
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

McKelvey School of Engineering Theses & 
Dissertations McKelvey School of Engineering 

Spring 5-17-2019 

Numerical Simulation of Flow Past NACA 0012 Airfoil Using a Co-Numerical Simulation of Flow Past NACA 0012 Airfoil Using a Co-

Flow Jet at Different Injection Angles to Control Lift and Drag Flow Jet at Different Injection Angles to Control Lift and Drag 

Da Xiao 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds 

 Part of the Engineering Commons 

Recommended Citation Recommended Citation 
Xiao, Da, "Numerical Simulation of Flow Past NACA 0012 Airfoil Using a Co-Flow Jet at Different Injection 
Angles to Control Lift and Drag" (2019). McKelvey School of Engineering Theses & Dissertations. 428. 
https://openscholarship.wustl.edu/eng_etds/428 

This Thesis is brought to you for free and open access by the McKelvey School of Engineering at Washington 
University Open Scholarship. It has been accepted for inclusion in McKelvey School of Engineering Theses & 
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, 
please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F428&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=openscholarship.wustl.edu%2Feng_etds%2F428&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/428?utm_source=openscholarship.wustl.edu%2Feng_etds%2F428&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


WASHINGTON UNIVERSITY IN ST. LOUIS 

James Mckelvey School of Engineering 

Department of Mechanical Engineering and Material Science 

 

Thesis Examination Committee: 

Ramesh Agarwal, Chair  

David Peters 

Swami Karunamoorthy 

 

 

 

Numerical Simulation of Flow Past NACA 0012 Airfoil Using a Co-Flow Jet at Different 

Injection Angles to Control Lift and Drag 

 

by 

Da Xiao 

 

 

A dissertation presented to the James Mckelvey School of Engineering 

of Washington University in St. Louis 

in partial fulfillment of the requirements for the degree of 

Master of Science 

 

 

 

  

May 2019 

St. Louis, Missouri 

 



ii 

 

 

Table of Contents 

 
Table of Contents ............................................................................................................................ ii 

List of Figures ................................................................................................................................ iii 

List of Tables .................................................................................................................................. v 

Nomenclature ................................................................................................................................. vi 

Acknowledgments........................................................................................................................ viii 

ABSTRACT OF THE THESIS ...................................................................................................... x 

Chapter 1: Introduction ............................................................................................................... 1 

Chapter 2: CFJ Parameters .......................................................................................................... 4 

2.1 Lift and Drag Calculation ................................................................................................. 4 

2.2 Jet Momentum Coefficient ............................................................................................... 6 

Chapter 3: Physical Model and Mesh ......................................................................................... 7 

3.1 Flow Conditions ............................................................................................................... 7 

3.2 Geometry and Mesh ......................................................................................................... 7 

3.3 Vj with Different Injection Angles ................................................................................... 9 

Chapter 4: Numerical Method ................................................................................................... 11 

4.1 ANSYS FLUENT Setup and Boundary Conditions ...................................................... 11 

4.2 UDF of Cμ Iteration ........................................................................................................ 12 

Chapter 5: Validation of Numerical Method............................................................................. 13 

Chapter 6: Results and Discussion ............................................................................................ 15 

6.1 Changeable injection angle’s influence on aerodynamic coefficients ........................... 15 

6.2 Sharp change in aerodynamic coefficient for a combination of 𝐶𝜇, injection slot 

location and high injection angle .............................................................................................. 28 

6.3 Injection angle’s influence on stall angle ....................................................................... 34 

Chapter 7: Conclusions ............................................................................................................. 41 

References ..................................................................................................................................... 43 

Appendix ....................................................................................................................................... 45 

Curriculum Vita ............................................................................................................................ 66 

 



iii 

 

 

List of Figures 
 

Figure 1: CFJ and baseline airfoil. .................................................................................................. 2 

Figure 2: CFJ and FC airfoil. .......................................................................................................... 2 

Figure 3: Flow parameters at the injection and suction slots. ......................................................... 5 

Figure 4: Computational domain and structured mesh. .................................................................. 8 

Figure 5: Refinement of the mesh near the changeable injection angle for CFJ NACA0012 

airfoil. .............................................................................................................................................. 8 

Figure 6: Changeable injection angle on the upper surface of the airfoil. ...................................... 9 

Figure 7: Diagrammatic sketch describing how to calculate 𝑉𝑗. .................................................. 10 

Figure 8: Pressure coefficient for flows past NACA0012 airfoil; 𝑅𝑒 = 6 × 106, 𝛼 = 10°. ....... 13 

Figure 9: Streamlines and velocity vectors for flow past NACA0012 airfoil; 𝑅𝑒 = 6 × 106, 𝛼 =

10°. ................................................................................................................................................ 14 

Figure 10: Lift coefficients variation with injection angle; 𝐶𝜇 = 0.3, 𝛼 = 0°. ............................ 16 

Figure 11: Absolute changes in lift coefficients with injection angle; 𝐶𝜇 = 0.3, 𝛼 = 0°. ........... 17 

Figure 12: Relative changes in lift coefficients with injection angle; 𝐶𝜇 = 0.3, 𝛼 = 0°. ............ 17 

Figure 13: Drag coefficients variation with injection angle; 𝐶𝜇 = 0.3, 𝛼 = 0°. .......................... 17 

Figure 14: Lift coefficients variation with injection angle; 𝐶𝜇 = 0.3, 𝛼 = 10°. ......................... 18 

Figure 15: Absolute changes in lift coefficients with injection angle; 𝐶𝜇 = 0.3, 𝛼 = 10°. ........ 18 

Figure 16: Relative changes in lift coefficients with injection angle; 𝐶𝜇 = 0.3, 𝛼 = 10°. .......... 19 

Figure 17: Drag coefficients variation with injection angle; 𝐶𝜇 = 0.3, 𝛼 = 10°. ....................... 19 

Figure 18: Lift coefficients variation with injection angle; 𝐶𝜇 = 0.2, 𝛼 = 0°. ............................ 20 

Figure 19: Absolute changes in lift coefficients with injection angle; 𝐶𝜇 = 0.2, 𝛼 = 0°. ........... 20 

Figure 20: Relative changes in lift coefficients with injection angle; 𝐶𝜇 = 0.2, 𝛼 = 0°. ............ 21 

Figure 21: Drag coefficients variation with injection angle; 𝐶𝜇 = 0.2, 𝛼 = 0°. .......................... 21 

Figure 22: Lift coefficients variation with injection angle; 𝐶𝜇 = 0.2, 𝛼 = 10°. ......................... 22 

Figure 23: Absolute changes in lift coefficients with injection angle; 𝐶𝜇 = 0.2, 𝛼 = 10°. ........ 22 

Figure 24: Relative changes in lift coefficients with injection angle; 𝐶𝜇 = 0.2, 𝛼 = 10°. .......... 23 

Figure 25: Drag coefficients variation with injection angle; 𝐶𝜇 = 0.2, 𝛼 = 10°. ....................... 23 

Figure 26: Lift coefficients variation with injection angle; 𝐶𝜇 = 0.1, 𝛼 = 0°. ............................ 24 

Figure 27: Absolute changes in lift coefficients with injection angle; 𝐶𝜇 = 0.1, 𝛼 = 0°. ........... 24 

Figure 28: Relative changes in lift coefficients with injection angle; 𝐶𝜇 = 0.1, 𝛼 = 0°. ............ 25 

 Figure 29: Drag coefficients variation with injection angle; 𝐶𝜇 = 0.1, 𝛼 = 0°. ......................... 25 

Figure 30: Lift coefficients variation with injection angle; 𝐶𝜇 = 0.1, 𝛼 = 10°. ......................... 26 

Figure 31: Absolute changes in lift coefficients with injection angle; 𝐶𝜇 = 0.1, 𝛼 = 10°. ........ 27 

Figure 32: Relative changes in lift coefficients with injection angle; 𝐶𝜇 = 0.1, 𝛼 = 10°. .......... 27 

Figure 33: Drag coefficients variation with injection angle; 𝐶𝜇 = 0.1, 𝛼 = 10°. ....................... 27 



iv 

 

 

Figure 34: Lift coefficients variation with injection angle; 𝐶𝜇 = 0.1, 𝛼 = 10°. ......................... 28 

Figure 35: Drag coefficients variation with injection angle; 𝐶𝜇 = 0.1, 𝛼 = 10°. ....................... 29 

Figure 36: Streamlines and velocity vectors for 10° to 60° injection angles at 5% chord length 

location when 𝐶𝜇 = 0.1 and 𝛼 = 10°. ......................................................................................... 30 

Figure 37: Streamlines and velocity vectors for 10° to 60° injection angles at 15% chord length 

location when 𝐶𝜇 = 0.1 and 𝛼 = 10°. ......................................................................................... 31 

Figure 38: Streamlines and velocity vectors for 60° injection angles at 5% chord length location 

when 𝐶𝜇 = 0.1 and 𝛼 = 10°. ....................................................................................................... 32 

