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ABSTRACT OF THE DISSERTATION

Information-based Analysis and Control of Recurrent Linear Networks and Recurrent

Networks with Sigmoidal Nonlinearities

by
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Doctor of Philosophy in Systems Science & Mathematics
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ShiNung Ching, Chair

Linear dynamical models have served as an analytically tractable approximation for a variety

of natural and engineered systems. Recently, such models have been used to describe high-

level diffusive interactions in the activation of complex networks, including those in the brain.

In this regard, classical tools from control theory, including controllability analysis, have

been used to assay the extent to which such networks might respond to their afferent inputs.

However, for natural systems such as brain networks, it is not clear whether advantageous

control properties necessarily correspond to useful functionality. That is, are systems that are

highly controllable (according to certain metrics) also ones that are suited to computational

goals such as representing, preserving and categorizing stimuli? This dissertation will

introduce analysis methods that link the systems-theoretic properties of linear systems with

informational measures that describe these functional characterizations. First, we assess

sensitivity of a linear system to input orientation and novelty by deriving a measure of how

networks translate input orientation differences into readable state trajectories. Next, we

explore the implications of this novelty-sensitivity for endpoint-based input discrimination,

wherein stimuli are decoded in terms of their induced representation in the state space. We

develop a theoretical framework for the exploration of how networks utilize excess input

xv



energy to enhance orientation sensitivity (and thus enhanced discrimination ability). Next,

we conduct a theoretical study to reveal how the background or ‘default’ state of a network

with linear dynamics allows it to best promote discrimination over a continuum of stimuli.

Specifically, we derive a measure, based on the classical notion of a Fisher discriminant,

quantifying the extent to which the state of a network encodes information about its afferent

inputs. This measure provides an information value quantifying the ‘knowablility’ of an

input based on its projection onto the background state. We subsequently optimize this

background state, and characterize both the optimal background and the inputs giving it

rise. Finally, we extend this information-based network analysis to include networks with

nonlinear dynamics–specifically, ones involving sigmoidal saturating functions. We employ

a quasilinear approximation technique, novel here in terms of its multidimensionality and

specific application, to approximate the nonlinear dynamics by scaling a corresponding linear

system and biasing by an offset term. A Fisher information-based metric is derived for the

quasilinear system, with analytical and numerical results showing that Fisher information

is better for the quasilinear (hence sigmoidal) system than for an ‘unconstrained’ linear

system. Interestingly, this relation reverses when the noise is placed outside the sigmoid in

the model, supporting conclusions extant in the literature that the relative alignment of the

state and noise covariance is predictive of Fisher information. We show that there exists a

clear trade-off between informational advantage, as conferred by the presence of sigmoidal

nonlinearities, and speed of dynamics.
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Chapter 1

Introduction

1.1 Historical context

The tradition of describing the dynamics of natural and engineered systems is a very old and

rich one. Euclid, Pythagoras, and Archimedes gave the geometric foundation and logical

framework for all mathematical and engineering disciplines, and wedded theoretical and

practical mathematics, embodying the ethos of the scientist as engineer. Galileo, also a

designer and practical engineer, brilliantly elucidated the physical principles which form the

core of mechanics. Newton (also a practical man not afraid to work with his hands), who

revolutionized science in so many ways that it almost defies credulity, formulated the laws of

gravitation, force, and motion governing virtually all static and dynamic processes (at least

those at ‘ordinary’ temporal and spatial scales). Not content with having discovered these

fundamental laws, he subsequently inaugurated the rigorous study of dynamical systems by

using these laws to describe physical processes in terms of differential and integral calculi

which he co-created. Poincaré extended the tradition by finding ingenious ways to probe

1



the dynamics of nonlinear systems and systems of many variables, and to a large extent

laid the foundation for modern graphical representation of time-varying system behavior.

Poincaré also made the first basic discoveries, in his analysis of the three-body problem, of

the mysterious dynamical phenomenon which is now known as chaos.

An extremely important historical development occurred between the time of Newton and the

time of Poincaré–namely, the industrial revolution. It was no accident that industrialization

came shortly after Newton’s ideas had been fully integrated into the scientific community;

Newtonian ideas enabled and facilitated the new machine era. From early triumphs in

agricultural, textile, and locomotive applications, the industrial revolution eventually per-

meated every facet of life, leading to new, efficient ways to produce virtually every material

requirement of life. This revolution echoes down to our time, as more and more refined

industrial techniques eventually enabled air travel, pharmaceuticals, production and storage

of an almost endless variety and quantity of food, lighting, heating, and cooling technologies,

multitudinous buildings and public works, electrical appliances of all sorts, modern automo-

biles, and the computer age. Now, as we arrive at computers, we must pause to reconsider

the purposes for which a dynamical system is designed. For computers, dependent as they

are on physical processes of manufacture and operation (i.e. automated circuit soldering,

photoengraving of microprocessors, control technologies enabling hard disk pointer operation,

to name just a few), have the explicit function of information processing. For the first time,

machines are able to do things previously relegated to the realm of human (or animal) mental

function. There is an important shift here–dynamical systems may be designed, not just to

move things, but to transform ideas. The emergence of this technology has shed light on real

neural function, just as discoveries in neuroscience have symbiotically paved the way for more

efficient techniques of artificial computation and intelligence.
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1.2 Stimulus encoding in dynamical (neural) networks

Now, it must be stated that there is often an intimate relation between physical processes

occurring in (or to) a dynamical system and its qualities of ‘ideation’ or information processing.

