Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-98-29

1998-01-01

TCP Dynamic Acknowledgment Delay: Theory and Practice

Daniel R. Dooly, Sally A. Goldman, and Stephen D. Scott

We study an on-line problem that is motivated by the networking problem of dynamically
adjusting delays of acknowledgments in the Transmission Control Protocol (TCP). The
theoretical problem we study is the following. There is a sequence of n packet arrival times A =
and a look-ahead coefficient L. The goal is to partition A into k subsequences sigma, sigma2,
...,sigmak (where a subsequence end is defined by an acknowledgment) that minimizes a linear
combination of the cost for the number of acknowledgments sent and the cost for the
additional latency introduced by delaying acknowledgments. At each arrival, an oracle... Read
complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Dooly, Daniel R.; Goldman, Sally A.; and Scott, Stephen D., "TCP Dynamic Acknowledgment Delay: Theory
and Practice" Report Number: WUCS-98-29 (1998). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/477

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F477&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F477&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F477&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F477&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F477&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F477&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F477&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/477?utm_source=openscholarship.wustl.edu%2Fcse_research%2F477&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/477

TCP Dynamic Acknowledgment Delay: Theory and Practice

Daniel R. Dooly, Sally A. Goldman, and Stephen D. Scott

Complete Abstract:

We study an on-line problem that is motivated by the networking problem of dynamically adjusting delays
of acknowledgments in the Transmission Control Protocol (TCP). The theoretical problem we study is the
following. There is a sequence of n packet arrival times A = and a look-ahead coefficient L. The goal is to
partition A into k subsequences sigma1, sigma2, ...,sigmak (where a subsequence end is defined by an
acknowledgment) that minimizes a linear combination of the cost for the number of acknowledgments
sent and the cost for the additional latency introduced by delaying acknowledgments. At each arrival, an
oracle provides the algorithm with the times of the next L arrivals. For all the results of our paper, we
describe how to incorporate other contraints to better match the true acknowledgment delay problem. We
first define two different objective functions for measuring the cost of a solution, each with its own
measure of latency cost. For each objective function we first given an O (nsquared)-time dynamic
programming algorithm for optimally solbing the off-line problem. Then we describe an on-line algorithm
that greedily acknowledges exactly when the cost for an acknowledgment is less than the latency cost
incurred by not acknowledging. We show that for this algorithm there is a sequence of n packet arrivals
for which it is Omega (squareroot(n))-competitive for the first objective function, 2-competitive for the
second function for L = 0, and 1-competitive for the second function for L = 1. Next we present a second
on-line algorithm which is a slight modification of the first that we prove is 2-competitive for both
objective funcitons. Then for each objective function we give lower bounds on the competitive ration for
any deterministic on-line algorithm. These results show that for each objective function, at least one of
our algorithms is optimal. Finally, we give some initial empirical results using arrival sequences from real
network traffic where we compare the two methods used in TCP for acknowledgment delay with our two
on-line algorithms. In all cases we examine perforance withL=0and L =1.

https://openscholarship.wustl.edu/cse_research/477?utm_source=openscholarship.wustl.edu%2Fcse_research%2F477&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/477?utm_source=openscholarship.wustl.edu%2Fcse_research%2F477&utm_medium=PDF&utm_campaign=PDFCoverPages

TCP Dynamic Acknowledgment Delay:
Theory and Practice

Daniel R. Dooly, Sally A. Goldman and
Stephen D. Scoft

WUCS-98-29

December 1998

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130

TCP Dynamic Acknowledgment Delay: Theory and

Practice”

Daniel R. Dooly! Sally A. Goldman!
Dept. of Computer Science Dept. of Computer Science
Washington University Washington University
St. Louis, MO 63130-4899 St. Louis, MO 63130-4899
drd1@cs.wustl.edu sg@cs.wustl.edu

Stephen D. Scott!
Dept. of Computer Science and Engineering
University of Nebraska
Lincoln, NE 68588-0115
sscott@cse.unl.edu

WUCS-98-29

December 1998

Abstract

We study an on-line problem that is motivated by the networking problem of dy-
namically adjusting delays of acknowledgments in the Transmission Control Protocol
(TCP). The theoretical problem we study is the following. There is a sequence of n
packet arrival times A4 = (ay,...,a,) and a look-ahead coefficient L. The goal is to
partition A into k& subsequences oy, 09,...,0; (where a subsequence end is defined by
an acknowledgment) that minimizes a linear combination of the cost for the number of
acknowledgments sent and the cost for the additional latency introduced by delaying
acknowledgments. At each arrival, an oracle provides the algorithm with the times of
the next L arrivals. For all the results of our paper, we describe how to incorporate
other constraints to better match the true acknowledgment delay problem.

We first define two different objective functions for measuring the cost of a solution,
each with its own measure of latency cost. For each objective function we first give an

*An earlier version appears in Proceedings of the Thirtieth Annual ACM Symposium on Theory of Com-
puting, 1998,

iSupported in part by NSF Grant CCR-9734940 and NSF NYI Grant CCR-9357707 with matching funds
provided by Xerox PARC and WUTA.

O (n?)-time dynamic programming algorithm for optimally solving the off-line problem.
Then we describe an on-line algorithm that greedily acknowledges exactly when the
cost for an acknowledgment is less than the latency cost incurred by not acknowledging.
We show that for this algorithm there is a sequence of n packet arrivals for which it
is Q(y/n)-competitive for the first objective function, 2-competitive for the second
function for L = 0, and l-competitive for the second function for L = 1. Next we
present a second on-line algorithm which is a slight modification of the first that we
prove is 2-competitive for both objective functions.

Then for each objective function we give lower bounds on the competitive ratio
for any deterministic on-line algorithm. These results show that for each objective
function, at least one of our algorithms is optimal.

Finally, we give some initial empirical results using arrival sequences from real
network traffic where we compare the two methods used in TCP for acknowledgment
delay with our two on-line algorithms. In all cases we examine performance with L = 0
and L = 1.

Keywords: Transmission Control Protocol (TCP), acknowledgment delay problem,
on-line algorithms, competitive analysis, lookahead, Internet traffic simulations

1 Introduction

In this paper we study an on-line problem that is motivated by the networking problem
of dynamically adjusting delays of acknowledgments in the Transmission Control Protocol
(TCP) [15], a very popular protocol in use in the Internet. The specific problem we study
is the following. There is a sequence of n packet arrival times A = {(ay,...,a,). The goal is
to partition .4 into & subsequences 01,09, ...,0; where a subsequence end is defined by an
acknowledgment. We use ¢; to denote the set of arrivals in the partition and #; to denote
the time when the acknowledgment for o; is sent. To capture the fact that all arrivals must
be acknowledged, we must have k& > 1 and #; > a,, the time of the last arrival.

By delaying the acknowledgments for some packets we reduce the number of acknowledg-
ments sent (and the associated costs) from n to k. However, delaying an acknowledgment
adds to the latency costs’, which we want to avoid since it can result in burstiness of TCP
traffic, with potentially disastrous consequences {12]. Thus, one wants to optimally balance
the costs of an acknowledgment with the costs associated with the increased latency. We
model the tradeoff between the cost of an acknowledgment and the cost for the latency by
using the objective function nk + (1 — 1) ©F | »; where v; is a measure of the extra latency
for the arrivals in subsequence ;. Section 3 describes our two measures of v;, which are
appropriate for different circumstances. In an optimal solution #; will always be when the
last packet of o; arrives. The factor 5 € [0, 1] weights the relative importance of minimizing
acknowledgments and minimizing latency, and would likely be set by a network administra-
tor.

For the real networking problem, past traffic characteristics could be used to estimate

'In this paper we use latency to refer to the delay introduced by postponing the transmission of the
acknowledgment message. There is additional latency introduced by the transmission of messages, but we
do not affect this by delaying acknowledgments.

the time of the next arrival(s) which in turn could be used to decide when to send an
acknowledgment, an idea endorsed by Clark [4]. But before pursuing this goal, we must
first understand how useful it would be to develop learning algorithms to make a good
prediction as to the next arrival time. Thus in this paper we study the performance of our
acknowledgment delay algorithms when provided with an oracle that gives the exact time
for the next L arrivals (we call L a lookahead coefficient). Namely, at the time of arrival a;,
the on-line algorithm is provided with the values for a;;, ..., a;17. For all § > n, we assume
the oracle returns a; = co.

This paper is organized as follows. The real problem of delaying TCP acknowledgments
is more complex than our above description, so in Section 2 we discuss in more detail some
of the other constraints of this problem. For each of the on-line algorithms that we present,
we will first consider the simplified setting described above. However, we will then describe
how each of our algorithms and their proofs can be extended to cover the other constraints
required in a real TCP implementation. Additionally, each of our on-line algorithms runs
in constant time per arrival, which is important given the large number of arrivals a TCP
implementation must contend with in a short period of time.

Section 3 describes the two objective functions that we consider and the circumstances
under which they are appropriate measures of performance. In Section 4, we describe the key
differences between the on-line problem considered here and some classic on-line problems
such as the rent-to-buy (or spin-block) problem [11, 9] and the snoopy caching probler [9].
Section b summarizes the results contained in this paper. All our results for our two objective
functions appear in Sections 6 and 7. In each section, we present a dynamic programming
algorithm for optimally solving the off-line version of the acknowledgment delay problem.
We then describe algorithms greedy,,; and greedy,e, and give their competitive bounds
for the cases of no lookahead and non-zero lookahead. We then present lower bounds on the
competitive ratio. Finally, we close each section with initial empirical results using arrival
sequences from real network traffic where we compare the two methods currently used in
TCP for acknowledgment delay with our two on-line algorithms. In all cases we examine
performance with L = 0 and L = 1. We conclude this paper in Section 8.

2 Motivation

Most TCP implementations used today employ some sort of acknowledgment delay mech-
anism. Delaying acknowledgments allows the TCP to acknowledge multiple incoming data
segments with a single acknowledgment and sometimes to piggy-back the acknowledgment
on an outgoing data segment {15, 12, 4]. By reducing the number of acknowledgments sent
and received, we reduce bandwidth consumption and the overhead required to send and
receive each acknowledgment (due to generating checksums, handling interrupts, etc.). So
we want to minimize the number of acknowledgments sent, but not at the expense of adding
excessive latency to the TCP connection.

Note that there is always space in a TCP packet header to indicate whether the current
packet is also an acknowledgment and which packet(s) it acknowledges. Thus piggy-backing
an acknowledgment on a packet costs us no extra bandwidth, since that space in the header
would have been otherwise unused [15]. If an acknowledgment is not piggy-backed, then a

new packet, to be used only as an acknowledgment (otherwise known as a “pure ack” [17, 12])
must be created. However, after creating the packet for the pure ack, there is no extra cost
for acknowledging multiple packets with it.

TCP implementations, if they delay acknowledgments at all, use one of two approaches [15,
12]). Solaris TCP uses an interval timer of 50 ms. When a packet arrives, a timer is started
that expires in 50 ms at which point an acknowledgment is sent for all currently unacknowl-
edged packets. The BSD-derived TCPs use a 200 ms “heartbeat” timer. Here the timer fires
every 200 ms independent of the arrivals of the packets. When the timer fires, all outstanding
packets are acknowledged.

