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Abstract,

As the primary tool for detecting breast carcinoma, mammography provides visual images from which
a trained radiologist can identify suspicious areas that suggest the presence of cancer. We describe an
approach to mage processing that reduces an image to a small number of values based on its structural
characteristics using wavelets and neural networks. To illustrate its utility, we apply this methodology
to the automatic screening of mammograms for mass lesions. Qur results approach performance levels of

trained human mammographers.
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1. Imntroduction

Increasingly, modern medicine relies on a vast ar-
ray of imaging studies for diagnosis. Mammog-
raphy, in particular, supports efforts to screen for
and defect breast carcinoma, a disease that will af-
fect one in nine women over their lifetime. Mam-
mograms are two-dimensional images that show
the structure of the breast. A trained radiologist
can reliably identify most suspicious areas that
suggest the presence of cancer, although failure to
diagnose cancer occurs an estimated 10% to 31%
of the time[ 5],[ 7],[ 19]. At least one study has
suggested that double reading of screening mam-

mograms will reduce the cancer miss rate[ 3]. By
virtue of this suggestion, interest has been gener-
ated in developing an automatic method of pre-
screening mammograms as a complement to the
radiologist. Neural networks that can extract the
structure represented in a mammographic image
show promise as a new technique to address this
problem.

1.1, Computer Aided Diagnosis and Prescreen-
ing

A large body of work has been devoted to using
computer screening techniques to help the radiolo-



glst recognize areas with possible pathology on an
image. The majority of the work done to date has
focused on mammography and chest radiography.
A number of different algorithmic computer aided
diagnosis (CAD) schemes have been investigated.
"These include subtraction techniques, topographic
techniques, filtering techniques and staged expert
systems.

The majority of these schemes attempt to iden-
tify anomalies using a method that either looks
for image differences based on comparison with
known normal tissue (subtraction) or by image
feature identification and extraction of features
that correlate with pathologic anomalies, e.g.,
changes in density that may indicate a mass on
a mammogram. Most systems proceed in stages,
first examining the image data and extracting pre-
determined image features, then localizing regions
of interest (ROIs) which can be examined further
for potential anomalies. High degrees of sensi-
tivity (85% to 100%) have been achieved using
several of these fechniques (see, for example, [
12],[ 13}],[ 14),[ 18], 16],[ 39],[ 40],[ 41],[ 42],[ 43].[
45]) but many have been hampered by high false-
positive rates (1 to 4 false positive identifications
per image) and hence low specificity {see, for ex-
ample, [ 12],{ 15],[ 16],[ 18].[ 30],[ 43],[ 45]). The
problem of false positives is compounded by the
fact that false positive rates are reported per im-
age, not per case. Since many radiologic exami-
nations include more than one image, the actual
number of false positives per case may be a mul-
tiple of those reported.

In an attempt to address the specificity issue, a
number of different approaches have been tried to
reduce false positive rates. Many of these have
focused on the use of artificial neural networks
(ANN)[ 12],] 30],[ 43]. ANNs show great value
in analysis of problems that are structural in na-
ture and, as such, they are excellent for problems
of pattern recognition.

Inspired by neurophysiclogy, ANNs are trained
in one of two ways:

1. Supervised training: both input data and its
corresponding outputs are provided during
training. The ANN learns the mapping for
which the input-outpui pairs are an exten-
sional sample.

2. Unsupervised training: input data are pro-
vided and a criteria for judging outputs is de-
termined. The ANN learns a mapping that
fits the criteria.

Auto-associative learning is based on unsuper-
vised training in which the ANN attempts to learn
an identity mapping. More importantly, the pat-
terns of activation that occur internally must en-
code the data to minimize the error of the iden-
tity mapping and this produces potentially effi-
cient and compact encodings of the data.

Neural Networks are limited in at least four re-
lated ways:

1. The quantity of data required for each case
determines the size of the input layer which
partially determines the size of the network in
terms of adjustable weights. Aside from the
time required to compute and apply weight
adjustments during each training cycle, a
large number of inputs may increase the com-
plexity of the learning task and may require
more training cycles.

