Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-99-01

1999-01-01

An Algorithm for Optimal Winner Determination in Combinatorial
Auctions

Tuomas Sandholm

Combinatorial auctions, i.e. auctions where bidders can bid on combinations of items, tend to
lead to more efficient allocations than traditional auctions in multi-item auctions where the
agents' valuations of the items are not additive. However, determining the winners so as to
maximize revenue is NP-complete. First, existing approaches for tackling this problem are
reviewed: exhaustive enumeration, dynamic programming, approximation algorithms, and
restricting the alloable combinations. Then we present our search algorithm for optimal winner
determination. Experiments are shown on several bid distributions. The algorithm allows
combinatorial auctions to scale up to significantly larger numbers of items and bids... Read
complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Sandholm, Tuomas, "An Algorithm for Optimal Winner Determination in Combinatorial Auctions" Report
Number: WUCS-99-01 (1999). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/479

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F479&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F479&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F479&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F479&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F479&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F479&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F479&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/479?utm_source=openscholarship.wustl.edu%2Fcse_research%2F479&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/479

An Algorithm for Optimal Winner Determination in Combinatorial Auctions

Tuomas Sandholm

Complete Abstract:

Combinatorial auctions, i.e. auctions where bidders can bid on combinations of items, tend to lead to
more efficient allocations than traditional auctions in multi-item auctions where the agents' valuations of
the items are not additive. However, determining the winners so as to maximize revenue is NP-complete.
First, existing approaches for tackling this problem are reviewed: exhaustive enumeration, dynamic
programming, approximation algorithms, and restricting the alloable combinations. Then we present our
search algorithm for optimal winner determination. Experiments are shown on several bid distributions.
The algorithm allows combinatorial auctions to scale up to significantly larger numbers of items and bids
than prior approaches to optimal winner determination by capitalizing on the fact that the space of bids is
necessarily sparsely populated in practice. The algorithm does this by provably sufficient selective
generation of children in the search tree, by using a secondary search for fast child generation, by
heuristics that are accurate and optimized for speed, and by four methods for preprocessing the search
space.

https://openscholarship.wustl.edu/cse_research/479?utm_source=openscholarship.wustl.edu%2Fcse_research%2F479&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/479?utm_source=openscholarship.wustl.edu%2Fcse_research%2F479&utm_medium=PDF&utm_campaign=PDFCoverPages

An Algorithm for Optimal Winner Determination
in Combinatorial Auctions

Tuomas Sandholm

WUCS-99-01
January 28, 1999

An Algorithm for Optimal Winner
Determination in Combinatorial Auctions*

Tuomas Sandholm
sandholm@cs.wustl.edu
Washington University

Department of Computer Science
One Brookings Drive, Campus Box 1045
St. Louis, MO 63130-4899

Abstract

Combinatorial auctions, i.e. auctions where bidders can bid on com-
binations of items, tend to lead to more efficient allocations than tra-
ditional auctions in multi-item auctions where the agents’ valuations
of the items are not additive. However, determining the winners so as
to maximize revenue is A'P-complete. First, existing approaches for
tackling this problem are reviewed: exhaustive enumeration, dynamic
programming, approximation algorithms, and restricting the allow-
able combinations. Then we present our search algorithm for optimal
winner determination. Experiments are shown on several bid distri-
butions. The algorithm allows combinatorial auctions to scale up to
significantly larger numbers of items and bids than prior approaches
to optimal winner determination by capitalizing on the fact that the
space of bids is necessarily sparsely populated in practice. The algo-
rithm does this by provably sufficient selective generation of children
in the search tree, by using a secondary search for fast child genera-
tion, by heuristics that are accurate and optimized for speed, and by
four methods for preprocessing the search space.

*Patent pending. A highly optimized implementation of the algorithm is available for
licensing both for research and commercial purposes. Please contact the author.

1 Introduction

Auctions are popular, distributed and autonomy preserving ways of allocat-
ing items among agents. They are relatively efficient both in terms of process
and outcome. They are extensively used among human bidders and among
software agents in a variety of task and resource allocation problems.! This
paper focuses on auctions with multiple items to be allocated.

1.1 Sequential auction protocols

In a sequential auction, the items are auctioned one at a time. Determining
the winners in such protocols is easy because that can be done by pick-
ing the highest bidder for each item separately. However, in many settings,
bidders have preferences over bundles, i.e. combinations of items. This is
often the case for example in electricity markets, equities trading, bandwidth
auctions [McAfee and McMillan, 1996, McMillan, 1994], transportation ex-
changes {Sandholm, 1993, Sandholm, 1991, Sandholm, 1996/, pollution right
auctions, auctions for airport landing slots [Rassenti et al., 1982], and auc-
tions for carrier-of-last-resort responsibilities for universal services [Kelly and
Steinberg, 1998]. In such domains, bidding in sequential auction protocols
is difficult. To determine her valuation for an item, the bidder needs to
guess what items she will receive in later auctions. This requires specu-
lation on what the others will bid in the future because that affects what
items she will receive. Furthermore, what the others bid in the future de-
pends on what they believe others will bid, etc. This counterspeculation
introduces computational cost and other wasteful overhead. Moreover, in
auctions with a reasonable number of items, such lookahead in the game tree
is intractable, and then there is no known way to bid rationally. Bidding
rationally would involve optimally trading off the cost of lookahead against
the gains it provides, but that would again depend on how others strike that
tradeoff. Furthermore, even if lookahead were computationally manageable,
usually uncertainty remains about the others’ bids because agents do not

! Auctions are usually discussed in the context of settings where the auctioneer wants to
sell the items and get the highest possible payments for them while each bidder wants to
acquire the itemns at the lowest possible price. However, settings in which the auctioneer
wants to subcontract out tasks at the lowest possible prices and each bidder wants to
handle the tasks at the highest possible payments are totally analogous.

have exact information about each other. This often leads to inefficient al-
locations where bidders fail to get the combinations they want and get ones
they do not.

1.2 Parallel auction protocols

As an alternative to sequential auctions, a parallel auction design can be
used. In a parallel auction the items are open for auction simultaneously
and bidders may place their bids during a certain time period. This has the
advantage that the others’ bids partially signal to the bidder what the others’
bids will end up being so the uncertainty and the need for lookahead is not
as drastic as in a sequential auction.? However, the same problems prevail
as in sequential auctions, albeit in a mitigated form.

In parallel auctions, an additional difficulty arises: each bidder would like
to wait until the end fo see what the going prices will be, and to optimize her
bids so as to maximize payofl given the final prices. Because every bidder
would want to wait, no bidding would commence. As a patch to this problem,
activity rules have been used [McAfee and McMillan, 1996]. Each bidder has
to bid at least a certain volume by predefined time points in the auction,
otherwise the bidder’s future rights are reduced in some prespecified manner.
Unfortunately, the equilibrium bidding strategies in such auctions are not
game-theoretically known. It follows that the outcomes of such auctions are
unknown for rational bidders.

1.3 Methods for fixing inefficient allocations

In sequential and parallel auctions, the computational cost of lookahead and
counterspeculation cannot be recovered, but one can attempt to fix the inef-
ficient allocations that stem from the uncertainties discussed above.

One such approach is to set up an aftermarket where the bidders can
exchange items among themselves after the auction has closed. While this
approach can undo some inefficiencies, it may not lead to a Pareto efficient

%In sealed-bid implementations, the sequential and parallel variants are equivalent since
neither reveals information during the auction process. Therefore, the advantages of paral-
lel auctions only come into play in open-cry auctions where the bidders observe the others’
bids.

allocation in general, and even if it does, that may take an impractically large
number of exchanges among the agents [Sandholm, 1998].

