Fixed step size for gradient descent 0.1

We first present the results of implementing our LDDMM algorithm to META data set. For

all sources from META, they are gray images obtained from the same device, which provide

a better condition for registration comparing with multi-modal OMEGA data.

We randomly chose three images from the data set and use one of them to be the moving

image, others will be treated as fixed images. Results are shown below.

As we can see in Figure 3.1, the moving image changes dramatically to the fixed image, with

the error (we are using SSD to measure the difference between two images) starting from

7486 to 135. The processes of convergence of energy function and SSD error are shown in

Figure 3.2.
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Figure 3.1: Registration Result 1 for META data

The flow of diffeomorphisms is shown in Figure 3.3, with the metric that enforces smoothness

constraint on the vector field, the LDDMM algorithm generates a differentiable and invertible

transformation.

We could see the property of a differentiable transformation from the above figure, the moving

image I0 starts at time t = 0 and gradually deforms over discrete time (tj, j = 13, 25, 37) till

the endpoint t = 1. This sequence of images shows the path of how diffeomorphisms moving

on a smooth and differentiable manifold. Actually, Figure 3.3 shows image I0 composed

with the flow of diffeomorphisms, but we can use this to visualize the process happens in

the manifold of diffeomorphisms. The moving image at time t = 1 : I0 ◦ φ1,0 is the final

registration result to match the fixed image I1. To justify our algorithm, we will present

another registration result below.

Figure 3.4 and 3.5 give registration results for another pair of images. Similar to the discus-

sion above, the LDDMM algorithm has a robust performance for the singular source image.

29



Figure 3.2: Value of Energy Function and SSD Error for each iteration

Figure 3.3: Flow of diffeomorphisms

However, when applying the same method to hyperspectral imagery, the same algorithm

becomes unstable and even fail for most cases. Here we present the result of implementation

with OMEGA in Figure 3.6.

The energy function in the left part of Figure 3.6 has an unexpected peak for the first

and second iteration. Even though it starts to show the trend of convergence after the

fifth iteration, the value of energy fluctuates a lot and stops at a level with a higher value

than the original one. Because of the multi-modal issue, SSD error no longer makes sense

for comparing two hyperspectral images. Thus, we borrow the idea of mutual information

in Section 2.1.2 to quantify the distance between two images from OMEGA data and the

function of mutual information subjects to iterations is shown in the right part of Figure

3.6. The mutual information function with iterations has the same shape with the energy

function, still does not converge. To show how applying transformation affects the mutual

information, we present some experiments of slightly moving image grid for two directions

and compute the mutual information between them in Appendix A.
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Figure 3.4: Registration Result 2 for META data

Figure 3.5: Flow of diffeomorphisms

Because images in the OMEGA data set are too large to display on paper, we only extract

some critical parts with abundant feature information, such as meteor craters or boundaries

of mountain chains to show the result. Figure 3.7 shows three critical areas (Feature 1 shows

the area from row 1025 to 1065, Feature 2 is 2030 to 2065 and Feature 3 is 702 to 742) for

the registration result. The average error is 2 pixels on y-axis and the mutual information

after registration is only around 1.7, which is not a satisfactory result.

In the following section, a modified LDDMM algorithm will be presented to improve the

registration performance for hyperspectral images. The core idea of our method is to augment

the current energy function with another matching term that includes boundary information.
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Figure 3.6: Registration Result for applying LDDMM to OMEGA data

Figure 3.7: Registration Result for Critical Areas
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3.2 Modified LDDMM with Edge Information

In the previous Section 3.1, we have thoroughly discussed the LDDMM algorithm and tried

to implement it to our hyperspectral image data set OMEGA. However, the results are not

satisfactory. The reason for the failure of the LDDMM algorithm is because of the SSD

distance we have used in the energy function. For multi-modal imagery, even two images

are perfectly aligned, the sum of squared distance is still likely to be large. Therefore, SSD

cannot be the only term to decide the ”goodness” of matching result. In our modified

LDDMM, we are adding an edge matching term in the energy function that compares the

distance of edge maps for moving and fixed images. We call this new energy function as

augmented energy.

3.2.1 Edge Detection

Edge detection includes a variety of mathematical methods that aim at identifying points in

an image at which the image brightness changes sharply or, more formally, has discontinu-

ities. The points at which image intensity changes dramatically are typically organized into

a set of curved line segments termed edges [19].