One of our research goals for the acknowledgment delay problem is to use prior traffic
patterns to learn a rule for predicting when the next arrival will be. Clark [4] speculated
that such a predictor could be very useful in dynamically adjusting the acknowledgment
delay timer. However, having a very good prediction for the next arrival is only valuable if
that information could help in deciding whether or not to delay the acknowledgment. Thus
it is important to understand how having perfect knowledge of the next arrival time (i.e. a
lockahead of L = 1) affects the performance that can be achieved. Similar arguments can
be made for studying larger lookahead values.

‘To model the fact that different applications vary in the cost of an acknowledgment versus
the cost of increased latency, we introduce an objective function, f (k,v) = 7k + (1 — n)v,
to measure the performance where k is the total number of acknowledgments, v is the
total extra latency?, and 7 is a factor from [0,1] that weights the relative importance of
minimizing acknowledgments and minimizing latency. An algorithm for this problem receives
a sequence of arrival times 4 = (ay,...,a,) interspersed with a sequence of departure
times D = (dy, . .., dr) and schedules a sequence of acknowledgments that minimizes f(k, v)
for a given . The following restrictions apply to the solution. (1) The arrival of a rush
packet requires an immediate acknowledgment and a rush departure requires immediate
transmission. A packet is rush if it falls into one of several categories such as packets
that are used in the maintenance of a connection like a SYN or FIN [12, 7, 4]. (2) The
maximum allowed delay of any acknowledgment and any departure is 7 < 500 ms [7]. (3)
Fach departure can only be combined with acknowledgments (i.e. two departures cannot
be combined), and if a pending departure is a non-rush departure then we may choose to
delay the departure if we believe that another packet is about to arrive (and hence we can
piggyback the acknowledgment on the departing packet). However, we are not allowed to
delay any departure d; past the point when a later departure (d;, § >) is transmitted,
i.e. the departures must be transmitted in the order of their ready times given in D. We
assume that the latency from delaying a non-rush departure is equivalent to the latency from
delaying the acknowledgment of an arrival.

Modifying an algorithm to handle the first restriction (immediate acknowledgment of
rush packets and immediate transmission of rush departures) is trivial. Because there is
no choice as to whether or not to immediately acknowledge or transmit a rush packet (and
hence end the subsequence), the rush packets simply partition the original problem into a set
of subproblems for which our provided algorithms can be applied. Handling the other two

“The time units used for measuring latency would nominally be the same as those used in the system
under consideration (for time stamping, etc.).

restrictions depends on the particular algorithm. In presenting our algorithms, we initially
ignore the maximum delay restriction. We also assume that all departures are rush (requiring
immediate transmission), so we can visualize .4 as being partitioned into subsequences,
where each subsequence is delimited by a departure. Hence we can use these departure-free
subsequences as inputs to our algorithms, so we introduce our algorithms assuming there is
no maximum delay constraint and there are only rush departures. We later argue that our
algorithms can be easily modified to accommodate the general setting and that our on-line
algorithms’ decisions as to when to send an acknowledgment (or departure) can be made
using constant time per arrival.

A possible impediment to implementing our on-line algorithms is the need to perform
more maintenance on timers in the operating system than we would in the schemes currently
used in TCP implementations. This would normally be very expensive, but is mitigated by
the work of Costello and Varghese [6] who reimplemented the BSD kernel to improve the
overhead of maintaining timers from linear in the number of timers to constant time. This
of course requires the use of the new kernel, but it shows that the requirement of extra timer
maintenance need not be a severe problem.

3 Our Objective Functions

As discussed in the introduction, to model the networking problem of dynamically adjusting
delays of acknowledgments in TCP, we selected an objective function (under two different
ways of measuring latency) to trade off the cost per acknowledgment with the latency cost
incurred due to the delay in acknowledging a packet. Clearly, the choice of the objective
function affects the decision made by an optimal algorithm. In this section, we define our
generic objective function that weights acknowledgment cost with the cost of adding latency.
We then explore two definitions of latency cost for use in our generic objective function.
Our generic objective function is as follows:

k
Flk,) = nk+ (=) 3w)

where £ is the number of acknowledgments sent, v; is a measure of the total extra latency
for subsequence o;, and 1 € [0, 1] is the factor that weights the cost of acknowledging versus
the cost of waiting. Our two methods for measuring v; yield two specific objective functions,
each of which is a special case of the following.

Definition 1
k
flat = ’f]k -+ (1 — ’I’]) Z lati(-)
i=1

where lat;(-) is any function that increases as an acknowledgment is further delayed.

We assume that [at; is invertible, which is required by our algorithms to operate. It could
be the case that lat; is a series of functions (lat; (), latia(-), ..., latsm()) where laty;(t) is
the total latency accumulated from the first arrival of subsequence o; to time ¢ when arrival

5

a; is the most recent arrival added to o;. If this is the case then we require lat;;(£) < lat;(t)
for all £ > j and a4,a; € 0;. This way latency for a given subsequence increases as more
time passes and as more packets arrive. So fi,: not only includes the two functions we study
in this paper, but any other reasonable® objective function of the form of Equation 1.

Suppose that each arrival a; € o; was associated with a different computation being
performed. Then in this case, the cost introduced to the entire system due to the extra
latency would be the sum of the latency costs introduced for each of the computations. This
motivates our first definition of lat;, which is the sum of all the extra latencies of the packets
in ¢;. This leads us to our first objective function fyum.

Definition 2
i

fsum&nk—’_(l“ ZZ t_—a‘J

=1 a; &0y
where t; is the time of acknowledgment 1.

Note that fsum is related to the average latency per packet over the entire sequence: simply
divide the second term by n.

Now suppose instead that each arrival a; € o; was associated with the same computation.
In this case, the extra latency caused by delaying acknowledgments is best modeled by setting
lat; to be the maximum of all the exira latencies of the packets in o;. This leads us to our
second objective function fr.z.

Definition 3
fmaz =nk+(1—7 Zmax

where t; is the time of acknowledgment 1.

Of course, max,;e,; (t; — ;) is always &; — apips, where Girst; 1S the first arrival of o;.

Note that the only difference between the two objective functions is the cost per unit
time of the extra latency for each o;. For fy,,,, this cost is linear in time with slope (1 — 7).
For fsum, this cost is piecewise-linear in time with slope (1 — n)|o;|, where |o;] increases by
1 with each new arrival until an acknowledgment is sent.

4 Related Work

We use standard competitive analysis {14, 10, 3] to evaluate our algorithms. Specifically, let
Copt be the cost (for acknowledgments and latency) of an optimal solution and let C4 be the
cost of the solution produced by on-line algorithm A. Then we say that 4 is a-competitive

3Tt seems unlikely that any reasonable objective function would remain constant or decrease when an
acknowledgment is further delayed. This would be tantamount to rewarding an algorithm for indefinitely
delaying an acknowledgment.

if for all sequences of arrivals, C4 < aC,p. We are not including an additive factor as is
often done®.

QOur problem is a generalization of the rent-to-buy problem, which has also been called
the spin-block problem [11, 9]. In the rent-to-buy problem the on-line algorithm is told that
a given item can be rented at 1 dollar per day or bought for a cost of K dollars. The item
will be needed for d days where d is not known to the on-line algorithm. At the beginning of
each day the on-line decision is whether to buy the item or to rent it for another day. Clearly
if d > K the optimal solution is to buy the item at the start for a cost of X. Otherwise
(d < K, the optimal solution is to rent for a cost of d. The rent-to-buy problem can be
reduced to the acknowledgment delay problem (for either foum, Or finae) as follows. Suppose
that there are going to be only two arrivals, the first at time 0 and the second at time
a=df(1 — K). Let the cost for an acknowledgment n = K, the cost to buy. Furthermore,
suppose that the cost of the solution does not include the final acknowledgment required at
time a. Then the cost to buy at time ¢ is equivalent to the cost for the acknowledgment
delay solution in which an acknowledgment is sent at time £/(1 — K). Similarly, the cost to
rent the entire d days is equivalent to the acknowledgment delay solution in which there is
no acknowledgment before the second arrival.

The acknowledgment delay problem we study extends the rent-to-buy problem in three
ways. First, we consider an arbitrary sequence of arrivals versus just two arrivals. Second,
we consider when the on-line algorithm can have any constant lookahead factor L. Third,
we consider the on-line problem in the presence of a maximum delay (i.e. maximum rent
time) constraint. Additionally, while for the rent-to-buy problem the off-line problem is
trivially solved, for the acknowledgment delay problem with objective function fsy,, finding
an optimal solution in the off-line case is non-trivial, even when ignoring the maximum delay
constraint.

Another well-studied on-line problem is the snoopy caching problem [9]. This problem
is also a generalization of the rent-to-buy problem. However, the generalization there is
orthogonal to what we consider here. Finally, there are some problems in which the on-line
problem with lookahead has been studied. For example, Yeh et al. [18] study the on-line disk
scheduling problem where one can look ahead at the next & variables that are to be read and
from that knowledge one wants to pick the order in which to read the variables from the disk
to minimize the seek start-up time. Also, Grove [8] presents on-line algorithms for the bin
packing problem when the algorithm can look into the future up to some total cost, rather
than a number of items into the future. While these papers allow the on-line algorithms to
have some knowledge about the future, the problems themselves are very different from the
acknowledgment delay problem.

Finally, Ben-David and Borodin [2] studied the problem of look ahead for the k-server
problem. They showed that any finite look-ahead L could not improve the competitive ratio
by simply repeating each request in the request sequence L times. While we obtain the
same type of result for the our problem, a more involved lower bound is required. In their
paper, Ben-David and Borodin also propose a different competitive measure to study issues
like lookahead and memory usage. In particular they propose what they call a Max/Max

“Frequently an algorithm A is said to be a-competitive if C4 < oCop: + ¢ where ¢ is a constant that is
independent of C,p;.

ratio which is the supremum over all sequence lengths £ of the amortized cost of the on-line
algorithm divided by the amortized cost of the optimal algorithm.

5 Summary of Results

Section 6 gives our results for fe,m and Section 7 gives our results for fiq;. In each section,
we first give a dynamic programming algorithm for the off-line problem of finding an optimal
partition when the algorithm knows (a,...,a,) at the time of the first arrival. The off-line
algorithms work even with non-rush departures and a maximum delay constraint. We then
consider the on-line problem.

In general, our on-line algorithms work as follows. After the jth arrival (at time a;) an
alarm is set for time a; + ¢ (where we vary the method for selecting ¢). For L = 0 (i.e. no
lookahead), we wait until the next arrival or the alarm, whichever comes first. If a1 < a;+t
(i.e. the next arrival comes first) then we reset the alarm (possibly using a new value of).
Otherwise, at time a;+¢ (i.e. the alarm time) we acknowledge all outstanding arrivals, ending
the current subsequence. For L > 1 we can use knowledge of a;41 to potentially reduce the
latency. Specifically, if a;41 > a; + ¢, we immediately send an acknowledgment at time a;
(versus unnecessarily waiting until a; +t). Otherwise, we wait until arrival a;+1 and repeat.
By changing the method for selecting ¢ we get algorithms with very different behaviors.