2. The size of the data set from which training is
performed determines the number of presen-
tations required during each training cycle. It
may also reflect an underlying complexity of
the learning task if there is sufficient diversity
among members of the data set.

3. Fixed data set size and increased number of
inputs lead to an excess of connections and
most likely poor generalization.

4. The training dataset must be adequate in rep-
resentation and depth.

Nonetheless appropriately configured ANNs have
proven to be useful for many problems in medical
diagnosis[ 4],{9],[ 22],] 34],{ 35]. In mammography,
ANNSs have been studied primarily as a method to
reduce the rate of false-positive anomaly detection
arising from other computer-aided diagnosis tech-
niques. Such studies have shown that ANNs can
significantly reduce the rate of detection of false-
positive anomalies on mammeograms by as much

as 50% to 62%] 40],[ 431,[ 44].



1.2, Full Image Prescreening

To our knowledge, no group has developed a tech-
nique that uses ANNs to directly analyze and de-
tect anomalies from entire digitized medical im-
ages without first using extraction techniques.
When other researchers have applied neural net-
work technology to mammographic anomaly de-
tection, they have used the ANNs to examine ei-
ther small ROls taken from the image or symbolic
information extracted from the image, but not the
entire image itself (see, for example, [ 43],[ 20],[
401,[ 12],[ 301,{ 44],[ 39]). Most researchers require
that the input data for the ANNs undergo prelim-
inary enhancement of specific features, density or
edges, for example.

2. Approach

It has been suggested that mammograms actu-
ally contain significantly more information than
is transmitted to the human eye[ 10]. Our strue-
tural approach is based on the premise that mam-
mographic images reflect an internal structure
of higher dimensionality and that this structure
can be extracted automatically using wavelet and
ANN technology. Unlike other approaches, no
predetermined image features are extracted.
Instead, using ocur methodology, feature-like
values that reflect the image structure dynami-
cally emerge from the data during training. Clus-
tering techniques help in exfracting those values
which are synthesized into twa small sets of val-
ues for each image. Subsequently, these data are
supplied to a set of feed forward neural networks
(FFNN) for analysis and anomaly identification.
Voting among the FFNNs leverages their individ-
ual performance to enhance the screening process.

2.1. Processing Sleps

As shown in Figure 1, processing full mammo-
grams for screening involves several steps. First,
cases with the proper pathology (masses) are se-
lected for inclusion in the dataset. The images
from these cases are scanned, digitized, and re-
sized as necessary to match the demands of our
software. Collectively, the dataset of images un-
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Fig. 1. Schematic diagram of image processing using

wavelets and neural networks.

dergoes wavelet processing, structure discovery,
and finally evaluation for mass lesion screening.
Once training has been performed, images can
be efficiently digitized, wavelet transformed, pro-
cessed in a forward direction by a recurrent net-
work, formed into two small feature vectors and
classified by the collection of FFNNs to determine
a screening outcome.

2.1.1. Wavelet Processing. Multiresolution (five-
level) and multidirection (two-dimensional) wavelet
analysis with quadratic spline wavelets is ap-
plied to each square image[ 28]. These wavelets
are equivalent to the first-order derivative of a
smoothing function, and so they are specifically
designed to enhance the edges of image objects,
Laine[ 27] has used a similar wavelet design to
show that high-quality mammogram reconstruc-
tion can be performed with a truncated wavelet
hierarchy wherein coefficients below a certain
threshold are discarded. Truncation eliminates
noise and insignificant features from the data
while aiding in data reduction[ 11]. Empirically,
a hard ? threshold of 0.25 was determined to pro-
duce the best results for our data.

The remaining wavelet coefficients can be
viewed structurally, descending along the two di-
mensions (x followed by y) at each of the five
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Fig. 2. Diagram of wavelet structure shows number of coefficients resulting at each level.

levels of resolution, terminating with the remain-
ing {(non-decomposed) coefficients at level five, as
shown in Figure 2. Each coefficient, together with
its level and position in the hierarchy, forms a
triplet of values. These can be linearly sequenced
by a traversal to produce a canonical linearized
representation. Note that every step of this pro-
cess, except the elimination of noise, is reversible.

