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Chapter 1: Introduction 

1.1 Background and Motivation 

Computational Fluid Dynamics (CFD) has now become an essential tool for engineers 

for the analysis complex fluid systems in industry, such as aerodynamic design of 

vehicles of air and ground, turbo machinery design or simulation of blood flow, etc. 

The CFD codes for simulating flow fields are based on the mathematic models to 

predict the flow properties. Therefore, it is very important and meaningful to develop 

an accurate and efficient physical model for computing the flow fields of industrial 

devices/ products. Turbulent flows are hard to predict because of their feature that the 

fluid velocity field varies irregularly, almost chaotically in both position and time [1]. 

Direct numerical simulation (DNS) is an approach to simulate turbulent flows by 

solving directly the continuity and Navier-Stokes equations without any 

approximation; however it has extremely high computational cost and at present it is 

only possible to compute flow in simple geometries at low or moderate Reynolds 

numbers. Large-eddy simulation (LES) is another approach used for computing 

turbulent flows. Compared to DNS, it is more efficient since it requires modeling of 

only small-scale eddies in the boundary layers [1]. Time-averaged Navier-Stokes 

equation are currently the most wieldy equations for solving turbulent flows in 

industrial applications. RANS equations solve for the mean velocity field; however, 

they contain unknown turbulent stresses called Reynolds stresses which need to be 

modeled; This is the so-called closure problem for RANS equations and requires 



2 

 

turbulence models for calculating the Reynolds stresses. The object of this thesis is to 

develop accurate and efficient turbulence models for the solution of RANS equations. 

1.2 Outline 

The focus of this thesis is to develop a new one-equation turbulence model based on 

two-equation 𝑘 − 𝜖  closure and a new transition model by integrating an 

intermittency transport equation with one-equation 𝑘 − 𝜖 model. The performance of 

both the turbulence and transition models is evaluated by computing several 

benchmark test cases and the computational results from the new developed models 

are compared with the available experimental data or LES or DNS computations. The 

major accomplishments are described below: 

Chapter 2: Turbulence Modeling: In this chapter, a brief introduction to turbulence 

modeling is given. Then main approaches for calculating turbulent flows, namely the 

Reynolds-Averaged Navier-Stokes (RANS) equations, Large-Eddy Simulation (LES) 

and Direct Numerical Simulations (DNS) are described 

Chapter 3: The One-Equation 𝒌 − 𝝐 Turbulence model: This chapter reviews 

formulations of one-equation SA model, two-equation 𝑘 − 𝜖 turbulence model and 

one-equation 𝑘 − 𝜖 turbulence model (KE model).  

Chapter 4: The Elliptic Blending: This chapter describes the integration of the 

elliptic blending (elliptic relaxation) equation with the one-equation 𝑘 − 𝜖 

turbulence model (KE model). The new developed model which is designated as 

KEEB model as well as the KE model are tested for several benchmark cases to show 
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substantial improvement in computing for wall bounded mildly separated flows using 

the KEEB model. 

Chapter 5: Development of a Transition Model: Development and implementation 

of the intermittency equation 𝛾 with the one-equation 𝑘 − 𝜖 turbulence model is 

described in this chapter, which results in the 𝑘𝜖 –  𝛾 transition model. The new 

transition model is validated by computing the benchmark cases: the ERCOFTAC T3 

flat plate series, the S809 airfoil, the Aerospatiale-A airfoil, and the NLR-7301 

two-element airfoil. 

Chapter 6: Summary and Future Work: This chapter provides a summary of the 

work accomplished in this thesis, including modeling and testing of the KEEB 

turbulence model and 𝑘𝜖 –  𝛾  transition model. The future work describes the 

proposed approach for the development of one-equation 𝑘 − 𝜖 turbulence model 

based algebraic laminar-turbulent transition model. 
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Chapter 2: Turbulence Modeling 

2.1 Laminar and Turbulent Flow 

Laminar flow and turbulent flow are two widely used terms to describe the nature 

of a flow field. The adjacent fluid layers of the laminar flow, which tend to occur 

at low velocities, do not mix with each other and slide parallel to one another. 

Because of the orderly motion of the particles of the fluid, the shear stress in 

laminar flow only depends on the velocity of the fluid. In contrast, the turbulent 

flow, which is a result of extensive momentum and energy transfer in various 

regions of the fluid flow, undergoes chaotic fluctuation and mixing. The change 

from laminar flow to turbulent flow can be characterized by a dimensionless 

constant, which is called the Reynolds number. The expression of Reynolds 

number is given as: 

𝑅𝑒 =  
𝜌𝑢𝑙

𝜇
 =  

𝑢𝑙

𝜈
 （2.1） 

2.2 Turbulence Modeling 

2.2.1 Introduction 

Turbulence flows are very common in our daily life, e.g. smoke from a chimney, flow 

over an aircraft wing, or intense oceanic currents, etc. Because of the effects of 

turbulent flows on our daily life and in many engineering applications, it is important 

to accurately predict the turbulent flows. Turbulence modelling is one way to predict 

properties of turbulent flows by developing turbulence models which are needed in 

the solution of Reynolds-Averaged Navier-Stokes (RANS) equations for analyzing 
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turbulent flows. In past several decades, several approaches have been developed for 

solving turbulent flows. They are known as the Direct Numerical Simulation (DNS), 

Reynolds-Averaged Navier-Stokes (RANS) equations and Large-Eddy Simulations 

(LES). The focus of this thesis is primarily on turbulence modeling required for the 

solution of RANS equations. 

2.2.2 Reynolds-Averaged Navier-Stokes (RANS) Equations 

Reynold-Averaged Navier-Stokes (RANS) equations model is the oldest model based 

on time-averaging of the Navier-Stokes equation to mathematically predict the 

turbulence flow behavior. The averaging of Navier-Stokes equations results in 

“turbulent stresses” or “Reynolds Stresses” which require modeling using empiricism. 

