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Abstract

We study non-preemptive, online admission control in the hard deadline model:
each job must be either serviced prior to its deadline, or be rejected. Our setting
consists of a single resource that services an online sequence of jobs: each job
has a length indicating the length of time for which it needs the resource, and a
delay indicating the maximum time it can wait for the service to be started. The
goal is to maximize total resource utilization. The jobs are non-preemptive and
exclusive, meaning once a job begins, it runs to completion, and at most one job
can use the resource at any time. We obtain a series of results, under varying
assumptions of job lengths and delays, which are summarized in the following
table.

*An earlier version appears in Proceedings of the Workshop on Algorithms and Data Structures, pages
258-271, August 1997.
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Job Lengths Delay Type | Competitive Ratio
1 Arbitrary 2
1 Min. Delay 1 1.5
{1,k} Arbitrary 4
{1,k} Uniform (1 + If,—:l)
{1,2,2%...,2° Arbitrary 3(c-+1)
{1,2,2%...,29 Uniform 2.5(c+ 1)
[1,2¢] Arbitrary Ge+ 1)
1,29 “Uniform” 5(c+1)

1 Introduction

Ounline scheduling is an important problem area, with diverse applications. In this paper,
we consider a scheduling framework where jobs have a hard deadline, meaning any job not
serviced by its deadline is lost. Jobs arrive online, and must be scheduled non-preemptively.
While much of the classical work on scheduling has been done in an offline setting, on-
line scheduling is becoming especially important in high-speed network applications. The
scheduling with hard deadlines models some interesting problems in providing Quality-of-
Service {QoS) in shared packet-switched networks, as well as high bandwidth multimedia
applications. For instance, in a packet-switched network such as the Internet, multiple traf-
fic streams pass through a network of switching nodes (routers). Each node implements a
service discipline (scheduling algorithm) for forwarding the incoming packets to outbound
links. Due to the highly variable traffic rates (from few bits to several megabits per second)
and packet sizes (from few bytes to several kilobytes), simple schedulers such as FIFO and
round robin can fail miserably and fail to provide the bandwidth fairness and worst-case
latency bounds. Packets in a latency-sensitive traffic stream such as video must be deliv-
ered within a small window, or else be dropped—the latency window corresponds to the
maximum permissible delay at a router. (In these applications, delivering packets late has a
worse effect than simply dropping the packets.) Similarly, in such emerging applications as
video-on-demand, a useful model for requests is where users specify a window of time during
which the delivery is acceptable.

Ouline scheduling in these applications can be used for admission control, accepting some
requests and rejecting others with the goal of maximizing the total resource utilization. The
requests or packets must be serviced online in these applications since the future arrival
sequence is generally not known. We use competitive analysis' to measure the quality of our

algorithms [13, 11, 6]; we consider both deterministic as well as randomized algorithms.

1We consider the oblivious competitive ratio in which the input sequence is selected independently of the

random choices of the algorithm {5].



Job Lengths Delay Type | Competitive Ratio
1 Arbitrary 2
1 Min. Delay 1 1.5
{1,k} Arbitrary 4
{1,k} Uniform (1+5)
{1,2,2%,...,2°} | Arbitrary 3(c+1)
{1,2,22,...,2°} Uniform 2.5(c+1)
1, 2] Arbitrary 6(c1)
1,2°] “Uniform” 5(c+1)

Table 1: Summary of Results. We require that % is a real number greater than 1 and that
¢ is a known integer. Uniform delay is a delay proportional to job length. However, in the
last table entry “Uniform” refers to a delay proportional to [lg|J[] for job J.

1.1 QOur Results

In earlier work, admission control algorithms have allowed preemption (8, 9], however, newer
technologies seem to favor non-preemption. In particular, high speed networks based on
packet switching technology (e.g. Asynchronous Transfer Mode) are connection oriented,
meaning that resources are reserved during a call set up, and the overhead of this setup makes
preemption highly undesirable. ATM networks are well-suited for latency-sensitive real-time
traflic, such as video, voice, and multimedia. Consequently, there has been considerable
recent work on non-preemptive admission control [1, 12, 3, 2, 4, 7]. Our work is most
closely related to, and a generalization of, Lipton and Tomkins [12]. Our main results are
summarized in Table 1. (By appropriate scaling, we can assume that the shortest job has
length one. Uniform delay means that jobs of the same length have the same delay. The
competitive ratios in all cases except for the first two are expected—the algorithms for the
unit length jobs are deterministic, while all others are randomized.)

'The unit length jobs may seem artificial but, in the networking context, they correspond
to packet lengths, and therefore are well-suited to ATM where all packets have the same
fixed size (53 bytes). Thus the special case of all jobs having the same length under the
arbitrary delay model is of great interest. Also, it seems quite reasonable in this setting to
require that there is a minimum delay. For other networking profocols and in the example
of a video server, the jobs will have different lengths. As the table shows, for these settings
we are able to get stronger results by enforcing uniform delays; this seems like a reasonable
way to treat equal-length jobs.