2.1.2. Finding Structure in Linearized Wavelet
Data. The linearized wavelet data is transformed
into fixed-length fuzzy feature vectors® (FFVs)
and fuzzy feature transition matrices {FFTM)
using a form of recursive auto-associative mem-
ory {(RAAM)] 31]. The RAAM architecture has
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Fig. 3. LOSRAAM neural network.

been modified into a recurrent network called an
SRAAM] 8][ 37] which accepts sequences of in-
puts after a method by Kwasny and Kalmanf 26].
The output units of the SRAAM have been fur-
ther modified by eliminating the sigmoidal func-
tion on outputs to allow linear-valued outputs as
shown in Figure 3. We call this variation a linear-
output SRAAM (LOSRAAM). In this form, the
network is a recurrent network connected by lay-
ers (i.e., no shortcut connections) which is trained
auto-associatively.

The LOSRAAM, upon processing the wavelet
triplets from each image, develops a sequence of
activation patterns on the N-unit hidden layer of
the LOSRAAM. This sequence of N-dimensional
vectors traces the trajectory of the image as a
series of hyperspace points with the path of the
trajectory determined by the structure of the im-
age. Clustering these points identifies K centers
of attraction® and exposes a type of iterated func-
tion system (IFS)[ 6],[ 32].

An image traverses the IFS space in a particu-
tar way leaving its unique “fingerprint” which can
be captured by aggregating within clusters to pro-
duce a single K-dimensional vector aggregate as a
summarization of the image. Aggregation includes
a fuzzying® process which first weights each hy-
perspace point according to its distance from the
K centers of attraction and then normalizes the
weighted values so they sum to one. An FFV is
thus a K-dimensional vector aggregate formed by
taking the sum of all vectors derived from a given
image.

A related view of the trajectories traced by each
image gives rise to an alternate form of aggrega-
tion. Similar to bi-gram processing often applied
to speech and natural language processing[ 2], the
sequence of points in the trajectory can be paired



according to the transitions they make out-of and
into each cluster. This can be summarized in a
K »x K mairix of fuzzy values by taking the outer
product of each pair of endpoint vectors and sum-
ming the matrices to form a single K x & FFTM.

2.1.3. Mass Lesion Screening.  Both FFVs and
FFTMs are used as inputs fo FFNNs designed
to classify mammographic images for screening
of suspicious masses indicative of cancer. These
are presented to a set of FFNNs, each of which is
trained to decide whether a mass is present or not.
A number of similarly trained FFNNs each render
votes on a particular image view for a particular
case and the votes are collected and used to decide
the screening cutcome.

The success of the voting process hinges on the
degree to which each vote (i.e., each network) is
independent of the others. To some degree, each
breast view provides correlated, but independent,
information. Similarly, each FFNN converges to a
solution which may or may not differ from that of
other FFNNs trained from similar datasets. The
succes of voting depends on the degree to which
these solutions differ.

2.2, Training LOSRAAMs and FFNNs

All neural network training, including both LOS-
RAAM and FFNN training, is based on tech-
niques reported in Kalman and Kwasny[ 25]. Re-
viewed here are some of the more important tech-
niques.

2.2.1. Training RAAM-like Networks. LOS-
RAAMs can be trained as recurrent networks ex-
cept for the portion of the output layer which rep-
resents the previous RAAM pattern. Since auto-
associative training involves targeting the outputs
to be the same as the inputs, and since a portion of
the input is the activation pattern from the hidden
layer of the previous iteration, part of the target
is evolving as training proceeds. Error must be
reduced against these moving targets in order for
training to succeed. The derivative which controls
learning must be adjusted by a term which rep-
resents the derivative for these units and which
takes into consideration changes in these targets.
See Appendix A for more details.

