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sleep just a couple of miles away that simply feels like the way things should be. I look forward 

to continue sharing in all of their lives.  

How do I possibly begin to express my gratitude for my mom and dad? I could thank 

them for filling my childhood with books2 and kindness and ideas and music and an abiding 

sense of security. I could thank them for being my relentless champions, extraordinarily and 

selflessly, or for letting me live in Italy with my boyfriend (now husband) after graduating from 

college, so that I could ride my bicycle, learn how to cook and study Italian – I’m not sure they 

know what a gift that was. I could thank them for showing me how to lean in, before that phrase 

became a book title and a buzzword, and for teaching me, by example, that you shouldn’t do 

something or agree with something just because it’s popular. I could thank them for being 

people of substance and compassion, or for planting a seed somewhere inside me that makes 

me badly want to be a person of substance and compassion. Try as I may, I will never be able 

to thank them enough for all of that, or to pay them back. But if, by the end of my days, I’ve 

made my children and my husband feel half as loved as they’ve made me feel, I’ll have done 

one big thing, the big thing, right. 

  My husband, Alex, is my past, my present and my future. He loves me for who I am, all 

the while making me want to be a better person, which is perhaps the most we can truly ask of 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 Yes, a second footnote, and we’re still in the Acknowledgments. Please excuse my 
parenthetical proclivities for the next couple of hundred pages. I vividly recall, as a child, pulling 
the Scientific American volume Images of Mind, by Mike Posner and Marc Raichle, off the shelf 
in my parents’ library. I never would have guessed that sometime down the road, I would meet 
both of those scientists, and have the chance to interact with so many other brilliant and 
thoughtful people, present readership included.  
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another person. I thank him for his steadfast support of my goals, in ways big and small, and for 

being my courage when needed. For seven years and counting, he has made significant 

personal and professional sacrifices to provide for our family, a devotion I don’t take for granted. 

Eventually, I hope to be able to return the favor. Together, we will never just sit around waiting 

to die, and that’s one of the many reasons I love him.  
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DEDICATION 

 

Lucy and Oscar, you have infused into the deepest part of me, into a space I didn’t know 

existed, an awareness of being alive that is as vast as it is acute, as visceral as it is 

transcendent, and vulnerable as it is fierce. Notwithstanding the thousands of generations of 

humanity that preceded us, I cannot convince myself that anyone else has ever felt about 

another person the way I feel about you two. This work is in your honor. 
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The process by which the initially attention-requiring task of transforming scribbles into 

meaningful concepts eventually becomes facile remains a central riddle of cognitive 

neuroscience. This body of work represents an effort to provide forward movement in answering 

the question of how attentional control mediates the process of reading, both by considering 

different stages of reading competence (development) and by seeking convergence between 

types of evidence (behavior and imaging).  

 Inspired by a study published by Balota and colleagues in 2000, the paradigm used 

throughout this work involves comparing a simple speeded reading task vs. a regularize (“sound 

out”) task	
  (Balota et al. 2000). In the first data chapter, I replicate the essential findings of the 

Balota et al. study in 2 young adult cohorts, confirming that stimulus characteristics, including 

lexicality and frequency, influence reading task performance in a manner that is modulated by 

top-down attentional control. I furthermore argue that the reaction time (RT) patterns are 

consistent with 2 distinct mechanisms by which top-down attentional control interacts with 

reading processes, pathway control and response checking. I then present evidence, motivated 
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by the 2-mechanism hypothesis, that 2 sets of brain regions, including members of previously 

defined attentional control networks, show separable activity patterns that map nicely onto roles 

reflecting pathway control and response checking. 

 In the second data chapter, I show that 8-10 year old children, like young adults, can 

perform the regularize task. Unexpectedly, the early readers are faster than the experienced 

readers to regularize, and this speed advantage for children holds for both words and 

pseudowords. Because children are slower than adults across a range of cognitive tasks (e.g., 

Kail 1991)  – with children showing particular immaturity with regard to inhibiting prepotent 

responses (e.g., Davidson et al. 2006) – the developmental observation is remarkable in and of 

itself. Complemented by a cadre of post hoc analyses, the age groups differences can also be 

interpreted as additional support for the 2-mechanism interaction of attention and reading.   

 Together, these results suggest that dissociable subcomponents of attentional control 

interact with subcomponents of reading processing, and that these interactions are dynamic 

across skill development and across task demands. 
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EPIGRAPH 

As I was choosing the word stimuli for these studies, I discovered this delightful poem. 
Trenité’s verses artfully illustrate that the English language is rife with spelling-to-sound 
irregularities, a fact that lends both beauty and madness to the acts of reading and spelling. On 
occasion, madness breeds insight, a possibility I explore in this dissertation by leveraging the 
madness (spelling-to-sound irregularity) to illuminate the beauty (reading). 

 
The Chaos, by Gerald Nolst Trenité (1922) 

 
Dearest creature in creation 

Studying English pronunciation, 
   I will teach you in my verse 

   Sounds like corpse, corps, horse and worse. 
 

I will keep you, Susy, busy, 
Make your head with heat grow dizzy; 
   Tear in eye, your dress you'll tear; 
   Queer, fair seer, hear my prayer. 

 
Pray, console your loving poet, 

Make my coat look new, dear, sew it! 
   Just compare heart, hear and heard, 

   Dies and diet, lord and word. 
 

Sword and sward, retain and Britain 
(Mind the latter how it's written). 

   Made has not the sound of bade, 
   Say-said, pay-paid, laid but plaid. 

 
Now I surely will not plague you 

With such words as vague and ague, 
   But be careful how you speak, 

   Say: gush, bush, steak, streak, break, bleak. 
 

Previous, precious, fuchsia, via 
Recipe, pipe, studding-sail, choir; 

   Woven, oven, how and low, 
   Script, receipt, shoe, poem, toe. 

 
Say, expecting fraud and trickery: 

Daughter, laughter and Terpsichore, 
Branch, ranch,measles, topsails, aisles, 

Missiles, similes, reviles. 
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Wholly, holly, signal, signing, 
Same, examining, but mining, 

   Scholar, vicar, and cigar, 
   Solar, mica, war and far. 

 
From "desire": desirable-admirable from "admire", 

Lumber, plumber, bier, but brier, 
   Topsham, brougham, renown, but known, 
   Knowledge, done, lone, gone, none, tone, 

 
One, anemone, Balmoral, 

Kitchen, lichen, laundry, laurel. 
   Gertrude, German, wind and wind, 

   Beau, kind, kindred, queue, mankind. 
 

Tortoise, turquoise, chamois-leather, 
Reading, Reading, heathen, heather. 

   This phonetic labyrinth 
   Gives moss, gross, brook, brooch, ninth, plinth. 

 
Have you ever yet endeavoured 

To pronounce revered and severed, 
   Demon, lemon, ghoul, foul, soul, 

   Peter, petrol and patrol? 
 

Billet does not end like ballet; 
Bouquet, wallet, mallet, chalet. 

   Blood and flood are not like food, 
   Nor is mould like should and would. 

 
Banquet is not nearly parquet, 

Which exactly rhymes with khaki. 
   Discount, viscount, load and broad, 

   Toward, to forward, to reward, 
 

Ricocheted and crocheting, croquet? 
Right! Your pronunciation's OK. 

   Rounded, wounded, grieve and sieve, 
   Friend and fiend, alive and live. 

 
Is your r correct in higher? 

Keats asserts it rhymes Thalia. 
   Hugh, but hug, and hood, but hoot, 

   Buoyant, minute, but minute. 
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Say abscission with precision, 
Now: position and transition; 

   Would it tally with my rhyme 
   If I mentioned paradigm? 

 
Twopence, threepence, tease are easy, 
But cease, crease, grease and greasy? 

   Cornice, nice, valise, revise, 
   Rabies, but lullabies. 

 
Of such puzzling words as nauseous, 
Rhyming well with cautious, tortious, 

   You'll envelop lists, I hope, 
   In a linen envelope. 

 
Would you like some more? You'll have it! 

Affidavit, David, davit. 
   To abjure, to perjure. Sheik 

   Does not sound like Czech but ache. 
 

Liberty, library, heave and heaven, 
Rachel, loch, moustache, eleven. 
   We say hallowed, but allowed, 

   People, leopard, towed but vowed. 
 

Mark the difference, moreover, 
Between mover, plover, Dover. 

   Leeches, breeches, wise, precise, 
   Chalice, but police and lice, 

 
Camel, constable, unstable, 

Principle, disciple, label. 
   Petal, penal, and canal, 

   Wait, surmise, plait, promise, pal, 
 

Suit, suite, ruin. Circuit, conduit 
Rhyme with "shirk it" and "beyond it", 

   But it is not hard to tell 
   Why it's pall, mall, but Pall Mall. 

 
Muscle, muscular, gaol, iron, 
Timber, climber, bullion, lion, 

   Worm and storm, chaise, chaos, chair, 
   Senator, spectator, mayor, 
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Ivy, privy, famous; clamour 
Has the a of drachm and hammer. 

   Pussy, hussy and possess, 
   Desert, but desert, address. 

 
Golf, wolf, countenance, lieutenants 
Hoist in lieu of flags left pennants. 

   Courier, courtier, tomb, bomb, comb, 
   Cow, but Cowper, some and home. 

 
"Solder, soldier! Blood is thicker", 
Quoth he, "than liqueur or liquor", 

   Making, it is sad but true, 
   In bravado, much ado. 

 
Stranger does not rhyme with anger, 
Neither does devour with clangour. 

   Pilot, pivot, gaunt, but aunt, 
   Font, front, wont, want, grand and grant. 

 
Arsenic, specific, scenic, 
Relic, rhetoric, hygienic. 

   Gooseberry, goose, and close, but close, 
   Paradise, rise, rose, and dose. 

 
Say inveigh, neigh, but inveigle, 

Make the latter rhyme with eagle. 
   Mind! Meandering but mean, 

   Valentine and magazine. 
 

And I bet you, dear, a penny, 
You say mani-(fold) like many, 

   Which is wrong. Say rapier, pier, 
   Tier (one who ties), but tier. 

 
Arch, archangel; pray, does erring 

Rhyme with herring or with stirring? 
   Prison, bison, treasure trove, 
   Treason, hover, cover, cove, 

 
Perseverance, severance. Ribald 

Rhymes (but piebald doesn't) with nibbled. 
   Phaeton, paean, gnat, ghat, gnaw, 
   Lien, psychic, shone, bone, pshaw. 
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Don't be down, my own, but rough it, 
And distinguish buffet, buffet; 

   Brood, stood, roof, rook, school, wool, boon, 
   Worcester, Boleyn, to impugn. 

 
Say in sounds correct and sterling 

Hearse, hear, hearken, year and yearling. 
   Evil, devil, mezzotint, 

   Mind the z! (A gentle hint.) 
 

Now you need not pay attention 
To such sounds as I don't mention, 

   Sounds like pores, pause, pours and paws, 
   Rhyming with the pronoun yours; 

 
Nor are proper names included, 

Though I often heard, as you did, 
   Funny rhymes to unicorn, 

   Yes, you know them, Vaughan and Strachan. 
 

No, my maiden, coy and comely, 
I don't want to speak of Cholmondeley. 
   No. Yet Froude compared with proud 

   Is no better than McLeod. 
 

But mind trivial and vial, 
Tripod, menial, denial, 

   Troll and trolley, realm and ream, 
   Schedule, mischief, schism, and scheme. 

 
Argil, gill, Argyll, gill. Surely 

May be made to rhyme with Raleigh, 
   But you're not supposed to say 
   Piquet rhymes with sobriquet. 

 
Had this invalid invalid 

Worthless documents? How pallid, 
   How uncouth he, couchant, looked, 
   When for Portsmouth I had booked! 

 
Zeus, Thebes, Thales, Aphrodite, 

Paramour, enamoured, flighty, 
   Episodes, antipodes, 

   Acquiesce, and obsequies. 
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Please don't monkey with the geyser, 
Don't peel 'taters with my razor, 
   Rather say in accents pure: 
   Nature, stature and mature. 

 
Pious, impious, limb, climb, glumly, 
Worsted, worsted, crumbly, dumbly, 

   Conquer, conquest, vase, phase, fan, 
   Wan, sedan and artisan.  

 
The th will surely trouble you 

More than r, ch or w. 
   Say then these phonetic gems: 

   Thomas, thyme, Theresa, Thames. 
 

Thompson, Chatham, Waltham, Streatham, 
There are more but I forget 'em- 

   Wait! I've got it: Anthony, 
   Lighten your anxiety. 

 
The archaic word albeit 

Does not rhyme with eight-you see it; 
   With and forthwith, one has voice, 

   One has not, you make your choice. 
 

Shoes, goes, does *. Now first say: finger; 
Then say: singer, ginger, linger. 

   Real, zeal, mauve, gauze and gauge, 
   Marriage, foliage, mirage, age, 

 
Hero, heron, query, very, 

Parry, tarry fury, bury, 
   Dost, lost, post, and doth, cloth, loth, 

   Job, Job, blossom, bosom, oath. 
 

Faugh, oppugnant, keen oppugners, 
Bowing, bowing, banjo-tuners 

   Holm you know, but noes, canoes, 
   Puisne, truism, use, to use? 

 
Though the difference seems little, 

We say actual, but victual, 
   Seat, sweat, chaste, caste, Leigh, eight, height, 

   Put, nut, granite, and unite. 
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Reefer does not rhyme with deafer, 
Feoffer does, and zephyr, heifer. 

   Dull, bull, Geoffrey, George, ate, late, 
   Hint, pint, senate, but sedate. 

 
Gaelic, Arabic, pacific, 

Science, conscience, scientific; 
   Tour, but our, dour, succour, four, 

   Gas, alas, and Arkansas. 
 

Say manoeuvre, yacht and vomit, 
Next omit, which differs from it 

   Bona fide, alibi 
   Gyrate, dowry and awry. 

 
Sea, idea, guinea, area, 

Psalm, Maria, but malaria. 
   Youth, south, southern, cleanse and clean, 

   Doctrine, turpentine, marine. 
 

Compare alien with Italian, 
Dandelion with battalion, 
   Rally with ally; yea, ye, 

   Eye, I, ay, aye, whey, key, quay! 
 

Say aver, but ever, fever, 
Neither, leisure, skein, receiver. 

   Never guess-it is not safe, 
   We say calves, valves, half, but Ralf. 

 
Starry, granary, canary, 

Crevice, but device, and eyrie, 
   Face, but preface, then grimace, 

   Phlegm, phlegmatic, ass, glass, bass. 
 

Bass, large, target, gin, give, verging, 
Ought, oust, joust, and scour, but scourging; 

   Ear, but earn; and ere and tear 
   Do not rhyme with here but heir. 

 
Mind the o of off and often 

Which may be pronounced as orphan, 
   With the sound of saw and sauce; 

   Also soft, lost, cloth and cross. 
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Pudding, puddle, putting. Putting? 
Yes: at golf it rhymes with shutting. 
   Respite, spite, consent, resent. 

   Liable, but Parliament. 
 

Seven is right, but so is even, 
Hyphen, roughen, nephew, Stephen, 

   Monkey, donkey, clerk and jerk, 
   Asp, grasp, wasp, demesne, cork, work.  

 
A of valour, vapid vapour, 

S of news (compare newspaper), 
   G of gibbet, gibbon, gist, 
   I of antichrist and grist, 

 
Differ like diverse and divers, 

Rivers, strivers, shivers, fivers. 
   Once, but nonce, toll, doll, but roll, 

   Polish, Polish, poll and poll. 
 

Pronunciation-think of Psyche!- 
Is a paling, stout and spiky. 

   Won't it make you lose your wits 
   Writing groats and saying "grits"? 

 
It's a dark abyss or tunnel 

Strewn with stones like rowlock, gunwale, 
   Islington, and Isle of Wight, 

   Housewife, verdict and indict. 
 

Don't you think so, reader, rather, 
Saying lather, bather, father? 

   Finally, which rhymes with enough, 
   Though, through, bough, cough, hough, sough, tough?? 

 
Hiccough has the sound of sup... 

My advice is: GIVE IT UP! 
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

In this chapter, several of the essential themes of this thesis will be introduced. In the 

first part, I will discuss topics related to the relevance of reading research, as well as the tools, 

models and priors from which this research emerged. First, I will briefly argue for the general 

importance of reading research, based on the observation that literacy is an important predictor 

of educational and economic success (Baer et al. 2009), coupled with my own opinion that 

reading is an intrinsically interesting cognitive phenomenon. I will then highlight the fact that 

impaired reading is a substantial public health concern, further underscoring the need for 

research on typical reading development. Next, I will delve into some of the issues related to 

mental chronometry, the use of reaction time measurements to investigate cognition, particularly 

as the technique pertains to investigations of lexical processing. I will then highlight a few of the 

more consistent findings with regard to the functional neuroanatomy of reading although, as will 

be revealed, Chapter 2 underscores the contributions of different sets of brain regions to 

reading tasks from those that have typically been emphasized. Turning from the brain to 

computational models, I will briefly describe the important features of dual route and 

connectionist architectures, emphasizing the tremendous utility of these theoretical frameworks. 

I will then speculate that computational models have contributed to the perpetuation of an 

automaticity dogma in the field of reading, perhaps to the detriment of novel conceptual 

advances. I will also make an argument that along with the automaticity dogma, there exists 

something of a phonology dogma in the literature. I will furthermore address the importance of 

choosing and accurately describing “reading-related” tasks, and justify the choice to employ a 

speeded naming task and a regularize task in the present work. 

The second part of this chapter will elaborate on a few of the issues relevant to the 

developmental component of this work. First, I will posit one interesting way in which a line of 

investigation of dyslexia may provoke a conceptual approach to studying normal reading, a 
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reverse of the typical situation in which understanding the healthy system informs the 

disordered system. A clarification about the difference between development and skill 

acquisition will then be offered, followed by a brief discussion of the observation that 

development entails both general decreases in the time required to respond to stimuli and 

specific improvements in the various sub-components of what is referred to as executive, 

cognitive or attentional control. As will be discussed in greater detail in Chapter 3, the admixture 

of sometimes counter-modulatory features of the development of reading processing (e.g., 

consolidation of lexical knowledge) with features of the development of attentional control (e.g., 

improvements in inhibitory control) complicates the predictions and subsequent evaluations of 

age group differences in the present data.  

Finally, I will conclude this chapter by outlining a road map for the 2 data chapters and 

by presaging the primary observations and conclusions of those chapters. 

 

Reading research: relevance, tools, models and priors 

 The first section of this chapter surveys a few of the issues related to reading research in 

a way that sets the stage for the work presented in Chapters 2 and 3. 

 

Reading research is important and fascinating science 

Reading, the act of obtaining meanings from written language, is fundamental both for 

the transmission and preservation of the culture of our species and, for humans as individuals, 

for the task of navigating in an increasingly complex and abstract world. The riddle of how we 

read remains unsolved despite a long history of inquiry on the part of psycholinguists, cognitive 

neuroscientists and neurologists (e.g., Cattell 1886; Dejerine 1891, 1892; Pugh et al. 1996), 

marked even today by vigorous debate over questions as fundamental as whether or not 

particular pieces of cortex are dedicated to performing reading processing  (contrast Cohen et al. 
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2002; Glezer et al. 2009 vs. Price and Devlin 2003; Price and Devlin 2011; Vogel et al. 2012) 

Reading is of intrinsic interest in part because it represents a complex, learned cognitive skill 

that evolved only in the last few thousand years, presumably co-opting neural hardware adapted 

to support other functions. Furthermore, the substrate of reading – the written word – is 

manipulable in concrete and describable ways, such that reading offers a sort of model system 

for interrogating more general cognitive neuroscience phenomena, such as perceptual expertise 

and behavioral variability (across tasks, across the lifespan, across populations, etc.).  

For example, it has been proposed that the protracted development of brain regions 

supporting cognitive control (e.g., Huttenlocher and Dabholkar 1997; Casey et al. 2000; Gogtay 

et al. 2004; Giedd 2004) confers a benefit to spoken language learning (Chrysikou et al. 2011), 

in that bottom-up, data-driven exploration of the environment by children – unconstrained by the 

biases of the top-down, rule-based thinking that characterizes cognitive maturity – affords an 

adaptive flexibility in extracting the statistical rules governing syntax, for example. This intriguing 

hypothesis, forwarded by Thompson-Schill and colleagues, provokes the speculation that 

observations regarding the development of reading, specifically, may illuminate the broader 

question of whether perceptual expertise is indeed a Faustian bargain, whereby certain 

component abilities (e.g., selectively attending to spelling-to-sound mappings) are necessarily 

subsumed by the achievement of proficiency (e.g., correctly and quickly pronouncing many 

words).  

Reading research is relevant to public health 

Research characterizing the behavior and neuroscience of reading is enriched by 

contributions from a panoply of methodologies, including lesion studies from Dejerine (1891, 

1892) to Damasio and Damasio (1983); chronometric analyses from Cattell (1886) to Balota and 

colleagues (2004); and brain imaging experiments from Petersen and colleagues (1988) to 

Price and Devlin (2011). From a public health standpoint, the utility of reading research is 
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underscored by the fact that developmental dyslexia is common, accounting for 80% of cases of 

learning disorders	
  (Lerner 1989), and affecting 5-10% of the population (Siegel 2006). Dyslexia 

is a specific disorder of reading acquisition in the face of adequate intelligence, instruction and 

motivation (some criteria for dyslexia include difficulties with spelling, e.g., 

http://www.ninds.nih.gov/disorders/dyslexia/dyslexia.htm). Notably, dyslexia poses significant 

barriers to educational success (Peterson and Pennington 2012) that persist into adulthood 

(Shaywitz and Shaywitz 2005). Because the neural basis of the disorder remains a matter of 

active research, with several competing or perhaps complementary hypotheses regarding its 

causes (see Ramus and Ahissar 2012 for a review), there is substantial room for improvement 

in the remediation of the disorder (Gabrieli 2009). Understanding reading in healthy subjects, 

especially with regard to its normal development, is almost certainly a prerequisite for 

establishing more effective approaches to treating dyslexia.  

Chronometry is a window to neural processing 

Chronometry, or the measurement and analysis of reaction times (RTs), is a pillar of 

psychological inquiry (Donders 1969; Sternberg 1969), and chronometric studies facilitated the 

earliest systematic investigations of the phenomenology of reading (Cattell 1886). However, the 

apparent simplicity of chronometry belies some of the more nuanced issues related to its proper 

application and interpretation. Measuring reaction times for overt vocal responses raises a 

particular methodological issue; specifically, the sensitivity of voice-activated keys in naming 

tasks varies with the physical shape of the onset phoneme of the pronounced item. Per one 

study (Spieler and Balota 1997), as much as 35% of the variance in response latencies during 

naming tasks is driven by this surface-level stimulus characteristic. If onset phonemes are not 

taken into account, for example by coding them (Treiman and Kessler 1995) or by 

orthogonalizing their distribution, the variance attributable to them may be assigned erroneously 

to experimental variables, inflating the presumptive effects of interest. (The pronunciations of 
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multi-syllabic words are much less uniquely influenced by onset phoneme characteristics (Yap 

et al. 2009)). In recognition of this potential confound, the stimulus sets used in this thesis work 

were chosen such that onset phonemes did not systematically vary by condition. Furthermore, 

the reaction times for the fMRI-associated data were computed by hand, since the waveforms in 

that study were unavoidably contaminated by scanner noise, and we wanted to detect response 

onsets with as much fidelity as possible. Taking pains to protect the accuracy and precision of 

reaction time measurements is particularly important for chronometric studies of lexical 

processing, because some of the effects of interest are quite small, on the order of tens of 

milliseconds, for example. 

In addition to concerns about reaction time measurement, there are issues related to the 

analysis of reaction times as indices of behaviors of interest. In particular, reaction time 

analyses that consider only condition- and task- specific means (rather than multi-parameter 

descriptions of the reaction time distributions) are subject to omitting or even obscuring potential 

observations (e.g., Ratcliff 1979; Balota et al. 2008). Despite this caveat, and consistent with 

much of the psycholinguistic literature, the analyses in this thesis relied upon mean reaction 

times, calculated after purging for the very outlier trials that may, in fact, carry interesting 

information. The decision to use only the means to sample the underlying reaction time 

distributions for this thesis work arose partially by default, as a way of reining in the 

dimensionality of an already complex dataset. However, and as will be discussed in Chapter 4, 

subsidiary analyses involving ex-Gaussian distributions, for example, could be conducted in the 

future, in order to test more directly some of the conclusions suggested by the data presented in 

these chapters.  

One final note about response latencies: this work focuses on reaction time rather than 

accuracy in the behavioral data for several reasons (note that accuracy data is nonetheless 

reported). First, there were potential ceiling affects for accuracy, especially for the adults 



	
  

14 

performing the read task; indeed, performance was generally high across both tasks and both 

age groups. Furthermore, errors could theoretically derive from any of several sources, sources 

that are impossible to distinguish post hoc, and therefore not accessible to a straightforward 

interpretation. For example, when a participant failed to regularize an irregular word (task 

described later), it was not possible to distinguish whether the person had (1) lapsed out of task 

mode; (2) failed to recognize that the item had an irregular spelling-to-sound correspondence; or 

(3) tried but failed to access the appropriate sublexical mappings in order to generate the 

response. It is for these reasons (and for the sake of brevity, in the case of Chapter 2) that when 

I talk about “behavior” in these pages, I am generally referring to reaction time. However, and as 

will be elaborated upon in Chapter 4, it should not be forgotten that accuracy is a very important 

component of task performance, with evidence existing to suggest that even small differences in 

error rate can produce relatively large differences in reaction time (Pachella 1974). 

Functional neuroanatomical models of reading emphasize phonology, orthography and 

semantics 

The notion that separate neural processing routes underlie different aspects of reading 

was originally advanced by Dejerine in the late 1800s as a result of his studies of patients 

presenting with focal brain lesions and dissociable reading deficits (Dejerine 1891, 1892). Even 

today, lesion studies continue to render useful insights about reading (Damasio and Damasio 

1983; Henderson 1986; Fiez et al. 2006; Turkeltaub et al. 2013), providing particular utility with 

regard to constraining computational models (Nickels et al. 2008). Technological advances over 

the last several decades have given rise to increasingly sophisticated neuroimaging techniques, 

including magneto-encephalography (MEG) (Papanicolaou et al. 1998), event-related potentials 

(ERP) (Kutas and Hillyard 1980), positron emission tomography (PET) (Petersen et al. 1988; 

Petersen et al. 1990) and functional magnetic resonance imaging (fMRI) (McCarthy et al. 1993; 

Hinke et al. 1993). Imaging studies have certainly advanced our understanding of the neural 
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basis of reading, and in 2013 it has become difficult to keep up with the large number of such 

studies that are published every year. As Petersen and Fiez cautioned early in the development 

of PET studies, neuroimaging studies are especially useful when carefully designed, analyzed 

and interpreted in the context of a consideration of converging evidence from chronometric and 

lesion studies (1993). Indeed, one of my distinct chores in attempting to become a scholar in 

this field has been to think critically about how the observations that are rendered by one 

methodology affirm, contradict or simply coexist with observations deriving from another 

methodology, as the mappings between two “reading” studies (say, a modeling paper from the 

Coltheart group and a paper examining reading-related brain regions using functional 

connectivity) are not always readily accessible. 

Based on early functional imaging data and certainly reflecting the behavioral literature 

as well, Pugh and colleagues have suggested a cognitive neuroscience model of reading 

development in which the functional contributions of left dorsal posterior regions, including parts 

of the left angular gyrus and left supramarginal gyrus, predominate as a child begins to read, 

allowing for analytic (slow, attention-requiring) integration of phonological, orthographic and 

semantic features of words (Pugh et al. 2001). As skilled reading develops, activity in left dorsal 

posterior regions trains a set of left ventral posterior regions, including the putative visual word 

form area (Cohen et al. 2002), allowing for fluent (fast, automatic) recognition of whole words. In 

this model, left anterior language regions, including Broca’s area in the left inferior frontal gyrus, 

are responsible for phonological recoding and articulation (Greenlee et al. 2004), sharing some 

phonology-related response properties with regions in dorsal posterior regions (Church et al. 

2011). The Pugh et al. model thus implies the primacy of an effortful, serial type of decoding – 

presumably relying heavily on phonological processing – for early reading, and emphasizes the 

importance of non-phonological recognition for more skilled reading. The model also 

summarizes the essential conceptualization of the neuroanatomy of reading that is embraced by 
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the field today, as reflected in both recent (e.g., Price 2012; Taylor et al. 2012) and slightly older 

(e.g., Jobard et al. 2003; Mechelli et al. 2003) meta-analyses. 

Computational models of reading emphasize phonology and orthography 

Neuroanatomical accounts of reading such as that of Pugh and colleagues have been 

guided and constrained in part by computational models that attempt to describe the mapping 

between visual orthographic input and speech output. Although this thesis work does not 

directly adjudicate between computational models, models of reading have so greatly influenced 

the way that people have thought about and studied reading that it is worth briefly describing 

their major features. Two classes of computational models in particular have historically 

garnered the most attention and empirical support in the reading literature. One class proposes 

two routes, while the other is rooted in a connectionist architecture.  

In dual-route models, a sublexical (also referred to as phonological) route applies 

abstract spelling-to-sound rules (e.g., b is pronounced as /b/, ea is pronounced as /i/) while the 

second, more direct route (called lexical, or whole-word), associates rapidly recognized 

spellings with stored lexical forms (e.g. cat is recognized as /kæt/) (e.g., Coltheart et al. 1993; 

Coltheart et al. 2001). Stored lexical representations are strengthened in proportion to the 

exposure to a word’s written word form, possibly instantiated as an increase in a node’s 

baseline activation (Morton 1969) or a decrease in the threshold required for activation 

(Andrews 1989). Following phonological and lexical pathway processing, one response must be 

selected from among the 2 pathways’ computations, with spelling-sound regularity determining 

whether the outputs of the 2 routes converge. It is notable that there is frequently no direct 

treatment of the final “phoneme buffer” or “response selection” stage (Pritchard et al. 2012) in 

dual route models, leading me to consider this final step in the reading process largely 

“neglected.”  
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In contrast to dual route models, connectionist models posit distributed associations 

between orthographic, phonological, and semantic processes that emerge as the result of 

repeated exposure (training) to a finite corpus of words (e.g., Seidenberg and McClelland 1989; 

Plaut et al. 1996; Kello and Plaut 2003). Rather than being rule-based, the strengths of the 

associations between the various units change over time in response to co-activation. One 

criticism of connectionist models is that they seem little concerned with neuroanatomy, given 

their distributed nature. One attempt to map a connectionist model onto the brain was proposed 

by McCandliss and Noble (2003), and it posits a cascading mechanism whereby successful 

phonological decoding in the left posterior superior temporal gyrus helps to establish a rapid 

word recognition system in posterior regions (i.e., the visual word form area). Decoding skill, in 

this model, requires simultaneous attention to letters and to the sounds those letters make.  

There exists an automaticity dogma in the reading literature 

While the overwhelming contribution to the field of computational models of reading has 

been positive, I believe that there may be ways in which the simplifying assumptions of both 

connectionist and dual route models have unwittingly restricted the conceptual creativity of the 

empirical investigations that have accompanied the models’ development. Specifically, the 

models have tended to focus on describing the component processes of reading (e.g. 

phonological, orthographic and semantic analysis), assuming that particular stimulus and task 

manipulations can be mapped onto these subcomponents, generally without considering the 

role of attentional control in shaping these processes and their integration (see McCann et al. 

2000; Reynolds and Besner 2006 for further discussion). The empirical literature has largely 

reflected this focus on investigations of orthographic, semantic and phonological processing, 

with explicit investigations of the role of attentional control in reading many fewer in number and 

influence. My evaluation of the focus of the literature is that there exists something of an 

automaticity dogma throughout the field. To be clear, my opinion on this particular shortcoming 
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of the models is by no means an overall indictment, as I fully recognize their substantial and 

often catalytic role in moving certain areas of investigation forward. 

Automaticity is a thorny concept, requiring the consideration of many definitional criteria 

(e.g., Stanovich 1990; Logan 1997). Key features of automatic processes include the speed and 

effortlessness with which they are carried out, as well as the obligatory and/or subconscious 

nature of their completion (Logan 1997). Descriptors such as fast and obligatory indeed 

describe aspects of reading in skilled adults, and several seminal cognitive neuroscience 

studies provide support for the notion that reading, in adults, shows features of automaticity. 

From the Stroop effect (Stroop 1935), to Neely’s demonstration of sematic priming (Neely 1977), 

to Reicher’s word superiority effect (Reicher 1969), these foundational studies are beautiful and 

compelling. Compelling though they may be, studies that demonstrate automaticity with regard 

to one component of reading processing under one specific set of experimental conditions do 

not constitute general proof that the process of reading is outside of the purview of top-down 

attentional control, even when a constellation of such studies is considered. Of particular 

relevance to this work, whether or not skilled reading in adults can properly be considered 

automatic, reading in a child is certainly neither fast nor effortless, and the trajectory by which 

reading become facile remains in many respects a mystery.  

There exists a phonology dogma in the reading literature 

In case it is not adequately provocative to assert that the literature reflects a relative 

paucity of interest in the role of attentional control in reading, I further propose that the field 

additionally reflects a rather substantial bias towards thinking and talking almost obsessively 

about phonology. A “strong phonological theory of visual word recognition” was laid out explicitly 

by Ram Frost in 1998 (1998), but he was neither the first nor the last investigator to take the 
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position that reading is substantially concerned with phonology3. The phonology dogma may be 

especially apparent in the developmental literature, in which dyslexia research factors heavily, 

as there is solid evidence that children who experience reading difficulty demonstrate particular 

trouble in parsing the sounds of speech (Liberman et al. 1989; Ramus et al. 2003; Shaywitz and 

Shaywitz 2005).  

Phonological processing, even in the unimpaired reader, is undoubtedly a crucial inroad 

to extracting the meaning from a printed word, particularly for readers of alphabetic 

orthographies4 such as English. One could furthermore make an unassailably pragmatic 

argument that studying phonology is broadly useful to the reading investigator, since phonology 

is one of the shared features of written and spoken language. However, many people in the 

world read logographic scripts (consider the Chinese), in which symbols map directly onto 

meanings, rather than sounds. Not surprisingly, evidence suggests that Chinese reading skill 

hinges more on orthographic than phonological awareness	
  (Tan et al. 2005), a fact that 

underscores the need to avoid equating reading with phonological processing. As was argued 

above with regard to the automaticity dogma, danger lurks in fidelity to a singular conceptual 

stance, and my own experience with this thesis work was that shifting my thinking from 

phonology to attention proved to be pivotal, a point that I hope will become self-evident.  

The choice of reading task is of critical importance 

The empirical data that has been amassed in tandem with the development of dual route 

and other computational models has derived primarily from lexical decision and speeded 

naming tasks. In lexical decision tasks, subjects decide whether a stimulus is a word or not; in 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 Consult the October 2012 issue of Behavioral and Brain Sciences for an updated version of 
Frost’s theory of reading (Cohen et al. 1990), as well as several peer commentaries on the topic, 
including a call by Kathleen Rastle (Frost 2012) to rethink the emphasis on phonology in reading 
theories. 
4 In alphabetic orthographies, the symbols of the writing system map onto sounds, with a 
variable degree of transparency between the grapheme-to-phoneme correspondences.	
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speeded naming tasks, subjects read words aloud as quickly and accurately as possible. Many 

important observations have derived from other tasks as well. Indeed, one of the sources of 

richness (and complexity) in the visual word recognition literature is the seemingly endless 

variety of experimental paradigms that can be exploited to target particular aspects of word 

reading. However, as Alecia Vogel showed as part of her thesis work in our laboratory, different 

tasks are different (Vogel et al. 2012), and it is critical to think and speak precisely about the 

particular processing requirements of a given task.   

Read task 

Overt speeded naming has both limitations and advantages as task used to study 

reading. In contrast to lexical decision and similar judgment tasks (e.g. semantic classification), 

naming does not involve an explicit decision process, and is thereby arguably relatively simpler 

to decompose. However, speeded naming does require overt pronunciations, therefore 

necessitating the preparation of an articulatory program followed by its execution (Cattell 1886). 

Not only must one be careful to consider the motor aspects of word pronunciation when 

conceptualizing a task involving an overt vocal response, but one could also make the argument 

that aloud pronunciation of isolated words lacks somewhat in ecological validity, at least for 

skilled adults, for whom the bulk of the reading in our daily lives involves the silent apprehension 

of connected text. While the ecological validity complaint is not without merit, it is also the case 

that in all areas of cognitive neuroscience, some level of reductionism is pragmatically inevitable 

if one wishes to study a phenomenon in the laboratory.  

Without appealing to pragmatics, I find it relatively easy, as the parent of an almost 5-

year-old, to justify the use of speeded naming as “ecologically valid” with regard to early skill 

development. When a child is learning to read, sounding words out is indeed a very physical act, 

and the engagement in the motor and auditory experience of overtly assembling the phonemes 

as graphemes are encountered is something that persists throughout the early years of reading 
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instruction. Even adults, under circumstances requiring increased concentration, may revert to 

the physical act of forming the sounds of the letters with their mouths when reading, presumably 

reflecting the tight linkage between the motor and cognitive components of language. That 

being said, I certainly hope that none of you is currently reading this document out loud because 

you find it so utterly difficult to follow. 