When all jobs have unit length, we prove that the (deterministic) strategy of choosing



the available job with the earliest deadline first is strongly 2-competitive. (Note that this
does not mean that jobs are scheduled in the earliest deadline order-—a future job may
have deadline sooner than an already scheduled job.) Strong-competitiveness means that
no deterministic algorithm can do better in the worst-case. If randomized algorithms are
permitted, then we can show a lower bound of 4/3 for the expected competitive ratio. When
all the jobs have equal length and the minimum delay is at least the job length, then we
prove that our greedy algorithm is 3/2-competitive.

When jobs have one of the two known lengths (1 and k& > 1)}, we give a randomized
algorithm that is 4-competitive. Additionally, if the delays are uniform, meaning that equal-
length jobs have the same maximum delay, we give a randomized algorithm that is (1 + %)—
competitive. For & an integer, this algorithm is strongly 2-competitive. This generalizes the
result of Lipton and Tomkins [12], who consider jobs with no delays, and settles an open
question of their paper. It is easy to see that there are instances (a large number of jobs
arriving at roughly the same time, but each with a large allowable delay) where the optimal
solution with delays is significantly better than that with no delays. While Feldmann et. al [7]
show that there are worst-case inputs where delay does not help, we believe that in practice
delay will help increase the resource utilization significantly. Finally, we extend our results

to jobs of multiple lengths. These results are stated in Table 1 and are self-explanatory.

1.2 Previous Work

Our work is most closely related to the work of Lipton and Tomkins [12] and Awerbuch,
Bartal, Fiat, and Résen [3]. The paper of Lipton and Tomkins considers scheduling without
delays, and we extend their work by considering several models of delays. If all delays are
set to zero, our results achieve the same performance as Lipton and Tomkins. Finally, our
results can be combined with the methods of Awerbuch et. al [3] to handle routing on a tree
network or the situation in which the bandwidth of the requests can vary.

The paper by Awerbuch, Bartal, Fiat, and Résen [3] considers admission control for tree
networks. Again, no delays are allowed, meaning a request must be either scheduled imme-
diately or rejected. They present a general technique called “classify-and-randomly-select”
that randomly selects a bandwidth b, length £, and benefit f, all of which are powers of 2.
The algorithm then rejects all requests that do not have bandwidth between b and 2b, length
between £ and 2¢, and benefit between f and 2f. They first give an O(log n)-competitive algo-
rithm for the case of a tree network of n nodes where all calls use the maximum bandwidth,
have infinite length, and equal benefits. Then, by using the classify-and-randomly-select
paradigm, they allow any of the other parameters to vary with a multiplicative increase of
log A, where A is the ratio of the largest to smallest value for the parameter being varied.

While the classify-and-randomly-select algorithm is simple and has provably good worst-

4



case performance, in practice, it seems unlikely that one would want an admission control
algorithm that rejects all calls whose length is less than £ or greater than 24. In real-life, a
rejected user is quite likely to immediately re-issue another request, forcing poor behavior
for the classify-and-randomly-select algorithm. Allowing users to specify a maximum delay
would eliminate such behavior. Qur algorithm is also more natural for real-life use since it
does not pre-select the lengths of the requests to accept.

Finally, Feldmann et. al [7] consider scheduling jobs with delays for a network that is
a linear array of n nodes. They show that in some cases fixed length delays do not help.
When delay is at most a constant multiple of the job length, they give request sequences
where the competitive ratio between the amount of time the resource is used by an on-line
algorithm with delays to the amount of time the resource is used by an off-line algorithm
with no delays is Q{lgn). They also consider infinite delays, and try to optimize either the
total completion time for all jobs, or the maximum delay between a job’s arrival and its
start of service. They present a O(log n)-competitive greedy strategy for these measures on

a n-node tree for requests of arbitrary bandwidth.

2 Preliminaries

Scheduling Model. A job (or call) J consists of a triple of positive real numbers (as, ||, w7},
where a; is the arrival time, |J| is the length, and wy is the maximum wait time for job J.
That is, job J must be started during the interval [a7, a7 + wy). A problem instance is a
finite set & of jobs to be scheduled. We say that a schedule o € § is feasible if no two jobs
are running at the same time. We define the gain of a schedule o to be ¥ ¢, |/|. That is, it
is the amount of time for which the resource is scheduled. (If clients are charged a rate per
minute of usage, then the gain accurately reflects the profit of the schedule.

In the uniform delay model, the delay of each job is a function of the job’s length. The
only property of the uniform delay model used in our proofs is that jobs of the same length
have the same delay. We also consider the arbitrary delay model in which each job can

specify its own delay without any restrictions.

Method of Analysis. Our scheduling algorithms use randomization and thus we study
their expected performance. We use G4(S) to denote the expected gain of algorithm A
on a problem instance &. The gain of algorithm A on a particular job J € § is defined
as G4(J) = ¥, Prlooceurs) Pr[J € o] - |J|, where the probability that ¢ occurs is with
respect to the algorithm A, meaning the probability that A produces schedule ¢ given S.
We let G4(S) = 3 jes Ga(J). When the algorithm being studied is clear, we just use G{J}
and G(S). We use standard competitive analysis [13, 11, 6] to evaluate our algorithms.
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Figure 1: In the left drawing J7 blocks J;*, and in the right one J¢ covers J7*. If JZ = J7*
then by our definition of blocking, J; blocks J;.