2.2.2. Singular-Valued Decomposition. Singular-
Valued Decomposition[ 21} (SVD) is an important
mathematical technique for transforming data to
mee} orthogonality constraints. Applying SVD to
FFNN inputs was first described by Kalmanf 23]
25] as a tool for conditioning inputs and reducing
their numbers.

In this application, before presentation to the
FFNN, the K 4 K? inputs of the FFV and FFTM
are transformed using singular value decomposi-
tion (SVD) to determine the relevance of each in-
put, a process which often reduces the number of
inputs and, therefore, the size of the network.

It has proven invaluable in the mammography
work in two distinct ways:

1. Reducing the number of inputs from K + &°
fo approximately K.

2. Pre-conditioning the inputs to facilitate faster
training and in many cases, based on our ex-
perience, making training possible that other-
wise would not have been so.

Our use of SVD permits a FFNN trained on
transformed inputs to be reverse-transformed into
an FENN that performs identically on the original
inputs. Thus, the use of SVD is invisible on the
surface, but invaluable as a technique for enhanc-
ing training.

2.2.3. Hinls. Hints are realized as additional
output units whose only role is to direct and push
the training toward a helpful direction. In this
work, they are provided during the training of
FFNNs for screening. As demonstrated by Abu-
Mostafa[ 1], poor or misleading hints may actually
damage training performance while good hints can
greatly improve it.

For this work, an important hint points out the
location of a mass in the breast. This is realized
by an additional three output units indicating up-
per vs. lower half of the breast, outer vs. inner
half of the breast, and subareolar vs. central loca-
tion in the breast®. We have determined through
numerous training runs that this hint has a very
positive affect on training.

Note that the hint itself is based on position
within the breast structure and not within the
image. This suggests that the higher dimensional



structure of the breast is being extracted from the
two-dimensional image by our technigues.

Once training is complete, the hint units, be-
cause they are extra output units, may be removed
from the network without changing the activa-
tions on the other output units. Alternatively,
they have the potential to provide additional in-
formation about location which would he helpful
in identifying the lesion.

2.2.4{. Other Training Techniques. Summarized
below are other training techniques that con-
tributed to the success of this work.

1. Use of skip (shoricut} connections io com-
pletely connect each layer with every preceding
layer in FFNNs®. Without skip connections,
the FFNN is required to learn both Hnear and
non-linear features of the data, wherein the di-
rect connections from input to ocutput support
the linear part of the mapping. This typically
reduces the number of hidden units required
and helps to avoid overspecification.

2. Superlinear convergence of the conjugaie gra-
dient method for treining. This method has
been enhanced using an update strategy due
to Powell[ 33], a derivative-free line-search
technique, and an adaptive step size control.

3. Use of a self-scaling error function. This error
function punishes output values at the oppo-
site end of the interval from the target value,

3. Resulis

These results represent a major expansion and re-
design of a pilot experiment reported by Kalman]|
24]. In that study, only 55 cases were screened
with 79% specificity and 50% sensitivity.

3.1 Datasel

A dataset” of 350 mammograms, consisting of two
images each, were digitized with a 100-micron
focal spot film digitizer. Each image measured
9.375 x 6.825 inches (23.43 x 17.06 cm). Af-
ter digitization the images were on the order of
2,400 x 1,800X12 bits and then area-resampled|
29] to 1,280 x 1,280 x 1 byte.

The dataset contained 221 cases with masses
and 129 cases without. Each of the patients had
undergone breast biopsy because of a radiograph-
ically detected mass or microcalcifications or be-
cause of a palpable abnormality not detected on a
mammogram. All mammograms were pathologi-
cally correlated with the results of biopsy.

For experimental purposes, the 350 cases were
randomly divided into two digjoint sets: 87 cases
were held out to be used for final testing and eval-
uation of the method; and 263 cases were desig-
nated for training purposes. The training cases
were further randomly subdivided into 154 cases
presented during training and 109 PAC® cases
used to determine when o stop training. Note
that the PAC set of cases does not participate in
training directly and therefore constitutes a good,
low-bias estimator of performance on the unbiased
held-out set of cases. Table 1 shows the sizes and
distribution of cases across these sets.