Another approach is to allow bidders to retract their bids if they do not
get the combinations that they want. For example, in the Federal Communi-
cations Committee’s bandwidth auction the bidders were allowed to retract
their bids [McAfee and McMillan, 1996]. In case of a retraction, the item was
opened for reauction. If the new winning price was lower than the old one,
the bidder that retracted the bid had to pay the difference. This guarantees
that refractions do not decrease the auctioneer’s payoff. However, it exposes
the refracting bidder to considerable risk.

This risk can be eliminated by a leveled commitment protocol [Sand-
holm and Lesser, 1996, Sandholm and Lesser, 1995], where the decommitting
penalties are set up front, possibly on a per item basis. This protocol allows
the bidders to decommit but it also allows the auctioneer to decommit. A
bidder may want to decommit for example if she did not get the combination
that she wanted but only a subset of it. The auctioneer may want to de-
commit for example if he believes that he can get a higher price for the item
later on. The leveled commitment protocol has interesting gaming aspects:
the agents do not decommit truthfully because there is a chance that the
other agent will decommit, in which case the former agent is freed from the
contract obligations, does not have to pay the decommitment penalty, and
will collect a penalty from the latter agent. We have shown that despite this
gaming, in Nash equilibrium, the protocol can increase the expected payoff
of both parties, and enable contracts which would not be individually ratio-
nal to both parties via any full commitment contract [Sandholm and Lesser,
1996, Sandholm, 1996b]. Experimental results regarding leveled commitment
contracts are presented for example in [Andersson and Sandholm, 1998a,
Andersson and Sandholm, 1998b)].

Yet another approach would be to sell options for decommitting, where
the price of the option would be paid up front regardless of whether it is
actually exercised.

Each one of the methods above can be used to implement bid retraction
before and/or after the winning bids have been determined. While these
methods can be used to try to fix inefficient allocations, it would clearly be
desirable to get efficient allocations right away in the auction itself, so no
fixing would be required. Combinatorial auctions hold significant promise
toward that goal.

1.4 Combinatorial auction protocols

Combinatorial auctions can be used to overcome the need for loockahead
and the inefficiencies that stem from the uncertainties [Rassenti et al., 1982,
Sandholm, 1993, McMillan, 1994, Sandholm, 1991]. In a combinatorial auc-
tion, bidders may place bids on combinations of items. This allows the
bidders to express complementarities between items instead of having to
speculate into an item’s valuation the impact of possibly getting other, com-
plementary items. For example, the Federal Communications Commission
saw the desirability of combinatorial bidding in their bandwidth auctions, but
it was not allowed due to perceived intractability of winner determination.
This paper focuses on winner determination in combinatorial auctions where
each bidder can bid on combinations of indivisible items, and any number of
her bids can be accepted.

2 Winner determination in combinatorial auc-
tions

The determination of winners—i.c. determining what items each bidder
gets—is easy in non-combinatorial auctions. It can be done by picking the
highest bidder for each item separately. This takes O(am) time where a is
the number of bidders, and m is the number of items.

Unfortunately, winner determination in combinatorial auctions is hard.
Let M be the set of items to be auctioned, and let m = |M]. Then any agent,
¢, could place any bid, b;(S), for any combination S C M. The relevant bids
are:

b(S) “z' E%}gt}i{ers bt(S)
Let n be the number of these bids. Winner determination is the following
problem, where the goal is to maximize the auctioneer’s revenue:

max > HS)

Set

where &' is a valid cutcome, i.e. an outcome where each itern is allocated to
only one bidder: X = {5 C M|SN S =0 for every $,5 € X}.

2.1 Exhaustive enumeration

If each combination S has received at least one bid of positive price, the
search space will look like Figure 1.

13{2}{3H4}

3

{1LE234)

)

(1,234
18))

Figure 1: Space of allocations in a 4-item exzample. Each node represents one
possible allocation X.

The number of possible allocations, i.e. vertices in the graph, grows
rapidly as the number of items increases. The exact number of allocations is

m

2 Z(m,q) (1)

g=1

where Z{m,q) is the number of allocations with ¢ accepted bids, i.e. the
number of allocations on level ¢ of the graph. The quantity Z(m, ¢)—also
known as the Stirling number of the second kind-is captured by the following
recurrence:

Z(m,q)=qZ(m—1,q) -+ Z(m —1,¢ — 1), (2)

where Z(m,m) = Z(m,1) = 1. This recurrence can be understood by con-
sidering the addition of a new item to a setting with m — 1 items. The first
term, gZ(m — 1, ¢), counts the number of allocations formed by adding the

6

new item to one of the existing allocations. There are ¢ choices because the
existing allocations have ¢ accepted bids. The second term, Z(m — 1,9 —1),
considers using the new item in a bid of its own, and therefore existing allo-
cations with only m — 1 previously accepted bids are counted.

The following proposition characterizes the asymptotic complexity in
closed form. Proofs are given in the appendix.

Proposition 2.1 The number of allocations is O(m™) and w(m™?).

The number of allocations is so large that all allocations cannot be enumer-
ated unless the number of items is extremely small—below a dozen or so
in practice. Therefore, exhaustive enumeration is not a viable method for
searching for the optimal allocation in most settings.

2.2 Dynamic programming

The allocations (Figure 1) can be searched more efficiently than exhaustive
enumeration by dynamic programming [Rothkopf et al., 1995]. Based on the
b(S) function, the dynamic programming algorithm determines for each set
S of items the highest possible revenue that can be acquired using only the
items in 5. The algorithm proceeds systematically from small sets to large
ones. The needed optimal substructure property comes from the fact that
for each set, S, the maximal revenue comes either from a single bid 5(.5), or
from the sum of the maximal revenues of two disjoint exhaustive subsets of
S. For each 5, all possible subsets (together with that subset’s complement
in §) are tried.

The savings compared to exhaustive search come from the fact that the
revenue maximizing solutions for the subsets need not be computed over and
over again, but only once. The dynamic programming algorithm takes O(3™)
and Q(2™) steps [Rothkopf et al., 1995], which is a considerable saving over
exhaustive enumeration, but still too complex to scale to large numbers of
items—above about 25 in practice.

The dynamic programming algorithm executes the same steps indepen-
dent of the number of bids. This is because the algorithm generates each
combination S even if no bids have been placed on S. Interpreted positively
this means that the auctioneer can determine ex ante how long winner de-
termination will take regardless of the number of bids that will be received.
Interpreted negatively this means that the algorithm will scale only to a small

7

number of items even if the number of bids is relatively small. In Section 3
we present a search algorithm that avoids the generation of combinations for
which bids have not been placed. That allows our algorithm to scale up to
large numbers of items.

2.3 AN'P-completeness

Some combinations of items may not have received any bids, so some of the
allocations in the graph need not be considered. Thus the relevant question is
not how many allocations there might be if the space of bids were completely
populated, but instead, can the optimal allocation be found quickly, e.g. in
polynomial time in the actual number of bids? Unfortunately no algorithm
can find the optimal allocation in polynomial time in n, the number of bids
submitted, unless P = A'P:

Proposition 2.2 Winner determination is N'P-complete.

2.4 Polynomial time approximation algorithms

One way to attempt to achieve tractability is to try to find a reasonably
good allocation A instead of an optimal one. One would then like to trade
off the expected cost of additional computation (cost of the computational
resources and cost associated with delaying the result) against the expected
improvement in X,

Instead of using expectations, one could try to devise an algorithm that
will establish a worst case bound, i.e. guarantee that the value of the best
allocation &' is no more than some constant, k, times the value of the best X’
found by the algorithm. A considerable amount of research has focused on
generating such approximation algorithms that execute in polynomial time.
In the case of combinatorial auctions this means time that is polynomial in
n, the number of bids received. The relevant approximation algorithms were
developed for the weighted set packing problem or the weighted independent
set problem, but they can be used for winner determination. In this section
we translate the known algorithms and inapproximability results from the
theory of combinatorial algorithms into the winner determination problem.