Namely, let o, be an optimal solution (constructed by a computationally unbounded off-line
algorithm). We say that algorithm A is c-competitive i VS : ¢- Ga(S) > |o.]. An algorithm
A is strongly c-competitive if it is c-competitive and there exists no ¢~competitive algorithm

for ¢ < c.

Additional Definitions. FEach job in § is either (1) scheduled, (2) virtually scheduled,
or (3) rejected. The job only runs if it is scheduled. A virtually scheduled job J does not
run itself, but prevents any job of length < |J| from running during a period of length |J].
Thus, virtually scheduling a job J holds the resource for a longer job (length > 2|J|) with a
short wait time that may arrive during the interval when J is virtually scheduled.

A job can run at different times in ¢ and oy, so we use J? to denote J; as run or virtually
run in o, and likewise use J7* to denote J; as run in .. Abusing the notation slightly, we
also use J¢ and J{* as times at which J; started in ¢ and 0., respectively. We say that a
scheduled or virtually scheduled job J7 blocks job J{= if J7 < J7* < JZ +J;]. Job J? covers
JI i J7 < JPt and J? 4 5] > J7 + | ], (See Figure 1.)

Basic Proof Structure. Given a schedule o produced by algorithm A, we associate jobs
in ¢ with jobs in the optimal schedule o.. For jobs I € ¢ and J € 0., we let A,(I,J)
denote the portion of job [ assigned to job J. The total gain associated with J for the
schedule ¢ is defined as gain(o,J) = ¥ e, As(L,J). For C a set of possible schedules, we

define E¢ a[gain(J)] = Y Pro occurs] - gain(c, J). When the algorithm A is clear from the
aeC
context, we simply use E¢[gain(J)]. Finally, when C is the set of all legal schedules for the

jobs in S, we use E[gain(J)].

Our assignments for schedule o will have the following two properties: (1) - ¢, As(1,J) <
|7|, and (2) for each J € o., E[gain(J)] > |J|/r where r > 0. Property (1) is easily enforced.
In order to achieve Property (2), we show that any schedule produced by our algorithm
belongs to one of & cases: Cy,...,Ck, where C; occurs with probability p;. We prove that for
each job J € o, and each case C;, the following holds: FEg¢[gain(J)] 2 {J|/r. It follows that

Gus) 2 ¥ = GonlS)



Properties (1) and (2) imply that our algorithm is r-competitive. Although a similar proof
structure was used by Lipton and Tombkins, the assignment from jobs in S to the jobs in
o, are more complicated in our case because we allow delays, and thus the assignments
must depend on the particular schedule ¢. In particular, a job can be run at different times
(potentially overlapping) in different legal schedules {including ¢ and o), which complicates

the analysis significantly.

3 Unit Length Jobs

When no delays are allowed and all jobs have the same length, the greedy strategy of schedul-
ing the jobs in the order of arrival is easily shown to be optimal. The problem becomes more
complicated if arbitrary delays are allowed even if all jobs have the same length. The fol-
lowing theorem establishes lower bounds on the competitive ratio achievable by any online

algorithm for this case. Without loss of generality, assume that all jobs have unit length.

Theorem 1 Consider the task of scheduling jobs of unit length where each job can specify
an arbitrary delay. No deterministic algorithm can be c-competitive for ¢ < 2, and no

randomized algorithm can be e-competitive for ¢ < 4/3.

Proof: Let scenario S; consists of two jobs: J; arrives at time 0 and has a wait time of 1.25,
and J; arrives at time .25 and has zero wait time. Scenario &; also has two jobs: J; is same
as before, but J; arrives at time 1 and has zero wait time. Suppose a scheduling algerithm
A schedules J; at time ¢ = 0 with probability p. (If A is deterministic, then p € {0,1}.)
Then G4(S1) =p-1+(1—p)-2=2—p, and Gua(S:) =p-24+ (1 —p)-1 =1+ p. The
optimal schedule in each case has gain of 2. Thus, the competitive ratio for A is at least

max (Gm(&) GOPt(Sz)) :ma,x( 2 2 ) = 2 )
CGa(S1) " Ga(S2) 2—p° 1+p/ min2-p, 1+p)

If A is deterministic, we get min{2 —p, 1 + p} = 1, since p is either 0 or 1, which implies
that the competitiveratio of A is at least 2. If A is randomized, we get min{2—p, 1+p} > 3/2,
for p = 1/2, implying that 4/3 is a lower bound on the competitive ratio of A. a

Let Greedy denote the following greedy algorithm. At any time ¢, let Q(¢) be the set of
all available jobs, meaning jobs J such that ay <t < ay + wy. If the resource is free at time
t and Q(f) # 0, we schedule the job in @Q(t) that minimizes (a; + wy) — ¢; that is, the job

with the smallest wait time remaining. We now prove that Greedy is strongly 2-competitive

among all deterministic algorithms.

Theorem 2 When jobs have unit lengths and arbitrary delays, Greedy is a strongly 2-

competitive deterministic algorithm.



Proof: For the upperbound, for each job J € o, assign %|J| to the job blocked (if any) by
J and the remainder of [J| to itself. Let J; € o,. If J; € o, then Ggreeay(J;) > I—Jg—l, since
|—“g—| is assigned to itself. Suppose J; ¢ o, then some job J; € ¢ must block J; and hence
A (Ji, J;) 2 %l = L‘;-?—l Thus Greedy is 2-competitive and hence by Theorem 1, it is strongly
2-competitive. 'n

We now consider the special case in which the minimum wait time is at least 1, the length

of the jobs. This proof uses a different technique than that used in our other proofs.

