Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-98-19

1998-01-01

Congestion Control in Multicast Transport Protocols

Rajib Ghosh and George Varghese

We discuss congestion control mechanisms in multicast transport protocols and we propose
TCP-M - a TCP-friendly Multicast transport protocol. TCP-M uses IP multicast to deliver data
packets and acknowledgements to provide reliability. Ack implosion at the source is prevented
by fusing acknowledgements at some intermediate routers. TCP-M reacts to network
congestion exactly like TCP by having the sender emulate a TCP sender.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Ghosh, Rajib and Varghese, George, "Congestion Control in Multicast Transport Protocols" Report
Number: WUCS-98-19 (1998). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/471

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.


https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/471?utm_source=openscholarship.wustl.edu%2Fcse_research%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Congestion Control in Multicast
Transport Protocols

Rajib Ghosh
(George Varghese

wucs-98-19

June 29, 1998

Department of Computer Science
Campus Box 1045

Washington University

One Brookings Drive

5t. Louis, MO 63130-4899

Abstract
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TCP-M - a TCP-friendly Multicast transport protocol. TCP-M uses IP multicast to de-
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Multicasting has become an important topic of research due to the increasing number of appli-
cations which require distribution of data simultaneously to multiple receivers. While multimedia
applications can handle a certain degree of loss of data, other applications require reliable, sequenced
and lossless delivery. An example is a web server distributing files to its mirror sites. For such ap-
plications we can have separate TCP [Ste94, Tan81] connections from the sender to each receiver.
However, this is inefficient since each packet that is sent to M receivers that are reachable on a
common set of links from the source is duplicated M times on the common path. If the sender
uses multicast, each packet traverses a network path only once. Further, it also saves on the total
transfer time taken. Thus, we need reliable multicast protocols for efficiency and performance.

"The MBone [Eri94] provides us with a multicast capable network layer using TP Multicast {Dee89].
However, it is prone to packet loss and misordering of data. Multicast transport protocols [AFM92,
FIMt95, LP96, RBR98, SFLT98, TA95] provide a reliable service by building a transport layer on
top of the (multicast) network layer.

Congestion control has always been a principal problem for reliable multicast. Several protocols
[MJV96, VRCI8] respond to congestion by organizing the data in different bandwidth “layers” and
dropping data layers at the congestion points. However, this approach works better for audio/video
applications. Bulk data for file transfers can also be organized into layers, but this strategy becomes
very complex beyond a few layers [Vic98).

Unlike a unicast connection, a multicast protocol has to adjust to congestion in multiple network
paths. The important issues are Ack® (acknowledgment) implosion, interpretation of receiver’s
window for many receivers, and an accurate round-trip-time (RTT) estimation for the multiple
receivers. If the receivers acknowledge data packets as in unicast protocols, then, if there are M
receivers, the source receives M acknowledgments for each packet. For large M, this leads to decrease
in performance at the source due to processing overheads. Further, connection parameters such as
window of data sent and round-trip time have to be determined too.

In this paper, we analyze congestion control in multicast transport protocols. We propose a simple
reliable multicast transport protocol which does congestion control like TCP and scales very well to
large number of receivers. Through a novel design approach, it can be deployed incrementally and

1 Throughout this paper we will use Ack and Neck as abbreviations for acknowledgment and negative acknowledg-
ment respectively.



easily. Our protocol is appropriate for reliable file transfers, e.g., distributing a file from a web server
to its multiple cache proxies. We implemented our multicast protocol (Section 3) in Ns [UCB98] and
used it to evaluate our scheme. We present our results in Section 6. We start by discussing related
work in this area.

1. Related Work

There have been several multicast transport protocols proposed in the Hterature so far [AFM92,
FIM*95, LP96, RBR98, SFLT98, TA95]. RMTP [LP96] groups receivers into local regions and uses a
Designated Router (DR) in each region so that the responsibilities of processing acknowledgments and
retransmissions is distributed among the sender and the several DRs. Receivers in each local region
send their Acks to the DR who is responsible for caching packets from the sender and retransmitting
packets lost in the region. RMTP is receiver-driven, receivers periodically transmit status messages
to the sender.

SRM [FIM*95] is intended for applications like whiteboard conferencing. It assumes the IP
multicast delivery model and provides end-to-end reliability by having the receivers request missing
data (through multicast). Any host who has a copy of the requested data can answer the request.
Sources also transmit periodic session messages reporting their sequence number states. Receivers
use these to detect losses and to determine proximity to the sources.

MTP [AFMO2] uses Nacks (negative acknowledgments) and a maester process to guarantee reliable
data delivery. The sender responds to the Nack by retransmitting requested data. A source can
transmit data only when it receives a foken from the master process.

SCE [TA95] uses a Single Connection Emulation {SCE} layer between a unicast transport layer
(e.g. TCP) and the multicast network layer. This added layer interfaces between the single destina-
tion transport layer and the multicast network layer and provides the necessary multicast function-
ality. SCE uses IP Multicast to transmit the data packet and on receiving acknowledgments from
all the receivers passes a single one up to the transport layer. Thus, reliability is taken care of by
the unicast transport layer. One obvious disadvantage of SCE is Ack implosion.

PGM [SFLT98], recently proposed by Cisco, is receiver-oriented and Nack based. To avoid Nack
implosion, PGM uses state at Network Elements (routers) to suppress Nacks. Thus, the data source
receives only one copy of the Nack for a lost data packet. To prevent retransmission of data to
uninterested receivers, each network element maintains retransmission state on each interface. The
data source also transmits Source Path Messages periodically to establish source path states in
network elements. PGM assumes the Nacks to be routed through the exact reverse of the paths
used by the data packets.