Figure 39: Streamlines and velocity vectors for 60° injection angles at 15% chord length location 

when 𝐶𝜇 = 0.1 and 𝛼 = 10°. ....................................................................................................... 32 

Figure 40: Streamlines and velocity vectors for 60° injection angles at 25% chord length location 

when 𝐶𝜇 = 0.1 and 𝛼 = 10°. ....................................................................................................... 33 

Figure 41: Stall angle analysis when injection slot is at 5% chord length location and injection 

angle is 0°. ..................................................................................................................................... 36 

Figure 42: Stall angle analysis when injection slot is at 5% chord length location and injection 

angle is 40°. ................................................................................................................................... 37 

Figure 43: Stall angle analysis when injection slot is at 15% chord length location and injection 

angle is 0°. ..................................................................................................................................... 38 

Figure 44: Stall angle analysis when injection slot is at 15% chord length location and injection 

angle is 40°. ................................................................................................................................... 39 

 

 

 

 

  



v 

 

 

List of Tables 
Table 1: Geometry parameters for CFJ airfoil with changeable injection angle. ......................... 15 

Table 2: Geometry parameters for stall angle analysis. ................................................................ 34 

  



vi 

 

 

Nomenclature 
     AoA =  Angle of Attack 

    CFJ  =  Co-Flow Jet  

    RANS =  Reynolds-Averaged Navier-Stokes 

𝐹𝑥𝑐𝑓𝑗 =  the reactionary force generated by the jet ducts in x direction 

𝐹𝑦𝑐𝑓𝑗 =  the reactionary force generated by the jet ducts in y direction 

𝑚̇𝑗  =  the mass flow 

𝑉𝑗  =  the injection flow velocity 

𝑝𝑗  =  the static pressure at slot’s exit 

𝐴𝑗       =  the area at slot’s exit 

𝜃  =  the angle between slot surface and the line normal to chord 

𝛼                 =  the angle of attack 

𝛽             =  the injection angle 

D  =  the drag 

L             =  the lift 

𝑅𝑥
′              =  the surface integral of pressure and shear stress in drag direction 

𝑅𝑦
′              =  the surface integral of pressure and shear stress in lift direction 

𝐶𝜇  =  the jet momentum coefficient, 𝐶𝜇 =
𝑚̇𝑗𝑉𝑗

1

2
𝜌∞𝑉∞

2𝑆
 

𝜌∞     =  the far field free stream density 

𝑉∞             =  the far field free stream velocity 

S             =  the platform area of the airfoil 
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c             =  the chord length 

𝜌𝑗       =  the injection slot flow density 

𝑃𝑡𝑖𝑛𝑗
 =  the injection slot inlet total pressure 

𝑃𝑠𝑖𝑛𝑗
             =  the suction slot exit static pressure 

Re             =  Reynolds Number 

Cl      =  the lift coefficient 

Cd             =  the drag coefficient 

L.E.             =                     leading edge 
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ABSTRACT OF THE THESIS 

Numerical Simulation of Flow Past NACA 0012 Airfoil Using a Co-Flow Jet at Different 

Injection Angles to Control Lift and Drag 

by 

Da Xiao 

Master of Science in Mechanical Engineering 

Washington University in St. Louis, 2019 

Research Advisor: Professor Ramesh K. Agarwal 

 

 

The focus of this thesis is to numerically study the aerodynamic performance of an airfoil by 

employing the active flow control from a co-flow jet (CFJ) near the leading edge. The study is 

conducted by changing the injection angle of CFJ on a location close to the leading edge on the 

upper surface of a most widely used NACA 0012 airfoil. The compressible Reynolds-Averaged 

Navier-Stokes (RANS) equations with Spalart-Allmaras (SA) turbulence model are solved using 

the commercial CFD solver ANSYS FLUENT. Steady state solver is employed in the 

simulations with pseudo-transient numerical method. The study is performed at free stream 

angles of attack from 0° and 10° for momentum coefficients 𝐶𝜇 = 0.1, 0.2 and 0.3 with injection 

slot located at 5%, 15% and 25% chord length from the leading edge of the airfoil.  It is shown 

that for given free stream conditions, the lift coefficient can be substantially increased and drag 

coefficient can be decreased with suitable choice of  𝐶𝜇,  injection angle and location of co-flow 

jet on the airfoil surface and different injection angles can have different aerodynamic 

coefficients performance.  Thus, Changeable Injection Angle CFJ technology can be used for 
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AFC to achieve the desired outcome of increasing the lift of an airfoil, decreasing drag of an 

airfoil and at the same time, to have a control of aerodynamic coefficients. 
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Chapter 1: Introduction 
 

Co-Flow Jet (CFJ) concept is a recently developed flow control (FC) method developed by 

Zha et al. [1-11] that can significantly improve airfoil performance. CFJ is different from 

traditional FC [12-18] as shown in Figure 2. This CFJ control method is implemented on an 

airfoil by opening an injection slot near the leading edge (LE) and a suction slot near the trailing 

edge (TE) on the airfoil upper surface. A small amount of mass is drawn into the suction slot and 

then pressurized and energized by a pumping system inside the airfoil. After pressurization, the 

flow is ejected from the injection slot and forms a co-flow jet tangentially on the upper surface of 

the airfoil. The whole CFJ process does not add any extra mass flow into the system and hence is 

a zero-net mass-flux flow control.  

Compared to the baseline airfoil, CFJ airfoil can drastically increases lift and stall margin, and 

reduce drag. The fundamental concept is that by changing the circulation, aerodynamic forces 

can be changed. The turbulent mixing between the jet and the main flow energizes the wall 

boundary-layer and thus increases the circulation which results in lift augmentation. In addition, 

the total drag is also reduced as there is a thrust generated and the wake velocity deficit is 

reduced. Figure 1 shows the difference in streamline patterns around the airfoil between the 

baseline airfoil and the CFJ airfoil. Compared to the traditional FC airfoil, CFJ has an advantage 

since it is a zero-net mass flux control that requiring no intake of air from other sources such as 

engine of an airplane. It is like a zero net mass-flux synthetic jet actuator but has higher control 

authority and therefore is more effective. Also, as shown in Figure 2, CFJ airfoil nearly has no 

wake while FC airfoil still has some limited wake which implies that the CFJ airfoil with both 

injection and suction can provide stronger mixing and energy transfer [5, 6, 11]. 
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Figure 1: CFJ and baseline airfoil. 

Figure 2: CFJ and FC airfoil. 

 

The study in this thesis is based on CFJ airfoil technology. The research already developed by 

Zha et al. is mainly deals with tangential CFJ flow. This thesis introduces changeable injection 

angle concept into the CFJ technology. Changeable injection angle method can create different 

characteristic in the flow on the upper surface of the airfoil to modulate both lift and drag. The 

study is based on NACA0012 airfoil. By changing the injection angle of the injection jet of 

different jet momentum coefficients 𝐶𝜇  with different injection locations, this thesis tries to 
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determine the influence of an injection CFJ on aerodynamic coefficients by changing it 𝐶𝜇 , 

injection location and injection angle. 
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Chapter 2: CFJ Parameters 
 

    This section defines the important parameters that are used to calculate the dependence of lift 

and drag of a NACA0012 CFJ airfoil by changing its 𝐶𝜇, injection angle and injection location. 

2.1 Lift and Drag Calculation 

    In addition to lift and drag on the airfoil due to free-stream flow, there are additional forces on 

the airfoil caused by the momentum of the injection jet at the injection slot and suction at the 

suction slot for the CFJ airfoil. These additional forces are automatically included in the 

measurement of lift and drag in the wind tunnel. However, in a CFD simulation, ANSYS 

FLUENT cannot calculate the additional reactionary forces automatically. It can only calculate 

the forces acting on the surface of airfoil. Therefore, additional reactionary forces are included 

by using the control volume analysis. For CFJ airfoil without changeable injection angle, Zha et 

al. [6] give the following formulas Eq. (1) and Eq. (2) for calculating the reactionary forces by 

using the flow parameters at the injection and suction slots: 

𝐹𝑥𝑐𝑓𝑗 = (𝑚̇𝑗𝑉𝑗1 + 𝑝𝑗1𝐴𝑗1) ∗ cos(𝜃1 − 𝛼) − (𝑚̇𝑗𝑉𝑗2 + 𝑝𝑗2𝐴𝑗2) ∗ cos(𝜃2 + 𝛼) (1)  

𝐹𝑦𝑐𝑓𝑗 = (𝑚̇𝑗𝑉𝑗1 + 𝑝𝑗1𝐴𝑗1) ∗ sin(𝜃1 − 𝛼) + (𝑚̇𝑗𝑉𝑗2 + 𝑝𝑗2𝐴𝑗2) ∗ sin(𝜃2 + 𝛼) (2)  

The subscripts 1 and 2 represent the injection and suction respectively. 𝑚̇𝑗 is the injection and 

suction mass flow (injection mass flow is equal to suction mass flow), 𝑉𝑗  are injection and 

suction velocities, 𝑝𝑗 are static pressures at two slots’ exits, 𝐴𝑗 are areas at two slots’ exits and α 

is the angle of attack. 𝜃1 and 𝜃2 respectively are angles between the injection slot and suction 

slot and a line normal to the chord of airfoil. 
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This thesis introduces changeable injection angle 𝛽 into the CFJ airfoil as shown in Figure 3. 