2.4.1 General case

Unfortunately, the following proposition shows that no polynomial time al-
gorithm can be constructed for achieving a reasonable worst case guarantee
in winner determination. The proposition follows from a recent imapprox-
imability result of Hastad for a related problem [Hastad, 1999].

Proposition 2.3 (inapproximability) No polynomial time algorithm can
guarantee ¢ bound k < n'~° for any ¢ > 0 for the winner determination
problem (unless N'P equals probabilistic polynomial time).

From a practical perspective the question of polynomial time approxi-
mation with worst case guarantees has been answered since algorithms that
come very close to the inapproximability result have been constructed. The
asymptotically best published polynomial time algorithm establishes a bound
k € O(n(loglogn/logn)?) [Halldérsson, 1995], and a slightly better algo-
rithm is about to be published with a bound % € O(n/(logn)?) [Halldérsson,
1998b).

One could also ask whether randomized algorithms would help in the win-
ner determination problem. It is conceivable that randomization could pro-
vide some improvement over the bounds that the two algorithms mentioned
above provide. However, Proposition 2.3 applies to randomized algorithms
as well, so no meaningful advantage could be gained from randomization.

Put together, the approach of constructing polynomial time approxima-
tion algorithms with worst case guarantees is a futile effort in the winner
determination problem. Even a bound & = 2 would mean that the algorithm
might only capture 50% of the available revenue, and usually & 3> 2 so the
guarantee would be even weaker.

2.4.2 Special cases

While the general winner determination problem is inapproximable in poly-
nomial time, one can do somewhat better in special cases where the bids
have special structure. For example, there might be some cap on the number
of items per bid, or there might be a cap on the number of bids with which
a bid can share items.

The desired special structure could be enforced on the bidders by restrict-
ing the allowable bids. However, that can lead to the same inefficiencies as

non-combinatorial auctions because bidders may not be allowed to bid on
the combinations they want. Alternatively, the auctioneer can allow general
bids and use these special case algorithms if the bids happen to exhibit the
desired special structure.

This section reviews the best polynomial time algorithms for the known
special cases. These algorithms were developed for the weighted independent
set problem or the weighted set packing problem. Here we show how they
apply to the winner determination problem:

1. If the bids have at most w items each, a bound & = 2(w + 1)/3 can
be established in O(nw?A") time, where A is the number of bids that
any given bid can share items with (note that A < n) [Chandra and
Halldérsson, 1999]. First, bids are greedily inserted into the solution
on a highest-price-first basis. Then local search is used to improve the
solution, and this search is terminated after a given number of steps.
At each step, one new bid is inserted into the solution, and the old
bids that share items with the new bid are removed from the solution.
These improvements are chosen so as to maximize the ratio of the new
bid’s price divided by the sum of the prices of the old bids that would
have to be removed.

2. Several algorithms have been developed for the case where each bid
shares items with at most A other bids. A bound & = [(A + 1)/3]
can be established in linear time by partitioning the set of bids into
[(A 4 1)/3] subsets such that A < 2 in each subset, and then using
dynamic programming to solve the weighted set packing problem in
each subset [Halldérsson, 1998a]. Other polynomial time algorithms
for this setting establish bounds k& = A/2, see [Hochbaum, 1983], and
k= (A +2)/3, see {Halldérsson and Lau, 1997].

3. A bound that depends only on the number of items, m, can also be
established in polynomial time. An algorithm that establishes a bound
/m has recently been developed [Halldérsson, 1998b], but has not yet

been published.

4. If the bids can be colored with ¢ colors so that no two bids that share
items have the same color, then a bound % = ¢/2 can be established in
polynomial time [Hochbaum, 1983].

10

5. The bids have a s-claw if there is some bid that shares items with &
other bids which themselves do not share items. If the bids are free of
k-claws, a bound & = k — 2 + ¢ can be established with local search
in n21/9 time [Halld6rsson, 1998a). Another algorithm establishes a
bound k = (4« + 2)/5 in n°*) time [Hallddrsson, 1998a).

6. Let I be the largest d such that there is some subset of bids in which
every bid shares items with at least d bids in that subset. Then, a bound
k = (D+1)/2 can be established in polynomial time [Hochbaum, 1983].

Approximation algorithms for these known special cases have been im-
proved repeatedly. There is also the possibility that probabilistic algorithms
could improve upon the deterministic ones. In addition, it is possible that ad-
ditional special cases with desirable approximability properties will be found.
For example, while the current approximation algorithms are based on re-
strictions on the structure of bids and items, a new family of restrictions
that will very likely lend itself to approximation stems from limitations on
the prices. For example, if the function 5(5) is close to additive, approxi-
mation should be easy. Unfortunately it does not seem reasonable for the
auctioneer to restrict the bid prices or to eliminate outlier bids after the bids
have been submitted. Setting an upper bound could reduce the auctioneer’s
revenue because higher bids would not occur. Setting a lower bound above
zero would disable bidders with lower valuations from bidding, and if no bid-
der has a valuation above the bound, no bids on those combinations would
be placed. That can again reduce the auctioneer’s revenue. Although forcing
such special structure does therefore not make sense, the auctioneer could
capitalize on special price structure if such structure happens to be present
in the bids without forcing.

Put together, considerable work has been done on approximation algo-
rithms for special cases of combinatorial problems, and these algorithms can
be used for special cases of the winner determination problem. However,
these algorithms provide worst case guarantees that are so far from optimum
that they are irrelevant for auctions in practice.

11

2.5 Restricting the combinations to guarantee optimal
winner determination in polynomial time

If even more severe restrictions apply to the bids, winner determination can
be carried out optimally in polynomial time. To capitalize on this idea in
practice, the restrictions would have to be imposed by the auctioneer since
they—at least the currently known ones [Rothkopf et al., 1995]—are so severe
that it is very unlikely that they would hold by chance. In this section we
review the bid restrictions that have been suggested for achieving polynomial
winner determination [Rothkopf et al., 1995];

1. If the bids have at most 2 items each, the winners can be optimally
determined in O(m?®) time using an algorithm for maximum-weight
matching. The problem is A'P-complete already if the bids can have 3
items (this can be proven via a reduction from 3-set packing).

2. If the bids are of size 1 or of size greater than m/c, the winners can be
optimally determined in O(m(na,ge)) time, where nyg,q. is the number
of bids of size greater than m/c.

3. If the allowable combinations are in a tree structure, winners can be
optimally determined in polynomial time. For example in Figure 2 left,
a bid on 4 and 5 would be allowed while a bid for 5 and 6 would not. In
tree structures the winners can be optimally determined by propagating
information once up the tree. At every node, the best decision is to
accept either an entirety bid for all the items in that node or the best
allocations in the children of that node.

21N
2" &
P
/\ 3 5
1 234567 Ny

Figure 2: Left: Allowable bids in a tree structure. Right: Interval bids.

4. The items can be ordered and it can be required that bids are only
placed on consecutive items. For example in Figure 2 right, a bid on 5,

12

8, 1, and 2 would be allowed while a bid on 5 and 1 would not. Without
wrap-around, the winners can be optimally determined using dynamic
programming. The algorithm starts from item 1, then does 1 and 2,
then 1, 2, and 3, etc. The needed optimal substructure property comes
from the fact that the highest revenue that can be achieved from items
1,2, ..., A can be achieved either by picking a bid that has been placed
on that entire combination, or by picking a bid that has been placed
on the combination g, ..., & and doing what was best for 1,...,g—1 (all
choices 1 < g < h are tried). The algorithm runs in O{m?) time.