RANS equations in conjunction with turbulence models offer the most economic 

approach for computing turbulent flows and are widely used in almost all engineering 

applications and they typically provide the level of accuracy required. 

2.2.3 Large-Eddy Simulation (LES) 

Large-Eddy simulation was initially proposed by Joseph Smagorinsky in 1963 to 

simulate atmospheric air currents [2]. A filtering operation is applied to separate 

velocity field into filtered component and residual (or subgrid-scale, SGS) component. 

The filtered component which represents larger scales of motion is computed directly 

by solving the Navier-Stokes equations. In contrast, the residual (or SGS) component, 

representing the smaller scales of motion, is calculated by a turbulence model. 

Compared to the DNS, which solves the Navier-Stokes equations for the whole 
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turbulent flow fields without any approximation, LES lies between RANS Modeling 

and DNS for both accuracy and computational expense aspects.  

2.2.4 Direct Numerical Simulation (DNS) 

Direct Numerical Simulation (DNS) is a simulation in computational fluid 

dynamics in which the Navier-Stokes equations are numerically solved without any 

turbulence model. Because of the high computational cost of DNS, this method is 

currently able to calculate flows with low to moderate Reynolds number for some 

practical geometries, such as flow in a channel or over a flat plate. Among these three 

methods, DNS is the most accurate one to simulate the flow fields. 

  

https://en.wikipedia.org/wiki/Simulation
https://en.wikipedia.org/wiki/Computational_fluid_dynamics
https://en.wikipedia.org/wiki/Computational_fluid_dynamics
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Chapter 3: The One-Equation k-ϵ 
Turbulence model 

3.1 Introduction 

In recent years, a number of one-equation turbulence models have been proposed for 

the solution of Reynolds-Averaged Navier-Stokes (RANS) equations. Some of these 

are Menter’s one-equation eddy viscosity model based on 𝑘 − 𝜖  model [3], 

Wray-Agarwal model [4], Rahman-Agarwal-Siikonen (RAS) model [5], and 

one-equation model based on two-equation k-kL model [6]. One of the most 

well-known and widely used one-equation model is the Spalart-Allmaras (SA) model 

[7]. In the category of two-equation models, most well-known models and widely 

used models are k-ϵ model [8], Wilcox k-ω model [9] and SST 𝑘 − 𝜔 model [10]. To 

improve the accuracy, SA model and one- and two-equation models have been revised 

several times over the years as noted in NASA TMR [11]. Menter [3] considered the 

standard 𝑘 − 𝜖 model and proposed a one-equation eddy-viscosity model employing 

some assumptions. Because of close connection with the standard 𝑘 − 𝜖 model, his 

model has some deficiencies. As a result, compared to the one-equation SA model or 

the two-equation SST 𝑘 − 𝜔 model, the one-equation eddy viscosity model based on 

𝑘 − 𝜖 model does not perform that well. 
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3.2 Review of the SA and 𝒌 − 𝝐 Model 

3.2.1 Review of the One-Equation SA Model 

The Spalart-Allmaras (SA) model is a one-equation model developed for aerodynamic 

flows, such as transonic flow over airfoils including boundary-layer separation [1]. 

SA model is computationally simpler than two-equation models, therefore this model 

is wieldy used in industry. The SA model is given by the following equation: 

𝜕𝜈

𝜕𝑡
+ 𝑢𝑗

𝜕𝜈

𝜕𝑥𝑗
= 𝑐𝑏1(1 − 𝑓𝑡2)𝑆̃𝜈 − [𝑐𝑤1𝑓𝑤 −

𝑐𝑏1
𝜅2
𝑓𝑡2] (

𝜈

𝑑
)
2

+
1

𝜎
[
𝜕

𝜕𝑥𝑗
((𝜈 + 𝜈)

𝜕𝜈

𝜕𝑥𝑗
) + 𝑐𝑏2

𝜕𝜈

𝜕𝑥𝑖

𝜕𝜈

𝜕𝑥𝑖
] (3.1) 

The turbulent eddy viscosity is computed from: 

 𝜇𝑡 = 𝜌𝜈 (3.2) 

where 

 𝑓𝑣1 = 
𝜒3

𝜒3 + 𝐶𝜐1
3 (3.3) 

 𝜒 =  
𝜈

𝜈
(3.4) 

and 𝜌 is the density, 𝜈 =  𝜇/𝜌 is the molecular kinematic viscosity, and 𝜇 is 

the molecular dynamic viscosity. Additional definitions are given by the following 

equations: 

 𝑆 =  𝛺 + 
𝜈

𝜅2𝑑2
𝑓𝑣2 (3.5) 

where  𝛺 =  √2𝑊𝑖𝑗𝑊𝑖𝑗  is the magnitude of the vorticity, 𝑑 is the distance from 

the field point to the nearest wall, and 

 𝑓𝑣2 = 1 − 
𝜒

1 + 𝜒𝑓𝑣1
                         𝑓𝑤 = 𝑔 [

1 + 𝑐𝑤3
6

𝑔6 + 𝑐𝑤3
6 ]

1
6⁄

(3.6) 

  𝑓𝑡2 = 𝑐𝑡3 exp(−𝑐𝑡4𝜒
2) (3.7) 
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3.2.2 Review of the Two-Equation 𝒌 − 𝝐 Model 

The two-equation 𝑘 − 𝜖 model is the most wieldy used turbulence model to compute 

flow characteristics of turbulent flows. This model consists of two transport equations 

which are solved for two turbulence quantities, 𝑘 and 𝜖. The two transport equations 

are described as: 

𝐷𝑘

𝐷𝑡
= 𝜈𝑡̃ (

𝜕𝑢

𝜕𝑦
)
2

− 𝜖 +
𝜕

𝜕𝑦
(
𝜈𝑡̃
𝜎𝑘

𝜕

𝜕𝑦
(𝑘)) (3.8) 