Based on Figure 3, the formulas to calculate the reactionary forces become: 

𝐹𝑥𝑐𝑓𝑗 = (𝑚̇𝑗𝑉𝑗1 + 𝑝𝑗1𝐴𝑗1) ∗ cos(𝜃1 + 𝛽 − 𝛼) − (𝑚̇𝑗𝑉𝑗2 + 𝑝𝑗2𝐴𝑗2) ∗ cos(𝜃2 + 𝛼) (3)  

𝐹𝑦𝑐𝑓𝑗 = (𝑚̇𝑗𝑉𝑗1 + 𝑝𝑗1𝐴𝑗1) ∗ sin(𝜃1 + 𝛽 − 𝛼) + (𝑚̇𝑗𝑉𝑗2 + 𝑝𝑗2𝐴𝑗2) ∗ sin(𝜃2 + 𝛼) (4)  

 

Figure 3: Flow parameters at the injection and suction slots. 

The total lift and drag acting on the airfoil then can be expressed as: 

𝐷 = 𝑅𝑥
′ − 𝐹𝑥𝑐𝑓𝑗 (5)  

𝐿 = 𝑅𝑦
′ − 𝐹𝑦𝑐𝑓𝑗 (6)  

    𝑅𝑥
′  and 𝑅𝑦

′  are the surface integral of pressure and shear stress in the drag and lift direction. 

Thus, in the numerical simulation, the final drag and lift due to changeable injection angle on 

NACA0012 airfoil are calculated by the formulas given by Eq. (3), Eq. (4), Eq. (5) and Eq. (6). 



6 

 

2.2 Jet Momentum Coefficient 

    CFJ airfoil introduces a parameter called jet momentum coefficient 𝐶𝜇  to quantify the 

momentum of the injection jet. 𝐶𝜇 is defined as: 

𝐶𝜇 =
𝑚̇𝑗𝑉𝑗

1
2 𝜌∞𝑉∞

2𝑆
 

 

(7)  

In Eq. (7), 𝑚̇𝑗 is injection mass flow, 𝑉𝑗 is the injection velocity, 𝜌∞ is far field free stream 

density, 𝑉∞ is the far field free stream velocity and 𝑆 is c, 1 meter. The c is the chord length of 

the airfoil and airfoil of unit span is assumed in non-dimensionalization of 𝐶𝜇. 
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Chapter 3: Physical Model and Mesh 
 

This section describes the flow conditions of the simulation as well as the geometry of the 

airfoil and structured mesh around it created in ICEM.   

3.1 Flow Conditions 

    The flow past a changeable injection angle CFJ NACA0012 airfoil of chord length 𝑐 = 1.0 𝑚 

is investigated. The Mach number is 0.2 and Reynolds number is about 4,564,760. Angle of 

attack, jet momentum coefficient, injection angle and injection slot location are changed in 

different cases as shown in Table 1 and Table 2 in section 6.1 and section 6.3 respectively. 

3.2 Geometry and Mesh 

A C-block computational domain is used as shown in Figure 4. The maximum horizontal 

length of the domain is 35c (20c in front of the airfoil and 14c behind the airfoil) so that the 

unbounded flow condition can be satisfied during the calculation. Figure 4 also show the 

structured mesh with refinements near the injection slot and suction slot and in the wake region. 

The suction slot in all cases is located at 85% chord length but the injection slots are located at 

5% chord length, 15% chord length, 25% chord length on the upper surface of the airfoil for 

different cases as shown in Figure 5. Injection angle changes from 0° to 50° for different cases at 

each injection slot location as shown in Figure 6. The chord length is 1m, injection slot width is 

0.005m and suction slot width is 0.01m. There are 306,750 nodes in the computational domain 

and the first layer cell height on the airfoil surface is 0.0001m ensuring that y+<1. The external 

boundary of the computational domain is set as a pressure far field condition. 
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Figure 4: Computational domain and structured mesh. 

Figure 5: Refinement of the mesh near the changeable injection angle for CFJ NACA0012 airfoil. 
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Figure 6: Changeable injection angle on the upper surface of the airfoil. 

3.3 Vj with Different Injection Angles 

𝑉𝑗 is a parameter that needs to be specified to calculate 𝐶𝜇. In the simulation, 𝑉𝑗 needs to be 

specified at injection slot exit curve 13 as shown in Figure 7 (a). In ANSYS FLUENT, curve 13 

is set as a type of boundary condition called “interior” so that a UDF (user defined function) can 

extract necessary parameters at curve 13 to calculate 𝑉𝑗. There is no macro command in UDF 

that can directly extract velocity at an interior boundary condition. Because UDF has macro 

command to extract densities at first layer cells on interior boundary’s two sides, average density 

at curve 13 is known. Thus, injection velocity 𝑉𝑗 can be obtained by the relation: 

𝑉𝑗 =
𝑚̇

𝜌𝑗1𝐴𝑗1 cos 𝛽
 

 

(8)  
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where mass flow 𝑚̇  can be extracted at curve 20 (pressure inlet boundary condition) and 

injection slot exit density 𝜌𝑗1  can be extracted at curve 13 (interior boundary condition). As 

Figure 7 (b) shows, 𝐴𝑗1 is the area at injection slot exit (curve 13) and 𝐴𝑗1 cos 𝛽 is the vertical 

cross section area of the injection slot (curve 17).  

    𝑉𝑗 changes with different injection angles 𝛽 even when 𝐶𝜇 is the same. 

 

Figure 7: Diagrammatic sketch describing how to calculate 𝑉𝑗. 

    Figure 7 (a) shows the geometry used to create the mesh in ICEM and Figure 7 (b) is a 

diagrammatic sketch. There is no curve17 in the mesh geometry. Details about the UDF to 

satisfy a specific 𝐶𝜇 are given in next section and in Appendix. 
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Chapter 4: Numerical Method 
 

    This section describes the numerical set up employed in ANSYS FLUENT to achieve the 

simulations of CFJ NACA0012 airfoil using the changeable injection angles.  

4.1 ANSYS FLUENT Setup and Boundary Conditions 

The double precision solver in ANSYS FLUENT 17.1 is used to perform the CFD 

simulations. This research employs the 2D Compressible Reynolds-averaged Navier-Stokes 

equations with Spalart-Allmaras turbulence model. A Second-order numerical scheme is used for 

discretization of both the convection and diffusion terms. The pressure-coupled transient solver 

is used for pseudo-transient pressure-velocity coupling. Steady solver is employed in the 

simulations with pseudo-transient method. When results show a steady flow, convergence is 

considered achieved if lift coefficient and drag coefficient change within 0.01% over 1000 

iterations. When results show an unsteady flow, convergence is considered achieved if lift 

coefficient and drag coefficient become periodic after several cycles and do not change from one 

cycle to next cycle; 20 cycles are chosen as the time average period to calculate the average 

aerodynamic coefficients for the unsteady periodic flow. 

No slip wall condition is used on the airfoil solid surface and on the injection and suction slot 

two side walls. Pressure-far-field condition with Mach number = 0.2 and total pressure = 0 are 

set to satisfy the far-field unbounded flow boundary conditions at the outer boundary of the 

computational domain. The inlet of injection slot is set as pressure inlet condition with 

changeable total pressure controlled by UDF. The exit of suction slot is set as a pressure outlet 

condition with changeable static pressure controlled by UDF. The operating condition is one 

standard atmospheric pressure. 
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4.2 UDF of Cμ Iteration 

CFJ airfoil must achieve zero net mass flux under all operating conditions. The mass flow 

exiting from injection slot 𝑚̇𝑖𝑛𝑗 must be equal to the mass flow entering the suction slot 𝑚̇𝑠𝑢𝑐. 

The momentum of the flow is defined by 𝐶𝜇 and a specific value of 𝐶𝜇 is achieved by adjusting 

the injection slot inlet total pressure 𝑃𝑡𝑖𝑛𝑗
. The 𝑚̇𝑠𝑢𝑐 matches 𝑚̇𝑖𝑛𝑗 by adjusting the suction slot 

exit static pressure 𝑃𝑠𝑠𝑢𝑐
. During each iteration, there is a UDF process to judge whether the 

above two conditions are achieved by adjusting the 𝑃𝑡𝑖𝑛𝑗
 and 𝑃𝑠𝑠𝑢𝑐

 automatically. The acceptable 

variation for 𝐶𝜇 and mass flow are both within 0.2% for this research. 
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Chapter 5: Validation of Numerical Method 
 

The numerical investigation of the flow field of NACA0012 airfoil at Reynolds number of 

𝑅𝑒 = 6 × 106 at angle of attack is 10° and chord length is 1 meter is conducted to validate the 

numerical method in ANSYS FLUENT. The pressure coefficient 𝐶𝑝 is plotted against x/c in 

Figure 8. The experimental results are from Gregory and O’Reilly [19].   

