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Abstract 

Numerical Simulations of Flow past a Triangular Airfoil and in a Sweeping Jet Actuator Using 

Different Turbulence Models  

by 

Han Yang 

Master of Science in Mechanical Engineering 

Washington University in St. Louis 

Research Adviser: Professor Ramesh Agarwal 

 

The goal of this research is to perform 2D turbulent flow simulations to predict the flow past a 

triangular airfoil used for a Mars air vehicle and in a sweeping jet actuator used for active flow 

control. Simulations are performed using the commercial CFD software ANSYS Fluent.  

The thesis consists of two parts. The first part of the thesis deals with the CFD simulations of a 

triangular airfoil in low-Reynolds-number compressible flow. This airfoil is one of the 

candidates for propeller blades on a possible future Martian air vehicle design. The aerodynamics 

and flow physics of the triangular airfoil is studied at angles of attack (AOA) from 0 deg. to 14 

deg. at Mach number of 0.5. Compressible Reynold-Averaged Navier-Stokes (RANS) equations 

with a number of turbulence models, namely the SA, SST k-ω, and recently developed Wray – 

Agarwal (WA) model are solved. The computations are compared with the experimental data to 

assess the accuracy of various turbulence models. Lift coefficient, drag coefficient and pressure 

coefficient are obtained by performing computations at different angles of attack at a constant 

Mach number. It is shown that SST k-ω and WA model give the most accurate result.  



 

vii 
 

The second part deals with the simulation of the unsteady oscillatory flow field of a Sweeping Jet 

Actuator (SWJ) used in active flow control of flow past wings. Based on recent experiments, 

sweeping jet actuators have been found to be more efficient for controlling flow separation in 

terms of mass flow requirements compared to constant blowing and suction or even synthetic jet 

actuators. They produce span-wise oscillating jets and therefore are called the sweeping jets. The 

frequency and span-wise sweeping extent depend on the geometric parameters and mass flow 

rate entering the actuators through the inlet section. The flow physics associated with these 

actuators is quite complex and is not fully understood at this time. The unsteady flow generated 

by such an actuator is simulated using the CFD solver ANSYS Fluent. k-ε model was used to get 

the computational results. Computed mean and standard deviation of velocity profiles generated 

by the actuator in quiescent air are compared with experimental data. Simulated results show 

good agreement with the experimentally observed trends with parametric variation of geometry 

and inflow conditions. 
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Chapter 1: Introduction 
 

In this Chapter, the motivation behind this study and the background of the project are presented. 

It also introduces the outline of the thesis and a summary of the related published papers in the 

literature. The scope of the thesis is also included. 

1.1 Motivation 

The atmospheric conditions of Mars are different from the Earth. In these conditions, a specific 

type of wing and propeller for a Martian aircraft are required. To design an aircraft which could 

be used on Mars, a great deal of effort has been devoted in recent decades. The first step in this 

direction is to understand the airfoil performance of a Mars wing or propeller by using tools of 

Computational Fluid Dynamics (CFD). There has been rapid progress in the improvement of 

CFD tools namely the geometry modeling, grid generation, numerical algorithms and turbulence 

modeling for accurate and efficient solution of Reynolds-Averaged Navier-Stokes (RANS) 

equations for the flow field of airfoils like NACA0012, NACA4412, etc. However, few 

simulations and experiments have been conducted for a triangular airfoil which could be used on 

Mars. Horton has done research on laminar bubbles separation in low Reynolds number 

incompressible flow [1], the similar methodology can be used to study airfoil at low Reynolds 

number in compressible flow.  

For reducing the noise and fuel burn of an aircraft, the active flow control (AFC) has been 

investigated in past several decades. Recently, sweeping jet actuator has been shown to be an 

effective AFC technology for improving the aerodynamic performance of high lift configurations 
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by reducing/mitigating the separated flow regions. Experiments on sweeping jet actuators have 

been conducted which are used in the thesis to validate the CFD simulations [2]. 

The motivation behind this study is to assess the relative accuracy of some widely used 

turbulence models by computing the flow fields of triangular airfoil and sweeping jet actuator.  

1.2 Brief Review of Literature 

Okamoto designed a Wind Tunnel to study the airfoil in the Martian atmosphere and conducted 

experiments on a triangular Mars airfoil. He found that the largest difference between the 

numerical simulations and experiments appeared at higher angles of attack [3]. Munday et al. 

employed a CFD code, CharLES, developed by Cascade Technologies, Inc. and the Center for 

Turbulence Research at Stanford University to study the flow field of a triangular airfoil [4]; 

three-dimensional low-Reynolds-number compressible flow simulations were performed using 

CharLES and the results were compared with the experiment.  