𝐷ϵ

𝐷𝑡
 = 𝑐ϵ1

ϵ

𝑘
𝜈𝑡̃  (

𝜕𝑢

𝜕𝑦
)
2

− 𝑐ϵ2
ϵ2

𝑘
+ 
𝜕

𝜕𝑦
 (
𝜈𝑡̃
𝜎ϵ

𝜕

𝜕𝑦
 (ϵ)) (3.9) 

The eddy viscosity is given by: 

𝜈𝑡̃ = 𝑐𝜇
𝑘2

ϵ
(3.10) 

The five empirical constants in this model are: 

𝑐𝜇  =  0.09   𝑐𝜖1  =  1.44   𝑐𝜖2  =  1.92   𝜎𝑘  =  1.0   𝜎𝜖  =  1.3  

3.3 One-Equation 𝒌 − 𝝐 Turbulence Model 

One-equation eddy viscosity model based on the two-equation 𝑘 − 𝜖  model is 

described in this section. The one equation model is derived from the standard 𝑘 − 𝜖 

closure using the definition of the eddy viscosity 𝜈𝑡̃ = 𝐶𝜇
𝑘2

𝜖
 [3]. In order to arrive at a 

one-equation model, we follow Baldwin and Barth and express the time derivative of 

the eddy viscosity by the time derivatives of 𝑘 and 𝜖:  

𝐷𝜈𝑡̃
𝐷𝑡

=  𝐶𝜇 (2
𝑘

𝜖

𝐷𝑘

𝐷𝑡
− 
𝑘2

𝜖2
𝐷𝜖

𝐷𝑡
) (3.11) 

Replacing the total derivatives of 𝑘 and 𝜖 on the right-hand side by the ride-hand 

side of Eq. (3.8) and Eq. (3.9) gives a single transport equation for the eddy viscosity. 
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In order to close the equation, two additional relations have to be provided. The first 

one is definition of the eddy viscosity, which is given by: 

𝜖 = 𝐶𝜇
𝑘2

𝜈𝑡̃
(3.12) 

A second equation is a relation readily available that relates the turbulent kinetic 

energy and eddy viscosity, which has been confirmed for a large number of 

experimental boundary layer data: 

𝜈𝑡̃ |
𝜕𝑢

𝜕𝑦
| =  𝑎1𝑘 (3.13) 

The one-equation model can be derived by straightforward substitution and the final 

form of the one-equation  model can be written as: 

 
  𝐷𝜈𝑡̃
𝐷𝑡

= 𝑐1𝐷1𝜈𝑡̃𝑆 − 𝑐2𝐸1𝑒 +
𝜕

𝜕𝑥𝑗
((𝜈 +

𝜈𝑡̃
𝜎
)
𝜕

𝜕𝑥𝑗
(𝜈𝑡̃)) (3.14) 

  

𝜈𝑡 = 𝐷2𝜈𝑡̃ (3.15) 

In Eq. (3.14) and Eq. (3.15), two damping functions 𝐷1 and 𝐷2 are given by: 

 𝐷1 =
𝜈𝑡 +𝜈
𝜈𝑡̃ +𝜈

(3.16) 

 𝐷2 = 1 − 𝑒
−(

𝜈𝑡̃
𝜅𝜈𝐴+  

)
2

(3.17) 

The strain rate magnitude is defined as: 

 𝑆 = √𝑈𝑖,𝑗(𝑈𝑖,𝑗 + 𝑈𝑗,𝑖) (3.18) 

The term involving the inverse of von Karman length-scale is given as: 

𝐸𝑘−𝜖 = 𝜈𝑡̃
2 (

1

𝐿𝑉𝐾
)
2

= 𝜈𝑡̃
2(

𝜕𝑠
𝜕𝑥𝑗

𝜕𝑠
𝜕𝑥𝑗

𝑠2
) (3.19) 

 𝐸1𝑒 = 𝑐3𝐸𝐵𝐵𝑡𝑎𝑛ℎ (
𝐸𝑘−𝜖
𝑐3𝐸𝐵𝐵

) (3.20) 
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where the Baldwin-Barth destruction term is defined as: 

𝐸𝐵𝐵 =
𝜕𝜈𝑡̃
𝜕𝑥𝑗

∙
𝜕𝜈𝑡̃
𝜕𝑥𝑗

(3.21) 

The model constants used in one-equation eddy viscosity model in Eq. (3.14) are 

given as: 𝑐1  =  0.144, 𝑐2  =  1.86,  𝑐3 = 7, 𝜎 =  1, 𝜅 =  0.41, 𝐴
+ = 13.  
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Chapter 4: The Elliptic Blending 

4.1 Introduction 

Elliptic blending can successfully address the problem of log-layer mismatch in the 

turbulent boundary layer. The wall blocking is governed by an elliptic partial 

differential equation which introduces near wall anisotropy [12]. The original 

one-equation 𝑘 − 𝜖 model is modified and combined with an elliptic relaxation. The 

new model is tested on several benchmark test cases selected from NASA TMR [11]. 

The results from the new one-equation model 𝑘 − 𝜖 with elliptic blending show 

better agreement with DNS data in capturing the velocity profile in the entire 

boundary layer including the sub-layer, buffer layer and log layer compared to the 

model without elliptic blending. 