Turning from the behavioral literature on reading to the comparatively younger 

neuroimaging literature, the set of “reading-related” tasks that people have used seems even 

more motley. Because of worries about imaging signal artifact related to the motion of verbal 

articulation and the putatively puzzling physics of the oropharyngeal cavity, many PET and fMRI 

studies of reading have employed implicit tasks that require either a button-press response or 

not response at all. For example, silent reading may be coupled to an orthographic or 

phonological feature detection task, and participants are trusted to perform the assigned task 

faithfully (Turkeltaub et al. 2003). Other popular paradigms include rhyme judgment, syllable 

counting, word spelling, delayed verbal recall, and pseudohomophone discrimination (e.g., 

Rumsey et al. 1997; Joubert et al. 2004; Booth et al. 2004; Fiez et al. 2006). Each of these 

surrogate tasks requires computations above and beyond word identification, a fact that should 

be recognized when one considers the behavioral and imaging effects that they purport to 

reveal.   

Regularize task 

 The regularize task has already been mentioned without having been described. In brief, 

the task is borrowed from a study conducted by Dave Balota, Jason Zevin and Mark Law (2000), 

and it involves the presentation of single stimuli (regular words, irregular words and 

pseudowords) and the instruction to “sound out” each item as though reading it for the first time. 

The regularize task thus challenges participants to direct attention exclusively to phonological 

processing, and to suppress their “sight-word” knowledge. Relegating to a later discussion the 
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specifics of the Balota et al. findings, suffice it to say that the task generated some very 

intriguing behavioral results, and despite this fact, very few subsequent studies have utilized the 

regularize task (but see Gold et al. 2005 for an imaging study using the regularize task). The 

reasons to adopt the regularize task in this work as a variant of speeded naming that requires 

top-down attentional control were manifold.  

First, we sought to replicate the interesting behavioral results in young adults, an 

objective that is both important for keeping the field honest and that also seemed to be relatively 

low-hanging fruit. Moreover, the regularize task grabbed my attention as well-suited to a 

developmental study because of its apparent juxtaposition of something with which children 

should have great facility (i.e., sounding words out) vs. something with which children might 

struggle (i.e., inhibiting a prepotent response). Furthermore, the regularize task was appealing 

because its inputs and outputs (other than the irregular words) should be identical to those used 

in the read task, allowing for the possibility of closely targeting the processes that produce that 

mapping from stimulus to response. Lastly, aside from potential concerns about an MRI 

speaking artifact, the regularize task seemed to be begging to be taken into the scanner, ripe for 

an exploration of the neural activity underlying its performance (note that the Gold et al. study 

cited above (2005) used a very different analysis approach from that which we use here). One 

legitimate criticism of the regularize task is that it may be different enough from normal reading 

so as to be relatively uninformative for generating insights into how the attentional control of 

normal reading occurs. I think this concern is not unfounded, and I certainly want to be cautious 

about overreaching my conclusions. Nonetheless, it seems unlikely to me that the fundamental 

attentional mechanisms that are brought to bear on the regularize task are somehow wildly 

irrelevant to the control of reading under “normal” circumstances. 
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Reading research: issues pertinent to development 

The second part of this chapter addresses several themes that are especially relevant to 

the study of reading development. 	
  

	
  

Dyslexia research highlights the need to pay more attention to attention 

The importance of attentional mechanisms in the development of normal reading ability 

is suggested by at least one line of research in the developmental dyslexia literature. Although a 

clear etiological and mechanistic description of dyslexia remains elusive, there is compelling 

evidence that deficits in visuo-spatial attention contribute to difficulty in learning to read, at least 

in some children (e.g., Franceschini et al. 2012; see Vidyasagar and Pammer 2010; Valdois et 

al. 2004 for reviews). Visual attention span deficits have been observed in dyslexic children 

across languages (e.g., Bosse et al. 2007), with one interesting interpretation of such deficits 

positing that dyslexics are “sluggish” in their ability to shift attention (Hari and Renvall 2001), 

possibly accounting for the range of sensory-related deficits (Hari et al. 2001; Laasonen et al. 

2000; Habib 2000; Hari et al. 1999; Helenius et al. 1999; Eden and Zeffiro 1998; Stein and 

Walsh 1997) that have been observed as part of the dyslexic phenotype. Relatedly, dyslexia co-

occurs with attentional deficit hyperactivity disorder (ADHD), particularly the inattentive subtype, 

much more frequently than what would be expected by chance (e.g., Willcutt and Pennington 

2000; August and Garfinkel 1990), suggestive of common underlying genetic factors (Paloyelis 

et al. 2010) and possibly a mutual cognitive deficit (Castellanos and Tannock 2002; McGrath et 

al. 2011). Although this thesis work does not address dyslexia directly (and indeed, potential 

participants were screened for reading difficulties), it is certainly possible to imagine ways in 

which the studies presented here could be adapted to examine dyslexia. 
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Development is orthogonal to skill acquisition 

In these pages, “age-group differences” connotes those improvements in reading skill 

that accompany increased experience with reading, improvements which correlate with age for 

our study population. This shorthand is not meant to imply that getting older per se confers 

increased reading skill. Indeed, as will be alluded to in Chapter 3, one of the challenges inherent 

to interpreting developmental data is the disambiguation of “age group” differences due to 

developmental processes (e.g., prefrontal cortical maturation, conferring improvements in 

cognitive control) from experience-dependent processes specific to the acquisition of a skill (e.g., 

the consolidation of lexical representations of words, facilitating more rapid access of particular 

items from the lexicon). It should also be mentioned that the 8-10 year old children who 

participated in the study described in Chapter 3 were reading at a significantly higher grade 

level than suggested by their chronological ages. Generalization from the present sample of 

participants to the entire population of “typical” 8-10 year old children must therefore be made 

cautiously, if at all. 

Reaction times generally decrease across development 

Consistent with what most of us would surmise based on observation, experimental 

studies confirm rather unequivocally that children are slower and less accurate than young 

adults (Elliott 1970) on just about any cognitive task (Kail 1991). Processing speed, measured 

as reaction time, decreases robustly from childhood through adolescence and into adulthood, 

with some evidence for domain specificity in the trajectories of reaction time improvement 

across development (e.g., Kail and Miller 2006; but see Hale 1990). Although it is likely that 

developmental differences in such “noncentral” factors as incentive, motivation, attentiveness 

and practice contribute to the reaction time differences observed in children vs. adults (Wickens 

1974), most investigators agree that the bulk of the observed age group differences arise from 

fundamental limitations of information processing and capacity in the developing brain. 
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Identifying those fundamental limitations of processing using behavioral assessments has 

proven somewhat difficult, however. One attempt at decomposition that is particularly interesting, 

in light of the present results, referred to Smith’s stages of stimulus processing (Smith 1968) 

and concluded that response selection (rather than stimulus input, stimulus categorization or 

response execution) most distinguishes improvements in reaction time across one particular 

range of development, from age 5 to 11 years (Fairweather and Hutt 1978).  

Brain maturation involves significant development of attentional control 

Behavioral and neuroimaging evidence converges to suggest that brain maturation 

involves important and identifiable changes in cognitive/ executive/ attentional control processes 

(e.g., Zelazo et al. 2004) presumably contributing greatly to the performance discrepancy 

between children and adults discussed above. Although a full treatment of this topic is outside of 

the scope of this thesis, the essential theory is that the comparatively slow development of 

particular brain regions, including parts of prefrontal cortex (Casey 1997; Casey et al. 2000), 

has the consequence of making children relatively less able than adults to exert control over 

their processing systems. Evidence suggests that there are substantial regional-specific 

changes (e.g., Huttenlocher and Dabholkar 1997) in control-related brain regions into 

adolescence (Gogtay et al. 2004) and even beyond	
  (Luna et al. 2001). Children in the age 

range of 8-10 years old, like those who participated in the study in Chapter 3, are worse than 

young adults in terms of their abilities to switch from one task to another (Crone et al. 2006); 

monitor their own performance (Kopp 1982); alert appropriately to stimuli (Rueda et al. 2004); 

inhibit prepotent responses (Davidson et al. 2006); and utilize working memory (Luna et al. 

2004).  
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Road map to the data chapters 

 Both data chapters in this these use a comparison, borrowed from Balota, Law and 

Zevin (2000), between a simple speeded reading task vs. a regularize (“sound out”) task. The 

first data chapter focuses on young adults only, and examines both behavioral and imaging data. 

The second data chapter focuses on school-age children and young adults, leveraging 

behavioral data only. 

In Chapter 2, I discuss the results of a combined behavioral/neuroimaging study in 2 

young adult cohorts. I first show that we were able to replicate the essential findings of the 

Balota et al. study, specifically confirming that lexicality and frequency influence read and 

regularize task performance differently, underscoring the susceptibility of reading to modulation 

by top-down control. Consistent with the interpretation of Balota and colleagues, I furthermore 

argue that the reaction time patterns observed in the 2 young adult cohorts are consistent with 2 

distinct mechanisms by which top-down attentional control interacts with reading processes, 

pathway control and response checking. I then present evidence, motivated by the 2-

mechanism hypothesis, that 2 sets of brain regions, together including members of Dorsal 

attention (Corbetta and Shulman 2002), Cingulo-opercular and Frontal-parietal (Dosenbach et al. 

2006) control networks show separable activity patterns that map nicely onto roles reflecting 

pathway control and response checking. 

 In the Chapter 3, I show that 8-10 year old children, like young adults, can perform the 

regularize task. Although children made more mistakes on the regularize task than did the 

adults, the early readers were faster than the experienced readers to regularize, and this speed 

advantage for children held for both words and pseudowords. Because children are slower than 

adults across a range of cognitive tasks (e.g., Kail 1991)  – with children showing particular 

immaturity with regard to inhibiting prepotent responses (e.g., Davidson et al. 2006) – the 

developmental observation is remarkable in and of itself. The results of several analyses 
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considering interactions of several stimulus characteristics (lexicality, frequency and regularity) 

with task and age group are then presented, in an attempt to identify the causes of the robust 

crossover interaction. I argue that those analyses both generally reconfirm the plausibility of the 

2-mechanism model of the attentional control of reading, and specifically suggest that both 

pathway control and response checking are incompletely mature in less experienced readers. 

Post hoc supplemental analyses, including subject- and item- level correlations of task and 

neuropsychological measures, bolster the twin conclusions of Chapter 3. 

 Together, Chapters 2 and 3 suggest that dissociable subcomponents of attentional 

control interact with subcomponents of reading processing, and that these interactions are 

dynamic across skill development and across task demands. 
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Summary 

Part of the objective of this thesis work is to echo the suggestion of Reynolds and 

Besner (2006) that the field of reading would do well to question the possibly obfuscating 

conceit of automaticity, making room for novel insights that are not readily accessible within 

theoretical constructs that ignore the modulatory potential of attentional control. At the very least, 

it seems important to unpack just what is meant by automaticity and attentional control when it 

comes to reading. My take on the literature at this point is that there is plenty of room for more 

pointed investigations of where – in terms of both boxes/sticks and voxels/neurons – attentional 

control systems interact with reading processes.  

 Let us, then, dive into searching for the locus or loci of the attentional control of reading, 

both in terms of cognitive models and the brain. As one of my favorite investigators in this field 

once opined,   

“[I]t is incumbent upon the researcher  

to determine the locus or loci  

of the effects being observed.” 

 - Balota and Chumbley (1985) 
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CHAPTER 2: SEPARABLE ROLES FOR ATTENTIONAL CONTROL SUB-SYSTEMS IN 

READING TASKS: A COMBINED BEHAVIORAL AND fMRI STUDY 

S. Katie Ihnen, Steven E. Petersen and Bradley L. Schlaggar 

Submitted to Cerebral Cortex, April 2013. 

Abstract 

Attentional control is important both for learning to read and for performing difficult 

reading tasks. A previous study invoked two mechanisms to explain reaction time (RT) 

differences between reading tasks with variable attentional demands (Balota et al. 2000). The 

present study combined behavioral and neuroimaging measures to test the hypotheses that 

there are two mechanisms of interaction between attentional control and reading; that these 

mechanisms are dissociable both behaviorally and neuroanatomically; and that the two 

mechanisms involve functionally separable control systems. First, RT evidence was found in 

support of the two-mechanism model, corroborating the previous study (Balota et al. 2000). 

Next, two sets of brain regions were identified as showing fMRI BOLD activity that maps onto 

the two-mechanism distinction. One set included bilateral Cingulo-opercular regions and mostly 

right-lateralized Dorsal Attention regions (CO/DA+). This CO/DA+ region set showed response 

properties consistent with a role in reporting which processing pathway (phonological or lexical) 

was biased for a particular trial. A second set was composed primarily of left-lateralized Frontal-

parietal (LFP) regions. Its signal properties were consistent with a role in response checking. 

These results suggest that subcomponents of attentional control interact with subcomponents of 

reading processes in healthy young adults. 
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Introduction 

The cultural development of reading is one of humankind’s most revelatory 

accomplishments. Despite its importance in modern life, fluent reading is something that many 

people take for granted, perhaps because it, like many other learned skills, is achieved with a 

remarkable degree of automaticity across many contexts (e.g., Neely 1977; Schneider and 

Shiffrin 1977). Fluid and automatic reading is certainly not taken for granted by the 5-10% (or 

more) of the population that is estimated to suffer from dyslexia, or impaired reading despite 

normal intelligence and adequate instruction (Siegel 2006). The link between attention and 

reading ability is underscored by the observation that dyslexia co-occurs with attention deficit 

hyperactivity disorder (ADHD) more frequently than would be expected by chance, with 

comorbidity estimates ranging from 18-45% (August and Garfinkel 1990; Willcutt and 

Pennington 2000; Willcutt et al. 2010; Germano et al. 2010). Additionally, evidence suggests 

that deficits in visual attention span may contribute to dyslexia independently of phonological 

processing skills (for reviews, see Valdois et al. 2004; Vidyasagar and Pammer 2010). 

Automatic processes (like skilled reading in typical adult subjects) tend to be fast; 

relatively effortless; proceeding to some degree obligatorily; and incompletely accessible to 

conscious awareness (Logan 1997; but see also Stanovich 1990). Descriptors such as fast and 

obligatory indeed describe aspects of reading, evidenced prominently by an entire literature 

exploring variants of the classic Stroop effect (Stroop 1935; Tanenhaus et al. 1980; Dennis and 

Newstead 1981; see MacLeod 1991 for a review). Non-Stroop studies of adult readers have 

furnished additional evidence for automatic access to various word codes during reading tasks, 

as shown, for example, by the intrusion of orthographic information during tasks emphasizing 

phonology (e.g., Perfetti 1992; Booth et al. 1999; Booth et al. 2008) or by the observation that 

word meanings can be extracted from brief stimulus presentations, even if the meanings cannot 

be reported explicitly (Luck et al. 1996). Evidence that reading task variants are prone to 



	
  

31 

interference from irrelevant processing features underlies one of the critical questions in the 

reading literature and, indeed, a primary motivation for the current study: If one of the features 

of skilled reading is automaticity, can experienced readers nonetheless exert selective 

attentional control over the component processes of reading? If so, how is such attentional 

control achieved?  

One study suggested that two distinct mechanisms must be invoked to explain fully the 

reaction time differences between a simple reading task and an effortful (attention-requiring) 

reading task (Balota et al. 2000). Balota, Law and Zevin compared a speeded naming (read) 

task vs. a novel regularize task, using a dual route framework. In contrast to the read task, the 

regularize task required subjects to pronounce words based exclusively on spelling-to-sound 

principles, pronouncing “pint” (/pajnt/) to sound like “lint” (/lInt/). The authors reasoned that if 

skilled readers can direct attentional control completely to frequency-independent grapheme-to-

phoneme conversion to regularize words, then the typically observed main effects of lexicality 

and word frequency (suggestive of lexical route activation) should be reduced in the regularize 

task as compared to the read task.  

Several key findings were reported by Balota and colleagues (2000). First, and not 

surprisingly, subjects performed the regularize task more slowly than the read task. Secondly, 

participants showed greater slowing to regularize words than pseudowords, losing completely 

the positive lexicality effect (speed advantage for words) they showed in the read task. The 

reliable interaction of task by lexicality suggested that skilled readers had trouble completely 

inhibiting lexical (whole-word) processing for words, despite task instructions. Lastly, the usual 

word frequency effect (high frequency words are pronounced more quickly than low frequency 

words) reversed in the regularize task for regular, but not irregular words, producing a significant 

interaction of task, frequency and regularity. This final observation was interpreted as evidence 

of the need for more than one mechanism of attentional control. As the authors wrote, “the 
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reversal of the word frequency effect [because it is selective for regular words] cannot simply be 

attributed to increased interference from the lexical processing pathway…” (2000).  

Specifically, Balota and colleagues suggested that lexical route suppression – a concept 

closely related to the pathway control hypothesis invoked to explain other experimental findings 

(Baluch and Derek 1991; Monsell et al. 1992; Rastle and Coltheart 1999; Zevin and Balota 

2000) – and a subsequent “verification procedure” are both important mechanisms of interaction 

between reading processing and attention during the regularize task. The verification procedure, 

or response checking, can accommodate the word frequency effect reversal for regular words if, 

perhaps, on some portion of the high frequency regular word trials, an additional time penalty is 

incurred because the participant second-guesses the (normal) pronunciation, subconsciously 

thinking the pronunciation should sound “funny.” A related post-lexical, pre-articulation step has 

been described by Balota and Chumbley in the context of a lexical decision task as the 

“neglected decision stage” (1984). 

The discussion in the Balota et al. study (2000) of a 2-mechanism interaction between 

reading and attentional control – pathway control in the form of lexical route suppression, plus 

response checking – was framed within a dual route model. According to dual route reading 

theory, visually presented words are processed along two distinct routes, the phonological and 

the lexical (e.g., Coltheart et al. 1993; Coltheart et al. 2001). The phonological route 

concatenates grapheme-to-phoneme mappings in a serial manner (Forster and Davis 1991) that 

is independent of word frequency and word regularity, i.e., “chunking” sound together, 

regardless of task and stimulus features (Church et al. 2008). Pseudowords can only be 

completely decoded via the phonological route. The lexical route, on the other hand, involves 

accessing whole-word representations of stimuli that have been learned through repeated 

exposure (e.g., Visser and Besner 2001), thus resolving more quickly for words that are more 

frequently encountered (Frederiksen and Kroll 1976), and without regard to word regularity 
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(Coltheart et al. 2001). Word regularity determines whether the outputs of the 2 routes converge 

(regular words) or not (irregular words), a distinction that cannot be made until the “full reading 

process” occurs, i.e., after route computation (Taylor et al. 2012). Critically, “phonology is 

always partly assembled and always partly lexical,” even if each of those processing route 

outputs remains incompletely specified (Coltheart et al. 2001; see also Frost 1998), as, for 

example, with pseudowords. Prior to response articulation, “phoneme recognition” occurs 

(Pritchard et al. 2012), i.e., a response is selected from between the two possibilities generated 

by the routes.  

Dual route models are computationally capable of accommodating the types of shifts in 

response time and accuracy due to top-down attentional control that Balota and colleagues 

noted in their regularize paradigm (Rastle and Coltheart 1999), even if such “strategy” effects 

have most certainly not been a focal point of investigation with regard to the models (see 

Reynolds and Besner 2006 for a more detailed discussion). Empirical studies have manipulated 

stimulus context (and used other kinds of paradigms (Paap and Noel 1991; Zevin and Balota 

2000)) in order to encourage subjects to increase their reliance on one type of processing over 

another. For example, when people read lists composed mainly of pseudowords, they make 

more regularization errors and show delayed RTs for exception (~irregular) words (Baluch and 

Derek 1991).  Context-dependent performance differences, including those arising from list 

composition manipulations, have often been interpreted as evidence for what is referred to as 

the pathway control hypothesis, referenced earlier (e.g., Pugh and Rexer 1994; Monsell et al. 

1992; Rastle and Coltheart 1999; Zevin and Balota 2000; Reynolds and Besner 2005; but see 

Lupker et al. 1997; Jared 1997 for conceptual frameworks other than pathway control). 

Attentional effects have also been noted at the response checking/selection stage. For example, 

compared to naming tasks, lexical decision tasks show greater effects of whole-word variables 

like word frequency (Balota and Chumbley 1985; Balota and Chumbley 1990; Balota et al. 2004; 
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but see Monsell et al. 1989 for a contrasting interpretation). In sum, ample evidence suggests 

not only that there are indeed situations in which reading requires attentional control, but also 

that there are likely multiple loci (Vogel et al. 2005) at which attention may influence reading 

(including pathway control and response checking). 

Just as reading involves several component processes that might serve as points of 

interaction with attention control, attentional control itself is achieved through the dynamic 

interaction of several brain systems (Dosenbach et al. 2008; Petersen and Posner 2012). 

Dissociation of control systems is demonstrable through converging methods, including the 

observation of measurable discrepancies, within an individual, in scores on tests thought to 

reflect the function of different aspects of attentional control (Fan et al. 2002). Separability of 

control systems is additionally supported by both task based fMRI (e.g., Corbetta and Shulman 

2002; Dosenbach et al. 2006; Spreng et al. 2010), functional connectivity MRI (e.g., Seeley et al. 

2007; Dosenbach et al. 2007; Vincent et al. 2008; Power et al. 2011; Yeo et al. 2011) and lesion 

(e.g., Nomura et al. 2010) data at the group level, showing distinct patterns of activity and 

consistent network relationships between sets of regions, for example Cingulo-opercular, 

Frontal-parietal and Dorsal attention networks. 

Figure 2.1 depicts a unified model, combining aspects of the dual route theory and 

principles expressed by Petersen and Posner (2012), of how attentional control may interact 

with reading processing in skilled adult readers. The model proposes 2 points of interaction. An 

early point of interaction (“Mechanism #1”) involves setting the bias to emphasize processing 

along either the lexical or the phonological route in a task- and stimulus- dependent manner 

(“pathway control”). The second point of interaction (“Mechanism #2”) entails the selection and 

verification of the response from between the 2 route outputs (“response checking”). The model 

accounts for the primary behavioral effects reported by Balota et al. (Balota et al. 2000) and 

replicated in the present study (a task-dependent lexicality effect and an impact of word 
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regularity on the task reversal of the word frequency effect), while also constraining novel 

predictions regarding how control-related brain regions may interact with reading-related brain 

regions. 

 
Figure 2.1 Schematic depiction of two-mechanism model of attentional control 
interacting with reading processes 

Following presentation of a visual word stimulus (i.e., plaid) and basic perceptual 
processing, activation automatically proceeds along 2 processing routes. The phonological 
route is shown on top (/p l e d/) and the lexical route is depicted on the bottom (plaid). Following 
route processing, a single response is selected and prepared for articulation (?  /pled/ or 
/plæd/  ?), a step that some theorists call “phoneme recognition” (see (Pritchard et al. 2012) 
Figure 1, for an updated dual route schematic). Finally, an overt response is articulated. 
Mechanism #1 (pathway control) marks the proposed site of early interaction between an 
attentional control system(s) and reading processing, reflecting the biasing of processing along 
one of two routes, depending on task demands. Mechanism #2 (response checking) marks the 
proposed site of a later interaction between an attentional control system(s) and reading 
processing, to ensure the appropriate response is selected from among potentially competing 
alternatives.  

 
 

 

Specifically, the 2-mechanism model predicts that there will be at least 2 different kinds 

of control signals, anatomically segregated from one another and from data-processing systems 

(Posner and Petersen 1990). Control signals consistent with a role at each mechanism in the 

model should map plausibly onto previously defined functional roles. For example, Cingulo-
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opercular (CO) control regions, thought to be important for parameter setting and maintenance 

of task mode (especially with regard to their task-sustained responses) (Dosenbach et al. 2007), 

may play a role at Mechanism #1, reflecting or reporting the pathway control required for a 

particular task/stimulus combination. Regions of the Frontal-parietal (FP) control network may 

act at Mechanism #2, subserving response checking, consistent with moment-to-moment 

“adaptive control” (Dosenbach et al. 2007; Dosenbach et al. 2008). It is possible that brain 

regions belonging to other attentional control networks might additionally/alternatively be 

involved in interacting with reading processing regions in the proposed model. For example, 

resting state functional connectivity fMRI (rs-fcMRI) work from our laboratory has demonstrated 

a privileged functional relationship between regions in the Dorsal attention system and reading-

related regions including the putative Visual Word Form Area (VWFA) (Vogel et al. 2012; see 

also Zhao et al. 2011). 

  
Despite the fundamental connection between attention and reading, the regularize 

paradigm used by Balota et al. has remained little studied over the last decade, particularly in 

terms of neuroimaging studies (but see Gold et al. 2005). The present study employed a 

comparison of a read task vs. a regularize task in 2 independent samples, a Behavioral cohort 

(“Study 1”) and an fMRI cohort (“Study 2”). We tested the hypotheses that there are 2 

mechanisms of interaction between attentional control and reading processes (pathway control 

and response checking); that these mechanisms are dissociable both behaviorally and 

neuroanatomically; and that the two mechanisms involve functionally separable control systems. 

Materials and Methods: General 

The methods common to both the behavioral and neuroimaging studies are described 

first, followed by the methods unique to each study. 
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Participants 

Participants were recruited from the Washington University community, and were 

screened for the following: neurologic and/or psychiatric diagnoses; history of dyslexia or 

reading difficulty; and current use of psychotropic medications. Imaging study subjects were 

additionally screened for MRI contraindications (e.g., metal implants, pregnancy, cardiac 

pacemakers).  

Enrolled participants for Study 1 (Behavioral cohort) included 32 right-handed, native 

and monolingual English speakers (ages 22-28 years; 15 male). Of the 32 enrolled Study 1 

participants, all met the task accuracy criterion (>65%) for inclusion. Thus data from all 32 were 

included in the analyses. All recruitment, screening, and experimental protocols for both studies 

were approved by the Washington University Human Studies Committee. Subjects provided 

written informed consent and were compensated for their time. 

35 participants (19 male) ages 21-28 years were enrolled in Study 2 (fMRI cohort). Two 

participants did not complete the imaging session due to personal reasons, and one participant 

performed the task too slowly to render separable hemodynamic responses for each stimulus. 

Of the final set of 32 Study 2 participants, one subject did not contribute RT data, due to 

equipment failure. However, the accuracy of that subject’s responses was monitored online, so 

that the BOLD data are usable and therefore included. The final data set includes data from 32 

subjects (31 with RT data). 

Neuropsychological tests were administered to each participant. Two subtests of the 

Wechsler Abbreviated Scale of Intelligence (Vocabulary and Matrix Reasoning) assessed 

general intelligence (Wechsler 1999). Three subtests of the Woodcock–Johnson III (Letter–

Word ID, reading Fluency, and Word Attack) estimated absolute and relative reading level 

(Woodcock and Johnson 2002). The Elision subtest of the Comprehensive Test of Phonological 
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Processing (CTOPP) assessed phonological processing ability (Wagner et al. 1999). A Stroop 

color-naming task assessed attentional control (Spieler et al. 1996).  

Table 2.1 shows the group mean scores (with standard deviations) for 

neuropsychological tests for subjects from both studies. All subjects were reading at or above 

the 25th percentile, and all had IQs at or above the mean. As shown, the average scores on all 3 

subtests of the Woodcock Johnson reading assessments were high, reflecting a sample of 

highly skilled readers. Similarly, Verbal IQ estimates placed both study cohorts into the above 

average range. 

 
Table 2.1 Neuropsychological testing results  
 

Neuropsychological test or subtest Study 1 M  
(SD) 

Study 2 M  
(SD) 

Wechsler Abbreviated Scale of Intelligence 
(WASI) IQ, percentile  

97.26  
(4.45) 

92.53  
(11.61) 

WASI Vocabulary subtesta, ss  16.66  
(1.47) 

15.50  
(2.13) 

WASI Matrix Reasoning subtest, ss  13.94  
(1.05) 

13.25  
(1.68) 

WJ Letter/Word Identificationb, ss  118.44  
(7.76) 

115.25  
(10.10) 

WJ Reading Fluency, ss  121.13  
(16.47) 

114.81  
(17.95) 

WJ Word Attack, ss  102.41  
(9.25) 

102.06  
(8.45) 

Comprehensive Test of Phonological 
Processing (CTOPP), Elision subtest, raw 

19.06  
(1.08) 

18.16  
(2.95) 

Stroop facilitation effectc (raw RT) 2 ms  
(54) 

18 ms  
(26) 

Stoop interference effectc (raw RT) 86 ms  
(51) 

94 ms  
(52) 

Note. aPopulation range for each WASI subtest is 1-19. bPopulation mean for each WJ subtest 
is 100. cFor Study 2 cohort, Stroop data was lost for 1 subject, so averages include only 31 
subjects.  
ss = scaled score  
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Stimuli 

Study 1 included 636 stimuli, comprising 252 pseudowords (pronounceable, nonsense 

letter strings) and 384 words. The words included 96 of each of 4 combinations of regularity 

(regular or irregular) x frequency (high or low) and length (short or long). Short items were 3-5 

letters (mainly 1 syllable) and long items were 6-8 letters (mainly 2 syllables). Primary analyses 

for Study 1 were conducted using short items only (n = 318), consistent with both Balota et al. 

(2000) and with Study 2. See Table 2.2 for a summary of the important lexical properties of 

Study 1 short stimuli, and Appendix B for more detailed stimulus information, including a 

complete list of stimuli (Supplemental material B.1). Long (2-syllable) items were not the focus 

of the current analyses, nor was a direct examination of length effects. However, the interested 

reader is referred to Supplemental material B.4 to see the mean values of lexical properties for 

the 5 long stimulus types, and Supplemental table D.6 to see the reaction time and accuracy 

rates for the Study 1 cohort, considering long items only. Generally, the statistical analyses of 

interest yielded similar results for the 1- and 2- syllable items (data not shown). 

Study 2 included 320 stimuli, 272 of which overlapped with the short items from Study 1. 

For Study 2, all items were short (3-5 letters; mainly 1 syllable). The stimulus set included 128 

pseudowords and 192 words. The words include 48 of each of 4 combinations of regularity 

(regular or irregular) x frequency (high or low). See Table 2.3 for a summary of the important 

lexical properties of Study 2 stimuli, and Appendix B for more detailed stimulus information, 

including a complete list of items in Supplemental material B.1. Note that the imaging analyses 

of Study 2 collapsed across frequency.  
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Table 2.2 Mean values of lexical properties for 5 short stimulus type: Study 1 
 

Stimulus typea 

Number of 
letters 
(SD) 

Number 
of 

syllables 
(SD) 

Number of 
orthographic 
neighborsb 

(SD) 

Number of 
phonological 
neighborsb 

(SD) 

Standard 
frequency 

indexc 
(SD) 

High frequency 
regular words 

4.25 
(0.64) 

1.00 
(0.00) 

8.15       
(4.89) 

15.81      
(9.35) 

59.51 
(5.12) 

Low frequency 
regular words 

4.25 
(0.64) 

1.00 
(0.00) 

7.46       
(5.09) 

15.52      
(9.91) 

46.49 
(3.87) 

High frequency 
irregular words 

4.33 
(0.56) 

1.00 
(0.00) 

6.23       
(4.01) 

 15.52      
(9.09) 

61.50 
(5.96) 

Low frequency 
irregular words 

4.29 
(0.65) 

1.04 
(0.20) 

5.65       
(5.03) 

15.27    
(10.91) 

46.55 
(3.60) 

Pseudowords 4.29 
(0.62) 

1.00 
(0.00) 

5.34       
(4.48) 

--- --- 

 
Note. aFor all word stimulus types, n = 48; for pseudowords, n = 126.  
 
 
 
Table 2.3 Mean values of lexical properties for 5 short stimulus type: Study 2 
 

Stimulus typea 

Number of 
letters 
(SD) 

Number 
of 

syllables 
(SD) 

Number of 
orthographic 
neighborsb 

(SD) 

Number of 
phonological 
neighborsb 

(SD) 

Standard 
frequency 

indexc 
(SD) 

High frequency 
regular words 

4.40 
(0.57) 

1.00 
(0.00) 

7.69     
(4.38) 

15.08      
(8.61) 

61.91 
(5.47) 

Low frequency 
regular words 

4.40 
(0.61) 

1.00 
(0.00) 

7.17       
(5.05) 

15.06     
(10.34) 

46.58 
(3.93) 

High frequency 
irregular words 

4.40 
(0.57) 

1.02 
(0.14) 

6.08       
(4.45) 

15.71       
(9.46) 

62.51 
(6.35) 

Low frequency 
irregular words 

4.33 
(0.63) 

1.10 
(0.31) 

5.04       
(4.73) 

13.85    
(10.50) 

46.59 
(3.31) 

Pseudowords 4.37 
(0.59) 

1.00 
(0.00) 

5.20       
(4.43) --- --- 

 
Note. aFor all word stimulus types, n = 48; for pseudowords, n = 128.  
 
Note for Tables 2.2 and 2.3:  bOrthographic neighbors and phonological neighbors calculated 
using the English Lexicon Project database (http://elexicon.wustl.edu; Balota et al. 2007). 
cStandard frequency index (SFI) is from Zeno et al. (Zeno et al. 1995). 
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Tables 2.2 and 2.3 show that stimuli were matched, as much as possible, across the 

conditions of interest for lexical properties that were not explicitly manipulated. Although not 

indicated in the tables, care was also taken to ensure that acoustic properties of the onset 

phoneme did not systematically vary by stimulus type (Spieler and Balota 1997). For both 

studies, stimuli were randomly intermixed within task runs, and each subject either performed 

the read task or the regularize task on each stimulus.  

Word frequency ratings were based on the Zeno et al. standard frequency index (SFI) 

(Zeno et al. 1995); stimuli spanned an SFI continuum from 40.0 to 75.0 (unit = log-

transformation of a weighted frequency per million) (see Supplemental figure B.8 for a depiction 

of the distribution of items across the frequency range). A median split designated subsets 

(regular and irregular) of words as high frequency (M SFI = 60.1) and low frequency (M SFI = 

47.0). High-frequency words had significantly higher SFIs than low-frequency words in each 

study (Study 1: t(165*) = 20.34; p < .001; Study 2: t(157*) = 22.12; p < .001; see Tables 2.2 and 

2.3). Additionally, frequency was matched across regularity classes for both studies. That is, 

regular and irregular words within each frequency category were not statistically different from 

one another in terms of SFI: Study 1 low: t(94) = 0.07; p = 0.95; Study 1 high: t(94) = 1.76; p = 

0.08; Study 2 low: t(94) = 0.01; p = 0.99; Study 1 high: t(94) = 0.50; p = 0.62.  

A word was deemed regular (rather than irregular) if its rime (e.g., –at in cat) followed 

typical spelling-to-sound correspondences (n.b., there is no fixed set of spelling-to-sound rules 

in English). For example, “gave” (/gev/) is regular, whereas “have” (/hæv/) is irregular, because 

the “e” at the end of “have” should generate the pronunciation /hev/. Pilot testing confirmed that 

those words designated as irregular typically resulted in different pronunciations for the 2 tasks, 

while regular words did not. Pseudowords were created de novo, using onset (e.g., /k/ in cat) 

and rime (e.g., /æt/ in cat) graphemes that tend to be both consistent and regular (i.e., 

unambiguously pronounced).  
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The stimuli were divided into fixed lists: 6 lists of 106 items each for Study 1, and 10 lists 

of 32 items each for Study 2. Stimulus types were equally distributed across the lists. For both 

studies, the list ordering and list task assignment were counterbalanced across participants. 

Task instructions, response collection and accuracy scoring  

For the regularize task, subjects were instructed to “sound out” items  (real words and 

nonsense words) as though reading them for the first time, using whatever strategies they 

normally use when encountering new items. Subjects were given 13 demonstration trials as well 

as 73 practice trials (13 demonstration stimuli + 60 new stimuli) for the regularize task (see 

Supplemental material B5 for practice items). The practice session was self-paced with 

feedback; correct answers were provided when needed. In Study 2, the practice session 

occurred prior to the start of scanning, out of the scanner, and a slightly different list of practice 

stimuli was used (see Supplemental material B6 for practice items). None of the practice items 

from either study appeared as stimuli in the experimental runs for that study. 

Overt vocal responses were coded by a single rater for accuracy of pronunciation. For 

the regularize task, a pronunciation of a regular word (e.g., “hike”) was correct if it corresponded 

to the standard dictionary pronunciation. An irregular word was correct if its pronunciation 

obeyed any of several potentially phonologically legitimate alternative spelling-to-sound 

mappings of its rime (e.g., pronouncing “have” as /hev/). For both tasks, pseudowords were 

considered correct if their pronunciations followed standard orthographic-phonological mapping 

conventions, or rhymed with similarly spelled real words (e.g., /krot/ for “crote”). 

Responses were recorded so that reaction times could be extracted offline. Raw sound 

files (one per subject per run) were recorded for each run for each subject, using a Sony MP3 

Digital Voice Recorder (ICD-UX70 1GB USB) in Study 1, and Cool Edit 2000 software for Study 

2 (Syntrillium). Recorded files were normalized, noise-reduced and purged for artifacts (e.g., 
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coughs, throat clearings) using Audacity, an open-source software for sound editing 

(http://audacity.sourceforge.net/).  

For Study 1, reaction times were calculated from cleaned files using an in-house Matlab 

program (Matlab 7.80; R2009a; The MathWorks, Natick, MA) (Nelles et al. 2003). RTs were 

also spot-checked manually using Audacity. In contrast to Study 1, trial-by-trial reaction times 

for Study 2 were calculated manually by a single rater, using Audacity. Manual RT 

determination was necessary because some of the subjects’ responses coincided with the 

scanner noise (i.e., did not occur during the 1 s gap in the sequence), rendering the automated 

reaction time extraction program unreliable.  

To account for possible individual differences in general processing speed, trial-by-trial 

RTs for both studies were z-score transformed (Faust et al. 1999). For brevity, the reaction time 

results presented for both studies are discussed only in terms of zRT, but essentially the same 

pattern of results was observed when untransformed reaction times were used instead. 