Before we start discussing about the edge detection method, we want to first emphasize why

edge map will help register hyperspectral images. OMEGA is using bi-dimensional charge

coupled device (CCD) to measure the intensity of input light for different spectral. The

simple mathematical model of sensor is given by

I0[nx, ny, λ] =

∫ T

t=0

[∫
E(λ, x, y, t)p(x− x̄nx , y − ¯yny)q(λ)dλdxdy

]
dt, (3.48)

I[nx, ny, λ]
.
= I0[nx, ny, λ] + ε(λ). (3.49)

where E(λ, x, y, t) is the light energy per unit area per unit time per spectral, arriving at

time point (x, y) at time t. I0[nx, ny] is the intensity measured by the sensor at grid location

[nx, ny], nx, ny ∈ N. p(x − x̄nx , y − ¯yny) is the sensitivity function, for the ideal case is 1

inside pixel and 0 outside. q(λ) is the quantum efficiency of the sensor: Ratio of light energy
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to charge/voltage, is a function to light wave length λ. ε is the signal-independent addition

noise, most time can be treated as Gaussian noise.

Figure 3.8: 3D Visualization of Intensity Value in SWIR channel

Figure 3.8 shows two areas within the same band in SWIR channel, there are some parts

with discontinuity, which may be treated as edges. We need to figure out if all those edges

represent the geometry features of the Mars surface that remain the same when we acquired

data. If the answer is yes, then using edge maps in registration will provide some useful

information for matching two hyperspectral images.

Figure 3.9: Quantum Efficiency for Detector in SWIR Channel
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Figure 3.9 [15] shows the quantum efficiency for the detector (InSb linear array) in the

SWIR channel. It is obvious to find that the efficiency (reflectance) function is continuous

among the measuring spectral range from 0.93µm− 5.2µm. Therefore, the discontinuity of

intensity value from Figure 3.8 must come from the light energy function E(λ, x, y, t) with

the assumption that the sensitivity function p is ideal.

When discussing the light energy function, we need to introduce a light reflection model.

Mars surface will absorb and reflect portions of the incident light coming from Sun, instru-

ments on OMEGA then measure the radiance of reflected light from a certain viewpoint on

the orbit. A general view of this process is shown in Figure 3.10.

Figure 3.10: Overview of Pixel Observation Geometry

The relationship between input radiation Es(λ, x, y) and output radiation Eo(λ, x, y) at

location (x, y) is given by

Eo(λ, x, y) = q(λ, x, y, i, e, ~n)Es(λ, x, y). (3.50)

All incident and reflection angles i, e are recorded. Given that, the function q(λ, x, y, i, e, ~n)

only depends on surface geometry and mineral composition, which involves discontinuity

when the surface has some dramatic shape or mineral changes. Under this assumption, edge
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maps that extract discontinuous parts in hyperspectral images will provide strong informa-

tion about the underlying geometry of surface that can be regarded as a constant. Additional

noise will also generate discontinuity, but with proper denoising method in edge detection

algorithm, we could significantly reduce the effect of noise.

Here we present some edge maps to show that they share the same landmark features even

though the sources are coming from different instruments in Figure 3.11.

Figure 3.11: Edge Maps for SWIR and VNIR Channel

Edge maps in Figure 3.11 are obtained through the Canny edge detector, which is a mature

method to generate a clear picture of edges. We will only summary the process of Canny
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edge detection briefly in this paper, but details can be found at [7]. The process of the Canny

edge detection algorithm can be broken down to 5 different steps:

1. Apply Gaussian filter to smooth the image in order to remove some noise.

2. Find the intensity gradients of the image.

3. Apply non-maximum suppression to get rid of spurious response to edge detection.

4. Apply double threshold to determine potential edges

5. Track edge by hysteresis: Finalize the detection of edges by suppressing all the other

edges that are weak and not connected to strong edges.

3.2.2 Variational Minimization of the Augmented Energy Func-

tion

With the discussion about how edge maps contain some useful geometric information in

Section 3.2.1, we want to further extend this idea to registration algorithm, specifically for

LDDMM. The original LDDMM only use the SSD to evaluate the difference between two

images, which is not a good criterion for hyperspectral imagery. In this section, we will

discuss our modified LDDMM algorithm with additional edge difference penalty.

The modified LDDMM algorithm derives from the modification of the original energy func-

tion. We are adding an edge matching term as a penalty function. The augmented energy

function is given as

Eaug(v) =

∫ 1

0

||vt||2V dt︸ ︷︷ ︸
E1(v)

+
1

σ2
1

||I0 ◦ φv1,0 − I1||2L2︸ ︷︷ ︸
E2(v)

+
1

σ2
2

||E[I0] ◦ φv1,0 − E[I1]||2L2︸ ︷︷ ︸
E3(v)

, (3.51)

where E[·] is the Canny edge operator.