4.2 Derivation of Elliptic Blending for One-Equation 

𝒌 − 𝝐 Turbulence model 

Based on the work of Han et al. [12], it can be concluded that an elliptic relaxation 

applied to a turbulence model can capture the anisotropic low Reynolds number near 

wall effects more accurately. Following the form of the elliptic blending in 

WA2018EB model [12], elliptic blending is added into the present one-equation 𝑘 −

𝜖 model considered in this paper. The equation for elliptic blending can be expressed 

as: 

−𝐿𝑅
2𝛻2𝑃𝑅 + 𝑃𝑅 = 𝜈𝑡̃𝑆 (4.1) 

where 𝑃𝑅 is a production term. The coupled one-equation 𝑘 − 𝜖 model with elliptic 

blending can be expressed as: 
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𝐷𝜈𝑡̃
𝐷𝑡

= 𝑐1𝐷1𝜈𝑡̃𝑆 − 𝑐2𝐸1𝑒 +
𝜕

𝜕𝑥𝑗
((𝜈 +

𝜈𝑡̃
𝜎
)
𝜕

𝜕𝑥𝑗
(𝜈𝑡̃)) + 𝑃𝑅 − 𝜈𝑡̃𝑆 (4.2) 

𝜈𝑡 = 𝐷2𝜈𝑡̃ (4.3) 

 

−𝐿𝑅
2𝛻2𝑃𝑅 + 𝑃𝑅 = 𝜈𝑡̃𝑆 (4.4) 

 

𝐿𝑅
2 =

𝑚𝑎𝑥(𝐶3𝑘𝜔𝜈𝑡̃ , 𝐶𝑙𝜐)

𝑆 + 
𝐶𝑙𝜐

𝐿𝑟𝑒𝑓
2

(4.5)
 

𝐶𝑙 = 4.0 + √𝜒 (4.6) 

In Eq. (4.5) for 𝐿𝑅 and 𝐶𝑙 are used to correct for the free stream behavior of 𝐿𝑅 

and 𝐿𝑟𝑒𝑓 =  1 is the reference length scale. The calibrated coefficients used in the 

one-equation 𝑘 − 𝜖 model with elliptic blending are as follows:𝑐1  =  0.308, 𝑐2 =

3.097,  𝑐3 = 7, 𝜎 =  1, 𝜅 =  0.41, 𝐴
+ = 8.36, 𝐶3𝑘𝑤 = 0.539 . 

4.3 Validation Cases 

This section shows the comparison of results computed by one-equation model based 

on k-ϵ closure (designated as KE model) and the one-equation model with elliptic 

blending（designated as KEEB model). Several benchmark cases are tested to show 

the performance and accuracy of these two models (KE and KEEB). The results are 

compared with the DNS data or experimental results for each case to compare the KE 

and KEEB models. All the results are computed by using the open source CFD 

software OpenFOAM.  

4.3.1 Zero Pressure Gradient Boundary-Layer Flow past a Flat Plate 

Flow past a flat plate is a basic case used to verify the accuracy of any turbulence 

model. Figure 4.1 shows the computational setup and boundary conditions from 
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NASA TMR [11]. Figure 4.2 shows the computational result for wall skin-friction 

coefficient Cf vs. Reynolds number Re based on length in x direction (𝑅𝑒𝑥) and 

their comparison with experimental data. 𝑅𝑒𝑥 is defined as: 

𝑅𝑒𝑥 =  
𝜌∞𝑈∞𝑥
𝜇∞

(4.7) 

 

Figure 4. 1: Flat plate geometry and boundary conditions [11]. 

 

 

Figure 4. 2: Comparison of computed 𝑪𝒇 on the flat plate with the experimental data. 



15 

 

Figure 4.2 shows that the one-equation KE model has slightly better accuracy 

compared to the KEEB model. The KE model completely matches the experimental 

data. However, the errors between the results computed by KEEB model and 

experimental data are quite acceptable when considering the significant improvement 

of the results of KEEB model in the 2D channel case as shown in the next section. 

The other more complex computations also show the superiority of KEEB model over 

KE model.   

4.3.2 Flow in a 2D Channel at Different Reynolds Numbers 

Fully developed turbulent flow in a channel is another basic test case frequently used 

to assess the accuracy of various turbulence models. Figures 4.3 - 4.12 show results in 

a simple channel flow at several friction Reynolds number ranging from 𝑅𝑒𝜏 = 182 

to 5200 and are compared with DNS data by Lee and Moser [13]. 

 

Figure 4. 3: Comparison of the velocity profile in turbulent channel flow at 𝑹𝒆𝝉 = 182. 
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Figure 4. 4: Comparison of velocity profile in log layer for turbulent flow in a channel at 𝑹𝒆𝝉 = 182. 

 

 

Figure 4. 5: Comparison of velocity profile in turbulent channel flow at 𝑹𝒆𝝉 = 543. 
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Figure 4. 6: Comparison of velocity profile in log layer in turbulent channel at 𝑹𝒆𝝉 = 543. 

 

 

Figure 4. 7: Comparison of velocity profile in turbulent channel flow at 𝑹𝒆𝝉 = 1000. 
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Figure 4. 8: Comparison of velocity profile in log layer in turbulent channel at 𝑹𝒆𝝉 = 1000. 

 

 

Figure 4. 9: Comparison of velocity profile in turbulent channel flow at 𝑹𝒆𝝉 = 2000. 
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Figure 4. 10: Comparison of velocity profile in log layer in turbulent channel at 𝑹𝒆𝝉 = 2000. 

 

Figure 4. 11: Comparison of velocity profile in turbulent channel flow at 𝑹𝒆𝝉 = 5200. 
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Figure 4. 12: Comparison of velocity profile in log layer in turbulent channel flow at 𝑹𝒆𝝉 = 5200. 

From Figures 4.3 - 4.12, it can be seen that both KE model and KEEB model can 

predict the fully developed turbulent channel flow velocity profiles quite well. 

However, when 𝑅𝑒𝜏 = 182, the results from KEEB model are in better agreement 

with DNS data compared to the KE model. 

For the velocity profiles in the sublayer region, both models agree with the DNS data 

very well. However, in the buffer layer and log layer region, there is a large mismatch 

between the results from KE model and the DNS data. KEEB model shows significant 

improvement compared to the KE model in this region close to the channel wall, 

which demonstrates that the elliptic blending is beneficial in improving the 

performance of a turbulence model in buffer layer and log layer region. Overall, it can 

be concluded that KEEB model improves the results in computing wall bounded 

turbulent flows.  