For the sweeping jet actuator, Woszidlo and Wygnanski have discussed the geometric details and 

parameters governing the separation control from a sweeping jet actuator in the paper [2]. Vatsa 

et al. employed the commercial software PowerFLOW based on lattice Boltzmann method to 

study the flow field of a sweeping jet actuator using a number of turbulence models [5]. 

1.3 Scope of the Thesis 

The Scope of the thesis is to conduct the computational study of the aerodynamics and flow 

fields of two configurations, the triangular airfoil and the sweeping jet actuator using various 

turbulence models and compare the CFD results with the experimental data and the 
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computational results from other papers, Spalart-Allmaras (SA) [6], SST k-omega [7], k-epsilon 

[8] and Wray-Agarwal (WA) [9] turbulence models are used in the numerical simulations. 

  



 

4 
 

Chapter 2: Methodology 

In this section, the two configurations the triangular airfoil and the sweeping jet are introduced.  

The mesh generation and turbulence models are also introduced. 

2.1 Geometries of Triangular Airfoil and Sweeping Jet Actuator 

Flow field of two geometries are computed and analyzed in this thesis, namely the triangular 

airfoil and sweeping jet actuator as shown Figure 2.1 and Figure 2.2, respectively. The physical 

model of Martian airfoil used in the simulation is a triangular airfoil, it was used by Okamoto in 

his experimental study of the aerodynamic characterizations of the airfoil [3]. The chord length 

of the airfoil 𝑐 = 30 𝑚𝑚 and the maximum thickness is 1.5 mm. The triangular airfoil has 5% 

maximum thickness at 30% chord location as shown in Figure 2.1. The angles of attack (AOAs) 

vary from 0 deg. to 12 deg. 

The sweeping jet actuator considered in this thesis has the internal chamber consisting of smooth 

curved edges instead of traditional actuator which has sharp corners. Woszidlo and Wygnanski 

provided the geometric details this actuator in their paper [2]. 

 

            

Figure 2. 1 Triangular Airfoil configuration 
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Figure 2. 2 Sweeping Jet Actuator configuration 

 

2.2 Mesh Generation 

ICEM CFD in ANSYS is used for geometry modeling and mesh generation. In the present study, 

two-dimensional numerical simulations are performed. A structured mesh is used for both the 

configurations, since the structured mesh requires less memory and provides better accuracy near 

the solid wall. 

2.2.1 Triangular Airfoil Mesh 

A rectangular computational domain is used as shown in Figure 2.3. The mid-chord location on 

the airfoil is the origin of the computational domain. The inlet, the top and the bottom boundaries 

are located 10c away from the mid-chord location of airfoil (origin) while the outlet is 20c away 

from the origin. The structured grid in the computational domain is generated using ICEM with 

grid clustering in regions of high velocity gradients. In region close to the airfoil surface, it is 
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ensured that y+ is < 1. For application of various turbulence models, there are enough layers of 

meshes inside the viscous sublayer to obtain good resolution of the turbulent boundary layer. 

Pressure far-field boundary conditions are employed at the inlet, bottom, top and outlet 

boundaries of the computational domain. At the airfoil, a no-slip wall boundary condition is 

used.  

 

 

 
  

Figure 2. 3 Computational domain structured and mesh layout of triangular airfoil in unbounded flow 

 

2.2.2 Sweeping Jet Actuator Mesh 

Figure 2.4 shows the geometric model of sweeping jet actuator configuration. The model is so 

complex that it was separated it into 24 parts. For the nozzle part, blocks are separated into 

smaller parts to get more accurate description. Vatsa used the same model in his simulation and 

the grid in his simulation consisted of a total of 29.7 million cells [5].  
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Figure 2.5 (a) shows the computational domain and structured mesh for the sweeping jet actuator. 

The total number of nodes in this mesh is around 3.4 million. The outer part of the computational 

domain is shown below the actuator in Figure 2.5 (a). The outer part of the domain is large 

enough to ensure the boundary conditions would not affect the actuator flow. Figure 2.5 (b) - (d) 

show the details of the mesh inside the sweeping jet actuator. The mesh in the feedback channels 

and the nozzle is refined to ensure that simulation lead to accurate results. Computations show 

that the highest speed always occurs in the nozzle area, therefore the nozzle has relative finer 

grid compared to meshes in other parts of the actuator. 