Theorem 3 When jobs have unit lengths and wait times of at least one, Greedy is a g’--

competitive deterministic algorithm.

Proof: Consider the schedule o produced by Greedy, and call the periods during which the
resource is continuously in use the busy periods of o. Label these periods as 7,7y, ..., Ty,
and let b; and e;, respectively, denote the times at which m; begins and ends. Partition the
job sequence § into classes &1, 8,, . . ., Sy, where 8; consists of exactly those jobs that arrived
during the period [b;, e;). Observe that Greedy schedules only jobs from S; during #;, and
the job queue is empty at ¢ = ¢;.

We consider an arbitrary busy period ;. For the purpose of analysis, we compress the
schedule of the jobs in &; produced by ¢.. Label the jobs in the schedule produced by o,
on &; as Ji,Jy, ..., Jis;) where Jp runs before J; if & < [. We build the modified schedule
s, in the following manner. Place J; in o, starting at b;. For I < &k < |&;], place J; in
oy, starting as soon as Jy_; ends. In other words, we modify o,; by backing up the jobs to
remove any 1dle time. The resulting schedule may not be feasible since some jobs could start
before their arrival time. However, this gives a lower bound for the performance of ¢, which

is all we need. Using the modified schedule, the jobs are partitioned into three classes:
1. L; € &;, the jobs scheduled in o, after the time e;;
2. R; C &;, jobs in o, that are not in o;
3. jobs common to ¢ and e, during ;.

Use the mnemonic “lazy” for L and “rush” for R: jobs in L; have their deadlines past e;,
while all the jobs in R; have their deadlines before e;—otherwise the job queue of ¢ wouldn’t
be empty at e;. Let [; and r; denote the cardinality of L; and R;, and let k; = |m;| be the
length of 7; in units of jobs. Then, it is clear that the total length of the jobs in S; scheduled

by o. cannot exceed either &; + ; or k; + ;. Therefore, the competitive ratio of o is

. i+l kit
mi T h )




If I; < k;/2, then the competitive ratio during m; is 3/2, and the proof is complete.
Otherwise, we show that r; < k;/2 must hold. We claim that J. (as run in o.,) cannot
overlap fwo lazy jobs in o. Suppose it did, and let L and I’ be the two jobs overlapping J,.
Since m; is a busy period, jobs L and L' run consecutively, and let ¢,¢ + 1, + 2 denote the
time at the start of L, the end of L, and the end of L'. Since the job J. has a minimum
delay of 1, it must be eligible to run either at ¢ or at ¢ - 1 (if it arrives during (¢,t + 1),
then it can run at ¢ + 1, and if arrives before ¢, then it can run at ¢). Since J, is a rush
job, its deadline expires before e;, while both L and I’ have their deadlines after e;, we get
a contradiction that Greedy schedules jobs in the order of earliest deadline first. A similar
argument proves that no lazy job can overlap two rush jobs in ¢.. Because o., has no idle
periods, the number of lazy jobs is at most k; — r; since there is at most one per non-rush
job in m;. Thus, we have the inequality I; < k; — r;. Since l; > ki/2, ki/2 < k; — r; yielding
that 7; < k;/2, which gives the desired upper bound of 3/2 on the competitive ratio. Since
the ratio holds for all busy periods of o, it holds for the entire schedule. W]

4 Jobs of Two Lengths

We present a 4-competitive algorithm when each job can have one of two lengths, 1 and &
(for any real & > 1). If the delays are uniform, rather than arbitrary, then we show that our
algorithm is (l + I%1)—(:ornpetitive. We refer to the length-1 jobs as short jobs, and length-k
jobs as long jobs. Let the short jobs be S,...,5,, in their order of arrival; similatly, let the
long jobs be labeled L,,. .., L,, where L; arrives after L;_;. We use J; to denote a job that
could be of either length. Note that in this result, the competitive ratio does not depend on
the ratio between the longest and shortest job.

Our scheduling algorithm, Schedule-Two-Lengths uses a queue @; (respectively, @) for
short jobs (respectively, long jobs) that have arrived and are still waiting to be scheduled.
Within each queue, the jobs are given priorities in decreasing order of the last time at which
the job can be started. The basic idea is very simple. Whenever the resource is not in use
(i.e. either unscheduled or virtually scheduled) and )} is not empty, we schedule the highest
priority job from Q. If Q) is empty and @, is not empty then with probability 1/2 the
short job of the highest priority from @); is scheduled and otherwise it is virtually scheduled.
Without loss of generality we assume that, if possible, two jobs in o, are scheduled so that
the one with the earlier deadline is first. Our complete algorithm is show in Figure 2. If a
short job is virtually scheduled, we remove it from @, even if its wait time has not expired. It
would seem that in practice leaving the job on @y would only improve the resource utilization.
In this case when we have jobs of two lengths, leaving jobs on the queue does not hurt the

expected gain. However, when we consider jobs with arbitrary lengths, there are cases in