𝑅𝑒𝜏 = 5200 
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4.3.3 Flow over NASA Wall-Mounted Hump 

The configuration and boundary conditions of wall-mounted hump are shown in 

Figure 4.13. The Mach number of the freestream is 0.1 and Reynolds number based 

on hump chord length is Rec = 936,000[11]. This test case is a widely used and 

challenging case for testing the accuracy of turbulence models. 

 

 

Figure 4. 13: Wall-mounted hump configuration and boundary conditions. 

Figure 4.14 shows the comparison of pressure coefficient computed by KEEB model, 

KE model and SA model with the experimental data. Figure 4.15 shows the 

comparison of skin-friction distribution computed by the same models with the 

experimental data. It is can be seen that the results obtained by KEEB model have 

better agreement with the experimental data than the results calculated by KE model. 

It can also be concluded that KEEB model performs as good as the SA model in this 

case. 

Mach = 0.1, 𝑅𝑒c = 936,000 
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Figure 4. 14: Comparison of pressure distribution on the surface of the hump. 

 

 

Figure 4. 15: Comparison of Skin-Friction distribution on the surface of the hump. 
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4.3.4 Flow over a Periodic Hill 

Flow over a periodic hill is also a widely used benchmark test case for turbulence 

model validation for wall bounded flows with separation. Details of this model can be 

found in the European Research Community on Flow, Turbulence and Combustion 

(ERCOFTAC) database [15]. The hill has a height h = 28mm and the Reynolds 

number based on hill height h is 10,595. Simulation results from KEEB model are 

compared to KE and SA models and the LES results computed by Frohlich et al. [16], 

which are provided in the ERCOFTAC database and NASA Langley Research Center 

Turbulence Modeling Resource [11]. The comparison of the skin friction distribution 

on the hill is shown in Figure 4.16. Though none of the models match the LES results 

very well, KEEB model performs slightly better than the KE model for the region 

from x/h = 6.0 to 7.5. The comparison of the pressure distribution on the hill and top 

wall is shown in Figure 4.17 and Figure 4.18 respectively. KEEB model has the best 

agreement with the LES solution compared to KE and SA models, although none of 

the models can compute this flow satisfactorily. 
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Figure 4. 16: Comparison of skin friction coefficient distribution on the periodic hill. 

 

Figure 4. 17: Comparison of pressure coefficient distribution on the periodic hill. 
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Figure 4. 18: Comparison of pressure coefficient distribution on the top surface of the periodic hill. 

4.3.5 Flow in an Asymmetric Plane Diffuser 

The geometry of an asymmetric plane diffuser is shown in Figure 4.19. The Mach 

number of the inflow is 0.06 and the Reynolds number based on H is ReH  =

 20,000 [17]. KEEB model results are compared to the results from KE and SA 

models and experimental data for the skin friction distribution on the top wall in 

Figure 4.20 and on the bottom wall in Figure 4.21. As shown in Figure 4.20, 

computations from KEEB and KE models show good agreement with the 

experimental data for the skin friction on the top wall of the diffuser. For the bottom 

wall of the diffuser, as shown in Figure 4.21, the computed skin friction results from 

KEEB model outperform those obtained from the KE model; however, SA model 

shows the best agreement with the experimental data in this case. Overall, none of the 

models computes the skin friction satisfactorily on both the walls. 
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Figure 4. 19: Geometry of the asymmetric plane diffuser [14]. 

 

Figure 4. 20: Comparison of skin-friction distribution on top wall of the diffuser. 

 

Figure 4. 21: Comparison of skin-Friction distribution on the bottom wall of the diffuser. 
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4.3.6 Flow over a Backward Facing Step 

In this case, a turbulent boundary layer encounters a sudden back step, causing flow 

separation. The flow then reattaches and recovers downstream of the step [11]. Figure 

4.22 shows the configuration and boundary conditions of backward facing step. The 

Reynolds number based on step height H is ReH = 36,000 and the Mach number at 

point (x/H = -4) is 0.128. This is a widely-tested case for turbulence modeling 

validation. 

 

Figure 4. 22: Backward facing step configuration and boundary conditions [11]. 

Figures 4.23 and 4.24 show the pressure distribution and skin friction coefficient 

respectively computed by the KEEB and KE model and their comparison with the 

experimental data [14]. Both the pressure distribution and skin friction coefficient 

predicted by the KEEB model generally match the experimental data; however, the 

overall performance of KEEB model is not as good as that of KE model and SA 

model and KE model has the best match with the experimental data, 
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Figure 4. 23: Comparison of pressure distribution on the surface of the backward facing step. 

 

 

Figure 4. 24: Comparison of Skin-Friction distribution on the surface of the backward facing 

step. 
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Chapter 5: Development of a Transition 

Model  

5.1 Introduction 

The accurate prediction of transitional flow has remained a challenging problem in 

fluid dynamics for over a century. There has been lot of progress towards 

understanding of various mechanisms and fundamental concept behind transitional 

flows, nevertheless the accurate prediction of location and flow characteristics in 

transitional flow regime in complex 3D industrial applications such as flow over 

aircrafts, automobiles, wind turbines and in turbomachines, etc. remains a challenging 

area of research in fluid mechanics. In aerodynamics e.g., the location and process of 

the transitional flow over a wing have a significant impact on the lift characteristics of 

the wing and boundary layer separation. Therefore, accurate prediction of the 

transition flow is very important. 

Currently for practical applications, the four-equation SST-Transition model 

developed by Menter et al. [18] is wieldy used by the industry. The three correlations 

used in this model are functions of the local transition onset momentum thickness 

Reynolds number. Recently, a three-equation model based on a transport equation for 

turbulence intermittency and the LCBT (local correlation-based transition-modelling) 

concept for triggering the transition onset was developed by Menter et al. [19]. In this 

paper, the local correlation-based transition-modelling is applied to the one-equation 

turbulence model based on k-ϵ closure [3]. The new transition model is first validated 
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by computing the ERCOFTAC benchmark transition flow fields over the T3 series of 

flat plates. The model is then tested on several other test cases namely the transitional 

flow past S809 airfoil, Aerospatiale-A airfoil and NLR-7301 two-element airfoil. 