Our two on-line algorithms, greedy,,; and greedyn.,, use different methods to select
t. Algorithm greedyy, sets its alarm such that the cost for sending an acknowledgment is
equal to the (total) latency cost of waiting time ¢ until the alarm. By picking ¢ in this way
one would perform optimally (for lookahead L = 1) if the next arrival were the last one. We
give an arrival sequence A of n arrivals for which greedyy,, is Q (y/n)-competitive (even for
L =1) under foum. Under fi., we prove that greedy,, has a competitive ratio of 2 for
L =0 and a competitive ratio of 1 for L = 1 if 7 is ignored (i.e. there is no maximum delay
constraint). If 7 is considered, then greedy,;’s competitive ratio varies between 1 and 2 for
L =1 and between 2 and 3 for L = 0. '

On-line algorithm greedyy.., selects ¢ so that the cost of the (new) latency incurred from
the last acknowledgment until the alarm is equal to the cost of one acknowledgment. This
method of selecting ¢ is similar to the algorithm of Karlin et al. {9, 10] for the rent-to-buy
problem in which their on-line algorithm waits exacily long enough such that the cost of
waiting (“renting”) equals the cost of committing (“buying”). We prove that even when
L =0, greedy,,., is 2-competitive under fi,;, implying that it is 2-competitive under both
Jsum and frap. When L = 1, greedy,.,’s competitive ratio does not change under f,,, and
fmags, 80 in the worst case greedy,, is superior to greedy,e, under fn.. and greedyne, is
superior to greedy,, under foum,.

While it may seem that having L > 1 would enable an algorithm to obtain a better
competitive ratio, we show that this is not the case under fy.m,. Let Cop be the cost of
an optimal solution and let C4 be the cost of the solution produced by any deterministic
on-line algorithm A. We prove that A with any constant lookahead L has competitive ratio
Ca 2 2Co — ¢, where c is a factor that can be made arbitrarily small with respect to Copt-
Thus under foum, greedyme, with L = 0 is the best possible in the worst case even for on-line
algorithms that can use a constant lookahead. We also show that for I = 0, there is a worst-

Table 1: Summary of the results of this paper.

fsum fmaa:

L=10 L=1 L=20 L=1
greedyys Q{/n)t Q(y/n)t 21 1f
greedy ey 2 2 2 2

Lower Bound 2t 24 2t 1%

I 7 is ignored.
{If 7 is ignored or T < 71/(1 —1n). For 7 > /{1 —n), under fma, greedy;e with L = 1is (1 +5/(+(1 —)))-
competitive and greedye; with L = 0is (1 + 2n/(r(1 — n)))-competitive.

case lower bound of 2 on the competitive ratio under fnq,. Our results are summarized in
Table 1.

Although in the worst case having a lookahead of 1 does not help for fum, in practice it
is likely to reduce the latency cost. Hence for each objective function we give some initial
empirical results using arrival sequences from real network traffic where we compare the two
methods used in TCP for acknowledgment delay with greedy,; and greedy,.., under both
objective functions. In all cases we examine performance with L =0 and L = 1.

6 Objective Function fg,,

Recall Definition 2 of Section 3, which defined fom:

k
foum =0k + (1 =1 > (t: —ay),

i=1 a;ET;

where A = (ay,...,a,) is the sequence of packet arrivals, & is the number of acknowledg-
ments, the acknowledgment for the packets in o; comes at ¢;, and 7 € [0, 1] weights the
importance of minimizing acknowledgments with that of minimizing extra latency. We now
present our algorithms for the acknowledgment delay problem under fyum.

6.1 An Off-Line Algorithm Under f,,,

In this section we consider the off-line problem in which A = {ay,...,a,) is known. The
goal is to minimize fyum. Note that ¢;, the time of the acknowledgment ending o;, is exactly
the time of the last arrival in ¢;. For such a partition the objective function is

k
fsum = ﬂk‘[‘(l_ﬁ)z Z (ti_aj)
i=1a; €0y
k
= nk+(1-m> (|O’iitz’ -2 aj)
f=1 a;Eo]

9

Off-Line-1
Initialize My, [0] < 0
Initialize M [1,1] +1-7+ (1 —17) - ay
Initialize My, [1] ¢~ M [1,1]
Initialize M [1] < 1
For i € [2,n]
Mmin [Z] — o0
For j € [1,1]
M+ 1-94+0~n) 7 a;+ My [t — 7]
If M [4, 5] < Mmi [¢] then
Myin [1) + M [2, 5]
My [i] < j

© 00~ DO W

= =
= o

Figure 1: An optimal off-line algorithm that runs under fs.,. Note that we can implement
this algorithm without using the array M, but we retain it for clarity.

= nk+(1—7n (Zlmlt “Z 2 aﬂ)

i=1e;E0;
= nk+(1-n (Zk< —-Zat).

Since the last term is independent of the algorithms’ actions it suffices to optimize f,,, =
nk+(1 —n) X |oilt;. We use dynamic programming to obtain an O (n?)-time, optimal off-
line algomthm Let M [i,] for 4, § € [1,n] be the minimum cost solution (using f;um) for the
subsequence {ai,...,a;) (i.e. there is an acknowledgment just after a;) when the second-to-
last acknowledgment of this subsequence is just after a;_;. If i = j then the acknowledgment
after a; is the only one of this subsequence, and the acknowledgment (indicated by a |) is
placed as follows: (a1, ...,a;|), with no acknowledgments between ¢; and a;. Otherwise (if
J < 1) the acknowledgments are placed as follows: (ay,...,ai—j, |Gizji1,. - -, a;|), possibly
with acknowledgments between a; and a;_;. To improve the algorithm’s efficiency, we will
maintain row ¢’s minimum. Let My, [7] be the minimum objective value of row ¢ and let
My [i]) be a value of j such that M [i,j] = Mmun [1]. The complete algorithm is shown in
Figure 1.

The final solution consists of tracing back through the M, values and placing acknowl-
edgments. The cost of this final (optimal) solution is f},,, = My [n] = mingep) M [, £).
We can then subtract (1 —7) 37 a; from this quantity to get the true cost as measured by

fsum.-

Theorem 4 Algorithm Off-Line-1 produces an optimal solution to the acknowledgment de-
lay problem under fem when all departures are rush and there is no mazimum delay con-
straint.

10

Proof: It is well-known that if a problem possesses the optimal substructure property, then
any dynamic programming algorithm that explores all subproblems is an optimal algorithm
for that problem [5]. A problem exhibits the optimal substructure property if an optimal
solution to the problem contains within it optimal solutions to subproblems. To see that
the acknowledgment delay problem possesses the optimal substructure property, note that
if an oracle tells us that the subsequence {ay, ..., a;|) has its second-to-last acknowledgment
after arrival a;_; in an optimal solution, then we merely need to optimize the subsequence
{a1,...,a;—;]) to obtain an optimal solution. It is also obvious from Figure 1 that our
algorithm explores all possible subproblems. O

In the case when not all departures are rush (i.e. departures can be delayed), a simple
extension to the above algorithm yields an optimal off-line algorithm. First we merge A
and D infto a single supersequence with n + m entries. Now ¢ and j are indexes into a
(n-+m}) x (n+m) table. Since latency for departures counts the same as for arrivals, the
only change to the algorithm is how many transmissions can occur in a subsequence. So
simply change the update step of Line 8 from

M[?’!J]Fl'n—l_(l_n)ja’z+Mmm[Z_J]

to
M {4, j]«=numdepartures(i,i — §) -+ (1 — 1) - 7 - a; + M [1 — 5]

where numdepartures(i,i — j) counts the number of rows between rows ¢ and i — j + 1 (in-
clusive) that correspond to departures in the supersequence, including the acknowledgment
sent for row 7 if that row corresponds to an arrival and not a departure. Note that if all
departures are rush, then we have no departure sequence and numdepartures is always 1,
as indicated in Figure 1. We now make an observation about the departure sequence that
we will use later. Note that this observation applies generically to fi,; (Definition 1}, so it
helds for both fou, and fres.

Observation 5 No more than one departure will ever lie in any subsequence in an optimal
solution under fiq.

Proof: By contradiction. Assume there exists an optimal solution in which multiple de-
partures lie in the same subsequence. Then we could split that subsequence into multiple
subsequences, decreasing latency without increasing transmission count. O
By Observation 5, in our off-line algorithm we could assign co to all M [i, 5] for which
numdepartures(i,i— j) > 1. We now further modify our algorithm to handle the maximum
delay restriction. Namely, no arrival’s acknowledgment or a departure may be delayed by
more than 7. We enforce this constraint by altering the update step to assign co to all
M [4,] for which z; — y;_;41 > 7 for z,y € {a,d}. Finally, we note that by evaluating the
function lat on Lines 2 and 8 of Figure 1, we get an algorithm that works under fj,;.

Corollary 6 There is an O(n?) dynamic programming algorithm that produces an optimal

solution to the acknowledgment delay problem under fi; with non-rush departures and a
maezimum delay constraint.

11

6.2 Algorithm greedy;,; Under [

Our first deterministic on-line algorithm greedyy, will balance the cost of acknowledging
immediately with the cost of delaying the acknowledgment for some time fgreedyio:,fsum-
First assume that all departures are rush and there is no limit on individual delays. Thus
greedy, algorithm need only greedily partition .A. Let a; be the time of the packet that
just arrived. Let o be the set of unacknowledged arrivals just after time a; (this includes
the packet corresponding to aj, so fo| > 1). If the algorithm waits some time tgreedysor, fourm
(i.e. until time a; + tgreedyos fru,) DEfOTE sending an acknowledgment, then it will incur extra
cost due to latency of (1 — 1) |0|tgreedyios, foum SiCE €ach packet in o will Incur tgreedyios, foum
units of latency. Also, it has already incurred a cost of (1 — %) ¥,.c,(a; — a;) due to past
latency. Acknowledging immediately incurs a cost of 5 for the acknowledgment plus the
same cost due to past latency. Thus on each new arrival a;, greedy,, sets an alarm at
i + Lgreedysot, foum 10T Tgreedyior. fourm SUCh that the cost for ¢ if an acknowledgment is not sent
at a; (namely, (1 — 1) |0|tgreedyior frum + (1 — 1) Tasex (@5 — @;)) is equal to the cost for o if an
acknowledgment is sent at a; (namely, 74 (1 — 1) Xy,c.(a; ~ a;)). Solving for tgreedyios, frum
yields

y _ 7
greedytot,foum — | o‘| (1 — 7.?)-

If no new arrival occurs before the alarm sounds, then an acknowledgment is sent when
the alarm sounds. Otherwise, the old alarm is deleted and a new one is set at @iy +
n/ (lo’| (1 —n)) for o' = 0 U {a;41}. If greedy,q has access to an oracle® that provides a;.;
at time a; (i.e. L = 1), then greedy;, will send an acknowledgment at a; if and only if
(@41 — 05) > tgreedyior, foum-

It is straightforward to extend this algorithm to accommodate non-rush departures and a
maximum delay constraint of 7. On the first arrival a; of a new subsequence, the algorithm
sets a second alarm at a; + 7. This alarm is not updated at new arrivals within the same
subsequence. So an acknowledgment is sent whenever either alarm sounds, while making sure
that there is only one departure per subsequence (Observation 5) and that all departures are
sent in order of their ready times. Also, the time complexity per arrival needed to update
Tareedyior, fsum 15 CONstant.