The mean and standard deviation were calculated on an individual subject basis across 

all correct trials of both tasks, excluding raw reaction times < 200 ms or > 3 standard deviations 

above a subject’s mean as probable outliers (on average, fewer than 1.5% of trials per subject). 

Only correct trials were included in the reaction time and BOLD analyses. Repeated-measures 

analyses of variance (rmANOVAs) were planned at the subject-level to examine effects of task 

and lexical variables (including lexicality, word regularity and word frequency); additional 

analyses at the item-level in Study 1 confirmed that the pattern of results was not driven by the 

particular selection of stimuli (data not shown). Appropriate post hoc analyses clarified the 

results of the planned comparisons.  

Following Balota et al. (2000), the interaction analyses of the reaction time data including 

frequency and lexicality were computed using only regular words and pseudowords. Since both 
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regular words and pseudowords generate the same pronunciations for the 2 tasks, their task 

comparison is free of potentially confounding articulatory effects.  

Materials and Methods: Study 1 (Behavioral) 

Task structure 

For Study 1, 3 consecutive runs of the regularize task were followed by 3 runs of the 

read task (“Pronounce these items normally”). Each run included 106 items and lasted 6 min, 10 

s. Pilot testing suggested that the fixed regularize/read ordering was most effective for 

establishing and maintaining task mode. 

Stimuli were displayed on a black background in lowercase white letters at font size 56, 

subtending 2.1 to 5.0 degrees of visual angle horizontally and 0.7 to 1.1 degrees vertically. Each 

stimulus appeared alone, and in the middle of the screen, for 2500 ms (see Supplemental figure 

A.1). Participants were free to respond as soon as the stimulus appeared and up until the next 

stimulus appeared. Immediately following the disappearance of each stimulus a white fixation 

crosshair appeared in the middle of the screen for 1 s. Participants were instructed to maintain 

visual fixation on the screen for the duration of the run.   

Apparatus 

Stimuli were controlled using Psyscope X B53 (Cohen et al. 1993) on a Power 

Macintosh G3, and were displayed on a 16 in Sony CRT computer monitor. A standing 

microphone was placed 2-3 cm away from the participant’s mouth, and transmitted spoken 

responses to the Sony MP3 Digital Voice Recorder. 
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Materials and Methods: Study 2 (Behavioral + fMRI) 

Task structure 

Following standard localizer and anatomical scan acquisition (described below), each 

participant performed 5 runs each of the two tasks, in the following sequence: 2 runs of the 

regularize task, 2 runs of the read task, 2 runs of the regularize task, 2 runs of the read task, 

and finally one run each of the regularize and the read task. This quasi-alternating run order 

contrasts with the blocking order utilized in Study 1, and was selected to balance the conflicting 

objectives of minimizing the need for task-switching vs. safeguarding against losing an entire 

task (e.g., as a block of runs) due to subject movement, equipment failure, etc. Each run 

included 32 items and lasted 5 min, 21 s. Trials were jittered with an intertrial interval of 1, 2 or 3 

frames. The scan time required for the task runs averaged 75 min. 

During the scan session, most subjects underwent 2 additional 5 min 30 s runs of resting 

state fMRI (rs-fcMRI) data collection. One of these runs typically occurred after the first 4 task 

runs, and the second run typically occurred after the last task run. Those data are not discussed 

further. 

Stimulus presentation 

To discourage movement during scanning, subjects were fitted with an individualized, 

thermoplastic mask that was attached to the head coil, serving chiefly as a landmark for head 

position rather than a restraint, per se. A mirror was also placed on top of the head coil, allowing 

visualization of an LCD projection screen near the caudal end of the tube. Stimuli were 

projected onto the screen from the adjacent control room, using Psyscope X B53 (Cohen et al. 

1993) on a Macintosh iMac. Stimuli were displayed on a black background in lowercase white 

letters at font size 56, so that the stimuli subtended 2.1 to 4.9 degrees of visual angle 

horizontally and 0.7 to 1.05 degrees vertically. Each stimulus appeared alone, and in the middle 

of the screen, beginning at 1350 ms after the onset of an image acquisition frame (see 
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Supplemental figures A.1 and A.2). The stimulus remained on the screen for 1550 ms. This 

timing was chosen, based on pilot studies, in order to maximize the likelihood that vocal 

responses would occur within the 1000 ms gap in scanning that occurred after each TR, as 

discussed below. During the 1-3 frames (jittered) between trials, a white fixation crosshair 

appeared in the middle of the screen. Participants were free to respond as soon as the stimulus 

appeared and up until the next stimulus appeared (i.e., within 6-12 s). Participants were 

instructed to maintain visual fixation on the crosshair for the duration of the run. Subjects were 

fitted with an MRI-compatible headset and microphone, with the microphone positioned 1-2 cm 

away from the mouth.  

Image collection 

Images were acquired using a Siemens 3T Trio scanner (Erlangen, Germany) and a 

Siemens 12-channel Matrix head coil. A single high-resolution structural scan was acquired 

using a sagittal magnetization-prepared rapid gradient echo (MP-RAGE) sequence (slice time 

echo = 3.08 ms, TR = 2.4 s, inversion time = 1 s, flip angle = 8 degrees, 176 slices, 1 x 1 x 1 

mm voxels). Functional runs were acquired parallel to the anterior-posterior commissure plane 

using an asymmetric spin-echo echo-planar pulse sequence (TR = 2.0 s plus a 1.0 s delay, total 

TR = 3.0 s; T2* evolution time 27 ms; flip angle 90 degrees). 32 contiguous interleaved 4mm 

axial slices, with 4 x 4 mm in-plane resolution, allowed for total brain coverage. Magnetization 

steady state was assumed after 12 s, so that functional data acquisition began with the fifth MR 

frame. As mentioned, the pulse sequence used here included a 1 s delay after each TR to 

facilitate the collection and monitoring of subjects’ overt responses.    

Image preprocessing 

Despite the requirement for overt vocal responses, in-scanner movement was relatively 

low. Frame-by- frame movement correction data from the rotation and translation in the x, y, and 
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z planes was computed for each subject for each run, and no runs had overall movement 

greater than 1.00 mm RMS. Average per-run movement was 0.24 mm RMS. 

Automated image preprocessing included the following procedures: (1) removal of a 

single pixel spike caused by signal offset; (2) correction of odd vs. even slice intensity 

differences due to interleaved slice acquisition; (3) debanding; (4) quantification of and 

correction for movement within- and across- runs, via realignment of slices into scanner space 

using rigid-body rotation and translation; (5) correction for magnetic field distortions using 

subject-acquired field maps; and (6) within-run normalization of signal intensity to a whole-brain 

mode of 1000.  

Preprocessed functional BOLD data from each subject were next registered to a 

common atlas using 12-parameter affine warping of the individual’s MP-RAGE to the target. The 

target atlas was based on Talairach and Tournoux (Talairach and Tournoux 1988), and was 

created in-house5 by mutually co-registering the anatomy of 12 healthy young adults and 12 

healthy school-age children (Brown et al. 2005). As part of the atlas transform, the data were 

resampled on an isotropic 2 mm grid.  

Next was performed a set of preprocessing steps that have been shown to be useful 

(Power et al. in preparation) for minimizing motion-related noise in the BOLD signal in resting 

state MRI analyses (e.g., Fox et al. 2009; Power et al. 2012; Satterthwaite et al. 2013), versions 

of which have been implemented in task based fMRI data (Zhao et al. 2011). The complete 

sequence included demeaning and detrending each run followed by across-run regression of 

the following: (1) six parameters obtained by rigid body head motion correction; (2) the whole 

brain signal averaged across the entire brain; (3) ventricular signal averaged from ventricular 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 For the purposes of reporting, all coordinates from these data have been converted to MNI 
space. Coordinates from other studies are reported in the original space used by the authors, 
along with an MNI conversion (http://www.sdmproject.com/utilities/?show=Coordinates). 



	
  

48 

ROIs; and (4) white matter signal averaged from white matter ROIs. The first derivatives of 

these regressors were also used, yielding a total of 18 regressors.  

Supplemental material A.3c describes further the motivation for applying this final 

preprocessing step and additional details about the methodology, and also explains that the 

fundamental results were similar when analyses were recomputed using data that did not 

undergo this step (see also Supplemental figure A.3). 

Scope of imaging analysis  

Primary effects of task and lexicality, secondary effects of regularity 

The hypothesis of a two-mechanism interaction between attentional control sub-systems 

and reading processing implies testable predictions regarding task, lexicality, and regularity 

(description of predictions to follow; also see Table 2.4). Region selection was thus driven by 

identifying, in a voxelwise manner, regions showing (1) an interaction of task by timecourse, 

and/or (2) an interaction of task by lexicality by time. Effects of regularity were then explored in 

secondary analyses using the task- and task x lexicality- sensitive regions.  

Effects of task and lexicality were prioritized for region definition (rather than effects of 

regularity) for two reasons: they showed the largest and most reliable behavioral effects, and 

they could be computed using the full stimulus set (i.e., words and pseudowords), therefore 

being more likely to detect even small effects. Figure 2.2 depicts schematically the critical 

pieces of the analysis stream for Study 2, the steps of which are next described in detail. 
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Figure 2.2 Analysis flow for Study 2, imaging study 
First (A), whole-brain ANOVAs identified individual regions showing task- and task x 

lexicality effects. Next (B), the timecourses of the regions showing the 2 effects of interest were 
computed. Then (C), concatenated timecourses were used to cluster the regions using a 
UPGMA algorithm. Clusters were mapped (D) to the cortical surface for visualization, along with 
putative community borders. For each cluster (E), effects of task, lexicality and regularity were 
interrogated, by computing rmANOVAs treating regions as “subjects” and clusters as the 
grouping variable. The results of the rmANOVAs were used to test the predictions outlined in 
Table 2.4. 
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Image analysis: region identification  

GLM modeling 

Statistical analyses of the preprocessed BOLD data were computed at the voxel level 

using a general linear model (GLM) (Ollinger et al. 2001). The GLM design incorporated time as 

an 8-level factor, with the 8 levels corresponding to successive MR frames following 

presentation of the stimulus. Two levels of task (read or regularize) and several levels of 

stimulus type (including lexicality, as well as regularity and frequency for words) were also 

included as factors in the design matrix. Events of interest included only correct trials; errors 

were modeled separately in the GLM and were ignored here. No assumptions were made about 

the shape of the hemodynamic response function (HRF). Timecourses for all analyses were 

entered into ANOVAs using random effects models. GLM modeling and a portion of the 

subsequent analyses were conducted using in-house software programmed in the Interactive 

Data Language (IDL) (Research Systems, Inc. Boulder, CO). Additional statistical analyses 

were conducted using SPSS 16.0.1 (SPSS Inc., 2007) and Matlab (Matlab 7.80; R2009a; The 

MathWorks, Natick, MA). 

Voxelwise image generation 

Task x timecourse 

First, a 2 task (read vs. regularize) by 8 timepoints (timecourse) voxel-wise whole brain 

rmANOVA was conducted. This image identified regions whose BOLD timecourses showed a 

deflection from baseline (positive or negative), that depended on which task the subject was 

performing. 

Lexicality x task x timecourse 

Next, a 2 lexicality (all words vs. pseudowords) by 2 task (read vs. regularize) by 8 



	
  

51 

timepoints (timecourse) voxel-wise whole brain rmANOVA was conducted. This image identified 

regions showing differential BOLD timecourse activity for the two tasks that also depended on 

whether the stimulus in a particular trial was a word or a pseudoword. 

Thresholding and peak identification 

The voxel-wise analyses described above produced images containing voxels showing a 

task x timecourse interaction or a lexicality x task x timecourse interaction. These two images 

were corrected for false positives, based on Monte Carlo simulation, using a criterion of 24 

contiguous voxels with a z > 3.5 (Forman et al. 1995; McAvoy et al. 2001). Regions were then 

extracted from each of the two images using an in-house peak-finding algorithm courtesy of Avi 

Snyder. Activity peaks were identified within the Monte Carlo-corrected images by applying a 

smoothing kernel of 4 mm kernel and requiring that adjacent peaks be no closer than 10 mm 

apart. 

Timecourse extraction 

The task x timecourse and lexicality x task x timecourse rmANOVAs described above 

were recomputed, this time using the regions identified by the peak definition as ROIs, in order 

to derive the timecourses of activity for each subject, for every level of every factor in the design. 

Average timecourses of the BOLD % signal change at each of 8 timepoints were then computed 

and visualized for the various conditions.  

Creation of primary region pool 

Finally, regions from the 2 analyses ((task x timecourse) and (lexicality x task x 

timecourse)) were pooled into a single set of possible ROIs. Region sets were combined in 

order to cast as wide a net as possible in identifying regions that may contribute to the 2 most 

reliable features of the behavior (the task effect, and the modulation of the task effect by 

lexicality); also there was considerable overlap between the images. Overlapping regions and 
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regions with biologically implausible timecourses were excluded from the ROI pool as described 

in Supplemental material A.4.  

Hierarchical clustering of identified regions 

The 2-mechanism model depicted in Figure 2.1 predicts that 2 different types of 

attentional control signals interact with reading processing regions in the read/regularize task 

paradigm. The primary objective of the imaging analyses was therefore to test the hypothesis 

that subsets of attentional control-related regions from the overall pool (perhaps including 

members of systems such as the Frontal-parietal, Cingulo-opercular, Dorsal attention, etc.) 

would segregate into 2 distinct sets based on response properties, suggesting dissociable 

contributions to the tasks. All the regions in the final pool of task-and task x lexicality- sensitive 

regions were therefore segregated, based on BOLD responses, using hierarchical clustering.  

Creation of dendrogram and visualization of region clusters 

Hierarchical clustering was computed in Matlab (Matlab 7.80; R2009a; The MathWorks, 

Natick, MA). To focus on the rise and peak of the hemodynamic response, the first 6 timepoints 

(i.e., 18 s) of each average timecourse were isolated, for each of four conditions (2 lexicality x 2 

task), for each region. (Thus timecourses for the regions originally identified in the task x 

timecourse image had to be re-extracted from a task x lexicality x timecourse rmANOVA.) The 4 

timecourses for each region were concatenated, creating a matrix of 24 columns with as many 

rows as there were regions. The UPGMA (Unweighted Pair Group with Arithmetic Mean) 

method was used to generate clustering assignments between the regions represented in the 

matrix (e.g., Ploran et al. 2007; Church et al. 2011). 

The dendrogram resulting from the UPGMA clustering was examined by plotting the 

observed clusters, at various similarity (1-r) thresholds, on the surface of the brain, using Caret 

software (Van Essen et al. 2001). The 2 clusters that appeared to fall into attentional control-
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related network boundaries (i.e., putative attentional control clusters) were carried forward into 

subsequent analyses. 

Predictions of imaging analysis: Mechanism #1 and Mechanism #2 

Several predictions regarding the BOLD activity patterns at Mechanism #1 and 

Mechanism #2 guided the remaining analyses. The predictions, described below and outlined in 

Table 2.4, are designed to test (1) whether or not the region sets identified using hierarchical 

clustering show different functional properties and (2) whether or not the roles of the region sets 

map onto the model schematized in Figure 2.1. 

 

Table 2.4 Predicted BOLD fMRI effects for regions acting at Mechanism #1 and 
Mechanism #2 
 

 

Regions acting at Mechanism #1 may show signals reflecting top-down pathway control, 

for example a read-out as to whether a participant was directing attention to lexical or 

phonological processing in the context of a particular task and stimulus. If pathway control is 

Prediction Mechanism #1 
PATHWAY CONTROL 

Mechanism #2 
RESPONSE CHECKING 

Task effect Small Large 

Lexicality 
effect 

 “Opposite…………. and equal” “Opposite……....... and unequal” 

Read task pseudowords > words Small 
 

pseudowords > words Small 
 

Regularize 
task 

words > pseudowords Small 
 

words > pseudowords Large 
 

Regularity 
effect 

Both tasks Small, 
irregular > regular 

Large, 
irregular > regular 

General response 
properties 

A relatively brief response, 
reflecting a bias signal 
 
Overall smaller BOLD responses 

A relatively protracted response, 
reflecting a response check 
 
Overall larger BOLD responses 
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akin to parameter setting (in that it is required for every task regardless of difficulty (Meiran 

1996)), regions acting at Mechanism #1 might be expected to show responses that are 

generally less variable across the 2 tasks in terms of peak % BOLD change. Such reporting 

signals may also be predicted to be relatively rapid to rise and rapid to fall. For example, the 

effects of lexicality (words vs. pseudowords) for the 2 tasks might be small, relatively transient, 

of roughly equivalent magnitudes and in opposite directions for the 2 tasks. The “opposite and 

equal” prediction for the lexicality effect reflects that each task requires a bias signal, but that 

those bias signals are different. I.e., skilled readers presented with familiar words presumably 

emphasize the lexical pathway during the read task, and the phonological pathway during the 

regularize task. Also, regions reflecting pathway control should show minimal effects of word 

regularity, consistent with the dual route postulate that both regular and irregular words are 

processed along both pathways essentially obligatorily (Coltheart et al. 2001).  

Unlike pathway control, presumably necessary for any task variant, response checking is 

likely more critical for the task requiring overriding the usual stimulus-response mapping, 

regularize. If response checking matters more for regularize than for read, then Mechanism #2 

regions should show generally larger effects of task than the early actors, both as a main effect 

and as interactions with other variables. Thus Mechanism #2 regions should show lexicality 

effects that are “opposite and unequal” (specifically, larger in the regularize task, where the 

response checking assumes a larger importance). Similarly, the effect of regularity at 

Mechanism #2 regions should be larger for the regularize task than the read task (in addition to 

being larger overall in Mechanism #2 regions compared to Mechanism #1 regions; see above). 

It is also likely that regions showing signals associated with response checking will show a more 

protracted timecourse of response than will regions that reflect pathway control, owing to the 

time required to complete a decision-making process.  
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To test this set of predictions, timecourses from each region in each UPGMA-generated 

cluster were extracted and entered into statistical analyses as described below. 

Plotting average timecourses for each control-related cluster 

Average lexicality x task timecourses plotted 

Timecourses (extracted as described above) were averaged, across all regions of each 

of 2 putative attentional control clusters, for each of the 4 conditions originally leveraged to 

compute the clustering (lexicality (2) x task (2)). Cluster-average timecourses were then plotted 

to show which features of the BOLD responses across these 4 conditions may have driven the 

clustering. (Because these lexicality x task timecourses comprised the very data that entered 

into the clustering, clusters will, by definition, show different patterns across these timecourses.) 

Regularity x task timecourses extracted, and average timecourses plotted 

Timecourses were next extracted for all regions in the final set by computing a 

rmANOVA over 2 regularity (regular vs. irregular) by 2 task (read vs. regularize) by 8 timepoint 

(timecourse). As for task x lexicality, average timecourses across all regions of the 2 putative 

control clusters were then plotted for each of 4 combinations of regularity and task. Cluster-

average timecourses were visualized in order to depict qualitatively whether clusters showed 

obvious distinctions in their sensitivity to regularity across the two tasks.  

Quantification of differences between region clusters 

To test quantitatively the imaging predictions, several rmANOVAs were next computed 

in which each region from each cluster was treated as “a subject” and each regions’ cluster 

assignment was treated as a grouping variable. First, two omnibus rmANOVAs were computed, 

one that included as within-“subject” variables lexicality (2) x task (2) x timecourse (8), and a 

second that included regularity (2) x task (2) x timecourse (8). Next, a set of rmANOVAs was 

computed with cluster as the grouping variable and only timecourse (8) as the within-“subject” 
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variable, considering each of the 4 combinations of lexicality x task and each of the 4 

combinations of regularity x task separately. Follow-up planned comparisons additionally 

assessed for separate effects of cluster membership on lexicality (2) x timecourse (8) for each 

task; task (2) x timecourse (8) for each lexicality; regularity (2) x timecourse (8) for each task; 

and task (2) x timecourse (8) for each regularity. This full complement of analyses (all of which 

featured cluster as the grouping variable) allowed for the identification of which of the many 

possible effects of lexicality, task and regularity best characterizes the functional segregation of 

the 2 putative attentional clusters, and in particular whether those differences map onto the 

hypothesized 2-mechanism model shown in Figure 2.1.  

The rmANOVAs conducted using cluster as a grouping variable were not all equally 

unbiased. Specifically, the regions were originally defined as showing reliable effects of either 

task x timecourse or lexicality x task x timecourse, and the resulting clustering was computed 

using the concatenated timecourses from the 4 conditions of task (2) x lexicality (2). Therefore, 

the omnibus lexicality x task x timecourse x cluster ANOVA was biased towards a reliable result, 

although statistical significance was not a necessary consequence of the analysis. It is 

conceivable that timecourse differences causing 2 sets of regions to segregate in cluster space 

are not large enough and/or reliable enough to result in a statistically significant 4-way 

interaction. Importantly, the post hoc tests (e.g., examining the effect of task for words only) are 

unbiased, since they consider only portions of the original data used to define the clusters. Our 

interpretations emphasize the results of the post hoc tests. 

In contrast to the lexicality analyses, the rmANOVAs using regularity as a factor are 

completely unbiased, as the regions were defined blind to regularity. The statistical reliability of 

the omnibus rmANOVA and all of the post hoc tests involving regularity can therefore be 

assessed without caveats related to bias. 
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Results 

Key results from Balota et al.’s behavioral analysis were replicated (twice)  

The reaction time data measured both out and in the scanner confirmed the 

generalizability of the key Balota et al. findings, driving a principled investigation of the 

associated neural activity in Study 2. In order to recapitulate most closely the Balota study and 

to keep the 2 studies of the current report comparable, primary reaction time analyses were 

conducted over the short items only. Reaction time analyses were conducted on zRT data 

(Faust et al. 1999) at the subject level; analyses on raw reaction times yielded similar results 

(data not shown). Table 2.5 shows the mean raw reaction time and accuracy rates for both 

Study cohorts for both tasks, for various stimulus types.  

For brevity, statistical analyses of the accuracy data are not reported in this chapter; they 

largely mirrored the reaction time analyses. Also for brevity, statistical results are presented only 

for the main effects and interactions that were specifically targeted in order to replicate the 

Balota et al. findings and constrain and inform the imaging analyses. Chapter 3 provides a more 

complete treatment of the RT and accuracy results, in both adults and children. 

Participants were slower to regularize than to read 

Repeated measures ANOVAs were conducted separately for each study to examine the 

main effect of task, collapsed across all stimulus types. As shown in Figure 2.3A, in both studies, 

there was a significant main effect of task, driven by slower performance on the regularize than 

the read task (Study 1: mean RTs of 1170 ms vs. 733 ms; rmANOVA F(1,31) = 348.45, p 

< .001; Study 2: mean RTs of 1464 ms vs. 1036 ms; rmANOVA F(1,30) = 463.58, p < .001).  

Compared to the Study 1 cohort, subjects in the scanner were slower to perform both 

tasks, by ~350 ms. 
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Table 2.5 Mean raw reaction times (ms) and accuracy rates, with SD (short items) 
 

 Read Regularize 

 Study 1 Study 2 Study 1 Study 2 

Stimulus 
type  

RT M Acc M RT M Acc M RT M Acc M RT M Acc M 
 (SD)  (SD)  (SD)  (SD)  (SD)  (SD)  (SD)  (SD) 

High 
frequency, 
regular 

672 
(119) 

1.00 
(.000) 

965 
(184) 

0.999 
(.007) 

1242 
(295) 

0.989 
(.025) 

1556 
(580) 

0.988 
(.021) 

Low 
frequency, 
regular 

691 
(129) 

0.999 
(.007) 

982 
(182) 

1.000 
(.000) 

1209 
(295) 

0.991 
(.028) 

1517 
(596) 

0.988 
(.019) 

High 
frequency, 
irregular 

706 
(125) 

0.995 
(.013) 

994 
(179) 

0.984 
(.028) 

1252 
(290) 

0.856 
(.122) 

1554 
(597) 

0.912 
(.080) 

Low 
frequency, 
irregular 

739 
(129) 

0.970 
(.041) 

1046 
(230) 

0.956 
(.055) 

1246 
(251) 

0.845 
(.100) 

1577 
(596) 

0.899 
(.083) 

Pseudo-
words 

783 
(175) 

0.990 
(.016) 

1094 
(262) 

0.992 
(.016) 

1081 
(277) 

0.990 
(.022) 

1342 
(546) 

0.993 
(.013) 
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Direction of lexicality effect depended on task 

Repeated measures ANOVAs were next conducted separately for each study using the 

factors of task and lexicality, including regular words and pseudowords only.  

There was a significant interaction of task and lexicality in Study 1 (F(1,31) = 109.12, p 

< .001; see Figure 2.3B). This interaction was driven by a positive effect of lexicality in the read 

task (+101 ms; F(1,31) = 37.61, p < .001), and a negative lexicality effect in the regularize task 

(-145 ms; F(1,31) = 60.26, p < .001). That is, participants were faster to read regular words than 

pseudowords but slower to regularize words than pseudowords.  

As in Study 1, there was a significant interaction of task and lexicality for subjects in the 

scanner: (F(1,30) = 139.57, p < .001; see Figure 2.3B. This interaction again reflected faster 

performance for words (than pseudowords) in the read task (+120 ms; F(1,30) = 66.02, p 

< .001), and slower performance for words in the regularize task (-195 ms; F(1,30) = 52.61, p 

< .001).  

For both Studies, task and lexicality interacted significantly for the comparison of 

irregular words vs. pseudowords as well (both Fs > 70), showing a very similar pattern as that 

observed for regular words, i.e., positive lexicality effects for read and negative lexicality effects 

for regularize.  
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Figure 2.3 Behavioral results for the main effect of task and the interaction of task x 
lexicality 

Raw reaction times, for both Study 1 and Study 2, for the main effect of task (A) and the 
interaction of task x lexicality for regular words (B). Raw RTs are shown; statistical analyses 
were conducted using the z-transformed RTs. For each pair of plots, the y-axis (in ms) has the 
same scale, though different values, reflecting the ~350 ms RT slowdown for participants in the 
scanner. Error bars show +/- 1 standard error of the mean (SEM). Because the statistical 
analyses were computed as repeated-measures ANOVAs, the error bars may be used only to 
assess group variability; they cannot be used to infer statistical significance. Asterisks indicate 
significant main effects and interactions, at the following p values:  *** p ≤ .001; ** p ≤ .005; * p 
≤ .05. 
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Word frequency effect reversal was obtained for regular words for regularize task 

Repeated measures ANOVAs were next conducted separately for each study using the 

factors of task and frequency, including regular words and pseudowords only.  

In Study 1, there was a significant interaction of task and frequency for regular words 

(F(1,31) = 13.31, p = .001), driven by a significant positive frequency effect of +19 ms in the 

read task (F(1,31) = 9.51, p = .004) and a significant negative frequency effect of -33 ms in the 

regularize task (F(1,31) = 6.78, p = .014). See Figure 2.4A. 

As shown in Figure 2.4A, a significant interaction of task and frequency was obtained for 

the regular words in the Study 2 subjects as well (F(1,30) = 9.01, p = .005), driven by a positive 

(but non-significant) frequency effect of +17 ms in the read task (F(1,30) = 1.15, p = .293) and a 

significant negative frequency effect of -39 ms in the regularize task (F(1,30) = 8.10, p = .008).  

Task x frequency effect for irregular words was inconsistent between Studies 

Repeated measures ANOVAs were next conducted separately for each study using the 

factors of task, frequency and regularity. In contrast to Balota et al., in neither cohort was a 

significant interaction of task x regularity x frequency obtained (Study 1: F(1,31) = 1.08, p 

= .307; Study 2: F(1,30) = 1.38, p = .250).  

To evaluate further the nature of the observed null 3-way interactions, rmANOVAs were 

next conducted separately for each study using the factors of task, frequency and regularity. 

Unlike what Balota et al. reported (Balota et al. 2000), the interaction of task and frequency 

reached significance for short irregular words in Study 1 (F(1,31) = 5.11, p = .031). As shown in 

Figure 2.4B, the interaction reflected a frequency effect for irregular words that was positive and 

significant for read (+33 ms; F(1,31) = 20.45, p < .001) and small, negative and nonsignificant 

for regularize (-6ms; F(1,31) = 0.007, p = .933).  

Consistent with Balota et al., but inconsistent with Study 1, results from in the scanner 

confirmed a null interaction of task and frequency for irregular words (F(1,30) = 1.06, p = .312). 



	
  

62 

As shown in Figure 2.4B, the null interaction in Study 2 reflected a positive frequency effect for 

irregular words for both tasks that was sizeable and significant for read and smaller and 

nonsignificant for regularize (+51 ms for read; F(1,30) = 16.79, p < .001; +23 ms for regularize; 

F(1,30) = 1.96, p = .172).   

 
Figure 2.4 Behavioral results for the interaction of task x frequency, stratified by 
regularity 

Raw reaction times, for both Study 1 and Study 2, for the interaction of task x frequency, 
separately for regular (A) and irregular (B) words. As in Figure 2.3, error bars show +/- 1 
standard error of the mean (SEM), and asterisks indicate significant main effects and 
interactions, at the following p values:  *** p ≤ .001; ** p ≤ .005; * p ≤ .05.  
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Post hoc analyses at the item-level suggested that regularity did modulate word 

frequency effect reversal for regularize task 

The 3-way interaction of task x regularity x frequency was one of the pieces of evidence 

that Balota et al. cited as reason to invoke a 2-mechanism account (Balota et al. 2000). 

However, the present data did not yield a significant 3-way interaction, despite apparent 

qualitative differences between the frequency effects for the regular and irregular words (see 

Figure 2.4). Thus a post hoc analysis was conducted to investigate the possibility that treating 

frequency as a continuous variable (rather than a dichotomous one) may uncover a more subtle 

difference in the way that regularity modulates the influence of frequency on regularize task 

speed. Further supporting the appropriateness of conducting a correlation analysis of the effect 

of frequency is the fact that the word stimuli were selected intentionally to sample a continuous 

range of the log-transformed Zeno et al. Standard Frequency Index (SFI) (Zeno et al. 1995) 

(see Supplemental figure B.8), and the original choice to dichotomize the stimuli by a median 

split, while convenient, by no means represented a theoretical commitment to thinking about 

frequency as a simple construct of high vs. low. 

In order to maximize the power to detect what was predicted to be a weak effect, item-

level correlation analyses were computed using all 384 word stimuli (i.e., rather than only the 

short words) from Study 1 (n = 192 each of regular and irregular words). Each item was entered 

into two bivariate correlations, one for each task (read and regularize). The correlations between 

frequency and group-average zRT for each task were computed separately for regular and 

irregular words. As shown in Figure 2.5, frequency facilitated read zRT for both regular (R = -

.176; p = .015) and irregular words (R = -.312; p < .001), as expected. Critically, frequency also 

significantly inhibited regularize task zRT for regular words (R = .242; p = .001), while the effect 

for irregular words is null (R = -.046; p = .524). The regular vs. irregular distinction revealed by 

the correlation results, while not a direct test of difference, is nonetheless consistent with Balota 
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et al.’s 3-way interaction of task x frequency x regularity, further motivating the exploration of the 

2-mechansim hypothesis with the imaging data. 

When the correlations were recomputed using only the short words from Study 1, the 

patterns of facilitation and inhibition remained the same. For the critical effect of inhibition of 

regularize reaction time for regular words, reliability was decreased to near statistical 

significance (p = .051), but the Pearson’s R was very similar (R = .200), and the slope of the 

linear fit was comparable. Also, the effect of frequency on irregular words in the regularize task 

was still null when computed using the smaller stimulus set (R = -.062; p = .550). 

 
Figure 2.5 Item-level correlations between task performance and frequency, stratified by 
regularity 

Frequency (measured as SFI, a log-transformed measure) significantly facilitated 
performance on the read task for both word types (A), and inhibited performance on the 
regularize task for regular, but not irregular, words (B). Each word is represented in each plot, 
with SFI plotted on the x-axis against zRT (averaged across participants) on the y-axis. 
Asterisks and solid lines indicate a significant linear relationship, where ***p ≤ .001; *p ≤ .05. 
The dotted line indicates the absence a significant fit. Regular words are shown as orange 
diamonds, while irregular words are plotted as periwinkle circles. The x- and y-axis scales are 
the same for both plots.  
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Supplemental material C.1 presents a post hoc correlation analysis, conducted at the 

subject-level, that provides further corollary support of the 2-mechanism account.  

fMRI revealed substantial involvement of attentional control-related brain regions  

As described in the Methods, voxelwise rmANOVAs to identify the effects of task and 

lexicality were prioritized for region definition (rather than effects of regularity) for two reasons: 

they showed the largest and most reliable behavioral effects, and they could be computed using 

the full stimulus set (i.e., words and pseudowords). Effects of regularity were computed on the 

regions defined by task and lexicality, as described below. 

Task x timecourse  

Many regions of the brain, in both the right and left hemispheres, showed differential 

activity across time that depended on task. Figure 2.6 depicts the statistical image of the 

interaction of task by timecourse. Although activations were widespread, the focus here is on 

regions involved in attentional control in relation to reading-related processing. 

Figure 2.6 shows prominent involvement of regions in the Cingulo-opercular control 

system (purple arrows), including bilateral anterior insula/frontal operculum (aI/FO) and dorsal 

anterior cingulate cortex/ medial superior frontal cortex (dACC/ msFC); Frontal-parietal control 

system (yellow arrows), including left dorsolateral prefrontal cortex and left intraparietal sulcus 

(IPS); and Dorsal attention system (green arrows), including bilateral Frontal eye field (FEF). 

Reliable activations were also obtained in regions typically reported in studies of single word 

reading, including left angular gyrus (AG) and in a region in left fusiform gyrus near the putative 

visual word form area (pVWFA). Activations in bilateral Inferior frontal gyrus pars opercularis 

(IFGpo) wrap under the lip of the gyrus inferiorly and are difficult to visualize in this image. Note 

the lack of a reliable effect in the left supramarginal gyrus (SMG)6, consistent with our previous 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6 Follow-up analyses using an applied region (MNI -54, -41, +26 (Church et al. 2008) that the 
left SMG, despite showing a robust main effect of timecourse across read and regularize, did 
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work in this region showing its insensitivity to lexicality and suggesting a functional role as a 

generic phonological processor (e.g., Church et al. 2008). 

 
 
 
Figure 2.6 Statistical image of the voxelwise rmANOVA for the effect of task by 
timecourse 

Color scale corresponds to a z-score range of 3.5 to 6.0. Volumetric data was displayed 
on an inflated cortical surface using Caret software (http://www.nitrc.org/projects/caret/; Van 
Essen et al. 2001); 3 transverse slices in volumetric space are also shown. Colored arrows 
highlight control-related regions belonging to the Cingulo-opercular control system (purple), 
Dorsal attention system (green) and Frontal-parietal control system (yellow). 

 
 

	
    

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
not show reliable effects of the task, lexicality x task or regularity (all sphericity corrected Z < 
2.0). 
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Task x lexicality x timecourse 

Many brain regions, spanning both hemispheres, showed significant BOLD activity 

changes across time that depended both on lexicality and task (see Figure 2.7). The task x 

lexicality x timecourse image appears similar to the task x timecourse image (compare Figures 

2.6 and 2.7). Prominent activations are seen in regions belonging to the 3 control systems 

highlighted in the task x timecourse image in Figure 2.6: bilateral Cingulo-opercular (purple 

arrows); left-hemisphere Frontal-parietal (yellow arrows); and bilateral Dorsal attention (green 

arrows).  