MTCP [RBR98] uses a multi-level tree where the root is the sender and all other nodes are
receivers. Internal tree nodes called Sender’s agents (SAs), much like DRs in RMTP [LP96], take care
of handling Acks and Nacks from receivers and retransmitting lost packets. Each SA independently
monitors the congestion level of its children and sends an Ack back to its parent summarizing it. A
summary is essentially the receiver window size. The sender uses this summary to regulate its data
flow.

In summary, research on congestion control in multicast applications has mostly focussed on
audio/video data. Schemes like [MJV96] and [VRC98] react to congestion by dropping data layers
at the receivers. While multimedia applications can deal with a poorer quality of video or sound,
this approach does not work well for file transfers. As argued in [Vic98] finding a suitable data
organization for a file becomes very complex as the number of layers increases.



RMTP [LP96] uses retransmission requests from receivers to handle network congestion. The
sender reduces its transmission rate when it receives too many such requests. SRM [FJM*95], MTP
[AFM92} and PGM [SFLT98] do not deal with congestion control. In MTCP [RBROS], a sender
controls its sending rate based on the congestion summaries it receives from its immediate SAs. SCE
[TA95] relies on the unicast transport protocol for handling congestion but has an Ack implosion
problem.

Existing transport protocols (e.g. RMTP, PGM, SRM) rely on the indirection through the
IP group name to avoid having the source know all the receivers. This approach works fine for
conferencing applications where the additional loss recovery provided by SRM, PGM, etc. effectively
improves the transient congestion and errors. But it provides no indication of crashed receivers or
which receivers have received the data correctly. For example, if a receiver crashes in the middle of
data transfer, the source does not know in SRM or PGM. However, for applications like file transfer,
such reliability semantics are not enough. Applications must know which receivers received the data
successfully. Therefore, we require positive feedback from receivers in the form of acknowledgments.

It has been argued [Bro97, RBR98, VHC, VRC98] that a multicast transport protocol should
react to congestion like TCP does. Congestion control in TCP has been studied for a long time
and it has improved over the years. Therefore, we should use a tried and tested method rather
than inventing a new one. Further, if congestion control in multicast is TOP-like, then, multicast
and unicast applications can co-exist fairly. Most unicast applications use TCP as the transport
protocol. In other words, multicast applications should be T'CP friendly.

2. Our Design Goals

In this section we briefly summarize the goals which motivated us to come up with our design of
TCP-M (T'CP-friendly Multicast).

o Multicast Transport Protocol: We wish to design a transport protocols for multicast file
transfer applications from one sender to multiple receivers.

¢ Reliable: The data transfer should be reliable. Further, the sender should be able to know
which receivers received the data successfully and which did not. Or in other words, the
protocol should guarantee reliable data delivery at the sender — like the unicast File Transfer
Protocol.

s TCP-friendly: Our multicast protocol should react to network congestion like TCP. This is
very important because about 80% of internet traffic is generated by TCP [Bra96] and therefore
a multicast connection should be able to co-exist fairly with TCP connections.

¢ Scalable: It should be scalable to large networks and a large number of receivers.

» Incrementally Deployable: Since our scheme requires modifications at intermediate routers,
it should allow enough flexibility so that it can be deployed easily and incrementally over the
Internet.

3. A Scalable TCP-friendly Congestion Control Scheme for
Reliable Multicast

While the source in SCE essentially behaves like a TCP source and hence reacts to congestion
like TCP, SCE has an Ack implosion problem. In this paper, we propose a new reliable multicast



protocol called TCP-M (TCP-friendly Multicast) in which the sender reacts to congestion like TCP
(or SCE). However, we also allow some routers to have the ability to coalesce acknowledgments to
avoid Ack implosion. Since we do not require all routers to implement Ack fusion, our protocol can
be deployed incrementally. Further, the overhead of coalescing acknowledgments can be limited to
a few routes (for example on a LAN that has many receivers).

Thus, the major difference between our protocol and SCE is the use of an incrementally deploy-
able form of Ack fusion. This requires the addition of several mechanisms not found in SCE. Further,
the SCE paper [TA95] focussed on error recovery and efficiency and not on congestion control. Since
our focus is on congestion control, we report several experiments to show that TCP-M provides
adequate congestion control in a multicast environment.

Sender Receiver

: IP I\/fuiticast

Figure 1: Overview of TCP-M

Figure 1 gives a high-level overview of the protocol structuring in TCP-M. We propose to have
a unicast transport protocol (preferably TCP with very little modifications) at the sender as well
as at the receivers. The source transport protocol sends the data packet to multiple receivers with
the help of IP Multicast [Dee89]. A Group Module (GM) built on top of the network layer provides
transport services to the application layer above. It also interfaces between the application and the
unicast transport protocol (TCP).

The transport protocol at the receivers receive the data packets as usual and sends acknowledg-
ments back to the source. The receiver may also use delayed acknowledgments [Ste94]. Intermediate
routers and the source group module layer (we call them Fusion Nodes (FNs)) collect acknowledg-
ments from all downstream links, fuse them, and forward them to the source. The source TGP
thus receives only one acknowledgment as it would expect.