Unfortunately, contrary to intuition, greedy, can perform quite poorly on fo., if 7 is
ignored (i.e. there is no maximum delay constraint).

Lemma 7 If we ignore 1, then under fo.., there ezists a sequence of arrivals that forces
greedy. 's competitive ratio to be Q2 (\/n) for L=0 and L = 1.

Proof: We first state the proof for L = 0 and then argue why it holds for L = 1.

It will be convenient to focus on the latency costs between the arrivals. Let a; and a;q
be the times of two consecutive arrivals and consider a packet that had arrived by time a;
and had not yet been acknowledged just prior to time a;41. Let £; denote the latency cost
for such a packet for the time period from a; to @;.1. In other words, a;41 = a; +£4;/(1 — 7).

®Recall that the oracle returns ¢; = oo for all 7 > n.

12

The arrival sequence for the lower bound is given by £; = n/j for 1 <7 <n-1. So
@jy1 = 7= H; where H; is the jth harmonic number (we let a; = 0). Note that greedy,,
will keep pushing the alarm out to the point of the next arrival. Thus it will never be the
case that

2 n 4
—_— e —a; >t r = — =
1 — n J+1 @j greedyiot, foum j(l _ ’I']) 1— n
so the algorithm will not send an acknowledgment until a,. Thus there will be j arrivals
that incur the latency cost of £;. By adding the acknowledgment cost to the latency cost we
get that

Cgreedymt = Z jg =n- E (3) =7-n.
= ot

An optimal algorithm must do at least as well as the following where n = k(k+1)/2. Let
there be k& — 1 partitions of the form o;, where ¢; includes Gi(i+1)/2 through aiiyere)/2)—1
for 1 <7 < k — 1. Finally, there is a final subsequence with a,. Thus there are k acknowl-
edgments. We now compute the latency cost for o;. Since there are i + 1 arrivals in o
there are ¢ latency costs associated with the subsequence. Further, the jth latency cost in
the subsequence affects j arrivals since that is the number of arrivals that have not been
acknowledged. Thus

latency cost for a; = Zj . Ei(i+1)/2+j—l
j=1

_ o n
- Zj'i(i+1)/2+j—1

]=1
< .
- ’WZ (% —|— 1}/2 —
k=1
Therefore Copy <7+ »_n=kn. So '“2‘“'“"‘* > "‘”(’“‘“)/2 = (k+1)/2 = (\/n).
i=1

For L = 1, recall that greedy,, acknowledges arrival a; immediately if and only if
(@j+1 = @5) > lgreedyionfoum- Since the adversary places aji1 at exactly a; + tereedyios, frums
greedy, still will not send any acknowledgment until the end of the sequence (arrival a,,),
50 its behavior for L = 1 on this arrival sequence is identical to that for L = 0. O

This bound also holds if not all departures are rush since the adversary need not place
any departures at all into the sequence. However, introducing 7 into the problem causes
difficulties in the above proof since both greedy,, and an optimal solution must send an
acknowledgment before a; + 7 for all a; € A. But we conjecture that the ratio can still grow
with some function of n for sufficiently large 7.

SIf instead greedy,: chooses to acknowledge a; immediately if a;11 — aj = tgreedyips,foum> then the
adversary can place arrival aj41 at a; + fgreedype, foum — O(1/n). This will reduce greedy;q’s competitive
ratio by a constant amount, but not affect its asymptotic growth.

13

Notice that the crux of the proof of Lemma 7 is that greedy,,; always sets its alarm at
a point where the new extra latency of the current subsequence would be exactly /(1 — 7),
as indicated in the following observation.

Observation 8 Under fiu, greedy: always sets its alarm at @ point where the new extra
latency of the current subsequence would be ezactly n/(1 — 7).

Proof: Let lat;;(t) be the amount of latency accumulated from the start of subsequence o;
to time ¢ when arrival a; is the last arrival to be placed in ;. So for example, for foum. we
use lati;(t) = Fo,e0,(t — ag). Then at arrival a; greedyyy sets its alarm at a; + tgreedyios, f1us
fOr fgreedyson, fio, SUCh that

(1= m)(lati;(a; + tgreedyronfia,) — latii(a;) + latiz(a;)) = 7+ (1 — n)lati;(a;).
Solving for tgreedy,o:, 5, yields

tgreed}ftat,fzat = la’ti_jl ("i"g“ﬁ + latij (a’j)) — 4.
So the new alarm is set at a; + tgreedyionfia; = lati; (1/(1 — 1) + lati;(a;)). In words, the
new alarm is set to where the total latency of the subsequence is the sum of the current
accumulated latency and /(1 — 7). O
Finally, note that it is unlikely that an application in a real network will exhibit the
harmonic behavior of Lemma 7. Thus we do not expect this algorithm to really perform this
poorly. The simulation results of Section 6.5 lend more insight into this algorithm’s true

performance.

6.3 Algorithm greedy,., Under f.m

We now consider when the on-line algorithm waits exactly long enough such that the cost
of the latency incurred exactly equals the cost of one acknowledgment, but we do not add
the cost of the accumulated latency to the acknowledgment cost. Specifically, on each new
arrival a;, our algorithm greedyne, sets an alarm at a; + Lgreedynew, frum 10T Lgreedyncs,foum
such that (1 —7)[o(tgreedynen,fum + (1 = 1) Toses(@s — a:) = 1. Solving for tgreadyneu.foum
yields

n _ Ea,—éa(a’j - a'i) (2)

lo|

tgreed)fnew Soum = |U| (1 — n)

Thus the difference between tyreedysw, fsum 200 fgreedyn, frum 18 that in Equation 2 we subtract
the average latency of the packets in 0. We now argue that for a given subsequence, the
alarm will always remain fixed or move back in time, but never move forward. (In fact, what
we show is that this happens for greedyn,.. for any function fi,; as in Definition 1.) This
prevents the adversary from blowing up the total latency of a subsequence, which gave us
the Q (v/n) lower bound of the first algorithm (Lemma 7).

Observation 9 Under fi,;, once greedyn., sets its alarm for a given subsequence, that
alarm will not move into the future for the duration of that subsequence. That 1s, greedynew
does not move its alarm into the future until an acknowledgment is sent. Moreover, the
alarm 1s set such that the final total latency of the subsequence is ezactly n/(1 — 7).

14

Proof: As in the proof of Observation 8, let lat;;(¢) be the amount of latency accumulated
from the start of subsequence o; to time £ when arrival a; is the last arrival added to ¢;. So
for example, for foum we use lat;;(t) = X4 0, (t — ag). Then at arrival a; greedyn,, sets its
alarm ab @ + fgreedynew,fias FOT greedynen,fin: SUCh that

(1 — n)(latij(aj + tgreedynew,siae) — t0lsj(a;) + lati(a;)) = 7.

Solving for tgreedy ey, fi, Yi€lds

tgreEdYneunf!at = lati_jl (%) — 4j.
So the new alarm is ab tgreedypen, fine + % = lat;" (/{1 —7n)). In words, the alarm is set at a
point at which the amount of latency accumulated from the first arrival of o; to the alarm
(given the current value of o;) is exactly n/(1 — 7). Since lat;;(t) < laty(t) for all £ > ; and
aj, ag € 0 (see Section 3), we get lat; (n/(1—n)) < lat;}_,(n/(1—n). Therefore, the alarm
will not move into the future until an acknowledgment is sent. O
We now prove that greedy,., is 2-competitive under f,;.

Theorem 10 Under fi, and with no lookehead, Cgreeay,,, < 2Copt-

Proof: Assume greedyy., sends k acknowledgments in A, partitioning A into % subse-
quences, which we will think of as closed intervals”. Each interval i starts with the first
packet of o; and ends with o;’s acknowledgment at time #; (see Figure 2). Note that there
could be some time between #; and and the first arrival of ¢;,.;. We ignore these time periods
because they do not add to the cost of greedy,.,’s solution. Observation 9 implied that the
extra latency in each interval is exactly /(1 —), so the cost due to extra latency for each
interval is exactly 7. Since each acknowledgment costs 77, Cgreedy,,, = 2k7.

Let £* be the number of acknowledgments in an optimal partition of A. First we consider
the case when & < k*. In this case, it immediately follows that C,, > k*n > kn. Thus
Cgreedymw/copt S 2.

We now consider the case when k > k*. Since all partitions of A must send an acknowl-
edgment at the last arrival, at most k* — 1 of the optimal acknowledgments are distributed
over the first k—1 intervals from greedy,,..,’s partition. Thus at least (k—1)—(k*—1) = k—k*
intervals have no acknowledgments from the optimal solution lying in them. Each of these
k — Ek* intervals contributes to the optimal solution 7 cost due to latency since the optimal
solution must place an acknowledgment in an interval to not be charged for its latency. So
the cost of this optimal solution has a cost of k*n for its acknowledgments and a cost of at
least (k — k*)7 for its latency. So Cppy > kn, which is at least half of greedyne,’s cost. O

The proof of Theorem 10 assumed L = 0, so clearly if L > 1 then the competitive ratio
is no worse since greedy,., sets its alarms independent of L. Algorithm greedy .., handles
7 and non-rush departures the same way that greedy;, does (Section 6.2) and remains
2-competitive even with L = (.

"An acknowledgment sent at time #; acknowledges all arrivals that come at that time. So the start of
interval ¢ 4+ 1 is at some time > #;. Thus the intervals are disjoint.

15

=L extra latency => latency cost/ack =1

—_— ack cost=1M
1st arr. ack
| L]
greedy,, | o] @:@{E_EE’_{E_EH—«
kacks start end

total cost =2 km

opt | | |
k* acks ack 1 ack 2 ack k*

ack cost =T total cost > £*1|

Figure 2: An example of a set of greedy,e,’s intervals. Interval ¢ starts with the first arrival
of o; and ends with o,’s acknowledgment at time £;. According to Observation 9, the amount
of extra latency per interval is exactly 7/(1 — %), s0 greedy,e,’s cost is exactly 2kn. Also
shown are the £* acknowledgments from a hypothetical optimal solution.

Corollary 11 Under fiq;, greedy,., with no lookahead remains 2-competitive in the pres-
ence of non-rush departures and a mazimum delay constraint.