Schedule-Twolengths
Initialize ¢} and @), to be the empty queunes
When job J arrives
If |7| =1 (i.e. J is a short job)
If the resource is not scheduled nor virtually scheduled
With probability 1/2 schedule J, otherwise virtually schedule J
Else Place J in ¢4
If[J| =k (i.e. Jis along job)
If the resource is not scheduled then schedule J
Else Place J in @}
When a scheduled or virtually scheduled job finishes
If @ is not empty
L.et J be the highest priority job in Q)
Remove J from @ and schedule J
Else if (), is not empty
Let J be the highest priority job in ¢
Remove J from ¢},
With probability 1/2 schedule J, otherwise virtually schedule J

Figure 2: Our admission control algorithm for when the jobs have lengths of 1 or k. The jobs
in 1 (and also Q) are given a priority based on the latest time at which the job can start
(with the highest priority given to the job that must start the soonest). We assume that
jobs are removed from the queue when their wait time expires without explicitly including
such checks in our pseudo-code.

which leaving jobs on the queue result in a worse expected gain.

We now prove that Schedule-Twolengths is 4-competitive. Our proof is presented in a
more general form than necessary to ease the transition to the case of arbitrary length jobs
(which is given in the next section). For the schedule o, we define the following graphs. For
jobs of length £ (which is either 1 or k) we construct a graph G, = (V, E¢) as follows®. For
each job of length £ there is a vertex in V. If J7 blocks J7* for |J;| = |J;| = £, then the
directed edge (J;,J;) is placed in Ey. (Note that a virtually scheduled short job can block
another short job.) Because each job can block only one other, the graph @, consists of a set
of chains where a chain is a path ((vi,v2), (v2,v3), ..., (Va—1,vn)). We refer to vy as the head
of the chain, and v, as the tail. A chain is a singleton chain if it contains a single vertex.

The assignments A,(-,-) are defined as follows:

Assignment 1: For (5;,5;) € Fy where S; is scheduled in o, let A,(S;, S;) = A,(S5;, 8:) =

*The graph Gy is defined with respect to a schedule . For ease of exposition we use the notation Gy

versus Ge(o)
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1/2.

Assignment 2: Let L; be a long job. For each short job S; € 0. covered or blocked by L7,
let A,(L;, S;) =1/4.

Assignment 3: For (L;, L;) € Ey, let A,(L;, L;) = k/2.

Assignment 4: The remaining portion of L; is assigned to itself.

Since a long job can cover at most & short jobs, it is easily seen that for each job J € o,
g Ae(J, J;) £ [J]. To prove that Schedule-Two-Lengths is 4-competitive we show that for
all jobs J in o, the expected value of the assignment to J is at least 1.J|/4.

Theorem 4 Schedule-Two-Lengths is 4-competitive in the model with arbitrary delays.

Proof: We show that E[gain(J)] > |J|/4, for each J € o..

Case 1: J is a short job 5; € o.. Let ¢ be the time when S; starts in o,.. We partition

the set of feasible schedules based on the following conditions:

Cla:

Clci

A short job S; is considered (removed from @)y and a coin flipped) during the
interval (¢ — 1, ¢]. With probability 1/2, S; is scheduled thus blocking S;. Since
Ae(5:,55) = 1/2, Eey,[gain(55)] = (1/2)(1/2) = 1/4.

: A long job L; is considered during the interval (¢ — &, t]. Since I; runs with

probability 1 and A,(L;, 5;) = 1/4, Ee,,[gain(S;)] > 1/4.

If neither of the above occur, then both queues must be empty at time ¢{. However,
S; runs in o, at time ¢ and thus it must have been removed from ), because it was
considered earlier. Thus with probability 1/2, S; runs in which case A,(S;, 5;) =
1/2. So B¢, [gain(S;)] = (1/2)(1/2) = 1/4.

Case 2: J is a long job L; € .. Let t be the time when L; starts in o,. We partition the

set of schedules based on the following conditions:

Cgai

A short job S is considered during the interval (¢t — 1, t]. @) must be empty when
S was considered, yet by time ¢, job L; arrives. Let [ be the first long job to arrive
after S was considered. (Job L could be L; or a different long job that arrives
before L;.) With probability 1/2, job S is virtually scheduled and thus L runs in
o when it arrives. Since A,(L, L;) = k/2, Ee,, [gein(5;)] = (1/2)(k/2) = k/4.

11
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Figure 3: A backward chain. Note that jobs of other lengths can be interleaved within the
chain. Also the jobs in ¢ could be scheduled or virtually scheduled.

Cop: A long job L; is considered during the interval (¢ — k, t]. Since L; runs with
probability 1 and A,(L:, L;) = k/2 > k/4, Ec,,[gain(L;)] > .

Cac: If neither of the above occur, then both queues must be empty at time . However,
Lj runs in o, at time ¢ and thus must have been removed from @ because it was
considered earlier. The maximum amount of L; is assigned to other jobs when
L; covers k short jobs (k/4 assigned) and blocks a long job (%/2 assigned). Thus
As(Lj, Lj) 2 k — (B[2 + k[4) = k/A.