For example, in real neural systems, physical stimuli interface with sensory receptors, which

encode the stimuli, pass the encoded information to deeper processing levels, and ultimately

high-level thought involving the stimulus is generated. The initial coding is often done in a

way which mimics the physical properties of the stimulus. For example, early visual processing

cortex (V1-V5) has a ‘retinotopic’ neural map (this is an oversimplification to some extent, as

there are actually many different types of visual representation–for color, contour, direction

of motion, etc.–simultaneously occurring), meaning that there is a one-to-one correspondence

between what the eye sees and the pattern of neural activation, so that ‘nearby’ visual stimuli

will lead to ‘nearby’ neurons firing [1–4]. Likewise, in auditory cortex, there is a tonotopic

organization of sound receptors, so that sounds resulting from oscillations of similar frequency

will induce firing in nearby neurons [5–7]. Obviously, the amount of information thus encoded

is enormous, and this encoding correlates very highly with physical reality. However, to form

abstractions, associations, action plans, and just to make sense of it all, higher brain centers

undoubtably condense this information dramatically and transmit it with high efficiency.

It is not well-known how this is done. We expect the nature of information processing to be

different at different stages, but what does it mean for one network (dynamical system) to

be different from another with respect to information flow? When asking how efficiently a

system can physically move (as quantified by changes in a vector of state variables, herein

denoted x), we have many tools at our disposal with which a reasonable answer can be

formed. In particular, for linear systems, or local linearizations of non-linear ones, we can

readily assess stability (via the eigenvalues of the connectivity matrix, herein denoted A),
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controllability (via the Kalman rank condition on the controllability gramian, herein denoted

W), cost-of-control when guiding the system in orthogonal state space directions (via the

spectrum of W), and many others, to which an extensive literature is dedicated [8–13]. But

if our goal is to quantify, in a meaningful way, the extent to which a system can efficiently

propagate information, or to elucidate the qualitative nature of this propagation, we find

that there are relatively few resources at our disposal ( [14–16] are compelling attempts in

this direction, but treat static, or very restricted dynamical, networks). The work presented

in this dissertation reflects an attempt to address this lack by providing a few theoretical

tools with which information-based comparisons can be made and qualitative information

processing analyses conducted.

1.3 Relation between information and control

With these tools at our disposal, we address another important issue: the relationship between

control-theoretic and information-theoretic properties of dynamical systems. Specifically,

it is unclear whether dynamical networks that do a good job encoding and/or processing

information are also those that are most responsive to their inputs in a control-theoretic

sense. Hence we ask the second question: Is a network that is easily controlled by its inputs

necessarily one that also effectively encodes information about those inputs?

These two primary motivations, 1) the derivation and deployment of quantitative analytic

tools for assessing information-processing capabilities of linear (or linearized) dynamical

systems, and 2) the comparison of control- and information-theoretic characteristics of these

systems, enabling the assessment of how structure and dynamical aspects of a network relate

to ‘good’ information encoding. Since we know, to a large extent, what kinds of network

architectures and dynamical propensities lead to efficiency of control, we may now, armed
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with the measures herein derived, conduct a comparative analysis. Our results suggest that,

in general, systems that are ‘easy’ to control are also those that are efficient information

encoders. The relation between the two (information and control) is mediated through the

idea of sensitivity. The idea of network sensitivity will play an important role throughout this

work. In fact, the first three chapters are devoted to various facets of networks sensitivity to

inputs. Further, the fourth and fifth chapters feature a Fisher information-based analysis,

where the Fisher information is proportional to the derivative(s) d f (·)
du of the dynamical

equation(s) f (·) with respect to input u–by definition the sensitivity of f (·) to changes in

u. The critical link with control theory is easily made when we realize that controllability

analysis also seeks to quantify network sensitivity to inputs, geometrically described by the

reachable state space as a function of input energy. Thus we take network sensitivity as our

point of departure.

1.4 Organization

Please see the schematic Figure 1.1 for a visual-conceptual picture of the dissertation’s main

themes and how they are connected.

1.4.1 Orientation sensitivity

We begin (Chapter 2) by considering a network quality which underlies all higher-level

information processing–sensitivity. We introduce a measure quantifying network sensitivity

to input orientation difference, and show how, by using familiar optimization techniques, we

may maximize sensitivity by finding the minimum input difference which can accomplish any

desired pair of state transfers. Modeling neural networks with state-space methods is a natural

and commonly-used paradigm, wherein each state variable corresponds to neuronal activation
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Figure 1.1: Conceptual schematic of dissertation organization
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at some spatial scale, ranging from single-neuron spike patterns to mean-field electrical or

BOLD behavior of large neuronal ensembles. In this paradigm, separation (usually measured

by simple Euclidean distance) of stimulus-induced states allows the network to differentiate

the stimuli (inputs). This ability of a system to discern input difference, by translating the

input difference into ‘readable’ state-space separation, is critical, and obviously has major

implications for higher-level information processing.

1.4.2 Sensitivity and input (stimulus) discrimination

With this in mind we explore (Chapter 3) the implications of the sensitivity metric (derived

in Chapter 2) for endpoint-based input discrimination by developing an intuitive, geometric

framework to explore the ways in which different inputs can be discriminated in recurrent

linear dynamical networks. We derive a closed-form, recursive (with respect to dimension)

expression for sensitivity to minimum-energy input orientation difference, which is independent

of particular network dynamics and depends only on parametric state separation on the

reachable ellipsoid with fixed energy. That is, for any controllable linear recurrent network, the

exact total orientation difference between competing (minimum energy) inputs can be known

by a simple sinusoidal function of the parametric distance between their resulting terminal

states (recall that a point on an n-dimensional ellipsoid can be specified by n−1 parameters;

thus the parametric difference between two points can be expressed as an n−1-dimensional

vector of differences in these parameters). That this is independent of network topology

and dynamics is surprising, especially in light of the fact that Euclidean distance between

terminal states of a given pair of inputs will very much depend on the particular network. In

fact, the relation between the Euclidean and parametric difference has important implications

for the discriminability of inputs in the presence of noise, as is explored geometrically and

algebraically in the Chapter.
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1.4.3 Energy vs orientation sensitivity trade-offs evaluated via bispectral

analysis

In Chapter 4, we build on the previous results by developing a theoretical framework for

the quantification of how orientation sensitivity is related to input energy. Specifically, we

design a novel way to describe how a dynamical system “trades off” when presented with

competing control-based and information-based objectives; thus, we quantify how a network

may use “excess” stimulus energy (i.e. more than sufficient for a given network function)

to enable heightened sensitivity and discriminatory ability. For example, if we require two

inputs to ‘drive’ the system to points in the state space separated by a given distance, it

is intuitive that if we allow the inputs unlimited energy, their trajectories (and thus their

relative orientations) can be very similar and still accomplish the goal. Thus a network

whose inputs are endowed with large amounts of excess (i.e. above minimum) energy can

distinguish between inputs that are, on the whole, very similar. On the other hand, inputs

which are more energy-constrained have a more circumscribed set of possible trajectories if

their corresponding states are to reach the same terminal targets. In this case, the network