Region selection 

The automated peak-finding algorithm identified 72 regions of interest (ROIs) in the 

lexicality x task x timecourse image, and 144 regions in the task x timecourse image, for a total 

of 216 possible ROIs. After removal of presumptive overlaps as well as regions with non-

biologic timecourses (procedure described in Supplemental material A.4), 156 regions remained 

in the final pool (see Table 2.6 for region set). 
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Figure 2.7 Statistical image of the voxelwise rmANOVA for the effect of task by lexicality 
by timecourse 

Color scale corresponds to a z-score range of 3.5 to 6.0. Volumetric data was displayed 
on an inflated cortical surface using Caret software (Van Essen et al. 2001); 3 transverse slices 
in volumetric space are also shown. As in Figure 2.6, colored arrows highlight control-related 
regions belonging to the Cingulo-opercular control system (purple), Dorsal attention system 
(green) and Frontal-parietal control system (yellow). 
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Table 2.6 List of all 156 regions’ coordinates, including cluster assignment, when 
applicable  

Xa Ya Za Gross anatomic location 
Size 
(cm3) 

sourceb 
ANOVA 

Z-score 
from 
sourceb 
ANOVA 

Dendro-
gramc  

Left hemisphere 

-23 40 43 Superior frontal gyrus 1.264 Task 4.72 A 

-21 60 25 Superior frontal gyrus 0.472 Task 4.24 A 

-17 64 -10 Superior frontal gyrus 0.560 Task 3.91 A 

-29 -4 55 Superior frontal gyrus  1.056 LTT 4.11 CO/DA+ 

-27 -3 54 Superior frontal gyrus  3.968 Task 8.38 CO/DA+ 

-31 -22 61 Postcentral gyrus 0.752 Task 3.94 B 

-52 -5 47 Precentral gyrus 1.664 Task 5.07 B 

-49 -9 37 Precentral gyrus  1.464 Task 4.14 B 

-24 -18 69 Precentral gyrus 1.440 Task 5.07 B 

-48 9 32 Middle frontal gyrus 4.000 LTT 7.81 LFP 

-28 28 46 Middle frontal gyrus 2.448 LTT 4.82 A 

-12 -5 70 Medial frontal gyrus 1.016 Task 4.19 B 

-11 53 8 Medial frontal gyrus 1.000 LTT 3.97 A 

-31 25 1 Anterior insula 2.272 LTT 7.20 CO/DA+ 

-42 21 -2 Frontal operculum 2.240 LTT 6.60 B 

-44 34 22 Prefrontal cortex 1.504 Task 5.62 LFP 

-46 38 8 Inferior frontal gyrus 1.048 LTT 4.21 LFP 

-45 45 -2 Inferior frontal gyrus 1.368 LTT 4.88 B 

-49 21 -3 Inferior frontal gyrus 0.400 Task 3.67 LFP 

-58 -63 29 Inferior parietal lobe 2.408 Task 7.37 A 

-50 -36 49 Inferior parietal lobe 1.064 LTT 4.19 LFP 

-45 -70 44 Inferior parietal lobe 1.952 Task 6.19 A 

-22 -39 55 Inferior parietal lobe 0.696 Task 3.80 B 

-41 -43 45 Intraparietal sulcus 2.376 LTT 5.67 LFP 

-41 -39 45 Intraparietal sulcus 2.944 Task 7.36 LFP 

-34 -47 38 Intraparietal sulcus 2.136 Task 6.12 LFP 

-62 -50 38 Angular gyrus 1.856 LTT 5.57 A 
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-54 -61 41 Angular gyrus 2.456 Task 8.20 A 

-47 -71 32 Angular gyrus 3.160 LTT 5.88 A 

-21 -65 5 Lingual gyrus 0.400 LTT 4.09 B 

-23 -68 44 Precuneus 3.752 Task 8.98 LFP 

-37 -85 7 Middle occipital gyrus 0.560 Task 3.94 B 

-28 -87 18 Middle occipital gyrus 0.240 LTT 3.54 B 

-25 -76 24 Middle occipital gyrus 0.712 LTT 3.73 CO/DA+ 

-49 -60 -9 Fusiform gyrus 1.656 Task 4.47 LFP 

-43 -62 -6 Fusiform gyrus 1.400 LTT 4.44 B 

-57 -10 16 Superior temporal gyrus 0.800 Task 3.64 B 

-64 -47 -3 Middle temporal gyrus 0.248 Task 3.68 A 

-59 -11 -11 Middle temporal gyrus 0.664 Task 4.03 A 

-55 -33 -3 Middle temporal gyrus 0.608 Task 4.08 A 

-44 -15 19 Lateral sulcus 0.704 Task 4.08 B 

-41 -68 1 Inferior temporal gyrus 1.064 Task 5.08 B 

-29 -9 0 Putamen 0.872 LTT 4.48 B 

-24 13 0 Putamen 2.240 Task 7.04 B 

-13 10 8 Caudate 3.088 Task 8.14 B 

-28 -27 -11 Hippocampus 0.352 Task 3.54 A 

-27 3 -37 Uncus 0.840 Task 4.28 A 

-30 -63 -21 Cerebellum 0.408 LTT 3.59 B 

-22 -75 -20 Cerebellum 1.024 Task 4.64 B 

-21 -73 -22 Cerebellum 0.712 LTT 4.10 B 

-17 -42 -17 Cerebellum 0.384 Task 3.53 A 

Interhemisphere 

-4 27 -6 
Anterior cingulate / medial 
frontal gyrus 0.576 Task 4.08 A 

-1 20 49 
Anterior cingulate / medial 
frontal gyrus 3.840 LTT 8.16 CO/DA+ 

2 29 37 
Anterior cingulate /medial 
frontal gyrus 3.032 LTT 7.12 CO/DA+ 

-1 11 56 
Anterior cingulate /medial 
frontal gyrus 3.280 Task 6.94 CO/DA+ 

-2 8 26 Anterior cingulate gyrus 0.272 Task 3.91 CO/DA+ 
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-5 -52 22 Posterior cingulate gyrus 0.656 LTT 3.85 A 

-3 -37 45 Posterior cingulate gyrus 2.464 LTT 5.70 A 

8 -52 22 Posterior cingulate gyrus 0.616 LTT 3.88 A 

8 -31 43 Posterior cingulate gyrus 1.056 LTT 4.28 A 

-10 50 24 Medial frontal gyrus 1.112 Task 4.40 A 

-2 62 14 Medial frontal gyrus 3.072 Task 5.87 A 

-1 52 -11 Medial frontal gyrus 1.720 Task 5.16 A 

-1 58 32 Medial frontal gyrus 2.440 Task 5.04 A 

1 60 -2 Medial frontal gyrus 2.592 LTT 5.80 A 

3 -5 51 Medial frontal gyrus 1.152 Task 4.11 B 

4 42 -8 Medial frontal gyrus 0.672 Task 4.07 A 

8 49 -2 Medial frontal gyrus 1.088 LTT 4.26 A 

10 20 34 Medial frontal gyrus 1.232 Task 5.22 CO/DA+ 

-10 26 34 Medial frontal gyrus 0.512 Task 3.69 CO/DA+ 

-3 51 45 Medial frontal gyrus 0.296 Task 3.80 A 

-8 -30 52 Paracentral lobule 2.056 Task 4.77 A 

-3 -38 65 Paracentral lobule 1.336 LTT 3.92 A 

1 -17 59 Paracentral lobule 1.256 Task 4.35 B 

-9 -100 12 Cuneus 1.056 Task 4.28 A 

-5 -81 12 Cuneus 0.720 LTT 3.82 B 

10 -94 28 Cuneus 0.416 Task 4.08 A 

-3 -77 6 Lingual gyrus 0.320 Task 3.77 B 

-7 -53 56 Precuneus 1.104 LTT 4.00 A 

-5 -44 39 Precuneus 2.736 Task 5.66 A 

4 -49 36 Precuneus 2.536 Task 6.35 A 

6 -51 57 Precuneus 0.488 LTT 3.70 A 

10 -60 35 Precuneus 1.448 Task 4.87 A 

10 -46 41 Precuneus 2.040 LTT 4.35 A 

-6 -13 12 Thalamus 2.536 LTT 5.82 B 

-1 -8 13 Thalamus 1.216 Task 5.86 B 

0 -20 12 Thalamus 1.320 Task 6.37 B 

-10 11 4 Caudate 1.832 LTT 5.44 B 

-8 -59 -11 Cerebellum 0.792 Task 4.31 B 
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-2 -46 -7 Cerebellum 0.848 Task 4.34 A 

7 -51 -16 Cerebellum 0.480 Task 3.78 A 

7 -40 -10 Cerebellum 0.552 Task 3.86 A 

9 -66 -14 Cerebellum 0.720 Task 3.93 B 

Right hemisphere 

20 55 35 Superior frontal gyrus 0.600 Task 3.89 A 

24 31 50 Superior frontal gyrus 0.496 Task 4.06 A 

36 -4 48 Superior frontal gyrus  2.304 Task 5.87 B 

27 -4 56 Superior frontal gyrus  2.896 Task 7.33 B 

43 -17 62 Postcentral gyrus 0.512 LTT 3.70 B 

30 -31 66 Postcentral gyrus  0.552 Task 3.56 B 

36 -22 55 Precentral gyrus 1.368 LTT 4.14 B 

43 -16 55 Precentral gyrus 0.968 Task 4.48 B 

52 -8 37 Precentral gyrus  0.784 Task 3.98 B 

31 -18 62 Precentral gyrus  1.480 Task 5.12 B 

45 3 37 Middle frontal gyrus 0.560 Task 4.35 CO/DA+ 

53 12 36 Middle frontal gyrus 0.376 Task 3.72 CO/DA+ 

45 21 1 Frontal operculum 1.376 LTT 4.30 CO/DA+ 

45 21 -2 Inferior frontal gyrus 0.424 Task 3.85 B 

45 33 28 Inferior frontal gyrus 0.376 LTT 3.63 B 

47 9 25 Premotor cortex 0.920 LTT 4.70 CO/DA+ 

11 51 6 Medial frontal gyrus 0.712 Task 3.91 A 

14 -19 60 Medial frontal gyrus 0.928 Task 4.28 B 

14 1 58 Medial frontal gyrus 1.720 Task 5.08 B 

34 25 0 Anterior insula 2.568 LTT 7.12 CO/DA+ 

19 -29 54 Paracentral lobule 0.736 Task 4.41 B 

12 -19 72 Paracentral lobule  0.264 Task 3.57 B 

24 -62 55 Superior parietal lobe 2.232 Task 8.22 CO/DA+ 

29 -69 39 Superior parietal lobe 3.128 Task 8.41 CO/DA+ 

29 -52 54 Superior parietal lobe 2.848 Task 7.13 CO/DA+ 

35 -42 51 Superior parietal lobe 1.216 LTT 3.94 CO/DA+ 

40 -38 48 Superior parietal lobe 3.728 Task 7.51 B 
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53 -24 46 Superior parietal lobe 1.192 Task 4.94 B 

40 -26 33 Inferior parietal lobe 0.816 Task 5.16 B 

50 -50 29 Inferior parietal lobe 1.176 LTT 4.45 A 

50 -34 32 Inferior parietal lobe 0.432 LTT 3.68 A 

52 -66 37 Inferior parietal lobe 1.912 LTT 5.46 A 

55 -49 46 Inferior parietal lobe 1.288 LTT 4.67 A 

56 -57 40 Inferior parietal lobe 2.824 Task 7.08 A 

57 -61 25 Inferior parietal lobe 1.744 Task 5.69 A 

64 -37 40 Inferior parietal lobe 0.672 Task 3.75 A 

56 18 -10 Superior temporal sulcus 0.200 Task 3.56 B 

63 -7 2 Superior temporal gyrus 0.264 Task 3.69 B 

38 -24 11 Transverse temp. gyrus 0.344 Task 3.97 B 

35 -19 21 Lateral sulcus 0.336 Task 4.11 B 

62 -59 3 Middle temporal gyrus 0.456 Task 4.14 A 

50 -35 1 Middle temporal gyrus 0.960 Task 4.44 B 

51 -24 -7 Middle temporal gyrus 0.496 Task 3.77 B 

63 -49 7 Middle temporal gyrus 0.808 Task 4.31 A 

60 -9 -18 Medial temporal gyrus 0.312 LTT 3.87 A 

30 -73 26 Middle occipital gyrus 1.168 LTT 4.66 B 

39 -81 10 Middle occipital gyrus 1.248 Task 5.05 B 

49 -60 -6 Fusiform gyrus 0.600 Task 3.82 CO/DA+ 

15 -70 54 Precuneus 2.304 Task 7.21 B 

20 -62 10 Precuneus 0.488 LTT 4.10 B 

11 -16 13 Thalamus 0.552 LTT 3.83 B 

17 -15 -13 Brainstem 0.288 Task 3.75 A 

25 12 0 Putamen 1.768 Task 6.80 B 

30 -11 -1 Putamen 1.584 LTT 4.65 B 

30 10 0 Putamen 0.432 LTT 3.91 B 

11 7 8 Caudate 1.320 LTT 5.06 B 

12 11 8 Caudate 2.152 Task 7.68 B 

14 4 17 Caudate 1.672 Task 5.21 B 

18 -26 17 Caudate 0.320 Task 3.73 B 

24 -8 -20 Amygdala/ hippocampus 0.688 Task 4.31 A 
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14 -77 -21 Cerebellum 0.984 LTT 4.18 B 

28 -69 -24 Cerebellum 1.216 LTT 4.47 B 

17 -95 11 Cuneus 0.736 Task 5.09 B 
 
Note. aXYZ coordinates are reported in MNI space. bFor source ANOVA, LTT = lexicality x task 
x timecourse; Task = task x timecourse. The Z-score from the source ANOVA is from the 
highest-order interaction from the voxelwise source ANOVA i.e., (task x timecourse) or 
(lexicality x task x timecourse). cFor dendrogram column, members of the CO/DA+ and LFP 
clusters are marked as such; all other regions are labeled as to their general location on the 
dendrogram, where A = left side of tree (mostly negative timecourses) and B = right side of tree 
(mostly positive timecourses) (see Figure 2.8).  
 

 

Hierarchical clustering revealed 2 dissociable control-related clusters 

BOLD hemodynamic response function (HRF) shapes carry information about the 

processing of particular brain regions that complements the quantification provided by statistical 

testing of effects of interest. In particular, it is possible to identify sets of brain regions that are 

functionally related for a particular task by querying for similarity in the regions’ BOLD 

timecourse profiles (e.g., Ploran et al. 2007; Church et al. 2011). 

UPGMA clustering of the final set of 156 regions produced a dendrogram with relatively 

high fidelity to the underlying structure (cophenetic R = 0.82; see Figure 2.8). Consistent with 

the utility of the clustering technique for identifying important inter-region relationships, several 

plausible functional neuroanatomical distinctions were recognizable in the tree, including, for 

example, the clustering of classically described Default Mode Network regions (see blue and 

green clusters on the far left of the dendrogram). The objective here, however, was to identify 

clusters containing attentional control regions. At a similarity threshold of (1-r) = 0.15, two 

candidate clusters were identified, each composed primarily of control- and reading-related 

regions (see Figure 2.9).  
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Figure 2.8 Dendrogram resulting from the hierarchical clustering of 156 regions 
computed using a UPGMA method in Matlab  

Highlighted are the 2 clusters identified as being comprised chiefly of control-related 
regions: a Cingulo-opercular/ Dorsal attention + (CO/DA+) cluster (purple), including 20 regions, 
and a Left Frontal-parietal (LFP) cluster (yellow), including 10 regions. Red horizontal line 
indicates clustering threshold of (1-r) = 0.15. A and B mark the left and right sides of the 
dendrogram (see Table 2.6). Cophenetic R = 0.82. 
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The cluster shown in purple in Figure 2.9 includes several regions of the Cingulo-

opercular control system bilaterally, as well as a handful of mostly (but not entirely) right-

lateralized Dorsal attention system regions (referred to as CO/DA+; see Supplemental figure 

C.2 for the image including the network borders). The cluster projected in yellow in Figure 2.9 is 

entirely left-lateralized, and includes almost exclusively regions that fall into the Frontal-parietal 

control network (abbreviated LFP; again, see Supplemental figure C.2). 

 
 
Figure 2.9 Two candidate attentional control systems for reading, identified using 
hierarchical clustering 

Surface projection of the Cingulo-opercular/ Dorsal attention plus (CO/DA+) cluster, 
shown in purple (n = 20 regions), and the left Frontal-parietal (LFP) cluster, shown in yellow (n = 
10 regions), defined from the clustering depicted in Figure 2.8. Clusters projected using Caret 
software (Van Essen et al. 2001). See also Supplemental figure C.2 for a version of this figure 
that includes network areal borders. 
  



	
  

77 

Statistical tests of differences between the clusters 

 Omnibus rmANOVAs and planned post hocs were computed in order to test the stated 

predictions of the 2-mechanism model (outlined in Table 2.4) and determine which of various 

task- and stimulus- combinations distinguished the 2 cluster sets. Figures 2.10-2.15 depict the 

timecourses, averaged across the 2 clusters separately, for the task/stimulus combinations of 

interest, as well as the results of the rmANOVAs and planned post hocs. For the analyses, each 

region from the CO/DA+ and LFP clusters was treated as a “subject,” and cluster assignment 

was treated as the grouping variable. Note that the timecourses depict all 8 timepoints in the 

timecourse, even though only the first 6 frames were used to compute the clustering (see 

explanation above). The post hoc analyses likewise used all 8 timepoints of the timecourses.  

First, the 2 omnibus rmANOVAs confirmed that cluster membership reliably modulated 

both the interaction of lexicality x task x timecourse (p =.004, Greenhouse-Geisser corrected; 

see Figure 2.10) and the interaction of regularity x task x timecourse (p ≤.001; see Figure 2.13). 

We describe first the interactions of lexicality, task, timecourse and cluster, then the interactions 

of regularity, task, timecourse and cluster. 

Sensitivity to lexicality 

Each individual yellow and purple timecourse, indicating a cluster’s response to a single 

task/lexicality condition, was significantly different from zero. Furthermore, for all 4 combinations 

of lexicality and task, the LFP cluster showed a significantly larger % BOLD signal change, 

across timecourse, than the CO/DA+ cluster (all p ≤  .001; see Figure 2.10). Because all 4 

conditions showed a significant effect of cluster on the timecourse (and each timecourse 

showed a significant main effect of time), the effects of lexicality and cluster were next examined 

within each task separately, as well as the effects of task and cluster for each lexicality class 

separately.  
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Figure 2.10 Lexicality x task x timecourse x cluster 
Average BOLD timecourses for each of the 2 control clusters, for each of 4 combinations 

of lexicality and task. Each MR frame was 3 s. Asterisks indicate a significant interaction 
(rmANOVA: *** p ≤ .001). For all 4 conditions, the LFP cluster (yellow) showed a significantly 
larger % BOLD signal change, across time, than the CO/DA+ cluster (light purple). The 4-way 
interaction of task x lexicality x timecourse x cluster was also significant, as indicated in the 
middle of the plot, as was each main effect of timecourse. 
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The first of the 2 planned rmANOVA pairs is depicted in Figure 2.11.  rmANOVAs 

conducted separately for each task revealed that although the lexicality effect for the read task 

was significant in each cluster (both p ≤  .001; top panel), the effect was larger in the CO/DA+ 

regions than the LFP regions (p = .035). The bottom panel shows that the (reversed) lexicality 

effect was, on the other hand, significantly larger in the LFP regions than the CO/DA+ regions (p 

≤.005), although lexicality influenced both region sets significantly (both p ≤  .001).  

Analyses conducted separately for words and pseudowords, depicted in Figure 2.12, 

were likewise revealing. While both region sets showed reliable effects of task for words (both p 

≤ .001; top panel), the task effect for words was greater in the LFP regions than the CO/DA+ 

regions (p ≤ .001). The pattern was different for pseudowords (bottom panel). The CO/DA+ 

regions (p ≤ .001), but not the LFP regions (p = .129), showed a significant effect of task across 

the timecourse for pseudowords. However, the effects were small, and the interaction of task x 

timecourse x cluster for pseudowords did not reach significance (p = .160). 

The timecourses of the individual regions of both clusters generally recapitulated the 

patterns of task and lexicality described at the group level (i.e., the group average timecourses 

were not driven by outliers within each cluster). 
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Figure 2.11 Lexicality x timecourse x cluster, each task separately 
Average BOLD timecourses for each of the 2 control clusters, for each of 4 combinations 

of lexicality and task. The top panel shows that the lexicality effect for the read task was 
significantly larger in the CO/DA+ regions than the LFP regions (i.e., a significant interaction of 
lexicality x timecourse x cluster, for read). The bottom panel shows that the (reversed) lexicality 
effect for the regularize task was significantly larger in the LFP regions than the CO/DA+ 
regions (i.e., a significant interaction of lexicality x timecourse x cluster, for regularize). The 
ovals highlight the larger peak lexicality difference for each task. Asterisks indicate significant 
interactions (rmANOVA: * p < .05; ** p ≤ .005, *** p ≤ .001). 
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Figure 2.12 Task x timecourse x cluster, words and pseudowords separately 
Average BOLD timecourses for each of the 2 control clusters, for each of 4 combinations 

of lexicality and task; different timecourse relationships are emphasized here as compared to 
Figure 2.11. The top panel shows that the task effect for words was significantly larger in the 
LFP regions than the CO/DA+ regions (i.e., a significant interaction of task x timecourse x 
cluster, for words). The bottom panel shows that the 2 sets of regions did not significantly differ 
with regard to the size of the task effect for pseudowords (i.e., a null interaction of task x 
timecourse x cluster, for pseudowords; p = 0.16). The oval highlights the larger peak task 
difference for the words. Asterisks indicate significant interactions (rmANOVA: *** p ≤ .001). 
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Sensitivity to regularity 

Like Figure 2.10, Figure 2.13 shows timecourses, averaged across each of the 2 control 

clusters, for 4 conditions, but now those conditions are regularity (2) x task (2). Each individual 

yellow and purple timecourse, indicating a cluster’s response to a single condition, was 

significantly different from zero. Furthermore, for all 4 conditions except for regular words in the 

read task, the LFP cluster’s BOLD response was significantly larger, across time, than the 

CO/DA+ cluster’s response (for regular words, read, p = .106; other 3 conditions, p ≤ .001). 

Since the clusters both show a positive and not significantly different response to regular words 

in the read task, one of the other 3 task/regularity combinations depicted in Figure 2.13 likely 

drove the significant omnibus interaction.  
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Figure 2.13 Regularity x task x timecourse x cluster 
Figure is similar to Figure 2.10, except it shows average timecourses for the 2 control 

clusters, for 4 conditions of regularity and task. Asterisks indicate a significant interaction 
(rmANOVA: * p < .05; *** p ≤ .001). For all 4 conditions except for regular words in the read task, 
the LFP cluster (yellow) showed a significantly larger % BOLD signal change, across time, than 
the CO/DA+ cluster (light purple). The 4-way interaction of task x regularity x timecourse x 
cluster was also significant, as indicated, as was each main effect of timecourse. 
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Figures 2.14 and 2.15 depict the timecourses underlying the 2 planned rmANOVA pairs 

examining regularity for each task, and task for each class of regularity. The LFP cluster was 

shown statistically to be more sensitive to regularity than the CO/DA+ cluster. Figure 2.14 

shows that for both tasks considered separately, the effect of regularity (irregular > regular) was 

more pronounced in the LFP cluster than the CO/DA+ cluster (all p ≤ .001).  

 

Figure 2.14 Regularity x timecourse x cluster, each task separately 
Average BOLD timecourses for each of the 2 control clusters, for each of 4 combinations 

of regularity and task. For both tasks (i.e., top and bottom panels), the regularity effect was 
significantly larger in the LFP regions than the CO/DA+ regions (i.e., a significant interaction of 
regularity x timecourse x cluster, for each task separately). The ovals highlight the larger peak 
regularity difference for each task. Asterisks indicate a significant interaction (rmANOVA: *** p 
≤ .001).  
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Likewise, Figure 2.15 illustrates that for both classes of regularity considered separately, 

the effect of task was more pronounced in the LFP cluster than the CO/DA+ cluster (all p ≤ .001).  

The timecourses of the individual regions of both clusters generally recapitulated the 

patterns of task and regularity described at the group level (i.e., the group average timecourses 

were not driven by outliers within each cluster). 

 
Figure 2.15 Regularity x task x cluster, regular and irregular words separately 

Average BOLD timecourses for each of the 2 control clusters, for each of 4 combinations 
of regularity and task. Different timecourse relationships are emphasized here as compared to 
Figure 2.14. For both classes of regularity (i.e., top and bottom panels), the task effect was 
significantly larger in the LFP regions than the CO/DA+ regions (i.e., a significant interaction of 
task x timecourse x cluster, for regular and irregular words separately). The ovals highlight the 
larger peak task difference for each of regular and irregular words. Asterisks indicate a 
significant interaction (rmANOVA: *** p ≤ .001).  
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Magnitude, timing and HRF shape differences between the clusters 

In addition to the information about specific statistical distinctions, 3 general featural 

differences between the clusters’ average timecourses are apparent in Figures 2.10-2.15. 

First, the overall magnitude of % BOLD signal change across time (24 s) tended to be 

lower in the CO/DA+ cluster than the LFP cluster. 

Secondly, in terms of time-to-peak, the CO/DA+ regions tended to peak at timepoint 2 or 

3 for both tasks, whereas the LFP regions almost uniformly peaked later, at timepoint 4. A 

Fisher’s Exact Test of Independence confirmed that the CO/DA+ and LFP clusters differed 

significantly from one another with regard to the number of regions that peaked at timepoint 4 in 

both the read task (one-tailed p ≤ .001; 0/20 for CO/DA+ vs. 8/10 for LFP) and, separately, in 

the regularize task (one-tailed p ≤ .001; 1/20 for CO/DA+ vs. 10/10 for LFP). 

Perhaps most informatively, the shapes of the timecourses differed notably between the 

2 clusters. Specifically, not only did the CO/DA+ regions peak earlier than the LFP regions, but 

the BOLD responses of the CO/DA+ regions also returned to baseline more rapidly than did the 

LFP regions, i.e., the CO/DA+ regions showed relatively narrow HRFs, while the LFP regions 

showed relatively wide, extended HRFs. 

Cluster “neighbors” for CO/DA+ vs. LFP 

Although the analyses described here have focused on the 2 control region clusters of 

interest, many other brain regions were identified in the whole-brain ANOVAs and are therefore 

represented in the dendrogram. Because proximity in cluster space suggests similarity in terms 

of function, it is useful to know which regions sit most proximally to the clusters of interest in the 

dendrogram. CO/DA+ regions were nearest on the dendrogram to bilateral middle occipital 

(visual) regions and additional Dorsal attention regions, including medial superior frontal regions. 

LFP regions were, instead, closest to regions including parts of bilateral inferior frontal gyrus, 

pars opercularis (IFGpo), bilateral cerebellum and bilateral mouth somatomotor, as well as right 



	
  

87 

superior temporal sulcus. See Supplemental figures C.3 and C.4 for more detailed renderings of 

the clustering relationships within each region set, as well as the anatomical locations of the 

closest dendrogram neighbors of each.  

Subsidiary imaging analyses  

Several analyses were conducted to ensure that the observed imaging effects were not 

driven by potential confounds. See Supplemental materials A.3a-c for information about reaction 

time regression, motion censoring, and an alternate preprocessing method. 

Discussion 

 Fluent reading involves the complex coordination of processes including sensory, 

linguistic and articulatory-motor; the role of attentional control in driving fluent reading to the 

point of automaticity (to the extent that automaticity is achieved) remains incompletely 

understood. Relatedly, it remains unclear how attentional control can be strategically allocated 

to particular aspects of reading in a skilled adult reader, a better understanding of which may 

illuminate the more general question of whether a tradeoff exists between the achievement of 

expertise vs. the ability to perform the various components of a skill.  

As discussed in the Introduction, a previous behavioral study invoked two mechanisms 

to explain reaction time (RT) differences between reading tasks with variable attentional 

demands (Balota et al. 2000), suggesting that attention may interact with reading processing in 

more than one way. In the present report, both RT analyses (Study 1 and Study 2) and imaging 

analyses (Study 2) converge with the suggestion by Balota and colleagues of a 2-mechanism 

interaction of attentional control and reading (2000), further proposing ways in which that 2-

mechanism interaction may be instantiated in the brain. A set of regions including members of 

the Cingulo-opercular control system and Dorsal attention system showed response properties 

consistent with a role in reporting a processing bias signal, reflecting pathway control, at 
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Mechanism #1. A set of regions including members of a left-lateralized Frontal-parietal control 

system showed response properties consistent with a role in response checking, at Mechanism 

#2. The implications of the behavioral results are discussed first, followed by a consideration of 

the imaging findings.  

Behavioral results support the 2-mechanism model of interaction 

First, large and reliable interactions of task x lexicality were observed in both Study 

cohorts. In both cases, the lexicality effect in regularize reversed, whereas Balota et al. reported 

a null lexicality effect (2000). Our observations therefore suggest an even more dramatic RT 

cost associated with lexical status during the regularize task than what Balota et al. originally 

noted. The 2-mechanism model depicted in Figure 2.1 suggests that attentional control interacts 

with reading processing at 2 loci that are relevant for word regularizing, which may explain why 

the task slowdown for words is so large. That is, the large reaction time cost associated with 

“wordness” may derive from 2 sources during the regularize task: difficulty biasing the 

phonological pathway at Mechanism #1, then the checking of the word’s pronunciation before a 

response is articulated, at Mechanism #2. 

Categorical treatment of frequency, using rmANOVA, revealed a null 3-way interaction of 

task, frequency and regularity in both cohorts, possibly reflecting the small size of any 

underlying interaction of those variables. Indeed, follow-up correlation analyses treating 

frequency as a continuous variable (which may be more appropriate, given the continuous 

distribution of the variable) revealed differences between the effect of frequency on regularize 

task performance for regular as compared to irregular words. As Balota and colleagues 

originally observed, the modulation of the task-induced word frequency effect reversal by 

regularity suggests that a mechanism other than pathway control is required to account fully for 

the results (Balota et al. 2000). As a whole, the behavioral results solidly thus motivated the 

imaging investigation of a 2-mechansism model of attentional control and reading processing. A 
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more detailed consideration of the behavioral results shall be provided in the context of the 

developmental comparison of Chapter 3. 

Neuroimaging evidence supports the 2-mechanism model 

Turning to Study 2, the imaging data corroborated the 2-mechanism model quite nicely. 

Two putative sets of control regions were identified, from among all the regions showing 

significant effects of (task x timecourse) or (lexicality x task x timecourse), as being likely 

candidates for the model proposed in Figure 2.1. Specifically, the 2 region sets identified 

showed distinguishable patterns of BOLD activity with regard to task, lexicality and – though it 

was not used to define the regions originally – regularity. The anatomical locations of the 2 

clusters’ respective neighbors in the dendrogram further supported the BOLD evidence for 

separable roles (see Supplemental figures C.3 and C.4). One cluster included 20 regions, 

mainly from bilateral Cingulo-opercular network and largely right-hemisphere Dorsal attention 

system (CO/DA+). The CO/DA+ cluster appeared to act at Mechanism #1 to bias processing 

along one route, depending on task demands (pathway control). The second cluster included 10 

exclusively left-lateralized regions, almost all of which form part of the Frontal-parietal control 

network (LFP). The LFP cluster appeared to act at Mechanism #2, facilitating response 

verification after route processing has completed (response checking), particularly during a 

more difficult reading task variant.  

Several observations, based on the predictions in Table 2.4, confirmed functionally 

separable roles for the CO/DA+ and LFP clusters and mapped those roles on the 2-mechanism 

model. We next discuss those key observations in detail; they are presented in summary form in 

Figure 2.16. 
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Figure 2.16 Two sets of attentional control regions map onto the 2-mechanism model 
Summary schematic, based on Figure 2.1, depicting the 2 proposed mechanisms of 

interaction between attention and reading, along with descriptions of the region sets whose 
BOLD activity maps onto the distinction. A cluster of Cingulo-opercular/Dorsal attention+ 
regions (CO/DA+) shows activity consistent with a role in reflecting pathway control, while a 
cluster of left Frontal-parietal regions (LFP) shows activity consistent with a role in response 
checking. Compare the response properties to the predictions outlined in Table 2.4. 
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CO/DA+ cluster response properties 

Cingulo-opercular/ Dorsal attention+ cluster (CO/DA+) regions showed lexicality effects 

for the 2 tasks that were roughly “opposite and equal,” with the trial-by-trial BOLD magnitudes 

possibly reflecting the pathway control signal relevant to a particular trial. Specifically, the 

CO/DA+ signals may reflect the extent to which the processing pathway most required for a task 

block (i.e., lexical or phonological) was successfully biased for a particular item (i.e., word or 

pseudoword). In this way, the signals observed in the CO/DA+ are consistent with a neural 

read-out of the attentional mechanism postulated by the pathway control hypothesis (as in 

Baluch and Derek 1991; Monsell et al. 1992; Rastle and Coltheart 1999; Zevin and Balota 2000).  

The comparable magnitudes (and opposite directions) of the lexicality effects in the 2 

tasks CO/DA+ regions were predicted by the fact that for each task, one of the 2 routes is 

heavily weighted. The regularize task clearly requires total attention to the phonological pathway 

output. Less obvious is that the read task, even for mixed lists (here, ~40% pseudowords), 

probably involves a default biasing of the lexical pathway, at least in skilled adults. In the 

CO/DA+ regions, the positive lexicality effect for the read task was not only equal (and opposite) 

to the lexicality effect for the regularize task, but it (the positive lexicality effect in read) was 

larger than the comparable effect in the LFP regions. This latter observation is consistent with 

the intuitive notion that for skilled adults performing normal reading, neither words nor 

pseudowords should require significant response checking (hence the popular notion of 

automaticity in reading, referenced in the Introduction). 

Pathway control may be less disposable than response checking; no matter what the 

task variant, some signal is likely required to set the input-output parameters for task completion 

(Meiran 1996). Regions in bilateral aI/fO and dACC have been hypothesized to form the “core” 

of the task-set system (Dosenbach et al. 2006), although their precise functional ascription 

remains elusive (Posner and Petersen 1990; Dehaene et al. 1994; MacDonald et al. 2000; Bush 



	
  

92 

et al. 2000; Botvinick et al. 2004; Brown and Braver 2005). Because the most consistent control-

related characterization of the core Cingulo-opercular regions pertains to their involvement in 

sustained, task set-maintenance (and this event-related study design did not measure the task-

related sustained signal; but see Chapter 4 for a future direction), the exact specification of the 

role of the trial-by-trial BOLD signals observed here entails some amount of speculation. 

Nonetheless, the importance of the core Cingulo-opercular regions, bilateral aI/fO and dACC, in 

shaping task performance is underscored by the observation that they tend to be among the 

most commonly activated regions across all kinds of neuroimaging studies (Nelson et al. 2010). 

It is also interesting that neuroimaging studies of the Stroop effect have noted strong and 

reliable activations in the dACC in relation to word-color interference (e.g., Pardo et al. 1990; 

Bench et al. 1993; Carter et al. 1995; Peterson et al. 1999; see also Bush et al. 1998 for a 

related, though not identical, phenomenon).  

Signals reporting pathway control ought not to reflect appreciably the effect of word 

regularity, since both regular and irregular words are thought to generate activations along both 

pathways obligatorily (Coltheart et al. 2001). Indeed, CO/DA+ regions showed smaller effects of 

regularity than LFP regions, considering both the read task and the regularize task. Examined 

another way, the CO/DA+ regions also showed smaller effects of task when each of regular and 

irregular words was considered separately. Note, however, that the CO/DA+ regions did show 

some sensitivity to regularity; in each task separately, irregular words produced significantly 

larger activations than regular words. Given that regions in the Cingulo-opercular network 

simultaneously carry several types of processing signals (Neta et al. under revision), perhaps 

the relatively small effects of regularity observed in the CO/DA+ regions reflect an orthogonal 

response property, such as time-on-task. The important point is that the effects of regularity are 

much more pronounced in the LFP regions than the CO/DA+ regions.   
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In addition to Cingulo-opercular regions, the CO/DA+ cluster includes several regions of 

the Dorsal attention system, a control system implicated in the allocation of top-down attention 

control to specific portions of visual space (e.g., Corbetta and Shulman 2002). Resting-state 

functional connectivity (rs-fcMRI) work from our own laboratory has specifically suggested that 

Dorsal attention system regions are more closely functionally coupled to a region in left ventral 

occipital temporal cortex than are classic reading processing regions (Vogel et al. 2012), 

underscoring the relatedness of the type of processing performed by Dorsal attention system 

regions and the type of processing required for orthographic analysis. Our finding of a close 

functional relationship between Cingulo-opercular regions and Dorsal attention regions as part 

of a single cluster is consistent with other work suggesting that the Dorsal attention system may 

flexibly modulate its coupling with other networks, depending on task demands (Spreng et al. 

2010). Possibly the regions in the CO/DA+ cluster work together to read out the pathway control 

signals during the read/regularize tasks through a combination of each network’s unique 

processing capabilities. It would be interesting to see whether for other reading task variants – 

perhaps a task in which serial, left-to-right attention to phonological decoding were not a critical 

component, as it is in regularize – would result in the reporting of pathway control signals by 

Cingulo-opercular regions working less closely with or independently from Dorsal attention 

system regions.  

LFP cluster response properties 

Regarding left Frontal-parietal cluster (LFP) regions, it was predicted that task, both as a 

main effect and as interacting variable, would exert a larger influence at Mechanism #2 regions 

than at Mechanism #1 regions. Indeed, there was a larger task effect for the LFP regions than 

the CO/DA+ regions, for words specifically. For pseudowords, the 2 regions sets showed 

statistically indistinguishable sensitivity to task. That is, the task x timecourse x cluster 

interaction was not significant for pseudowords, although a significant effect of task for 



	
  

94 

pseudowords was separately obtained in the CO/DA+ regions, but not the LFP regions. The fact 

that the clusters were distinguishable by their task effects for words, but not pseudowords, was 

neither explicitly predicted nor surprising. First, the reaction time task effect was much larger for 

words than for pseudowords, and fMRI effects are generally weaker when the corresponding 

behavioral effects are weaker. Furthermore, although response checking is extremely important 

for the regularize task, that which makes it especially tricky – familiarity with both a word-form 

and the process of response checking for that word-form – does not factor in for pseudowords. 

However, as shown in Figures 2.11 and 2.12, the timecourse of signal change for pseudowords 

in the regularize task was still large and positive in the LFP cluster (and in fact larger in terms 

of % signal change than the corresponding response in the CO/DA+ cluster), suggesting that 

pseudowords may indeed undergo response checking (perhaps equally so for the read and 

regularize tasks). 

Likewise consistent with a role at Mechanism #2, LFP regions showed unequal regularity 

effects in the two tasks – in both cases irregular > regular words – with the effect being larger in 

the regularize as compared to the read task. The larger impact of regularity in the regularize 

task may reflect the discrepancy between the relative ease of response checking for normal 

reading (even for irregular words, as previously discussed) vs. the increased need for response 

checking for the regularize task. Indeed, regions in dorsolateral prefrontal cortex (dlPFC) and 

posterior parietal cortex (PPC) – possibly overlapping with some of the members of the LFP 

cluster in the present results – have been hypothesized in other contexts to mediate dynamic 

stimulus-response mappings (Huettel et al. 2005), perhaps encompassing the kind of 

computation required to generate /pInt/ (like “lint”) in response to seeing “pint.” Relatedly, 

individual FP regions in both inferior prefrontal cortex (IPC) and dorsolateral prefrontal cortex 

(dlPFC) have been implicated in various attention-related processes (Norman and Shallice 

1986) including response retrieval (Wagner et al. 2001), response checking (Thompson-Schill et 
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al. 1997), and the maintenance of stimulus-response mappings (MacDonald et al. 2000). 