Thus, we have shown that E[gain(J)] > |J|/4, for each J € .. This establishes G4(S) >
Gopt(S) /4 as desired. O

We now consider the model of uniform delays: all jobs in the same class (short or long)
have the same delay. In this case, we can assume that o, schedules jobs of the same class
in the order of their arrival: if J and J' are two same length jobs in o, then equal delay
implies that they can be ordered by their arrival time. Observe that ¢ also schedules the
jobs in this order. Ordering jobs (within its length class) by their arrival time allows us to
take advantage of the following additional structure. We say a chain is a backward chain
if each job blocks one that arrives before it. Thus in a backward chain jobs appear in the

reverse order of arrival. (See Figure 3.)
Theorem 5 Schedule-Two-Lengths is (1 + I%L)—competitive in the uniform delay model.
Proof: Let a = (1 + %1) The assignments A,(-, -} are defined as follows:

Assignment 1: For (S;,5;) € E; where S; is scheduled in o, A,(5;,5;) = 1.

Assignment 2: For each S§; € o, covered or blocked by the long job L; € o, A,(L;, 5;) =
1/

Assignment 3: For (L;, L;) € Ey, As(L;, L;) = k/a.

Assignment 4: Ior each job J, all unassigned portions of .J are assigned to job J’, where
J' is the first job from o, in the chain of 73 or G that includes J.

12



First, notice that 355 As(J,J;) < |J|, for each job J € ¢. Short jobs clearly satisfy the
constraint. A long job can cover at most & short jobs and block one long job, and hence the
total assigned value from Assignments 2 and 3 is 2k/«, which is at most & since a > 2. We
now prove that E[gain(S;)] > |5;|/a for each S; € o..

Case 1: We consider when 5; € o.. is a short job. As in the last proof, let ¢ be the

time 57"

Ciat A short job 5; is considered during the interval (¢ — 1, £]. With probability 1/2,
5 is scheduled and thus A,(S;, S;) = 1. Thus E¢,, [gain(S;)]=1/2 > 1/a.

Cip: A long job L; is considered during the interval (¢ ~ k, t]. Since A,(L;, S;) = 1/a,
Be,y[gain(S5)] 2 1/c.

Cic: Both queues are empty at time ¢ and thus S; was considered earlier. We now

argue that S; is the head of a backwards chain in Gy. If S; does not block a short
job in o then §; is a singleton chain. Suppose that S; blocks Sj. Then since Sj
is before S; in o, and there are uniform delays, we know that S; arrived before
S;. Thus Sy must be considered in ¢ before S; (or otherwise it would have been
considered instead of S5; at time 57). So we must eventually reach a short job 5;
that is considered in o yet blocks no short job. Thus St is the tail of the chain
with head S;. Since only Assignment 4 applies for Sz, A;(57,5;) = 1. St runs
with probability 1/2, and thus Ee, {gain(5;)] =2 1/2 > 1/a.

Case 2: We consider when Z; € 0. is a long job. Let ¢ be time L*.

Cgai

Cgb:

A short job S is considered during the interval (¢ — 1, ¢], and thus @ was empty
when .5 was considered. Let L be the first long job to arrive after § was considered.
With probability 1/2, job S is virtually scheduled and thus L runs in o when it
arrives. L cannot block or cover any short jobs since there is less than one unit
between its arrival time and ¢. Since we have uniform delays, I’s deadline must
have passed by time ¢ or otherwise o, would have scheduled it instead of L;. Thus
L ¢ o., and hence there is a chain in G, with head L followed by L;. Since L ¢ 0.,
all of the unassigned portions of L are assigned to L;. Thus A,(L, L;) = k and
hence Fe, [gain(S;)] 2 (1/2)k = k/2 > k/a.

A long job L; is considered during (f — k, t]. So Ee,,[gain(L;)] = 1 Ax(Li, L;) =
Efc.

13



Cae: Both queues are empty at time ¢ and thus L; was considered earlier. Using an
argument as in Case lc, it follows that L; is the head of a backwards chain in G
Let Ly be the tail of the chain. The only portions of Ly not assigned to L; are
the 1/« units assigned to each of the at most [k] short jobs covered or blocked
by L7. Thus

Ee, lgain(55)] = 1-As(Le, L) 2 k- [21 = k—[k] (A ﬁk}) =k (i~ f[k]) = g

The lower bound of 2 given by Lipton and Tomkins {12] holds here (since all delays could
be zero), thus we immediately obtain the following corollary.

Corollary 6 Schedule-Two-Lengths is strongly 2-competitive in the uniform delay model
when the ratio, k, between the length of a long job and the length of a short job is an

integer.

5 Arbitrary Length Jobs

In this section we consider jobs that can have any length, but the maximum length of a
job is known to the algorithm; as usual, we assume that the shortest job has length 1. We
first consider the case when job lengths are powers of 2, namely, 1,2,4,...,2¢ for some
known constant ¢. While our algorithm is similar to the Marriage Algorithm of Lipton and
Tomkins [12], our analysis is completely different. Note that the classify-and-randomly-
select paradigm [3] in this case would just pick one randomly selected length to schedule.
Our approach, in contrast, seems much more reasonable in practice: though there is a bias in
favor of longer jobs, shorter length jobs also have a chance of being scheduled. The following

lower bound was shown by Lipton and Tomkins {12].

Theorem 7 [12] Lelt A = 2° be the ratio between the longest and shortest lengths. There
is a lower bound of Q{log A) = Qc) for the randomized competitive ratio in the model with

no delays.