3.2.  Data Reduction from Wavelels

Wavelet processing with hard threshelding achieved
a 42.5:1 reduction in the size of the data. The 700
images have a total size of 700 x 1,280 x 1,280 x 1
= 1.14688 x 10° bytes. This is reduced to an aver-
age of 4,824 triplets (three 8-byte values) for each
image after thresholding or a total for all 700 im-
ages of 2.70144 x 107 bytes which accounts for the
reduction.

3.8. Dala Reduction from LOSRAAMs

The LOSRAAM network required 4 hidden units
for sufficient training making the LOSRAAM net-
work a 7-4-7 network with 67 adjustable weights.
This part of the training took the most time. Us-

Teble 1. Distribution of Cases in Dataset

Sets No. of Cases Mass Cases Non-Mass Cases
Entire DataSet 350 221 129
Training Set 154 97 Gé
PAC Set 109 57 40
Hold Out Set 87 38 32




ing 8 dedicated processors on a Sun SparcCenter
2000 machine, the required 250 conjugate gradi-
ent iterations took approximately 14 days to com-
plete.

Clustering produced K = 7 clusters. Therefore,
each FFV contained 7 double-precision values and
so each FFTM contained 49, SVD determined
that these 56 values could be transformed into 5
values which account for $9.97% of the variance.
The resulting 5 values complete the reduction pro-
cess to 700 x 5 x 8 bytes or 2.8 x 10? bytes, a
reduction of 4.096 x 10%:1.

3.4. Screening Processing

The mass lesion screening step involves training a
FFNN fo decide if there is a mass or not. To facil-
itate voting, 24 networks were trained using dif-
ferent random starting weights. Each network has
5 inputs, 5 outputs (2 for mass vs. no-mass and 3
for positional hints), and 1 hidden unit. We care-
fully tested FFNNs using more and fewer hidden
units, but one hidden unit gave the best general-
ization as measured on the PAC set. With skip
connections, there are 41 adjustable weights,

Networks are harvested when the performance
reached 58% on the worst of the two screening out-
comes. This turned out to always be the non-mass
outcome. The harvesting criteria was determined
empirically to provide several networks that per-
formed well.

3.5. Voting

The final step in the process combines the out-
puts of the 24 networks into a single decision.
Since each case consists of two image views, there
are a total of 48 votes for each case. While we
tested many voting methods, the following criteria
proved best: If a simple majority of votes (25 or

Table 2. Voting Outcome with Indeterminate Cases

more) are tallied for an outcome, determine that
it is that outcome (either mass or no-mass). If
there is a draw (exactly 24 voles are tallied for
each ouficome), then the case is classified as inde-
terminate. Voting results under this criteria are
given in Table 2.

In a practical situation, the tie in voting could
be utilized to re-take the mammogram session.
Here, the automated screening has a clear advan-
tage since the repeat session can be done immedi-
ately and not require a second visit to the radiclo-
gist. Similarly, detection of a mass could indicate
immediate referral for a more detailed diagnostic
MAanmoegram.

Erring in favor of declaring a mass when In
doubt, however, gives a clear decision. In Table
3, these results are re-tabulated with ties declared
to be masses. Under these conditions, sensitivity
is 75% and specificity is 56%. This compares fa-
vorably with the 10% to 31% error rate for human
mammographers stated earlier. It also demon-
strates that our earlier preliminary study in which
only 55 cases were used scales to the larger dataset
and was not the result of sampling bias.