Before calculating the gradient of augmented energy function subject to velocity field, we

first give an intuitive gradient constancy assumption.
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Theorem 3. The gradient of the image intensity value can be assumed not to vary due to

the displacement u [20]. This gives

∇I(x, y, t) = ∇I(x+ ux, y + uy, t+ 1). (3.52)

In our case, with the notation in 3.1.1, Equation 3.52 can be rewritten as

∇I(x, y) = ∇(I ◦ φv1,0)(x, y). (3.53)

With this assumption, we can derive an approximation of how transformation/diffeomorphism

affects edge maps. This is given by

E[I0] ◦ φv1,0 ≈ E[I0 ◦ φv1,0]. (3.54)

This approximation makes sense based on the methodology of the Canny edge detection

algorithm. Because it mainly uses the intensity gradient of the image to find the center of

edges as we discussed in Section 3.2.1.

The reason we are using this approximation of the deformed edge map is based on the inter-

polation method in our algorithm. For those transformations that generate the displacement

field with non-integer values, the deformed image grid will have some non-integer indexes.

For these cases, our algorithm applies a bilinear interpolation method to estimate values for

these non-integer index pixel.

Figure 3.12: Bilinear Interpolation
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In Figure 3.12, (nx, ny) is an index in the deformed image with corresponding coordinates

(x, y) in the original image. The value g(nx, ny) is given by

g(nx, ny) = f(x, y) (3.55)

=
1

(x2 − x1)(y2 − y1)

[
x2 − x x− x1

] [f(x1, y1) f(x1, y2)

f(x2, y1) f(x2, y2)

][
y2 − y
y − y1

]
, (3.56)

where x1 = bxc, x2 = dxe and y1 = byc, y2 = dye.

Here we present some experimental results in Figure 3.13 to show this approximation. The

left column in Figure 3.13 is the edge map for E[I0] ◦ φv1,0 and the right column is generated

by E[I0 ◦φv1,0]. It is obvious that the left one has lots of blur at the boundary which violates

the general criteria for edge detection: the edge point detected from the operator should

accurately localize on the center of the edge. However, edge maps from our approximation

give a clear image and will also show those pixels that are moved out of the image domain.

This will give better robustness for our registration algorithm.

Theorem 4. The variation of E3(v) is given by

∂hE3(v) = − 2

σ2
2

∫ 1

0

〈|Dφvt,1|(EJ0
t − EJ1

t ) · ∇EJ0
t , ht〉L2dt, (3.57)

where EJ0
t
.
= E[I0 ◦ φt,0], EJ1

t
.
= E[I1 ◦ φt,1].

Proof. The Let the velocity v ∈ L2([0, 1], V ) be perturbed by an ε amount direction h ∈
L2([0, 1], V ). The variation ∂hE(v) of the energy function is defined by

∂hE3(v) = lim
ε→0

∂E3(v + εh)

∂h
(3.58)

Similar with Equation 3.24, the variation of E3(v) is given by

∂hE3(v) =
2

σ2
2

〈E[I0] ◦ φv1,0 − E[I1], DE[I0] ◦ φv1,0∂hφv1,0〉L2 . (3.59)
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Figure 3.13: Edge Maps for Different Deformation Methods

Following the same procedure in Theorem 2, the variation becomes

∂hE3(v) =
−2

σ2
2

∫ 1

0

〈|Dφvt,1|(E[I0] ◦ φvt,0 − E[I1] ◦ φvt,1), D(E[I0] ◦ φv1,0)ht〉L2dt (3.60)

=
−2

σ2

∫ 1

0

〈|Dφvt,1|(E[I0] ◦ φvt,0 − E[I1] ◦ φvt,1)) · ∇(E[I0] ◦ φvt,0), ht〉L2dt. (3.61)

Then substitute Equation 3.54 to Equation 3.61, we will get Equation 3.57.

40



By collecting all variations for E1(v), E2(v) and E3(v), the gradient of augmented energy

function is given by

(∇vtEaug)V = 2vt−K
(

2

σ2
1

|Dφvt,1|(J0
t − J1

t )

)
−K

(
2

σ2
2

|Dφvt,1|(EJ0
t − EJ1

t ) · ∇EJ0
t

)
. (3.62)

The optimal vector field v̂t is obtained by using the gradient in Equation 3.62 in a standard

gradient descent algorithm. Follow the same structure of algorithm shown in Section 3.1.4,

our modified large deformation diffeomorphic metric mapping (LDDMM) is finished. We

will present our results in the next section with the comparison with other methods.

