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ABSTRACT OF THE THESIS 
 
 

Fracture Toughness Improvement of 𝐀𝐥𝟐𝐎𝟑 Ceramics by Grain Size Control and  

Ductile Phase Reinforcement 

 

by 

Kesong Wang 

Master of Science in Mechanical Engineering 

Washington University in St. Louis, 2019 

Research Advisor:  Professor Shankar Sastry 

 

This study used grain size control and ductile phase reinforcement to improve fracture toughness of 

𝐀𝐥𝟐𝐎𝟑 ceramics. Alpha alumina particles of 100 nm, 0.5-1 micrometers, and 10 micrometers were 

coated with 1-5 nm nickel by electroless nickel plating (ENP). The coated powders were consolidated 

at 1200℃-1500℃	by spark plasma sintering (SPS). The sintered samples were annealed at 1100  oC for 

1.5 hours and 10 hours to determine the effect of post sintering annealing on hardness and fracture 

toughness. Density of the samples were measured by the standard Archimedes method using a 5 mL 

pycnometer. Hardness values were determined by Vickers micro hardness indentations and the 

fracture toughness values were calculated from indentation dimensions and indentation-tip crack 

length measurements. Uncoated powders, coated powders, consolidated samples and post SPS 

annealed samples were characterized by Scanning Electron Microscopy (SEM). The fracture 

toughness of alumina increased by more than 100% (9.19 MPa·Öm for coated alumina in comparison 

to about 3.98 MPa·Öm for uncoated alumina) for certain particle size-coating-sintering conditions.  

Results were analyzed in terms of crack bridging mechanisms.
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Chapter 1 
 
Introduction 
 

In recent years, ceramic materials have been widely used in foodstuff fields, chemical industry, 

biomedical applications, electronic applications, thermal barrier coatings, and for environmental 

protection due to their ability to resist high temperatures, severe chemical environment and high 

mechanical strength [1-4]. Alumina is one of the most important materials due to its durability, high 

temperature stability and chemical resistance [5]. However, alumina is a brittle material and its fracture 

toughness is very low [6]. The spark plasma sintering is a new technology that available for 

improvement of fracture toughness of ceramics [7]. And previous research has proved that SPS is 

capable for fracture toughening of alumina [8]. Our objective is to determine the relationship between 

material variables (particle size, grain size, and coating thickness) process variables (sintering 

temperature and time, post sintering annealing), and material properties (% relative density, hardness, 

and fracture toughness) for alumina based ceramics. Several different temperatures were used as 

sintering temperature for each alumina particle size. Then the fracture toughness was compared. Also 

at each temperature, different particle size of coated alumina was sintered to learn the effect of 𝐀𝐥𝟐𝐎𝟑 

particle size on the mechanical property of alumina ceramic. In addition, thermal etching is an 

important method for developing the microstructures of 𝐀𝐥𝟐𝐎𝟑 and 𝐙𝐫𝐎𝟐 ceramics [9, 10]. A new 

approach to study the effect of thermal etching by revealing the location of grain boundaries under 

polished sample surface was used to determine the feasibility of fracture toughness improvement of 

𝐀𝐥𝟐𝐎𝟑. 
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Chapter 2 
 
Background 
 

2.1 Use of Nano-Oxide Ceramics 
 

Nano-Oxide ceramics are high-tech materials that have diverse applications in engineering, medicine, 

and industrial production. The need for tough, strong and stable ceramics is met by either Nano-

alumina and Nano-zirconia based ceramics and composites or other oxide ceramics [11]. The 

amorphous nano alumina powder can be used as an active catalyst in the transesterification reaction 

for biodiesel production for industrial use. Also sintered nano ceramic powders will have lower 

porosity, which majorly contributes to the brittleness of ceramics. Thus the fracture toughness can be 

enhanced. 

 

2.2 𝐀𝐥𝟐𝐎𝟑 based ceramic structure and properties 
 

Alumina, often called as aluminum oxide, is a chemical compound composed of  oxygen and aluminum 

atoms and connected by covalent bonding. 
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Fig. 2.1 Alumina chemical structure 

Alumina occurs in several other forms. And the most common and naturally occurring form is 

Corundum. Oxygen atoms form a slightly distorted hexagon in the lattice of corundum, which is 

found as a mineral in genesis and some other marbles. The alumina is also found in nepheline syenite. 