Proof: Note that each of the first £ — 1 intervals created by greedy,.,, was created because
(1) cost due to total latency reached 7, (2) the maximum delay 7 for an individual arrival or
departure was reached, or (3) more than one departure appeared in the interval. We will call
these intervals n-intervals, T-intervals and d-intervals, respectively, appearing ky, &, and %y
times. Again, interval ¢ begins with the first arrival of ¢; and ends with an acknowledgment
at time #;. Note that each 7-interval must have an optimal acknowledgment lying in it since
the optimal algorithm cannot allow any single delay to exceed 7. Also note that based
on Observation 5, every d-interval contains an optimal acknowledgment. Finally, the kth
interval (which can be of any type) must contain an optimal acknowledgment since all arrivals
must be acknowledged. So at most k* — k%, —k,; n-intervals contain optimal acknowledgments,
where again £* is the number of acknowledgments in the optimal solution. Thus the optimal
solution’s cost is at least (k — k* + &, + kg) n+4&*n > k7. But greedy,..,’s solution is < 2kn
since each interval still must have < 7 cost due to latency. 0

Finally, we note that greedy,,’s time complexity per arrival is constant under fyum. To
see this, recall the definition of {greedynew,fium it Equation 2:

t d — 7? _ zaiEU (a’.? B a‘i)
greedynew.fsum |0_| (1 _ n) |U|
- n . |o|a; — Faieo ai
lo| (1—n) lo]

16

Maintaining a running sum of 3., a; yields the constant time cost required at each arrival.

6.4 A Lower Bound Under f.,n,

We now prove that under fs,,, any deterministic on-line algorithm A with any constant
lookahead L has a competitive ratio C4 > 2C,p — ¢ where ¢ can be made arbitrarily small
with respect to Cop. In other words, C4 can be made arbitrarily close to twice that of optimal.
Thus not only does greedyn., perform as well as possible under fs,,, but one could not
even obtain improvements (in the worst case) by increasing the lookahead by any constant
amount.

Theorem 12 Let A be any deterministic on-line algorithm for the acknowledgment delay
problem with constant lookahead L. Then if we ignore the mazimum delay constraint, under
fsum there exists an arrival sequence such that C4 > 2 Cop— ¢ where ¢ can be made arbitrarily
small with respect to Cops.

Proof: The basic idea is that the adversary would like to have an arrival immediately after
each acknowledgment by the on-line algorithm A (which knows the times for the next L
arrivals).

We use a burst to denote a set of B arrivals arbitrarily close together where B > L. (We
can make B arbitrarily larger than L.) Similarly, we use a blip to denote a set of L arrivals
that occur arbitrarily close together. For ease of exposition we assume that all the arrivals
in a burst or blip arrive at the same time. Let ¢ be a small constant, and let ¢, = wﬁ'
The adversary begins with a burst at time 0 and a blip at time #,. There will be two possible
scenarios at time ¢.. Hither there was really just a blip (i.e. L arrivals) at time %, or there
was really a burst (i.e. B arrivals) at time t. and A has just seen the first L arrivals of the
burst. If A chooses to send an acknowledgment at time 0 then the adversary places a burst
at time f.. If A does not choose to send an acknowledgment at time 0 then the adversary
leaves just a blip at time ¢, and places a new blip at time 2¢,. In general, at time ¢ the on-line
algorithm A sees a blip at time ¢ +¢.. If A acknowledges at time ¢ then the adversary places
a burst at time ¢ +¢.. If A does not acknowledge at time ¢ then the adversary leaves just a
blip at time £+, and places the next blip at time ¢+ 2¢, (see Figure 3). This continues until
either 4 sends an acknowledgment or the latency cost for the current subsequence is 1. In
the latter case, we can force A to place an acknowledgment (or be worse than 2-competitive)
by having the next blip far enough away that the latency cost would be prohibitive. Thus,
without Joss of generality, we assume that the latency cost of a subsequence is never larger
than 7. That is, the time between bursts is at most 5/(B(1 — 7)).

We now compute a lower bound for the cost of the on-line algorithm’s solution. Let
d1,...,0s be the subsequences defined by A’s solution. Let #; be the time from the burst to
the acknowledgment in o;. The cost of A’s solution is at least the cost of the acknowledgments
and the latency due to the bursts. Thus

Cp > (n(s—l— 1) —i—Zs:ti(l = n)B) = 7.

i=1
We now upperbound the cost of the optimal solution by averaging the costs of solution
o1 that acknowledges after the odd-numbered bursts, and the solution S, that acknowledges

17

& & & @ e ._+_@_._._._._._._._._+_@]
¢ J e
ti t€
Figure 3: The arrival sequence for our lower bound. The subsequences o4, ..., c; shown are

those from the on-line algorithm A. Each vertical line represents an acknowledgment by A,
each large gray circle is a burst (i.e. B arrivals for some large B) and each small black circle
is a blip (i.e. L arrivals). At time ¢, A sees that L arrivals will come at time ¢ + ¢, but does
not know if this will be a blip or a burst.

after the even-numbered bursts. Both S and S; must acknowledge after the final arrival.
Thus there are s + 2 acknowledgments among both S; and S;. Also, notice that each
of the odd-numbered bursts is immediately acknowledged in S; and each even-numbered
burst is immediately acknowledged in S,. If S (respectively, Ss) acknowledges immediately
after a burst then S; (respectively, S3} incurs no latency cost due to that burst. Thus
for each subsequence o;, the burst latency incurred (by exactly the one of S; and S that
does not acknowledge immediately) is ¢; - ¢ since there is an extra delay of . between A’s
acknowledgment and the acknowledgment of S; (or S»). Letting fuips be the latency costs
incurred for all the blips, we get that

o < 5 (420 30+ 0000 = 1)B) + b

Ste(l - ’I])B -+ gblips
2

1 1g
= ”(8;)+g+52ti(1—n)B+

S€ + Bbups
—

i=1

+

Z. 1y
2

1
2
We now argue that ¢ = /2 + (s€ + Zusps)/2 can be made arbitrarily small with respect to
Copt. First, since the number of acknowledgments in the solution that led to our upperbound
for Cops was only one larger than that from Cy4, by increasing s we can make /2 arbitrarily
small with respect to C,,. Suppose that such an s has been selected and thus its value is
now fixed.

We now consider the extra latency cost from ¢. These come from two sources. There
is a cost of ¢; = se/2 from the extra latency for the burst at each subsequence, and there
is a cost of ca = fyups/2 from the latency costs for the blips. We now argue that both of
these quantities are independent of B and thus by making B sufficiently large, we can make
c1 + cp arbitrarily small with respect to Cyp. Clearly ¢; is independent of B and thus can
be made arbitrarily small with respect to C,p; by making B large. Since the latency cost for
each subsequence is at most n and thus the duration is at most n/(B{1 —n)), the number of
blips in o; is at most (FITI—T)) /te = n/e, which is a constant and thus independent of B. So
the stated result follows. O

18

6.5 Simulation Results Under fq,n,

We ran preliminary simulations to empirically evaluate the benefits of lookahead and to
contrast our algorithms’ performances with those of the algorithms currently used by TCP
implementations (see Section 2 for a brief description of these algorithms). The data for
our simulations came from a trace of two hours of all wide-area TCP traffic between the
Lawrence Berkeley Laboratory and the rest of the world [13]. This trace (LBL-TCP-3) is
available at http://ita.ee.lbl.gov/. While the simulations are based on real data, for
our initial simulations we simplified the traces. Specifically, we ignored 7 and all departures,
so our algorithms only processed one long arrival sequence with no limits on individual
acknowledgment delays. We also filtered out connections that did not fit our definition of a
“normal” TCP connection, e.g. connections that were reset before shutting down normally.
Finally, we note that changing the delays of acknowledgments of packets can change the
times of subsequent arrivals, so the arrival sequence that each algorithm processed may not
be consistent with the sequence it would have seen if it were the algorithm actually used to
delay the acknowledgments.

In our plots (Figures 4 and 5), the solid lines correspond to greedy,., and the lines
with long dashes correspond to greedy,,;. The performance of the algorithm using the
interval timer is indicated by the lines with short dashes and the dotted lines represent the
performance of the heartbeat timer-based algorithm. Each algorithm’s upper line shows
its performance for L = 0 and its lower line shows its performance for L = 1. In each
plot, the vertical axis gives the average ratio of the cost of each algorithm’s solution to
the cost of an optimal solution. The horizontal axis represents how many seconds of extra
latency is as expensive as a single acknowledgment, so a value of S on the horizontal axis
corresponds to an acknowledgment cost of 5 = S/(S + 1). Our simulations are for S €
{0.001,0.01, 0.02,0.03,0.05,0.08,0.1, 0.2,0.3,0.5,0.8,1.0, 1.5, 2.0, 3.0}

Figure 4 shows each algorithmy’s average performance on 185 telnet connections from the
telnet client to the telnet server (results were similar for the connections from the server to
the client). Notice that the timer-based algorithms without lookahead were superior to ours
with L = 0 for a particular value of , but as we moved away from this value, our algorithms
without lookahead were superior to the timer-based algorithms even with lookahead. Our
algorithms with lookahead were always the best. We saw similar results for the following
other types of connections: NNTP (Usenet), SMTP (e-mail), HTTP (WWW) from the server
to the client, gopher from the server to the client, FTP, and FTP-data {connections opened
in an FTP session to transfer files). All the connections of these types tended to involve
transmission of a large number of packets (typically at least 10-20, frequently > 100).

Figure 5 shows each algorithm’s average performance on 237 finger connections from
the finger client to the finger server (results were similar for the connections from the
server to the client). Only one line is visible for each of greedy,, and greedy,., because
those algorithms’ lines for L = 1 are indistinguishable from the horizontal axis. Notice
that the timer-based algorithms without lookahead were superior to ours for L = 0 for all
values of > 0.23, and this trend does not seem inclined to change. But our algorithms
with lookahead were still always the best. We saw similar results for the following other
types of connections: HTTP from the client to the server and gopher from the client to the
server. All the connections of these types tended to involve transmission of a small number

19

Ratio telnet, client->server

Figure 4: Simulation results under f,,, for 185 telnet connections from the telnet client to
the telnet server. These results are typical for connections involving transmission of a large
number of packets (typically at least 10-20, frequently > 100). The solid lines correspond to
greedy ., and the lines with long dashes correspond to greedy;,:. The performance of the
algorithm using the interval timer is indicated by the lines with short dashes and the dotted
lines represent the performance of the heartbeat timer-based algorithm. Each algorithm’s
upper line shows its performance for L = 0 and its lower line shows its performance for
L = 1. The vertical axis gives the average ratio of the cost of each algorithm’s solution to
the cost of an optimal solution, and the horizontal axis represents how many seconds of extra
latency is as expensive as a single acknowledgment.

20

Rati finger, client->server

o

Figure 5: Simulation results under fy.m, for 237 finger connections from the finger client
to the finger server. These results are typical for connections involving transmission of a
small number of packets (typically &2 2). The solid lines correspond to greedy,., and the
lines with long dashes correspond to greedy;,:. The performance of the algorithm using the
interval timer is indicated by the lines with short dashes and the dotted lines represent the
performance of the heartbeat timer-based algorithm. BEach algeorithm’s upper line shows its
performance for L = 0 and its lower line shows its performance for L = 1. (Ounly one line
is visible for each of greedy,, and greedyn,., because those algorithms’ lines for L = 1 are
indistinguishable from the horizontal axis.) The vertical axis gives the average ratio of the
cost of each algorithm’s solution to the cost of an optimal solution, and the horizontal axis
represents how many seconds of extra latency is as expensive as a single acknowledgment.