Following Schedule-Two-Lengths we maintain a separate queue for different length jobs.
We use @, to denote the queue for jobs of length 2°. We favor the longer jobs in that
(1) the probability of scheduling a job of length 2¢ is 1/(c+1~£) so the longer jobs are
more likely to be scheduled, and (2) whenever the resource becomes available we schedule or

virtually schedule the longest job available. During the period a job J is virtually scheduled,
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Schedule-With-General-Delays
Initialize Qo, . .., & to be the empty queunes
When job J arrives
Let 2° be the length of J (for 0 < £ < ¢)
If the resource is not scheduled, or if J’ is virtually scheduled where |J/| < 2471
With probability 1/(c+1—£) schedule J, otherwise virtually schedule J
Else Place J in (¢
When a scheduled or virtually scheduled job finishes
Let ¢)¢ be the non empty queue for the largest £ possible
Let J be the highest priority job in @,
Remove J from ¢,
With probability 1/(c+1—{) schedule J, otherwise virtually schedule J

Figure 4: Our admission control algorithm for when the jobs have lengths of 1,2,4,...,2°71,
or 2¢ for a known constant e.

it prevents jobs of the same length or shorter jobs from running, but not longer ones. Qur
complete algorithm is shown in Figure 4.

As in Schedule-Two-Lengths, if a job is virtually scheduled, we remove it from the queue
even if its wait time has not expired. However, in this case, leaving a job on the queue may
result in a worse expected gain. For example, a long job with a large delay arrives when the
resource is free and a succession of shorter jobs with small delays arrive soon after. As long
as the larger job is virtually scheduled, the resource is not in use and we do not consider
the shorter jobs. If the shorter jobs have a very small delay, they time out before we get an
opportunity to consider them. During the period this job is virtually scheduled, the optimal
algorithm will schedule both the long job and a series of short jobs. Intuitively, if we do
not remove the large job from the queue after it has been considered once and it is virtually
scheduled at least once, our expected gain decreases since we never give the short jobs a
chance to run.

We now prove that this algorithm is 3(c + 1)-competitive. As in Schedule-Two-Lengths
we use a graph for jobs of each length. Instead of using Gy = (Vie, Eye) for the graph
corresponding to jobs of length 2¢ we use Gy = (V;, E;) for 0 < £ < ¢. For each job of length
2¢ there is a vertex in V. If a scheduled or virtually scheduled job J¢ blocks J7* where
|J;| = |J;] = 2¢ then the directed edge (J;, J;) is placed in Ey. Again each graph G, consists
of set of chains. For a given schedule o, we make the following assignments based on G, (for
0 < £ < ¢). Unless otherwise given, the length of job .J; is 25,

3For ease of exposition, we again assnme that jobs are removed from the queue when their wait time
expires without explicitly including such checks in our pseado-code.
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Assignment 1: If job J; covers or blocks J; (so £; > ¢;), then A,(J;, J;) = 2% /3.

Assignment 2: The remaining portion of J; is assigned to itself.

Since the sum of the lengths of the jobs covered by J; is at most 2%, the maximum amount
assigned from J; in Assignment 1 is 2% /3. Thus clearly, Yseon Ac(Jis J5) < |, for each
J; € o.

Theorem 8 Schedule-General-Delays is 3{c + 1)-competitive if job lengths are in the set
{1,2,4,...,2°}, for some known constant c.

Proof: 1t suffices to prove that E[gain(J)] > S(L{}-II) for each J € o,. Let J; be the last job

considered in o before time ¢ = J/*. We consider the following cases.

Ci: €; < {; and J; is considered during the interval (t — 2% t]. Let J be the first job
of length £; to arrive after J; is considered. (Job J could be J; or a different job of the
same length that arrives before J;.) In the worst case, our algorithm might consider a
job of length 4;,¢; +1,...,¢; — 1 before considering job J. In order for J to run, the
other jobs considered (at most one per length) must be virtually scheduled and then
J must be scheduled. Thus:

1 1 1 1
Prob J scheduled > (1 c—l—1—££) (1 c+1— (4 + 1)) (1 c+1—(€,~—-1)) (c+ l—fj)

_ c—£; c—1—14; C-I-l—fj 1
N c+1—4; c— i c+2——fj c+1—4;

1 1
=
c+1—4; " c+1

The above argument can be applied to show that any job considered would be scheduled
with probability at least 1/(c+1). Since J runs with probability at least 1/(c+1) and
Ag(J, J3) = 24 /3, Be, [gain(J;)] 2 5.

Cp: £; > ¢; and J; is considered during the interval (¢ — 2%, ¢|. Since the probability
. , . f ¢
that J; runs is at least 1/(c+1), and A, (J;, J;) = 25/3, Ee,[gain(J;)] > % > 3(’?‘:—;1)

Cs: All queues are empty at time ¢. This case must occur if neither of the above two
cases do. Since ; is empty, J; was considered earlier and ran with probability at
least 1/(c + 1). By Assignment 1, at most 2% /3 of J; is assigned to jobs it covers
and at most 2% /3 of J; is assigned to the job it blocks (if any). Thus A,(J;,J;) >

9% _ (2% /3 + 26 /3) = 25 /3. Thus Eq, [gain(J;)] > 3(?:_::1)
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For each J € o, we have E[gain(J)] > 3(1;—1'1), thus the theorem follows. O

Extending this result to the case in which the jobs have lengths between 1 and 2° we

obtain the following corollary.