‘requires’ its afferent inputs to have more novelty for successful discrimination. The Chapter

highlights the way in which the trade-off between available energy and orientation sensitivity

plays out in different networks. This is quantified in a ‘bispectral matrix’, which encodes

the energy-orientation trade-off as a function of direction of motion (in the state space).

In particular, it is seen that some network P may be more holistically ‘economical’ in this

respect than a network Q, but that Q may have ’sweet spots’ in the state space in which it is

especially good (i.e. better than P at discriminating inputs with limited energy. Since control

objectives are often framed with respect to conservation of energy, the energy-sensitivity trade-

off can be conceptually generalized to suggest a possible relationship between control- and
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information-based objectives. This relationship is elucidated and made more mathematically

precise in the following Chapter.

1.4.4 Information spectra and optimal background states

In Chapter 5, we introduce a metric, based on Fisher information theory, for the quantification

of information transmission, showing how its value depends on network topology and time

dynamics. A general optimization strategy is designed to maximize this information flow. We

then apply the information metric to a discrimination/classification scenario wherein a linear

dynamical network “compares” incoming stimuli to a default background state. Specifically,

we quantify the “knowability” of an input based on its projection onto the background state,

and subsequently optimize the background state using the maximization of total information

as an objective. We highlight the relationship of this optimal background to underlying state

noise covariance, and consider how this relationship changes (which it does) as a function of

time. We characterize the ‘information spectrum’, based on the derived Fisher information

matrix, and compare this spectrum to that of the controllabilty gramian matrix, establishing

a link between fundamental control-theoretic network analysis and information processing.

It is seen that networks that conserve energy effectively in a control-theoretic sense, are

also those that tend to be more informative. Thus one of our primary motivations–that of

understanding the relation between control- and information-theoretic qualities in dynamical

systems–is squarely addressed. Further, we assess information at a graph-theoretical level by

analyzing the extent to which network ‘hubs’ are targeted in control strategies which induce

optimally informative contrasts (i.e. background states). It is found that hubs are much more

critical for ‘informative’ control in scale-free networks than in random networks, perhaps

because the nodes of highest degree in scale-free networks tend to be much more highly

connected than those in random networks (witness the long tail in the power-law degree
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distribution for scale-free networks vs. the more mean-centered binomial degree distribution

of random networks).

1.4.5 Quasilinear approximation of Fisher information in nonlinear, ‘sig-

moidal’ networks

Finally, in Chapter 6, we extend our analysis to the nonlinear domain by considering (noisy)

networks which include nonlinear, sigmoidal ‘saturating’ functions, such as are commonly

found in natural complex systems (especially in neural networks). Extending previous work,

we find quasilinear approximations to the nonlinear dynamics, thus generating networks with

dynamics which are statistically similar to their nonlinear counterparts, but which are much

more amenable to analysis. We show the quality of the approximation both statistically and

in concrete examples. We then proceed to derive expressions for the Fisher information of

the quasilinear state with respect to its input, quantifying the extent to which the network

encodes, by means of a state ‘readout’ (contrasted with the inner product-based readout used

previously), information about an input. This informational analysis reveals something quite

startling–the quasilinear information (hence, by the approximation, the sigmoidal system) is

categorically better at encoding inputs than a corresponding unconstrained linear system. It

would seem that a saturating function, which effectively serves to ‘squash’ the signal when

it gets too large or small, would limit state-space representation of an input relative to an

unconstrained system. However, our derivation shows that this is not the case. We assess

the implications of this result for understanding the etiology of sigmoidal nonlinearities in

dynamical systems generally, since an information-based motivation could hypothetically be a

causal factor in the development of sigmoidal nonlinearities in complex systems. We also frame

the counter-argument that, though sigmoidal nonlinearities appear to confer an informational

advantage, since a quality approximation can be accomplished by means of a simple quasilinear
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transformation, which is presumably much less biologically expensive, sigmoidal nonlinearities

probably have their root cause in simple physical homeostatic mechanisms.

1.5 Contributions

We have made, we believe, important contributions both conceptually and technically.

Conceptually, we have provided a general paradigm, with several distinct subdomains, for the

exploration of how information processing in dynamical systems is related to control-theoretic

principles, especially through the linking theme of input sensitivity. Technically, we have

introduced/derived a number of tools for the quantification of information propagation,

provided extensive numerical characterizations of how these metrics apply to simulated

dynamical networks/systems, both linear and nonlinear, and have treated their interactions

with existing metrics in a systematic and sometimes analytic way.