 

Alumina, as crystalline ceramic, has complex crystal structures along with strong, directional, covalent 

atomic bonding. Those strong covalent bondings prevent the dislocation of alumina atoms which can 

lead to permanent deformation for metallic materials. Therefore, the interatomic bonds will break 

before dislocations happen when the maximum stress of alumina is loaded. Then crack propagation 

occurs. The absence of plastic deformation is termed as brittle fracture [12]. Based on its structure, 

alumina has very good electrical insulation and possesses good thermal conductivity. Alumina also has 

very high stiffness and compressive strength (2000-4000 MPa) and hardness (15-19 GPa). In addition,  

high corrosion and wear resistance are also advantages of alumina. 

 

2.3 Ductile Phase Reinforcement 
 

The toughening brittle solids through the incorporation of  a ductile phase attract considerable 

attention of  scientists in an attempt to enhance the ductility and fracture toughness of  intermetallic 

and ceramic [13-24]. The toughening is approached by the reinforcement phase that can be made to 

intercept crack. Catastrophic fracture can be impeded through the formation of  ductile-phase 
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ligaments bridging the crack wake. The formative crack bridging and plastic deformation of  the 

particles together with crack deflection [25] at the particle, crack blunting, and interfacial debonding 

result additional toughening. The extent of  toughening can be expressed as: 

∆𝑮𝒄 = 𝒇𝝈𝒚𝒓𝝌 (2.1) 

Where: 

ΔGc= The increase in fracture energy 

f= The area fraction 

sy= Individual yield strength 

r= A representative cross-sectional radius 

X= Dimensionless function representing the work of  rupture which can vary between ~0.5 and 

~8(depending upon the degree of  interface debonding and constitutive properties of  the 

reinforcement phase [16-20]). 

 

Fig 2.2 Schematic demonstration 

This approach has been used successfully in several ceramic/metal and intermetallic/metal systems, 

including glass/Al, glass/Ni, AI203/AI, WC/Co, TiA1/Nb, TiAI/TiNb, and NbsSi3/Nb [13-24]. 
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2.4 Electroless Nickel Plating (ENP) 
 

Electroless nickel plating is an autocatalytic reaction deposit nickel layer on another solid material’s 

surface, like metal, plastic, and ceramics. The process includes dissolution of the the element to be 

deposted into a solution-the bath of plating, where a reducing agent reacts with the material’s ions to 

reduce metal ions and deposit the nickel ions [26]. Unlike electro plating, electroless nickel plating has 

many advantages. For example, electroless nickel plating prevents corrosion and wear since there is 

no current through the plating solution during the reaction. And electroless nickel plating can plate an 

even layer outside the corresponding shape of the material. Electroless nickel plating can even coating 

on nano particles using nano powder in the plating bath. 

 

In the process of electroless thin-nickel-film deposition, uniform film thickness is reached. The density 

of nucleation sites on the catalyzed substrate determines the properties of the final produced films. 

During plating a continuous film of uniform thickness results, the film uniformity and thickness are 

determined by the density of nucleation. The density and thickness of nickel coating are time 

dependent functions during the reaction period in the plating bath. In order to catalyze the reaction, 

a sensitizer, usually 𝐒𝐧𝐂𝐥𝟐, and catalyst, thiourea should be used during the reaction [27]. During the 

sensitization and catalyzing terms, ions or molecules are absorbed from solutions such as acidic Sn 

(II) and/or Sn (IV). During this process, the active metal in the catalyst solution, usually 𝐏𝐝𝐂𝐥𝟐, can 

be reduced to palladium by the sensitizing ion, a simplized reaction function can be presented as: [28] 

 

𝑷𝒅𝟐; + 𝑺𝒏𝟐; → 𝑺𝒏𝟒; + 𝑷𝒅𝟎  (2.1) 

 

This electroless nickel plating process involves a continuous buildup of nickel coating on a substrate 

in an appropriate aqueous solution. A reducing agent in solution is used to supply the electrons to 

convert nickel ions to nickel, 
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𝑵𝒊𝟐; + 𝟐𝒆(𝒔𝒖𝒑𝒑𝒍𝒊𝒆𝒅	𝒃𝒚	𝒓𝒆𝒅𝒖𝒄𝒊𝒏𝒈	𝒂𝒈𝒆𝒏𝒕)
𝑪𝒂𝒕𝒂𝒍𝒚𝒕𝒊𝒄&𝑺𝒖𝒓𝒇𝒂𝒄𝒆
Q⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯S 𝑵𝒊𝟎 (2.2) 