Figure 8: Pressure coefficient for flows past NACA0012 airfoil; 𝑅𝑒 = 6 × 106, 𝛼 = 10°. 
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The numerical results using the compressible RANS equations agree quite well with the 

experimental data as shown in Figure 8. The streamlines and velocity vectors are shown in 

Figure 9.  

Figure 9: Streamlines and velocity vectors for flow past NACA0012 airfoil; 𝑅𝑒 = 6 × 106, 𝛼 = 10°. 
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Chapter 6: Results and Discussion 
 

6.1 Changeable injection angle’s influence on aerodynamic 

coefficients  

    As shown in Table 1, 18 different cases were computed and compared to study the influence 

of changeable injection angle on the aerodynamic coefficients with different 𝐶𝜇, angle of attack 

and injection slot location. From these results, a best injection location can be determined by 

exercising control using the changeable injection angle CFJ. 

Cases Cμ AoA Injection slot 

location from L.E. 

Injection angle 

A1 0.1 0° 5%  

 

 

 

 

 

 

 

 

0°, 10°, 20°, 

30°, 40°, 50° 

A2 0.1 0° 5% 

A3 0.1 0° 5% 

A4 0.2 0° 10% 

A5 0.2 0° 10% 

A6 0.2 0° 10% 

A7 0.3 0° 15% 

A8 0.3 0° 15% 

A9 0.3 0° 15% 

A10 0.1 10° 5% 

A11 0.1 10° 5% 

A12 0.1 10° 5% 

A13 0.2 10° 10% 

A14 0.2 10° 10% 

A15 0.2 10° 10% 

A16 0.3 10° 15% 

A17 0.3 10° 15% 

A18 0.3 10° 15% 
Table 1: Geometry parameters for CFJ airfoil with changeable injection angle. 

    Figures 10-13 show the results for cases A7, A8, A9 and Figure 14-17 show the results for 

cases A16, A17, A18. These figures show the change in aerodynamic coefficients with different 

injection angles when injection locations are different. Cases A7, A8, A9 and A16, A17, A18 are 

all computed for 𝐶𝜇 = 0.3. 
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Figure 10 shows the variation in lift coefficient with injection angle for 𝐶𝜇 = 0.3 and angle of 

attack = 0°. It shows that 5% and 15% chord length location of injection slot have nearly same 

lift coefficient with change in injection angle and their lift coefficients are all higher than these 

obtained for 25% chord length location of injection angle. Also, as injection angle becomes 

larger, the lift coefficient becomes smaller as expected. Figure 11 and Figure 12 show the 

absolute change and the relative change in lift coefficients at different injection angles compared 

to their respective tangential flow case. Figure 11 and Figure 12 show that when injection 

location is located at 15% chord length, the change in injection angle can produce most 

significant decrease in lift. The maximum decrease in lift can be 35% compared to its 

corresponding tangential flow case with absolute lift coefficient decreasing by 0.122. 

Figure 13 shows that the drag coefficient increases when injection angle becomes larger. Also, 

the injection slot at 15% chord length location has the smallest drag coefficient. 

 
Figure 10: Lift coefficients variation with injection angle; 𝐶𝜇 = 0.3, 𝛼 = 0°. 
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Figure 11: Absolute changes in lift coefficients with injection angle; 𝐶𝜇 = 0.3, 𝛼 = 0°. 

 
Figure 12: Relative changes in lift coefficients with injection angle; 𝐶𝜇 = 0.3, 𝛼 = 0°. 

 
Figure 13: Drag coefficients variation with injection angle; 𝐶𝜇 = 0.3, 𝛼 = 0°. 
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Figures 14-17 show the results of computation when 𝛼 = 0° and 𝐶𝜇 = 0.3. Figures 14-16 

show that when injection slot is at 5% and 15% chord length location, the lift coefficients have 

nearly the same values and are all higher than that value at 25% chord length location of the 

injection slot. The decrease in maximum absolute lift coefficient is 0.2 and the decrease in 

maximum relative lift coefficient is 0.12. Thus, when the angle of attack becomes larger, the 

influence of change in injection angle on lift coefficient becomes relatively smaller.  

Figure 17 shows that when injection slot is at 15% chord length location, the drag coefficient 

has minimum value. But as the injection angle becomes larger, drag coefficient increases. 

 
Figure 14: Lift coefficients variation with injection angle; 𝐶𝜇 = 0.3, 𝛼 = 10°. 

 
Figure 15: Absolute changes in lift coefficients with injection angle; 𝐶𝜇 = 0.3, 𝛼 = 10°. 
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Figure 16: Relative changes in lift coefficients with injection angle; 𝐶𝜇 = 0.3 , 𝛼 = 10° .

 

Figure 17: Drag coefficients variation with injection angle; 𝐶𝜇 = 0.3, 𝛼 = 10°. 
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𝐶𝜇 = 0.2 and α = 0°, 15% and 25% chord length locations of injection slot have higher changes 

in relative lift coefficients compared to 5% chord length location. At 15% chord length location 

of the injection slot, the maximum change in lift coefficient is about 25% and at 25% chord 

length location, the maximum change in lift coefficient is about 27%. 

Figure 21 shows that at 5% and 15% chord length locations of injection slot, the drag 

coefficients become smaller than that at 25% chord length location of the injection slot and as the 

injection angle becomes larger, drag coefficient becomes larger. 

 
Figure 18: Lift coefficients variation with injection angle; 𝐶𝜇 = 0.2, 𝛼 = 0°. 

 
Figure 19: Absolute changes in lift coefficients with injection angle; 𝐶𝜇 = 0.2, 𝛼 = 0°. 
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Figure 20: Relative changes in lift coefficients with injection angle; 𝐶𝜇 = 0.2, 𝛼 = 0°. 

 

 
Figure 21: Drag coefficients variation with injection angle; 𝐶𝜇 = 0.2, 𝛼 = 0°. 
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become smaller. When 𝐶𝜇 = 0.2 and α = 10°, the maximum relative changes in lift coefficient at 

5% chord length location of the injection slot is 5.5% and at 15% chord length location of the 

injection slot is 4.5%. 

Figure 25 shows that the drag coefficients are smallest at 15% chord length location for 

different injection slot locations. 

  
Figure 22: Lift coefficients variation with injection angle; 𝐶𝜇 = 0.2, 𝛼 = 10°. 

 
Figure 23: Absolute changes in lift coefficients with injection angle; 𝐶𝜇 = 0.2, 𝛼 = 10°. 
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Figure 24: Relative changes in lift coefficients with injection angle; 𝐶𝜇 = 0.2, 𝛼 = 10°. 

 
Figure 25: Drag coefficients variation with injection angle; 𝐶𝜇 = 0.2, 𝛼 = 10°. 
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chord length location of the injection slot. Both the two locations have almost the same 

maximum relative change in lift coefficient which is about 25%. 

Figure 29 shows that at 15% chord length location, the drag coefficients are always minimum 

among the three different locations of the injection slot with different injection angles when 𝐶𝜇 =

0.1 and α = 0°.  

 
Figure 26: Lift coefficients variation with injection angle; 𝐶𝜇 = 0.1, 𝛼 = 0°. 

  
Figure 27: Absolute changes in lift coefficients with injection angle; 𝐶𝜇 = 0.1, 𝛼 = 0°. 
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Figure 28: Relative changes in lift coefficients with injection angle; 𝐶𝜇 = 0.1, 𝛼 = 0°. 

 
Figure 29: Drag coefficients variation with injection angle; 𝐶𝜇 = 0.1, 𝛼 = 0°. 
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From Figure 30, when the injection slot is located at 15% and 25% chord length location, lift 

coefficients have higher value compared to when the injection slot located at 5% chord length 

location. From Figure 31-32, the change in maximum absolute lift coefficient is about 0.06 and 

the change in maximum relative lift coefficient is about 5% (ignoring the sharp change at very 

high injection angle). 

Figure 33 shows that when 𝐶𝜇 = 0.1 and α = 10°, 15% chord length location has minimum 

drag coefficient among the three different injection slot locations. 

  
Figure 30: Lift coefficients variation with injection angle; 𝐶𝜇 = 0.1, 𝛼 = 10°. 
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Figure 31: Absolute changes in lift coefficients with injection angle; 𝐶𝜇 = 0.1, 𝛼 = 10°. 

  
Figure 32: Relative changes in lift coefficients with injection angle; 𝐶𝜇 = 0.1, 𝛼 = 10°. 

 
Figure 33: Drag coefficients variation with injection angle; 𝐶𝜇 = 0.1, 𝛼 = 10°. 
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6.2 Sharp change in aerodynamic coefficient for a 

combination of 𝑪𝝁, injection slot location and high injection 

angle 

    From section 6.1, it can be noted that there is a sharp change in aerodynamic coefficients when 

injection slot is located at 5% chord length location, 𝐶𝜇 = 0.1, α = 10° and injection angle is 50°. 