1.5.1 Introduction of a novel network sensitivity metric

• The theoretical derivation, via Hamiltonian optimization, of ‘orientation selectivity’ (or,

‘input novelty’) as a control measure

• Characterization of this sensitivity measure vis-à-vis dynamical systems analysis (with

neural network example) [17]

1.5.2 Analytic derivation, and geometric interpretation, of sinusoidal, recur-

sive, orientation sensitivity expression for minimum-energy inputs

• Derivation of a sinusoidal, recursive expression for orientation sensitivity (with respect

to minimum-energy inputs)
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• Proof that this expression depends only on outputs (more precisely, on the parameters

determining output location on a feasible fixed-energy ellipsoid)

• Assessment of the implications for discrimination and classification in noisy dynamical

networks [18]

1.5.3 Novel analytical paradigm for assessing how networks trade energy for

sensitivity

• Development and deployment of an analytical paradigm for the assessment of how

orientation sensitivity is related to input energy

• Derivation of a novel metric to quantify how a dynamical system “trades off”, when

presented with competing control-based and information-based objectives

• Using this metric, a bispectral analysis is employed to characterize (and illustrate with

examples) how networks may leverage ‘excess’ stimulus energy for heightened sensitivity

• Numerical characterizations of how the extent to which energy may be ‘traded’ for

sensitivity depends on network topology and dynamics [19]

1.5.4 Derivation of–and analysis using–a novel Fisher information-based

metric quantifying how much afferent input information is transmitted

• Theoretical derivation of a Fisher information-based metric quantifying the extent to

which a dynamical network encodes its afferent inputs by means of a projection onto a

‘background’ state
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• Optimization (i.e. maximization) of this metric with respect to the background, thus

establishing a theoretical basis for the design and/or analysis of a network’s best (i.e.

most informative) ‘default mode’

• Characterization of how the optimal background relates to system noise, as a function

of time

• Comparison of how the information measure relates to network controllability via

spectral comparisons of the derived Fisher information matrix and the controllability

gramian

• Quantification of the extent to which maximizing information depends on targeting

network ‘hubs’ for control [20]

1.5.5 Novel information analysis of sigmoidal nonlinear systems based on

the Fisher information of a quasilinear approximation

• Extension of information-based analysis to the nonlinear regime by means of multi-

variate quasilinear approximation of networks with sigmoidal nonlinearities

• Extension of methods introduced in [21] to enable quasilinear approximation of arbitrary-

dimensional recurrent networks whose sigmoidal functions act on non-stationary stochas-

tic dynamical processes driven by Gaussian noise and afferent inputs

• Implementation of these derived methods, in a fixed-point optimization paradigm, to

generate quasilinear approximations for medium-sized (n ≈ 100) simulated networks,

with statistical results presented verifying the accuracy of approximation

• Fisher information-based analysis of the resulting quasilinear networks, quantifying the

extent to which these networks encode information about their inputs (in the state)
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• Derivation of quasilinearization and Fisher information is conducted with respect to two

distinct modeling paradigms–one with noise ‘inside’ the sigmoid (hence the quasilinear

transformation), and the other with noise ‘outside’

• It is shown that quasilinear (and sigmoidal by approximation) Fisher information

(QFI–which is holistically quantified by the trace of the Fisher information matrix) is

better than for a Jacobian-linearized, ‘unconstrained’ linear network (LFI) in the first

formulation, while the reverse is true in the second formulation

• Analytical results are given specifying the mathematical relationship between QFI

under the two formulations

• Numerical characterization of how QFI compares to linear Fisher (LFI) information, as

a function of saturation limits (i.e. parameters of the sigmoid)

• Analytical results are shown for a special case wherein information matrices for the

quasilinear and linear systems differ a multiplication by the quasilinear ‘gain’ matrix

(i.e. the optimized approximation parameters exactly determine the information)
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Chapter 2

Sensitivity to input orientation difference

(novelty) in linear systems

2.1 Introduction

In this chapter, we propose a novelty-based index for quantitative characterization of the

controllability of complex networks. This inherently bounded index describes the average

angular separation of an input with respect to the past input history. We use this index to find

the minimally novel input that drives a linear network to a desired state using unit average

energy. Specifically, the minimally novel input is defined as the solution of a continuous time,

non-convex optimal control problem based on the introduced index. We provide conditions

for existence and uniqueness, and an explicit, closed-form expression for the solution. We

support our theoretical results by characterizing the minimally novel inputs for an example

of a recurrent neuronal network.
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In its most basic form, the systems-theoretic notion of controllability carries a binary definition:

a dynamical system either is, or is not, controllable, with respect to its exogenous inputs.

Naturally, such a notion has the deficiency of not grading the ease or difficulty associated

with effecting such control. To obviate this issue, consistent research effort has been directed

at the characterization of controllability using systems-theoretic metrics. Roughly, these

metrics can be grouped into two categories

1. Those that characterize the minimum energy parametric perturbations that result in

a loss of controllability [13, 22]. These are related to basic characterizations of the

robustness of linear systems [23].

2. Those that characterize the controllability of a system in terms of the minimum energy

excitation required to achieve a unit length state trajectory [8, 24–26].

The latter, in particular, is a natural paradigm that is directly relatable to the celebrated

Kalman rank condition (or the controllability gramian) used to ascertain the controllability

of linear systems [27]. Recently, energy-based controllability metrics have been successfully

used in the emerging domain of network science to assess the putative controllability of large-

scale linear systems, formulated as complex networks of various topologies [8, 25]. However,

for complex networks in general and, in particular, for biological neuronal networks, an

energy-based metric offers insight into only one aspect of the overall system’s controllability.

We appeal, specifically, to the domain of neural coding and the dynamics of sensory neural

circuits. Consider the simple, prototypical layered model of a sensory network shown in

Figure 2.1, wherein sensory neurons are tuned to a high dimensional feature space (i.e.,

environmental variables from the sensory periphery; say, different molecules corresponding to

tastes). Those sensory neurons impinge on a complex, interconnected sensory network that

performs intermediate transformations en route to higher brain areas.
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Figure 2.1: Prototypical structure of a sensory neuronal network. Sensory neurons are tuned
to features from the sensory periphery. These neurons project excitation onto a network that
performs intermediate transformations on the afferent excitation en route to higher brain
regions.