Figure 2 depicts an example scenario of TCP-M in execution. There are three receivers D1
through D3. Routers Rl and R2 are capable of doing Ack fusion (fusion nodes) and are shaded
solid in the figure. The source S is also a fusion node. Through a novel design approach we have
made TCP-M incrementally deployable. TCP-M works even if not all intermediate routers are fusion
nodes. In the extreme case, TCP-M works even if only the source is a fusion node, in which case
it is very similar to SCE [TA95]. In the above example, acknowledgments from D1 and D2 are
fused at Rl and not at R3. However, for large networks, the performance of TCP-M is best if many
intermediate routers are fusion nodes.

In Figure 2 we illustrate the receivers acknowledging sequence number 4. The Acks from D1 and
D2 are not fused at R3 because R3 is not an FN. On the other hand, the acknowledgment from D3
is altered at R2 becanse R2 is an FN. All the Acks are then fused at Rl and a single Ack is sent to
the source S. Then, the source sends data with sequence number 5.
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Figure 2: Ack fusion in TCP-M

An obvious consequence of fusing acknowledgments is that the sender is slowed down to the
slowest of all receivers. However, this should not be a problem for file transfer applications. Some
of the possible applications of TCP-M are distributing a file from a web server to its cache proxies,
a software company distributing upgrades to its customers, synchronizing files belween different
machines and sending e-mail to mailing lists.

The source transport protocol is essentially unicast since it transmits packeis to a single address
(a multicast address) and receives packets from a single address {due to Ack fusion). Thus, we can
potentially have any existing unicast transport protocol at the sender. Specifically, we use TCP as
the transport protocol. We can also use other schemes such as DECbit [RJ88] and RPCC [GV97].

4. Description of TCP-M

TCP-M is scalable and easily deployable. It handles congestion in the network exactly like TCP.
In the following subsections we describe how TCP-M establishes and terminates a connection, how
the data is transferred and Acks are fused and how network failure and other error conditions are
handled. Some of the protocol details are specific to the embedded unicast transport protocol and
in such cases we have described it specifically for TCP.

4.1. Connection Establishment

We assume that the application program is provided with the list of receivers and the multicast
group address to send to. The application passes this information to the Group Module in TCP-M.
The GM then sends unicast JOIN_REQU EST messages to all the receivers requesting them to
join the above multicast group. We assume there is a TCP-M server running at a pre-determined
port on the receivers. The receiver, on receiving the JOIN _REQU EST message, attempts to join
the multicast group using IGMP [Dee89] and sends an acknowledgment (JOIN _ACK) back to the

SOurce.

The GM waits a certain amount of time (JOIN_T'MOUT) for JOIN _ACK S from all receivers.
If the timer expires before all the JOIN_ACKs have been received, it informs the application of
the failed receivers. As an enhancement, JOIN_REQU EST messages can be retransmitted a few
times to allow slow receivers to catch up.

After all the JOIN _ACKSs have been recetved or the retransmission timer has expired sufficient
number of times, the GM sends an RSVP-style [ZDE193] PAT H message to the multicast address.



The PATH message contains a parent field and the GM sets it to its own address. “Address”
referred to hereafter in this section consists of IP [Pos81] address and port number. All intermediate
Fusion Nodes (FNs) record the parent address from the PAT H messages they receive and replace
it with their own addresses. All receivers record the parent address {rom PATH messages they

recelve.

After a receiver receives a PAT H message, it sends a REVERSE_PATH message to its parent.
Note that the parent for a receiver or an FN is the closest router upstream which can fuse acknowl-
edgments. Thus, an FN which receives a REVERSE_PATH message records the sender (of the
message) as a host to expect acknowledgments from. To fuse acknowledgments an FN must know all
the receivers to expect acknowledgments from. REV ERSE_PAT H messages contain the address of
the TCP-M source and the address of the receiver who originated it. The TCP-M source’s address
is required because the state set up at an FN is per source. The address of the receiver is required
by the TCP-M source as described later. The FN also rewrites the source and destination address
on the message and forwards it to its own parent.

—-—

Path, Dest, Src, Parent

RP, R2, D3, 8, D3

Reverse Path, Dest, Src, TCP-M src, Revr

Figure 3: TCP-M: Connection establishment and state setup

As an example, consider the scenario in Figure 3. The 4-tuple messages shown next to the
links are the PATH messages while the larger ones are the corresponding REV ERSE_FPATH
messages. Only the fusion nodes (R1, R2 and S) replace the parent addresses in the PATH
messages. In Figure 3 only Rl and R2 modify the PATH message as it passes through them. The
REVERSE_PATH messages from a receiver or an FN to its parent build the state required for
doing Ack fusion at the FNs. For example, the REV ERSE_PATH messages from D1 and D2 to
R1 tell R1 to expect acknowledgments from them. Similarly, the messages from RI to S tell S to
expect Acks from R1 only. The source S receives as many REV ERSE_PAT Hs as the number of

receivers.

Note that receiving a REVERSE_PATH message from a receiver implies it has already sub-
scribed to the multicast group (since it received the corresponding P AT H message) and the required



state has been set up to fuse acknowledgments all along the path to the source. The source waits a
certain amount of time (PATH TMOUT) to receive REVERSE_PATHs from all receivers (who
acknowledged with a JOIN_ACK earlier). H all the receivers do not reply within the stipulated
time, the GM retransmits the PATH message a few times. After a certain number of retransmis-
sions, the GM informs the application of the failed receivers and proceeds with data transfer for the
remaining receivers.