5.2 Derivation of Transition Model (𝒌𝛜 –  𝜸) based on 

One-Equation k-ϵ Closure 

The one-equation 𝑘 − 𝜖 model derived in chapter 4 is a one-equation eddy viscosity 

model derived from the two-equation 𝑘 − 𝜖 closure. The one-equation 𝑘 − 𝜖 model 

can predict the turbulent flows reasonably well but cannot model the 

laminar-turbulent transition process. Therefore, this model is modified to include the 

correlation-based intermittency equation 𝛾  based on the local correlation-based 

transition modelling concept. In one-equation 𝑘 − 𝜖 model [3], the eddy viscosity is 

given by: 

𝜈𝑡̃ = 𝐶𝜇
𝑘2

𝜖
(5.1) 

The transport equation for  𝜈𝑡̃ which includes the intermittency equation 𝛾 in the 

production term can be written as: 

  𝐷𝜈𝑡̃
𝐷𝑡

= 𝑐1𝐷1𝐸𝛾𝜈𝑡̃𝑆 − 𝑐2𝐸1𝑒 +
𝜕

𝜕𝑥𝑗
((𝜈 +

𝜈𝑡̃
𝜎
)
𝜕

𝜕𝑥𝑗
(𝜈𝑡̃)) +  𝑃𝜈𝑡̃

𝑙𝑖𝑚 (5.2) 

where   𝜈𝑡 = 𝐷2𝜈𝑡̃ (5.3) 

𝐸𝛾 = 𝑚𝑖𝑛(𝐶𝛾 ∙ 𝛾, 1) (5.4) 

In Equation (5.2), an additional production term  𝑃𝜈𝑡̃
𝑙𝑖𝑚  has been introduced to ensure 
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proper generation of 𝜈𝑡̃  at transition points for arbitrarily low 𝑇𝑢  levels. The 

expression for 𝑃𝜈𝑡̃
𝑙𝑖𝑚  is given as: 

𝑃𝜈𝑡̃
𝑙𝑖𝑚 = 5𝑊𝑚𝑎𝑥(𝛾 − 0.2, 0) (1.0 − 𝛾)𝑚𝑖𝑛 (𝑚𝑎𝑥 (

𝑅𝑒𝑣
2420

− 1, 0) , 3)𝑚𝑎 𝑥(3𝑣 − 𝜈𝑡̃ , 0) (5.5) 

The transport equation for the intermittency 𝛾 is formulated as: 

𝜕𝜌𝛾

𝜕𝑡
+
𝜕𝜌𝑢𝑗𝛾

𝜕𝑥𝑗
=
𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡
𝜎𝛾
)
𝜕𝛾

𝜕𝑥𝑗
] + 𝐹𝑙𝑒𝑛𝑔𝑡ℎ𝜌𝑆𝛾(1 − 𝛾)𝐹𝑜𝑛𝑠𝑒𝑡 − 𝜌𝑐𝑎2𝛺𝛾𝐹𝑡𝑢𝑟𝑏(𝑐𝑒2𝛾 − 1)(5.6) 

In Equation (5.6), 𝐹𝑜𝑛𝑠𝑒𝑡 is used to trigger the intermittency production which is 

given by the following equations: 

  𝐹𝑜𝑛𝑠𝑒𝑡1 =
𝑅𝑒𝑣

2.2𝑅𝑒𝜃𝑐
,   𝐹𝑜𝑛𝑠𝑒𝑡2 = 𝑚𝑖𝑛(𝐹𝑜𝑛𝑠𝑒𝑡1,  2.0) , 𝐹𝑜𝑛𝑠𝑒𝑡3 = 𝑚𝑎𝑥 (1 − (

𝑅𝑇

6.0
)
3

,  0) (5.7)    

𝐹𝑜𝑛𝑠𝑒𝑡 = 𝑚𝑎𝑥(𝐹𝑜𝑛𝑠𝑒𝑡2 − 𝐹𝑜𝑛𝑠𝑒𝑡3,  0) (5.8)                    

𝐹𝑡𝑢𝑟𝑏 = 𝑒
−(
𝑅𝑇
2
)
4

,   𝑅𝑇 =
𝜈𝑡

𝑣
,   𝑅𝑒𝑣 =

𝜌𝑑𝑤
2 𝑆

𝜇
(5.9) 

The model constants are: 

𝐶𝛾  =  15.6,    𝐹𝑙𝑒𝑛𝑔𝑡ℎ = 150,   𝑐𝑒2 = 50,   𝑐𝑎2 = 0.06,   𝜎𝛾 = 1.0 (5.10) 

The local turbulence intensity 𝑇𝑢𝐿 is given by [19]: 

𝑇𝑢𝐿 = 𝑚𝑖𝑛

(

 100 
√
2𝜈𝑡
3

√ 𝑆
0.3 ∗ 𝑑𝑤

,  100

)

 (5.11) 

where 𝑑𝑤 is the wall distance. In the original formulation of 𝑇𝑢𝐿 obtained from Ref. 

[19], 𝜈𝑡 replaces turbulent kinetic energy k and ω and is replaced by ω ≈ S/0.3.  
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The formula for the pressure gradient parameter can be written as: 

𝜆𝜃𝐿 = −7.57 ∙ 10
−3
𝑑𝑉

𝑑𝑦

𝑑𝑤
2

𝜈
+ 0.0128 (5.12) 

𝑅𝑒𝜃𝑐 is given by [19]: 

𝑅𝑒𝜃𝑐 = 100.0 + 1000.0𝑒𝑥 𝑝[−1.0 ∗ 𝑇𝑢𝐿 ∗ 𝐹𝑃𝐺] (5.13) 

𝐹𝑃𝐺 is a correlation function of 𝜆𝜃𝐿:. 