21

of packets (typically = 2).

When 7 is large and input sequences are long, our algorithms typically work better
than the timer-based ones because our algorithms are allowed to set alarms farther into
the future while the timer-based algorithms always use constants in setting their alarms, so
they cannot take advantage of cheap latency like ours can. Rather, they must send more
expensive acknowledgments. This explanation is consistent with the observation that the
two curves for an algorithm tend to converge as i increases, since increasing n makes latency
cheaper, diminishing the gain from looking ahead. When 7 is very small, then latency is
very expensive and the constants used by the timer-based algorithms cause them to send
acknowledgments much too late, even if L = 1. This gives an inherent advantage to our
algorithms since the amount they wait is related to the cost of waiting. This phenomenon
is independent of the length of the input sequence, as evidenced in Figures 4 and 5.

When sequences consist of only a few arrivals and 7 is not extremely small, then very few
acknowledgments are required. Thus all the algorithms will probably send the same number
of acknowledgments and the difference in performance between the algorithms will be the
cost of the extra latency incurred. As latency becomes cheaper, greedy:,: and greedy ey
set their alarms farther into the future while the timer-based algorithms set theirs the same
distance into the future regardless of n. Thus greedy,, and greedy,., set their alarms
much farther into the future than the timer-based algorithms do. Since probably the only
difference between the algorithms’ performances on short sequences is latency cost, it is not
surprising that greedyy, and greedy,., with L = 0 lose their advantage over the timer-
based algorithms on short sequences for large n. Thus it seems reasonable that short input
sequences favor the timer-based algorithms unless greedy;,; and greedy,,.., have lookahead,
in which case they are optimal or nearly optimal. Unfortunately, short input sequences do
not facilitate inference of upcoming arrival times, so any learning algorithm used to predict
arrival times might not do well. A possible exception is a learner that remembers the inter-
arrival times for the last connection of the same type, e.g. if the current connection is a
finger connection, then the learner can look back to the inter-arrival times it learned from
the previous finger connection.

Finally, we note two observations concerning our algorithms. First, the cost of our algo-
rithms’ solutions were always at most twice optimal (even with L = 0), which is encouraging
since we know by Lemma 7 that under fg,,, there exists an input sequence forcing greedy;,:
to output a solution that is Q(y/n) of optimal. Second, our algorithms with L = 1 were
always at least as good (and typically much better than) any other algorithms we tested.
This implies that a good learning system to predict packet inter-arrival times would be very
useful to any algorithm that delays acknowledgments, including the timer-based algorithms
currently in use by many TCP implementations.

7 Objective Function f,,,,

Recall Definition 3 of Section 3, which defined faz:

k
fmaa: = ﬂk + (1 "'" 7?) Z %?ggg(ti - aj):
i—1 i

22

Off-Line-2
Initialize My, [0] < 0
Initialize M [1,1] «+ 1.7
Initialize My, [1] + M [1,1]
Initialize Mp; [1] + 1
For i € [2,n]
Mmin [’&] — O
For j € [1, 1]
Mli, gl < 1-n+ (1 —n) (e — aijz1) + Muin [i — 7]
If M [1, 7] < Muin [¢] then
]V-[min [‘L] — M [7’# .7]
My [i] + 7

Figure 6: An optimal off-line algorithm that runs under fi.z.

where A = (ay,...,an) is the sequence of packet arrivals, k is the number of acknowledg-
ments, the acknowledgment for the packets in o; comes at ¢;, and 5 € [0, 1] weights the
importance of minimizing acknowledgments with that of minimizing extra latency. We now
present our algorithms for the acknowledgment delay problem under fios.

7.1 An Off-Line Algorithm Under f,,..

To optimally solve the acknowledgment delay problem under fin.z, we can run greedy;,; with
lookahead 1, which will yield an optimal solution if there is no maximum delay constraint or
if 7 < n/(1—n) (see Section 7.2). This would run in O(n) time and also work in the presence
of non-rush departures. But if there exists a maximum delay constraint of 7 > 5/(1 — n),
then greedy;, with L = 1 might not work. Thus we make a simple adaptation to the
dynamic programming solution of Section 6.1. Specifically, we change Lines 2 and 8 of
Figure 1 to evaluate the function lat that corresponds to fin... The complete algorithm is
shown in Figure 6. We can also extend this algorithm to handle non-rush departures and the
maximum delay constraint the same way we extended the algorithm of Section 6.1. So by
Corollary 6 we have an O(n?) time algorithm for the acknowledgment delay problem under
fmaz in the presence of non-rush departures and a maximum delay constraint.

7.2 Algorithm greedy;,; Under [,

As in Section 6.2, first assume that all departures are rush and there is no limit on individual
delays. Let a; be the time of the packet that just arrived. Let o be the set of unacknowledged
arrivals just after time a; (this includes the packet corresponding to a;, so |o| > 1). If the
algorithm waits some time tgreedy,or, fino, (1-€- UNLIL tiMe G; + fgreedy,or, fmee) PEfOTe sending an
acknowledgment, then it will incur extra cost due to latency of (1 —) tgreedyros, frnae- 2150,

23

it has already incurred a cost of (1 — 1) (a; — agirsi;) due to past latency, where agirs; is the
first arrival of o;. Acknowledging immediately incurs a cost of n for the acknowledgment
plus the same cost due to past latency. Thus on each new arrival a;, greedy,; sets an alarm
at a; + tgreedysor, fmez 10T lgreedyios, fmee SUCh that the cost for ¢ if an acknowledgment is not
sent at a; (namely, (1 — 1) fgreedyios, fras + (1 — 71) (@5 = Gjirst;)) is equal to the cost for o if
an acknowledgment is sent at a; (namely, 7+ (1 — 1) (a; — Gfirst;)). SOIVING O bgrecdyioe, fman
yields

¢ _ n
greedyot,fmaz = (1 _ n) .

If no new arrival occurs before the alarm sounds, then an acknowledgment is sent when the
alarm sounds. Otherwise, the old alarm is deleted and a new one is set at a;,1+7/ (1 —). If
L =1, then greedyy,; will send an acknowledgment at exactly a; if and only if (a;41 — a;) >
tgreedytot,fmaz .

As with greedy,, under foum, we can extend this algorithm to accommodate non-rush
departures and a maximum delay constraint of 7. On the first arrival a; of a new subse-
quence, the algorithm sets a second alarm at a; + 7. This alarm is not updated at new
arrivals within the same subsequence. So an acknowledgment is sent whenever either alarm
sounds, again making sure that there is only one departure per subsequence (Observation 5)
and that all departures are sent in order of their ready times. In addition to the alarms
provoking an acknowledgment transmission, this algorithm also immediately sends a depar-
ture if it encounters a second departure within the same subsequence (i.e. the transmission
occurs at the second departure’s ready time), which is a condition in addition to those for
acknowledging under fgm,. This is motivated by the following observation.

Observation 13 In an optimal solution under fiee, no departure will be scheduled past the
next departure’s ready time.

Proof: By contradiction. Assume there exists an optimal solution S in which departure d;
is scheduled past d;;,’s ready time. Since S is optimal, then d;’s transmission time must
coincide with some arrival a;. We can slide d;'s departure time back to the last arrival
between the ready times of d; and d;4, (or back to d;’s ready time if no such arrivals exist),
and let d;..; acknowledge a; in addition to the other arrivals it acknowledges. This decreases
total latency under f,,, since latency cost increases linearly with time independent of the
number of unacknowledged arrivals and unsent departures. Also, since both d; and djy,
must be transmitted anyway, the number transmissions does not increase. Thus the total
cost decreases, contradicting the optimality of S. O

Finally, we note that the time complexity per arrival needed to update Tareedyio, foum 1S
constant.

Despite greedy;,;’s poor performance under foum, under f,.. it does quite well. Before
proving upper bounds on greedy;,’s competitive ratio, we start with a lemma about the
structure of an optimal solution.

Lemma 14 Under fme,, there exists an optimal solution S that places an acknowledgment
at a; if and only if (aj41 — a;)(1 —7) > 7.

24

Proof: Consider a subsequence o; = {a;, @41, ..., Gy) Which is a subsequence in S. The
total cost for oy is exactly (a, — a;)(1 — n) + 7 (the first term is for the latency, the second
for the acknowledgment). We can divide this cost among the arrivals in oy by associating
with a; € {a;, ..., am—1} a latency cost of (a;,.1 —a;)(1 —n) and charge a,, the cost 7 for the
acknowledgment. This accounts for all of the cost for oy, so no additional cost is associated
with any arrivals in o,.

Now consider the case when (a;41 —a;)(1—n) > . If S did not send an acknowledgment
at a;, then a; was charged > 7 for the latency between a; and a;,;. But if § did send
an acknowledgment at a;, then a; was charged exactly 7. Thus it is better to send an
acknowledgment at a; than it is to wait. For the case when (a;11 — a;)(1 — n) < 7, the cost
of sending an acknowledgment at a; is at least as much as the cost of waiting. O

Now we prove that greedy,, is 2-competitive under fp,q.. Combined with Theorem 23
(Section 7.4), this means that greedy;, is an optimal on-line algorithm under f,., when
L=0.

Theorem 15 Under fror, greedysy is 2-competitive with lookahead L = 0.

Proof: In this proof we use S and the same cost accounting strategy used in the proof of
Lemma 14. First note that from Observation § we know that greedy;,; avoids incurring more
than n/(1 — n) units of extra latency (for a latency cost of i) between any two consecutive
arrivals a; and a;,,. We now consider the two possible cases for this pair of arrivals.

If aj41 — a; < /(1 —n), then by Observation 8 and Lemma 14, greedy;,; does exactly
the same thing that S does, namely not send an acknowledgment at a;. If instead a;41 —
a; > 1/{1 —n), then S sends an acknowledgment at a; (by Lemma 14), charging 7 to
aj. But greedy,, waits until a; + /(1 — 7) and then sends an acknowledgment, charging
2n to a; (n for the latency and 5 for the acknowledgment). Note that no matter which
case applies, greedyi, is synchronized with S, i.e. at any arrival a;, greedy,,’s solution
always has the same set of unacknowledged arrivals as S. Thus the cost attributed to any
arrival in greedy,,;’s solution is at most twice that of the same arrival in S. Therefore
Cgreedytot < 2copt- 0

Obviously greedy,, is better suited for f., than fe.,. But in fact, Theorem 15 is
only part of the story. In the proof of Theorem 15, the only difference between the costs
incurred by greedy,: and S came from their behaviors when aj41 —a; > n/{1—n). Namely,
greedy;,; waited until a; + 1/{1 — 1) before sending an acknowledgment while S sent its
acknowledgment at a;. But if greedy,,; knew at time a; that the next arrival was too far
into the future, it would have sent an acknowledgment at a; just as S did. Thus we get the
following corollary.

Corollary 16 Under fia., greedys, is 1-competitive with lookehead L = 1.