However, when injection slot is located at 15% or 25% chord length location, there is no sharp 

change in aerodynamic coefficients. To explain this phenomenon more clearly, the influence of 

injection angle from 0° to 60° is studied for various locations of the injection slot when 𝐶𝜇 = 0.1. 

The results are shown in Figure 34 and 35. When the injection angle becomes 60°, there is sharp 

change in Cl and Cd when injection slot is at 5% chord length location and there is no sharp 

change when injection slot is located at 15% or 25% injection location. 

 
Figure 34: Lift coefficients variation with injection angle; 𝐶𝜇 = 0.1, 𝛼 = 10°. 
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Figure 35: Drag coefficients variation with injection angle; 𝐶𝜇 = 0.1, 𝛼 = 10°. 
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injection angle = 10°                                                            injection angle = 20° 

 
injection angle = 30°                                                            injection angle = 40° 

 
injection angle = 50°                                                            injection angle = 60° 

Figure 36: Streamlines and velocity vectors for 10° to 60° injection angles at 5% chord length location when 𝐶𝜇 =

0.1 and 𝛼 = 10°. 
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injection angle = 10°                                                            injection angle = 20° 

 
injection angle = 30°                                                            injection angle = 40° 

 
injection angle = 50°                                                            injection angle = 60° 

Figure 37: Streamlines and velocity vectors for 10° to 60° injection angles at 15% chord length location when 𝐶𝜇 =

0.1 and 𝛼 = 10°. 
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Figure 38: Streamlines and velocity vectors for 60° injection angles at 5% chord length location when 𝐶𝜇 = 0.1 and 

𝛼 = 10°. 

 
Figure 39: Streamlines and velocity vectors for 60° injection angles at 15% chord length location when 𝐶𝜇 = 0.1 

and 𝛼 = 10°. 
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Figure 40: Streamlines and velocity vectors for 60° injection angles at 25% chord length location when 𝐶𝜇 = 0.1 

and 𝛼 = 10°. 

To define a best injection slot location to increase the stall margin, there are different aspects 

that need to be considered. First, when injection slot location is at 5% chord length location, it 

has relatively smaller injection angle range without the sharp change in Cl and Cd, 0° to 40°. 

When injection slot location is at 15% or 25%, the injection angle range is at least from 0° to 60° 

without sudden change in Cl and Cd. Second, from the results in section 6.1, when injection slot 

location is at 5% or 15% chord length location, the NACA0012 airfoil has relatively larger 

changes in absolute lift coefficient and in the relative lift coefficient compared to when injection 

slot location is at 25% chord length location. When injection slot location is at 5% or 15% chord 

length location and 𝐶𝜇 = 0.3, the NACA0012 airfoil has relatively larger lift coefficients at all 

different injection angles compared to when injection slot location is at 25% chord length 

location and 𝐶𝜇 = 0.3. When injection slot location is at 15% chord length location and 𝐶𝜇 = 0.2 
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or 0.1, the NACA0012 airfoil has the largest lift coefficients for most injection angles. Third, for 

most of the cases in Table 1, when injection slot location is at 15% chord length, the drag 

coefficients are the smallest. 

Thus, after considering sharp changes in Cl and Cd in both the relative and absolute lift 

coefficients for large injection angles, 15% chord length location appears to be the best injection 

slot location for changeable injection angles technology for CFJ. 

6.3 Injection angle’s influence on stall angle 

    As shown in Table 2, nine different cases are studied to find the influence of injection angle on 

stall angle. Because the largest injection angle that does not cause sharp change when injection 

slot is at 5% chord length is 40°. 40° is chosen in B5 to B8 to study the influence on stall angle 

of the injection angle. In this section, flow pass CFJ NACA0012 airfoil with changeable 

injection angle is compared to the flow past a traditional tangential CFJ NACA0012 airfoil. 

From results in section 6.1 and section 6.2, when the injection slot is at 25% chord length 

location, the airfoil has worst results for aerodynamic coefficients, thus 25% chord length 

location is not studied in this section. 

Cases Cμ Injection angle Injection slot location AoA 

B1 0.1 0° 5%  

 

 

Around the 

stall angle 

B2 0.2 0° 5% 

B3 0.1 0° 15% 

B4 0.2 0° 15% 

B5 0.1 40° 5% 

B6 0.2 40° 5% 

B7 0.1 40° 15% 

B8 0.2 40° 15% 

B9(original airfoil) N/A N/A N/A 
Table 2: Geometry parameters for stall angle analysis. 
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Figure 41 shows the results of cases B1, B2 and B9 and Figure 42 shows the results of cases 

B5, B6 and B9. Figures 41 and 42 show the aerodynamic coefficients for different angle of 

attack when injection slot is at 5% chord length location.  

From Zha et al.’s papers [5-7], it can be noted for a thick airfoil like NACA0025, the 

tangential CFJ control can increase the stall angle significantly. However, NACA0012 airfoil is a 

thin airfoil and thus the increase in stall angle of tangential CFJ control is not significant. Figure 

41 shows that the original NACA0012 airfoil has stall angle of 17° and tangential CFJ 

NACA0012 airfoil has stall angle at 20° when 𝐶𝜇 is 0.1 or 0.2. 

Figure 42 shows the results when the injection angle becomes 40°. This figure shows that, 

when the injection slot is at 5% chord length location, there is a significant decrease in stall angle 

if injection angle becomes larger. When 𝐶𝜇  is 0.1 and injection angle is 40°, the stall angle 

becomes 14°. When 𝐶𝜇 is 0.2 and injection angle is 40°, the stall angle becomes 17°. 
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Figure 41: Stall angle analysis when injection slot is at 5% chord length location and injection angle is 0°. 
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Figure 42: Stall angle analysis when injection slot is at 5% chord length location and injection angle is 40°. 
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    Figure 43 shows that the increase in stall angle caused by tangential CFJ NACA0012 airfoil is 

still small when injection slot is at 15% chord length location. When 𝐶𝜇 = 0.1, the stall angle is 

19° and when 𝐶𝜇 = 0.2, the stall angle is 18°. Figure 44 shows the results when injection angle 

becomes 40° and injection slot is at 15% chord length location. It shows that the stall angle is 20° 

when 𝐶𝜇 = 0.1 and stall angle is 18° when 𝐶𝜇=0.2. Thus, when injection slot is at 15% chord 

length location, the change in stall angle caused by changeable injection angle is very small. 

 

 
Figure 43: Stall angle analysis when injection slot is at 15% chord length location and injection angle is 0°. 
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Figure 44: Stall angle analysis when injection slot is at 15% chord length location and injection angle is 40°. 
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change in the stall angle and the stall angle is nearly the same as the stall angle of original 

NACA0012 airfoil. 

Thus, 15% chord length location is the best location for injection slot to implement the 

changeable injection angle technology with CFJ for controlling the lift and drag of an airfoil. 
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Chapter 7: Conclusions 
 

This thesis has studied the influence on aerodynamic coefficients of NACA0012 airfoil when 

changeable injection angle CFJ control technology is employed to modulate its lift and drag 

coefficient. By comparing the aerodynamic performance of changeable injection angle CFJ 

control method with tangential CFJ control method, a best injection slot location is found from 

the three different locations considered that can employ the changeable injection angle CFJ 

technology to change the aerodynamic coefficients significantly but having little influence on 

stall angle. The main conclusions can be summarized as the follows: 

1) Changeable injection angle CFJ technology can be employed to control the aerodynamic 

coefficients of an airfoil. When the injection angle becomes larger, the lift coefficient 

becomes smaller and drag coefficient becomes larger. 

2) Changeable injection angle CFJ control method has influence on stall angle of an airfoil. 

When injection angle becomes larger, the stall angle becomes smaller. 

3) For different injection slot locations, the influence of changeable injection angle CFJ 

control method on aerodynamic coefficients and stall angle is very different. After 

comparing the aerodynamic coefficients at three different locations of injection slot on the 

airfoil with various 𝐶𝜇 = 0.1, 0.2 and 0.3, and AoA of 0° and 10°, it was found that when 

injection slot is at 15% chord length location, the NACA0012 airfoil always has relatively 

larger lift coefficient and smaller drag coefficient and has larger relative changes in lift 

coefficients for most of the cases. 

4) When 𝐶𝜇  becomes larger and AoA becomes smaller, the relative changes in lift 

coefficients become larger for all injection angles. When 𝐶𝜇  is 0.3 and AoA is 0° and 
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injection slot is at 15% chord length location (Figure 12), changeable injection angle CFJ 

technology has largest relative changes in lift coefficients for all injection angles. When 

injection angle becomes 50°, the relative change in lift coefficient can be 35%. 

5) When injection slot location is at 5% chord length location, there is a sharp change in 

aerodynamic coefficients when injection angle becomes 40°. When injection slot location 

is at 15% or 25% chord length location, there is no sharp change in aerodynamic 

coefficients when injection angle changes from 0 °to 60°. 