𝐹𝑃𝐺 = {
𝑚𝑖𝑛(1 + 𝐶𝑃𝐺1𝜆𝜃𝐿 , 𝐶𝑃𝐺1

𝑙𝑖𝑚) ,  𝜆𝜃𝐿 ≥ 0                                                       

𝑚𝑖𝑛(1 + 𝐶𝑃𝐺2𝜆𝜃𝐿 + 𝐶𝑃𝐺3𝑚𝑖 𝑛[𝜆𝜃𝐿 + 0.0681,0] , 𝐶𝑃𝐺2
𝑙𝑖𝑚),  𝜆𝜃𝐿 < 0 

(5.14) 

𝐶𝑃𝐺1 = 14.68,𝐶𝑃𝐺2 = −7.34, 𝐶𝑃𝐺3 = 0.0 (5.15) 

𝐶𝑃𝐺1
𝑙𝑖𝑚 = 1.5, 𝐶𝑃𝐺2

𝑙𝑖𝑚 = 3.0 (5.16) 

In order to avoid negative value, 𝐹𝑃𝐺 is limited as: 

𝐹𝑃𝐺 = 𝑚𝑎 𝑥(𝐹𝑃𝐺 , 0) (5.17) 

The mean vorticity is given by: 

𝑊 = √2𝑊𝑖𝑗𝑊𝑖𝑗 ,          𝑊𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗
𝜕𝑥𝑖
) (5.18) 

The coefficients used in one-equation eddy viscosity model in Equation (5.2) are as 

follows: 𝑐1  =  0.144, 𝑐2  =  1.86,  𝑐3 = 7, 𝜎 =  1, 𝜅 =  0.41, 𝐴
+ = 13. 

5.3 Validation Cases 

This section shows the comparison of results computed by kϵ-γ transition model 
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(designated as KE-Transition model) and SST-Transition model. Several benchmark 

cases are computed to show the performance and accuracy of the new transition 

model. These cases include the ERCOFTAC T3 flat plate series, the S809 airfoil, the 

Aerospatiale-A airfoil, and the NLR-7301 two-element airfoil. All results are 

compared with experimental data for each case. The open-source computational fluid 

dynamics (CFD) code OpenFOAM is used to compute the flow fields. 

5.3.1 Zero-Pressure Gradient Flat Plate Flow 

Two zero pressure gradient flat plate cases (T3A, T3B) are computed, which have 

different free-stream velocities 𝑈∞ and free-stream turbulence intensities 𝑇𝑢∞ as 

given in Table 5.1. Figure 5.1 shows the mesh used in simulations for the two cases.  

 

Figure 5. 1: Grid (221-191) in the computational domain for flow over flat plates 

 

Table 5. 1: Inlet flow conditions for T3 series of flat plates 

 U∞ (m/s) Tu∞(%) μT/μ ρ (kg/m3) μ (kg/m∙s) 

T3A 5.4 3.5 13.3 1.2 1.8e-5 

T3B 9.4 6.5 100 1.2 1.8e-5 

 

2m 0.33m 

1

m 
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Figure 5.2 and Figure 5.3 show the computation results for wall skin-friction 

coefficient Cf vs. Reynolds number 𝑅𝑒𝑥 based on length in x direction and their 

comparison with experimental data [20]. 𝑅𝑒𝑥 is defined as: 

𝑅𝑒𝑥 =
𝜌
∞𝑈∞𝑥

𝜇∞
(5.19) 

 

Figure 5. 2: Transitional flow past T3A flat plate 

 

Figure 5. 3: Transitional flow past T3B flat plate 
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For T3A test case, Figure 5.2 shows that the SST-Transition model has better 

accuracy compared to the KE-Transition model. However, KE-Transition model 

performs better than the SST-Transition model in the transitional region of T3B test 

case. As these figures show that all transition models coincide with their original 

turbulence model in the fully turbulent flow region. It can be concluded that the 

difference between the KE-Transition model prediction and the experiment for the 

two test cases can be attributed to the behavior of the original turbulence model (one 

equation k-ϵ turbulence model).  

5.3.2 Flow past S809 Airfoil 

The S809 airfoil is an airfoil designed for wind energy applications at Mach 0.1[21]. 

The simulation was conducted at an angle of attack α = 10° at Reynolds number = 

2 × 106. The free stream turbulence intensity is 𝑇𝑢∞ = 0.2% and the viscosity ratio 

is 
𝜈𝑡

𝜈
= 10.  

Figure 5.4 shows the numerical results for the coefficient of pressure CP on the S809 

airfoil surface. The result computed by KE-Transition model is compared with the 

SST-Transition model and experimental data. It can be concluded that the result from 

KE-Transition model are in good agreement with the experimental data. 
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Figure 5. 4: Pressure coefficient on S809 airfoil at α = 10°. 

5.3.3 Flow past Aerospatiale-A Airfoil 

The Aerospatiale-A airfoil is a 0.6m chord airfoil designed for helicopter applications 

[22]. The simulation is performed at an angle of attack α = 13.1° and the Reynolds 

number is 2.07 ×  106. In this case, the turbulence intensity is set at 𝑇𝑢 = 0.2% 

with a viscosity ratio of 
𝜈𝑡

𝜈
= 10 at the leading edge of the airfoil.  

Figure 5.5 shows the numerical results computed by KE-Transition model for the 

coefficient of skin-friction Cf along the airfoil surface. The results are compared to 

the experimental data. Figure 5.5 shows that the KE-Transition model has reasonable 

agreement with the experimental data. 
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Figure 5. 5: Transitional flow past Aerospatiale-A airfoil at α = 13.1°. 