One may put forth a supposition that the ‘controllability’ of such a sensory network, with

respect to the afferent input from the sensory neurons, is critical in mediating the ability to

perceive minute changes in the environment. But as much as energy is important is mediating

such a response, orientation, i.e., the alignment of an input with certain features, may be

even more so. Indeed, a weak, but highly novel input may be more easily perceived than

an intense, but more familiar, stimulus. The ability to assess the responsiveness of neuronal

networks to input orientation – at a particular moment in time, relative to past inputs –

has immediate implications in the analysis and control of biophysiological neuronal network

dynamics in different behavioral and clinical regimes [28–30].

Here, as a first step, we seek to characterize the controllability of linear systems (linear

networks) possessing high dimensional input-spaces, with respect to input sensitivity. In

particular, we ask how responsive are the state (node) trajectories to inputs that differ in

orientation from those that have previously been applied. Figure 2.2 illustrates the basic

notion of input novelty for a simple two-dimensional linear system with three inputs. A

particular input drives the system to an intermediate point in the phase space; from this

point emerge two trajectories, both of which reach a common endpoint; one minimizes input
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Figure 2.2: Minimum novelty control vs. minimum energy control: (A) The trajectory (blue)
brings the system from an initial state on intermediate state at t = 2s. Subsequently, two
trajectories are contrasted in the phase-plane for the minimum novelty control (red) and the
minimum energy control (black). (B) The minimally novel inputs (from t = 2s to t = 4s) (red)
designed using our approach in this chapter. (C) The inputs corresponding to the minimum
energy trajectory (from t = 2s to t = 4s), (black).

novelty (note the similarity between the input from t ∈ [0,2] and that from t ∈ [2,4]), the

other minimizes energy.

Specifically, we: (i) analytically derive the minimum novelty control for linear networks by

formulating a non-convex optimization problem. The problem seeks the minimum angular

separation, defined in terms of an inner product in the input feature space, required in order

to create a desired change in the network trajectory, constrained by a fixed average input

energy; and (ii) characterize the resulting cost – the control ‘novelty’ – that describes the

change in input orientation that is required to drive the system to a given state.

The remainder of the chapter is as follows. In section 2.2, we introduce our inner-product

based controllability index for linear networks and formulate a non-convex optimal control

problem that minimizes this index under the constraint of unit average energy. In section

3.3, we establish the existence and the uniqueness of a global optimal solution of the control

problem and derive a closed-form expression for minimally novel inputs. Finally, in section

3.4, we consider a linearized firing rate model of a recurrent neuronal network as an example
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to demonstrate our theoretical results. The chapter concludes with a summary and discussion

of future work.

2.2 Problem Formulation

2.2.1 Mathematical notation

Most notation is standard and will be introduced as the results are developed. We use

lower-case letters to represent scalars, boldface lower-case letters to represent vectors, capital

letters to represent matrices. Exceptions are T , J(T ) and J1(T ), which we represent as scalars.

We use Rn×1 to represent the space of n- dimensional vectors with their elements as real

numbers. Similarly, we use Rn×m and Rn×m
+ to represent the space of n×m dimensional

matrices with their elements as real numbers and non-negative real numbers respectively.

‖x‖2 is the Euclidean norm of the vector x. x′ is the transpose of a vector x and A−1 is the

inverse of a matrix A.

2.2.2 Input novelty-based controllability index

We consider a linear, time invariant system with dynamics of the form

dx(t)
dt

= Ax(t)+Bu(t) (2.1)

Here x(t) ∈Rn×1 represents the state of the system at time t, A ∈Rn×n is the state transition

matrix, B ∈ Rn×m is the input matrix, and u(t) ∈ Rm×1 is the input to the system. Without

loss of generality, we say that (2.1) describes the time evolution of linear networks in the

presence of external inputs.
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Let us assume an input v(t −T ) ∈ Rm×1, t ∈ [0,T ], with total energy T , i.e.

1
T

∫ T

0
‖v(t −T )‖2

2dt = 1 (2.2)

We assume that v(t −T ) can drive x(t) from x(−T ) to x(0), where ‖x(0)‖2 = 1, subject to

the dynamics (2.1). Here T > 0 is a constant. We introduce the inner-product based index

J(T ) =
1
T

∫ T

0
v
′
(t −T )u(t)dt (2.3)

where
1
T

∫ T

0
‖u(t)‖2

2dt = 1, (2.4)

to measure the novelty of a subsequent input u(t), t ∈ [0,T ], relative to v(t −T ), required in

order to reach the state x(T ), where ‖x(T )‖2 = 1. In other words for a fixed input energy,

the metric J(T ) measures the required directional change in inputs (thus novelty) to achieve

a given state (or, equivalently, directional) change in the state of the system.

Remark 1 It is readily evident that J(T ) ∈ [−1,1].

Remark 2 From (2.3), we note that the novelty of the input u(t) compared to v(t − T )

decreases as J(T ) increases and is minimum when J(T ) = 1 i.e. when u(t) = v(t −T ) for all

t ∈ [0,T ].

Remark 3 We observe that, due to the energy normalization in (2.2) and (2.4),

1
T

∫ T

0
‖v(t −T )−u(t)‖2

2dt = 2(1−J(T)) (2.5)
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Thus, the average Euclidean distance, i.e. the left hand side of (2.5), between two inputs can

equivalently be used as an alternate measure of input novelty in our context.