The JOIN, JOIN_ACK, PATH and REVERSE_PATH messages could be UDP [Pos80]
packets each with a different protocol number (for the Protocol field in UDP packets) and a payload
size. We can choose protocol numbers unassigned in [RP94].

4.2. TCP-M Data Transfer

Before the source can start the data transfer, the embedded transport protocol has to agree with
the receivers on the various connection parameters. Specifically, TCP has to agree on the initial
sequence numbers, window sizes, maximum segment size (MSS), etc. [Ste94, Tan81]. Further, TCP
requires a three-way handshake to eliminate errors from old or duplicate packets in the network.

TCP’s SY N is multicast to the group. All the receivers reply with a SYN_ACK. The GM
accumulates all the SY N_ACKSs. On receiving all of them, it sends a single SYN_ACK to TCP
with the largest sequence number among those received. The window size is the minimum of all the
received window sizes and the MSS is the minimum of MSSs received. The TCP sender acknowledges
this SY N_ACK which is then multicast to the group address. This completes the TCP three-way
handshake. The TCP receiver has to be patched to accept this multicast acknowledgment (because
of possible skips in choosing a single sequence number for all the receivers).

All subsequent data packets are multicast to the group address. Receivers acknowledge them
as usual. Fusion nodes accumulate the acknowledgments and fuse them into one by taking the
minimum of the sequence numbers received so far. We present the Ack fusion algorithm in the next
subsection. FNs also take care of duplicate acknowledgments from receivers. Thus, the TCP sender
receives a single acknowledgment as it would expect.

Figure 2 illustrates this mechanism with an example. Acknowledgment packets at the receiver
are encapsulated [Sim85] and sent to the parent address. Encapsulation is required because the FNs
must know the address of the TCP-M source in order to perform Ack fusion. To ease lookups, we
can choose to use a number unassigned in [RP94] for the Protocol field in encapsulated IP packets
— e.g., 105 and call it T'CP-M_ACK. The encapsulated acknowledgments are sent hop-by-hop to the
FNs, who fuse them and pass them upstream towards the source. In Section 4.3 below we discuss
in detail how Ack fusion is done at FNs.

TCP estimates the round trip time from the acknowledgmenis and uses it to set refransmission
timers. Essentially, it uses the largest round-trip time to any receiver as the round-trip delay. The
congestion control and avoidance mechanism is exactly the same as in unicast TCP. If a receiver
delays its acknowledgment, eventually the TCP sender times out and retransmits the data as usual.
Thus, the behavior of the transport protocol is exactly like unicast TCP. There is a single congestion
window for all the receivers and it grows and shrinks in response to the round-trip times and packet
losses experienced by the source.

We should also note that TCP-M does not allow receivers to be added to an already existing
connection. We wish to use TCP-M for reliable file transfers and receiving an incomplete data file
is futile.



Seq: an array of integers indexed by host/router addresses,
initially all -1

duplicate: an integer, initially 0

last.acked: an integer, initially -1

parent: address of parent fusion node

On receipt of an acknowledgment «:
register_aeck(a) (* update ack-table as required *)
send_ack() (* if possible #)

procedure register_ack{a)

If (a.seq » Segla.src]) then
Seqla.srel = a.seq
duplicate = 0

else
increment duplicale

procedure send_ack()
temp = min(Seqls]) V hosts s
If (temp > lasi_acked or 0 < duplicate < MAX _DUPLICATE)
(* fresh or duplicate Ack *)
last_acked = ternp
send acknowledgment with sequence number = lasi_acked,
source = my address, and
destination = parent

Figure 4: Algorithm at a fusion node for fusing Acks

4.3. Algorithm for Fusing Acknowledgments at Routers

Every fusion node maintains an ack-table in its memory for every multicast connection that it
supports. The ack-table contains the information necessary for fusing Acks from its children in
the multicast tree. Figure 4 gives the the algorithm at the multicast routers for fusing Acks. The
ack-table keeps a record of the Acks received for each downsiream link. The end routers, whose
children are the receivers of the multicast group, maintain the Ack information for each receiver
application (destination:port pair) instead of just each receiver (there might be multiple receivers
on a single machine).

On recetving an acknowledgment, a router first updates the ack-table with the new information.
The ack-table is an array of sequence numbers for each downstream link. For an acknowledgment
received, the source field is the address of the router which sent it. For acknowledgments from the
multicast receivers, it is the host’s address. If it acknowledges previously unacknowledged data (the
comparison in procedure register_ack() checks this) the new sequence number is recorded.

The algorithm then checks if the ack-table allows an Ack to be sent to the data source upstream.
The minimum of the sequence numbers in the array Seq is the sequence number that has been
acknowledged by all the receivers. The router then sends an acknowledgment with that sequence
number (if it has not been sent already; this checking is done to avoid unnecessary duplicate Acks).
The source must be its own address, since its upstream router would be expecting an Ack with that
address.



Congestion control and fast error recovery mechanisms in TCP depend on receiving duplicate
acknowledgments. Therefore, we had to design Ack fusion in FNs so that it recognizes duplicate
acknowledgments from receivers and forwards them towards the source. We did this by introducing
an integer duplicate which is positive if the last acknowledgment received is a duplicate. An ac-
knowledgment is a duplicate if it is not a fresh one for that particular receiver. Thus, the FN also
propagates duplicate acknowledgments.