6) When injection slot is at 5% chord length location, there is significant decrease in stall 

angle when injection angle changes from 0° to 40°. When injection slot is at 15% chord 

length location, there is nearly no change in stall angle when injection angle changes from 

0° to 40°. 

Thus, it can be concluded that the changeable injection angle CFJ technology can control the 

aerodynamic coefficients and the best injection slot location to employ this technology is at 15% 

chord length location for NACA0012 airfoil. The changeable injection angle method can be 

effectively used by appropriately changing the 𝐶𝜇 to control the aerodynamic coefficients of the 

airfoil in an effective way to achieve a desired outcome. 
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Appendix  

UDF for Cμ 
#include "udf.h" 

#include "math.h" 

 

#define FARLET_INDEX 82 

#define INLET_INDEX 13 

#define OUTLET_INDEX 14 

#define INTERFACE_INDEX 38 

 

#define S 1 

#define injectionsize 0.005 

#define tarvalue_Cmu 0.1 

 

static float flow_inlet; 

static float flow_outlet; 

static float pressure_inlet_0; 

static float pressure_inlet_1; 

static float pre_pressure_inlet_1; 

static float change_pressure_inlet_1; 

static float pressure_outlet_0; 

static float pressure_outlet_1; 

static float calvalue_Cmu; 

static float pre_Cmu; 

static float change_Cmu; 

static float pre_flow_outlet; 

static float change_flow_outlet; 
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Domain *domain; 

Thread *thread_inlet; 

Thread *thread_outlet; 

Thread *thread_farlet; 

Thread *thread_interface; 

 

void calculate_Cmu(Thread *thread_farlet, Thread *thread_outlet, Thread *thread_inlet, 

Thread *thread_interface) 

{ 

/* velocity from interface, divided by density and injectionsize, with cell loop, both 

density and pressure based, for parallel*/ 

        cell_t c; 

        cell_t c0; 

        cell_t c1; 

        face_t f; 

        Thread *t0; 

        Thread *t1; 

 int i = 0; 

 float velocity[2]; 

 float velocity_farlet = 0.0; 

 float velocity_inlet = 0.0; 

        float local_velocity_inlet = 0.0;  

 float density_farlet = 0.0; 

        float density_inlet = 0.0; 

        float density_interface = 0.0; 

        flow_inlet = 0.0; 

 flow_outlet = 0.0;  

        pressure_inlet_0 = 0.0; 

 pressure_outlet_0 = 0.0; 
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#if !RP_HOST  

 begin_f_loop(f, thread_farlet) 

 { 

        if (PRINCIPAL_FACE_P(f,thread_farlet)) 

        { 

                c0 = F_C0(f, thread_farlet); 

                t0 = F_C0_THREAD(f, thread_farlet); 

  density_farlet += C_R(c0, t0); 

  velocity[0] = C_U(c0, t0); 

  velocity[1] = C_V(c0, t0); 

  velocity_farlet += NV_MAG(velocity); 

  i++; 

        } 

 } 

 end_f_loop(f, thread_farlet) 

         

        # if RP_NODE 

                density_farlet = PRF_GRSUM1(density_farlet); 

                velocity_farlet = PRF_GRSUM1(velocity_farlet); 

                i = PRF_GRSUM1(i); 

        # endif 

#endif 

 

node_to_host_float_2(density_farlet, velocity_farlet); 

node_to_host_int_1(i); 

 

#if !RP_NODE  
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 density_farlet = density_farlet/i; 

 velocity_farlet = velocity_farlet/i; 

        Message("moniter density_farlet = %f\n", density_farlet); 

#endif 

  

#if !RP_HOST 

 i = 0; 

  

 begin_f_loop(f, thread_outlet) 

 { 

        if (PRINCIPAL_FACE_P(f,thread_outlet)) 

        { 

  flow_outlet += F_FLUX(f, thread_outlet); 

  pressure_outlet_0 += F_P(f, thread_outlet); 

  i++; 

        } 

 } 

 end_f_loop(f, thread_outlet) 

 

        # if RP_NODE 

                flow_outlet = PRF_GRSUM1(flow_outlet); 

                pressure_outlet_0 = PRF_GRSUM1(pressure_outlet_0); 

                i = PRF_GRSUM1(i); 

        # endif 

#endif 

  

node_to_host_float_2(flow_outlet, pressure_outlet_0); 

node_to_host_int_1(i); 
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#if !RP_NODE 

 pressure_outlet_0 = pressure_outlet_0/i; 

#endif 

  

#if !RP_HOST 

 i = 0; 

  

 begin_f_loop(f, thread_inlet) 

 { 

        if (PRINCIPAL_FACE_P(f,thread_inlet)) 

        { 

  flow_inlet += F_FLUX(f, thread_inlet); 

  pressure_inlet_0 += F_P(f, thread_inlet); 

                i++; 

        } 

 } 

 end_f_loop(f, thread_inlet) 

 

        # if RP_NODE 

                flow_inlet = PRF_GRSUM1(flow_inlet); 

                pressure_inlet_0 = PRF_GRSUM1(pressure_inlet_0); 

                i = PRF_GRSUM1(i); 

        # endif 

#endif 

 

node_to_host_float_2(flow_inlet, pressure_inlet_0); 

node_to_host_int_1(i); 
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#if !RP_NODE 

        pressure_inlet_0 = pressure_inlet_0/i; 

#endif 

 

#if !RP_HOST 

 i = 0; 

  

 begin_f_loop(f, thread_inlet) 

 { 

        if (PRINCIPAL_FACE_P(f,thread_inlet)) 

        { 

                c0 = F_C0(f, thread_inlet); 

                t0 = F_C0_THREAD(f, thread_inlet); 

                density_inlet += C_R(c0, t0); 

                i++; 

        } 

 } 

 end_f_loop(f, thread_inlet) 

 

        # if RP_NODE 

                density_inlet = PRF_GRSUM1(density_inlet); 

                i = PRF_GRSUM1(i); 

        # endif 

#endif 

 

node_to_host_float_1(density_inlet); 

node_to_host_int_1(i); 



51 

 

 

#if !RP_NODE 

 density_inlet = density_inlet/i; 

        Message("moniter density_inlet = %f\n", density_inlet);     

        local_velocity_inlet = flow_inlet/density_inlet/injectionsize; 

#endif  

 

#if !RP_HOST 

        i = 0; 

 

 begin_f_loop(f, thread_interface) 

 { 

        if (PRINCIPAL_FACE_P(f,thread_interface)) 

        { 

  c0 = F_C0(f, thread_interface); 

  c1 = F_C1(f, thread_interface); 

  t0 = F_C0_THREAD(f, thread_interface); 

  t1 = F_C1_THREAD(f, thread_interface); 

   

                density_interface += (C_R(c0, t0)+C_R(c1, t1))/2.0; 

  i++; 

        } 

 } 

 end_f_loop(f, thread_interface) 

 

        # if RP_NODE 

                density_interface = PRF_GRSUM1(density_interface); 

                i = PRF_GRSUM1(i); 
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        # endif 

#endif 

 

node_to_host_float_1(density_interface); 

node_to_host_int_1(i); 

 

#if !RP_NODE 

        density_interface = density_interface/i; 

        Message("moniter density_interface = %f\n", density_interface);  

        velocity_inlet = flow_inlet/density_interface/injectionsize; 

 

        velocity_inlet = fabs(velocity_inlet); 

        Message("moniter velocity_inlet(interface) = %f\n", velocity_inlet); 

  

 if(density_inlet* velocity_inlet != 0.0) 

        { 

  pressure_inlet_0 = pressure_inlet_0+ 1/ 2.0* density_inlet* 

local_velocity_inlet* local_velocity_inlet; 

        } 

        Message("moniter pressure_inlet = %f\n", pressure_inlet_0); 

        Message("moniter pressure_outlet = %f\n", pressure_outlet_0); 

  

 if(density_farlet* velocity_farlet != 0.0) 

        { 

  calvalue_Cmu = flow_inlet* velocity_inlet/ (1/ 2.0* density_farlet* 

velocity_farlet* velocity_farlet* S); 

        } 

 calvalue_Cmu = fabs(calvalue_Cmu); 

        change_Cmu = calvalue_Cmu-pre_Cmu; 
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        pre_Cmu = calvalue_Cmu; 

        change_flow_outlet = flow_outlet-pre_flow_outlet; 

        pre_flow_outlet = flow_outlet; 

#endif 

} 

 

DEFINE_INIT(Initialze_variable,domin) 

{ 

/*349265*/ 

 calvalue_Cmu = tarvalue_Cmu; 

        pre_pressure_inlet_1 = 0; 

        change_pressure_inlet_1 = 0; 

        pre_Cmu = 0; 

        change_Cmu = 0; 

        pre_flow_outlet = 0; 

        change_flow_outlet = 0; 

 pressure_inlet_1 =  100000; 

 pressure_outlet_1 = -10000; 

#if !RP_NODE 

 Message("calvalue_Cmu = %f\t", calvalue_Cmu); 

 Message("flow_inlet = %f\t", flow_inlet); 