2.2.3 Minimum novelty problem

From the conceptual formulation introduced above, we can develop a control problem to

design the minimally novel input u(t), t ∈ [0,T ] such that a desired directional change in the

state of the system can be achieved under the constraint of fixed energy subject to the system

dynamics (2.1). For this, we formulate the following optimal control problem:

min
u(t)

t∈[0,T ]

−J(T ) (2.6a)

s.t. 1
T

∫ T

0
‖u(t)‖2

2dt = 1 (2.6b)

x(T ) = eAT x(0)+
∫ T

0
eA(T−t)Bu(t)dt (2.6c)

It should be noted here that the constraint (2.6c) is obtained by integrating (2.1) with respect

to t over the period of [0,T ]. Immediately, we note that the quadratic equality constraint

(2.6b) makes the optimization problem (2.6) non-convex. Furthermore, we note that our

optimal control problem formulation (2.6) is different from the classical minimum effort

problems where the L1-norm of control inputs is minimized under the constraints of explicit

lower and upper bounds on the inputs.
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2.3 Results

We derive conditions for the existence of a unique global optimal solution of the non-convex

optimization problem (2.6). Based on this, we provide a closed-form expression for the

optimal u(t), t ∈ [0,T ].

2.3.1 Existence of a Minimally Novel Input

Lemma 1 A solution of the non-convex optimization problem (2.6) exists if

T > max{s
′
(T )W−1

c (T )s(T ),r
′
(T )W−1

c (T )r(T )} (2.7)

where

s(T ) =
∫ T

0
eA(T−t)Bv(t −T )dt (2.8a)

r(T ) = x(T )− eAT x(0) (2.8b)

Here, Wc(T ) is the controllability gramian at time T and is defined as

Wc(T ) =
∫ T

0
eA(T−t)BB

′
eA

′
(T−t)dt (2.9)

Recall that by our formulation, T is the total energy available to the system (2.1).

Remark 4 The arguments s′(T )W−1
c (T )s(T ) and r′

(T )W−1
c (T )r(T ) in (2.7) are the minimum

energy required to drive the system (2.1) from x(−T ) to x(0) and x(0) to x(T ) respectively

[26, 27].
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Proof 1 Define y(t) as

y(t) =
1
T

∫ t

0
‖u(τ)‖2

2dτ (2.10)

Clearly, y(0) = 0 and y(T ) = 1 from (2.6b). Thus, we can replace the constraint (2.6b) by

y(T ) = 1 (2.11)

In differential form, we can write (2.10) as

dy(t)
dt

=
1
T
‖u(t)‖2

2 (2.12)

To solve the dynamic optimization problem (2.6a), (2.6c) and (2.11) in continuous time, we

write the Hamiltonian H (x(t),y(t),u(t),λ (t),µ(t), t) as

H (x(t),y(t),u(t),λ (t),µ(t), t) =− 1
T

v
′
(t −T )u(t)+λ

′
(t)(Ax(t)+Bu(t))+

µ(t)
T

‖u(t)‖2
2

(2.13)

Here, λ (t) and µ(t) are the costate variables associated with the dynamics (2.1) and (2.12)

respectively. We derive the following optimality conditions (i.e. the Euler-Lagrange equations

[31]):
dλ (t)

dt
=−(

∂H (x(t),y(t),u(t),λ (t),µ(t), t)
∂x(t)

)
′
=−A

′
λ (t) (2.14a)

dµ(t)
dt

=−∂H (x(t),y(t),u(t),λ (t),µ(t), t)
∂y(t)

= 0 (2.14b)

∂H (x(t),y(t),u(t),λ (t),µ(t), t)
∂u(t)

= 0

=
2µ(t)

T
u(t)− 1

T
v(t −T )+B

′
λ (t)

(2.14c)
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By integrating the costate equations (2.14a) and (2.14b) over t, we obtain

λ (t) = e−A
′
t
λ (0) (2.15a)

µ(t)≡ µ ∀t ∈ [0,T ] (2.15b)

Here, λ (0) is the initial condition (at t = 0) of (2.14a). From (2.14c), (2.15a) and (2.15b), we

derive the optimal control law as

u(t) =
1

2µ
v(t −T )− T

2µ
B

′
e−A

′
t
λ (0) (2.16)

By substituting (2.16) into (2.6c), we obtain λ (0) as

λ (0) = eA′TW−1
c (T )(

1
T

s(T )− 2µ

T
r(T )) (2.17)

By substituting (2.16) and (2.17) in (2.11) and using (2.2), we obtain

µ =±1
2

√
T − s′(T )W−1

c (T )s(T )
T − r′

(T )W−1
c (T )r(T )

(2.18)

For the existence of a solution, µ must be a real number. Thus, either T <min{s′(T )W−1
c (T )s(T ),r′

(T )W−1
c (T )r(T )}

or T > max{s′(T )W−1
c (T )s(T ),r′

(T )W−1
c (T )r(T )}. Now it follows directly from Remark

4 that the total energy T must satisfy (2.7) for the existence of a solution i.e. T >

max{s′(T )W−1
c (T )s(T ),r′

(T )W−1
c (T )r(T )}.
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2.3.2 Uniqueness of the Minimally Novel Input

Lemma 2 Under the hypothesis of Lemma 1, the solution of the non-convex optimization

problem (2.6) is unique.

Proof 2 By substituting (2.16) and (2.17) in (2.3), we obtain the optimal value of J(T ) as a

function of µ as

J(T ) =
1
T

s
′
(T )W−1

c (T )r(T )+
1

2µ
(1− 1

T
s
′
(T )W−1

c (T )s(T )) (2.19)

It follows from Lemma (1) that 1
T s′(T )W−1

c (T )s(T ) ∈ (0,1) (see (2.7)). Thus, the maximum

of J(T ) occurs when µ > 0 in (2.18) i.e.