According to Van DenMeerakker [29], electroless deposition processes may be referred to a universal 

electrochemical mechanism regardless of the possible nature of the reducing agents R. The process is 

made up of a series of anodic and cathodic reaction. With considering there are two kind of solution 

bath, acid bath and alkaline bath, the process can be simplified as the following, 

 

1. Dehydrogenation, 𝑹𝑯 → 𝑹+𝑯 (2.3) 

2. Oxidation, 𝑹𝑯+ 𝑶𝑯W → 𝑹𝑶𝑯+ 𝒆 (2.4) 

3. Recombination, 𝑯+𝑯 → 𝑯𝟐 (2.5) 

4. Oxidation, 𝑯+𝑶𝑯W → 𝑯𝟐𝑶 + 𝒆 (2.6) 

For alkaline media bath, the following two cathodic stages are: 

5. Metal deposition, 𝑴𝒏; + 𝒏𝒆 → 𝑴𝟎 (2.7) 

6. Hydrogen evolution, 𝟐𝑯𝟐𝑶 + 𝟐𝒆 → 𝑯𝟐𝑶 + 𝟐𝑶𝑯W (2.8) 

For acid media bath, stages 4 and 6 should be as follow: 

4’. Oxidation, 𝑯 → 𝑯; + 𝒆 

6’. Hydrogen evolution, 𝟐𝑯; + 𝟐𝒆 → 𝑯𝟐 

 

For electroless nickel plating, the metal deposition is nickel deposition. Thus, electroless nickel plating 

can be considered as two independent electrode reaction: anodic partial reaction and cathodic partial 

reaction. 

2.5 Spark Plasma Sintering 
 

The spark plasma sintering was used in this experiment because the alumina powders can be fully 

densified at a much lower temperature and a much shorter time than in conventional sintering process. 

The SPS is a newly developed rapid sintering technique with a great potential for achieving fast 

densification results with minimal grain growth in a short sintering time. 
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Fig 2.3: Basic stages of SPS process [30] 

The basic SPS technique uses pulsed electrical current combined with rapid heating and applied 

pressure in order to achieve fully densified compact in a short time. The principle of SPS process is 

shown in Fig. 2.3[30]. The sintered powder is directly loaded in a graphite die. The punches are also 

made from graphite. The material of graphite dies and punches limits the applied external pressure 

under 100 MPa during the sintering process. 

 

The process starts with initial activation by apply a pulsed current, later the densification process takes 

place by the applied external pressure when the proposed activation level is achieved. Pulse discharge 

is normally achieved by applied voltage about 30 V and a current about 600-1000 A. The electrical 

discharges across sample may generate plasma/spark. The surface layers of powder particles are 

subjected in a plasma environment. This process prevents the oxide layers, surface impurities, and 

absorbents, which are residual products on surface of the powder particles [30]. 
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2.6 Thermal Etching 
 

The microstructure plays an important role on ceramics’ performance. Refinement of   the 

microstructure of  ceramics is an attractive method to improve properties of  ceramics. The preparation 

of  ceramographic specimens consists five broad steps: sawing, embedding, grinding, polishing and 

etching. Among those, etching reveals and delineates grain boundaries and other microstructure 

features that are not as apparent as polish on the surface. The etching preparation can be divided into 

branches in Fig. 2.4[31,32]: 

 

 

Fig. 2.4 Etching techniques used in ceramography[31,32] 

Thermal etching has received wide acceptance among available etching techniques. The technique 

used for alumina involves heating a polished sample in a furnace for 15 minutes to couple hours at 

temperature of  150 ºC below the sintering temperature [33]. 
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Chapter 3 
 
Research Objectives 
 

The goal of our study is to determine the feasibility of improving the fracture toughness of alumina 

based ceramics. To realize this goal, we have used electroless nickel plating and spark plasma sintering 

to produce ductile phase reinforced 𝐀𝐥𝟐𝐎𝟑 and have carried out a systematic investigation of the 

relationship between material and process parameters. The specific objectives of current investigation 

are: 

 

• Determine the feasibility of producing uniform ductile nickel coating on 100-10000 nm 𝐀𝐥𝟐𝐎𝟑 

particles. 

 

• Produce fully dense compacts of Ni-coated 𝐀𝐥𝟐𝐎𝟑 by spark plasma sintering. 
 

• Determine density, hardness, and fracture toughness of SPS processed and post SPS annealed 

samples. 
 