If wrap-around is allowed, the winners can be optimally determined
in O(m?®) time by rerunning the O(m?) algorithm m times, each time
cutting the chain at a different point.

Imposing restrictions on the bids introduces some of the same inefficien-
cies that are present in non-combinatorial auctions because the bidders may
be barred from bidding on the combinations that they want. There is an
inherent tradeoff here between computational speed and economic efficiency.
Imposing certain restrictions on bids achieves provably polynomial time win-
ner determination hut gives rise to economic inefficiencies.

3

Our optimal search algorithm

We recently generated another approach to optimal winner determination.
It is based on highly optimized search. The motivation behind our approach

is to

allow bidding on all combinations unlike the approach of [Rothkopf et
al., 1995). This is in order not to introduce any of the inefficiencies
that occur in non-combinatorial auctions.

strive for the optimal allocation. This maximizes the seller’s revenue.

completely avoid loops and redundant generation of vertices when search-
ing the allocation graph (Figure 1).

capitalize heavily on the sparseness of bids—unlike dynamic program-
ming which uses the same amount of time irrespective of the number
of bids. In practice the space of bids is necessarily extremely sparsely

13

populated. For example, even if there are only 100 items to be auc-
tioned, there are 2% — 1 combinations, and it would take longer than
the life of the universe to bid on all of them even if every person in the
world submitted a bid per second. Sparseness of bids implies sparseness
of the allocations /U that need to be checked. Our algorithm construe-
tively checks each allocation X that has positive value exactly once,
and does not construct the other allocations. Therefore, unlike dy-
namic programming, our algorithm only generates those parts of the
search space that are actually populated by bids. It follows that the
disadvantage of our algorithm is that the run time depends on the
number of bids received, while in dynamic programming it does not.

To achieve these goals, we use a search algorithm that generates a tree,
see Figure 3. Each path in the tree consists of a sequence of disjoint bids, i.e.
bids that do not share items. As a bid is added to the path, the bid price is
added to the g-function. A path terminates when all items have been used
on that path. At that point the path corresponds to a feasible allocation,
and the revenue from that allocation, i.e. the g-value, can be compared to
the best one found so far to determine whether the allocation is the best
one so far. The best allocation found so far is stored, and once the search
completes, that allocation is optimal.

The naive method of constructing the search tree would include all bids
(that do not include items that are already on the path) as the children of
each node. Instead, the following proposition enables a significant reduction
of the branching factor by capitalizing on the fact that the order of the bids
on a path does not matter.

Proposition 3.1 Ewery allocation will be explored exactly once in the tree if
the children of a node are those bids that

o include the ttem with the smallest index among the items that are not
on the path yet, and

e do not include items that are already on the path.

Our search algorithm restricts the children according to the proposition,
see I'igure 3. This can be seen for example at the first level because all the

14

Figure 3: A search tree generated by our algorithm.

bids considered at the first level include item 1. The minimal index does not
coincide with the depth of the search tree in general.

The auctioneer’s revenue can increase if not every item has to be al-
located, i.e. he can keep items. That can be profitable if some item has
received no bids on its own. For example, say there is no bid for item 1,
a $5 bid for item 2, and a $3 bid for the combination of 1 and 2. Then it
is more profitable for the auctioneer to keep 1 and to allocate 2 alone than
it would be to allocate both 1 and 2 together. Such optimization can be
implemented by placing dummy bids of price zero on those individual items
that received no bids alone, see Figure 3. For example, if item 1 had no
bids on it alone and dummies were not used, the tree under 1 would not
be explored and optimality could be lost. When dummy bids are used, the
resulting search generates each allocation that has positive revenue exactly
once—and searches through no other allocations. This guarantees that the
algorithm finds the optimal solution. Throughout the rest of the paper, we
use this dummy bid technique.

15

3.1 Optimized generation of children

The main search algorithm uses a secondary depth-first-search (DFS) to
quickly determine the children of a node. The secondary search occurs in
a data structure which we call the Bidiree. It is a binary tree in which the
bids are inserted up front as the leaves. Only those parts of the tree are
generated for which bids are received, see Figure 4. What makes the data

Stopmask

BLOCKED

MUsST

ANY

1,3 2,3 2
$9 $5 $7
bidder 1 bidder 1) { bidder 4

Figure 4: The Bidiree data structure.

structure special is the use of a Stopmask. The Stopmask is a vector with one
variable for each auctioned item. If the variable corresponding to an item has
the value BLOCKED, those parts of the Bidtree are pruned instantaneously,
and in place, that contain bids containing that item. In other words, search
in the Bidtree will never progress left at that level. If the item’s variable has
the value MUST, all other parts of the Bidtree are pruned instantaneously
and in place, i.e. search cannot progress right at that level. The value ANY
corresponds to no pruning based on that item: the search may go left or
right.

To start, the first itern has value MUST in the Stopmask, and the others
have ANY. The first child of any given node in the main search is deter-
mined by a DFS from the top of the Bidtree. The siblings of that child are
determined by continuing that DFS by backtracking in the Bidtree after the
main search has explored the tree under the first child. As a bid is appended
to the path of the main search, BLOCKED is inserted in the Stopmask for

16

each item of that bid. That implements the branching reduction of the main
search based on the second bullet of Proposition 3.1. MUST is inserted at
the unallocated item with the smallest index. That implements the branch-
ing reduction of the main search based on the first bullet of Proposition 3.1.
These MUST and BLOCKED values are changed back to ANY when back-
tracking a bid from the path of the main search, and MUST is reallocated
to the place where it was before that bid was appended to the path. Note
that the secondary DFS never needs to backtrack above the variable that
contains MUST because all items with smaller indices than that are already
used on the path of the main search.

The secondary search can be implemented to execute in place, i.e. without
memory allocation during search. That is accomplished via the observation
that recursion or an open list is not required because in DFS, to decide where
to go next, it suffices to know where the search focus is now, and from where
it most recently came.

3.2 Anytime winner determination via depth-first-search
(DFS)

We first implemented the main search as DFS which executes in linear space.
The depth-first strategy causes feasible allocations to be found quickly (the
first one is generated in linear time when the first search path ends), and the
solution improves monotonically since the algorithm keeps track of the best
solution found so far. This implements the anytime feature: if the algorithm
does not complete in the desired amount of time, it can be terminated pre-
maturely, and it guarantees a feasible solution that improves monotonically.
When testing the anytime feature, it turned out that in practice most of
the revenue was generated early on as desired, and there were diminishing
returns to computation.

3.3 Preprocessing

Our algorithm preprocesses the bids in four ways to make the main search
faster without compromising optimality. The preprocessors could also be
used in conjunction with other approaches to winner determination than our
search algorithm. The next subsections present the preprocessors in the order
in which they are executed.

17

3.3.1 PREI1: Keep only the highest bid for a combination

As a bid arrives, it is inserted into the Bidtree. If a bid for the same S
already exists in the Bidtree, only the bid with the higher price is kept, and
the other bid is discarded. We break ties in favor of keeping the earlier bid.

3.3.2 PRE2: Remove provably noncompetitive bids

This preprocessor removes bids that are provably noncompetitive. A bid
(prunee) is noncompetitive if there is some disjoint collection of subsets of
that bid such that the sum of the bid prices of the subsets exceeds or equals
the price of the prunee bid. For example, a $10 bid for items 1, 2, 3, and 4
would be pruned by a $4 bid for items 1 and 3, and a $7 bid for items 2 and
4.