3.2.3 Experiment Results

Setting up suitable coefficients in our modified LDDMM algorithm is important, here we

present values we used to generate the results shown in this section.

Table 3.2: Parameters Set Up for Modified LDDMM
Parameter Name Description Value
α in L, K operator Enforce smoothness to the vector field 2
σ1 in energy function Weight coefficient for image metric 0.08
σ2 in energy function Weight coefficient for edge map 0.2

N Number of discrete time intervals between [0, 1] 80
K Maximum number of interactions for gradient descent 60
ε Fixed step size for gradient descent 0.1

λ in edge detector Standard deviation of the Gaussian filter 0.2

With the parameters shown in Table 3.2, the function of energy with iterations are shown in

the left part of Figure 3.14 and how mutual information increases with iterations is shown

in the right part. Comparing with Figure 3.6, it is obvious that our energy function and

mutual information converge nicely to a better level. The values for modified LDDMM

energy function are not compatible with the previous one, for we are using different weight

coefficients and adding another penalty term. However, the shape of the energy function still

illustrates our augmented energy function has less relative minimums that make the gradient

descent algorithm more robust than original LDDMM. The plot for mutual information in

our algorithm converges to a much higher value of 1.92 compared with 1.67 in the previous

method.
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Figure 3.14: Convergence of Energy Function and MI for Modified LDDMM

The displacement fields for our modified algorithm and the original one are shown in Fig-

ure 3.15. The displacement field from our modified method gives a transformation that

tends to move the pixels in the No.3 feature area in the direction (1,−1) (displacement field

shown in Figure 3.15 is the inverse transformation) which is consistent with the result from

Appendix A (the direction is (0,−2)). However, the result from the original LDDMM is

close to zero vector, which means there is actually no deformation for this part of the area.

Figure 3.15: Comparison of Two Methods for Displacement Field
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To test the robustness of our method, different pair of bands will be registered by our

MLDDMM algorithm. Current result of pair (No.53 in VNIR channel and No.5 in SWIR

channel) is shown above. Some results for other pairs are shown below.

Figure 3.16: Registration Result for Band 34 and 4

Figure 3.17: Registration Result for Band 28 and 5
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The energy function and the mutual information in Figure 3.16 and 3.17 also converge to

certain values but takes more iterations. We will also compare the transformation vector

fields generated by each pair in Figure 3.18. The left figure is the vector field we have shown

before and the other two are pair (28 and 5, 34 and 4). Slight difference occurs for each pair

but they still share a common feature around the center area. Comparing those results for

both convergence of the energy function and the mutual information and the displacement

fields, our modified LDDMM algorithm shows the property of robustness.

Figure 3.18: Displacement Vector Fields for Different Pair of Bands

To better visualize our result, Figure 3.19 and 3.20 shows two critical areas with easily

recognized landmarks. For each area, the plots on the left top and right bottom corner are

the fixed image from SWIR channel. The left bottom figure is the original moving image

from the VNIR channel and our registration result is presented on the top right corner.

The red reference lines are added to these figures to explain the alignment for vertical and

horizontal directions.
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Figure 3.19: Registration Result 1 for Modified LDDMM on OMEGA
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Figure 3.20: Registration Result 2 for Modified LDDMM on OMEGA
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Chapter 4

Conclusion and Future Work

This thesis has attempted to develop a modification for the LDDMM algorithm in order to

deal with the deterioration when applied to hyperspectral images. In Chapter 2, we describe

the mutual information-based band selection algorithm to reduce the data complexity. Then

in Chapter 3, this thesis first goes over the math detail for the LDDMM algorithm and

then presents our modification with augmented energy function set up. By involving edge

information, s better matching result comparing with the result from LDDMM is achieved.

Future work on registration may involve the following issues this thesis did not resolve.

The first thing is the computational complexity. All discrete velocity fields are generated

independently by the gradient of the energy function, that is when we are using 50 discrete

time intervals for each iteration, the gradient needs to be computed 50 times. And calculation

of the energy gradient is time-consuming for the implementation of the K operator (even

in Fourier domain). However, recently, a fast approach to generate all velocity field is

proposed as geodesic shooting. The idea of this method is to obtain the ODE of the flow of

diffeomorphisms that the final transformation is only determined by the initial velocity field

v0. This geodesic shooting approach is discussed in Appendix B. The unsolved part for this

method is to calculate the energy gradient ∇v0Ek subject to v0 for each iteration k. Also,

the choice of coefficients in our algorithm is made by experiments and will vary a lot when

given different inputs.
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Appendix A

Influence for Transformation on

Mutual Information

In Section 3.1.4, we introduced a mutual information criterion to determine the distance

between two hyperspectral images. The definition is given by

MI(I0; I1) = H(p(I0)) +H(p(I1))−H (p(I0), p(I1)) (A.1)

where p(I0) and p(I1) are the marginal distributions (histograms) of image I0 and I1 and H

represents entropy. Mutual information evaluates the dependence of two distribution that

merely depends on intensity values. To illustrate mutual information can still work as a cri-

terion for image registration result, we are testing the influence of applying a transformation

on mutual information for hyperspectral images.