• Evaluate the effectiveness of combined fine grain size and ductile phase on hardness and 

fracture toughness improvement of 𝐀𝐥𝟐𝐎𝟑 ceramics. 
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Chapter 4 
 
Experimental Procedure 
 
4.1 Materials 

 
 

Our particles of 10 um 100% alpha phase alumina powder, 0.5~1 um ultrapure alumina powder, and 

100 nm 99.99% alpha phase alumina powder were purchased from Inframat Advanced Nanomaterials. 

The chemicals used for sensitization, catalysis, and electroless nickel plating bath were purchased from 

SIGMA-ALDRICH, which now is Millipore SiGMa. And the water used for making all bath solutions 

was deionized nanopore water. 

 

4.2 Nano particle Preparation 
 

20 g alumina powder particles were weighted on balance with precision of 0.01 mg each time. Some 

powder particles were bagged in seal plastic bags and sent to SPS directly as uncoated samples. Powder 

particles prepared for coated samples, were first rinsed with deionized water. Then the sensitizer, 

𝐒𝐧𝐂𝐥𝟐 , and hydrochloric acid were added. The mixture was allowed to settle for 30 minues for 

sensitizing. After sensitizing, catalyst 𝐏𝐝𝐂𝐥𝟐 was added and rinsed with nano deionized water. The 

constituents and quantity were listed in table 4.1. 
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Table 4.1 Typical Combined Sn/Pd Catalyzing Bath 

Chemical Quantity 

𝐒𝐧𝐂𝐥𝟐 2 g/L 

𝐏𝐝𝐂𝐥𝟐 0.2 g/L 

𝐇𝐂𝐥 10 ml/L 

 

4.3 Electroless Nickel Plating 
 

After the alumina powder particles were prepared, the bath solution of electroless nickel plating 

needed to be prepared. For electroless nickel plating, we have two kinds of bath: sulfate bath and 

chloride bath. Different recipes were used for the two baths. 

 

For the sulfate bath, nickel sulfate serves as nickel ion source for plating. And the pH value of the 

solution was kept at 5.4, 1 g/L sodium hydroxide was added to maintain the pH value. The solution 

bath needed to be heated to around 85°C on hotplate/stirrer before the prepared powder particles 

was added into the bath solution. During the reaction, the powder particles were kept dispersed by an 

ultrasonic bar inserted into the bath and stirred by a magnetic stir bar. After the reaction, the coated 

particles were washed by Nano deionized water for three times until the solution was colorless. For 

each time, we need to wait the particles to deposit before wash. Then the particles were waited to be 

dried. The composition of the plating bath solution is listed in table 4.2. 
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Table 4.2 Bath Composition for Electroless Nickel Plating Using Sulfate Bath 

Constituents Concentration 

Nickel Sulfate 30 g/L 

Sodium Citrate 24 g/L 

Ammonium Phosphate 45 g/L 

Sodium Hypophosphate 40 g/L 

Thiourea 0.1 g/L 

 

For the chloride bath, the pH value and reaction temperature are the same with sulfate bath. The 

nickel comes from nickel chloride. The composition of the chloride bath is listed in table 4.3. 

 

Table 4.3 Bath Composition for Electroless Nickel Plating Using Chloride Bath 

Constituents Concentration 

Nickel Chloride 35 g/L 

Sodium Citrate 24 g/L 

Ammonium Chloride 40 g/L 

Sodium Hypophosphate 40 g/L 
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4.4 Consolidation by Spark Plasma Sintering 
 

Spark plasma sintering consolidation procedure was carried out at SPS Nano Ceramic. The prepared 

powder particles were sintered in a furnace with maximum capacity of  100 kW. It can produce DC 

current up to 10000 A and DC voltage of  10 V. The hydraulic press capacity is 10 T. The sintering 

temperature can go up to 2300°C. The vacuum environment is 5 Pa. 

The powder particle sample was placed in a cylindrical die, lined with graphite sheet which facilitates 

easy removal of  the sintered compact. Then, the time and temperature of  sintering were set, the 

required vacuum atmospheres inside the chamber was achieved with a vacuum pump. Required load 

and power were set to auto mode. Also, set the z-axis position to zero. The temperature during the 

sintering was measure by pyrometer. High DC Pulse passed through graphite electrodes and heated 

the graphite molds, which in turn instantaneously heated the powder sample by Joule-heating. The 

sparking among the particles of  sintered powder sample leads to the faster heat and mass transfer. 