 

 

Figure 2. 4 Sweeping Jet Actuator 
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(a) Computational domain and structured mesh 

 

(b) Mesh inside the sweeping jet actuator 
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(c) Details of mesh in the middle part of sweeping jet actuator 

 

(d) Details of mesh in the feedback channel 

 

(e) Details of mesh in the nozzle 

Figure 2. 5 2D structured mesh in various parts of the sweeping jet actuator 
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2.3 Validation of the Solution Methodology 

2.3.1 Triangular Airfoil 

For triangular airfoil, the double precision solver in ANSYS FLUENT 17.1 is used to perform 

the CFD simulations. Compressible Reynolds-averaged Navier - Stokes equations with a number 

of turbulence models, namely the SA [6], SST k-ω [7] and WA [9] models are solved. The 

pressure-coupled transient solver in FLUENT is used for pressure-velocity coupling. When 0° ≤

 𝛼 < 8° , the flow around the triangular airfoil remains essentially steady [10]. When 𝛼 ≥

8°,instability appears in the flow. Therefore, steady solver is employed for 0° ≤  𝛼 < 8°. For 

𝛼 ≥ 8°, transient solver is employed.  

A grid-refinement study was performed to ensure the grid independence of the solution. The 

study was performed based on the SST k-ω model for triangular airfoil at 𝑅𝑒 = 3000, 𝑀 = 0.5 

and 𝛼 = 8 deg. The y+ of all meshes was less than 0.1 for the first mesh point away from the wall 

[4]. The results comparing solutions for different grid resolutions are summarized in Table 1. 

According to these results, medium-resolution grid is sufficient to obtain accuracy compared to 

the fine-resolution grid. Therefore, the medium grid is used in all simulations reported in this 

thesis.  

Table 1 Grid-refinement study for flow past a triangular airfoil in unbounded flow based on SST k-ω turbulence model at 

Re = 3000, M = 0.5 & α = 8 deg. 

Mesh Cell numbers y+ CL CD 

Experiment   0.54421 0.10169 

DNS simulation   0.70167 0.12117  

Coarse grid 86233 < 0.1 0.51032 0.08841 

Medium grid 137676 < 0.1 0.52153 0.08933 

Fine grid 420314 < 0.1 0.52831 0.08957 
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2.3.2 Sweeping Jet Actuator 

This Computations are performed using the CFD software Fluent 17.1. Steady compressible 

Reynolds-Averaged Navier-Stokes (RANS) equations are solved using the finite volume method. 

k-epsilon two-equation model is used in this study. A second order upwind scheme is used for 

the convection terms and a second order central difference scheme is used for the diffusion terms. 

Coupled algorithm is employed for pressure-velocity coupling. A velocity inlet was applied to 

the inlet of the sweeping jet actuator and a constant pressure boundary condition was assigned at 

the outlet of the sweeping jet actuator [5]. A no-slip boundary condition was used on all the solid 

walls. The Computed solution is uploaded in CFD post for analysis of the numerical data.  

2.4 Turbulence Models 

The Spalart-Allmaras (SA) model [6] is currently the most widely used turbulence model in 

industry. The SA model is a one-equation model that solves a transport equation for the 

kinematic turbulent eddy viscosity. In its original form, the model is effectively a low-Reynolds 

number model requiring the viscosity-affected region of the boundary layer to be properly 

resolved. It takes a shorter time to converge compared to the SST k-ω model [7] and in 

competitive with the WA model [9]. 

2.4.1 Spalart-Allmaras (SA) Model 

The standard SA model is governed by the following equation: 

 21
1 2 1 2 22

ˆ ˆ ˆ ˆ ˆ ˆ1ˆˆ ˆ(1 ) [ ]( ) [ (( ) ) ]b
j b t w w t b

j j j i i

v v c v v v v
u c f Sv c f f v v c

t x d x x x x 

     
+ = − − − + + +

     
             (1-1)) 
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The turbulent eddy viscosity is computed from: 

1
ˆ

t vvf =  

where 

3

1 3 3

1

v

v

X
f

X c
=

+
 

v̂
X

v
=  

In above equation,   denotes density,  denotes the molecular dynamic viscosity and /  =

denotes the molecular kinetic viscosity.  

Other definitions of variables are: 

22 2
ˆ

v

v
S f

d
=  +  

where Ω = √2𝑊𝑖𝑗𝑊𝑖𝑗 is the magnitude of the vorticity. 