4, Summary and Future Work
4.1, Summary

The wavelet processing provides a lossless way of
reducing a very large image into a canonical se-
quence of data suitable for filtering. The LOS-
RAAM provides a partially unsupervised learning
technique for discovering the structure hypothe-
sized to exist within the data set and clustering
extracts the attractors that give shape to the [I'S-
like space. The high-dimensional internal struc-
ture is reflected in the structure of the IFS pro-
duced and consequently also within the features of
the FFVs and FFTMs. Supervised training leads
to votes from independent images and from inde-

Teble 8. Voting Outcome without Indeterminate Cases

Sets Mass Non-Mass
Correct Incorrect Draw Correct Incorrect Draw

Sets Mass Non-Mass
Correct Incorrect Correct Incorrect

Training/
PAC 118 42 6 58 33 6
Hold Out 36 14 5 18 13 1

Training/PAC 124 42 58 39
Hold Cut 41 14 18 14




pendent training runs which often combine pro-
ductively to increase performance.

We hypothesize that FFVs and FFTMs, as in-
troduced here, preserve important features of the
image and provide an important abstraction in
much the same way statistical physics permits de-
scription of chaotic situations from a small number
of control variables.

As applied to mammography, our technique ap-
proaches human-level performance. More impor-
tantly, it demonstrates a viable technique for re-
ducing arbitrary images, according to their struc-
ture, into a small set of control-like values that
realistically can be used in neural network experi-
ments. As each step is applied, the objective is to
preserve some degree of reversibility so that an-
alyzing FFVs and FFTMs remains very close to
analyzing the structure represented in the original
image.

The location hint, as an indication of where a
mass can be located relative to human physiol-
ogy, worked extremely well as an aid to produc-
ing a trained network capable of good generaliza-
tion. This supports the notion that the underlying
structure, and not simply regions of the image, are
being extracted by our techniques.

4.8. Fulure Work

Since a large amount of data is required to train
and prove our techniques, we continue to collect
and digitize cases.

We are evaluating other wavelet transforms by
visually evaluating combinations of transforms
and thresholds in the hope that a better method
of data reduction for that part of the process can
be found.

Finding good hints to use during classification
training can be challenging. In addition to loca-
tion, we have recently added hints based on max-
imal mass diameter with normals having a diame-
ter of zero. Other hints we are considering require
additicnal analysis by the radiologist to determine
degree of difficulty or the presence of additional
mass-like structures that might confuse an auto-
matic screening system.

Automating mammographic screening is an im-
portant goal. Even with recent advances toward
developing blood tests to screen for cancers, breast

cancer will still require images for full evaluation.
if every woman received a mammogram accord-
ing to the recommended schedule, there would be
more images to interpret than there are radiolo-
gists capable of reading them.
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Appendix A
A.l, Details of LOSRAAM Training

In this appendix we highlight the details of train-
ing a LOSRAAM network. For elaboration refer
to Kalman and Kwasny[ 25].

A.1.1. The Error Term

As mentioned in the text we use a self-scaling error
function. The error is definded by:

epk = (tpr — apr) (A1)

and the error function is given by:

® = Ezgpk (AQ)
Eop

where p is a pattern, & identifies an output unit,
gpi 15 a function of the target value £, and the
activation value ap;. In Kalman and Kwasny[ 23],
we give criteria that g,p and its derivatives should
meet. In short for linear and sigmoidal outputs
gpi 15 defined by:

(egk) Linear output
Gpk = 2 (Ag)
-2 Sigmoidal
pk

Our sigmoidal function is:

apr{z) = tanh(1.5z) (A4)



whete x is the excitation computed from connec-
tions terminating at the output unit.

A.1.2. The Derivatives

For our conjugate gradient back-propagation
training we use the generalized delta rule of
Rumelhart and McClelland[ 36] to derive our
derivative equations.

A.1.8.1. Simple Recurrent Networks. Tor sim-
ple recurrent networks the delta terms are given
here. For the output units the delta terms are:

Ay = { (—2epk) Linear output

3(gprapr — epy) Sigmoidal (45)

The delta term for the hidden units is:

Apy = 1.5 (1— a2 ZAPWLJ (A6)
where j ranges over the hidden units, k is as in
Eq. A6 and wpg; is the weight on the connection
between units & and j.