Frontal-parietal regions in posterior parietal cortex (PPC) have been noted for their importance 

in facilitating decision-making in support of task demands (Platt and Glimcher 1999; Rushworth 

et al. 2001; Bunge et al. 2002). All of these functional ascriptions are consistent with a role for 

left Frontal-parietal regions at Mechanism #2 in selecting and verifying the appropriate response 

from between the 2 route computations. 

 Parallel to the argument for unequal regularity effects, LFP regions showed lexicality 

effects that were “opposite and unequal,” in contrast to those observed in CO/DA+ regions 

(“opposite and equal”). In other words, the effect of lexicality was larger in LFP regions for the 

task requiring the non-practiced response checking (regularize). Also, the negative lexicality 

effect in the LFP regions for regularize was larger than the corresponding effect in the CO/DA+ 

regions.  

Together with the large task effect for words and null task effect for pseudowords, the 

relatively larger negative lexicality effect for regularize observed in the LFP region set suggests 

that the LFP regions may actually perform more of the processing associated with the regularize 

task, compared to the CO/DA+ regions. In other words, a (speculative) argument could be made 

that the 3 factors just described – large task effect for words, null task effect for pseudowords 

and large negative lexicality effect for regularize – index the relative importance of a region’s 

contribution to the attentional control required for the regularize task. One additional hint of the 

primacy of the LFP regions in directing attentional control during reading is that the effects in the 

LFP cluster seemed slightly more robust to particular analysis choices, including reaction time 

regression, than are the effects in the CO/DA+ cluster (see Supplemental materials A.3a and 

A.3c). Large and robust task-sensitive responses in the LFP regions may reflect the extra-lexical, 

domain general nature of the processing in those regions, as characterized, for example, in one 

dlPFC region (Tal -50, +23, +27; MNI -53, +26, +30) in a previous study (Fiebach et al. 2007).  
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Magnitude, timing and HRF shape differences between the clusters 

Bolstering the hypothesis that the processing performed by the LFP regions is 

particularly critical to the attentional control of reading is the set of general observations about 

the features of the clusters’ BOLD responses. Specifically, the CO/DA+ and LFP clusters 

differed in terms of overall BOLD magnitude, time-to-peak and width of the HRF. Compared to 

the CO/DA+ cluster, the LFP cluster (both in aggregate and in terms of the individual regions) 

showed responses that were slower to rise, higher to peak and slower to fall. Because of the 

sluggishness of the BOLD response and the timescale over which the data is collected, 

presumptive timing differences observed using standard event-related fMRI should be 

considered speculative. However, the relatively large, relatively wide HRFs of the LFP regions 

are internally consistent with the argument articulated above, that the LFP regions perform 

something of a primary role in the trial-by-trial attentional control required for the read and 

regularize tasks. It is also intriguing to consider the possibility that the wide HRFs seen in the 

LFP regions reflect the linear summation of more than one BOLD response within a single trial 

(Boynton et al. 1996), i.e., an even more complex role for the LFP regions in coordinating the 

control of reading than that which is suggested by the model in the summary Figure 2.16. 

A final general observation about the 2 clusters is that the LFP cluster includes only 

regions in the left hemisphere, whereas the CO/DA+ cluster includes regions that span the right 

hemisphere, left hemisphere and midline. We did not predict that the task-related control signals 

would segregate into 2 clusters with such a dramatic difference in hemispheric lateralization, 

and it is unclear what the left-hemisphere exclusivity of the LFP cluster means in the context of 

read and regularize. Of course, it has long been posited that language relies primarily on left 

hemisphere structures, but indeed this and most other imaging studies in the recent literature 

show that brain activity related to reading and language tasks is very much dependent on right-

hemisphere regions as well (e.g., Jobard et al. 2003; Taylor et al. 2012; Price 2012). Future 
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studies could interrogate possible task differences in the extent to which Frontal-parietal and 

other control region networks are engaged either bilaterally or relatively unilaterally, and what 

such differences may mean in terms of information processing.  

Both sets’ neighbors in the dendrogram 

The profiles of the clustering neighbors of the CO/DA+ and LFP region sets 

strengthened their respective proposed roles at Mechanism #1 and #2. The CO/DA+ regions 

showed neighborhood relationships consistent with a more intimate interaction with the earlier 

stages of visual word recognition, i.e., a role at Mechanism #1 (pathway control). For example, 

they appeared close to bilateral middle occipital (visual) regions and some additional Dorsal 

attention regions (medial and superior frontal) in the clustering dendrogram. The most proximal 

neighbors to the LFP regions were left and right Inferior frontal gyrus pars opercularis IFGpo. A 

region in left IFGpo has been consistently implicated in preparing the articulatory response 

during reading (e.g., Jobard et al. 2003; Taylor et al. 2012). Regions in bilateral cerebellum as 

well as bilateral mouth somatomotor cortex were also relatively close to the LFP regions, as 

were regions in bilateral superior temporal gyrus. This clustering similarity suggests a tighter 

functional link between LFP regions (compared to the CO/DA+ cluster) and regions important 

for speech articulation (Price 2012), corroborating a role for the LFP cluster at Mechanism #2 

(response checking) in the proposed model.  

Contextualizing these results in the literature 

 Despite very different analysis approaches, there is some convergence between the 

results of the present study and the findings of the only extant neuroimaging analysis of the 

regularize task of which we are aware (Gold et al. 2005). Gold and colleagues asked whether 

the often-cited anterior-semantic/posterior-phonological distinction along the left inferior 

prefrontal cortex (LIPC) (Demonet et al. 1992; Buckner et al. 1995; Fiez 1997; Poldrack et al. 

1999; McDermott et al. 2003) might be better captured as the presence vs. the absence of 
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controlled processing, since many previous comparisons between semantic and phonological 

tasks were confounded by greater demands for controlled processing in the semantic tasks. 

Using 2 tasks that both require controlled processing (regularize-phonological, Verb generation-

semantic), those authors indeed observed BOLD activity effects in both anterior and posterior 

portions of LIPC during both tasks, which they interpreted as evidence for a more general role 

for LIPC in task-driven attentional control of verbal information (Petrides et al. 1995). Instead of 

observing domain specificity in LIPC, they noted 2 other regions, out of LIPC, that showed 

preferential activity for one of the 2 tasks. A left frontal region (BA 6, Tal -55, -1, +28; MNI -58, 0, 

+31) showed BOLD effects that were larger for the regularize task than the Verb generation task, 

while a left temporal region (BA21, Tal -51, -55, +2; MNI -54, -58, +3) showed the opposite 

pattern. The results of the present study are broadly consistent with the Gold et al. conclusion 

that “reading”-related activity, in left frontal regions in particular, is modulated in important ways 

not only by the kind of processing required (e.g., sound-based vs. meaning-based vs. 

orthography-based) but by the extent to which that processing requires attentional control.   

Other neuroimaging investigations of the attentional control of reading have generated 

intriguing results, but with very different angles of approach from the read/regularize comparison 

employed here. For example, one study isolated “top-down” effects from “bottom-up” effects in 

individual letter recognition by training subjects to “detect” letters from noisy arrays, where no 

such letters existed (Liu et al. 2010). More often, reports on “top-down” effects in reading 

consider attention effects at the opposite end of the spectrum, i.e., resulting not from strategic 

and conscious allocation of attention but instead from experimental manipulations designed to 

reveal aspects of the intersection of attention and reading that occur outside of conscious 

awareness. For example, important insights regarding the bidirectional flow of information 

between “higher” and “lower” –level reading processing regions have derived from close 

examination of intrinsic stimulus properties (Devlin et al. 2005), priming effects (Nakamura et al. 
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2007; Kherif et al. 2011) and clever timing manipulations aimed at separating perceptual from 

linguistic processes (Davis et al. 2011).  

Some studies have employed paradigms requiring a conscious reallocation of attention 

more similar to the task comparison introduced by Balota et al. (2000) and replicated here. For 

example, some electrophysiological data suggests that different task instructions can modulate 

word identification as shown, for example, by an enhanced N200 response during an 

orthographic, as compared to semantic and phonological, task (Ruz and Nobre 2008), and by 

distinguishable patterns of preparatory brain activity in anticipation of different task requirements 

(Ruz and Nobre 2008). The greater spatial resolution of PET and fMRI have also rendered 

informative observations, but many of these analyses have focused on reading-related and 

primary sensory regions (e.g., Roskies et al. 2001; McDermott et al. 2003; Dietz et al. 2005; 

Yoncheva et al. 2010; Twomey et al. 2011; Perrone-Bertolotti et al. 2012). The tendency for 

previous investigations to emphasize presumptive effects of controlled attention in processing 

regions, rather than focusing on the control signals themselves, may reflect the greater 

transparency of the predictions of the dual route and other models with regard to processing as 

compared to attentional control (for a recent meta-analysis, see Taylor et al. 2012). This is a 

speculation that echoes the discussion of the automaticity dogma in Chapter 1. 

The present results add to the body of literature on the attentional control of reading by 

focusing explicitly on the contributions of signals from previously described control-related 

regions, using targeted behavioral results to test neuroimaging hypotheses. Specifically, we 

examined whether and how task instructions requiring a novel stimulus-response mapping for 

an otherwise automatically generated output (i.e., the conscious reallocation of selective 

attention) modulates both behavior and brain activity. Our data suggest that skilled adult readers 

can strategically direct attention to one component of reading, phonological processing, but with 

much effort (in terms of slow reaction times). Critically, both the behavioral and the imaging data 
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are best accounted for by a model in which 2 distinct attentional control processes interact with 

reading processes, both to report the bias signal associated with pathway control (CO/DA+ 

regions) and to ensure that the correct response is selected (LFP regions).  

The observations of the current study may provide a framework for future investigations 

of dyslexia, since dyslexia is disproportionately comorbid with ADHD (Willcutt et al. 2010; 

Willcutt and Pennington 2000; Germano et al. 2010), and thus far, few studies have explicitly 

examined whether brain activity in attentional control-related regions may help explain the 

pathophysiology of this most prevalent learning disorder (but see Eden et al. 1996; Eden et al. 

1996; Demb et al. 1998; Bosse et al. 2007; Vidyasagar and Pammer 2010; Peyrin et al. 2012; 

Koyama et al. 2013 for some related findings). As will be discussed in Chapter 4, future studies 

could also include extending the analyses described here to a population of non-impaired, 

school-age, beginning readers, to investigate how reading skill modulates both task 

performance and control region recruitment. For example, it is likely that children will show 

smaller reaction time task x lexicality interactions than adults, and possibly also smaller effects 

of regularity on the task-induced word frequency effect change. It would also be interesting to 

investigate in children whether regions in the Cingulo-opercular and Dorsal attention systems 

would show functional similarity to each other, and functional dissimilarity from left Frontal-

parietal regions, as was observed here in adults. If a CO/DA+ vs. LFP or some other distinction 

were observed in children, one follow-up question would be whether evidence could be found 

for a differential timecourse of development for these two sub-systems and their point of 

interaction with reading processing regions.   
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CHAPTER 3: TWO MECHANISMS OF ATTENTIONAL CONTROL OF READING-RELATED 

TASK PERFORMANCE SHOW DEVELOPMENTAL EFFECTS 

S. Katie Ihnen, Rebecca Treiman, David A. Balota, Steven E. Petersen and Bradley L. 

Schlaggar 

Abstract 

How the resource-demanding task of learning to decode single words eventually gives 

rise to the effortless extraction of meaning from connected text remains a central and 

unanswered question in the study of the development of skilled reading. This study investigated 

the role of attentional control in the reading of single words across 2 age groups, building on 

Chapter 2 examining young adults. Children (8-10 years old) and young adults (22-28 years old) 

performed two speeded naming tasks, one requiring standard pronunciation of single words 

(“read”) and the other requiring selective attention to the phonetic pronunciation (e.g., 

pronounce “pint” such that it rhymes with “lint;” “regularize”) (adapted from Balota et al. 2000). A 

reliable crossover interaction was observed in which adults were (as expected) faster than 

children in the read task, whereas children were (somewhat unpredictably) faster than adults in 

the regularize task. Age group effects were also observed with regard to how the read and 

regularize tasks were differentially affected by stimulus characteristics. Post hoc correlation 

analyses suggested that the word frequency effect was modulated by regularity, task and age 

group. Additionally, a 3-way interaction of task, lexicality and age group revealed that adults, 

compared to children, were particularly slow to regularize words. Critically, the task effect for 

pseudowords, like the task effect for words, was significantly greater in the adults than in the 

children. Together, the findings corroborate an earlier suggestion (Balota et al. 2000) of at 2 

stages, or mechanisms, of interaction between attentional control and reading processing, 

specifically, pathway control and goal-directed response selection. The results further suggest 



	
  

102 

that the development of skilled reading entails changes in both of the proposed attentional 

mechanisms, a tentative hypothesis that could be tested by future imaging analyses. These 

results underscore the importance of explicitly accounting for attentional effects when 

interpreting performance on reading-related tasks, in both beginning and experienced readers.  

Introduction 

 Much of the most recent research on reading has been influenced by a set of 

computational models that reflect a range of architectural heritages (e.g., Seidenberg and 

McClelland 1989; Coltheart et al. 1993; Norris 1994; Zorzi et al. 1998; Perry et al. 2007).  These 

computational models of reading have been repeatedly and impressively refined in the service 

of accounting for experimentally-observed phenomena related to visual word processing, 

simulating especially well the impact of lexical characteristics on speeded naming and lexical 

decision task response latencies (e.g., Coltheart and Rastle 1994; Coltheart et al. 2001; Harm 

and Seidenberg 1999; Harm and Seidenberg 2004; Grainger and Ziegler 2011; Norris and 

Kinoshita 2012; Pritchard et al. 2012; Perry et al. 2013). One particularly influential class of 

models is referred to as “dual route,” positing 2 processing avenues of print-to-sound translation 

(e.g., Coltheart et al. 1993; Coltheart et al. 2001). 

According to dual route theory, skilled reading involves parallel activation along both the 

phonological (serial grapheme-to-phoneme conversion) (Forster and Davis 1991) and lexical 

(whole-word look-up) routes, with the lexical route generally completing its processing more 

quickly than the phonological route, at least for skilled readers presented with familiar, 

frequently occurring words (Frederiksen and Kroll 1976; Paap and Noel 1991; Visser and 

Besner 2001). While the outputs from the two routes agree for regular words (e.g. “cat”), they 

produce competing outputs (and thus slower response latencies) for words with irregular 

spelling-to-sound correspondences such as “plaid” (for which the phonological route generates 
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the pronunciation /pled/). Whether or not the 2 route computations converge is determined once 

the “full reading process” has occurred, i.e., after route computation (Taylor et al. 2012). 

Pseudowords (pronounceable though unfamiliar letter strings) can only be fully decoded via the 

phonological route. Although explications of dual route frameworks tend to focus on the 

processing that occurs along the 2 routes, a sometimes-overlooked final step of “phoneme 

recognition” is necessary to select the response from between the 2 possibilities generated by 

the routes (Pritchard et al. 2012), e.g., selecting /plæd/ rather than /pled/.  

Generally, the dual route and other computational models have pursued the objective of 

describing the component processes of reading (e.g., phonological, orthographic and semantic 

analysis) in the absence of an explicit consideration of the role of attentional control in shaping 

these processes and their necessary integration (see McCann et al. 2000; Reynolds and Besner 

2006 for further discussion). That is, many of the studies describing computational models of 

reading have discussed results in a way that implies relative independence of reading from 

attentional control mechanisms. The empirical research on reading has generally mirrored this 

pointed focus, conceptualizing reading as an encapsulated set of processes immune from the 

purview of attentional control (exceptions do exist, as will be discussed).  

 One plausible explanation for the apparent paucity of interest in the intersection of 

attentional control and reading processing may relate to the assumption that reading, at least in 

skilled adults, is an automatic process. The supposition of automaticity in reading is grounded 

both in important theoretical considerations (e.g., LaBerge and Samuels 1974; Stanovich 1990) 

and in compelling empirical evidence for the simultaneous and obligatory activation of multiple 

word representations, regardless of task (ir)relevance (as shown prominently by  Stroop 1935; 

see MacLeod 1991 for a review of Stroop studies; for other paradigms, see Neely 1977; Luck et 

al. 1996; Perfetti 1992; Booth et al. 1999; Booth et al. 2008). But automaticity is notoriously 

difficult to define e.g. (e.g., Stanovich 1990; Logan 1997) – by one account requiring 
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consideration of 2,047 permutations of various criteria (Reynolds and Besner 2006). 

Furthermore, whether or not skilled reading in adults can properly be considered automatic 

(which is perhaps more appropriately considered to be a matter of degree, rather than kind (as 

suggested by Logan 1997)), important orthogonal questions remain. For example, at what point 

developmentally and under what circumstances in adulthood does reading processing depart 

from automaticity? Which components of reading are especially susceptible to attentional 

control, and with what developmental trajectory? To what extent does a reader’s attentional 

demand vary across a given text? How do brain regions important for attentional control interact 

with reading “processing” regions?  

A relatively small number of studies in healthy young adults have addressed attentional 

control-related effects in speeded pronunciation tasks. For example, list composition 

manipulations designed to cause subjects to favor processing along one route (say, 

phonological) at the expense of the other have demonstrated that reaction times to particular 

item types can increase or decrease depending on which route has been more heavily utilized 

by recently presented items (e.g., Baluch and Derek 1991; Monsell et al. 1992; Rastle and 

Coltheart 1999; Reynolds et al. 2012). Those studies and others using related paradigms (e.g., 

priming, as in Zevin and Balota 2000) have generated fruitful debates regarding the interplay of 

lexical and phonological processing, inspiring the elaboration of heuristics including, prominently, 

the pathway control hypothesis (e.g., Monsell et al. 1992; Zevin and Balota 2000), and the 

response time homogenization hypothesis (e.g., Lupker et al. 1997; Kinoshita and Lupker 2003). 

The pathway control hypothesis – the idea that skilled readers can exert attentional control over 

reading by differentially emphasizing the relative contribution of either the phonological or lexical 

route – is particularly relevant to the current study, as discussed with regard to the model 

proposed in Chapter 2.  
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List composition and priming studies primarily invoke implicit reallocations of attention, 

therefore relying upon at least some small set of assumptions regarding the efficacy of the task 

and/or stimulus manipulations. Comparatively few studies have utilized explicit attentional 

manipulations during reading to interrogate more directly the relationship between goal-directed 

attention and reading processing. One example of a direct manipulation of attention in reading 

involved young adults performing two tasks, a simple speeded naming task and a “sound it out” 

task (e.g. pronounce “pint” (/pajnt/) to sound like “lint” (/lInt/), thus directing attention only to 

phonological processing) (Balota et al. 2000). Considering a dual route framework, Balota, Law 

and Zevin reasoned that if skilled readers can consciously direct attentional control completely 

to frequency-independent grapheme-to-phoneme conversion to “sound out” (regularize) words, 

then the typically observed main effects of lexicality and word frequency (suggestive of lexical 

route activation) should be reduced in the regularize task as compared to the read task.  

The Balota et al. study furnished several key observations. Not surprisingly, subjects 

performed the regularize task more slowly than the read task, by several hundred milliseconds. 

Specifically, participants were especially slow to regularize words, losing completely the reaction 

time advantage they showed for words compared to pseudowords in the read task. The reliable 

interaction of task by lexicality suggested that readers failed to inhibit completely the lexical 

pathway for words, despite task instructions to focus on the sounds. Additionally, the typically 

observed word frequency effect (WFE; high frequency words are pronounced more quickly than 

low frequency words) reversed in the regularize task for regular, but not irregular words. This 

final observation yielded a significant interaction of task, frequency and regularity, and was 

interpreted as evidence of more than one mechanism of attentional control for reading. 

Specifically, Balota and colleagues proposed that some sort of response checking step is 

implemented prior to articulation, during the regularize task. Those authors proposed that a 

particularly prolonged response check may be incurred on some portion of the high frequency 
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regular word trials, due to the reader second-guessing the (normal) pronunciation, 

subconsciously thinking the pronunciation should sound “funny.”  

The findings of the Balota et al. study regarding the attentional control of reading in 

healthy young adults raise provocative questions about the role of goal-directed attention in 

early readers. With the present study, we sought to examine some of those developmental 

questions. Our first primary question was the following: do school-age children show a larger, 

smaller or comparable RT cost compared to young adults, when instructed to direct attention 

entirely to phonological processing? Essential priors make competing predictions with regard to 

the overall task x age group interaction. On the one hand, (1) children are slower than adults to 

perform almost all cognitive tasks (e.g., Kail 1991), and (2) in particular, children are typically 

less able than are adults to exert selective attention (e.g., Rueda et al. 2004; Luna et al. 2004; 

Zelazo et al. 2004; Davidson et al. 2006), as required for pathway control. These two general 

developmental premises predict slower performance by the children than the adults on both the 

read and regularize tasks, at least in terms of absolute speed.  

On the other hand, children are likely to have weaker lexical representations than adults 

(e.g., Zoccolotti et al. 2005), directly reflecting their relatively less extensive exposure to written 

word forms (Stanovich 1993; Share and Stanovich 1995). Weaker lexical representations may 

be implemented in a dual route framework as either higher thresholds of activation (Andrews 

1989) or lower baseline activation levels (Morton 1969) for individual lexical entries. This 

premise, related to experience rather than development, predicts that children should perform 

the regularize task faster than adults, due to a reduced contribution from the interference of 

lexical representations, at least relative to their respective performance on the read task.  

Unfortunately, both predictions (children will be slower/faster than adults to regularize) 

are not so logically straightforward as was just implied. More realistically, the cognitive 

development-related and experience-related factors that distinguish children from adults will 
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exert opposing effects on pathway control, with the children, compared to the adults, showing 

both reduced ability to exert inhibitory control and weaker lexical representations requiring 

inhibition in the first place. Because of the push/pull between these factors, the outcome of the 

task x age group interaction will depend upon whether immaturity of selective attention in the 

children (e.g., Rueda et al. 2004) or strong, consolidated lexical representations in the adults 

(e.g., Coltheart et al. 2001) exerts a dominant influence.  

Complicating the issue further is a consideration of 2 additional potential age group 

differences that may interact with lexical pathway control to drive a task x age group interaction. 

First, the ability to compute sublexical spelling-to-sound conversions will likely influence overall 

regularize task performance. Arguably, 8-10 year old children rely heavily on phonological 

processing (Backman et al. 1984; Aaron et al. 1999; Pugh et al. 2001; Greenberg et al. 2002), 

possibly moreso than adults (Doctor and Coltheart 1980; Greenberg et al. 1997), especially 

given that children in this age range decode an average of 4,000-12,000 new words per year 

(Scholastic: www.scholastic.com/readeveryday/pdfs/reading_facts.pdf).  Then again, the 

highly educated young adults in our study sample have had many more years of cumulative 

experience with spelling-to-sound mappings than have the children, and some evidence 

suggests automatic engagement of phonological processing in adults, regardless of task 

demands (e.g., Perfetti 1992; Booth et al. 1999; Booth et al. 2008; Cone et al. 2008). Yet 

another potentially contributing factor is that the quality and quantity of response checking is 

likely to matter significantly in overall task performance. Indeed, it may be that response 

checking plays a larger role in the attentional control of regularize task performance than 

pathway control, at least in young adults, as suggested by the observations in the imaging 

portion of Chapter 2 showing greater overall activity and greater modulation by stimulus features 

in the left Frontal-parietal (LFP) as compared to the Cingulo-opercular/ Dorsal attention + 

(CO/DA+) cluster. 



	
  

108 

While it is difficult to tease out the distinct contribution of age group differences in 

grapheme-to-phoneme conversion ability in the current design, we may be able to identify age 

group differences in the response check step. Although the current study does not include 

neuroimaging and therefore does not allow for a comparison of the relative contributions of LFP 

and CO/DA+ activity in the 2 age groups (see Chapter 4 for a future experiment), the present 

data can be leveraged to examine reaction time differences due to stimulus features, consistent 

with the logic of Balota and colleagues (2000). Thus, our second primary question was as 

follows: do children and adults show differences in the way that stimulus characteristics interact 

with task, in a way that may distinguish developmental differences in pathway control from 

developmental differences in response selection? 

As was the case with the pathway control predictions, a prediction for an age group 

difference in response checking should be informed by priors. One relevant experience-related 

factor is that the children should have relatively sparser meta-linguistic knowledge (Nagy and 

Anderson 1995)7. Secondly, and related to cognitive development writ large, 8-10 year old 

children are yet immature with regard to the kind of attentional control that may be needed to 

implement a response check (Norman and Shallice 1986), as evidenced, for example, by 

inferior ability to monitor their responses (Kopp 1982; Davies et al. 2004). Thus, one prediction 

regarding our second question is that response checking during the regularize task should be 

less contributory to the performance of the children than the performance of the adults. If 

children engage response checking less frequently and/or more briefly than do adults, we 

should see weaker interactions, in the younger group compared to the older group, of stimulus 

characteristics with task. For example, the children may show a smaller regularize task-induced 

reversal of the word frequency effect than the adults, particularly for regular words. This 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7 Meta-linguistic knowledge captures that level of familiarity with words, spellings, sounds and 
meanings that likely produces or prolongs a decision heuristic such as a response check. 
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prediction follows from the original Balota et al. interpretation of the task x frequency x regularity 

interaction in adults as evidence for the response checking step in the first place. 

Another approach to interrogating age group differences in response checking is to 

examine the interaction of task, lexicality and age group. A 3-way interaction of those variables 

that is characterized by an age group difference in the task effect for words but not for 

pseudowords suggests an age group difference in pathway control, since the words, but not the 

pseudowords should require inhibition of the lexical pathway. On the other hand, a 3-way 

interaction that is characterized by age group differences in both the task effect for 

pseudowords and the task effect for words points to age group differences in both pathway 

control and response checking, since pseudowords lack lexical representations, and their 

pronunciations, if anything, should be facilitated by selective attention to phonological 

processing during the regularize task. 

Building off of Chapter 2, the data presented in this chapter describes a behavioral 

comparison of the regularize vs. the read task in a group of 8-10 year old children and a group 

of young adults. We asked 2 primary questions in this chapter. First, do school-age children 

show a larger, smaller or comparable reaction time cost compared to young adults, when 

instructed to direct selective attention to phonological processing? Second, do children and 

adults show differences in the way that stimulus characteristics interact with task, in a way that 

distinguishes developmental differences in pathway control from developmental differences in 

response selection? In asking these 2 primary questions, we pursued 2 objectives: (1) to re-

asses, in 2 cohorts of different ages and reading levels, evidence for the 2-mechanism model of 

attentional control in reading, as described in Chapter 2; and (2) to characterize any age group 

differences illuminated by the first objective, as a way of elucidating the role of attentional 

control in reading development. As presaged, the results discussed in this chapter will 
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eventually be followed by a corollary neuroimaging investigation of the age group differences 

that are revealed. 

Method 

Participants 

Participants were recruited from the Washington University community and elementary 

schools in the area. Any potential participant with neurologic and/or psychiatric diagnoses, any 

history of dyslexia or reading difficulty, or current use of psychotropic medications was not 

included in the study. Enrolled participants included 32 adult (ages 22-28 years; 15 male) and 

35 child (ages 8-10 years; grades second through fifth; 17 male) right-handed, native and 

monolingual English speakers. Data from 4 children were excluded, 3 because they failed to 

perform both tasks at the accuracy criterion of >65%, and 1 who failed to meet the criterion for 

accuracy on the post-test, see below. Thus the analyzed data derives from 32 adults (15 male) 

and 31 children (16 male).  

Neuropsychological tests were administered to each participant. Two subtests of the 

Wechsler Abbreviated Scale of Intelligence (Vocabulary and Matrix Reasoning) assessed 

general intelligence (Wechsler 1999). Three subtests of the Woodcock–Johnson III (Letter–

Word ID, Reading Fluency, and Word Attack) estimated absolute and relative reading level 

(Woodcock and Johnson 2002). A Stroop color naming task assessed attentional control 

(Spieler et al. 1996). Supplemental tables D.1 and D.2 summarize the groups’ 

neuropsychological testing results. Two-tailed, independent samples t-tests between the adults 

and the children were conducted for each cognitive test, and the resulting test statistics are also 

reported in the tables. 

In addition to establishing that the groups were comparably skilled for grade-adjusted 

reading level (see Supplemental material D.3 for more information), neuropsychological testing 
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established that all participants were of at least average intelligence. While there were reliable 

age group differences in some testing results, many individual scores, even of those measures 

showing a reliable group difference, did not map onto task performance. For example, the 

groups were different on several measures of Stroop performance: children were slower (for 

each of the 3 conditions) and less accurate (for incongruent and neutral trials) than the adults. A 

normalized index of Stroop interference was calculated for each subject (incongruent median 

zRT - congruent median zRT). There was a significant age group difference in this measure, 

with children showing greater interference than adults (see Supplemental table D.2). However, 

there was not a reliable correlation between Stroop interference and any index of read and 

regularize task performance. See Supplemental material D.2 for a more detailed discussion of 

individual and age group Stroop results. 

Some neuropsychological scores did reliably correlate with individual task performance 

measures of interest (task measures described later). Although neuropsychological correlation 

analyses were not the focus of this chapter, Supplemental material D.4 describes several 

noteworthy correlations in the test scores, the implications of which are addressed in Chapter 4 

in the general Conclusions. 

Procedure  

Subjects were seated in front of a 16 inch Sony CRT computer monitor, with a standing 

microphone placed 2-3 cm away from the mouth. Stimuli were controlled using Psyscope X B53 

on a Power Macintosh G3 (Cohen et al. 1993). Vocal responses were transmitted to a Sony 

MP3 Digital Voice Recorder (ICD-UX70 1GB USB).  

For the regularize task, participants were asked to “sound out” items as though reading 

them for the first time, using whatever strategies they normally use when encountering new 

words. Thirteen demonstration trials and 73 practice trials of the regularize task were then 

presented (see Supplemental materials B.5a and B.5b for practice items, including example 
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pronunciations). The practice trials were self-paced with feedback; correct answers were given 

by the experimenter as needed. No practice items were repeated in the tasks.   

The experimental session began with 3 consecutive blocks of the regularize task, 

followed by 3 consecutive blocks of the read task (“read normally.”). Each block included 106 

items and lasted 6 min, 10 s. Pilot testing suggested that the fixed regularize/read ordering was 

most effective for establishing and maintaining task mode. 

Stimuli were displayed on a black background in lowercase white letters at font size 56, 

subtending 2.1 to 5.0 degrees of visual angle horizontally and 0.7 to 1.1 degrees vertically. Each 

stimulus appeared alone, and in the middle of the screen, for 2500 ms. Participants were free to 

respond as soon as the stimulus appeared and up until the next stimulus appeared. Immediately 

following the disappearance of each stimulus, a white fixation crosshair appeared in the middle 

of the screen for 1 s. Participants were asked to maintain visual fixation on the screen for the 

duration of the block.  

After completing the regularize and the read tasks, participants performed a 2-step 

lexical decision/semantic knowledge post-test to ensure familiarity with the words. The 636 

stimuli were divided into 6 lists (not the same lists used in the tasks), and list order was 

counterbalanced across participants. First, an item appeared on the computer screen along with 

the choices “WORD” and “NOT A WORD” (the same projection and display equipment was 

used for the post-test as for the tasks). Subjects pressed the right button of a Psyscope-

compatible button box (Cohen et al. 1993) for one option and the left button of a button box for 

the alternative (button assignment was also counterbalanced across subjects). For those words 

that were correctly identified as words, three short definitions subsequently appeared on the 

screen. The participant pressed a button corresponding to the best choice among the options. 

For the pseudowords and for the words that were incorrectly identified as non-words, no 

definition choices were given. The post-test was untimed.  
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Adults made few errors on the post-test (>99% accuracy); children achieved, on average, 

92% accuracy. One child failed to meet the 65% criterion and was excluded from the task data.  

Stimuli 

The stimuli included 252 pronounceable pseudowords and 384 words. Supplemental 

material B.1 includes the complete list of test stimuli, and Appendix B provides additional 

stimulus information. The words included 96 of each of 4 combinations of regularity (regular or 

irregular) and frequency (high or low). Items were 3-8 letters long, with an average length of 5.6 

letters and 1.5 syllables. Table 3.1 shows the mean values of several lexical properties for each 

of the 5 stimulus classes. 

Word frequency ratings were based on the Zeno et al. standard frequency index (SFI) 

(1995). Stimuli spanned an SFI continuum from 40.0 to 75.0 (unit = log-transformation of a 

weighted frequency per million; see Supplemental figure B.8 for a depiction of the distribution 

across the frequency range). A median split designated subsets of equal numbers of regular 

and irregular words as high frequency (M SFI = 60.0) and low frequency (M SFI = 47.0). High-

frequency words had significantly higher SFIs than low-frequency words (t(349) = 29.128; p 

< .001. Regular and irregular words within each frequency category were not statistically 

different from one another in terms of SFI (low frequency: t(190) = 0.907; p = .365; high 

frequency: t(184) = -1.953; p = .052).  

A word was determined to be regular if its rime (e.g. –at in cat) followed common 

spelling to sound correspondences. For example, “gave” (/gev/) is regular whereas “have” 

(/hæv/) is irregular, because the “e” at the end of “have” should generate the pronunciation /hev/. 

Pilot testing confirmed that words designated as irregular typically resulted in different 

pronunciations for the 2 tasks, while regular words did not. Pseudowords were created using 

onsets (e.g. /k/ in “cat”) and rimes (e.g. /æt/ in “cat”) that tend to be have unambiguous 

pronunciations).  
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Table 3.18 Mean values of lexical properties across 5 stimulus types (short and long)  
 

Stimulus typea 

Number 
of letters 

(SD) 

Number 
of 

syllables 
(SD) 

Number of 
orthographic 
neighborsb 

(SD) 

Number of 
phonological 
neighborsb 

(SD) 

Standard 
frequency 

indexc 
(SD) 

High frequency 
regular words 

5.51 
(1.45) 

1.50 
(0.50) 

4.52       
(5.12) 

8.64        
(9.93) 

59.34  
(4.51) 

Low frequency 
regular words 

5.52 
(1.45) 

1.50 
(0.50) 

4.14       
(4.98) 

8.39      
(10.11) 

47.22  
(3.83) 

High frequency 
irregular words 

5.56 
(1.41) 

1.50 
(0.56) 

3.31       
(4.10) 

8.99       
(9.56) 

60.75  
(5.42) 

Low frequency 
irregular words 

5.52 
(1.44) 

1.53 
(0.56) 

3.08       
(4.44) 

8.36      
(10.48) 

46.74  
(3.48) 

Pseudowords  5.52 
(1.42) 

1.50 
(0.51) 

2.98       
(4.03) --- --- 

 
Note. aFor all word stimulus types, n = 96; for pseudowords, n = 252.  bOrthographic neighbors 
and phonological neighbors calculated using the English Lexicon Project database 
(http://elexicon.wustl.edu; Balota et al. 2007). cStandard frequency index (SFI) is from Zeno et al. 
(Zeno et al. 1995).  

 

As shown in Table 3.1, the stimuli were well matched for number of letters, number of 

orthographic neighbors and number of phonological neighbors. Although not indicated in the 

table, stimuli were also selected such that acoustic properties of the onset phoneme did not 

systematically vary by type (Spieler and Balota 1997). 

The 636 stimuli were divided into six lists of 106 items each, comprising equal numbers 

of each stimulus type in each list. Each participant performed 1 of the 2 tasks on every stimulus, 

with the list order and task assignment counterbalanced across participants.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8 Supplemental material B.3 and B.4 show the lexical property data presented in Table 3.1, but 
stratified by stimulus length. 



	
  

115 

Coding of response accuracy  

Response accuracy for each participant for each item was determined by a single rater, 

during task performance. In cases of ambiguous response, the recording was used offline to 

determine correct coding. 

For the regularize task, a pronunciation of a regular word was considered correct if it 

corresponded to the standard dictionary pronunciation. Pseudowords (e.g. /krot/ for “crote”) 

were considered correct if their pronunciations followed typical spelling-to-sound 

correspondences, or rhymed with those of similarly spelled real words. A pronunciation of an 

irregular word was considered correct if it obeyed a phonologically legitimate alternative 

pronunciations of its rime (e.g., pronouncing “have” as /hev/). In some cases, more than one 

pronunciation of an irregular word was counted as correct. See Supplemental material B.2 for 

examples of irregular test stimuli along with possible correct responses. 

All subjects achieved at least 65% accuracy in each task overall. Only the correct trials 

from each block were included. Items that were misidentified on the post-test for a given 

participant were excluded from the RT analyses. Because both groups performed both tasks 

with relatively high accuracy (and because of issues mentioned in Chapter 1 related to the 

multiplicity of error types and our inability to discriminate them confidently), analyses focused on 

reaction time effects. However, effects of accuracy were also examined and reported. 

Calculation of response latency 

Responses latencies were calculated from recorded files that had been purged for 

coughs, throat clearings, etc. using an in-house Matlab program (Matlab 7.80; R2009a; The 

MathWorks, Natick, MA) (Nelles et al. 2003). Reaction times were also spot-checked manually 

using Audacity, an open-source software for sound editing (http://audacity.sourceforge.net/). 

The mean and standard deviation were calculated on an individual subject basis across 

all correct trials of both tasks, excluding raw reaction times < 200 ms or > 3 standard deviations 



	
  

116 

above a subject’s mean as probable outliers (on average, 9.9 out of 636 trials were removed per 

subject). Individual differences in overall processing speed were controlled for by converting 

each response latency to a z-score based on each participant’s mean reaction time and 

standard deviation (Faust et al. 1999). Repeated-measures analyses of variance (ANOVAs) 

were carried out at the subject- (F1) and item- (F2) levels to examine effects of age group, task 

and lexical variables (including lexicality, word regularity and word frequency). Appropriate post 

hoc analyses clarified the results of the planned comparisons.  