Corollary 9 Schedule-General-Delays is 6(c + 1)-competitive if jobs have lengths between 1

and 2°, for some known constant c.

Proof: The only modification needed in Schedule-General-Delays is to treat job J like a job
of length 261, Two key observations used in the proof are that (1) each job J € o has
true length that is at least 1/2 of 2Nl and (2) if job J € o, is shorter than 2l then
we can apply the excess that has been assigned to J to any other jobs (or portions thereof)
that run in o, between J°* and Jo* 4 201, O

We now consider the special case when there are uniform delays. Note that each graph
Gy consists of set of chains where each chain is a forward chain, backward chain, or singleton

chain.

Theorem 10 Schedule-General-Delays is 2.5(c + 1)-competitive in the uniform delay model

when jobs have lengths in the set {1,2,4,...,2°}, for some known constant c.

Proof: We use the following assignments:

Assignment 1: If job J; covers or blocks J; (s0 £; > ¢;), then A, (J;, J;) = 2% /2.5,

Assignment 2: For each job J;, all unassigned portions of J; are assigned to job J', where

J' is the first job from o, in the chain Gy,.
Let J; be the last job considered in o before time ¢ = J{*. We consider the following cases.

Ci: £ < {; and J; is considered during the interval (¢ — 2%, ¢]. As before, let J be the
first job of length {; to arrive after J; is considered. Using the same argument as in
case C; in the proof of Theorem 8, we get that the probability that J runs is at least
1/{c +1). Since there are uniform delays J's deadline must have expired by time ¢
(or 0. would have scheduled it). Thus J & o., and hence J; is in a chain with head
J followed by J;. So, in Assignment 2, all excess from J is assigned to J;. Finally,
since J can cover jobs of length at most 2% < 2%~ and blocks J;, it follows that
Ag(J,J5) = 24 — 2{1—-5-1 =25 /1.25. Thus Ee,[gain(J;)] > 1.252(?:-;1) 2 2.52(:::-1)‘

2.

Ca: {; > {; and J; is considered during the interval (¢ — 2%, ¢] . Since the probability
that J; runs is at least 1/(c 1) and A,(J;, J;) = 2% /2.5, Eg,[gain(J;)] > #;;1) =

2%
2.5{c+1}"
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Cs: All queues are empty at time ¢. Thus J; must be considered earlier. As when we
considered uniform delays in the two job case, it can be shown that J; is the head
of a singleton chain with tail Jr. The maximum amount from Jp assigned to other
jobs occurs when it covers jobs of lengths 2% and blocks a job of length 241, Thus

‘ 2 o8-l o ) ot ¢
Ag(dr, J;) > 24 — (2 127 ) = 2%% and hence Eg,[gain(J;)] > 5%0131} = 2_52(;1)- |

Corollary 11 Schedule-General-Delays is 5{c + 1)-competitive when scheduling jobs between
lengths 1 and 2° for some known constant ¢ where the delay for each job J € S is a function

of [lg|J11.

6 Concluding Remarks

We have presented upper and lower bounds on the competitive ratio for non-preemptive,
online admission control in the hard deadline model: each job must be either serviced prior
to its deadline, or be rejected. Our results are summarized in Table 1.

Recently, additional results along the line of Theorem 3 in which you obtain stronger
competitive bounds by imposing a minimum delay have been obtained by Goldwasser [10].
In particular, he considers the restriction in which each job J must have a delay (slack) at
least £ - [|J|| for some constant x > 0. He gives a simple greedy algorithm that is (2 + 1)-
competitive even when arbitrary job lengths are allowed and gives lower bounds showing
that this is the best possible result for a deterministic algorithm even if all jobs have one of
three distinct lengths. In the special case where all jobs have the same length, he generalizes
a previous bound of 2 for the deterministic competitiveness with arbitrary slacks, showing
that the competitiveness for any & > 0 is exactly 1 + ”thlT He also gives tight bounds for
the case where jobs have one of two distinct lengths.

There are many interesting open questions raised by our work. In the model of unit
length jobs with arbitrary delays, we have a lower bound (for randomized algorithms) of
4/3 on the competitive ration. Yet the best algorithm we've given is Greedy, which is a
deterministic algorithm that is 2-competitive. Can randomization be used to obtain a better
result? Can the lower bound be improved? Another interesting open question is to study
the off-line problem of scheduling unit length jobs with arbitrary delays in the hard deadline
model: Is there a polynomial time algorithm to find an optimal solution, or is this a NP-
hard problem? While there is significant work on off-line scheduling, none addresses the
hard deadline model.

While we have lower bounds to demonstrate that the competitive ratios of Schedule-
Twolengths and Schedule-With-General-Delays are asymptotically tight (in both the uniform
and arbitrary delay models), the constants may not be tight. Thus another open problem is

18



to iry to develop matching upper and lower bounds on the competitive ratio for the various
settings we considered.

Finally, another direction of study is to associate an additional payoff parameter with
each job, which is the amount that a job is willing to pay for being scheduled. (In our current
work, the implicit payoff was always equal to the length of the job.) Under this model a job
that has a very short delay could provide a high payment to increase the chance that it is
scheduled.
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