To determine this we search, for each bid (potential prunee), through all
combinations of its disjoint subset bids. This is the same DFS as the main
search except that it restricts the search to those bids that only include items
that the prunee includes (Figure 5): BLOCKED is kept in the Stopmask for
other items. This ensures that only subset bids contribute to the pruning.

Bids: s Prunee
1 1,2,3,4

g /'
4 t2) (3)

1,2 @
1,3 P
24 OEONE)
35 s

1,234

Figure 5: A search tree generated for one prunee in PRE2. The dotted paths
are not generated because pruning occurs before they are reached.

Especially with bids that contain a large number of items, PRE2 can

take more time than it saves in the main search. In the extreme, if some bid
contains all itemns, the preprocessing search with that bid as the prunee is the

18

same as the main search (except for one main search path that contains that
bid only). To save preprocessing time, PRE2 is carried out partially. With
such partial pruning, some of the noncompetitive bids are left unpruned.
That will not compromise optimality of the main search although the main
search can become slower. We implemented two ways of restricting PRE2:

I. A cap, I, on the number of pruner bids that can be combined to try
to prune a particular prunee bid. This limits the depth of the search
in PRE2 to .

2. A cap, @, on the number of items in a prunee bid. Longer hids would
then not be targets of pruning. This entails a cap, ®, on tree depth. It
also tends to exclude wide trees because long prunees usually lead to
trees with large branching factors.

With either method, PRE2 takes O(nn®?m) time, which is polynomial for a.
constant cap (there are n prunees, the tree for each is O(n°?), and finding
a child in the Bidtree is O(m)). The latter method is usually preferable. It
does not waste computation on long prunees which take a lot of preprocessing
time and do not significantly increase the main search time. This is because
the main search is shallow along the branches that include long bids due to
the fact that each item can occur only once on a path and a long bid uses
up many items. Second, if the bid prices are close to additive, the former
method does not lead to pruning when a path is cut prematurely based on
the cap.

3.3.3 PRE3: Decompose bids into connected sets

The bids are partitioned into sets such that no item is shared by bids from
different sets. PRE4 and the main search are then done in each set of bids
independently, and using only items included in the bids of the set. The sets
are determined as follows. We define a graph where bids are vertices, and
two vertices share an edge if the bids share items. We generate an adjacency
list representation of the graph in O(mn?) time. We use DFS to generate a
depth-first forest of the graph in O(n + m) time. Each tree in the forest is
then a set with the desired property.

19

3.3.4 PRE4: Mark noncompetitive tuples of bids

Noncompetitive tuples of disjoint bids are marked so that they need not be
considered on the same path in the main search. For example, the pair of bids
$5 for items 1 and 3, and $4 for items 2 and 5 is noncompetitive if there is a
bid of $3 for items 1 and 2, and a bid of $7 for items 3 and 5. Noncompetitive
tuples are determined as in PRE2 except that now each prunee is a virtual
bid that contains the items of the bids in the tuple, and the prunee price is
the sum of the prices of those bids.

For computational speed, we only mark 2-tuples, i.e. pairs of bids. A pair
of bids is excluded also if the bids share items. PRE4 is used as a partial
preprocessor like PREZ2, with caps IV or @’ instead of I' or ®. PRE4 runs in
O(n*n°*Pm) time. Handling 3-tuples would increase this to O(n®n®Pm), etc.
Handling large tuples also slows the main search because it needs to ensure
that noncompetitive tuples do not exist on the path.

As a bid is appended to the path, it excludes from the rest of the path
those other bids that constitute a noncompetitive pair with it. Qur algorithm
determines this quickly as follows. For each bid, a list of bids to exclude is
determined in PRE4. In the main search, an exclusion count is kept for each
bid, starting at 0. As a bid is appended to the path, the exclusion counts
of those bids that it excludes are incremented. As a bid is backtracked from
the path, those exclusion counts are decremented. Then, when searching for
bids to append to the main search path from the Bidtree, only bids with
exclusion count 0 are accepted.®

3.4 IDA¥ and heuristics

We sped up the main search by using an iterative deepening A* (IDA*) search
strategy [Korf, 1985] instead of DFS. The search tree, use of the Bidtree, and
the preprocessors stay the same. In practice, IDA* finds the provably optimal
allocation well before the entire search tree (Figure 3) has been traversed. At

SPRE2 and PRE4 could be converted into anytime preprocessors without compromising
optimality by starting with a small cap, conducting the searches, increasing the cap,
reconducting the searches, etc. Preprocessing would stop when it is complete (cap = n),
the user decides to stop it, or some other stopping criterion is met. PRE2 and PRE4 could
also be converted into approximate preprocessors by allowing pruning when the sum of the
pruners’ prices exceeds a fixed fraction of the prunee’s price. This would allow more bids
to be pruned which can make the main search faster, but it can compromise optimality.

20

each iteration of IDA*—except the last—the IDA* threshold gives an upper
bound on solution quality. It can be used, for example, to communicate
search progress to the auctioneer.

Since winner determination is a maximization problem, the heuristic func-
tion h should never underestimate the revenue from the items that are not
yet allocated in bids on the path because that could lose optimality. We
designed two heuristics that never underestimate:

1. h= > c(i) where c(3) = max 55)

¢ € unallocated items Slies |S]

2. As above, but accuracy is increased by recomputing ¢(z) every time a
bid is appended to the path since some combinations S are excluded:
some of their items are on the path, or they constitute a noncompetitive
pair with some bid on the path.

We use (2) with several methods for speeding it up. A tally of % is kept, and
only some of the ¢(z) values in A need to be updated when a bid is appended
to the path. In PRE4 we precompute for each bid the list of items that
must be updated: items included in the bid and in bids that are on the bid’s
exclude list. To make the update even faster, we keep a list for each item of
the bids in which it belongs. The ¢(3) value is computed by traversing that
list and choosing the highest él%?ll among the bids that have exclusion count
0. So, recomputing & takes O(mn) time, where m is the number of items
that need to be updated, and 1 is the (average or greatest) number of bids
in which those iterns belong.4

On the last IDA™* iteration, the IDA* threshold is always incremented to
equal the revenue of the best solution found so far in order to avoid futile
search. In other words, once the first solution is found, the algorithm converts
to branch-and-bound with the same heuristic.

*PRE2 and PRE4 use DFS because due to the caps their execution time is negligible
compared to the main search time. Alternatively they could use IDA*. Unlike in the main
search, the ¢(z) values should be computed using only combinations S that are subsets of
the prunee. The threshold for IDA™ can be set to equal the prunee bid’s price {or a fraction
thereof in the case of approximation), so IDA* will complete in one iteration. Finally, care
needs to be taken that the heuristic and the tuple exclusion are handled correctly since
they are based on the results of the preprocessing itself.

21

4 Experimental setup

Not surprisingly, the worst case complexity of the main search is exponen-
tial in the number of bids. However, unlike dynamic programming, this is
complexity in the number of bids actually received, not in the number of al-
lowable bids. To determine the efficiency of the algorithm in practice, we ran
experiments on a general-purpose uniprocessor workstation (360MHz Sun
Ultra 60 with 256 MRAM) in C++ with four different bid distributions:

e Random: For each bid, pick the number of items randomly from
1,2,...,m. Randomly choose that many items without replacement.
Pick the price randomly from {0, 1].

o Weighted random: As above, but pick the price between 0 and the
number of items in the bid.

¢ Uniform: Draw the same number of randomly chosen items for each
bid. Pick the prices from [0, 1].