(5]
M

Figure 5: Duplicate acknowledgments and Ack implosion

However, propagating all duplicate acknowledgments would lead to an Ack implosion problem.
For example in Figure 5, if sequence number 4 is lost and 5 is received by all the receivers D1 through
D100, then they would send duplicate acknowledgments to R1 requesting sequence number 4. Rl
would forward all the acknowledgments to 5 and thus S would receive 100 duplicate acknowledgments
for sequence number 3. To avoid this problem, fusion nodes maintain a duplicate count and forwards
upto MAX _DUFPLICATE duplicate acknowledgments. MAX_DUPLICATE should be at least
three since TCP responds with fast retransmit on receiving three duplicate acknowledgments?.

4.4. Connection Termination

After the last data packet has been sent and its acknowledgment received, the TCP-M source
proceeds to terminate the connection as follows, The embedded TCP sends a FIN packet to the
multicast address telling all the receivers to terminate the connection. On receiving the FIN packet
the receivers leave the multicast group using IGMP messages. Then they send a FIN_ACK and a
TCP-M_CLOSE message back to the source.

The FIN_ACK proceeds towards the source just like an acknowledgment to a data packet,
it is fused on its way with other FIN_ACKs. After a FN receives all the FIN_ACKS from its
downstream neighbors it forwards a single FIN_ACK towards the source and deletes all state
associated with that particular multicast connection. However, the TCP-M.CLOSE messages are
not fused.

Thus, when the source receives a FIN_ACK it terminates too. Loss of FINs or FIN_ACKs
are treated identical to loss of data packets — they are retransmitted if required. From all the
TCP-M_CLOSE messages the GM also knows all the receivers who successfully received all packets.
This information is passed upto the application.

2We used a vahue of five just to be safe - in case of lost Acks.



4.5. Handling Network Failures

Every protocol in the Internet must be capable of handling failures and exceptional conditions.
In this subsection we discuss how TCP-M deals with host and network failures. If a receiver fails
during connection establishment it is eventually timed out after a few tries and the protocol proceeds
without it (described above in Section 4.1). Meanwhile the application is also informed of the failed
receiver.

Next, we describe how network failure is handled during the data transfer. A receiver retrans-
mits its REVERSE_PATH message periodically every RCVRTMOUT interval of time. The
REVERSE_PATH messages are forwarded as before by the FNs, Every time an FN receives a
REVERSE_PATH message from its downstream neighbor, it starts a timer with a value TCP-
M_TMOUT (Figure 6).

Seq: an array of integers indexed by host/router addresses,
initially all -1

Alive: an array of boolean values, initially all TRUE

duplicate: an integer, initially O

last_acked: an integer, initially -1

parent: address of parent fusion node

On receipt of a REVERSE_PATH from a host r:
If the first time
set up state for r
If timer pending for r
cancel timer
start timer for r with value TCP-M_TMOUT
forward it to parent

On timer expiry for host r:
Alive[r] = FALSE
duplicate = 0
send.ack()

procedure send_ack()
temp = min(Segls]) V hosts s such that Alivels] = TRUE
If (temp > last.acked oxr 0 < duplicute < MAX_DUPLICATE)
(* fresh or duplicate Ack *)
last_acked = temp
send acknowledgment with sequence number = last_acked,
source = my address, and
destination = parent

Figure 6: TCP-M: Determining failed hosts

When a timer expires for a certain host, it is noted as “dead”. Also, the Ack table is checked
to see if it allows a new acknowledgment to be sent. Thus, after a brief intermission data transfer
resumes. When forwarding acknowledgments, only the hosts that are “alive” are considered. The
modified send.ack(} procedure is outlined in Figure 6. It also requires some more state at FNs.

TCP-M also handles routing topology changes automatically, REVERSE_PATH and normal

10



acknowledgments to data packets are sent hop-by-hop through the fusion nodes. Thus, the protocol
works even if the network topology changes and packets are re-routed as a result.

From the description of connection termination above in Section 4.4, the application also gets to
know which receivers successfully received all packets sent in the connection.

5. Properties of TCP-M

In this section we discuss some of the important characteristics of TCP-M. In the following Section §
we verify some of these properties with simulation experiments.

5.1. TCP-like Congestion Control

QOur most important goal in designing TCP-M was to come up with a multicast protocol which
reacts to congestion in the network like a unicast connection. Unicast connections form a bulk of
the network connections in the Internet. Further, according to [Bra96], about 80% of all data flowing
through the Infernet is generated by TCP. Thus, our goal was to design a protocol which reacts to
congestion like TCP. We discussed earlier in Section 3 why a multicast protocol should do so. We
achieve this as a direct consequence of our design of TCP-M.

The embedded TCP in the TCP-M source transport protocol is completely transparent to the
fact that the data packets are multicast to several receivers. TCP receives acknowledgments from a
single address (due to Ack fusion). Thus, it calculates round-trip times and timeout values as usual.
It also reduces or increases the sender congestion window based on the feedback it receives from the
acknowledgments.

In the next section, by a simulation experiment, we demonstrate how the behaviors of TCP-M
and unicast TCP are alike in this respect.

5.2. Bottleneck Bandwidth

As mentioned earlier, one obvious consequernce of fusing acknowledgments is that the TCP-M source
would be slowed down to the speed of the slowest receiver. Thus, all the receivers would experience
the same data transfer rate irrespective of their bandwidth to the source. While this may be
considered a disadvantage — the important point to note here is that in the time required to
transfer a file to the slowest receiver, we have also transferred it to all the other receivers. This saves
us a lot of network resources. Besides, TCP-M is intended for file transfer applications which are
not time-critical, but where reliability is important.