The sintering is completed in a short time about 5 mins. The short period of  SPS minimize the grain 

coursing and results in high-density compact of  consolidated sample. For uncoated alumina, the 

powders were sintered at 1325°C and 1400°C. For coated alumina, the powders were sintered at 

1200°C, 1250°C, 1325°C and 1400°C. The sintered compact is about 6 mm for height and 20 mm for 

diameter. Then the compact was cut and polished for Vickers hardness test. 

 

4.5 Mechanical Property Measurement 
 

To determine the mechanical property of  consolidated samples, two values of  sample needed to be 

calculated: hardness number and fracture toughness. 
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4.5.1 Vickers Hardness Number 

The Vickers hardness number was measured by a Phase II Vickers Hardness Tester. An indentation 

should be left after the sample was pressed by the indenter under certain load. The maximum load of  

the tester is 50 kg with lower loads of  30 kg, 20kg, 10kg, and 1 kg. Three to four indentations were 

made on each sintered sample by Vickers Hardness Tester to determine the hardness number. The 

equation to calculate Vickers microhardness is: 

𝑯𝒗 = 𝟏.𝟖𝟓𝟒𝟒𝑭
𝒅𝟐

 (4.1) 

Where: 

F=load (kgf) 

d=length of  indentation diagonal line (mm) 

 

Fig. 4.1 Schematic diagram of  hardness test 
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4.5.2 Fracture Toughness 

The fracture toughness values were calculated using the experimental procedure commonly followed 

in indentation tests [34], the procedure consists of  relating the lengths of  the cracks shown in figure 

4.2, growing in corners of  the Vickers indentation when a load (P) is applied, with the toughness of  

the material.  

 

Fig. 4.2 Indentation for fracture toughness calculation [34] 

To calculate fracture toughness by this method, one of  the most commonly used equations is: 

𝑲𝑰𝑪 = 𝟎. 𝟏𝟔 b𝒄
𝒂
c
W𝟏.𝟓

(𝑯𝒂
𝟏
𝟐) (4.2) 

Where: 

𝑲𝑰𝑪=Fracture toughness (MPa m^1/2) 

H=Vickers hardness (MPa) 
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c= Average length of  the cracks obtained in the tips of  the Vickers marks (mm) 

a=Half  average length of  the diagonal of  the Vickers marks (mm) 

 

4.6 Post Spark Plasma Sintering Annealing 
 

The coated and uncoated sintered samples were annealed in a 𝐓𝐡𝐞𝐫𝐦𝐨𝐥𝐲𝐧𝐞𝐓𝐌 Benchtop 1100°C 

Muffle Furnace. The voltage of  the furnace is 240 V. The furnace is capable to heat samples from 

100°C to 1100°C. The consolidated sample was inserted into the furnace and the door of  furnace was 

closed. The temperature on the small screen was set to specified temperature and the furnace begins 

to heat up while the green light is on. It takes about one and a half  hours for the furnace to heat to 

1100 °C. Two annealing time of  1.5 hours and 10 hours were tested. After 1.5 hours after the 

temperature reach the specific temperature, take one of  each annealing sample out and cool down. 

After 10 hours after the temperature reach the desired temperature, take other samples out and cool 

down. The color of  coated sample changed to green after annealing. And then test the hardness and 

fracture toughness of  annealed sample again to compare the values with that before annealing. 

 

4.7 Microstructure Observation 
 

All the samples after indentation test were taken to take pictures of  indentation by optical microscope. 

From microscope we can see crack clearly on samples. After that, all the samples were taken to IMSE 

department and NRF of  Washington University in St. Louis for SEM. Under SEM, we can see the 

grain boundaries clearly and determine the grain size. Also chemical analysis and mapping were done 

by the SEM machine. 
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Chapter 5 
 
Results and Discussion 
 

5.1 Microstructures 

5.1.1 Microstructure of  powders 

 

Fig. 5.1 Transmission electron microscopy (TEM) of  alumina (200nm scale) 

 

From fig 5.1, we can see the particle size is around 100 nm. The black particles around alumina are 

palladium with nickel coating around them. 
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(a)           (b) 

 

(c) 

Fig 5.2 (a) uncoated alumina 100 nm (b) uncoated alumina 0.5-1 µm (c) uncoated alumina 10 µm 

 

Fig 5.2 shows the uncoated particles correspond with the particle sizes shown on the chemical labels. 
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Fig 5.3 EDX spectrum of  nickel coated 0.5-1 µm alumina 
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The spectrum in fig 5.3 is analyzed in the region inside of  the white box shown in fig 5.3. The spectrum 

shows that this region has nickel element and occupy 3% of  weight. Prescence of  nickel was proved 

by Kα peaks presenting on the spectum. Kα peaks of  other major elements also shown in Fig 5.3 with 

proper weight percent as predicted. 