 Message("flow_outlet = %f\n", flow_outlet); 

#endif 

} 

 

DEFINE_EXECUTE_AT_END(Set_EachIterate_masstwopercentchange) 

{ 

 domain = Get_Domain(1); 
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 thread_inlet = Lookup_Thread(domain, INLET_INDEX); 

 thread_outlet = Lookup_Thread(domain, OUTLET_INDEX); 

 thread_farlet = Lookup_Thread(domain, FARLET_INDEX); 

        thread_interface = Lookup_Thread(domain, INTERFACE_INDEX); 

 

  

 calculate_Cmu(thread_farlet, thread_outlet, thread_inlet, thread_interface); 

 

#if !RP_NODE  

        if(fabs(change_Cmu)<0.0005 & pressure_inlet_1<=400000&pressure_inlet_1>0) 

        { 

         if(calvalue_Cmu < tarvalue_Cmu* 0.999 & change_Cmu>=-0.001) 

          pressure_inlet_1 += 10000*fabs(calvalue_Cmu - 

tarvalue_Cmu)*fabs(calvalue_Cmu - tarvalue_Cmu)+5000*fabs(calvalue_Cmu - tarvalue_Cmu); 

         if(calvalue_Cmu > tarvalue_Cmu* 1.001 & change_Cmu<= 0.001) 

          pressure_inlet_1 -= 10000*fabs(calvalue_Cmu - 

tarvalue_Cmu)*fabs(calvalue_Cmu - tarvalue_Cmu)+5000*fabs(calvalue_Cmu - tarvalue_Cmu); 

 } 

        if(pressure_inlet_1>400000) 

        { 

          pressure_inlet_1 = 400000; 

 } 

 

        change_pressure_inlet_1 = pressure_inlet_1-pre_pressure_inlet_1; 

        pre_pressure_inlet_1 = pressure_inlet_1; 

 

 flow_inlet = fabs(flow_inlet); 

 Message("flow_inlet = %f\t", flow_inlet); 
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 flow_inlet = 1.02*fabs(flow_inlet); 

 flow_outlet = flow_outlet; 

 Message("flow_outlet = %f\t", flow_outlet); 

  

        if(fabs(change_Cmu)<0.001 & change_pressure_inlet_1==0 & 

fabs(change_flow_outlet)<0.01&fabs(flow_outlet- flow_inlet)<=0.1) 

        { 

         if(fabs(flow_outlet- flow_inlet) > (flow_inlet+ flow_outlet)/ 2.0* 0.0005 

|| flow_outlet < flow_inlet) 

         { 

          if(flow_inlet > flow_outlet) 

           pressure_outlet_1 -= fabs(flow_inlet- flow_outlet)*50+1; 

          if(flow_inlet < flow_outlet) 

           pressure_outlet_1 += fabs(flow_inlet- flow_outlet)*50+1; 

         } 

        } 

        if(fabs(change_Cmu)<0.001 & change_pressure_inlet_1==0 & fabs(flow_outlet- 

flow_inlet)>0.1) 

        { 

         if(fabs(flow_outlet- flow_inlet) > (flow_inlet+ flow_outlet)/ 2.0* 0.0005 

|| flow_outlet < flow_inlet) 

         { 

          if(flow_inlet > flow_outlet) 

           pressure_outlet_1 -= fabs(flow_inlet- flow_outlet)*50+1; 

          if(flow_inlet < flow_outlet) 

           pressure_outlet_1 += fabs(flow_inlet- flow_outlet)*50+1; 

         } 

        } 

        if(fabs(change_Cmu)<0.001 & change_pressure_inlet_1!=0) 

        { 
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         if(fabs(flow_outlet- flow_inlet) > (flow_inlet+ flow_outlet)/ 2.0* 0.0005 

|| flow_outlet < flow_inlet) 

         { 

          if(flow_inlet > flow_outlet) 

           pressure_outlet_1 -= fabs(flow_inlet- flow_outlet)*50+1; 

          if(flow_inlet < flow_outlet) 

           pressure_outlet_1 += fabs(flow_inlet- flow_outlet)*50+1; 

         } 

        } 

 Message("calvalue_Cmu = %f\t", calvalue_Cmu); 

 Message("pressure_inlet = %f\t", pressure_inlet_1); 

 Message("pressure_outlet = %f\n", pressure_outlet_1); 

#endif 

 

host_to_node_float_2(pressure_inlet_1, pressure_outlet_1); 

} 

 

DEFINE_EXECUTE_AT_END(Set_EachIterate_massonepercentchange) 

{ 

 domain = Get_Domain(1); 

  

 thread_inlet = Lookup_Thread(domain, INLET_INDEX); 

 thread_outlet = Lookup_Thread(domain, OUTLET_INDEX); 

 thread_farlet = Lookup_Thread(domain, FARLET_INDEX); 

        thread_interface = Lookup_Thread(domain, INTERFACE_INDEX); 

 

  

 calculate_Cmu(thread_farlet, thread_outlet, thread_inlet, thread_interface); 
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#if !RP_NODE  

        if(fabs(change_Cmu)<0.0005 & pressure_inlet_1<=400000&pressure_inlet_1>0) 

        { 

         if(calvalue_Cmu < tarvalue_Cmu* 0.999 & change_Cmu>=-0.001) 

          pressure_inlet_1 += 10000*fabs(calvalue_Cmu - 

tarvalue_Cmu)*fabs(calvalue_Cmu - tarvalue_Cmu)+5000*fabs(calvalue_Cmu - tarvalue_Cmu); 

         if(calvalue_Cmu > tarvalue_Cmu* 1.001 & change_Cmu<= 0.001) 

          pressure_inlet_1 -= 10000*fabs(calvalue_Cmu - 

tarvalue_Cmu)*fabs(calvalue_Cmu - tarvalue_Cmu)+5000*fabs(calvalue_Cmu - tarvalue_Cmu); 

 } 

        if(pressure_inlet_1>400000) 

        { 

          pressure_inlet_1 = 400000; 

 } 

 

        change_pressure_inlet_1 = pressure_inlet_1-pre_pressure_inlet_1; 

        pre_pressure_inlet_1 = pressure_inlet_1; 

 

 flow_inlet = fabs(flow_inlet); 

 Message("flow_inlet = %f\t", flow_inlet); 

 flow_inlet = 1.01*fabs(flow_inlet); 

 flow_outlet = flow_outlet; 

 Message("flow_outlet = %f\t", flow_outlet); 

  

        if(fabs(change_Cmu)<0.001 & change_pressure_inlet_1==0 & 

fabs(change_flow_outlet)<0.01&fabs(flow_outlet- flow_inlet)<=0.1) 

        { 

         if(fabs(flow_outlet- flow_inlet) > (flow_inlet+ flow_outlet)/ 2.0* 0.0005 

|| flow_outlet < flow_inlet) 

         { 
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          if(flow_inlet > flow_outlet) 

           pressure_outlet_1 -= fabs(flow_inlet- flow_outlet)*50+1; 

          if(flow_inlet < flow_outlet) 

           pressure_outlet_1 += fabs(flow_inlet- flow_outlet)*50+1; 

         } 

        } 

        if(fabs(change_Cmu)<0.001 & change_pressure_inlet_1==0&fabs(flow_outlet- 

flow_inlet)>0.1) 

        { 

         if(fabs(flow_outlet- flow_inlet) > (flow_inlet+ flow_outlet)/ 2.0* 0.0005 

|| flow_outlet < flow_inlet) 

         { 

          if(flow_inlet > flow_outlet) 

           pressure_outlet_1 -= fabs(flow_inlet- flow_outlet)*50+1; 

          if(flow_inlet < flow_outlet) 

           pressure_outlet_1 += fabs(flow_inlet- flow_outlet)*50+1; 

         } 

        } 

        if(fabs(change_Cmu)<0.001 & change_pressure_inlet_1!=0) 

        { 

         if(fabs(flow_outlet- flow_inlet) > (flow_inlet+ flow_outlet)/ 2.0* 0.0005 

|| flow_outlet < flow_inlet) 

         { 

          if(flow_inlet > flow_outlet) 

           pressure_outlet_1 -= fabs(flow_inlet- flow_outlet)*50+1; 

          if(flow_inlet < flow_outlet) 

           pressure_outlet_1 += fabs(flow_inlet- flow_outlet)*50+1; 

         } 

        } 

 Message("calvalue_Cmu = %f\t", calvalue_Cmu); 
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 Message("pressure_inlet = %f\t", pressure_inlet_1); 

 Message("pressure_outlet = %f\n", pressure_outlet_1); 

#endif 

 

host_to_node_float_2(pressure_inlet_1, pressure_outlet_1); 

} 

 

DEFINE_EXECUTE_AT_END(Set_EachIterate_masshalfonepercentchange) 

{ 

 domain = Get_Domain(1); 

  

 thread_inlet = Lookup_Thread(domain, INLET_INDEX); 

 thread_outlet = Lookup_Thread(domain, OUTLET_INDEX); 

 thread_farlet = Lookup_Thread(domain, FARLET_INDEX); 

        thread_interface = Lookup_Thread(domain, INTERFACE_INDEX); 