µ =
1
2

√
T − s′(T )W−1

c (T )s(T )
T − r′

(T )W−1
c (T )r(T )

(2.20)

Thus, a unique optimal control input u(t) exists and is given by

u(t) =
1

2µ
(v(t −T )−B

′
eA

′
(T−t)W−1

c (T )s(T ))+B
′
eA

′
(T−t)W−1

c (T )r(T ) (2.21)

2.3.3 Euclidean - Inner Product Equivalence

As noted in Remark 3, it is an interesting and notable consequence of our cost formulation

that the problem can exactly recast in terms of a Euclidean norm. Specifically, if we consider

J1(T ) =
1
T

∫ T

0
‖v(t −T )−u(t)‖2

2dt (2.22)
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as the cost function in (2.6a), we obtain the optimal solution as

µ =−1+

√
T − s′(T )W−1

c (T )s(T )
T − r′

(T )W−1
c (T )r(T )

(2.23a)

u(t) =
1

1+µ
(v(t −T )−B

′
eA

′
(T−t)W−1

c (T )s(T ))+B
′
eA

′
(T−t)W−1

c (T )r(T ) (2.23b)

J1(T ) = 2(1− 1
T

s
′
(T )W−1

c (T )r(T ))+
2

1+µ
(

1
T

s
′
(T )W−1

c (T )s(T )−1) (2.23c)

It is evident that the control law (2.20)-(2.21) is same as the control law (2.23a)-(2.23b), as

one expects from Remark 3.

2.4 Example

We consider a recurrent network of n neurons with linearized firing rate dynamics of the

form [32]

S
dx(t)

dt
=−x(t)+Wx(t)+Bu(t) (2.24)

Here, x(t) ∈ Rn×1
+ represents the firing rate of the neurons at time t, S ∈ Rn×n

+ is a diagonal

matrix whose diagonal elements are the (positive) time constants of the neurons, W ∈ Rn×n

defines the interaction among neurons in the network (weight matrix), B ∈ Rn×n
+ is the input

matrix, and u(t) ∈ Rn×1
+ is the afferent input. Since S is invertible, (2.24) can be represented

in the form of (2.1) by considering A = S−1(−I +W ) where I is the n×n identity matrix.

For illustrative purposes, we consider a recurrent network of n = 100 neurons where 80

neurons are excitatory and every 5th neuron is inhibitory. We choose the time constants (in

ms) of the neurons, i.e. the elements of the diagonal matrix S, from a uniform distribution
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U (5,10). For every excitatory neuron i, we choose the connectivity weight wi, j (in essence,

a time constant for excitation from the neuron i to j) from a uniform distribution U (0,1).

Similarly, for every inhibitory neuron i, we choose the connectivity weight wi, j (from the

neuron i to j) from a uniform distribution U (−1,0). We assume that wi, j = 0 for i = j, i.e.

neurons do not possess direct feedback. Assuming B as an identity matrix, we proceed to

compute the minimum directional change in inputs (i.e. minimally novel inputs) required to

make a desired directional change in firing rates of neurons using (2.8)-(2.9), (2.19)-(2.21).

To complete the example, we specify T = 3 ms. The initial and terminal states x(0) and x(T ),

respectively, are specified to satisfy ‖x(0)‖2 = ‖x(T )‖2 = 1 with x(0)′x(T ) = γ , where in this

particular case we specify γ = 0.7645. The prior input v(t−T ) is specified to be constant over

the interval t ∈ [0,T ]. Figure 2.3 illustrates the outcome of the example for n = 1000 random

realizations of the system. Each red dot on the figure depicts the novelty associated with

the solution to (2.18)-(2.19), i.e., the minimum novelty. Note, again, that by formulation,

these inputs all have unit average energy. Each blue dot corresponds to the minimum energy

solution. As a verification of our theoretical development, we note that the minimum energy

solution consistently requires an injection of novelty (angular orientation) relative to the prior

input and relative to the optimum.

Having thus established the minimum-novelty metric as a means of assessing network sensi-

tivity, we proceed in the next chapter to provide a paradigm for its deployment. Specifically,

we use the input-sensitivity concept and formalism to derive an expression, recursive with

respect to dimension and intuitively geometric, by which efficient strategies for the classifica-

tion/discrimination (especially in the presence of noise) of inputs can be designed.
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Figure 2.3: Comparison of minimum novelty control with minimum energy control for n= 1000
random realizations of the recurrent neuronal network: Each red dot on the figure depicts
the novelty associated with the solution to the minimum novelty control. Each blue dot
corresponds to the minimum energy solution.
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Chapter 3

Endpoint-based Discriminability of Minimum

Energy Inputs

Complex neural networks, such as those found in the human brain, are able to very accurately

discriminate and classify external stimuli. Some of their topological and computational

properties have been extracted and used to great effect by the artificial intelligence community.

However, even our best simulated neural networks are very pale abstractions of reality, partly

because (in general) they fail to account for the temporal dynamics and recurrence inherent

in natural neural networks, and instead employ feed-forward architecture and discrete,

simultaneous activity. In this chapter we begin to develop an intuitive, geometric framework

to explore the ways in which different inputs could be discriminated in recurrent linear

dynamical networks, with the eventual goal of being able to facilitate a transition to more

realistic and effective artificial networks. We first establish a useful, closed-form measure on

the space of minimum-energy inputs to a linear system, which allows an elucidation of how

discrepancies between inputs impact output trajectories in the state space. We characterize,

to an extent, the relationship between input and output difference as it relates to system
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dynamics as manifest in the geometry of the reachable output space. We draw from this

characterization principles which may be employed in the design of dynamic, recurrent

artificial networks for input discrimination.

3.1 Introduction

Developing methods for classification is critically important for many modern engineering

applications, including high-profile technologies such as voice and face recognition [33], [34].

Approaches to classification generally fall in the vast domain of machine-learning algorithms,

within which one specific sub-domain involves so-called artificial neural networks [35]. Such

networks implement, in essence, a series of algebraic and logical operations intended to isolate

salient input features and separate them according to a pre-specified error function (usually,

involving a statistical metric) [36]. While artificial neural networks mimic certain aspects of

brain network architecture (namely, the feedfoward layering/cascade of sub-networks), they

lack the true recurrence and temporal dynamics that are intrinsic in vivo. Presumably, these

dynamics serve some function other than the implementation of static input-output maps.

Indeed, a substantial line of research in theoretical neuroscience involves understanding how

brain networks use the dynamics with which they are endowed to enable the performance of

discriminative tasks [37].