¢ Decay: Give the bid one random item. Then repeatedly add a new
random item with probability « until an item is not added or the bid
includes all m items. Pick the price between 0 and the number of items
in the bid.

If the same bid was generated twice, the new version was deleted and regen-
erated. So if the generator was asked to produce for example 500 bids, it
produced 500 different bids.

We let all the bids have the same bidder. This conservative method
causes PRE1 to prune no bids. In practice, the chance that two agents bid
on the same combination of items is often small anyway because the number
of combinations is large (2™ — 1). However, in some cases PREL is very
effective. In the extreme, it prunes all of the bids except one if all bids are
placed on the same combination by different bidders.

5 Experimental results

We focus on IDA* because it was two orders of magnitude faster than DFS.
We lower the IDA* threshold between iterations to 95% of the previous

22

threshold or to the highest f = g + A that subceeded the previous thresh-
old, whichever is smaller. Experimentally, this tended to be a good rate of
decreasing the threshold. If it is decreased too fast, the overall number of
search nodes increases because the last iteration becomes large. If it is de-
creased too slowly, the overall number of search nodes increases because new
iterations repeat a large portion of the search from previous iterations.

For PRE2, the cap @ = 30 gave a good compromise between preprocessing
time and main search time. For PRE4, ® = 20 led to a good compromise.
These values are used in the rest of the experiments. With these caps, the
hard problem instances with short bids get preprocessed completely, and
PREZ2 and PRE4 take negligible time compared to the main search because
the trees under such short prunees are small. The caps only take effect in
the easy cases with long bids. In the uniform distribution all bids are the
same length, so PRE2 does not prune any bids because no bid is a subset of
another.

As expected, PRE3 saved significant time on the uniform and decay dis-
tributions by partitioning the bids into sets when the number of bids was
small compared to the number of items, and the bids were short. In al-
most all experiments with random and weighted random, all bids fell in the
same set because the bids were long. In real world combinatorial auctions
it is likely that the number of bids will significantly exceed the number of
items which would suggest that PRE3 does not help. However, most bids
will usually be short, and the bidders’ interests often have special structure
which leads to some items being independent of each other, and PRE3 will
automatically capitalize on that,

The main search generated 35,000 nodes per second when the number of
items was small, e.g. 25, and the bids were short. This rate decreased slightly
with the number of bids, but significantly with the number of items and bid
size. With the random distribution with 400 items and 2000 bids, the search
generated only 9 nodes per second. However, the algorithm solved these
cases easily because the search paths were short and the heuristic focused
the search well. Long bids make the heuristic and exclusion checking slower
but the search tree shallower which makes them easier for our algorithm than
short bids overall. This observation is further supported by the results below.
Each point in each graph represents an average over 20 problem instances.
The search times presented include all preprocessing times.

The random distribution was easy since the search was shallow because

23

the bids were long, see Figure 6 left. The weighted random distribution was
even easier, see Figure 6 right. The curves become closer together on the
logarithmic value axis as the number of items increases, which means that
search time is polynomial in items. In the weighted random case, the curves
are sublinear meaning that search time is polynomial in bids as well, while
in the unweighted case they are roughly linear meaning that search time is
exponential in bids.

Log, ,(seconds) Rando

3.5 e
3) _,_4(1(?/—’?,, . 2.5] 400 _,.//'/ //
- 300 o * o - - //
e o / 300 /_// o
200 P - = -
2.5 - /.;_.’,«*’ 2 {”200) e
e 100 items Bids |1 items Bids
500 750 1606 50 1000 1500 2000

Figure 6: Search time for the random and weighted random distributions. In
the random distribution, the point with 1,000 bids and 200 items is unusually
high due to one hard outlier among the 20 problem instances.

The uniform distribution was harder, see Figure 7 left. The bids were
shorter so the search was deeper. The curves are roughly linear so com-
plexity is exponential in bids. The spacing of the curves does not decrease
significantly indicating that complexity is exponential in items as well. Fig-
ure 7 right shows the complexity decrease as the bids get longer, i.e. the
search gets shallower.

The decay distribution was also hard, see Figure 8 left. However, the
curves become closer together on the logarithmic value axis as the number of
items increases, which means that complexity is polynomial in items. Com-
plexity first increases in «, and then decreases, Figure 8 right. Left of the
maximum, PRE3 decomposes the problem leading to small, fast searches.
The hardness peak moves left as the number of bids grows because the de-
compoesition becomes less successful. Right of the maximum, all bids are in

24

4 0o . 3p 150
/,,A”'.' / N

> PR AP
2 R w0

PR — I \
1 S 3 ﬂ// 1 .\MM—:
O 25 items . 50 bid

T Bids 0 - Ttems per bid
50 100 150 3 8 13

Figure 7: Search time for the uniform distribution.

the same set. The complexity then decreases with @ because longer bids lead

to shallower search.

Log, ,(seconds)
’ O/‘
3 P
150
Ll
2 ’ 1
_-100
//‘ -”’//
1 o , T .0
e 50 iterms
z Bids ~* 1 o
50 100 150 200 05 25 45 65 .85

Figure 8: Search time for the decay distribution.

25

6 Other applications for the algorithms

The algorithms for winner determination can also be used to solve weighted
set packing problems, weighted independent set problems, and weighted max-
imum clique problems because they are in fact the same problem. In addition
they can be used for coalition structure generation in characteristic function
games. The characteristic function assigns a value to each potential coalition
of agents. The objective is to partition the agents exhaustively into disjoint
coalitions so as to maximize the sum of the values of those coalitions. The
agents correspond to items, coalitions to combinations, and coalition values
to bid prices. This problem is analogous to the winner determination prob-
lem if the coalitions have nonnegative values. This can usually be achieved
by normalizing if it does not hold up front. However, coalition structure
generation differs from winner determination in two major ways.

First, the values of most coalitions are usually nonzero so the space of
“bids” is densely populated. That reduces the usefulness of algorithms that
capitalize on the sparseness of bids. This suggests the use of the dynamic
programming algorithm, but that will not scale up past small numbers of
agents here either.

Second, in coalition structure generation the values of coalitions might
not be known to any party, and only values of complete coalition structures
might be known, or they become known during a search process. [Sandholm
et al., 1998] recently devised an approximation algorithm with worst case
guarantees for this case which is harder than the case where the values of
coalitions are observed.

7 Conclusions and future research

Combinatorial auctions, i.e. auctions where bidders can bid on combinations
of items, tend to lead to more efficient allocations than traditional auctions
in multi-item auctions where the agents’ valuations of the items are not
additive. This is because the users can express complementarities in their
bids, and the winner determination algorithm will take these into account.
This paper tackled winner determination in combinatorial auctions where
each bidder can bid on unrestricted combinations of items, and any number
of her bids can get accepted. In such settings, determining the winners so as

26

to maximize the auctioneer’s revenue is N'P-complete.

The space of allocations was first explicated, and closed form asymptotic
bounds on the number of allocations were derived. The number of allocations
is so large that exhaustive enumeration will only work with a very small
number of items. Dynamic programming avoids some of the redundancy of
exhaustive enumeration, but it does not scale beyond auctions with a small
number of items because it generates the entire search space independent of
what bids have actually been received.

The approach of compromising optimality to achieve polynomial time
winner determination is futile if one is interested in worst case approxima-
tion guarantees: a strong inapproximability result applies. If the combi-
nations are restricted, somewhat better guarantees can be established by
known approximation algorithms for the weighted independent set problem
and the weighted set packing problem, but the guarantees remain so weak
that they are irrelevant in the domain of auctions in practice. The main
hope for practical approximations for special cases lies in new forms of spe-
cial structure—especially on bid prices—and possibly in better algorithms
such as probabilistic ones.