2

1

1
1

v

v

X
f

Xf
= −

+
     

6
1/63

6 6

3

1
[ ]w

w

w

c
f g

g c

+
=

+
 

   6

2 ( )wg r c r r= + −  

2 2

ˆ
min[ ,10]

ˆ

v
r

S d
=  

2

2 3 4exp( )t t tf c c X= −  
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1
( )

2

ji
ij

j i

uu
W

x x


= −

 
 

Boundary conditions are: 

ˆ 0wallv =  

ˆ 3 : : 5farfieldv v to v =  

The kinematic eddy viscosity values at wall and in the far field are: 

, 0t wallv =  

, 0.210438 : :1.294234t farfieldv v to v =  

The model constants are: 

1 0.1355bc =       2 / 3 =       
2 0.622bc =       0.41 =  

2 0.3wc =        
3 2wc =       1 7.1vc =       3 1.2tc =       4 0.5tc =  

1 2
1 2

1b b
w

c c
c

 

+
= +  

2.4.2 k-ε Model 

The standard k-ε model is one of the first two-equation k-ε model published in the turbulence 

modeling literature and has been extensively applied and modified for computing wide range of 

industrial flows. This model is included in FLUENT as a standard k-ε model and employs the 

wall function for computational efficiency. The transport equation for turbulent kinetic energy k 
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is an exact equation while the transport equation for turbulent dissipation (𝜀) is formulated using 

physical reasoning. The following are the transport equations for k and ε developed by Launder 

and Spalding [8]. 

 

 
 

   (1-2) 

 
𝜕𝜌𝜀

𝜕𝑡
+

𝜕𝜌𝜇𝑖𝜀

𝜕𝑥𝑖
= −𝐶𝜀1𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅

𝜕𝜇𝑖𝜀

𝜕𝑥𝑖𝑘
+

𝜕

𝜕𝑥𝑖
[𝜌 (𝑣𝑙 +

𝑐𝜇𝑘2

𝜎𝜀𝜖
)

𝜕𝜀

𝜕𝑥𝑖
] − 𝐶𝜀2𝜌

𝜀2

𝑘
 

 

   (1-3) 

 
𝜇𝑡 =

𝜌𝐶𝜇𝑘2

𝜀
 

 
The model constants are: 

 

 

 𝐶𝜇 = 0.09   𝜎𝑘 = 1.00   𝜎𝜀 = 1.30    𝐶1𝜀 = 1.44    𝐶2𝜀 = 1.92 

 
 

2.4.3 SST k-ω Model 

The SST k-ω model is also governed by two transport equations [7]. This model is more 

complex than one-equation SA model and requires more computational cost for simulation.  

The governing equations are: 

 *
( )( )

[( ) ]
j

k t

j j j

u kk k
P k

t x x x


    

  
+ = − + +

   
    (1-4) 

 

 2 2
1

( )( )
[( ) ] 2(1 )

j

t

j t j j j j

u k
P F

t x v x x x x




     
   



    
+ = − + + + −

     
    (1-5) 

 

P  is defined as: 
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i
ij

j

u
P
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
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=
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3 3
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k
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
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1
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2
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The turbulent eddy viscosity is computed from: 

1

1 2max( , )
t

a k

a F





=


 

Inner and outer constant are combined as: 

1 1 1 2(1 )F F  = + −  

where 

4

1 1tanh(arg )F =  

2
1 * 2 2

500 4
arg min[max( , ), ]

kw

k v k

d d CD d



  
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20

2

1
max(2 ,10 )kw

j j

k
CD

x x







− 
=
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2

2 2tanh(arg )F =  

2 * 2

500
arg max(2 , )

k v

d d  
=  
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 2 ij ijW W =  is the magnitude of vorticity: 

1
( )

2

ji
ij

j i

uu
W

x x


= −

 
 

Boundary conditions are: 

10farfield

U U

L L
    

5 2 210 0.1

Re Re
farfield

L L

U U
k

−

    

2

1 1

6
10

( )
wall

v

d



=


 

0wallk =  

The model constants are: 

2

1 1
1 * *

  


 
= −          

2

2 2
2 * *

  


 
= −  

1 0.85k =        
1 0.5 =         1 0.075 =  

2 1.0k =         2 0.856 =        2 0.0828 =  

* 0.09 =         0.41 =         1 0.31a =  
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2.4.4 Wray-Agarwal (WA 2017) Turbulence Model 