5.3.4 Flow past NRL-7301 Two-Element Airfoil 

This case is also commonly used for validation of transitional flow. The NLR-7301 

two-element airfoil has a flap angle of 20° and the gap width between the flap and 

airfoil is 2.6% c (c is the chord of the main airfoil). The simulation is performed at α = 

13.1° and the Reynolds number is 2.51 x106. In order to guarantee y+ is less than 

one, a very fine C mesh is applied near the airfoil surface. 

Figure 5.6 shows the numerical results of pressure coefficients Cp computed by 

KE-Transition model compared to the experimental data [23]. Figure 5.7 shows the 

numerical results obtained from KE-Transition model for skin friction coefficients Cf 

on the airfoil and flap compared to the experimental data. As these figures show, the 

computational results computed by KE-Transition model are in good agreement with 

the experimental data 
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Figure 5. 6: Pressure coefficient on the surface of NLF-7301 airfoil and flap. 

 

 

Figure 5. 7: Skin-friction coefficient on NLF-7301 airfoil. 
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Chapter 6: Summary and Future Work 

6.1 Summary 

It is shown that the proposed elliptic blending version of one-equation model based on  

𝑘 − 𝜖  closure (KEEB model) has better accuracy compared to the one-equation 

model based on  𝑘 − 𝜖  closure (KE model). Both the models can predict the 

turbulent flow past a flat plate very well. However, for fully developed turbulent flow 

in a channel, KE model is not able to compute the buffer layer and log layer near the 

channel wall accurately. In contrast, the KEEB model shows significant improvement 

in calculation of the log layer for flow in the channel. Furthermore, KEEB model also 

shows slightly improved performance over KE model in calculating other benchmark 

test cases of flows with small regions of separation, namely the flow past NASA 

wall-mounted hump, flow over a backward facing step, flow in an asymmetric plane 

diffuser and flow over a periodic hill. Based on the results presented in this paper, it 

can be concluded that the KEEB model provides an improvement over the KE model 

by incorporation of elliptic blending in KE model for negligible additional 

computational cost. 

A transition model is developed by integrating the one-equation turbulence model 

based on 𝑘 − 𝜖 closure with the local correlation-based intermittency equation γ in 

OpenFOAM. The accuracy of the kϵ - γ model (designated as KE-Transition model) 

was tested on several ERCOFTAC benchmark flat plate transition cases; the results 

showed that the two-equation KE-Transition model can predict the location and 
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process of laminar-turbulence transition flow quite well. The KE-Transition model 

can perform better than the SST-Transition model in the transition region for the T3B 

flat plate transition flow case. KE-Transition model was also used to compute the 

transition flow past S809 airfoil and Aerospatiale-A airfoil. It is shown that 

KE-Transition model can predict the experimental data very well. For the transition 

flow past the NRL-7301 two-element airfoil, the KE-Transition model also performed 

very well when compared to the experimental data. In general, the KE-Transition 

model was found to be accurate and efficient in predicting transitional flows past 

airfoils. 

6.2 Future Work: Integration of an Algebraic 

Transition Model with One-Equation 𝒌 − 𝝐 

Turbulence Model (KE) 

The KE-Transition model (𝑘𝜖 − 𝛾) contains the basic equation for 𝜈𝑡̃ based on 𝑘 −

𝜖 closure and contains one additional differential equation for intermittency γ. The 

model is quite good in accurately predicting the location of transition for 

different types of transitional flows. However, despite its accuracy, the model 

requires large amount of computational time to achieve a converged solution.  

Algebraic transition models do not rely on differential equations for computing the 

intermittency characteristics but use algebraic relations which lead to less 

computational cost. This idea has been successfully implemented into two particular 

models, SA-BC [24] and 𝑘 − 𝜔 KD [25]. Both models look promising based on the 

results presented in the corresponding papers. It is therefore worth applying this 
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approach to the one-equation 𝑘 − 𝜖  turbulence model to create a new 𝑘 − 𝜖 

algebraic laminar-turbulent transition model. 

 

The proposed equation for k − ϵ algebraic laminar-turbulent transition model can be 

expressed as: 

  𝐷𝜈𝑡̃
𝐷𝑡

= 𝑐1𝐷1𝜈𝑡̃𝑆𝛾 − 𝑐2𝐸1𝑒 +
𝜕

𝜕𝑥𝑗
((𝜈 +

𝜈𝑡̃
𝜎
)
𝜕

𝜕𝑥𝑗
(𝜈𝑡̃)) (6.1) 

The equation for intermittency γ in Eq. (6.1) is given by: 

𝛾 = 1.0 − exp(−√𝑇𝑒𝑟𝑚1 − √𝑇𝑒𝑟𝑚2) (6.2) 

where 

𝑇𝑒𝑟𝑚1 = 
max(𝑅𝑒𝜃 − 𝑅𝑒𝜃𝑐 , 0)

𝜒1𝑅𝑒𝜃𝑐
;   𝑇𝑒𝑟𝑚2 = 

max(𝜈𝐵𝐶 − 𝜒2, 0)

𝜒2
(6.3) 

are the trigging functions. 𝑇𝑒𝑟𝑚1 triggers onset of transition when 𝑅𝑒𝜃 > 𝑅𝑒𝜃𝑐 

and the 𝑇𝑒𝑟𝑚2 function triggers the growth of intermittency inside the boundary 

layer. The auxiliary relations are: 

𝑅𝑒𝜃 = 
𝑅𝑒𝜈
2.193

;  𝑅𝑒𝜈 =  
𝜌𝑑𝜔

2

𝜇
Ω; 𝑅𝑒𝜃𝑐 = 803.73 (Tu∞ + 0.6067)

−1.027;  𝜈𝐵𝐶 = 
𝜈𝑡
𝑈𝑑𝑤

(6.4) 

The constants 𝜒1 and 𝜒2 need to be calibrated to ensure good agreement with the 

experimental data for all cases. Theoretically, this new model is more efficient for 

computation compared to the model described in chapter 5 in this thesis.  
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