5.3. Incrementally Deployable

TCP-M requires the intermediate routers to be capable of doing Ack fusion. However, we designed
TCP-M such that it would work even if only the source host implements Ack fusion. PATH and
REVERSE _PATH messages {described in Section 4.1) set up the state required at fusion nodes.
Figure 3 illustrates by an example how this is done. In Figure 2 we see how TCP-M works even
if not all the routers are fusion nodes. If ouly the source implements Ack fusion, TCP-M becomes
similar to SCE [TA95] since all the acknowledgments are fused only at the source.
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5.4, Complexity at Fusion Nodes: Memory and Computation

Each fusion node requires O{3n+3) = O(n} (from Figure 4 and Figure 6) memory for every multicast
connection (source:group pair), where n is the number of downstream fusion nodes. If all the routers
are fusion nodes, then n is the cut-degree of a router in the corresponding multicast tree minus one.
Thus, it is independent of the size of the multicast tree or the number of receivers. This makes
TCP-M very scalable. However, in the extreme case, if only the source is a fusion node, » is the
total number of receivers.

Refer to procedure register_ack() in Figure 4. Assuming hash tables or content addressable
memory (CAM), this would take O(1} time. Sending Acks (Figure 6) takes O(2n + 1) = O(n) time
to determine if an acknowledgment needs to be sent, and to find the appropriate sequence number.
Again, if all the routers are fusion nodes, » is relatively small and therefore this is very scalable.

5.5. Scalability

From Section 5.4 above, the memory and computation required at a router to do Ack fusion is very
reasonable and is independent of the total number of receivers in the corresponding multicast tree®.
‘This makes TCP-M very scalable to large multicast groups. One potential disadvantage of TCP-M is
that a single packet loss anywhere in the network results in a retransmission on the whole multicast
tree. As a possible future extension to TCP-M we could add local retransmissions. However, with
links becoming more and more reliable, packet losses due to data corruption should be rare. Most
losses occur due to congestion at the routers, and with improvements over the years, TCP can take
care of congestion very well. Using TCP as the transport protocol for TCP-M would thus be very
conducive for the performance of TCP-M.

In our simulation experiments described below (Section 6) we tested TCP-M on networks upto
250 nodes and the performance was very encouraging.

6. Simulating and Testing TCP-M

We implemented TCP-M in Ns [UCB98] and conducted simulation experiments to evaluate TCP-M
and verify its correctness. In this section we present the results of our experiments.

Figure 7 is the fopology we used to test TCP-M. It is a ten node topology with one source
and 5 end-nodes. For all our experiments we started data sources from S. The receivers were
at D1 through D5. All the nodes were capable of fusing acknowledgments. The multicast routing
protocol used for our experiments was DVMRDP {WPD88]. The embedded unicast transport protocol
at the source was TCP Vegas [BOP94] and the transport protocol at the receivers were modified
TCP sinks which were capable of interpreting PATH messages from TCP-M sources and sending
REVERSE_PATH messages periodically. The links in the topology had bandwidth and delay
parameters as shown.

We used the above topology to verify the correctness of the protocol. Using it we tested how
TCP-M behaves in co-existence with unicast protocols and in the the event of network faihures. Link
R4 — D4 provides an alternate path from S to R4 which we used to see how TCP-M responds to
routing topology changes. R4 — D4 is not used in the multicast tree rooted at S until R2 failed.
The multicast tree is shown in bold lines,

We aiso used some much larger topologies to test how TCP-M works for large networks. We
present the results later.

311 all the intermediate routers are fusion nodes.
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Figure 7: Topology used to test TCP-M

6.1. Single Multicast Connection

We studied a single multicast connection {from an FTP source at S to D1, D2, D3, D4 and D5.
Figure 8 shows the packet sequence number plot for the sender TCP. The multicast tree in Figure 7
had links of different bandwidths and delays, but the overall throughput is a shade less than 2Mbps,
the bandwidth of the bottleneck link R3 — D4, TCP packets are 1000 bytes each in this and all
following experiments.
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Figure 8: TCP-M for a single connection

6.2. Multiple Connection Scenarios

Here we simulated two simultaneous multicast connections on the same network from the same
source 5. For the experiment in Figure 9(a), S1’s receivers were D1, D2, D3 and D4. §2’s receivers
were D1, D2, D3 and D5. Figure 9(a) depicts the sequence numbers transmitted by TCP-M. The
bottleneck link for 51 is link B3 — D4 and while that for 52 is B3 — D5. The T'CP sources obtain
the bandwidth allowed by their bottleneck links. Shared links have enough bandwidth to allow both
connections. 52 was started 0.5 seconds after S1.
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In the next experiment {Figure 9(b})), the multicast connections shared the same bottleneck Jink.
Both 51 and 52 had the same set of receivers: D1, D2, D3, D4 and D5. Link R3 — D4, shared
by both the connections, has a bandwidth of 2 Mbps. However, after a while, both the multicast
connections obtain a bandwidth of about 1 Mbps. 52 was started a little after S1 so that the plots
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Figure 9: Two simultaneous multicast connections

would be easily distinguishable.

These experiments demonstrate that multiple TCP-M connections react to each other like unicast

TCP connections and share bandwidth among each other fairly.