The original one-equation WA2017 turbulence model [9] was derived from the SST k-ω model 

for the eddy viscosity R = k/ω. The R-Equation of WA2017 model can be written as: 

 𝜕𝑅

𝜕𝑡
+

𝜕𝑢𝑗𝑅

𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗

[(𝜎𝑅𝑅 + 𝜈)
𝜕𝑅

𝜕𝑥𝑗

] + 𝐶1𝑅𝑆 + 𝑓1𝐶2𝑘𝜔

𝑅

𝑆

𝜕𝑅

𝜕𝑥𝑗

𝜕𝑆

𝜕𝑥𝑗

− (1 − 𝑓1)𝐶2𝑘𝜀𝑅2 (

𝜕𝑆
𝜕𝑥𝑗

𝜕𝑆
𝜕𝑥𝑗

𝑆2
)    (1-6) 

The turbulent eddy viscosity is given by the equation: 

 𝜈𝑇 = 𝑓𝜇𝑅 
 

The wall blocking effect is accounted for by the damping function fμ. The value of Cw was 

determined by calibrating the model to a simple flat plate flow. ν has the usual definition of 

dynamic viscosity. 

 𝑓𝜇 =
𝜒3

𝜒3 + 𝐶𝑤
3 , 𝜒 =

𝑅

𝜈
  

S is the mean strain described below. 

 𝑆 =  √2𝑆𝑖𝑗𝑆𝑖𝑗 , 𝑆𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) 

 

The model can behave either as a one equation k-ω or one equation k-ε model based on the 

switching function f1. The switching function f1 is limited by an upper bound of 0.9 for better 

stability.    

 𝑓1 = 𝑚𝑖𝑛(𝑡𝑎𝑛ℎ(𝑎𝑟𝑔1
4), 0.9) 

 

 
𝑎𝑟𝑔1 =

1 +
𝑑√𝑅𝑆

𝜈

1 + [
𝑚𝑎𝑥(𝑑√𝑅𝑆, 1.5𝑅)

20𝜈 ]

2 
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The values of constants used in WA2017 model are listed below. 

𝐶1𝑘𝜔 = 0.0829    𝐶1𝑘𝜀 = 0.1127 

𝐶1 = 𝑓1(𝐶1𝑘𝜔 − 𝐶1𝑘𝜀) + 𝐶1𝑘𝜀 

𝜎𝑘𝜔 = 0.72    𝜎𝑘𝜀 = 1.0 

𝜎𝑅 = 𝑓1(𝜎𝑘𝜔 − 𝜎𝑘𝜀) + 𝜎𝑘𝜀 

𝜅 = 0.41 

𝐶2𝑘𝜔 =
𝐶1𝑘𝜔

𝜅2
+ 𝜎𝑘𝜔    𝐶2𝑘𝜀 =

𝐶1𝑘𝜀

𝜅2
+ 𝜎𝑘𝜀 

𝐶𝑤 = 8.54 
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Chapter 3: Analysis of Triangular Airfoil 

In this Chapter, the computational analysis of the flow field of triangular airfoil is presented 

using different turbulence models. The computations are compared with experimental data and 

the computations of other investigations. 

3.1 Lift Coefficient Analysis  

The results for 𝑅𝑒 = 3000 and 𝑀 = 0.5 are presented in Figures. 3.1-3.4. In these figures, ‘DNS’ 

labeled results are from Munday et al. obtained using the CFD code, CharLES [4], ‘experiment’ 

denotes the experiment results from a Mars Wind Tunnel test on a scaled model at the same 

Reynolds number and Mach number [3], and ‘SA’, ‘SST’ and ‘WA’ denote the present 

computational results obtained with SA model, SST k-ω and WA model, respectively. Figures 

3.1-3.4 show the comparison of results based on different turbulence models with experimental 

data for the lift coefficient at various angles of attack  . In Figure 3.4, present SA result is very 

close to those of Munday et al. [3] when  0° ≤ α ≤ 8°. SST k-ω result shows better agreement 

when 8° ≤ α ≤ 14°  compare to the SA model. However, WA model results show the best 

agreement with the experimental data, especially when 8° ≤ α ≤ 14°. In Figure 3.4, DNS result 

shows large discrepancy when 8° ≤ α ≤ 14°. Although there exists small error between the 

experimental results and WA model results. WA model result is still the best which has the least 

error me  compared to the SA and SST k-ω model. In Figure 3.4, the result of DNS in 

incompressible flow is also shown. This computation was performed by Zhang et al. [11] and is 

clearly worse than DNS in compressible flow.  
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Figure 3. 1 Lift coefficient vs. AOA curve for Triangular Airfoil based on SA model 