Results 

Raw RTs and accuracy rates are presented in Table 3.29. Unless otherwise stated, 

response latency analyses are presented for the z-transformed RTs only. In general, the pattern 

of results was the same when analyses were computed on the untransformed RTs. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9 Supplemental tables D.5 and D.6 show the raw reaction times and accuracy rates for the short 
and long items, respectively, considered separately. 
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Table 3.2 Mean raw reaction times (ms) and accuracy rates 

	
  
 Read Regularize 

 Adults Children Adults Children 

Stimulus 
type  

RT M Acc M RT M Acc M RT M Acc M RT M Acc M 
(SD) (SD) (SD) (SD) (SD) (SD) (SD) (SD) 

High 
frequency, 
regular 

678 
(117) 

1.000 
(.000) 

824 
(125) 

0.995 
(.013) 

1258 
(277) 

0.994 
(.014) 

1140 
(209) 

0.985 
(.024) 

Low 
frequency, 
regular 

691 
(124) 

0.999 
(.004) 

835 
(128) 

0.984 
(.031) 

1205 
(272) 

0.994 
(.018) 

1105 
(186) 

0.980 
(.026) 

High 
frequency, 
irregular 

704 
(119) 

0.996 
(.008) 

851 
(124) 

0.966 
(.044) 

1274 
(267) 

0.883 
(.106) 

1196 
(223) 

0.771 
(.105) 

Low 
frequency, 
irregular 

746 
(127) 

0.979 
(.023) 

908 
(155) 

0.850 
(.130) 

1269 
(264) 

0.897 
(.068) 

1180 
(232) 

0.803 
(.082) 

Pseudo-
words 

841 
(199) 

0.992 
(.012) 

1004 
(198) 

0.926 
(.107) 

1126 
(277) 

0.988 
(.024) 

1135 
(209) 

0.948 
(.058) 
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Children were faster than adults on the regularize task 

Our first overarching question was whether children would show a larger, smaller or 

comparable reaction time cost compared to young adults, when instructed to direct attention 

entirely to phonological processing during the regularize task. As discussed in the Introduction, 

a reasonable case could be argued for a prediction in either direction, since 8-10 year old 

children likely have both weaker lexical route representations than adults (predicting, in 

simplified terms, a speed advantage) and relatively inferior inhibitory control (predicting, in 

simplified terms, a speed disadvantage). Thus the first analyses examined the effect of task 

(across all stimuli) and its modulation by age group.  

Analyses on the z-transformed reaction times including the factors of task and age group 

showed a main effect of task (F1(1,62) = 332.55, p < .001; F2(1,635) = 3001.21, p < .001), an 

effect of age group that was significant by subjects only (F1(1,42) = 3.192, p = .003; F2(1,635) = 

0.110, p = .740) and, more importantly, an interaction of task and age group (F1(1,61) = 17.93, p 

< .001; F2(1,635) = 580.79, p < .001; see Figure 3.1). This significant task x age group 

interaction was obtained for untransformed reaction times as well (F1(1,61) = 16.07, p < .001; 

F2(1,635) = 668.89, p < .001). The interaction arose because adults were 150 ms faster than 

children on the read task (zRT t1(61) = 4.03; p < .001; t2(635) = 437.57; p < .001) but 55 ms 

slower than children on the regularize task (zRT t1(61) = 4.41; p < .001; t2(635) = 174.72; p 

< .001).  
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Figure 3.1 Significant interaction of task x age group  
RTs shown as z-transformed. Error bars (for all figures in this chapter) show +/- 1 

standard error of the mean (SEM). Because the statistical analyses were computed as 
repeated-measures ANOVAs, the error bars may be used only to assess group variability; they 
cannot be used to infer statistical significance. Asterisks indicate significant main effects and 
interactions, with ***p < .001.  

 
 
 
 

 
 
 
 
 

  

 
 
 

Analyses of the accuracy data including the factors of task and age group also showed 

main effects of task (F1(1,62) = 55.94, p < .001; F2(1,635) = 32.04, p < .001) and age group 

(F1(1,37*) = 5.328, p < .001; F2(1,635) = 436.149, p < .001), as well as an interaction of task and 

age group that reached significance at the item-level only (F1(1,61) = 0.11, p = .741; F2(1,635) = 

7.71, p < .010). Both children and adults were more accurate on the read task than the 

regularize task (children +3.0%; F1(1,30) = 18.77, p < .001; F2(1,635) = 7.10, p < .010; adults 

+3.3; F1(1,31) = 44.05, p < .001; F2(1,635) = 88.88, p < .001). At 0.3%, the age group difference 

was clearly small.  

Although it is robust and remarkable, the task x age group interaction for reaction time is 

difficult to interpret, since several potentially interactive age group differences may contribute, 

including the strength of lexical representations, the efficacy of selective attention, grapheme-to-

phoneme conversion facility and the nature of a post-lexical response check. We therefore 

turned to our second question, to ask whether children and adults show differences in the way 

that stimulus characteristics interact with task. The logic was that stimulus modulation of the 

task x age group interaction may be useful for distinguishing developmental differences in 
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pathway control from developmental differences in response selection, in particular because 

any task interaction with regularity as well as any task effect for pseudowords would be difficult 

to attribute to lexical pathway interference alone (as suggested by Balota et al. 2000).  

The next analyses examined whether frequency and/or lexicality would modulate the 

robust reaction time interaction of task and age group. First, frequency, the more subtle of the 2 

properties, was addressed. Following Balota et al., the analyses of frequency and lexicality 

included only regular words and pseudowords. As those authors pointed out, both regular words 

and pseudowords generate the same pronunciations for the 2 tasks, so their task comparison is 

free of potentially confounding articulatory effects.  

The frequency effect for regular words in the regularize task showed a weak age group 

effect 

Treating frequency as high vs. low did not reveal an age group difference in the 

frequency effect for regular words in the regularize task  

Analyses of zRT were conducted using task, frequency and age group as factors. The 

main effects of task and age group were discussed above with regard to the task x age group 

analyses. Consistent with Balota and colleagues, there was a reliable task x frequency 

interaction (F1(1,62) = 30.98, p < .001; F2(1,190) = 15.62, p < .001). The task x frequency 

interaction was obtained in each age group considered separately, though it was statistically 

less reliable in the children (adults: F1(1,31) = 30.55, p < .001; F2(1,190) = 16.97, p < .001; 

children: F1(1,30) = 7.31, p = .011; F2(1,190) = 5.70, p = .018) (see Figure 3.2). The interaction 

of task and frequency across the age groups was driven by a positive word frequency effect in 

the read task that was significant at the subject-, but not item-, level (F1(1,62) = 5.30; p = .025; 

t2(190) = 1.60; p = .111) and a significant negative word frequency effect in the regularize task 

(F1(1,62) = 31.67; p < .001; t2(190) = 2.80; p = .006).  
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Figure 3.2 Significant interaction of task x frequency in each age group 
The interaction of task x frequency (computed using regular words only) was significant 

in each age group separately, with no significant 3-way interaction by rmANOVA. z-transformed 
RTs are plotted, and raw RT differences between high and low frequency are indicated for each 
task for each age group. Read task shown in black dotted lines, regularize task shown in red 
solid lines. p values depicted for both the subject- and item- analyses (subject-/item-), where  
***p < .001; **p < .01; *p < .05. 

 
 
 

The 3-way interaction of task, frequency and age group was not significant by rmANOVA 

(F1(1,61) = 1.79, p = .186; F2(1,190) = 2.16, p = .144). However, and as shown in Figure 3.2, 

post hoc evaluations of the task- and age group- specific frequency effects suggested different 

patterns in the 2 groups. Specifically, the word frequency effect reached significance for the 

adults in both tasks (read F1(1,31) = 7.91, p = .008; t2(190) = 2.06; p = .041; regularize F1(1,31) 

= 22.17, p < .001; t2(190) = 3.12; p = .002), but for children only in the regularize task, and only 

at the subject- level (read F1(1,30) = 1.07, p = .310; t2(190) = 1.04; p = .302; regularize F1(1,31) 

= 7.31, p = .011; t2(190) = 1.67, p = .096). Stated in terms of effect sizes, and as shown on the 

plots, in adults the word frequency effect changed from +13 ms for the read task to -53 ms for 
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the regularize task, thus reversing by 66 ms10. In children, the task-induced word frequency 

effect was smaller in magnitude by 30%, changing 46 ms from +11 ms for read to -35 ms for 

regularize.  

Treating frequency as a continuous variable illuminated an age group difference in the 

frequency effect for regular words in the regularize task 

As just described, the categorical analysis (rmANOVA) did not yield a significant 3-way 

interaction of task x frequency x age group for the regular words (F1 = 1.79; F2 = 2.16). However, 

children showed a change in the word frequency effect (from the read task to the regularize 

task) that was 30% smaller in magnitude than that observed in the adults, and post hoc 

evaluations of the frequency effects obtained in each age group for each task suggested that 

the groups were not the same. Given our interest in determining whether developmental 

differences exist in terms of both pathway control and response checking, it was imperative to 

pursue the possibility that there existed even a weak interaction of task, regularity and 

frequency with age group.  

We therefore next conducted a set of post hoc correlation analyses to explore the 

possibility that age group differences in the relationship between task and frequency for regular 

words exist, but are small enough so as not to emerge when frequency is treated as a 

dichotomous variable. As described in Chapter 2, further support for the appropriateness of 

conducting a correlation analysis of the effect of frequency is the fact that the word stimuli were 

selected intentionally to sample a continuous range of the log-transformed Zeno et al. Standard 

Frequency Index (SFI) (1995) (see Supplemental figure B.8), and the original choice to 

dichotomize the stimuli by a median split was a matter of convenience, rather than a theoretical 

commitment to thinking about frequency as a simple construct of high vs. low.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
10 The task-induced word frequency effect reversal in the adults in the present study is quite 
similar to what was reported in the Balota et al. report (from +26 ms for read to -43 ms for 
regularize, reversing 69 ms). 
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Frequency was coded as a continuous variable, and correlations were computed as 

described in Chapter 2 with regard to the interaction of task x frequency x regularity in adults. 

Item-level correlations between group-average zRT and log frequency were calculated using all 

384 word stimuli (n = 192 each of regular and irregular words). Each item was entered into four 

bivariate correlations, one for each task (read and regularize) for each age group (children and 

adults). Regular and irregular words were treated separately.  

As shown in Figure 3.3, the correlations revealed age group differences in the 

modulation, by task and by regularity, of the relationship between frequency and reaction time. 

As reported in Chapter 2 (Figure 2.5), frequency facilitated read reaction times for both regular 

(R = -.176; p = .015) and irregular words (R = -.312; p < .001) for the adults. Also as previously 

stated, frequency significantly inhibited regularize reaction times for the adults for regular words 

(R = .242; p = .001), but not irregular words (R = -.046; p = .524), consistent with the 3-way 

interaction first reported by Balota and colleagues (2000). Figure 3.3 shows that for the children, 

on the other hand, the pattern of task, frequency and regularity was clearly different. Frequency 

facilitated read reaction times for the irregular (R = -.400; p < .001), but not the regular words (R 

= -.099; p = .171). Critically, and in contrast to what was observed in the adults, the children 

showed a null effect of frequency on regularize task reaction time for both regular and irregular 

words (regular R = .096; p = .184; irregular R = .051; p = .482). 

The regularity- and age group- dependence of the relationship between frequency and 

task, as revealed by the post hoc correlations, does not constitute a direct test of difference, and 

should therefore be interpreted cautiously. To assess further the confidence with which we 

should interpret the correlation findings, we next computed 4-way interaction between frequency, 

regularity, task and age group by rmANOVA. That interaction reached significance at the item- 

level and approached significance at the subject- level (F1(1,61) = 3.09, p = .084; F2(1,380) = 

5.69, p = .018).   
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Figure 3.3 Item-level age group- and regularity-specific correlations between frequency 
and reaction time for both tasks 
 In the regularize task, only the adults showed a significant negative correlation between 
frequency and reaction time, and this was only true for regular words. Reaction times for each 
word stimulus are plotted along the y-axes, averaged either across adults (top panel) or children 
(bottom panel), separately for the read task (left panel) and the regularize task (right panel). 
Frequency is shown along the x-axes, as the standard frequency index (a log-transformed count 
per million) from the Zeno et al. norms (Zeno et al. 1995). Asterisks and solid lines indicate a 
significant linear relationship, where ***p ≤ .001; *p ≤ .05. Dotted lines indicate the absence a 
significant linear fit. Regular words are shown as orange diamonds, while irregular words are 
plotted as periwinkle circles. The x- and y-axis scales are the same for all 4 plots.  
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Categorical analyses of accuracy for task, frequency and age group were equivocal 

Returning to the treatment of frequency as a categorical variable using rmANOVAs, 

analyses of the accuracy data were also computed using the factors of task, frequency and age 

group. Compared to the reaction time results, effects of the 3 factors of interest were relatively 

subtle, and the F1 and F2 analyses did not converge. First, the interaction of task x frequency for 

accuracy reached significance at the item- level (F2(1,190) = 4.77, p = .030) but not the subject- 

level (F1 <  1). The task x frequency interaction was further modulated by age group, again at 

the item- (F2(1,190) = 4.25, p = .041), but not the subject- level (F1 <  1). The 3-way interaction 

was driven by a significant item-level interaction of task and frequency in the children (F1 < 1; 

F2(1,190) = 5.27, p = .023) that was absent in the adults (both Fs <  1).  

 

Given the weak but suggestive evidence that, for reaction time, age group interacts with 

task, frequency and regularity, the next analyses asked whether the 2 age groups would also 

show differences in the interaction between task and lexicality. As discussed in the Introduction, 

a task x age group effect for pseudowords, in particular, may corroborate the notion that the 

groups differ with regard to the contribution of the response check step, since pseudowords do 

not have lexical representations.  

Lexicality modulated the interaction of task and age group, but adults were relatively 

slower for both words and pseudowords  

Analyses of zRT were next conducted using task, lexicality and age group as factors. 

Consistent with the Balota et al. study, the interaction of task and lexicality was significant 

(F1(1,62) = 265.30, p < .001; F2(1,442) = 632.61, p < .001). More importantly, the relationship 

between task and lexicality was robustly modulated by age group (F1(1,61) = 9.40, p < .005; 

F2(1,442) = 34.83, p <.001; see Figure 3.4). The 3-way interaction was driven by a reliable age 

group difference in the effect of lexicality on the regularize task (F1(1,61) = 31.87, p < .001; 
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F2(1,442) = 121.59, p <.001). In particular, children showed a null lexicality effect for the 

regularize task (+12 ms; F1(1,30) = 0.37, p = .550; t2(442) = 0.84, p = .404), while adults showed 

a strong reversed lexicality effect for the regularize task (-106 ms; F1(1,31) = 49.07, p < .001; 

t2(442) = 9.41, p < .001). On the other hand, both groups showed large, positive, reliable 

lexicality effects for the read task (adults = +156 ms: F1(1,31) = 238.71, p < .001; t2(351*) = 

20.77, p < .001 children = +175 ms: F1(1,30) = 59.57, p < .001; t2(418*) = 19.00, p < .001). The 

lexicality effects in the read task were not reliably different between age groups at the subject-

level (F1(1,61) = 2.17, p = .146), though the 2-way interaction did reach significance at the item-

level (F2(1,442) = 11.69, p <.001), reflecting a larger lexicality effect in the read task for the 

children as compared to the adults.  

A complementary way of decomposing the significant 3-way interaction is to examine the 

interaction of task and age group for words and pseudowords separately. For regular words, 

both groups showed a main effect of task (adults F1(1,31) = 755.40, p < .001; t2(191) = 59.30, p 

< .001; children F1(1,30) = 163.09, p < .001; t2(191) = 39.12, p < .001), but the effect of task was 

significantly greater in the adults than the children (F1(1,61) = 31.30, p < .001; F2(1,191) = 

344.96, p < .001). Similarly, for pseudowords, both groups showed a main effect of task (adults 

F1(1,31) = 59.21, p < .001; t2(251) = 40.14, p < .001; children F1(1,30) = 34.93, p < .001; t2(251)  

= 20.12, p < .001), and, as with regular words, the effect of task for pseudowords was 

significantly greater in the adults than the children (F1(1,61) = 5.81, p = .019; F2(1,251) = 119.34, 

p < .001). 
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Figure 3.4 Significant interaction of task x lexicality x age group 
Age group reliably modulated the interaction of task x lexicality (computed using regular 

words and pseudowords). Still, for both words and pseudowords, the task reaction time cost 
(distance from the black line to the red line) was, on average, greater in the adults than the 
children. z-transformed RTs shown. Read task shown in black dotted lines, regularize task 
shown in red solid lines. p values depicted for both the subject- and item- analyses (subject-
/item-), where  ***p < .001; **p < .01. 

 
 

Turning to the accuracy data, the interaction of task and lexicality was significant 

(F1(1,62) = 61.54, p = .016; F2(1,442) = 19.67, p < .001). As with reaction time, the relationship 

between task and lexicality for accuracy was further modulated by age group (F1(1,61) = 4.53, p 

= .037; F2(1,442) = 12.60, p <.001), however this is in part due to a ceiling effect for the adults. 

Children were 6.4% more accurate for regular words (99.0%) than for pseudowords (92.6%) in 

the read task, and just 3.4% more accurate for regular words (98.2%) than for pseudowords 

(94.8%) in the regularize task. Adults, on the other hand, performed close to ceiling for both 

regular words and pseudowords in both tasks (>98% or regularize, >99% for read).  

The fact that the task reaction time cost was most prominent for words for the adults 

(compare distances between black and red lines in Figure 3.4 for each task for each age group, 

or refer to Table 3.2 for raw data) is consistent with the notion that adults encounter particular 

difficulty inhibiting the lexical pathway during the regularize task (Balota et al. 2000). However, 
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the task effect was shown to be significantly more pronounced in adults than in children for 

pseudowords as well. Specifically, as highlighted in Figure 3.5, even though adults were 164 ms 

faster than the children to read pseudowords (raw RT t1(61) = 477.37; p < .001; t2(251) = 3.26; p 

= .002), the 2 groups showed a non-significant 9 ms RT difference for pseudowords for the 

regularize task (raw RT11 t1(61) = 0.14; p = .892; t2(251) = 0.01; p = .916). Stated differently, the 

adults were 285 ms slower to regularize pseudowords than to read them, while the comparable 

task difference in children was significantly smaller, by more than half (131 ms).  

 
 
Figure 3.5 Interaction of task 
x age group for pseudowords 
only  

Reaction times shown 
as raw RTs, to emphasize that 
the age group differences were 
absolute, not just relative. Red 
text and brackets emphasize 
the age group effect for each 
task (read task >> regularize 
task), while black text and 
brackets emphasizes the task 
effect in each age group (adults 
> children). p values depicted 
for both the subject- and item- 
analyses (subject-/item-), where  
***p < .001; **p < .01. 

 

 
	
   	
    

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11 Analyses showed the same statistical results for the zRTs, so raw RTs are reported to 
emphasize that the age group interaction is absolute, not just relative.   
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Discussion 

This study compared performance on a read and a regularize task in young adults and 

school-age children, in order to investigate the interaction of attentional control and reading and, 

in particular, how that interaction may be different for early and experienced readers. Extending 

a previous study (Balota et al. 2000) as well as the work in Chapter 2, we asked 2 primary 

questions in this chapter. First, we asked whether 8-10 year old children would show larger, 

smaller or comparable reaction time costs, compared to young adults, for performing the 

regularize task. Second, we asked whether children and adults would show differences in the 

interactions of particular stimulus features with task, potentially discriminating the relative 

contributions of developmental differences in pathway control from developmental differences in 

response selection. Framing our study to ask these 2 primary questions allowed us to pursue 

twin objectives of re-assessing the evidence for the 2-mechanism model (following both the 

original Balota et al. study and the data presented in Chapter 2) while simultaneously extending 

those previous studies by exploring differences between 8-10 year old children and young 

adults.   

Together, the results of this chapter provide converging evidence in support of the 

Balota et al. suggestion of a 2-mechanism explanation for attentional control of the regularize 

task, with roles for attentional modulation at both the level of pathway control and response 

selection, thereby also corroborating the findings presented in Chapter 2. The results 

furthermore suggest that the development of reading likely involves changes in both of the 

proposed mechanisms of attentional control over reading, although this latter conclusion should 

be corroborated by attempts both to replicate the behavioral data and to compare the 2 age 

groups using neuroimaging (see Chapter 4, future directions). 
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A reading task was identified in which children were faster than young adults 

The first set of analyses revealed a robust task x age group crossover for reaction time, 

driven by the adults being faster than the children on the read task, as expected, and the 

children being faster than the adults on the regularize task, which was not expected. It is frankly 

surprising to identify a task in which children were reliably faster (though less accurate) than 

adults, and this observation alone is indeed one of the most striking and noteworthy of this study. 

Indeed, children are slower and less accurate than young adults (Elliott 1970; Wickens 1974) on 

just about any cognitive task (Hale 1990; Kail 1991), and processing speed, measured as 

reaction time, has been shown to decrease robustly from childhood through adolescence to 

adulthood (Kail and Miller 2006). Despite the overwhelming literature precedent, the reaction 

time advantage for children over adults in the regularize task was large and highly reliable, and 

it was separately evident in sub-analyses considering regular words, irregular words and 

pseudowords separately.  

Since children are generally slower than adults to perform a task, what could account for 

our finding that the children were, on average, 55 ms faster than the adults on the regularize 

task? Unfortunately, a clear interpretation of a reaction time advantage in favor of children in this 

case is difficult, since several potentially competing and interacting factors that may differentiate 

children from adults must be considered, including the ability to attend selectively to one 

process while inhibiting another (i.e., exert pathway control); the ability to map graphemes onto 

phonemes; the strength of lexical route representations; and the quality and duration of the 

response checking. Because of the large number of degrees of freedom, and because the task 

x age group interaction collapsed across all stimulus types, additional analyses were conducted 

to address our second primary question. Specifically, we investigated whether stimulus features 

(frequency, regularity and lexicality) would interact with the task x age group interaction, thereby 
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illuminating the source(s) of the faster overall regularize performance by the children as 

compared to the adults. 

An age group difference in the frequency effect for regular words in the regularize task 

points to a developmental difference in response checking 

A 3-way rmANOVA suggested that frequency did not reliably modulate the observed 

task x age group interaction when treated as a dichotomous variable. Indeed, the categorical 

analysis approach revealed a reliable interaction of frequency x task for regular words that 

reached significance in each age group separately. However, several factors led us to perform a 

post hoc analysis in which frequency was treated as a continuous, rather than a dichotomous, 

variable, to test the possibility that weak age group differences in the interplay between task, 

regularity, frequency and age group exist. Conceptually, we were wary of incurring a Type II 

error in assessing for age group differences in this particular analysis, since, as described 

earlier, this higher-level interaction is one of the key ways to assess for the contribution of a 

post-lexical response check to regularize task performance	
  (Balota et al. 2000). Furthermore, 

the magnitudes and statistical reliabilities of the frequency effects for each task for each age 

group hinted at underlying developmental differences. Methodologically, the stimulus set was 

composed of words that spanned a frequency continuum and were subjected to a median split, 

meaning that a categorical analysis approach to effects of frequency was likely, a priori, be less 

sensitive to weak effects than a continuous analysis approach. Lastly, a suggestive (significant 

for F2 and trend-level for F1) post hoc 4-way interaction of the variables of interest was obtained, 

boosting our confidence in the age group differences revealed by the correlations. 

Recognizing, then, both the post hoc nature of the correlations and the fact that, as a set, 

they do not constitute a direct, statistical test of significance, we were nonetheless intrigued to 

observe a clearly different pattern in the children as compared to the adults, as depicted in 

Figure 3.3. In particular, with regard to the specificity of the frequency effect reversal for the 
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regularize task (it was only obtained for regular words, and only in the adults), the correlation 

results make it difficult to reject the idea that there is a real, if relatively weak, difference in the 

way that 8-10 year old children and adults process regular words in the regularize task. 

Cautiously, we interpret the correlations as evidence that the adults incur a greater slow-down, 

than do children, from response checking during the regularize task. In interpreting the effect of 

regularity in this manner, we are concurring with the analysis presented by Balota and 

colleagues with respect to interference from the lexical pathway: “there should be no influence 

of regularity (because this effect presumably is due to competition between the two routes)” 

(Balota et al. 2000).  

Adults were relatively slower, compared to children, to regularize than to read both 

words and pseudowords  

Given the evidence suggesting, perhaps speculatively, that the word frequency effect 

reversal for regular words in the regularize task was weaker in the children than in the adults, a 

third set of analyses examined whether lexicality would modulate the task x age group effect. 

Because lexicality is essentially a strong frequency manipulation, age group effects of lexicality 

should, if anything, be larger than age group effects of frequency. Furthermore, examining the 

effect of age group on the task difference separately for words and pseudowords provides a 

way to tease apart age group differences due to pathway control (presumably applicable to 

words) from those arising from the response check step (potentially applicable to both words 

and pseudowords). 

Analyses of task, lexicality and age group revealed a significant 3-way interaction of 

these variables for reaction time. While both children and adults showed a significant interaction 

of task x lexicality, the nature of that interaction was qualitatively and statistically different in the 

2 age groups. The age group difference was significant whether analyses were computed using 

z-transformed reaction times or raw reaction times, i.e. whether each individual’s reaction times 
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were normalized or not. Specifically, adults showed a significant and reversed lexicality effect 

for the regularize task, while lexicality did not appreciably influence regularize task reaction 

times for the children. 

Within the robust task x lexicality x age group interaction, both the words and the 

pseudowords showed separate significant interactions of task x age group. The fact that adults 

are relatively slower than children to regularize both words and pseudowords is a crucial 

observation, as will now be discussed.  

Slower regularize performance for words in the adults suggests an age group difference 

in pathway control  

The large task x age group interaction for words likely derives, at least in part, from 

greater lexical route interference in the adults than the children, i.e., from age group differences 

in pathway control. As discussed earlier, the adult cohort has a greater cumulative exposure to 

written word forms than the child cohort (Stanovich 1993; Share and Stanovich 1995), which 

presumably results in either lower thresholds of activation or higher resting activations for 

individual lexical entries in the adults than the children. On the other hand, adults ought to be 

better able than children to exert the appropriate bias signal at the level of pathway control, 

consistent with the general observation that the deployment of selective attention is still very 

much developing in 8-10 year olds (e.g., Rueda et al. 2004; Luna et al. 2004; Zelazo et al. 2004; 

Davidson et al. 2006). One interpretation of the observation that the task x age group interaction 

for words was larger than the corresponding interaction for pseudowords is that the dominance 

of the lexical route representations in the adults overwhelms the adults’ presumably superior 

ability to attend selectively to one component process. These results are consistent with the 

notion that adults experience greater lexical route interference than the children when 

performing the regularize task. Stated differently, 8-10 year old children may be better able than 

adults to exert pathway control over the component processes of reading, presumably not 
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because of their superior selective attention, but because their lexical representations are so 

much less well-established. (See Supplemental analysis D.2 for an examination of how the 

notion of pathway control in the context of the regularize task related to Stroop performance in 

these participants.) 

Slower regularize performance for pseudowords in the adults corroborates an age group 

difference in response checking 

In contrast to the situation with words, overwhelmingly strong lexical representations 

(resulting in poor pathway control) seem insufficient to account for the relative pseudoword 

slowing in the regularize task in the adults compared to the children (highlighted in Figure 3.5). If 

pathway control of prepotent lexical representations were the only relevant attentional factor, 

pseudowords should arguably be regularized faster than they are read. That is, emphasis on the 

phonological pathway during the regularize task should be, even if it cannot be achieved 

completely, relatively greater than emphasis on the phonological pathway during the read task. 

This prediction follows from the notion that the read task presumably entails a relative 

unweighting of the phonological pathway, in favor of more rapid lexical route processing (recall 

that the stimuli appear in mixed lists). Not only would a pure pathway control account predict 

faster reaction times for pseudowords for regularize than for read – for both age groups – but it 

would also by extension predict that any reaction time advantage that the adults show for 

pseudowords in the read task would be preserved, or perhaps magnified12, in the regularize task. 

Instead, we report that adults were 164 ms faster to read pseudowords than children, but only 9 

ms faster to regularize the same kinds of pseudowords.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
12 A magnification of the speed advantage for pseudowords for adults (compared to children) in 
the regularize task (compared to the read task) would follow from the fact that the adults would 
be expected to bias lexical route processing (rather than phonological route processing) quite 
heavily, and certainly moreso than the children during the read task. 
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It is our contention that the task x age group interaction for pseudowords is not only 

noteworthy in and of itself, but is also compelling evidence for an age group difference in the 

response check step. In this way, the pseudoword task x age group effect corroborates the 

observations from the correlation analyses involving task, frequency, regularity and age group. 

Nonetheless, and especially in light of evidence suggesting the plausibility of fine-grain dynamic 

attentional control over nonword naming at the trial-by-trial level (Reynolds et al. 2012), it is 

reasonable to speculate that at least some of the slowdown for the pseudowords in the 

regularize task could arise from feedforward activation of the lexical route (Coltheart et al. 2001) 

for those particularly “word-like” pseudowords. In such a scenario, the larger task effect for 

pseudowords in adults than in children would result from a greater degree of partial (or 

erroneous) lexical route activation by pseudowords in the adults. Although this conceptualization 

is not the one that we favor, it raises the possibility that the task effect for pseudowords could be 

accommodated by a single-mechanism age group difference in terms of control over the lexical 

pathway. One way that the pseudoword slowdown for the regularize task could be further 

interrogated in terms of a pathway control explanation is to examine the ways in which bigram 

frequency and orthographic neighborhood size (properties related to “wordness”) co-vary with 

pseudoword regularize reaction time. At this point, we think the data are best accommodated by 

a 2-mechanism account.  

Supplemental analysis D.7 presents an exploratory subject-level correlation analysis that 

further suggests the special nature of the task x age group effect for pseudowords (as 

compared to the task x age group effect for words).  

Suggestion of one interpretive framework 

Related to the consideration of whether the process of sounding out an item (as in the 

regularize task) is necessarily heavily influenced by that item’s lexical representation, Reynolds 

and Besner presented some interested findings suggesting that lexical representations need not 
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automatically contribute to the computation of phonology (2006). Combining a psychological 

refractory period paradigm with a speeded naming task, those authors showed that orthographic 

neighborhood size modulated pseudoword naming reaction times in a manner that was additive 

rather than interactive with stimulus onset asynchrony (SOA)13, implying that phonological 

decoding requires central processing resources and is thereby not automatic/obligatory. Another 

experiment showed that the effect of repetition on speeded naming of low-frequency exception 

words did interact with SOA, suggesting that the earliest components of lexical processing do 

not require attention and may therefore fulfill at least one of the primary criteria for automaticity. 

Together with several additional experiments, the data presented by Reynolds and Besner 

suggest a distinction between an early, automatic component of lexical processing 

(orthographic-lexical) and a later, attention-requiring component (phonological decoding) (2006). 

Such a conceptualization departs from the widely-held view that visual word recognition writ 

large, and phonological decoding in particular, proceeds largely automatically (e.g., LaBerge 

and Samuels 1974; Perfetti 1992; Booth et al. 1999), and may prove useful for thinking about 

the results of the present study.  

Specifically, the Reynolds and Besner model leaves unanswered the question of 

whether the stage labeled “phoneme buffer” is subject to attentional modulation in adults. 

Furthermore, because the Reynolds and Besner model derives from data on single-word 

reading in adults, it is interesting to ponder how the observations of the current study, which 

includes both a task variant (regularize) and a developmental component, could be useful for 

fleshing out their model. One way to integrate our results with theirs is to assert that our data 

underscore the importance of the “phoneme buffer” stage for an attentionally demanding variant 

of speeded naming, such as the regularize task. Additionally, our results suggest that the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
13 Varying the stimulus onset asynchrony (SOA) between 2 consecutively presented tasks 
allows for an investigation of the extent to which the tasks rely on presumably shared (and finite) 
attentional resources. 
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importance of attentional modulation of the “phoneme buffer” stage is greater in adults than in 

children, i.e., that there are important developmental effects at this relatively late stage of lexical 

processing. An interpretation of this sort accommodates the slower overall regularize 

performance in the adults as compared to the children, as well as the 2 critical age group effects 

of stimulus (i.e., the post hoc frequency effect reversal for regular words for the regularize task 

in adults, and the task x age group interaction for pseudowords). More broadly speaking, the 

assertion of reduced significance of response checking in the children, compared to the adults, 

also reverberates with the notion that children enjoy a learning advantage for language partly by 

virtue of freedom from top-down control over the component processes (Chrysikou et al. 2011).   

Balota et al. (2000) discussed previously the need to go beyond a static view of lexical 

processing and consider the flexibility of the system in terms of pathway attenuation and 

accentuation The present developmental results reassert that claim, and argue for an expanded 

version of that suggestion. We propose that not only the relative weighting of the processing 

pathways but also the step of response selection may be modulated by attentional control, 

depending on task demands and age/level of proficiency. Future studies will attempt to replicate 

these behavioral data, and will also use task-based functional MRI (fMRI) to investigate the 

neural correlates of the developmental differences presented here. For example, fMRI may be 

able to identify age group differences in the activity of sets of brain regions associated with 

pathway control on the one hand, and response selection on the other (c.f., Chapter 2). Possible 

approaches to the planned developmental imaging study are discussed in Chapter 4. 
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CHAPTER 4: CONCLUSIONS AND FUTURE DIRECTIONS 

In this final chapter, I will begin by summarizing the main observations of Chapters 2 and 

3. In the context of two ways in which the reading literature is arguably somewhat conceptually 

stagnant, this thesis work may represent something of a rogue approach to thinking about 

reading and its development. I will next explore 2 additional observations about the data that 

were not directly addressed by either of the data chapters’ discussion sections.  

The remainder of the chapter will then explicate a series of ideas for future studies that 

may serve to strengthen (or, equally usefully, call into question) the notions that (1) attentional 

control interacts with reading-related tasks in at least 2 distinct ways, and that (2) both of these 

interacting mechanisms are immature in early readers. Some of proposed future analyses 

clearly indulge in more speculation than others, and I will end that part of this chapter by 

describing the most proximally planned follow-up, a developmental imaging comparison. I will 

also briefly endorse the importance of pursuing any of the suggested future experiments in the 

first place. I will finally conclude by pointing out that a 2-mechanism account of controlled lexical 

processing – like the one proposed here, combining pathway control and a response check – 

finds itself in decent company in the literature.     

 

Summary and significance 

Chapters 2 and 3 presented a series of analyses of 2 single-word reading tasks, read 

(simple speeded naming) and regularize (“sound it out”) (Balota et al. 2000), focusing on the 

ways in which stimulus characteristics interacted with task instructions (both chapters) and age 

group (Chapter 3). Considering the totality of the data – and acknowledging that not every single 

observation ought to be interpreted equally confidently – I would submit that this thesis furnishes 

solid evidence for 2 mechanisms of interaction between reading and attentional control. Support 

of this contention converges from a replication of the essential behavioral findings of a previous 
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study (Balota et al. 2000), in fact building upon those authors’ idea of a 2-mechanism account, 

in combination with novel neuroimaging (Chapter 2) and developmental (Chapter 3) insights.  

With the novel neuroimaging angle, we identified 2 sets of regions, including members of 

previously defined attentional control subsystems, that showed activity mapping onto the 2-

mechanism model. Regions showing signals reflecting pathway control included members of 

bilateral Cingulo-opercular control network and bilateral Dorsal attention system, plus a few 

others (CO/DA+). Regions showing activity consistent with a role in response checking included 

several left-lateralized regions from the Frontal-parietal control network (LFP).  

With the novel developmental comparison, we established that children were, overall, 

faster than the adults to perform the regularize task. We also observed age group differences in 

reaction time in several key interactions, including equal performance for the 2 groups to 

regularize pseudowords, as well as an intriguing correlation result suggesting a different 

handling of high frequency regular words in the adults as compared to the children. The entire 

pattern of age group differences suggested that both pathway control and response checking 

are only partially mature in early readers.   

 

Further observations 

Neuropsychological test results can be leveraged to understand task performance 

Both the behavioral and the imaging studies reported in this work included the collection 

of neuropsychological testing for all participants. Neuropsychological testing is conducted 

experimentally because the scores may illuminate individual differences in task performance, by 

extension providing insight into factors distinguishing task performance between groups. For 

example, in discussing the correlations between the lexicality effects in the read and the 

regularize tasks in Supplemental analysis C.1, I made the point that the observation of a within-

subject correlation between a large lexicality reversal in the regularize task and a small positive 
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lexicality effect in the read task was incongruent with a pure pathway control account of the 

attentional control required for the regularize task. Specifically, I argued that if lexical pathway 

interference can entirely explain the slower performance on the regularize task as compared to 

the read task (minimizing a contribution from a post-lexical response check), then it should 

follow that those subjects who have strongest lexical representations should have both the 

largest negative lexicality effects in the regularize task and the largest positive lexicality effects 

in the read task.  

One might alternatively take the position that the correlation reported in Supplemental 

analysis C.1 between small, positive lexicality effects in the read task and large, negative 

lexicality effects in the regularize task is not as surprising as I remarked it to be. For example, 

presume, as has been proposed (e.g., Pugh et al. 2001) that reading skill development entails 

relative decreases in reliance on phonological processing and concomitant increases in reliance 

on lexical processing. In this scenario, the most facile readers would be predicted to show the 

largest positive lexicality effects during the read task, reflecting a push/pull between decoding 

and whole-word recognition skills (Baron and Strawson 1976). Those very good readers might 

also be expected to be the most flexible in their ability to perform any lexical task, given their 

generally superior reading abilities, which would in turn lead to the prediction that they would 

show the smallest interference effects in the regularize tasks. While this set of priors is not the 

one that I would adopt in considering this question, it is a certainly a defensible position.  