 

  

 calculate_Cmu(thread_farlet, thread_outlet, thread_inlet, thread_interface); 

 

#if !RP_NODE  

        if(fabs(change_Cmu)<0.0005 & pressure_inlet_1<=400000&pressure_inlet_1>0) 

        { 

         if(calvalue_Cmu < tarvalue_Cmu* 0.999 & change_Cmu>=-0.001) 

          pressure_inlet_1 += 10000*fabs(calvalue_Cmu - 

tarvalue_Cmu)*fabs(calvalue_Cmu - tarvalue_Cmu)+5000*fabs(calvalue_Cmu - tarvalue_Cmu); 

         if(calvalue_Cmu > tarvalue_Cmu* 1.001 & change_Cmu<= 0.001) 

          pressure_inlet_1 -= 10000*fabs(calvalue_Cmu - 

tarvalue_Cmu)*fabs(calvalue_Cmu - tarvalue_Cmu)+5000*fabs(calvalue_Cmu - tarvalue_Cmu); 

 } 
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        if(pressure_inlet_1>400000) 

        { 

          pressure_inlet_1 = 400000; 

 } 

 

        change_pressure_inlet_1 = pressure_inlet_1-pre_pressure_inlet_1; 

        pre_pressure_inlet_1 = pressure_inlet_1; 

 

 flow_inlet = fabs(flow_inlet); 

 Message("flow_inlet = %f\t", flow_inlet); 

 flow_inlet = 1.005*fabs(flow_inlet); 

 flow_outlet = flow_outlet; 

 Message("flow_outlet = %f\t", flow_outlet); 

  

        if(fabs(change_Cmu)<0.001 & change_pressure_inlet_1==0 & 

fabs(change_flow_outlet)<0.01&fabs(flow_outlet- flow_inlet)<=0.1) 

        { 

         if(fabs(flow_outlet- flow_inlet) > (flow_inlet+ flow_outlet)/ 2.0* 0.0005 

|| flow_outlet < flow_inlet) 

         { 

          if(flow_inlet > flow_outlet) 

           pressure_outlet_1 -= fabs(flow_inlet- flow_outlet)*50+1; 

          if(flow_inlet < flow_outlet) 

           pressure_outlet_1 += fabs(flow_inlet- flow_outlet)*50+1; 

         } 

        } 

        if(fabs(change_Cmu)<0.001 & change_pressure_inlet_1==0&fabs(flow_outlet- 

flow_inlet)>0.1) 

        { 
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         if(fabs(flow_outlet- flow_inlet) > (flow_inlet+ flow_outlet)/ 2.0* 0.0005 

|| flow_outlet < flow_inlet) 

         { 

          if(flow_inlet > flow_outlet) 

           pressure_outlet_1 -= fabs(flow_inlet- flow_outlet)*50+1; 

          if(flow_inlet < flow_outlet) 

           pressure_outlet_1 += fabs(flow_inlet- flow_outlet)*50+1; 

         } 

        } 

        if(fabs(change_Cmu)<0.001 & change_pressure_inlet_1!=0) 

        { 

         if(fabs(flow_outlet- flow_inlet) > (flow_inlet+ flow_outlet)/ 2.0* 0.0005 

|| flow_outlet < flow_inlet) 

         { 

          if(flow_inlet > flow_outlet) 

           pressure_outlet_1 -= fabs(flow_inlet- flow_outlet)*50+1; 

          if(flow_inlet < flow_outlet) 

           pressure_outlet_1 += fabs(flow_inlet- flow_outlet)*50+1; 

         } 

        } 

 Message("calvalue_Cmu = %f\t", calvalue_Cmu); 

 Message("pressure_inlet = %f\t", pressure_inlet_1); 

 Message("pressure_outlet = %f\n", pressure_outlet_1); 

#endif 

 

host_to_node_float_2(pressure_inlet_1, pressure_outlet_1); 

} 

 

DEFINE_EXECUTE_AT_END(Set_EachIterate) 
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{ 

 domain = Get_Domain(1); 

  

 thread_inlet = Lookup_Thread(domain, INLET_INDEX); 

 thread_outlet = Lookup_Thread(domain, OUTLET_INDEX); 

 thread_farlet = Lookup_Thread(domain, FARLET_INDEX); 

        thread_interface = Lookup_Thread(domain, INTERFACE_INDEX); 

 

  

 calculate_Cmu(thread_farlet, thread_outlet, thread_inlet, thread_interface); 

 

#if !RP_NODE  

        if(fabs(change_Cmu)<0.0005 & pressure_inlet_1<=400000&pressure_inlet_1>0) 

        { 

         if(calvalue_Cmu < tarvalue_Cmu* 0.999 & change_Cmu>=-0.001) 

          pressure_inlet_1 += 10000*fabs(calvalue_Cmu - 

tarvalue_Cmu)*fabs(calvalue_Cmu - tarvalue_Cmu)+5000*fabs(calvalue_Cmu - tarvalue_Cmu); 

         if(calvalue_Cmu > tarvalue_Cmu* 1.001 & change_Cmu<= 0.001) 

          pressure_inlet_1 -= 10000*fabs(calvalue_Cmu - 

tarvalue_Cmu)*fabs(calvalue_Cmu - tarvalue_Cmu)+5000*fabs(calvalue_Cmu - tarvalue_Cmu); 

 } 

        if(pressure_inlet_1>400000) 

        { 

          pressure_inlet_1 = 400000; 

 } 

 

        change_pressure_inlet_1 = pressure_inlet_1-pre_pressure_inlet_1; 

        pre_pressure_inlet_1 = pressure_inlet_1; 
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 flow_inlet = fabs(flow_inlet); 

 flow_outlet = flow_outlet; 

  

        if(fabs(change_Cmu)<0.001 & change_pressure_inlet_1==0 & 

fabs(change_flow_outlet)<0.01&fabs(flow_outlet- flow_inlet)<=0.1) 

        { 

         if(fabs(flow_outlet- flow_inlet) > (flow_inlet+ flow_outlet)/ 2.0* 0.0005 

|| flow_outlet < flow_inlet) 

         { 

          if(flow_inlet > flow_outlet) 

           pressure_outlet_1 -= fabs(flow_inlet- flow_outlet)*50+1; 

          if(flow_inlet < flow_outlet) 

           pressure_outlet_1 += fabs(flow_inlet- flow_outlet)*50+1; 

         } 

        } 

        if(fabs(change_Cmu)<0.001 & change_pressure_inlet_1==0&fabs(flow_outlet- 

flow_inlet)>0.1) 

        { 

         if(fabs(flow_outlet- flow_inlet) > (flow_inlet+ flow_outlet)/ 2.0* 0.0005 

|| flow_outlet < flow_inlet) 

         { 

          if(flow_inlet > flow_outlet) 

           pressure_outlet_1 -= fabs(flow_inlet- flow_outlet)*50+1; 

          if(flow_inlet < flow_outlet) 

           pressure_outlet_1 += fabs(flow_inlet- flow_outlet)*50+1; 

         } 

        } 

        if(fabs(change_Cmu)<0.001 & change_pressure_inlet_1!=0) 

        { 
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         if(fabs(flow_outlet- flow_inlet) > (flow_inlet+ flow_outlet)/ 2.0* 0.0005 

|| flow_outlet < flow_inlet) 

         { 

          if(flow_inlet > flow_outlet) 

           pressure_outlet_1 -= fabs(flow_inlet- flow_outlet)*50+1; 

          if(flow_inlet < flow_outlet) 

           pressure_outlet_1 += fabs(flow_inlet- flow_outlet)*50+1; 

         } 

        } 

 Message("calvalue_Cmu = %f\t", calvalue_Cmu); 

 Message("flow_inlet = %f\t", flow_inlet); 

 Message("flow_outlet = %f\t", flow_outlet); 

 Message("pressure_inlet = %f\t", pressure_inlet_1); 

 Message("pressure_outlet = %f\n", pressure_outlet_1); 

#endif 

 

host_to_node_float_2(pressure_inlet_1, pressure_outlet_1); 

} 

 

DEFINE_PROFILE(INLET_PRESSURE, thread_in, index) 

{ 

#if !RP_HOST 

 face_t f; 

 begin_f_loop(f, thread_in) 

 { 

        if (PRINCIPAL_FACE_P(f,thread_in)) 

        { 

  F_PROFILE(f, thread_in, index) = pressure_inlet_1; 

        } 
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 } 

 end_f_loop(f, thread_in) 

#endif 

} 

 

DEFINE_PROFILE(OUTLET_PRESSURE, thread_out, index) 

{ 

#if !RP_HOST 

 face_t f; 

 begin_f_loop(f, thread_out) 

 { 

        if (PRINCIPAL_FACE_P(f,thread_out)) 

        { 

  F_PROFILE(f, thread_out, index) = pressure_outlet_1; 

        } 

 } 

 end_f_loop(f, thread_out) 

#endif 

} 
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