 

Figure 3. 2 Lift coefficient vs. AOA curve for Triangular Airfoil based on SST k-𝜔 model 
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Figure 3. 3 Lift coefficient vs. AOA curve for Triangular Airfoil based on WA model 

 

  Figure 3. 4 Comparison of Lift Coefficient vs. AOA for Triangular Airfoil using SA, SST k-ω and WA turbulence 

model, and DNS (incompressible & compressible) and experimental data 
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3.2 Drag Coefficient Analysis 

The results when 𝑅𝑒 = 3000 , 𝑀 = 0.5  are presented in Figures. 3.5-3.7.  In wind tunnel 

experiment, errors can be generated because of vibration of the wing model, boundaries of the 

wind tunnel, and gas pulsation, etc. The Cd increases as the AOA increases. There still exist 

differences between the computational result and the experiment data although corrections have 

been added to the wind tunnel results [4]. Again, the WA model shows the best agreement with 

the experimental results. The greater is AOA, the more accurate is the WA model. These curves 

for drag coefficient are fairly close using the three turbulence models except for the first few 

points obtained from the computations using the WA model. In particular when AOA is from 0 

deg. to 4 deg. As shown in Figure 3.7. Computational results from WA model, when AOA from 

6 deg. to 14 deg. are in general give in good agreement with the experimental data. As shown in 

Figure 3.8, both SST k-ω and WA model give relatively good results. Figure 3.8 also shows the 

comparison of DNS for both incompressible and compressible flow. The DNS for 

incompressible flow was performed by Zhang et al. [11]. It is obvious that the DNS results in 

compressible flow have better agreement with experimental data compared to the DNS results in 

incompressible flow. 
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Figure 3. 5 Drag coefficient vs. AOA curve for Triangular Airfoil based on SA model 

 

Figure 3. 6 Drag coefficient vs. AOA curve for Triangular Airfoil based on SST k-ω model 
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 Figure 3. 7 Drag coefficient vs. AOA curve for Triangular Airfoil based on WA model 

s  

Figure 3. 8 Comparison of Drag Coefficient vs. AOA for Triangular Airfoil using SA, SST k-ω and WA turbulence 

model, and DNS (incompressible & compressible) and experimental data 
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3.3 Pressure Distribution on Triangular Airfoil 

Figures 3.9 and 3.10 show the pressure coefficient on the top surface of the triangular airfoil. 

Three computational results are compared with the experimental data and DNS data from 

Munday et al. research [4]. The comparisons are shown for the case of Re = 3000 and M = 0.5 

when 𝛼 = 6 deg. and 12 deg. For these two AOAs, good agreement is obtained. The CP on the 

leading edge is lower than that on the trailing edge on the upper surface of the airfoil. CP on the 

lower surface of the airfoil is larger than that on the upper surface of the airfoil as expected. The 

maximum of CP appears at the trailing edge of the airfoil. Figure 3.11 shows the pressure 

contours on triangular airfoil at various angles of attack. At angle of attack greater than 8 deg., 

vortex shedding from the trailing edge of the airfoil can be seen. 

The CP on the leading edge is lower than that on the trailing edge on the upper surface of the 

airfoil. When 𝛼 = 6 deg., WA model has a similar curve as SST k-ω model does. Their results 

have acceptable agreement with experimental result when 𝑥/𝑐 is larger than 0.3. On contrary, 

SA model and the DNS yield a relatively good result when 𝑥/𝑐 is smaller than 0.3. When 𝛼 =

12  deg., the freestream become unstable and WA model shows a surprisingly excellent 

agreement compared to other results. 
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Figure 3. 9 Pressure coefficient on the top surface of the Triangular Airfoil for Re = 3000 and M = 0.5 at AOA = 6 

deg. 

 

Figure 3. 10 Pressure coefficient on the top surface of the Triangular Airfoil for Re = 3000 and M = 0.5 at AOA = 

12 deg. 
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(a) 𝛼 = 6° (b) 𝛼 = 8° 

  

(c) 𝛼 = 10° (d)  𝛼 = 11° 

  

(e)   𝛼 = 12° (f) 𝛼 = 14° 

Figure 3. 11 Pressure contours around Triangular Airfoil at Re = 3000 and M = 0.5 for various angle of attack 
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3.4 Flow Separation 

Accurate computation of flow separation is considered very important in drag prediction. From 

the velocity streamlines, it can be observed that the leading-edge flow separation occurs at 𝛼 = 8 

deg. Flow separation occurs at the apex point of the airfoil on the top surface of all AOAs and 

move toward the leading edge for 𝛼 ≥ 8 deg. The flow becomes unsteady at higher angle of 

attack due to vortex shedding. The leading-edge vortex grows larger as AOA increases then 

merges with the leading-edge vortex. They forms a large separation bubble on the top of the 

airfoil and finally covers the majority of the airfoil. 