6.3. Co-existence with Unicast Traffic

In this experiment, we studied a multicast connection in co-existence with a unicast connection.
Cousider the topolegy in Figure 7. For this experiment, we started a unicast FTP from S to D4
and a multicast FTP from S to D1, D2, D3, D4 and Db. The sequence number plot is shown in
Figure 10. The multicast connection and the unicast connection shared 2 Mbps among themselves
(links R3 — D4 is the bottleneck). Each obtained about 1 Mbps. The sources were started at

Packet Sequence Number
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35

Figure 10: TCP-M co-existing with a unicast TCP connection

staggered times so that the plets would be distinguishable.
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An interesting argument at this point would be that multicast connections should receive a share
of throughput proportional to the number of downstream receivers®. Thus, the multicast connection
above receives the same throughput as the unicast connection since there is only one downstream
receiver ([4) for router R3. However, in another experiment, § — R1 was the bottleneck neck, but
still the two connections shared bandwidth equally among themselves. In order to have multicast
connections receive a share proportional to the number of receivers, a router should know the number
of receivers for each multicast conmection passing through it. This is clearly a lot of overhead and
leads us to the classical problem of fair quening.

This experiment proves that TCP-M satisfies our most important design goal — TCP-like be-
havior and TCP-friendly when reacting to network congestion.

6.4. Network Failures and Routing Changes

The following two experiments were performed to verify how TCP-M reacts to network failures and
routing topology changes. In Figure 11(a}, the multicast source is transferring a file to all the five
receivers in Figure 7. At 1.0 seconds, represented by the vertical line, we deliberately crashed router
R3. For the purpose of this simulation, the value of RCVR.TMOUT was 1 second and TCP-
M_TMOUT was 2 seconds (see Section 4.5). The plot in Figure 11(a) depicts how TCP-M reacts
to crashing of R3. TCP-M, or rather the embedded TCP, retransmiis its last window of packets at
1.3 and 1.9 seconds. RI received the last REVERSE.PATH message from R3 at 0.0235 seconds.
Therefore, its timer expires at 2.0235 seconds and thus data transfer resumes. Approximately one
second is lost due to the failing of R3. This, response to failure can be hastened by decreasing
RCVREITMOUT and TCP-M_TMQUT.
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(a) Single host crashes (b) Network topology changes

Figure 11: Network failures and TCP-M

The next experiment is to demonstrate that TCP-M is transparent to routing topology changes.
In the topology in Figure 7 R4 has an alternate route (through D4 and R3) to get to R1. However,
this route is not used because it is sub-optimal. At time 2.0 seconds in the simulation, represented by
the vertical line, we crashed R3 deliberately. The plot in Figure 11(b) shows that TCP-M transfer
continues. The plot is zoomed to an x-axis of 1.0 to 3.0 seconds. There are a few retransmissions
because of the sudden increase in the round-trip time when R3 goes down. The data transfer rate
drops because a sub-optimal route is being used and it is the bottleneck. As stated in Section 4.5

4We thank Christos Papadopoulos for bringing it up.
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this is because REVERSE_PATH and data-acknowledgments are sent hop-by-hop through fusion
nodes. In this experiment R3 was not a fusion node (so that we could crash it and still recover
receivers reachable through R3 via an alternate path).

6.5. Fast Retransmit and Fast Recovery in TCP-M
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Figure 12: Fast retransmit and fast recovery in TCP-M

The following experiment is to demonstrate that we have preserved the fast retransmit and fast
recovery mechanisms of TCP in our design of TCP-M. In Figure 12 we show a single multicast
connection from S (in Figure 7) to all the receivers. We make receiver D1 deliberately lose packets
numbered 333 through 337 (at about 1.5 seconds) and let TCP-M recover from it. In Figure 12 we
can see that TCP-M retransmits packets 333 through 337 and after a brief period the data transfer
continues as before. By studying link traces we also observed the duplicate Acks flowing back to
5. The behavior here is however highly dependent on the particular network and which receiver or
receivers lose packets. If the duplicate Acks are received by an FN before the previous packets have
been acknowledged, they are wasted and the sender ultimately times out.

6.6. Bottleneck Bandwidth in Large Network

We simulated TCP-M over some large networks upto 250 nodes. We used the GT-ITM network
topology generator [CZ97] from Georgia Tech to generale random networks. The performance of
TCP-M was as expected — TCP-M sends data at the bottleneck speed as defined by the particular
network. Figure 14 shows the sequence number plot for a multicast connection in a random 100
node topology. The parameters file used to generate the topology is given in Figure 13.

# random topology of 100 nodes

# <method keyword> <number of graphs> [<initial seed>]
# <n> <scale> <edgemethod> <alpha>

geo 1 23

100 50 3 0.03

Figure 13: Parameters used to generate a random 100 node topology
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We simulated a multicast connection from node 0 to all 54 reachable nodes. The bandwidth of
the links were 100 Kbps each. The link delays varied from 2 to 57 ms. The simulation time was 1
minute. Since TCP packets were 1000 bytes each the total throughput observed by the multicast
connection was about 94.3 Kbps. It takes longer for TCP-M to reach the steady state in these larger
networks because of higher link delays, but eventually it reaches the throughput allowed by the link
bandwidths. When we changed the throughput of one link in the nefwork to 50 Kbps, the total
throughput obtained by TCP-M was about 49.2 Kbps.