By imposing severe restrictions on the allowable combinations, optimal
winner determination can be guaranteed in polynomial time. However, these
restrictions introduce some of the same economic inefficiencies that are present
in non-combinatorial auctions.

To tackle the limitations of the existing approaches to winner determina-
tion, we developed a search algorithm for optimal winner determination. Via
experiments on several different bid distributions we showed that it signifi-
cantly enlarges the envelope of input sizes for which combinatorial auctions
with optimal winner determination are computationally feasible. The highly
optimized algorithm achieves this mainly by capitalizing on the fact that the
space of bids is necessarily sparsely populated in practice. Unlike dynamic
programming, it generates only the populated parts of the search space. The
algorithmic methods to implement this include provably sufficient selective
generation of children in the search tree, a secondary search to find chil-
dren quickly, and heuristics that are relatively accurate and optimized for
speed. The algorithm also preprocesses the search space by keeping only
the highest bid for each combination, by removing bids that are provably
noncompetitive (this is determined via search), by decomposing the problem
into independent parts, and by marking noncompetitive tuples of bids (this

27

is again determined via search). We believe that our algorithm will make the
difference between being able to use a combinatorial auction design in many
practical markets and not.

The IDA* search algorithm, used in our main search, can easily be dis-
tributed across multiple computers for additional speed, see e.g. [Reinefeld
and Schnecke, 1994]. The burden of search could also be imposed on the
bidders by giving each bidder a portion of the search space to explore. This
introcluces two risks. First, a bidder may only search her portion partially so
as to save computational effort. Such free-riding can be desirable to her since
the other bidders are likely to find very good allocations anyway—assuming
that they themselves do not free-ride. Second, a bidder may report a subop-
timal allocation if that allocation leads to higher payoff for her. To prevent
these problems, the auctioneer can randomly select one or more bidders after
they have reported the best solutions that they found, and re-search their
portions. If, in some portion, the auctioneer finds a better solution than the
reported one, the bidder gets caught of fraudulent searching, and a penalty
can be imposed. If the penalty is high enough compared to the cost of com-
putation and compared to the maximal gain from reporting insincerely, and
if the probability of getting checked upon is sufficiently high, each bidder is
motivated to search her portion truthfully.

The algorithm can also be used to solve weighted set packing, weighted
independent set, and weighted maximum clique problems because they are in
fact the same problem. So is coalition structure generation in characteristic
function games.

Both our algorithm, and the existing methods for winner determination
that were reviewed, are based on the common implicit assumption that bids
are superadditive: 5(S U S') > b(S) + b(S’). But what happens if agent
1 bids &;({1}) = $5, b:({2}) = $4, and 5;({1,2}) = 87, and there are no
other bidders? The auctioneer could allocate items 1 and 2 to agent 1 sepa-
rately, and that agent’s bid for the combination would value at $5 + $4 = $9
instead of §7. So, the current techniques focus on capturing synergies (pos-
itive complementarities) among items. In practice, local subadditivities can
occur as well. As a simple example, when bidding for a landing slot for a
plane, the bidder is willing to take any one of a host of slots, but does not
want more than one. We address this issue in our Internet auction house
prototype which is part of our electronic commerce server called eMediator.
We developed a protocol where the bidders can submit XOR-bids, i.e. bids

28

on combinations such that only one of the combinations can get accepted.
This allows the bidders to express general preferences with both positive and
negative complementarities, see also [Rassenti et al., 1982]. We also allow
bids to state multiple units of each item, and we allow the bidders to submit
multiple mutually nonexclusive XOR-bids. For these more general settings,
the winner determination algorithms in our auction server are fast but they
do not guarantee optimality of the allocation. Qur current work focuses on
developing optimal algorithms for these settings. The negative results, A'P-
completeness and inapproximability, apply to these setting as well. Finally,
we are developing winner determination algorithms for combinatorial double
auctions which include multiple buyers and multiple sellers.

8 Acknowledgment

I thank Kate Larson who significantly contributed to the proof of Proposi-
tion 2.1.

References

[Andersson and Sandholm, 1998a] Martin R Andersson and Tuomas W
Sandholm. Leveled commitment contracting among myopic individually

rational agents. In Proceedings of the Third International Conference on
Multi-Agent Systems (ICMAS), pages 26-33, Paris, France, July 1998.

[Andersson and Sandholm, 1998b] Martin R Andersson and Tuomas W
Sandholm. Leveled commitment contracts with myopic and strategic

agents. In Proceedings of the National Conference on Artificial Intelli-
gence (AAAI), pages 38-45, Madison, WI, July 1998.

[Chandra and Halidérsson, 1999] Barun Chandra and
Magnis M. Halldérsson. Greedy local search and weighted set packing
approximation. In 10th Annual SIAM-ACM Symposium on Discrete Al
gorithms (SODA), January 1999. To appear.

[Comtet, 1974] L Comtet. Advanced Combinatorics. D. Reidel Pub. Co.,
1974.

29

[Cormen et al., 1990] Thomas H Cormen, Charles Leiserson, and Ronald L
Rivest. Introduction to Algorithms. MIT Press, 1990.

[Halldérsson and Lau, 1997] Magnds M. Halldérsson and H C Lau. Low-
degree graph partitioning via local search with applications to constraint
satisfaction, max cut, and 3-coloring. Journal of Graph Algo. Applic.,
1(3):1-13, 1997.

[Halldérsson, 1995] Magnis M. Halldérsson. Approximations via partition-
ing. Technical Report IS-RR-95-0003F, School of Information Science,
Japan Advanced Institute of Science and Technology, Hokuriku, Japan,
1995.

[Halldérsson, 1998a) Magnis M. IHalldérsson. Approximations of indepen-
dent sets in graphs. In K. Jansen and J. Rolim, editors, The First Inter-
national Workshop on Approzimation Algorithms for Combinatorial Opti-
mization Problems (APPROX), pages 1-14, Aalborg, Denmark, July 1998.
Springer LNCS 1444.

[Halld6rsson, 1998b] Magnus M. Halldérsson. Personal communications.
1998. September 24th.

[Hastad, 1999] Johan Hastad. Clique is hard to approximate within n!—e,
Acta Mathematica, 1999. To appear. Draft: Royal Institute of Technology,
Sweden, 8/11/98. Early version: Proc. 37th IEEE Symposium on Founda~
tions of Computer Science (1996), 627—636.

[Hochbaum, 1983] Dorit S. Hochbaum. Efficient bounds for the stable set,
vertex cover, and set packing problems. Discrete Applied Mathematics,
6:243-254, 1983.

[Karp, 1972] R M Karp. Reducibility among combinatorial problems. In
Raymond E Miller and James W Thatcher, editors, Complezity of Com-
puter Computations, pages 85-103. Plenum Press, NY, 1972.

[Kelly and Steinberg, 1998] Frank Kelly and Richard Steinberg. A combi-
natorial auction with multiple winners for universal services. Technical
report, University of Cambridge, June 1998.

30

[Korf, 1985] Richard E. Korf. Depth-first iterative-deepening: An optimal
admissible tree search. Artificial Intelligence, 27(1):97-109, 1985.

[McAfee and McMillan, 1996] R Preston McAfee and John McMillan. Ana~
lyzing the airwaves auction. Journal of Economic Perspectives, 10(1):159~
175, 1996.

[McMillan, 1994] John McMillan. Selling spectrum rights. Journal of Eco-
nomic Perspectives, 8(3):145-162, 1994,

[Rassenti et al., 1982] S J Rassenti, V L Smith, and R L Bulfin. A com-
binatorial auction mechanism for airport time slot allocation. Bell J. of
Economics, 13:402-417, 1982.