 

  

(a) 𝛼 = 6° (b) 𝛼 = 8° 
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(c) 𝛼 = 10° (d)  𝛼 = 11° 

  

(e)   𝛼 = 12° (f) 𝛼 = 14° 

Figure 3. 12 Flow separation on the of Triangular Airfoil with increasing angle of attack 

 

3.5 Conclusions 

For computed results, for drag and lift coefficient for flow past a triangular airfoil, using WA and 

SST k-ω models are in good agreement with the experimental data. However, there exists small 

error between the simulations and experimental results. The experimental results were obtained 

from Mars Wind Tunnel at Nihon university [3], where the flow was restricted inside a vacuum 

chamber and the triangular airfoil was going through change in shape due to aeroelastic effects. 
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All these factors can cause differences between the Mars Wind Tunnel experiment and 

simulation results.  The flow changes from steady to unsteady when 𝛼 ≥ 8°. Flow separation is 

first observed for 6° ≤ 𝛼 ≤ 8° and the separation point moves from the apex to the leading-edge 

of the airfoil. As the AOA become larger, the vortex shedding can be observed at the trailing 

edge become more and more obvious. SA model shows good agreement when 0° ≤ 𝛼 ≤ 8° 

while WA shows surprisingly very good agreement for 8° ≤ 𝛼 ≤ 14°. Overall, WA model gives 

the best agreement with experimental data. 
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Chapter 4: Analysis of Sweeping Jet Actuator 

In this section, the computations for the flow field of a sweeping jet actuator configuration are 

described and compared with the experimental data.  

4.1 Flow Oscillation   

Figure 4.1 shows the computed flow oscillations inside the sweeping jet actuator during a time 

period 𝑇. The flow is initialized at 𝑇 = 0 and goes straight from the inlet to the outer flow field 

which in an ambient fluid. Then it begins to oscillate. Due to the shape of the actuator geometry, 

an oscillating unsteady flow develops inside the actuator chamber. In addition to the flow exiting 

from the actuator near the exit plane, there is a backflow which moves in the feedback channels 

which are on both sides of the chamber. The flow exiting from the actuator oscillates from right 

to left in a cyclic manner as noted by Vatsa et al. in their computations [5].  

    

(a) T=1/8 (b) T=2/8 (c) T=3/8 (d) T=4/8 
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(e) T=5/8 (f) T=6/8 (g) T=7/8 (h) T 

Figure 4. 1 Flow oscillations inside the sweeping jet actuator at various time during a time period T  

 

 

4.2 Velocity Comparison and Velocity Contours 

Figure 4.2 shows the geometry and coordinate system. The geometry used in this thesis is the 

type II curved actuator model which was used by Vatsa et al. [5]. Figure 4.3 shows the 

comparison of computed results for velocity at Z = 0 mm and Z = 10 mm from FLUENT using k-

ε model and experimental data from Vatsa et al. [5]. Figure 4.4 shows the comparison of 

computed time-averaged velocities and perturbation velocities. The velocities computed from 

FLUENT with k-ε model are in reasonably good agreement with the experimental data. The 

maximum difference in velocities between the FLUENT results and experimental results is the 

minimum value at Z = 0 mm. The computational results for frequency are also in acceptable 

agreement with the experimental results. The frequency of flow at Z = 0 mm is twice as large as 
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at Z = 10 mm. Both the maximum velocity at Z = 0 mm and Z = 10 mm is within the acceptable 

range. Time-averaged velocities and perturbation velocities also show acceptable agreement with 

the experimental data and reach the similar maximum values at 𝑍 = −10 mm and Z = 10 mm. 

As shown in Figure 4.5, the main flow completely attaches the right side of the nozzle and part 

of the fluid flows back to the left feedback channel. This part of the flows affected flow in the 

next period. Velocity of the flow is relatively high compared to the nearby flow when it attaches 

to the nozzle. Therefore, the mesh near the nozzle should be fine to get a more accurate result. 