For a given band from the OMEGA data set, we apply different levels (-15 to 15 in pixel

size) of translations, and calculate the mutual information between the original image and

the translated image. The result is shown below. In Figure A.1, the mutual information

is monotonically decreasing as the translation becomes more severe for both directions and

both images in two channels. The global maximum appears at the origin (0, 0), when no

translation is added. In this case, using mutual information to evaluate the difference is

practicable.
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Figure A.1: Applying Different Levels of Transformation
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An interesting result is shown in Figure A.2, when we apply the same procedure to the two

selected images from each channel. The mutual information reaches the highest value at

location (0,−2), which means if we are only using translations to register these two images,

applying a translation for −2 pixel size on the y-axis is the best choice. This is similar to our

result in Section 3.2, however, our modified LDDMM algorithm gives back a higher value of

mutual information at 1.92.

Figure A.2: Mutual Information with Different Transformations
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Appendix B

Geodesic Shooting

We first need to define “straight lines” in the manifold that our diffeomorphisms live. For

two given transformation ψ0 and ψ1, a straight line or a geodesic is the path that requires

minimum energy for ψ0 to convert to ψ1. For our registration problem, our diffeomorphisms

always start at identity transformation ψ0 = Id. This energy used to evaluate the distance

between Id and ψ1 is denoted as kinetic energy, given by

d(Id, ψ1)V =

∫ 1

0

||vt||2V dt
∣∣∣∣
φv1=ψ1

(B.1)

According to Equation 3.6, the vector norm can be converted to L2 norm

d(Id, ψ1)L2 =

∫ 1

0

(Lvt, vt)
2dt

∣∣∣∣
φv1=ψ1

(B.2)

Theorem 5. The Euler equation for the kinetic energy associated to the construction of

paths with minimal kinetic energy between two given points is given by:

dLv

dt
+ ad∗v(Lv) = 0 (B.3)

Proof. Let (t → φt) be extremal and ((t, ε) → φt,ε) be a smooth deformation around ε = 0,

for convenience, denote φt,0 = φt. Denote ∂φt,ε
∂t

= vt,ε ◦ φt,ε, ∂φt,ε
∂ε

= ηt,ε ◦ φt,ε, ∂vt,ε
∂ε

= ht,ε, still

for convenience, denoting vt,0 = vt, ηt,0 = ηt, ht,0 = ht.
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Firstly, we need to express ht in function of other variables. Variables should satisfy following

equation:
∂2φ

∂ε∂t
=

∂2φ

∂t∂ε
(B.4)

which yields
∂ηt
∂t
◦ φt + dφtηtvt ◦ φt = ht ◦ φt + dφtvtηt ◦ φt (B.5)

applying φ−1
t on the right to both terms gives

ht =
∂ηt
∂t

+ dηtvt − dvtηt =
∂ηt
∂t

+ [ηt, vt] =
∂ηt
∂t
− advtηt (B.6)

The first variation of the energy is given by

d

dε

∫ 1

0

||vt,ε||2V dt
∣∣∣∣
ε=0

=
d

dε

∫ 1

0

〈vt, vt〉2V dt (B.7)

= 2 ·
∫ 1

0

2 · 〈vt, ht〉V dt (B.8)

= 4 ·
∫ 1

0

(Lvt, ht)dt (B.9)

= 4

∫ 1

0

(Lvt,
∂ηt
∂t
− advtηt)dt (B.10)

= 4

∫ 1

0

(Lvt,
∂ηt
∂t

)dt− 4

∫ 1

0

(ad∗vtLvt, ηt)dt (B.11)

Then, use integration by parts, we have

dLv

dt
+ ad∗v(Lv) = 0 (B.12)
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[2] Ruzena Bajcsy and Stane Kovačič. Multiresolution elastic matching. Computer vision,
graphics, and image processing, 46(1):1–21, 1989.

[3] M Faisal Beg, Michael I Miller, Alain Trouvé, and Laurent Younes. Computing large de-
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