 

 

Fig 5.4 Elemental mapping of  0.5-1 µm coated alumina 
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Fig 5.5 Element distribution of  0.5-1 µm coated alumina 
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Fig 5.4 and fig 5.5 indicates that the nickel plating was successful for 0.5-1 µm alumina. Although 

nickel signals are distributed all over the tested region, there are a few concentrated spots on the 

elemental mapping, which indicates that the coating may not be uniform. 
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Fig 5.6 Elemental mapping of  100 nm coated alumina 

Fig 5.6 shows that the nickel coating of  100 nm alumina also succeeds. And the nickel element 

distribution in fig 5.6 indicates that the coating of  100 nm alumina was uniform. 

 

 

Fig 5.7 SEM micrograph of  10 µm coated alumina 

 

Compare fig 5.7 with 10 µm uncoated alumina in fig 5.2 (c), we can observe texture on particle surface 

as uniform coating clearly. 

 

5.1.2 Microstructure of  consolidated SPS 
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Fig 5.8 SEM micrograph of  100 nm coated alumina annealed for 10 hrs (magnification: 5000x) 
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Fig 5.9 EDX spectrum and element distribution of  100 nm coated alumina annealed for 10 hrs 

 

From fig 5.8, we can see the grain size increased to around 5 µm during the electroless nickel plating 

and spark plasma sintering process. And the uniform nickel plating is shown around the particle. And 

fig 5.9 is an evidence that support the information we got from fig 5.8. The nickel plating was 

successful and the coating was uniform. 
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Fig 5.10 SEM micrograph of  100 nm coated alumina annealed for 1.5 hrs (magnification: 10000) 

 

In fig 5.10, it shows the sintered 100 nm coated alumina annealed for 1.5 hours has few porous. And 

we can see some small grains in the right side of  figure. That means our goal to improve fracture 

toughness by fine grain toughening is successful. And compare fig 5.10 with fig 5.8, we can conclude 

the better annealing time of  coated alumina should be 1.5 hours. 
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Fig 5.11 EDX spectrum of  100 nm coated alumina annealed for 1.5 hrs 

5.2 Indentation 

Fig 5.3 shows that the crack length is much longer for uncoated alumina than coated alumina. Both 

the two samples in figure 5.3 were 100 nm alumina sintered at 1325ºC. Their indentation size and 

crack length shows that the coated alumina achieves higher fracture toughness without decrease the 

hardness of  alumina. 
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(a) 

 

(b) 

Fig 5.12 (a) Optical micrograph of  indentation of  100 nm coated alumina sintered at 1325ºC 

(b) Optical micrograph of  indentation of  100 nm uncoated alumina sintered at 1325ºC 
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Fig 5.13 Optical micrograph of  indentation of  100 nm coated alumina sintered at 1400 ºC 

 

From fig. 5.4 and fig. 5.3 (a), we can see the crack length is longer for coated alumina sintered at 1400 

ºC than coated alumina sintered at 1325 ºC. It shows that 1325 ºC should be a better sintering 

temperature for fracture toughness improvement for alumina based ceramics. 

 

5.3 Densities 

From a review of  the literature of  alumina based ceramics, the density of  alumina is 3.95 𝐠/𝐜𝐦𝟑[35]. 

If  we assume the alumina particle to be spherical, and the nickel plating is coated around the particle 

surface uniformly. The theoretical density of  coated alumina should be 4.24 𝐠/𝐜𝐦𝟑, 4.50 𝐠/𝐜𝐦𝟑, 
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4.75 𝐠/𝐜𝐦𝟑, 4.97 𝐠/𝐜𝐦𝟑 and 5.18 𝐠/𝐜𝐦𝟑, where the thickness of  nickel plating is 1 nm, 2 nm, 3 nm, 

4 nm and 5 nm. Our density of  coated alumina measured by Archimedes method were from 2.88 

𝐠/𝐜𝐦𝟑 to 4.10 𝐠/𝐜𝐦𝟑. The lower density may cause by porous in consolidated sample. The density 

of  all the consolidated samples are listed in table 5.1. 
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Table 5.1 Density of  consolidated coated and uncoated alumina 