800 T T T T v
700 £
660
500
400
300 >

Packet Sequence Number

0 10 20 30 40 50 60
Time (Seconds)

Figure 14: TCP-M on a random 100 node topology

6.7. Benefits of Ack Fusion

In the following experiment, we studied the effect of reducing the number of hosts capable of Ack
fusion. We generated binary trees with random link bandwidths and delays®. Then we simulated a
single multicast source from the root to all the other nodes. The link bandwidths were 500 Kbps
each and the delays varied from 0 to 10 ms. We ran our experiment on networks of size 63 and 127
nodes®. All the nodes, but the root, in the tree were receivers. "The simulation time was 1 minute.

We wish to study the effect of Ack implosion as the number of fusion nodes are reduced. How-
ever, for our simulator packet processing time at a node is zero. Therefore, we had to change our
simulation parameters so that acknowledgments would create congestion in the network as their
number increases. Specifically, the TCP packet size was changed to 40 bytes” for this experiment
— 50 as to increase overhead due to acknowledgments.

Table 1: Throughput (in Kbps) for binary tree topologies as the number of fusion nodes is reduced

Number of Number of fusion nodes Unicast
nodes 127 | 63 31 15 7 | only source || connection
127 142.9% | 142.9 | 1389 ] 13.8 e 0.47° 145.2
63 — 173.28 | 1753.2 | 164.5 | 18.74 1.59 174.3

5We used a tree topology because it could easily lead to the problem of Ack implosion as the number of FNs are
reduced - which we intend to observe here.

5We could not use a larger network because of inherent limitations in our simulator — Fs.

7Same as acknowledgment packet size.
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In Table 1 we see that the throughput reduces, sometimes considerably, as the number of FNs
is reduced in the network. The fusion nodes were the topmost nodes in the tree (including the
root node). For the 127 node topology, the throughput drops by about 37% when the number
of I'Ns is reduced from 63 to 31. The throughput for 50% and 100% FNs are the same because
adding Ack fusion capability to the leaf nodes in a binary tree topology do not make any difference
— no acknowledgments are fused at leaf nodes. For the case where the source is the only fusion
node, congestion due to Ack implosion is so bad that several hosts were timed out because their
REVERSE_P AT H messages were dropped. In fact, for the 127 node topology, TCP-M aborted the
connection midway dut to high network delays. Thus, we see a very poor throughput. The decrease
is not very consistent because the results depend on the particular topology. However, the general
trend in Table 1 is that the throughput and efficiency decreases as the number of fusion nodes are
reduced,

We also show the throughput of a unicast TCP Vegas connection from the root to one of the leaf
nodes. As we can see the throughput obtained by TCP-M is quite close to the throughput obtained
by the unicast connection — the small difference can be attributed to the TCP-M protocol messages.
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Figure 15: TCP-M on a binary tree topology of 63 nodes as the number of FNs are varied

In Figure 15 we show the sequence number plots for three cases for the 63 node topology. We
only show the first 10 seconds of the simulation for clearer understanding. For the case where the
source is the only FN, it leads to a large number of packet drops and consequently the very low
throughput as shown in Table 1. having only 7 fusion nodes also result in packet drops, but TCP-M
{or, rather the embedded TCP) recovers from it quite well and is successful in obtaining a steady
state. Clearly the performance is better for 15 fusion nodes.

7. Applicability of TCP-M

We intend to use TCP-M for applications which require one to many reliable file transfers. For
example, a web server distributing files to its cache proxies or mirror sites, a software vendor dis-
tributing updates to its clients or synchronizing software versions among different machines in a
network. Another possible application is sending electronic mail to multiple receivers. Currently,
all these use separate unicast connections to the different machines. Replacing it by TCP-M would
reduce the overall time to a fraction. Further, it would reduce the overall network bandwidth used

8The rest of the bandwidth being used up by the Acks and TCP-M protocol messages.
#Connection aborted midway due to network delays.
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(multicast reduces the total number of packets). A file transfer with TCP-M would take as long as
the longest unicast file transfer, but in the process, all the other machines would have received the
file too.

Source
oo

Domain

Recipients
Figure 16: Ack fusion can be restricted to intra-domain routers

The design of TCP-M provides us with a lot of flexibility in choosing fusion nodes in order
to improve throughput and efficiency. For example, for a transfer across the Internet, we can
avoid modifying backbone routers to do Ack fusion. Even if we could change backbone routers, we
would not want o because backbone routers are often overloaded and the extra effort of doing Ack
fusion would further slow them down. Only the intra-domain routers and the source would fuse
acknowledgments. See Figure 16 for an illustration. Since the number of backbone routers are in
hundreds while the number of recipients could be in the order of tens of thousands or more, the
intra-domain routers and the source would have to fuse about hundreds of Acks.

As another possibility and an extension to TCP-M, we could have special hosts (not necessarily
routers) who could fuse acknowledgments. Thus, we could relieve the routers of the overhead of Ack
fusion.

8. Summary

In this paper, we proposed TCP-M, a reliable multicast transport protocol which can use TCP as
the upper level transport layer protocol to do multicast. The multicasting is done by IP Multicast
and the reliability is assured by acknowledgments and retransmissions. Ack implosion is prevented
by fusing them at the routers. The important advantages of TCP-M are that it is very scalable
and TCP-friendly. The congestion control in TCP-M is exactly like TCP: multicast and unicast
connections thus behave similarly in response to congestion. This is very important because TCP
mechanisms have been perfected over the years and we know it works. Further, it would allow
unicast and multicast connections to co-exist fairly. TCP-M is very easily deployable — it would
work even if only the source is capable of Ack fusion. We simulated TCP-M in Ns and performed
some experiments which support our arguments.
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