[Reinefeld and Schnecke, 1994] Alexander Reinefeld and Volker Schnecke.
AIDA¥™ - asynchronous parallel IDA*. In 10th Canedian Conf on Al
pages 295-302, Banff, Canada, 1994.

[Rothkopf et al., 1995] Michael H Rothkopf, Aleksandar Peke¢, and
Ronald M Harstad. Computationally manageable combinatorial auctions.
Technical Report RRR 13-95, Rutgers Center for Operations Research,
1995. To appear in Management Science.

[Sandholm and Lesser, 1995] Tuomas W Sandholm and Victor R Lesser. Is-
sues in automated negotiation and electronic commerce: Extending the
confract net framework. In Proceedings of the First International Con-
ference on Multi-Agent Systems (ICMAS), pages 328-335, San Francisco,
CA, June 1995. Reprinted in Readings in Agents, Huhns and Singh, eds.,
pp. 66-73, 1997.

[Sandholm and Lesser, 1996] Tuomas W Sandholm and Victor R Lesser. Ad-
vantages of a leveled commitment contracting protocol. In Proceedings of
the National Conference on Artificial Intelligence (AAAI), pages 126-133,
Portland, OR, August 1996.

[Sandholm et al., 1998] Tuomas W Sandholm, I(ate S Larson, Martin R An-
dersson, Onn Shehory, and Fernando Tohmé. Anytime coalition structure
generation with worst case guarantees. In Proceedings of the National Con-
ference on Artificial Intelligence {AAAI), pages 46-53, Madison, WI, July
1998.

31

[Sendholm, 1991] Tuomas W Sandholm. A strategy for decreasing the to-
tal transportation costs among area-distributed transportation centers.
In Nordic Operations Analysis in Cooperation (NOAS): OR in Business,
Turku School of Economics, Finland, 1991.

[Sandholm, 1993] Tuomas W Sandholm. An implementation of the contract
net protocol based on marginal cost calculations. In Proceedings of the Na-
tional Conference on Artificial Intelligence (AAAI), pages 256-262, Wash-
ington, D.C., July 1993.

[Sandholm, 1996a} Tuomas W Sandholm. Limitations of the Vickrey auc-
tion in computational multiagent systems. In Proceedings of the Second
International Conference on Multi-Agent Systems (ICMAS), pages 299-
306, Keihanna Plaza, Kyoto, Japan, December 1996.

[Sandholm, 1996b] Tuomas W Sandholm. Negotiation among Self-Interested
Computationally Limited Agents. PhD thesis, University of Massachusetts,
Ambherst, 1996. Available at http:// www.cs.wustl.edu/ ~sandholm/ dis-
sertation.ps.

[Sandholm, 1998] Tuomas W. Sandholm. Contract types for satisficing task
allocation: I theoretical results. In AAAT Spring Symposium Series: Sat-
isficing Models, pages 68-75, Stanford University, CA, March 1998.

A Proofs

Proof. (Proposition 2.1). We first prove that the number of allocations is
O(m™). Let there be m items. Let there be a set of locations where com-
binations can form, at most one combination per location. Let the number
of locations be m. This allows for any allocation to form since an allocation
can have at most m combinations. Now, say that the items get placed in
locations one item at a time. Each item could be placed in m different lo-
cations, and there are m items to place. Therefore, the number of possible
overall assignments is m™. Thus, the number of allocations is O(m™).5

Note that m™ overestimates the number of allocations. Some allocations are counted
multiple times because for any given combination in the allocation, the allocation is
counted once for each location where the combination can form (although it should be
counted only once).

32

What remains to be proven is that the number of allocations is w(m™/?),
We use the following lemma in the proof.

Lemma A.1 Let a and b be positive integers. Then [£]! < (%)% for & > 2.

Proof.
) 413 8-1 2 _ g4l 31
(g)%— a [@ e = [:3 a
b b b) b b b
b b
= 1+-)01-~)
20
= 1-(-)
< 1

Therefore [£]! < (£)5. O

One way to count the number of allocations is to use Bell numbers. The
Bell number B,, is equal to the number of ways a set of m elements can be
partitioned into nonempty subsets. That is, B,, is equal to the number of
allocations that can be generated with m items. There are several ways of
calculating Bell numbers, including Dobinski’s formula [Comtet, 1974):

I & ™

Bo= o277
To show that the number of allocations is w(m™/?) it suffices [Cormen et al.,
1990] to show that
. Bm
«;&Erolc mm/2
Since each term in the series of Dobinski’s formula is positive, it suffices to
take one term, & and show that

i

- o0

z'm

it

Jim, = o
Set ¢ = [T] for some constant b, where b > 2. Then the expression we are

interested in is

&

b

= %)m/bmm/E
m{b-2)

m 2
mfbw1}

b—F

We now calculate
m{b—2)

T m” 26
‘mg}lgo bJ—M b1

b

Since the natural logarithm and exponential functions are continuous, we can
calculate the limit as follows. Let

m
¢(m} = In EET
b
= %‘;Q) Inm — @ Inb
= %[bgg Inm — (b—1)In 3]
Then
m!b—Q!
2
Jm T = i e
b

= lim e®eZenm—(b-1)Inb
b el

b=3
lim e? lim ez om-(b-1)nd
M= OO m—FCco
= 00-00

= 00

Thus, we have shown that B,, € w(m?). O

Proof. (Proposition 2.2). The winner determination problem is the same
problem as the abstract problem called weighted set packing once we view
each bid as a set (of items) and the price, b(S), as the weight of the set
S. The fact that weighted set packing is A P-complete [Karp, 1972] then
directly means that winner determination is A'"P-complete. O

Proof. (Proposition 2.3). Assume for contradiction that there exists a poly-
nomial time approximation algorithm that establishes some bound k& < nl™¢

34

for the winner determination problem. Then that algorithm could be used
to solve the weighted independent set problem to the same % in polynomial
time.® This is because a weighted independent set problem instance can be
polynomially converted into a winner determination instance while preserv-
ing approximability. This can be done by generating one item for each edge
in the graph. A bid is generated for each vertex in the graph. The bid
includes exactly those items that correspond to the edges connected to the
vertex.

Since the algorithm will k-approximate the weighted independent set
problem in polynomial time, it will also k-approximate the independent set
problem in polynomial time. A polynomial time k-approximation algorithm
for the independent set problem could directly be used to k-approximate the
mazimum cliqgue problem in polynomial time. This is because the maximum
clique problem is the independent set problem on the complement graph.
But Héstad recently showed that no polynomial time algorithm can estab-
lish a & < n'~* for any ¢ > 0 for the maximum clique problem (unless NP
equals probabilistic polynomial time) [Hastad, 1999]. Contradiction. O

Proof. (Proposition 3.1) We first prove that each allocation is generated
at most once. The first bullet leads to the fact that an allocation can only be
generated in one order of bids on the path. So, for there to exist more than
one path for a given allocation, some bid would have to occur multiple times
as a child of some node. However, the algorithm uses each bid as a child for
a given node only once.

What remains to be proven is that each allocation is generated. Assume
for contradiction that some allocation is not. Then, at some point, there has
to be a bid in that allocation such that it is the bid with the item with the
smallest index among those not on the path, but that bid is not inserted to
the path. Contradiction. O

6The weighted independent set problem is the problem of finding a maximally weighted
collection of vertices in an undirected graph such that no two vertices are adjacent.

35

	An Algorithm for Optimal Winner Determination in Combinatorial Auctions
	Recommended Citation
	An Algorithm for Optimal Winner Determination in Combinatorial Auctions

	tmp.1439928365.pdf.FeLUQ