Note that in Theorem 15 and Corollary 16, we ignore 7 and assume that all departures are
rush. By Observations 13 and 5, non-rush departures do not alter greedy;,;'s competitive
ratios for L = 0 and L = 1 since greedyy, is still synchronized with S. However, adding 7
can change the situation if it is sufficiently large. We start by exploring when adding 7 does
not change the bounds on the competitive ratios. If 7 < n/(1—n), then (since greedy;,; and

25

optimal solution S are synchronized without r) if greedy,,; must send an acknowledgment
due to 7, then so must S. So the algorithms remain synchronized. Thus greedy;,; with
L =1 remains optimal and greedy,,; with L = 0 still only pays for extra latency, but this
latency still does not exceed n/(1 —), just as in the proof of Theorem 15. This yields the
following corollary.

Corollary 17 Under fmer, when including T < n/(1—n) and non-rush departures, greedy
18 2-competitive for L = 0 and 1-competitive for L = 1.

When 7 > 5/(1 — 5), the proof of Theorem 15 does not apply. But we can still show a
bound on the competitive ratio for greedy;,;.

Theorem 18 Under fpnq., with lookahead L =1 and for any 7 > n/(1 —n), greedy,® has

a competitive ratio of < 1+ ﬁ < 2. For L =0, the competitive ratio is < 1+ —'7—7(12_,]) <3

Proof: We prove the theorem for L = T and then state how to adapt it for L = 0.

We divide the acknowledgments into those sent because the of the 7 requirement (7-
acks) and the rest (regular acks)®. We partition the solution created by greedy,, into
groups where each group consists of any number of subsequences ended by 7-acks followed
by a subsequence ended by a regular ack. (So each regular ack subsequence is the last
subsequence in the group.) Let £ be the latency cost (for L = 1) for the subsequence that
ends with the regular ack.

We show in Lemma 19 below that there exists an optimal solution S that places an
acknowledgment corresponding to each regular ack of greedy;,. Thus we can treat each
group as the first one. Let a 7-interval be any subsequence that ends with a 7-ack. We
show in Lemma 20 that the latency cost for each r-interval in S is at least (v — n/(1 ~
m)){1 —n). Since 7 > n/(1 — n), this quantity is non-negative. Also, we note that S must
place an acknowledgment in each 7-interval (otherwise it would violate the maximum delay
constraint). Thus if there are ¢ 7-acks!?, then S pays gn for the 7-acks, 7 for the regular ack,
at least ¢(r — n/(1 ~ n))(1 — n) for the 7-interval latency, and £ for the regular ack latency
(see Lemma 21). So the cost for S is at least

(g+1)n+q(l—n) (’r— 1—”—) +l=Ll+n+gr(l—n)
Also, greedy,:’s cost (for L = 1) is at most

(g+Dn+er(l—n)+Ll=gn+L+n+qr(l—n). (3)

Hence the competitive ratio of greedy,,; is at most

g 7
1+ <14 —t
L+n+qr(l—1n) (1—n)

8 For this result we require that greedy. is modified so that it sends an acknowledgment if the newt
arrival is at the alarm time,

9Tf the acknowledgment qualifies as both a 7- and a regular ack, we call it a regular ack.

0For this proof we assume that ¢ > 0 for some group. Otherwise 7 is irrelevant and greedy;,; remains
synchronized with &, implying that the bounds of Corollary 17 hold.

26

since £ and 7 are non-negative.

The only difference between L = 1 and L = 0 is that for L = 0, greedyy,; incurs more
latency. Specifically, it pays 7(1—#) for each 7 subsequence and at most £+(1—9)n/(1—n) =
£+ 7 for the subsequence ending with a regular ack. Equation 3 has already accounted for
the latency cost for the 7 subsequences, so we merely add 7 to the latency cost for L =1 to
correct for L = 0. So the competitive ratio for L = 0 is at most

1 2
(g+n . an*n . 20

R e e R s I (s

d
We now prove the technical lemmas required to complete the proof of Theorem 18.

Lemma 19 Let everything be as in the proof of Theorem 18. Then there exists an optimal
solution S that places an acknowledgment corresponding to each regular ack of greedy;,:.

Proof: Let a, be the arrival that greedy,, sent its regular ack at, so a, is at the end of
the regular ack subsequence at the end of a group. Since greedy,, sent a regular ack at
ay, it must be the case that a,y1 — a, > n/(1 — 7). So by Lemma 14, S must also place an
acknowledgment at a,. a

Lemma 20 Let everything be as in the proof of Theorem 18. Then the latency cost for each
T-interval in S is at least (T — n/(1 = n))(1 —n).

Proof: By the definition of greedy;, the time between two consecutive arrivals in a 7-
interval is < n/(1 —n), and the time between the last arrival of the 7-interval and the next
arrival is < 7/(1 — 1) (otherwise a regular ack would have been sent). See Figure 7 for an
example. Thus the optimal solution cannot benefit by having more than one acknowledgment
in each 7-interval (by Lemma 14), but it must place at least one acknowledgment in the 7-
interval so it does not violate the maximum delay constraint. Since S places exactly one
acknowledgment in the T-interval, it only saves < /(1 —#) in latency for the entire interval
and must pay for the remaining latency. The remaining latency is at least 7 — /(1 — n), so
the latency cost for each 7-interval in S is at least (v — /(1 —n))(1 — 7). O

Lemma 21 Let everything be as in the proof of Theorem 18. Then the latency cost for S
for the regular ack subsequence is at least £.

Proof: By Lemma 19, S places an acknowledgment at the last arrival of the regular ack
subsequence. Since each two consecutive arrivals in the regular ack subsequence are sepa-
rated by < n/(1 —7), by Lemma 14 S will not place an acknowledgment elsewhere in that
subsequence. Thus 5 incurs as much latency as greedy;, does for L = 1, so S’s latency
cost for the regular ack subsequence is £. O

27

l
(I-m)

et e e e e} e pd N

- N

T T—ack

<

Figure 7: An example of a 7-interval. The 7-interval in the figure is the set of four arrivals
to the left of the 7-ack. The distance between any two consecutive arrivals (as indicated by
curly braces) is < /(1 — 1), otherwise a regular ack would have been sent. S places exactly
one acknowledgment in the 7-interval, so it pays for all but at most /(1 — 1) of the 7 total
latency between the first arrival and the acknowledgment.

7.3 Algorithm greedy,., Under f,..

We now describe how greedy,., behaves under f.,. Specifically, on each new arrival
Gj € i, greedyﬂew sets an alarm at a’j + tgreed}’ncwafmam for tgreadynew sfmaz such that

(1 - 77) tSTEEdYncw,fmaz + (1 . 7?) (a’.? - a’fiTSti) = n

Solving for tgreedynew, fmee Yiclds

lgreedynew, fmas = 1 (a5 — Gfirst;), (4)
(1—-n)

which can be computed in constant time per arrival.

Since frmar is a special case of fi,;, Observation 9 holds for it as well. We also get from
Corollary 11 that greedypne, with L = 0 is 2-competitive under fne; in the presence of
non-rush departures and a maximum delay constraint. According to Theorem 23, for L = 0
this is the best any on-line algorithm can do in the worst case.

While greedyne, is optimal under the general-purpose objective function fi, for no
lookahead, greedy, has an advantage over it under f., for L = 1. Corollary 16 and
Theorem 18 state that greedy:, is better than 2-competitive with L = 1, but as we show
below, greedyp., with L = 1 still cannot beat a competitive ratio of 2.

Observation 22 Under fine,, even with L = 1, there exists an arrival sequence such that
Careedy,,, = 2Copt — ¢ where ¢ can be made arbitrarily small with respect to Copt-

Proof: First recall Observation 9 that says under fio, greedy,., acknowledges if and only

if the total latency of a subsequence reaches 7/(1 — 7). The adversary exploits this property
by defining an input arrival sequence consisting of m groups, where each group contains

28

(I-n)

Figure 8: An example of an arrival sequence forcing greedyne, to be 2-competitive under
Jmag- Arrivals @, through a,4; comprise a group of z+1 arrivals where a group is ended by an
acknowledgment from greedy,., (the next group is a,,» through as,ys). Two consecutive
arrivals are separated by n/(z(1 — 7)) for a total latency of /(1 — n) for each group.

¢ + 1 arrivals, each separated by time 7/(z(1 — 7)). (See Figure 8 for an example.) Since
greedyye, sends an acknowledgment at the end of each group, its total cost is

cgreedymw = mn + m(]- - n)% = 2mmn.

An optimal solution is at least as good as the strategy to send just one acknowledgment
at a, for n = m(z +1). This strategy pays 7 for the single acknowledgment plus the latency
costs within the groups plus the latency cost between the groups. This yields a cost of

n n
1—-n)——+(m-1)(1- ————] = Caree 2+ m—1}/z.
7 mt =) = D = 1) (57) = Contyn /2471l = 1)
By making m arbitrarily large, the adversary can make the second term arbitrarily small
with respect t0 Cyreedy,,, . After fixing m, the adversary can make the last term arbitrarily
small with respect to Cgreeqy,,, Dy making z arbitrarily large. O

7.4 A Lower Bound Under f,,

We now give some lower bounds for the acknowledgment delay problem under fi... First
recall that for L = 1, Corollary 16 says that greedy,, is 1-competitive if we ignore 7 or
if T <n/(1—mn), and Theorem 18 says that greedy,, is (1 -+ ?;’_ﬁ)-competitive for finite
7 2 /(1 —n). We do not know if the latter bound is tight (i.e. can we be 1-competitive in
the presence of finite 7 > n/(1 — 1)7?), but obviously no on-line algorithm can be better than
1-competitive. So here we focus on the more interesting problem of lowerbounding the case
for L = 0 and study the general objective function fj,.

First recall Definition 1 that defines fi,¢ as any objective function for which the latency

cost increases with the amount of time that an acknowledgment is delayed. By using the

29

standard adversary strategy that places the next arrival in the sequence immediately after
the on-line algorithm acknowledges, we can prove that any deterministic on-line algorithm
without lookahead is no better than 2-competitive under fj,;. This means that for L = 0
both greedy, and greedy,., are optimal under f,,.,, but it also means that greedy ..,
is optimal for L = 0 under fi;. Of course, greedy,, is not optimal under fj,; because
Lemma 7 tells us that greedy;.: can be as bad as (1/n)-competitive under fsum, which is
a special case of fig.

Theorem 23 Let A be any deterministic on-line algorithm for the acknowledgment delay
problem with L = 0. Then under fin, there exists an arrival sequence such that C4 > 2Cyp—c
where ¢ can be made arbitrarily small with respect to Cop.

Proof: The proof is a simplified version of the proof of Theorem 12. In this case, the
adversary places arrival a;y; immediately'! after A acknowledges a;. Thus A sends an
acknowledgment for every packet. Define £; to be the latency accumulated between arrival
a; and a;’s acknowledgment. Then for a sequence of n arrivals, the cost of A’s solution is

Ca=nmn-+ (1 “n)zgj.
=

We now upperbound the cost of the optimal solution by averaging the costs of solution
51 that acknowledges immediately after the odd-numbered arrivals and solution Sy that
acknowledges immediately after the even-numbered arrivals. Since both solutions must ac-
knowledge all packets, there are a total of n+ 1 acknowledgments between the two solutions.
Also, between the two solutions each interval of latency £; is incurred exactly once, except
£,, which neither of them incurs. Thus the average of S1’s cost and S,’s cost is

. ((n+1 n+(1-n ZE) =Ca/2+n/2—£,/2.