However, in contrast to the notion that good readers sacrifice phonological processing 

skills in exchange for gains in lexical route proficiency, several reports have shown that the best 

readers show the smallest effects of many lexical variables, implying that there is no tradeoff, 

during reading skill development, between use of phonological and orthographic information 

(e.g., Brown et al. 1994; Schilling et al. 1998; Seidenberg 1985; Chateau and Jared 2000; Yap 

et al. 2012). As explained in Supplemental material D.4, the best readers in the present data, by 
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converging measures, showed the smallest effects of most variables except, prominently, the 

lexicality reversal in the regularize task.  

Specifically, among both children and adults, the fastest readers, in terms of raw 

reaction time for the read task, showed the smallest lexicality effects for the read task; for both 

groups, the correlation was large and very reliable. Relatedly, the fastest readers showed the 

largest negative lexicality effects in the regularize task, although this effect reached significance 

only in the children (and was trend-level in the adults). In addition, among the adults, the 

participants who were fastest on the regularize task (in terms of raw reaction time) showed the 

largest negative lexicality effects in the regularize task (this relationship was null in children). 

Lastly, higher Letter/Word ID scores (requiring sight-word recognition) correlated with both 

smaller lexicality effects in the read task and larger negative lexicality effects in the regularize 

task, and these relationships were significant in both children and adults. Together, these 

results suggest that the best readers (relative to their ages) were characterized by small positive 

effects of lexicality in the read task and large negative effects of lexicality in the regularize task. 

The pattern observed at the level of individual participants was recapitulated at the group level, 

whereby the better readers (in absolute terms, the adults) showed larger interference effects in 

the regularize task than did the worse readers (in absolute terms, the children).  

Relatedly, although existing evidence is rather equivocal with regard to whether the 

lexicality effect in speeded naming increases or decreases across skill development (Defior et al. 

1996; Sprenger-Charolles et al. 1998; Fernandes et al. 2008), we reported in Chapter 3 that, if 

anything, children showed larger positive lexicality effects in the read task than adults (the effect 

was significant at the items, but not the subject-, level). Larger lexicality effects in the read task 

for the children as compared to the adults corroborates the individual neuropsychological and 

task performance correlations in suggesting that good readers show small effects of lexical 
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variables in speeded naming tasks, regardless of whether those variables seem most likely to 

map onto phonological or lexical pathway processing. 

The children were faster than the adults to regularize, but they made more errors 

 One concern that could be raised about the data presented in Chapter 3 is that an age 

group difference in the tradeoff between responding quickly and responding correctly may have 

contributed to at least a portion of the observed task x age group reaction time effect. There are 

several reasons that I think it is reasonable to discount any serious suspicion that 

developmental differences in the speed-accuracy tradeoff contributed significantly to the overall 

reaction time patterns.  

First, let us recall the observations. The astonishing finding from Chapter 3 was that 

children were faster than the adults to regularize. However, they also, on average, made more 

errors than did the adults; collapsed across all stimulus types, children were 5% less accurate 

than the adults on the regularize task (96% vs. 91%). Note, also, that the average accuracy of 

91% in the children is slightly misleading, as it does not account for the data from the 3 children 

who were excluded from the analyses because of regularize task accuracy lower than 65%. In 

contrast, every adult who participated in the behavioral study met the accuracy criterion for the 

regularize task (the worst adult achieved 84% accuracy overall).  

At first pass, then, the age group difference in regularize task accuracy may seem an 

important caveat, especially considering that small differences in error rate, on the order of < 

10%, may precipitate relatively large differences in reaction time (Pachella 1974). Even though I 

cannot ameliorate this potential confound and/or measure its contribution at the level of 

regularize task performance writ large, it is reassuring that on a finer scale (i.e., considering 

separately computed main effects and interactions), reaction time patterns were generally 

paralleled by corresponding accuracy patterns. In other words, as reported in Chapter 3, faster 

reaction times tracked with higher accuracy for the individual interactions of interest (i.e., task x 
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lexicality x age group). Also, the faster but less accurate regularize task performance for the 

children differed qualitatively from the pattern observed in the read task, in which children were, 

as is typically found (e.g., Kail 1991), both slower and less accurate than adults  

 

Future Directions 

 A well-formed body of work achieves its shape by dint of separation of the wheat from 

the chaff (or, as Steve Petersen would exhort, “You’ve got the block of marble; show me 

David14!”). Sometimes there is substance in that chaff, and in the case of this thesis work, 

several lines of inquiry remain untapped. Consideration of the following additional analyses may 

prove useful for substantiating and/or refining the interpretation of the data presented in these 

chapters. 

Reaction time distributional analyses 

 One approach that may yield additional evidence for or against the 2-mechanism 

account is a reconsideration of the reaction time data that accounts for not only the condition 

means but also the shapes of the reaction time distributions. In particular, information exists 

beyond the mean of a reaction time distribution that can be informative as to what kinds of 

processing underlie the task being performed (e.g., Ratcliff 1979; Balota et al. 2008). Meaningful 

features of reaction time distributions can be illuminated by fitting the observed data to a 

mathematical function (e.g., ex-Gaussian, Gamma, Weibull), and/or by plotting the data using 

techniques such as quantile or Vincentile plots (e.g., Andrews and Heathcote 2001; Balota and 

Yap 2011). While a full exploration of these complex analytic approaches is outside of the scope 

of this work, I will explain briefly how one approach, in particular, warrants consideration for 

follow-up investigation. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
14 Not Balota. 
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An ex-Gaussian distribution (composed of a Gaussian convolved with an exponential 

form) fits many empirically-derived reaction time distributions quite well (Ratcliff and Murdock 

1976). Characterized by 3 parameters (mu and sigma for the mean and standard deviation, 

respectively, of the Gaussian, plus tau to account for the mean and standard deviation of the 

exponential), ex-Gaussian distributions are specifically useful for capturing the existence of a 

small number of trials with very slow reaction time, i.e., a tail at the end of the distribution	
  

(Balota and Yap 2011). In the present dataset, and consistent with much of the literature, the 

very slowest trials were removed prior to the calculation of the mean, in order not to bias the 

calculation of the subject’s “average” performance. However, performance may be particularly 

slow for a given trial for reasons other than a temporary lapse of attention, for example, and 

especially because in the present dataset I was interested in comparing conditions and groups, 

the trials in tail of the reaction time distributions may indeed prove critical for more precisely 

evaluating the individuals’ and groups’ chronometric data.  

 One could imagine modeling ex-Gaussian distributions for each stimulus type for each 

task and each age group separately. Specifically with regard to the proposed response check, 

one could then directly test the hypothesis that the high frequency regular word trials in the 

regularize task involve some relatively greater number of trials in which responses are 

particularly slow (e.g., relative to high frequency irregular words trials and low frequency regular 

word trials). Such a condition effect would manifest as a greater value for tau (the exponential 

parameter of the distribution) in the high frequency regular word condition, as compared to all 

other conditions. Given the fact that the correlation analyses in Chapter 3 suggested that 

children do not show the same frequency effect reversal for regular words for the regularize task 

as did the adults (see Figure 3.5), one might furthermore predict that observation of a relatively 

larger tau parameter for high frequency regular words would be more pronounced in the adults 

than in the children.  
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The pseudoword task effect would also be interesting to assess using ex-Gaussian 

analyses. Because it is particularly intriguing that both adults and children, but especially adults, 

were slower to regularize than to read pseudowords, a distinction between a shift in the means 

(mu) of the distributions and/or an increase in the tails (tau) may clarify whether the regularize 

task slowdown derives from 2 distinct sources (possibly manifest as a shift in both mu and tau) 

or on source (a shift in one only component). Obviously, of particular interest would be whether 

those relative contributions are different in children and adults. Certainly, the entire set of 

reaction time analyses could be recomputed using an ex-Gaussian or some other model of the 

distribution, and such an approach would likely uncover additional features of the data beyond 

the predictions hazarded here.  

Subsidiary imaging analyses: trial sorting by reaction time 

Related to the reaction time distributional analyses are subsidiary imaging analyses that 

may be able to furnish additional evidence in support of the 2-mechanism model. Specifically, 

because the imaging study used an event-related design, it should be possible to sort the 

regularize task trials according to response times, then compare those trials with fast reaction 

times vs. those that with slow reaction times. One prediction that could be informed by reaction 

time trial sorting involves identifying all trials of a single stimulus type and comparing those with 

the slowest reaction times against those with the fastest reaction times. Taking the example of 

high frequency, regular words, one could ask whether the slowest trials show greater activity in 

the left Frontal-parietal (LFP) regions than the fastest trials, as would be predicted by the 

response check step in the 2-mechanism model. Relatedly, a discovery that the differential 

activity for slow vs. fast trials in the LFP regions is greater than the corresponding differential 

activity in Cingulo-opercular /Dorsal attention + (CO/DA+) regions would provide further support 

for the characterization of the LFP regions as playing a later, more decision-like role in the 
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attentional control of reading (as compared to an earlier, less involved role for the CO/DA+ 

regions in pathway control). 

An obvious objection to the proposition of trial sorting by reaction time is that a firm 

understanding of the effect of reaction time on the BOLD signal is yet to emerge from the 

neuroimaging literature. It has been suggested that reaction time exerts regionally specific 

effects on BOLD activity, in addition to being manifest as either a delay and/or an increase in 

the amplitude of the hemodynamic response (Yarkoni et al. 2009). Some authors have gone so 

far as to suggest that the contribution of time on task to the BOLD signal is so great in particular 

regions that the activity in that region cannot rightly be attributed to cognitive processes of 

interest (e.g., see Grinband et al. 2011 for an argument of this sort regarding dorsal medial 

frontal cortex). There is also evidence that the relationship between the BOLD signal and 

reaction time cannot reliably be assumed to be identical between groups, for example children 

and adults (Carp et al. 2012). Nonetheless, many investigators rely on the first order 

approximation that reaction time effects on the BOLD signal are linear (e.g., Weissman et al. 

2006), an assumption that underlies the occasional methodological practice of regressing 

reaction time out of data prior to analysis. One potential pitfall of linear RT regression, however, 

is the fact that longer reaction times could be associated with more processing in a region, 

different processing in a region or both, a distinction that seems fundamental. 

My best guess is that both latency to respond and time on task do contribute in complex 

ways to the “processing” BOLD signal of interest, in some cases perhaps causing type I or type 

II errors with regard to particular analyses. However, until a clearer consensus is reached in 

terms of what reaction time does and how the potential complexity of its effects can be 

separately identified, I am generally inclined to leave reaction time in the data, at least for the 

“primary” analyses of a study. That being said, for the sake of completeness, the results of a 

subsidiary analysis of the imaging data in which reaction time was regressed out are 
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summarized briefly in Supplemental material A.3a; the take-home is that our essential findings 

were unchanged by RT regression. Relatedly, I would consider it worthwhile to explore the 

possibility of sorting trials based on reaction time to assess the predictions described, despite 

the caveats.  

Switch (lexicality) vs. stay trials: examining local context effects 

 Another approach to examining the imaging data that may yield additional insights 

involves querying for BOLD signal differences between trials of a particular stimulus type that 

are presented consecutively vs. those that are presented interleaved with other stimulus types. 

Trials from the imaging study could thus be sorted into bins of “switch” (e.g., a word followed by 

a pseudoword) and “stay” (e.g., a word followed by another word), and then compared against 

one another. The logic here would be reminiscent somewhat of the list composition studies 

mentioned earlier (e.g., Monsell et al. 1992; Jared 1997; Lupker et al. 1997), whereby effect 

sizes dependent on stimulus blocking (as compared to stimulus mixing) may reflect strategic 

deployments of attentional control that are only efficient or possible at a time scale longer than 

one individual trial. Although I am not proposing implementing pure vs. mixed blocks, the idea in 

common between that approach and a switch vs. stay comparison is that context effects may be 

influential on performance. 

Because of the magnitude and reliability of the lexicality effect in both the behavioral and 

the imaging data, one obvious approach would be to label a trial as switch or stay according to 

whether or not the lexical status of the stimulus changed with regard to the immediately 

previous item (as in the examples, above). A comparison of switch vs. stay trials may reveal 

corroborating (or not) evidence of the 2-mechanism account of the attentional control of reading. 

 For example, the 2-mechanism account may predict greater BOLD signal modulation by 

item-specific characteristics in the CO/DA+ regions’ BOLD signal than the LFP regions’, 

manifest as a greater interaction of trial type (swich vs. stay) with lexicality and time in the 
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CO/DA+ regions than the LFP regions. This prediction would follow from the fact that the nature 

of the response checking for any individual stimulus is presumably so dependent on the 

particular features of that stimulus that the LFP response should be less affected, relative to the 

CO/DA+ readout from pathway control, by the stimulus or stimuli immediately prior to the target 

item. That is, if LFP activity indeed reflects a very specific evaluation between the pronunciation 

usually associated with a written word and the pronunciation that is soon to be uttered, the 

response checking that occurred for the previous item should have little bearing on the need for 

checking on the current trial. Activity in CO/DA+ regions, hypothesized in Chapter 2 to read out 

the efficacy of the pathway control for a particular combination of stimulus and task, may instead 

be predicted to show greater sensitivity to context effects. Although this prediction is tentative, it 

is consistent with our conceptualization of trial-related activity in the Cingulo-opercular core 

regions as pertaining to a sort of reporting signal, possibly also including information relevant to 

performance feedback (Neta et al. under revision), and thereby likely more sensitive to 

processing that occurred immediately previously. 

Comparing task-sustained signals in the regularize task vs. the read task 

One inroad to clarifying the nature of the trial-by-trial contribution of the core Cingulo-

opercular regions of the CO/DA+ cluster to read and regularize task performance is to 

implement the read vs. regularize comparison using a mixed block/event-related study design 

(as reviewed in Petersen and Dubis 2012). Mixed block/event-related designs exploit particular 

trial timings and task blockings in order to parse out task-level effects (e.g., task maintenance 

signals, reflecting the processing parameters required for task completion) from trial-level 

effects (e.g., error signals). Especially given the discussion in Chapter 2 (and alluded to above) 

regarding the yet-elusive characterization (Neta et al. under revision) of the trial-related BOLD 

activity in core Cingulo-opercular regions (defined by Dosenbach et al. 2006), I would be 

especially keen on using the mixed block/event-related design to tease apart possible 
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contributions from the anterior cingulate and bilateral anterior insula regions over different time 

scales. Of course, a mixed design could obviously be leveraged more broadly to compare the 

read and regularize tasks, in that differential contributions to the 2 tasks in the sustained signal 

could be observed in other regions in informative ways. 

Exploring semantic processing in the default mode network 

 An orthogonal issue in the reading and language literature writ large concerns the issue 

of whether or not, and/or to what extent, regions comprising the default mode network (Raichle 

et al. 2001; Gusnard et al. 2001; Buckner et al. 2008; Fair et al. 2008) contribute to the 

processing of semantics. For example, it has been proposed that the consistent observation of 

activity in the left angular gyrus during reading and language tasks results from that region’s role 

in semantic analysis (Demonet et al. 1992; Binder et al. 2005; Frost et al. 2005; Mechelli et al. 

2007). Binder and colleagues (e.g., Binder et al. 2003; Binder et al. 2005) have forwarded a 

rather strong interpretation of the evidence that the left angular gyrus shows activity related to 

semantics, in particular suggesting that the region “occupies a position at the top of a 

processing hierarchy underlying concept retrieval and conceptual integration” and that it is 

“involved in all aspects of semantic processing” (Binder et al. 2009). In a recent survey of the 

literature, Seghier gathered evidence supporting a more nuanced and heterogenous functional 

ascription of the angular gyrus (Seghier 2013). In broad strokes, dorsal portions of the region 

(possibly encompassing parts of posterior inferior parietal lobule) were suggested to contribute 

more so to bottom-up types of processing, while ventral portions (probably more overlapping 

with classic, deactivating default mode network territory) were suggested to participate in top-

down types of processing. Per that author’s analysis, the ventral portion of the angular gyrus 

may perform computations related to self-referential processing, computations that, in theory, 

could provide constraints on semantic analysis (i.e., rather than necessarily being involved in all 

aspects of semantic processing, as per Binder and colleagues).  
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In this laboratory, we have been hesitant to define a task-general role for the left angular 

gyrus, in part because the region tends to show task-induced deactivations and BOLD 

deactivations have historically provoked a greater degree of interpretive hand-wringing than 

have, for example, positive event-related deflections of the BOLD signal (but see Sestieri et al. 

2010 for an exception in adults, or Church et al. 2008 for evidence of positive angular gyrus 

activity in children). One study from our group showed, using hierarchical clustering, that a left 

angular gyrus region was unique in having the overlapping properties of a negative dynamic 

range and sensitivity to lexicality (Church et al. 2011). In that study, the task was similar to our 

read task (simple speeded naming), but the lexicality manipulation was relatively weak, in that 

the words were all very low frequency (and subjects were not queried post-scanning to 

ascertain familiarity with the word stimuli). Relatedly, Seghier and Price looked indirectly for 

involvement of default mode network regions in semantic processing by examining activity 

related to a contrast of semantic and perceptual mapping tasks on the one hand (to identify 

semantic regions) and deactivations relative to fixation on the other (for the default mode 

networks) (Seghier and Price 2012). Their maps showed overlap in a single region, located in 

left angular gyrus (MNI -48, -68, +28) close to the region identified in the Church et al. study 

(2011).  

The present dataset was certainly not designed to assess semantic processing directly. 

However, lexicality was one of the primary stimulus features manipulated in our study, and 

lexicality is a decent proxy for semantic content. And although neither the read nor the 

regularize task requires explicit semantic analysis (as is required for category judgment, for 

example), there is fairly widespread agreement in the literature that semantic properties of 

words are accessed automatically upon presentation (Neely 1977), even when other tasks are 

being performed, and even when words are not perceived consciously	
  (Luck et al. 1996). Also, it 

would be possible to perform a post hoc sorting of the words on the basis of imageability or 
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familiarity ratings, for example, to obtain a finer-grained estimate of the semantic content of the 

words. 

Caveats acknowledged, then, the present imaging dataset could contribute to clarifying 

the relationship between default mode network activity and semantics. Based on preliminary 

observations, it seems most likely that these data would identify some level of gradation among 

default mode regions in terms of sensitivity to lexicality. For example, in one of the iterations of 

the cluster analysis described in Chapter 2, I noticed 3 sub-regions along the left angular gyrus 

that showed progressively greater sensitivity to lexicality in the read task. Following up on that 

observation with more detailed analyses may allow the delineation of patterns, within subsets of 

default mode network regions, showing task-invariant sensitivity to lexicality (i.e., lexicality 

effects in both the read and regularize tasks that are in the same direction) vs. task-dependent 

sensitivity to lexicality (i.e., lexicality effects in the two tasks that are in opposite directions, as 

was observed in many control-related regions in Chapter 2). The former observation (task-

invariance of the lexicality effect) would more strongly suggest a role in semantic processing, 

especially in the proposed scenario of assuming that the semantic activation that is occurring is 

automatic and not based on any of the processes required by either task. On the other hand, a 

finding of task-dependence in the direction of the lexicality effect would be more difficult to 

attribute cleanly to automatic semantic processing. Hypothetical default mode regions that show 

lexicality effects in opposite directions in the 2 tasks may play some role in semantic processing, 

but perhaps in a way that is more sensitive to modulation by attentional control than hypothetical 

default mode regions showing task-invariant lexicality effects.  

Motor planning and execution as another locus of attentional effects 

 The preparation and implementation of the motor program necessary for word 

articulation is one component of lexical processing that has yet been addressed in this thesis, 

despite its possible relevance. The importance of accounting for motor planning/articulatory-
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related processes in overt reading tasks was recognized very early in the literature, as far back 

as Cattell (1886). Relatively more recently, McCann and Besner wrote about articulatory 

planning as having to do with the accessibility of “condition-action rules” (1987). It seems 

reasonable to assert that in the present work, the “condition-action rules” used to generate the 

pronunciations in the regularize task (presumably completely unrehearsed in the case of 

irregular words) may serve as yet another locus of processing that should be considered (along 

with pathway control and response checking) as subject to modulation by top-down attentional 

control signals. 

Instead of considering effects of motor planning and execution explicitly, this work has 

thus far emphasized the cognitive processes of pathway control and response checking, even 

making the point that the process proposed of response checking has been neglected as a 

potential locus of essential attentional effects. In these final pages of attempting to think broadly 

about the data and the results, I raise the possibility that the preparation and execution of the 

articulation may represent yet another neglected stepchild locus of interaction between reading 

and attentional control, just waiting to be more closely interrogated.  

In support of the stepchild notion, in Chapter 2, the left Frontal-parietal (LFP) cluster that 

was argued to show properties reflecting a role in response checking was also found to sit 

proximally, in cluster space, to regions in bilateral inferior frontal gyrus pars opercularis (IFGpo), 

bilateral mouth somatomotor cortex and bilateral cerebellum, regions all strongly suspected to 

be involved in the motor articulation of speech (e.g., Price 2012; Taylor et al. 2012). The 

functional similarity of the LFP response check regions and oro-articulation regions that is 

implied by the dendrogram proximity was argued, in Chapter 2, to support the attribution of the 

cognitive process of response checking to the LFP regions, in that the IFG, mouth motor and 

cerebellar regions did not fall into the same cluster as the 10 core LFP regions, but instead 

immediately adjacent. Recall that for clustering techniques, the decision of where to draw the 
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threshold on the dendrogram is arbitrary, although it can certainly be informed (as it was in 

Chapter 2) by inspection of the relevant pieces. With that arbitrariness in mind, depending on 

the level at which functional associations are thresholded on the dendrogram, it may be 

preferable to conceptualize this larger set of regions (including the LFP members and the 

adjacent motor regions) as one functional unit.  

If the critical post-lexical contribution to the regularize task slowdown is less a purely 

cognitive phenomenon of response checking and more a motor (or combined cognitive-motor) 

phenomenon of accessing and articulating a response, a behavioral manipulation may provide 

supporting evidence. One method that has been employed in behavioral studies to tease apart 

the cognitive aspects of word recognition from the subsequent preparation and execution of the 

overt response is the delayed naming paradigm (e.g., Forster and Chambers 1973; Theios and 

Muise 1977; Balota and Chumbley 1985). In delayed naming tasks, participants are presented 

with identical stimulus types and task instructions as in speeded naming tasks, except that they 

are asked to withhold their overt responses until a cue appears on the screen, e.g., brackets 

encircling the target item. Often, delayed naming tasks include several different intervals of time 

between stimulus presentation and the cue to pronounce the item, typically in the range of 

15015-2000 ms. The idea is that any effect that is comparably obtained for both normal and 

delayed naming reflects process(es) that occur following lexical access. Typically, the post-

lexical effects identified by delayed naming tasks are assumed to map onto processes required 

for response preparation and execution (Balota and Chumbley 1985).   

In theory, delayed versions of the read and regularize tasks could be implemented both 

outside and inside of the scanner, although the hypothetical imaging results would undoubtedly 

be more complicated to interpret. Most simply, if very similar patterns (behavioral and imaging) 

were obtained in the standard and delayed task comparisons, it would be necessary to re-
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
15 Estimates of minimum lexical access time range from 100-300 ms (Balota and Chumbley 
1985).  
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consider the proposed 2-mechanism model, acknowledging the possibility that the motor 

articulation of a response in the regularize task (distinct from the immediately preceding 

cognitive process of verifying that response) is an important locus of top-down attentional 

control. Realistically, a delayed regularize task would likely prove quite challenging to implement, 

not least because of concerns related to getting the delay interval just right, since delays that 

are too long may allow subjects to perform rehearsal processes that potentially obfuscate the 

effect that the delay is intended to reveal (Rossmeissl and Theios 1982). 

A related and perhaps more tractable approach to interrogating the comparability (and 

thus susceptibility to attentional modulation) of the articulatory process for the read and 

regularize tasks would be would be to measure not only the onset latencies of the responses 

(as was done) but also the response durations. If the regularize task pronunciation duration for a 

given item, average across subjects, is larger than the corresponding read task pronunciation 

for that same item, this finding might support the idea that there is at least some contribution to 

the regularize task slowdown that reflects motor preparation and articulation. Of course, this 

finding would be especially compelling if it were obtained not only for the irregular words (which 

generate different pronunciations for the 2 tasks), but also for the regular words and 

pseudowords. 

Comparing children and adults using neuroimaging 

Clearly, the data presented in this thesis beg the question as to whether age group 

differences in the task-associated BOLD activity can be leveraged (1) to elaborate the present 

suggestion of a 2-mechanism model of the attentional control of reading and/or (2) to 

characterize more precisely the nature of the developmental differences in read and regularize 

task performance, especially the relative contributions of pathway control and response 

checking across the age groups. Indeed, analyses of the child imaging data are the most 
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earnestly and urgently planned future analyses of this thesis, despite having been saved for the 

final point of discussion.  

As an aside – and as alluded to in Supplemental material A.3c – the trajectory from 

imaging data collection to data usability was a nonlinear one for this study, a fact that 

contributed to the absence of the developmental imaging study from the pages of this thesis. 

After our early discovery of a presumptive artifact in the BOLD signal, whereby children were 

showing consistently lower magnitudes than adults (which is unexpected), we attempted a 

number of potential fixes, including motion censoring and reaction time regression. Eventually, it 

was discovered that nuisance signal regression, including removal of the global signal, returned 

the data to a condition that had higher face validity, specifically producing age group differences 

that showed a much greater variety of patterns (e.g., children > adults; adults> children; similar 

activations in the 2 groups). A variety of developmental patterns is consistent both with extant 

literature and work from our own laboratory. From a starting pool of approximately 50 children, 

35 participants furnished usable data, and each of the 35 usable datasets from the children has 

been pre-processed and is now poised for analysis.   

Returning to the planned analyses, it would be interesting to interrogate the activity in 

control-related regions – including Cingulo-opercular, Dorsal attention and Frontal-parietal 

regions – to see whether an age-related difference in the patterns of recruitment of these 

regions clarifies the nature of the large task x age group interaction observed behaviorally. For 

example, one prediction would be that children would show reduced left frontal-parietal (LFP) 

cluster activity during regularize task performance than the adults, reflecting a lower overall 

requirement for the response checking step in the less experienced readers. Additionally, 

children may show smaller lexicality effects than adults in Cingulo-opercular/Dorsal attention + 

(CODA+) regions for both tasks, reflecting a reduced ability and/or need to exert substantial 

inhibition of processing along the lexical pathway. Ideally, the neuroimaging results would 
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provide some leverage in determining the relative contributions of pathway control and response 

checking to the development of the attentional control of reading, since the RT patterns in the 2 

age groups suggested, albeit tentatively, a contribution from both mechanisms. 

A comparison of children and adults performing the read and regularize tasks using fMRI 

may also furnish important insights into developmental differences in the attentional control of 

reading in ways that are totally unpredictable from the results of Chapters 2 or 3. For example, 

in Chapter 3, it was observed that the groups showed indistinguishable reaction times to 

regularizing pseudowords (there was a 9 ms difference). Even for effects such as this one, in 

which no behavioral difference is observable between groups, it need not follow that the task-

associated neural activity be the same (e.g., Wilkinson and Halligan 2004). In fact, I would be 

quite interested to see whether a developmental imaging study of read vs. regularize would 

reveal effects of so-called “behavioral phenocopy” (Schlaggar and McCandliss 2007), since 

such effects are at least immune from the potential criticism that they are driven by reaction time 

differences alone (Church et al. 2010). 

Just as the developmental behavioral observations discussed in Chapter 3 need not 

constrain the future developmental imaging analyses, neither should the focus on attentional 

control-related regions in adults, as presented in Chapter 2, imply that the informative 

developmental differences will be restricted to attentional control regions. In fact, I would be 

surprised if it were not possible to identify at least a few noteworthy age group differences in 

presumptive reading-related regions, including left hemisphere regions in the supramarginal 

gyrus, inferior frontal gyrus pars opercularis, angular gyrus and the putative visual wordform 

area. For example, it was remarked in Chapter 2 that the adults showed little modulation of the 

left supramarginal gyrus by task or by stimulus, a finding that we highlighted because it carried 

forward a thread of investigation into this region’s function that has been several years in the 

making in our own laboratory To follow up on Jessica Church’s work on the SMG (Church et al. 
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2008; Church et al. 2011), I would want to determine, using the developmental imaging data,  

whether children show increased BOLD activity in this region for the regularize task as 

compared to the read task, even though we did not obtain task or stimulus effects in the region 

in the adults. Particularly in the context of a hypothetical scenario in which children show 

relatively less recruitment of top-down attentional control regions for the regularize task as 

compared to the adults, the observation of sizeable task effects in the children in the SMG 

would represent one intriguing instance of 2 groups achieving similar (but not identical) behavior 

through different neural processing.  

 

Concluding remarks 

The studies suggested in this final chapter represent more than intellectual discourses 

(although they are that, too). Particularly given the discussion in Chapter 1 about the public 

health significance of dyslexia (Peterson and Pennington 2012), the relatively unsatisfactory 

options for its treatment (Gabrieli 2009), and the suggestion that deficits of attentional control 

may factor into at least some proportion of cases (Vidyasagar and Pammer 2010), it is plain that 

a clearer understanding of reading development is needed. Perhaps some of the future studies I 

proposed could be useful for addressing that need, for example, by generating hypotheses 

about ways in which the remediation of reading impairment could be effected by targeting 

attentional control-related behaviors in the struggling child.  

Relatedly, reflecting the alleged dogmas of automaticity and phonology, my initial 

conceptualization of the read vs. regularize task comparison was that the latter would primarily 

drive up phonological processing. Accordingly, original hypotheses were forwarded to examine 

the activity in putative phonological processing regions, including regions in left supramarginal 

gyrus and left inferior frontal gyrus, presuming that those phonological processing regions would 

show greater activity in the regularize task than the read task in the adults. Concomitant with the 
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view of the likely essential sites of modulation of neural activity, our initial predictions for the 

analyses of the developmental read task behavior included the hypothesis that effects that could 

be localized to processing along the phonological pathway (e.g., length) would be larger in 

children than adults, while effects localized to the lexical pathway (e.g., lexicality) would be 

larger in adults than in children. Although the results were not presented in Chapter 3, one of 

the remarkable findings of the developmental comparison of the read task alone was that there 

were very few reliable differences in either the main effects or the interactions of the stimulus 

characteristics (excepting the item-level significance of the lexicality x age group effect, 

mentioned earlier). In other words, our leverage for revealing ways in which the children were 

unlike the adults derived primarily from the manipulation of attentional control (i.e., the 

comparison of the regularize task to the read task). Likewise, our investigation of fMRI BOLD 

activity in young adults proved to be most fruitful when we examined regions known to be 

important for top-down attentional control, rather than the left supramarginal gyrus and left 

inferior frontal gyrus. Had we either restricted the task design to the read task (rather than 

juxtaposing it to the attentionally-demanding regularize task) or focused the imaging analyses 

on “reading-related regions,” the story told in these pages would be very different, and likely 

very much less thought-provoking. 

 

Models of lexical processing that invoke 2 steps/stages/mechanisms, such as the one 

proposed here, can be found throughout the reading literature (e.g., Atkinson and Juola 1973; 

Balota and Chumbley 1985; Grainger and Jacobs 1996; Balota and Spieler 1999), hinting at the 

complexity of the cognitive processes required for reading task performance, combined with the 

difficulty associated with accommodating a multiplicity of observations with a simple account. In 

fact, the notion of an abstracted read-out of lexical familiarity has even been explicitly 

incorporated into models (e.g., Grainger and Jacobs 1996), and invoked as one explanation for 
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the consistent observation of an inhibitory effect of orthographic neighborhood size16 on 

nonword response latencies in lexical decision tasks (Balota et al. 2004). Another example of a 

2-stage model is Balota and Chumbley’s conceptualization of the lexical decision task as 

involving an initial familiarity/meaningfulness assessment (quick, global), followed, when 

necessary, by a slower, more analytic evaluation of the stimulus and whether it can be found in 

the lexicon (Balota and Chumbley 1984). 

Although a parsimonious account of any observation is, in principle, preferable to a more 

complex model, one must also strive, as I have done with this thesis, to embrace the complexity 

of one’s empirical observations. Echoing the then-provocative argument forwarded by Balota 

and Chumbley (1984) questioning the assumption that the word frequency effect in lexical 

decision is wholly attributable to the “magical moment” of lexical access (Balota 1990), I would 

submit that the present data suggest that an attentional process akin to a decision, indeed 

having “little to do with lexical access,” is relevant to the regularize task as well. Furthermore, 

that process, response checking, interacts with a second attentional control mechanism, 

pathway control, to achieve the attentional control of reading, likely in a way that is yet immature 

in 8-10 year old readers.  

	
    

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
16 An orthographic neighborhood is the set of real words that can be created by changing each 
letter in an item, one at a time (Balota and Chumbley 1985) (e.g. the orthographic neighborhood 
for “shirt” includes the following: shirk, shire, skirt, shift and short). 
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APPENDIX A: METHODOLOGICAL CONSIDERATIONS 

Supplemental figure A.1 Depiction of stimulus presentation timing for both studies 
A fixed inter-trial-interval of 1000 ms was used in the behavioral study (Chapters 2 and 

3), while a pseudo-randomly jittered inter-trial-interval was used in the imaging study (Chapter 2 
only). The inter-trial range of 4,450 – 10,050 ms in the imaging study reflects a fixation period 
including 1-3 MR frames plus, during the frame in which the stimulus appeared, the 1350 ms 
prior to and 100 ms following stimulus appearance. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Supplemental figure A.2 Components of one MR frame in imaging study 
Structure of a single, 3 s MR frame in the imaging study (Chapter 2), including the 

placement of the scanning gap relative to stimulus presentation. The stimulus appeared 1350 
ms into the frame, and remained on the screen for 1550 ms. Subjects could respond to a 
stimulus after its disappearance, provided the next stimulus had not yet appeared.  
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Supplemental material A3: The CO/DA+ vs. LFP segregation in cluster space was 

generally independent of particular analysis choices.  

	
  
A3a. Reaction time regression 

To address the possible concern that the observed effects were entirely some sort of 

artifact of response latency and/or time on task, a separate set of GLMs, similar to those 

described above, was generated for each subject. These GLMs not only included separate 

terms for errors, stimulus-type, and task, but also coded the reaction time for each individual 

trial. Reaction time was then treated as a continuous regressor in a supplemental analysis. 

Specifically, timecourses and statistics were re-extracted, using the regressed GLMs, for the set 

of regions obtained in the primary analyses. The hierarchical clustering of the original region set 

was then recomputed. 

In the recomputed dendrogram, the exact placement of the 156 regions changed slightly. 

In fact, the 10 LFP regions remained exclusively and entirely clustered together. While the 

micro-local relationships between the 20 CO/DA+ were largely intact, the larger cluster broke 

apart somewhat. However, all 20 regions remained connected at a similarity threshold of (1-r) = 

0.31, and importantly, they remained segregated (at a distance of (1-r) = 0.62) from the LFP 

region set.  

A3b. Motion censoring 

The primary imaging analyses in this study were conducted using data meeting a gross 

movement cutoff of < 1.00 RMS, but without performing any censoring of potential high-

movement MR frames (Siegel et al. in press). To verify that the primary results were, 

nonetheless, uncontaminated by movement, timecourses and statistics were re-computed for 

the set of regions obtained in the primary analyses, using GLMs created from data censored for 

motion at a framewise displacement (FD) threshold of 0.9 mm (Siegel et al. in press). 
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Motion censoring removed very few frames (on average, 7.5 frames per subject; range 

0-46 frames), resulting in qualitative (timecourse patterns) and quantitative (statistical) results 

comparable to what was obtained using the uncensored data. For example, of 4 statistical 

effects queried (e.g., task x lexicality x timecourse, etc.) for each of 156 regions (a total of 628 

effects), only 10 effects crossed the p = .05 threshold, half of which went from significant to not 

significant, and half of which went the opposite way.  

Partly because frame censoring did so little to change the data, and partly motivated by 

other factors, we addressed the possibility that motion contributes some amount of noise to the 

measured BOLD signal with an alternate approach, one involving an additional preprocessing 

step as described in the Methods (Power et al. in preparation; see also the next section) 

A3c. Preprocessing stream 

The Methods describe an additional preprocessing step applied to the data that included 

the regression of signals from white matter, CSF and whole-brain. Here, we provide additional 

information about this preprocessing step: the motivation for including this step; a more detailed 

description of the methodology; and the fact that similar results were obtained when the data 

was processed in a more traditional manner. 

Conceptual and practical motivations 

The imaging data reported in Chapter 2 was collected as part of a larger study that 

included 8-10 year old children. As discussed in the Conclusions, an investigation on the 

imaging developmental effects is planned as the most proximal next step. Preliminary analyses 

of the imaging data, however, revealed a signal artifact, presumably due to participant motion, 

that seemed to affect the children (i.e., higher-movement group) moreso than the adults. 

One line of ongoing research in our lab is focused on developing techniques to eradicate 

the contaminating effects of subject movement on BOLD signal. Recently, we have observed 

that BOLD signals extracted from voxels within white matter (WM), cerebrospinal fluid (CSF) 
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and whole-brain (WB) compartments show activity correlated with subtle subject movements 

(movements that are not captured by grosser estimates) (Power et al. in preparation). 

Furthermore, the application of those WM, CSF and WB signals as “nuisance” regressors during 

preprocessing seems to increase the quality of both rest- and task-related BOLD data 

considerably. 