Material Density, 𝐠/𝐜𝐦𝟑 

density of conventional uncoated alumina 3.95 

Theoretical density of coated alumina with 1 nm nickel plating 4.24 

Theoretical density of coated alumina with 2 nm nickel plating 4.50 

Theoretical density of coated alumina with 3 nm nickel plating 4.75 

Theoretical density of coated alumina with 4 nm nickel plating 4.97 

Theoretical density of coated alumina with 5 nm nickel plating 5.18 

100 nm coated alumina sintered at 1400 ºC (annealed at 1100 ºC for 10h) 3.87 

100 nm coated alumina sintered at 1400 ºC (annealed at 1100 ºC for 1.5h) 3.77 

100 nm coated alumina sintered at 1400 ºC 3.75 

100 nm uncoated alumina sintered at 1325 ºC (annealed at 1100 ºC for 10h) 3.58 

100 nm uncoated alumina sintered at 1325 ºC (annealed at 1100 ºC for 1.5h) 3.79 

100 nm uncoated alumina sintered at 1325 ºC 3.61 

100 nm uncoated alumina sintered at 1400 ºC 3.97 

100 nm coated alumina sintered at 1250 ºC 3.53 

100 nm coated alumina sintered at 1325 ºC 3.60 

100 nm coated alumina sintered at 1200 ºC 2.88 

0.5-1 µm coated alumina sintered at 1325 ºC 4.1 

100 nm coated alumina sintered at 1325 ºC 3.82 

10 µm uncoated alumina sintered at 1400 ºC 3.58 
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Table 5.1 shows that the density of  both coated and uncoated alumina was increased after annealing. 

The 100 nm coated alumina sintered at 1200 ºC has density of  2.88, which is a lot lower than normal 

alumina. That indicates the sintering temperature of  1200 ºC may be too low for coated alumina. And 

the highest density is 4.10 for 0.5-1 µm coated alumina sintered at 1325 ºC. It shows that particle size 

of  0.5-1 µm might be the most suitable size for SPS to get fully densified consolidations. 

 

5.4 Hardness 

Uncoated alumina’s hardness usually can be 14.71-16.18 GPa. Our hardness number of  coated 

alumina vary from 6.29 GPa to 18.98 GPa when exclude an outlier, 22.32 GPa of  coated 0.5-1 µm 

alumina sintered at 1325 ºC. The decrease of  hardness is expected for ductile phase reinforcement. 

The hardness of  all coated and uncoated samples are listed in table 5.2.  
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Table 5.2 Hardness of  coated and uncoated alumina 

Material Hardness, GPa 1st 2nd 3rd Avg. 

Conventional alumina    14.71-16.18 

100 nm coated alumina sintered at 1400 ºC 

(annealed at 1100 ºC for 10h) 

11.26 9.186 7.896 9.45 

100 nm coated alumina sintered at 1400 ºC 

(annealed at 1100 ºC for 1.5h) 

8.318   8.318 

100 nm coated alumina sintered at 1400 ºC 11.39 11.97 11.57 11.64 

100 nm uncoated alumina sintered at 1325 ºC 

(annealed at 1100 ºC for 10h) 

16.64 16.59 16.36 16.53 

100 nm uncoated alumina sintered at 1325 ºC 

(annealed at 1100 ºC for 1.5h) 

20.35 17 19.6 18.98 

100 nm uncoated alumina sintered at 1325 ºC 16.52 16.75 17.04 16.77 

100 nm coated alumina sintered at 1325 ºC 16.8 15.43 18 16.74 

100 nm coated alumina sintered at 1200 ºC 6.093 6.477  6.285 

0.5-1 µm coated alumina sintered at 1325 ºC 24.41 23.22 19.33 22.32 

100 nm coated alumina sintered at 1325 ºC 11.13 7.17 8.985 9.095 

10 µm uncoated alumina sintered at 1400 ºC 6.461 6.248 6.465 6.39 
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5.5 Fracture Toughness 
 

The minimum fracture toughness of  alumina is 3.3 MPa·√m. The maximum fracture toughness of  

alumina is 5 MPa·√m. Our 100 nm uncoated alumina sintered at 1325 ºC has fracture toughness of  

5.05 MPa·√m, increased 21.7% of  the mean between 3.3 MPa·√m and 5 MPa·√m (4.15 MPa·√m). 

And fracture toughness of  10 µm uncoated alumina sintered at 1400 ºC, 6.74 MPa·√m, increased 

62.4% of  4.15 MPa·√m. So SPS could be an effective method for fracture toughness improvement. 