F=1

By making n arbitrarily large, the adversary can make 7/2 arbitrary small with respect to
C,4- Since the cost of Sy or Sy is at least as good as their average, C4 can be made arbitrarily
close to 2 Cop. 0

7.5 Simulation Results Under f,..

We ran simulation results under fq, similar to those we ran under fy.m, (Section 6.5), using
the same data and applying the same methodology. Overall, we found the results under f.z
similar to those under fy,,; in general form, except that under fi.5, the fixed timer-based
algorithms fared much worse for long connections. Also, empirically we saw that greedy,,;
performed at least as well as (and often better than) greedy,e.,, where under fe., the
opposite was true. This is not surprising since in terms of loss bounds, greedy,,; is at least
as good as greedy,.,, and in particular, greedy,; is 1-competitive for L = 1.

"While a;4y will not coincide with a;’s acknowledgment, they can be arbitrarily close. So for ease of
exposition we will assume that they are coincident.

30

client->server

s
.

Figure 9: Simulation results under f,,,, for 185 telnet connections from the telnet client to
the telnet server. These results are typical for connections involving transmission of a large
number of packets (typically at least 10-20, frequently > 100). The solid lines correspond to
greedyy,e, and the lines with long dashes correspond to greedy;,:. The performance of the
algorithm using the interval timer is indicated by the lines with short dashes and the dotted
lines represent the performance of the heartbeat timer-based algorithm. Each algorithm’s
upper line shows its performance for I = 0 and its lower line shows its performance for
L = 1. (Only one line is visible for greedyy,: because its line for L = 1 is optimal so it is
indistinguishable from the horizontal axis.) The vertical axis gives the average ratio of the
cost of each algorithm’s solution to the cost of an optimal solution, and the horizontal axis
represents how many seconds of extra latency is as expensive as a single acknowledgment.

In our plots (Figures 9 and 10), the solid lines correspond to greedyne, and the lines
with long dashes correspond to greedy::. The performance of the algorithm using the
interval timer is indicated by the lines with short dashes and the dotted lines represent the
performance of the heartbeat timer-based algorithm. Each algorithm’s upper line shows
its performance for L = 0 and its lower line shows its performance for L = 1. In each
plot, the vertical axis gives the average ratio of the cost of each algorithm’s solution to
the cost of an optimal solution. The horizontal axis represents how many seconds of extra
latency is as expensive as a single acknowledgment, so a value of S on the horizontal axis
corresponds to an acknowledgment cost of n = S/(S + 1). Our simulations are for S €
{0.001, 0.01,0.02,0.03,0.05,0.08,0.1, 0.2,0.3,0.5,0.8, 1.0, 1.5, 2.0, 3.0}.

Figure 9 shows each algorithm’s average performance on 185 telnet connections from
the telnet client to the telnet server (results were similar for the connections from the
server to the client). Since greedyy, with L = 1 is optimal, its curve is indistinguishable

31

Ratio finger, client->server

Figure 10: Simulation results under f,,, for 237 finger connections from the finger client
to the finger server. These results are typical for connections involving transmission of a
small number of packets (typically = 2). The solid lines correspond to greedy,e, and the
lines with long dashes correspond to greedy;,.. The performance of the algorithm using the
interval timer is indicated by the lines with short dashes and the dotted lines represent the
performance of the heartbeat timer-based algorithm. Each algorithm’s upper line shows its
performance for L = 0 and its lower line shows its performance for L = 1. (Only one line
is visible for each of greedy;, and greedy,., because those algorithms’ lines for I = 1 are
indistinguishable from the horizontal axis.) The vertical axis gives the average ratio of the
cost of each algorithm’s solution to the cost of an optimal solution, and the horizontal axis
represents how many seconds of extra latency is as expensive as a single acknowledgment.

32

from the horizontal axis. Notice that the timer-based algorithms without lookahead were
superior to our algorithms with L = 0 for a particular value of , but as we moved away from
this value, our algorithms without lookahead were superior to the timer-based algorithms
even with lookahead (note that under fq, this advantage is more pronounced than under
fsum). Our algorithms with lookahead were always the best. We saw similar results for
the following other types of connections: NNTP (Usenet), SMTP (e-mail), HTTP (WWW)
from the server to the client, gopher from the server to the client, FTP, and FTP-data. All
the connections of these types tended to involve transmission of a large number of packets
(typically at least 1020, frequently > 100).

Figure 10 shows each algorithm’s average performance on 237 finger connections from
the finger client to the finger server (results were similar for the connections from the
server to the client). Only one line is visible for each of greedy;,; and greedy,., because
those algorithms’ lines for L = 1 are indistinguishable from the horizontal axis. Notice
that the timer-based algorithms without lookahead were superior to ours for I = 0 for
sufficiently large 5, and this trend does not seem inclined to change. But our algorithms
with lookahead were still always the best. We saw similar results for the following other
types of connections: HTTP from the client to the server and gopher from the client to the
server. All the connections of these types tended to involve transmission of a small number
of packets (typically ~ 2).

In summary, our general observations concerning how greedy;,; and greedyn.,, compare
to the timer-based algorithms are the same as for fy, in Section 6.5. Qur explanations for
these observations are also the same. However, how greedy, performs relative to greedy, .,
under fr,; is a different story. For L = 0, greedy;,; was noticeably better than greedy,.c,
for telnet, 'I'P-data, and NNTP. greedyn., outperformed greedy,; for gopher from the
server to the client, on SMTP for § > 1, and for all the short connection types. For all
other connections, greedy,, and greedy,., performed comparably. For L = 1, naturally
greedyy,; produces an optimal solution, so the only question is how well does greedy e,
fare with L = 1. For all short connections, greedy,,,,’s performance was similar to that
under fourm: it did so well that its curve is indistinguishable from the horizontal axis. For
long connections, its performance was mixed. Its performance for telnet, NNTP, FTP-data
from client to server, and FTP from client to server was similar to that in Figure 9. For all
other long connections it fared much better: its performance curve was much closer to the
horizontal axis.

Again, our algorithms’ outstanding performance for L = 1 makes a good learning system
desirable.

8 Concluding Remarks

In this paper we presented two on-line algorithms for the acknowledgment delay problem,
and proved several bounds on their performance when measured by two objective functions
that we defined. We then gave initial simulation results that indicate that our algorithms
perform well empirically under our objective functions for sufficiently long TCP connections.
They also show that the ability to predict the future could be very valuable in enhancing
the performance of our algorithms.

33

Avenues of future work include exploring randomized algorithms for this problem and
developing a model that takes packet sizes into account. Another research direction is to
examine other objective functions such as the average latency per packet per subsequence
(which is a special case of fi,:) or some completely different way of measuring network
performance such as throughput or how our algorithms affect burstiness of transmissions.
(We chose our objective functions in part due to the fact that our on-line algorithms can
directly control how their actions influence the functions’ values, unlike e.g. throughput.)
We also plan on performing more extensive simulations, running our algorithms on more
traces and including departures and the 7 constraint. After developing good learners to act
as lookahead oracles, we plan to simulate our algorithms in a network simulator such as
ns [1]. This is necessary to assess how our algorithms affect other aspects of TCP, including
round-trip time estimates and packet retransmissions {15].

Finally, we can explore the applicability of our model and algorithms to delaying ac-
knowledgments in other contexts, such as in the data link layer over noisy channels [16].

Acknowledgments

The authors thank George Varghese, Girish P. Chandranmenon, Sally Floyd, Jonathan
Turner, and Ellen Zegura for their helpful discussions. We also thank Dan Blandford for his
careful reading of a draft of this paper, the STOC committee members for their comments,
and Thomas Erlebach for identifying a bug in an earlier draft of this paper. Stephen Scott
performed this work at Washington University.

References

[1] UCB/LBNL network simulator - ns, 1997.
http://wuw-mash.cs.berkeley.edu/ns/.

[2] S. Ben-David and A. Borodin. A new measure for the study of on-line algorithms.
Algorithmica, 11:73-91, 1994.

[3] A. Borodin, N. Linial, and M. Saks. An optimal online algorithm for metrical task
systems. Communications of the ACM, 39(4):745-763, 1992.

[4] D. Clark. Window and acknowledgment strategy in TCP. Internet Request for Com-
ments 813, July 1982. http://www.cis.ohio~state.edu/htbin/rfc/rfc813.html.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, MA, 1990.

6] A. Costello and G. Varghese. Redesigning the BSD callout and timer facilities.
Technical Report WUCS-95-23, Washington University in St. Louis, November 1995.
http://www.cs.wustl.edu/cs/techreports/1995/wucs~95-23.ps.gz.

34

[7] R. Braden (Editor). Requirements for Internet hosts-—communication layers. Internet
Request for Comments 1122, October 1989.
http://www.cis.ohio-state.edu/htbin/rfc/rfcl1122. . html.

[8] E. F. Grove. Online bin packing with lookahead. In Proceedings of the Sizth Annual
ACM-STAM Symposium on Discrete Algorithms, pages 430-436, 1995.

[9] A. R. Karlin, M. S. Manasse, L. A. McGeoch, and S. Owicki. Competitive randomized
algorithms for non-uniform problems. In Proceedings of the First Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 301-309, 1990.

[10] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive SNOOpy
caching. Algorithmica, 3(1):79-119, 1988.

[11] P. Krishnan, Philip M. Long, and Jeffrey Scott Vitter. Learning to make rent-to-buy
decisions with systems applications. In Proc. 12th International Conference on Machine
Learning, pages 322-330. Morgan Kaufmann, 1995.

[12] V. Paxson. Measurements and Analysis of End-to-End Internet Dynamics. PhD thesis,
University of California, Berkeley, April 1997.

[13] V. Paxson and S. Floyd. Wide-area traffic: The failure of Poisson modeling. IEEE/ACM
Transactions on Networking, 3(3):226~244, June 1995.

[14] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules. Com-
munications of the ACM, 28(2):202-208, 1985.

[15] W. R. Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Addision-Wesley Pub-
lishing Company, 1994.

[16] A. S. Tanenbaum. Computer Networks. Prentice Hall, third edition, 1996.

[17] G. R. Wright and W. R. Stevens. TCP/IP Illlustrated, Volume 2: The Implementation.
Addison-Wesley Publishing Company, 1995.

[18] Tzuoo-Hawn Yeh, Cheng-Ming Kuo, Chin-Laung Lei, and Hsu-Chun Yen. Competitive
analysis of on-line disk scheduling. In Proceedings of the 7th International Symposium
on Algorithms and Computation, pages 356365, 1996.

35

	TCP Dynamic Acknowledgment Delay: Theory and Practice
	Recommended Citation
	TCP Dynamic Acknowledgment Delay: Theory and Practice

	tmp.1439928365.pdf.gaK_V