For the feedback units the delta term is:

By = Z BpkWhj (A7)
k

where j ranges over the feedback units and &
ranges over the hidden and output units.

The only derivative equation that affects the
gradient and which involves feedback units is:

ad da
=" |Apjapi + 3 Ay awp,l, (A8)
i It

dwj;
i

where j ranges over the hidden units, i ranges over
the input and feedback units and [ ranges over the
feedback units.

The remainder of the terms in the gradient are
given by the generalized delta rule:

awh = Z Aprttp; (A9)

where k ranges over output units and { ranges over
input, feedback and hidden units. Equations for

the bias derivatives are obtained by replacing the
appropriate ap; by 1.

Because of the recurrence in the network we
must still consider the derivatives of the activa-
tions of the hidden units which become deriva-
tives of the activations of feedback units for the
next pattern in a sequence. Here is the equation
for this case:

gt _ Siapi+ Y wp% (A10)
S 1

6'11)3;,'

where j ranges over the hidden units, i, I, and s
all range over the feedback units, &; is the Kro-
necker delta function which is one if | = 7 and zero
otherwise,

A.1.8.2. LOSRAAM Derivative. Here we show
the additional derivatives required for LOSRAAM
training. As mentioned in the text the major dif-
ference between LOSRAAMSs and simple recurrent
networks is that there are output units which cor-
respond to the distributed representation of the
target. The self-scaling error function for that
part of the output is:

Y
=T
T &k — By

where T ranges over the recursive auto associa-

tive memories in a sequence, k ranges over the

recursive auto associative memory units, Rry is

the target and input value(see figure 3) and Rf,

is the output value. Part of the purpose of train-

ing is to reduce the difference between Rpp and

Ry,

Since Ry depends on the network parameters

we add a correction term to the generalized delta
rule Eq. A9 to get:

8%g
i

(A1D)

=S+ DR (A12)

where
2(Rri — Rypy) ORre
(1- Rpy?) O

where 5 is the derivative term which corresponds
to Eq. A9.

DR = (A13)
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Notes

1.

8.

We evaluated the use of both soft and hard thresh-
olding, as defined by Burrus[ 11], and discovered that
hard thresholding performed best for our purposes. We
believe the irnportance of sharp, edge-like changes in in-
tensity within the image accounts for this observation.

The notion of aggregating wavelet coefficients into vec-
tor form can be attributed to Dai[ 17].

. The choice of K is determined empirically according to

how many coherent clusters seem to be present. This
part of the training is performed several times within a
small range of ' values. The best measure of coherence
determines the one to be used.

Note that we also tried a discrete approach in which
simple tallies were kept as each point was classified as
belonging to a cluster. This provided low generalization
indicating that the fuzzy process is a necessary part of
finding structure in this way.

To avoid a misleading hint, these three units are man-
aged during FFNN training so as not to contribute to
the error function for non-mass (negative} cases.

As mentioned earlier, skip connections are not used for
LOSRAAM networks since that would destroy their use
for encoding data.

Although there are several standard databases of mar-
mograms, we investigated these and determined that
they were inappropriate for this work:

University of South Florida database. 117 cases (61

with masses) digitized at 100 microns only. Too
small/inappropriate digitization for our use,

Nifmegen database. 40 cases (microcalcifications) Teo
small/wrong pathology /no technical specifications.

Lawrence Livermore National Laboratories and
UGSF. 50 patients (20 masses) digitized to 35 mi-
crons. Too smallfinappropriate digitization for our
use.

Mammographic Image Analysis Society datahase.
Size unknown, digitization to 50 microns but 8 bit
depth. Inappropriate digitization for our use,

Washington University digital mammography database.

Digitally acquired 512 x 512 x 12 bits ROIs only, -
appropriate for our use.

Named after PAC {Probably Approximately Correct)
learning, popularized by Valiant[ 38]. The main prin-
ciple is that any hypothesis or theory that consistently
makes correct predictions over a sufficiently large set of
examples is not likely to have any serious flaws. Qur
PAC set is used for exactly that purpose.
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