The 100 nm coated alumina sintered at 1325 ºC has fracture toughness of  7.62 MPa·√m and 9.11 

MPa·√m, which are 33.7% and 80.4% higher than 5.05 MPa·√m of  100 nm uncoated alumina sintered 

at 1325 ºC. That means ENP improved fracture toughness of  alumina ceramics effectively. The 100 

nm coated alumina sintered at 1400 ºC has fracture toughness of  4.44 MPa·√m. The 100 nm coated 

alumina sintered at 1325 ºC has fracture toughness of  9.11 MPa·√m. The 100 nm coated alumina 

sintered at 1200 ºC has fracture toughness of  3.95 MPa·√m. Those results could be an indication that 

1325 ºC is the best sintering temperature for alumina. The fracture toughness of  0.5-1 µm coated 

alumina sintered at 1325 ºC is 9.22 MPa·√m, which is 21% higher than 7.62 MPa·√m, the fracture 

toughness of  100 nm coated alumina sintered at 1325 ºC. The fracture toughness of  100 nm uncoated 

alumina sintered at 1325 ºC and coated alumina sintered at 1400 ºC is 5.05 MPa·√m and 4.44 MPa·√m. 

After annealing for 1.5 hours and 10 hours, the fracture toughness of  uncoated alumina became 7.64 

MPa·√m and 5.45 MPa·√m. The fracture toughness of  coated alumina became 7.85 MPa·√m and 

6.59 MPa·√m. This result shows that the post SPS annealing results an increase in toughness values 

of  alumina ceramics. 
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Table 5.3 Fracture toughness of  all uncoated and coated samples 

Material Fracture Toughness, MPa·√m 1st 2nd 3rd Avg. 

Conventional alumina    3.5 

100 nm coated alumina sintered at 1400 ºC 

(annealed at 1100 ºC for 10h) 

3.15  10.02 6.585 

100 nm coated alumina sintered at 1400 ºC 

(annealed at 1100 ºC for 1.5h) 

7.85   7.85 

100 nm coated alumina sintered at 1400 ºC 6.28 3.83 3.21 4.44 

100 nm uncoated alumina sintered at 1325 ºC 

(annealed at 1100 ºC for 10h) 

4.91 7.51 3.93 5.45 

100 nm uncoated alumina sintered at 1325 ºC 

(annealed at 1100 ºC for 1.5h) 

8.04 6.77 8.12 7.64 

100 nm uncoated alumina sintered at 1325 ºC 4.7 6.47 3.98 5.05 

100 nm coated alumina sintered at 1325 ºC 9.19 6.42 11.73 9.11 

100 nm coated alumina sintered at 1200 ºC 4.32 3.58  3.95 

0.5-1 µm coated alumina sintered at 1325 ºC 10.38 9.2 8.09 9.22 

100 nm coated alumina sintered at 1325 ºC 7.05 6.12 9.68 7.62 

10 µm uncoated alumina sintered at 1400 ºC 6.74   6.74 
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Chapter 6 
 
Summary and Conclusions 
 

The principal conclusions of  our study are: 

• Ductile Nickel coating was achieved on nano alumina particle surface. 

• Grain size variations were obtained by selecting different sizes of  alumina particles and by 

post consolidation annealing. 

• Optimum conditions for best combination of  density, hardness and fracture toughness were 

determined. 

• Spark plasma sintering of  nickel coated 100-10000 nm alumina particles is shown to be a viable 

approach for toughening of  alumina ceramics. 

• SPS slightly increase the hardness of  uncoated alumina ceramics, and the best sintering 

temperature among the temperature we tried is 1325 °C. 

• Post SPS annealing influence fracture toughness positively and the best annealing time is 1.5 

hours,. 

• Fracture toughness increase by with decreasing grain size. 

• ENP is an effective method for ductile phase reinforcement. 
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Chapter 7 
 
Future Work 
 

• More variations in particle size and sintering temperature should be investigated. 

• Effects of  post consolidation annealing variations – temperature and time on the resulting 

density, hardness, and fracture toughness  should be investigated. 

• Other mechanical properties, such as bend strength at room temperature and high temperature 

creep should be investigated to enhance the application of  coated alumina ceramics. 

• Grain size control and ductile phase reinforcement should be generalized to other ceramics, 

such as Zirconia, Titania, Tungsten Carbide. 
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