 

Figure 4. 2 Sweeping Jet Actuator Geometry 
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(a) Z = 0 mm 

 

(b) Z = 10 mm 

Figure 4. 3 Velocity variation with time at x = 6 mm for Z = 0 mm and Z = 10 mm for Sweeping Jet Actuator 
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(a)Time-averaged velocities 

 

 

 

(b) Perturbation Velocities 

Figure 4. 4 Time-averaged velocity comparisons for Sweeping Jet Actuator at x = 6 mm 
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(a) Streamlines of the flow inside the Sweeping Jet Actuator chamber 

 

(b) Streamlines of the flow near the Sweeping Jet Actuator nozzle 

Figure 4. 5 Streamlines of flow 

 

4.3 Contours of Pressure and Eddy Viscosity 

Figure 4.6 shows the contours of pressure for the entire sweeping jet actuator flow field as well 

as in the nozzle region. The point where the flow attaches inside the nozzle has relatively low 
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pressure compared to other part of the nozzle. Figure 4.7 shows the contours of Eddy Viscosity 

in sweeping jet actuator. 

 

 

 

(a) Entire computational domain of Sweeping Jet Actuator 

 

(b) Contour in the nozzle region 

Figure 4. 6 Pressure contours inside the Sweeping Jet Actuator 
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Figure 4. 7 Contour of Eddy Viscosity in the computational domain of Sweeping Jet Actuator 

 

4.4 Conclusions 

Numerical simulations were performed using FLUENT to compute the unsteady flow field 

generated by a sweeping jet actuator and compare it with the experimental data. The simulations 

provide useful information about the flow physics in the internal and external regions of the 

sweeping jet actuator. The bi-stable feedback mechanism that produces sweeping oscillatory jet 

is captured by the visualization software CFD Post. The frequency of flow at 𝑍 = 0 mm and 𝑍 = 

10 mm shows good agreement with experimental data. Overall the agreement of the computed 

time-averaged mean and perturbation velocities with measurements for the sweeping jet actuator 

is acceptable.  
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Chapter 5 Conclusions 

The flow fields past a Triangular Airfoil and in a Sweeping Jet Actuator are investigated by 

numerical simulations using ANSYS FLUENT by solving the RANS equations with SA, k-ε, 

SST k-ω and WA model turbulence models. The computations are compared with the 

experimental data where available. Overall, good agreement is obtained with the experimental 

and computational results reported in the literature for both configurations.  

The flow field of a triangular airfoil is simulated at 𝑅𝑒 = 3000 and 𝑀 = 0.5 for nine different 

angles of attacks and with three different turbulence models (SA, SST k-ω and WA) with the 

RANS equations to examine the aerodynamic characteristics and flow physics of the airfoil in 

low Reynolds number compressible flow of the Martian atmosphere. The three turbulence 

models – SA, SST k-ω and WA give acceptable accuracy for both lift and drag coefficient 

predictions. When 𝛼 ≥ 8°, the numerical results show the nonlinear aerodynamic characteristics 

of the triangular airfoil at high angles of attack, and the flow changes from steady to unsteady. 

The simulation from 8° ≤ 𝛼 ≤ 14° diverged using the steady solver. Therefore, all results from 

8° ≤ 𝛼 ≤ 14° were computed using the transient solver. The results from WA model were most 

accurate when compared to the experimental data followed by those from SST k-ω and SA 

model. Additionally, WA model is twice more efficient in computations compared to SST k-ω 

model, being a one-equation model. In summary, the computations show that WA model can be 

effectively used to capture the details of the triangular airfoil flow field accurately and efficiently. 

It is more accurate than the SA model and is competitive with the SST k-ω model. Surprisingly 

DNS results show enormous difference with the experimental results for 𝛼 ≥ 6°; The reason for 

enormous difference between DNS and experimental result for 𝛼 ≥ 8°  is that the side-wall 

effects changed the flow field and altered the reattachment physics. 
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The computational results show that the sweeping jet actuator is potentially a good device for 

flow control applications. Computational results using the RANS equations with k-ε model have 

acceptable agreement with the experimental data. It should be noted that the computational 

model is 2D while the experiment is 3D. Future work should focus on simulating the effect of a 

series of sweeping jet actuators on external flow over an aerodynamic configuration of practical 

interest to examine the effectiveness of such AFC devices for separation control. Parametric 

studies should be conducted to determine the optimum spacing between actuator arrays to 

achieve the desired control authority. 

Overall, good agreement is obtained with the results reported in the literature for both the 

configurations. 
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