Indeed, regressing WM, CSF and WB signal as part of the full preprocessing stream, as 

described in the present report, ameliorated the age artifact. In order to integrate this report with 

the future developmental report, the primary analyses here were computed using the more 

involved preprocessing stream, per the Methods. Importantly, the findings of the current study 

are plausible at several levels (e.g., timecourses have biological shapes, statistical images show 

believable anatomy, clustering teases apart previously distinguished attentional control 

systems).  

Additional methodological details 

To calculate the whole-brain signal, a group-average whole-brain mask was applied. For 

both the ventricular and the white matter signals, seeds were defined using FreeSurfer 

segmentations (http://surfer.nmr.mgh.harvard.edu/) of individual subjects’ anatomy and then 

eroded to help ensure that signal obtained from the ventricular and white matter seeds was 

derived only from the compartment of interest. Four-fold erosions were preferred, but if no 

voxels remained in the eroded masks, lesser erosions were progressively considered until 

masks with qualifying voxels were obtained (white matter typically used 4x erosion, ventricular 

typically 2x or 1x).  

Similar results were obtained with alternate preprocessing 

Corroborating the face validity of the preprocessing choice, several post hoc analyses 

demonstrated that the fundamental results did not change when the clustering and statistical 

testing of the 156 identified regions are computed using data that did not undergo the final 
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preprocessing step (i.e., “un-regressed” data). In the clustering dendrogram, the LFP region 

sets stayed entirely and exclusively together at a similarity metric of (1-r) = 0.0625, while the 

vast majority (19/20) of the CO/DA+ regions at that same threshold fell into 2 clusters, each of 

which gained a handful of new members but nonetheless remained segregated from the LFP 

regions. 

The data preprocessed in the 2 different ways can even be compared at an earlier stage 

of analysis, when regions are first derived from voxelwise ANOVAs. Indeed, as seen by 

comparing Supplemental figure A.3 with main Figure 2.7, there is much similarity between the 

statistical images for the lexicality x task x timecourse interaction obtained using the un-

regressed and regressed data. 
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Supplemental figure A.3 Statistical image of the voxelwise rmANOVA for the effect of 
task by lexicality by timecourse, without nuisance regression 

The data used to derive this image did not undergo the final preprocessing step 
described in the Methods. Compare to Figure 2.7, preprocessed with nuisance regression. 
Color scale corresponds to a z-score range of 3.5 to 6.0. Volumetric data was displayed on an 
inflated cortical surface using Caret software (http://www.nitrc.org/projects/caret/; Van Essen et 
al. 2001); 3 transverse slices in volumetric space are also shown.  
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Supplemental material A.4: 156 regions were selected via peak-finding, timecourse 

extraction, pruning for non-biological timecourses and removal of presumptive 

duplicates 

	
  
The automated peak-finding algorithm identified 72 regions of interest (ROIs) in the 

lexicality x task x timecourse image, and 144 regions in the task x timecourse image, for a total 

of 216 possible ROIs. Of these ROIs, 7 with non-biological timecourses were removed the 

lexicality x task x timecourse image, and 32 were removed from the task x timecourse image, 

leaving 177 candidate ROIs. (A biologically plausible timecourse is one that changes over time 

(here, 8 MR frames, or 24 s) relatively smoothly, i.e., without vacillating up and down from one 

timepoint to the next. Many HRF shapes thus qualify as biologically plausible, including a range 

of positive changes from baseline (activations) and negative changes from baseline 

(deactivations)). 

First-pass UPGMA clustering of the set of 177 ROIs was used to identify rapidly the 

probable duplicates in the region pool. First, 29 pairs of regions connected by a similarity metric 

of (1-r) < 0.02 were identified in the dendrogram. Of those 29 pairs, 21 were located within 10 

mm Euclidean distance of one another, suggesting that they were likely the same functional 

region. For each of these 21 pairs, the region with the smaller z score from the parent ANOVA 

was removed from the pool. This purging resulted in the elimination of 11 regions from the 

lexicality x task x timecourse ANOVA, and 10 regions from the task x timecourse ANOVA, 

leaving 156 ROIs. (For the 8 region pairs that were identified as being very close in cluster 

space ((1-r) < 0.02), but greater than 10 mm Euclidean distance from one another, regions were 

assumed to be discrete functional entities, thus both members were retained.) The final ROI set 

therefore included 156 regions, 54 of which derived originally from the lexicality x task x 

timecourse image, and 103 of which derived from the task x timecourse image.  
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APPENDIX B: GENERAL STIMULUS INFORMATION 

Supplemental material B.1: Complete list of stimuli 
	
  

B.1a Short stimuli from both the behavioral and imaging studies 
 
Stimuli are divided into 4 word categories and a pseudoword category. 
Most items (n=272) were shared across the 2 studies (plain black text). 
Items in blue, marked with $, were unique to the behavioral study. 
Items in red, marked with #, were unique to the imaging study. 
	
  
IRREGULAR 
LOW FREQ 

IRREGULAR 
HIGH FREQ 

REGULAR 
HIGH FREQ 

REGULAR 
LOW FREQ PSEUDOWORDS 

ache been ball   $ ace   $ afe   $ lufts 
aisle blood best  # batch arsh mamp 
bury  # blow black  # beet aze marn  # 
bush   $ both   $ boy bleed bape mence 
calf  # bowl brick   $ braid   $ beeg mip 
canoe bread camp cape bick mube 
chalk break check chant  # bilth nelk 
chef broad class  # cheat blize nisp 
choir climb clear   $ choke  # boin nize 
chute come cloud   $ chunk   $ breel nold 
comb  # could coast   $ clue brole norch 
corps death damp craft  # brop noud   $ 
cough does dark crisp cag nug   $ 
crow done  # day cube chen oabs   $ 
deaf earth  # duck drain  # chilf orp 
dealt flood face  # duke chilp  # pice 
depot four   $ fence fate choy pide 
dose   $ front first  # fetch clace pimes 
dumb   $ give five   $ fig clox pirg 
echo  # gone fort flock  # coaf pleck 
glove  # great  # frog freak  # com   $ plent 
gourd   $ group glad   $ fudge   $ cret pline 
gross  # grow   $ grain gaze cron plub 
hood guard green gene   $ crote pluft 
host   $ half gun   $ heel delk prale  # 
hymn have  # hide hike dilp preef  # 
limb heard hill itch doak   $ prelk 
monk love lost jaw   $ drace prine  # 
mow mild   $ lunch   $ lane drin prip 
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ninth month mile   $ lick dulp  # prug 
pear move more loaf   $ elch purf 
pier none name  # mask elp rame 
pint ocean  # next math feld raste 
plaid once nice maze  # felm rine 
pour   $ post   $ pig   $ moat   $ flark rup 
sew prove pink ounce foint  # scrut 
shove rough place pinch frabe shelg 
skis said plant plug fregs shoin 
steak says play quack frink slone 
swamp shoe point  # rib  # fump snool 
swan some  # prize saint funch solp 
swap soul reach scold gire storp 
swear soup risk   $ shine gleb strim 
sweat talk road   $ sip glort  # thape 
sword touch salt snout  # goit tharl 
tomb tough shed spice gort   $ thome 
ton two side  # spin   $ grelp threp 
tour want since  # stab grine tish 
tow wash   $ space stink gup   $ triss 
undo  # wear start  # tame hace trube 
wad   $ what state  # tent hane unk 
wand whom store  # thaw heek vabb 
wasp won swim trash  # homp vame 
whoa youth tank trot horch varge 
yacht 

 
think  # wag   $ jace vilt 

  
three  # wink jelf vink 

  
time witch joil voast 

  
told  # yank jout vobe 

  
train 

 
keeb weeb 

  
tribe   $ 

 
kime welk 

  
waste 

 
kirst woint 

  
wet   $ 

 
kolm wrilk 

  
wide 

 
krent wurt 

    
krong yain 

    
leck zates 

    
lext zelf 

    
lide zene 

    
lork  # zokes  # 
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B.1b Long stimuli (used only in the behavioral study) 
 
Stimuli are divided into 4 word categories and a pseudoword category. 
 

IRREG. 
LOW 
FREQ 

IRREG. 
HIGH 
FREQ 

REG. 
HIGH 
FREQ 

REG. 
LOW 
FREQ PSEUDOWORDS 

 anchor against asleep actress addert halmint scitter 
ballet already attack artist agrite harkete scrooper 
barracks although before banner alpeer harvice scrumple 
biscuit answer beside blessing arpull hergile seppad 
bishop become between cartoon belprink hurgiff shilmer 
bouquet bicycle birthday chipmunk bentil huster shunking 
butcher certain broken concrete billad imbine siback 
captives climate center contest bondup impete Silfer 
chorus clothing chapter declare bortin indolt sillank 
circuit country chicken dentist bripples inglam stendeen 
cocoon couple contract detect bruggle jebail suppew 
combed cousin corner expert burranks jiboke theeger 
coyote daughter demand fragment cabbit jilden thorbish 
cuckoo double describe goddess candume jopper threndle 
cupboard engine detail hamster capile jortume threon 
cushion enough escape hunter carnel kinter thrimp 
debris favorite explain insane charfing korple trabock 
doughnut feathers explore insect cheolark kunder tremair 
dungeon garage failure instinct chilping laject untreg 
fountain honest fishing invite chimmer lectine varden 
fragrant hungry forest ketchup clindle lidget venjures 
glacier husband golden kitten creetul liggue veopose 
gorgeous instead himself lecture crenship linnert versep 
graham island hundred lipstick crimmoad lorkit wockage 
granite league inside magnet cunker marner wopple 
hatred machine kitchen mattress degrick millast wrundle 
heaven method market napkin dittake mustick yapple 
horizon mountain master pancake douncing namsel yeggar 
jaguar muscle mistake perfume dreelop nattipe zancher 
jealous nature moisture pitcher drince needure zurtick 
leopard notice morning pumpkin drussle octure 

 lettuce palace myself raccoon dushole orshing 
 mammoth people outline reflex eabine plaront 
 marine pleasant percent remark ebbult plendank 
 meadow practice perhaps remote embling plettle 
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mischief private permit rescue estert plortain 
 pastry promise pressure sandwich falmen poaner 
 pigeon purchase provide selfish felken pocent 
 pirate purpose railroad sixteen fointed prandess 
 porpoise service remain slender fortain preefing 
 portrait should report splendid frecker prendid 
 ravine stomach result summit frendure rapoise 
 recipe suggest sentence tadpole frootip recklune 
 salmon surface subject temper fulbec rellinks 
 sausage thousand surprise torture glorking ruddint 
 senate through thirteen umpire grammock runded 
 tortoise toward transfer witness graster santude 
 weapon trouble winter zigzag haggit scayer 
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Supplemental material B.2 Examples of irregular test items with pronunciations 
 

Stimulus 

IPA transcriptiona 
(typical 
pronunciation) 

Acceptable regularize task 
pronunciations  

aisle ajl ɛsol, ɛsləә 

anchor æŋkəәr æntʃɔr, ækɔr 

barracks bærəәks bæræks, baræks 

broad brɒd brod, broæd 

could kʊd kuld, kɒld, kould 

engine ɛndʒəәn ɛndʒajn, ɛngajn 

glacier gleʃəәr glesiəәr, glæsiəәr, glæʃʊr  

guard gɑrd gward, guard  

pastry pestri pæstri, pæstraj, pestraj 

recipe rɛsəәpi rɛsajp, risajp 

soup sup sawp, soəәp 

tough təәf tawəәf, tawg, toəәf, tof 

toward təәwɔrd  tawɔrd, taward, towɔrd, toward 

weapon wɛpəәn wipəәn, wipan, wiəәpɑn 

yacht jɑt jætʃt , jakt 
 
Note. aIPA transcriptions guided by http://upodn.com/phon.asp.  
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Supplemental table B.3 Mean values of lexical properties for 5 short stimulus types 
(applies to Chapter 3, as well as Study 1 from Chapter 2) 
 

Stimulus typea 

Number 
of letters 

(SD) 

Number of 
syllables 

(SD) 

Number of 
orthographic 
neighborsb 

(SD) 

Number of 
phonological 
neighborsb 

(SD) 

Standard 
frequency 

indexc 
(SD) 

High frequency 
regular words 

4.25 
(0.64) 

1.00 
(0.00) 

8.15       
(4.89) 

15.81     
(9.35) 

59.51   
(5.12) 

Low frequency 
regular words 

4.25 
(0.64) 

1.00 
(0.00) 

7.46        
(5.09) 

15.52      
(9.91) 

46.49   
(3.87) 

High frequency 
irregular words 

4.33 
(0.56) 

1.00 
(0.00) 

6.23        
(4.01) 

15.52     
(9.09) 

61.50  
(5.96) 

Low frequency 
irregular words 

4.29 
(0.65) 

1.04 
(0.20) 

5.65       
(5.03) 

15.27   
(10.91) 

46.55  
(3.60) 

Pseudowords  4.29 
(0.62) 

1.00 
(0.00) 

5.34       
(4.48) --- --- 

 
Note. aFor all word stimulus types, n = 48; for pseudowords, n =126.  bOrthographic neighbors 
and phonological neighbors calculated using the English Lexicon Project database 
(http://elexicon.wustl.edu; Balota et al. 2007).  cStandard frequency index (SFI) is from Zeno et 
al. (1995).  
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Supplemental table B.4 Mean values of lexical properties for 5 long stimulus types  
(applies to Chapter 3) 
 

Stimulus typea 

Number of 
letters 
(SD) 

Number 
of 

syllables 
(SD) 

Number of 
orthographic 
neighborsb 

(SD) 

Number of 
phonological 
neighborsb 

(SD) 

Standard 
frequency 

indexc 
(SD) 

High frequency 
regular words 

6.77 
(0.78) 

2.00 
(0.00) 

0.90       
(1.48) 

1.46        
(2.63) 

59.17 
(3.85) 

Low frequency 
regular words 

6.79 
(0.74) 

2.00 
(0.00) 

0.81        
(1.25) 

1.25        
(2.05) 

47.95 
(3.68) 

High frequency 
irregular words 

6.79 
(0.77) 

2.00 
(0.36) 

0.40        
(0.68) 

2.46        
(3.87) 

59.99 
(4.77) 

Low frequency 
irregular words 

6.75 
(0.82) 

2.02 
(0.33) 

0.52        
(1.09) 

1.46        
(2.32) 

46.94 
(3.38) 

Pseudowords  6.76 
(0.76) 

2.01 
(0.09) 

0.61        
(1.11) --- --- 

 
Note. aFor all word stimulus types, n = 48; for pseudowords, n =126.  bOrthographic neighbors 
and phonological neighbors calculated using the English Lexicon Project database 
(http://elexicon.wustl.edu; Balota et al. 2007).  cStandard frequency index (SFI) is from Zeno et 
al. (1995).  
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Supplemental material B.5a Items used for demonstration and practice in the behavioral 
study (n = 13) 
 

Demonstration 
stimulus 

IPA transcriptiona 
(typical 
pronunciation) 

Regularize task 
pronunciation         
(as demonstrated) Stimulus type 

done  dəәn don irregular 

have  hæv hev irregular 

luncheon ləәntʃəәn ləәntʃiəәn irregular 

monkey  məәŋki mɑŋki irregular 

remind  rimajnd rimInd irregular 

ribbon  rɪbəәn rIban irregular 

show  ʃo ʃaw irregular 

soot  sʊt sut irregular 

squad  skwɑd skwæd irregular 

worm  wəәrm  wɔrm irregular 

crippen  krɪpəәn pseudoword 

checkers tʃɛkəәrz regular 

wolf wʊlf regular 
 
Note. aIPA transcriptions guided by http://upodn.com/phon.asp. IPA transcriptions and 
regularize task pronunciations are identical for pseudowords and regular words. 
 

 
 
 
Supplemental material B.5b Items used for practice in the behavioral study (n = 60) 

 
apple, bake, bandage, blizzard, brumple, bury, calf, captain, chaos, chilp, clock, contact, curtain, 
diaper, distance, earth, embrace, façade, famine, famous, father, find, folk, glove, great, gross, 
hartle, hope, jure, justice, kindness, loke, lump, may, measure, merchant, mind, morale, most, 
necklace, ocean, orange, pine, plate, porcupine, pregnant, ruck, scissors, scrape, some, swab, 
tongue, tread, treasure, trip, undo, war, word, wounded, young 
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Supplemental material B.6a Items used for demonstration and practice in the imaging 
study (n = 14) 
 

Demonstration 
stimulus 

IPA transcriptiona 
(typical 
pronunciation) 

Regularize task 
pronunciation          
(as demonstrated) Stimulus type 

bush bʊʃ  bəәʃ irregular 

child tʃajld tʃɪld irregular 

head hɛd hid irregular 

mind majnd mInd irregular 

soot sʊt sut irregular 

squad skwɑd skwæd irregular 

tread trɛd  trid irregular 

wad wad wæd irregular 

word wəәrd  wɔrd irregular 

bort bɔrt pseudoword 

ruck rəәk pseudoword 

zanch zæntʃ  pseudoword 

clock klak regular 

risk rɪsk regular 
 
Note. aIPA transcriptions guided by http://upodn.com/phon.asp. IPA transcriptions and 
regularize task pronunciations are identical for pseudowords and regular words. 
	
  
	
  
	
  
	
  
Supplemental material B.6b Items used for practice in the imaging study (n = 69) 

 
ace, answer, bake, ballet, below, bishop, both, bulp, cand, captain, chaos, chirt, chunk, clear, 
debris, does, double, dumb, find, four, glab, gock, gourd, granite, grow, hope, host, instead, into, 
island, jibe, jure, jurt, loke, may, meadow, mild, moat, most, people, pig, pine, plate, post, pour, 
private, recipe, road, runds, salmon, shoff, show, shown, spin, swab, than, treg, tribe, trip, war, 
wash, weapon, were, wolf, woman, worm, would, young, your 
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Supplemental material B.7 Frequency did not co-vary with length (applies to Chapter 3)  

 

1.) High frequency words also had higher SFIs than low frequency words when each length 

category was considered separately: short: t(165) = 20.3; p < .001; long: t(190) = 21.2; p < .001. 

 

2.) Regular and irregular words were also matched for SFI when each length-specific frequency 

category was considered separately:  short low: t(94) = -0.068; p = .946; short high: t(94) = -

1.755; p = .082; long low: t(94) = 1.400; p = .165; long high: t(94) = -0.928; p = .356.  
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Supplemental figure B.8 Words were chosen to sample a frequency continuum 
The high and low frequency words represent a median split of a continuous sampling 

across the Zeno et al. (1995) Standard Frequency Index (SFI) (shown for the behavioral study 
words only, since the words used in the imaging study overlapped almost entirely with the short 
words of the behavioral study).  
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APPENDIX C: SUPPLEMENTARY MATERIAL FOR CHAPTER 2 

Supplementary material C.1: A speed advantage for words vs. pseudowords in read is 

predictive of the lexicality effect reversal in regularize, in an unexpected way.  

One alternative to the 2-mechanism account of attentional control interacting with 

reading processing is a single-mechanism account involving pathway control. A 1-mechanism 

account in which pathway control sufficiently explains the data might predict that the magnitude 

of the speed advantage for words in the read task would be directly proportional to the 

magnitude of the RT slowdown for words in the regularize task. That is, to the extent that 

insufficient pathway control early in processing entirely accounts for the lexicality effect reversal 

in regularize task, the strength of the (interfering) lexical route should bear some relationship to 

the RT benefit afforded to words, compared to pseudowords, in normal reading (see schematic 

in Supplemental figure C.1). In order to test this particular prediction of a single-mechanism, 

pathway control hypothesis, we computed a subject-level correlation between the lexicality 

effect in the read task vs. the lexicality effect in the regularize task in all Study 1 subjects.   

In contrast to a prediction of “equal and opposite” (see main body of the text), the 

subjects with the largest lexicality effect reversals in regularize actually had the smallest positive 

lexicality effects in read (two-tailed p = .013 for the bivariate correlation in Study 1; see 

Supplemental figure C.1). The relationship was fit by an exponential (R2 = 0.2125; R2 adjusted 

for df = 0.1863), though quadratic, power, Gaussian and even linear fits also explained modest 

portions of the variance (all R2 in the range of 0.16 to 0.19).  Although, for maximum power, the 

data points plotted were computed using all the stimuli of both lengths (in the case of Study 1) 

and both regularities (regular and irregular), similar plots with comparable values of R2 were 

obtained when only subsets of the data were considered (e.g., short words only, or excluding 

irregular words). 
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The relationship observed in the Study 1 cohort held up in Study 2, as the correlation 

between small lexicality effects in read and large lexicality reversals in regularize became more 

reliable in the expanded subject pool (two-tailed p = .001; note that the amount of variance 

explained by the fit decreased slightly, to R2 = 0.1819; R2 adjusted for df = 0.1685; 

Supplemental figure C.1 shows the combined Study 1 & Study 2 plot).  

The relationship between the lexicality effect in the read task vs. the lexicality effect in 

the regularize task that was observed within individual subjects is challenging to reconcile with 

an attentional control account that invokes only pathway control. Instead, the incongruity 

between the size of the lexicality benefit for words in read, on the one hand, and the size of the 

lexicality cost for words in regularize, on the other, suggests that there may be downstream 

contributions of the effect of wordness to the slowing of regularize performance. That is, when 

skilled readers are asked to compute an unpracticed stimulus-response mapping on a familiar 

item (i.e., regularize a word), attentional control must be exerted both at the level of achieving 

appropriate pathway control (accounting for some of the selective slowdown for words) and also 

some downstream locus (accounting for another portion of the slowdown), quite credibly at the 

level of response checking. 
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Supplemental figure C.1 Correlation between lexicality effect in read task vs. lexicality 
effect in regularize task 

Relationship between Lexicality effect in the Read task (x-axis) and Lexicality effect in 
Regularize task (y-axis) for individual participants. (A) shows schematically the relationship 
predicted if route biasing (at Mechanism #1) can account entirely for the Task x Lexicality effect, 
i.e. if the RT cost when Regularizing a word is proportional to the RT benefit when Reading a 
word. (B) shows the results actually obtained for individual participants, combined across the 
behavioral and the imaging study cohorts, as well as the best-fit exponential for the relationship, 
which explains roughly 18% of the variance. The equation for the fit is y = Ae (Bx), where y = 
Lexicality Effect in Regularize; x = Lexicality Effect in Read; A = -0.68; B = -1.27.  
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Supplemental figure C.2 Surface rendering of the 2 attentional control clusters, with 
network areal borders 

Surface rendering of the CO/DA+ cluster, shown in purple (n = 20 regions), and the LFP 
cluster, shown in yellow (n = 10 regions). Similar to Figure 2.9, except that network areal 
borders, adapted from Power et al. (2011), have been added, facilitating visualization of the 
regions from each of the 2 control clusters within boundaries described using a converging 
method (rs-fcMRI) and a different set of subjects. Left hemisphere includes borders of the 
Frontal-parietal control system (yellow), Cingulo-opercular control system (mauve) and Dorsal 
attention system (green). Right hemisphere includes only Cingulo-opercular and Dorsal 
attention system borders. Clusters projected using Caret software (Van Essen et al. 2001). 
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Supplemental figure C.3 Detailed view of dendrogram, focused on LFP cluster 
Detailed view of the clustering dendrogram shown in Figure 2.8, here focused on the 

LFP cluster. Red dashed line indicates clustering threshold of (1-r) = 0.15. X, Y, Z coordinates 
(MNI) are given for the 10 LFP cluster members as well as their immediate neighbors in cluster 
space. Note that the 2 closest neighbors are regions in the left and right Inferior frontal gyrus 
pars opercularis. Next most proximal is a cluster of cerebellar regions, followed by a cluster 
including bilateral mouth somatomotor regions and auditory (STG) regions.	
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Supplemental figure C.4 Detailed view of dendrogram, focused on CO/DA+ cluster 
Detailed view of the clustering dendrogram shown in Figure 2.8, here focused on the 

CO/DA+ cluster. Red dashed line indicates clustering threshold of (1-r) = 0.15. X, Y, Z 
coordinates (MNI) are given for the 20 CO/DA+ cluster members as well as their immediate 
neighbors in cluster space. Note that several subregions of the dorsal anterior cingulate cortex 
(dACC) are included as distinct members of the cluster. Note also the adjacent lateral visual 
regions, dorsal attention regions (medial and superior frontal) and caudate regions.  
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APPENDIX D: SUPPLEMENTARY MATERIAL FOR CHAPTER 3 

Supplemental table D.1 Neuropsychological testing results from all tasks except Stroop  
 

Neuropsychological Test Adult M 
(SD) 

Child M 
(SD) 

Age Group 
Difference 
t statistic 

Age Group 
Difference 
p valuea 

Wechsler Abbreviated Scale 
of Intelligence (WASI) IQ, 

percentile rank 

97.26   
(4.45) 

89.92 
(12.67) 

t(37.1) = 
-3.047 0.004 

WASI Vocabulary subtest, 
ssb 

16.66   
(1.47) 

15.10   
(2.65) 

t(46.6) = 
-2.87 0.006 

WASI Matrix Reasoning 
subtest, ss 

13.94   
(1.05) 

13.16   
(1.91) 

t(46.1) = 
-1.99 0.053 

Woodcock Johnson III (WJ) 
Composite reading level, ssc 

114.81 
(8.23) 

118.01 
(8.77) 

t(61) = 
1.49 0.140 

WJ Letter/Word Identification, 
ss 

118.44 
(7.76) 

115.94 
(8.74) 

t(61) = 
-1.20 0.234 

WJ Reading Fluency, ss 121.13 
(16.47) 

119.90 
(14.85) 

t(61) = 
-0.31 0.758 

WJ Word Attack, ss 102.41 
(9.25) 

113.90 
(7.48) 

t(61) = 
5.41 >.001 

 
Note. aDifferences significant at p < .05 are bolded. bPopulation range for each WASI subtest is 
1-19. cPopulation mean for each WJ subtest is 100.   
ss = scaled score. 
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Supplemental table D.2 Stroop task results 
 

Stroop measure 
Adult M  

(SD) 
Child M  

(SD) 

Age Group 
Difference t 

statistic 

Age Group 
difference 
p valuea 

Facilitation effect 
(raw RT) 

2 ms          
(54) 

74 ms  
(91) 

t(48.4) = 3.807 >0.001 

Interference effect 
(raw RT) 

86 ms  
(51) 

141 ms  
(114) 

t(41.3) = 2.435 0.019 

Facilitation ratio 
 

0.004  
(0.077) 

0.071  
(0.085) 

t(61) = 3.27 0.002 

Interference ratio 
 

0.123      
(0.074) 

0.146  
(0.120) 

t(49.8) = 0.92 0.362 

Incongruent zRT – 
Congruent zRT 

-0.055  
(0.163) 

0.051 
(0.163) 

t(61) = 2.60 0.012 

Congruent errors 
.09  

(.30) 
.16             

(.45) t(61) = -0.70 0.486 

Incongruent errors 
.53  

(.84) 
2.48  

(2.10) 
t(39.2) = -4.82 >0.001 

Neutral errors 
.06  

(.25) 
.65  

(.84) 
t(35.0) = -3.72 0.001 

 
Note. .aDifferences significant at p < .05 are bolded.   
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Supplemental analysis D.2 Examination of Stroop task results 

To explore the explanatory adequacy of lexical route interference due to insufficient 

pathway control for the regularize task slowdown, another point of leverage may be to assess 

more thoroughly the apparent similarity between the regularize task and the Stroop task. As 

mentioned in the participant description, the child cohort showed larger Stroop effects 

(facilitation and interference) than the adults. However, the age group difference in the task 

effect was in the opposite direction from the group Stroop results, with adults showing greater 

“interference” from lexical processing than children during the regularize task. Furthermore, 

individual Stroop measures did not track consistently with measures of read and regularize task 

reaction times (nor the relationship between the task reaction times17), suggesting that the 

attentional mechanisms underlying the observations of the task x lexicality interaction do not 

map cleanly onto a Stroop-like interference. Relatedly, Protopapas and colleagues examined 

the relationship between reading ability and Stroop interference in dyslexic and typically-

developing 7th graders (Protopapas et al. 2007). Those authors found that the dyslexic children 

showed greater Stroop interference than the control children; similarly, within the control group, 

the poorest readers showed the greatest interference. Our group Stroop results are similar, with 

the “worse” readers (by absolute reading level, the children) showing larger interference effects 

(incongruent zRT – congruent zRT; see Table 2) than the “better” readers (the adults). The fact 

that Stroop task interference is often interpreted as an index of differential pathway strength 

(e.g., color vs. word naming; see Cohen et al. 1990), coupled with the observation that the 

regularize task slowdown does not tidily map onto Stroop scores within individuals, reinforces 

the suggestion, albeit indirectly, that the regularize task slowdown begs for an explanation that 

invokes something other than only lexical route interference due to insufficient pathway control. 	
    

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
17 It is not straightforward to obtain a one-dimensional measure of the task x lexicality 
interaction; however, we approximated the interaction effect using the following subtraction 
index: (pwread – wordread) - (pwregularize – wordregularize). 
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Supplemental material D.3 Calculation of reading levels in both age groups  

The children’s reading grade level estimates (calculated as a composite of the 3 

Woodcock Johnson reading subtests) ranged from 3.1 to 14.9, with an average of 8.0 and a 

standard deviation of 2.6. On average, the child participants were reading 3.5 grade levels 

above their actual grade; this sample therefore represents a very skilled group of children. Adult 

reading grade level estimates ranged from 13.4 to 18.0 (test maximum), with an average of 17.8 

and a standard deviation of 0.9; many adult participants were at ceiling in terms of estimated 

grade level. For statistical comparisons across groups, a reading level standard score was 

computed for each participant, taking into account the participant’s actual grade level. The 

groups did not significantly differ in terms of this grade-adjusted reading level (t(61) = 1.49; p = 

0.140). In other words, although the adults had higher absolute reading levels than the children, 

the two groups did not significantly differ on grade-adjusted reading level. Also, none of the 

subjects was below the 30th percentile for reading. 
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Supplemental material D.4 Neuropsychological testing and task performance 

correlations of interest  

There were a number of notable observations rendered by a consideration of the individual 

participants’ neuropsychological testing scores. Some of those observations are reported here. 

In total, the following correlations suggest that the best readers (by many measures) are 

characterized by both small positive lexicality effects in the read task and large negative 

lexicality effects in the regularize task. This characterization is consistent with the analysis 

reported in Supplemental material and figure C.1, whereby the adults with the smallest positive 

lexicality effects in the read task showed the largest negative lexicality effects in the regularize 

task.  

 

1) The fastest readers (raw RT for read task) showed the smallest lexicality effects (zRT) 

for the read task (adults R = .592; p < .001; children R = 0.544; p = .002). 

2) The fastest readers (raw RT for read task) also showed the largest negative lexicality 

effects (i.e. zRT reversals) in the regularize task; the relationship reached significance in 

the children and was trend-level in the adults (adults R = .306; p = .094; children R = 

0.367; p = .042). 

3) In addition, the fastest regularizers (raw RT for regularize task) showed the largest 

negative lexicality effects (i.e. zRT reversals) in the regularize task, at least among the 

adults (adults R = 0.38, p = .033; null in children). 

4) Higher Letter/Word ID scores (Woodcock Johnson subtest) correlated with both smaller 

lexicality effects in the read task (adults R = -.586, p = .001; children R = -.376; p = .037) 

and larger negative lexicality effects in the regularize task (adults R = -.492, p = .005; 

children R = -.363; p = .044).  
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Supplemental table D.5 Short items only: mean raw reaction times (ms) and accuracy 
rates 
 
 Read Regularize 

 Adults Children Adults Children 

Stimulus 
type  

RT M Acc M RT M Acc M RT M Acc M RT M Acc M 
(SD) (SD) (SD) (SD) (SD) (SD) (SD) (SD) 

High 
frequency, 
regular 

672 
(119) 

1.000 
(.000) 

822 
(122) 

0.996 
(.012) 

1242 
(295) 

0.989 
(.025) 

1159 
(223) 

0.984 
(.039) 

Low 
frequency, 
regular 

691 
(129) 

0.999 
(.007) 

834 
(130) 

0.990 
(.025) 

1209 
(295) 

0.991 
(.028) 

1122 
(195) 

0.977 
(.033) 

High 
frequency, 
irregular 

706 
(125) 

0.995 
(.013) 

846 
(121) 

0.953 
(.058) 

1252 
(290) 

0.856 
(.122) 

1204 
(241) 

0.770 
(.108) 

Low 
frequency, 
irregular 

739 
(129) 

0.970 
(.041) 

908 
(169) 

0.847 
(.125) 

1246 
(251) 

0.845 
(.100) 

1193 
(262) 

0.758  
(.095) 

Pseudo-
words 

783 
(175) 

0.990 
(.016) 

945 
(183) 

0.949 
(.083) 

1081 
(277) 

0.990 
(.022) 

1108 
(219) 

0.968 
(.032) 
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Supplemental table D.6 Long items only: mean raw reaction times (ms) and accuracy 
rates 
 

 Read Regularize 

 Adults Children Adults Children 

Stimulus 
type  

RT M Acc M RT M Acc M RT M Acc M RT M Acc M 
(SD) (SD) (SD) (SD) (SD) (SD) (SD) (SD) 

High 
frequency, 
regular 

684 
(119) 

1.000 
(.000) 

826 
(135) 

0.993 
(.017) 

1275 
(283) 

0.999 
(.007) 

1120 
(208) 

0.985 
(.027) 

Low 
frequency, 
regular 

692 
(122) 

1.000 
(.000) 

838 
(135) 

0.977 
(.044) 

1200 
(265) 

0.996 
(.012) 

1088 
(189) 

0.981 
(.032) 

High 
frequency, 
irregular 

702 
(117) 

0.998 
(.010) 

857 
(133) 

0.978 
(.041) 

1296 
(268) 

0.910 
(.102) 

1189 
(227) 

0.773 
(.129) 

Low 
frequency, 
irregular 

752 
(128) 

0.989 
(.018) 

909 
(154) 

0.853 
(.157) 

1288 
(284) 

0.949 
(.066) 

1168 
(209) 

0.839 
(.145) 

Pseudo-
words 

902 
(227) 

0.992 
(.014) 

1073 
(230) 

0.904 
(.133) 

1171 
(284) 

0.986 
(.028) 

1163 
(211) 

0.927 
(.091) 
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Supplemental material D.7 Subject-level correlations between read task and regularize 

task performance for each subset of stimuli 

 This supplemental analysis asked whether, within individuals, average reaction time to a 

particular stimulus type for the read task was meaningfully related to the average reaction time 

to the same stimulus type for the regularize task. For this analysis, children and adults were 

considered separately, in order to explore the possibility that there would be age group 

differences in the nature of the relationship between read and regularize task reaction times for 

various stimulus types. Of particular interest was the comparison between words and 

pseudowords, because of the idea that the pseudoword task effect might be attributable largely 

to an effect of response checking, while the word task effect might result from a combination of 

effects, in terms of both pathway control and response checking.  

The plots show each subject as a dot (adults) or a rectangle (children), and all correct 

trials for a subject for a particular stimulus type were averaged (collapsing across length). As 

shown by the top plot, both the children and adults exhibited a linear relationship between 

pseudoword read task reaction time and pseudoword regularize task reaction time, with very 

high Pearson correlation coefficients calculated for both age groups (adults R = 0.46, children R 

= 0.78). In contrast, for all 4 word stimulus types, a clear age group difference was observed, 

whereby children, but not adults, showed a linear relationship between read task reaction time 

and regularize task reaction time. The Pearson correlation coefficients as well as the p values 

for the tests of significant linear fit are shown on each plot. 

First, it is acknowledged that the finding of a significant relationship between 2 variables 

in the children coupled with the lack of a corresponding relationship in the adults (as observed 

for all the word stimuli) does not constitute a direct test of age group difference. However, the 

correlations seen in the children are compellingly strong for words and pseudowords alike, and 

given that a linear relationship was observed in the adults for pseudowords, it is worth 
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speculating about whether the absence of any discernible relationship between read task speed 

and regularize task speed for adults for words may inform further the results presented in 

Chapters 2 and 3. 

A clear interpretation of the plots shown in Supplemental figure D.7 is made difficult by 

the fact that within the adult participants, the relationship between the reaction time on the read 

task and the reaction time on the regularize task not only departs from linearity, it simply falls 

apart. One point that the plots illustrate well is that for individual children, the response latency 

for the read task predicts the response latency for the regularize task quite well, for all stimulus 

types tested. Perhaps a constant increment in the response latency from the read task to the 

regularize task suggests a major contribution from only 1 mechanism, response checking, in the 

children, for words and pseudowords. In the case of adults, perhaps the preserved linear 

relationship observed for the pseudowords likewise indicates the greater contribution to those 

items’ performance from attentional control at the level of response checking rather than 

pathway control. In that scenario, the nonlinearity of the read vs. regularize task comparison for 

the word conditions in the adults may reflect a more substantial contribution on those items from 

pathway control.  

It is emphasized that the interpretation just offered to explain the results depicted in 

Supplemental figure D.7 is highly speculative. One of the approaches that one could take to 

gain additional leverage on the use of within-subject read vs. regularize task correlations such 

as those shown is to stratify the word stimuli differently, for example, taking into account length, 

bigram frequency, orthographic neighborhood size, etc. Some of those variables may illuminate 

whether certain features of words make them more or less “complicated” in their computation in 

the regularize task. Similarly, related analyses could be interrogated at the item-, rather than the 

subject-, level. 
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Supplemental figure D.7 Subject-level 
correlations between read task and 
regularize task reaction time for each subset 
of stimuli 
	
   Each participant is plotted as one 
marker; red rectangles represent the children 
and green circles represent the adults. Raw read 
task reaction times are plotted on the x-axes, 
while raw regularize task reaction times are 
plotted on the y-axes. Solid lines indicate a 
statistically significant linear fit for the correlation, 
while dotted lines indicate the absence of such a 
fit. 
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