In this chapter, we take an initial step towards reconciling recurrent network dynamics with

functions such as input discrimination. Specifically, we consider an input decoding scheme

for linear systems (or, networks) wherein the identity of an input (stimulus) is inferred from

the endpoint of its induced trajectory. The n-dimensional linear systems (which we assume

to be controllable) under consideration have dynamics of the form

ẋ(t) = Ax(t)+Bu(t) (3.1)
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where x(t) ∈ Rn describes the state of the system, guided by the control u(t) ∈ Rm, at time

t, and A ∈ Rnxn defines the dynamical relationship between state variables and B ∈ Rmxn

describes how the m inputs are mixed to affect the n state variables.

Our central result is the derivation of a fundamental, parametric relationship between the

angular distance between two competing stimuli and the separation of their induced endpoints,

when each stimulus is of minimum energy for the endpoint in question. While the overall

scope of our work is biologically motivated, the central results of this chapter pertain to

linear dynamical systems in general.

3.2 Problem Formulation

The perception of an object must involve disambiguating the sensory inputs (e.g., sounds)

related to this object from those inputs related to other objects in the environment. It is

intuitive that two inputs (representing sensation of two distinct objects) must be sufficiently

different in order for us to perceive them as different phenomena. However, the cognitive

centers of the brain do not have access to these ‘raw’ sensory inputs but, instead, can only

‘read out’ the outputs of the networks upon which they impinge. The central question that

underlies this chapter is: how ‘different’ must the inputs be so that a pre-defined decoder,

operating only on the outputs, could disambiguate the underlying objects?

3.2.1 General Formulation

Fig. Said more mathematically, we consider two competing inputs u1(t) and u2(t) to a

dynamical system, generating outputs 1x1(t) and x2(t), respectively. Conceptually, for any

ε > 0, we seek some δ > 0 such that if dJ(u1,u2)> δ , then dO(x1(t),x2(t))> ε . Here, dJ and
1Note that throughout this chapter the terms output and ‘end/terminal state’ will be used interchangeably
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dO define distance measures on the space of inputs and output, respectively. These measures

can form the basis of a decoder that robustly (in the presence of noise) infers the input from

the output.

3.2.2 Endpoint-based Input Discriminability

In this chapter, we treat the above general problem for the particular scenario of a linear

system, with distance metrics defined as follows.

Definition 1 (Input Novelty) For inputs u1(t) and u2(t) guiding a system of the form (5.1)

over the time interval [0,T ], we define the average novelty dJ(u1(t),u2(t), t ∈ [0,T ])–for ease

of notation simplified to dJ(u1,u2)–as follows:

dJ(u1,u2) =
1

T
√

γu1γu2

∫ T

0
u′

1(τ)u2(τ)dτ, (3.2)

where

γu1 =
1
T

∫ T

0
u′

1(τ)u1(τ)dτ, γu2 =
1
T

∫ T

0
u′

2(τ)u2(τ)dτ (3.3)

are the average energies (up to time T ) of the inputs u1(t) and u2(t), respectively.

Of course, (4.6) is, mathematically, simply the average angle between two inputs. The notion

of novelty is based on the premise that one of the inputs serves as a reference, relative to

which the other could, potentially, be novel. The formulation (4.6) quantifies the extent of

novelty in this sense.

Definition 2 (Endpoint Distance) Let xu1 and xu2 be the endpoints of the trajectories induced

by the inputs u1(t) and u2(t), respectively, over the interval [0,T ]. We define the endpoint
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distance dO(xu1,xu2) as follows

dO(xu1,xu2) = ‖xu1 −xu2‖2 (3.4)

=

∥∥∥∥(eAT x(0) +
∫ T

0
eA(T−τ)Bu1(τ)dτ

)
−
(

eAT x(0) +
∫ T

0
eA(T−τ)Bu2(τ)dτ

)∥∥∥∥
2

(3.5)

=

∥∥∥∥∫ T

0
eA(T−τ)Bu1(τ)dτ −

∫ T

0
eA(T−τ)Bu2(τ)dτ

∥∥∥∥
2

(3.6)

In this chapter we will restrict our attention to the family of minimum-energy inputs. This

class of inputs is of particular interest in the context of brain networks, since one may surmise

that these networks operate in (or near) an optimal energy regime [38].

We will let Ψc denote the class of minimum-energy inputs for a particular linear system

where each input is prescribed total energy c over the interval [0,T ]. That is, ∀u(t) ∈

Ψc,
∫ T

0 u′(τ)u(τ)dτ = c. We can then define the feasible output space at time T to be

Definition 3 (Feasible Output Space)

Ξ = {x(T )|x′(T )W−1x(T ) = c} (3.7)

where W =
∫ T

0 eA(T−τ)BB′eA′(T−τ)dτ is the system controllability gramian at time T . (3.7)

follows from the fact that the energy used by a minimum-energy control is known to be[
eAT x(0)−x′(T )

]′W−1[eAT x(0)−x′(T )
]

(see, for instance, [39] pp. 92-93) and from the fact

that we are considering x(0) to be the origin.
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We notice that Ξ corresponds to the surface of an n-dimensional ellipsoid. The exact location

of an endpoint x(T ) ∈ Ξ on this ellipsoid can be described by a set of n parametric equations.

We will see that this parametric description of the endpoint is advantageous for our purposes.

By providing an alternative, trigonometric form for the novelty between minimum-energy

inputs (dJ), we are able to show that the value of dJ can be obtained simply by knowing the

parametrization of x(T ) on Ξ, which does not depend on the specific geometry of Ξ, even

though the absolute locations of the endpoints do. Thus, our results highlight a fundamental

and interesting set of constraints for the design of endpoint decoders of minimum energy

inputs, which we will elaborate on in Section 3.4.

3.3 Results

We will begin by proving two Lemmas establishing sinusoidal, parametric equations for dJ

in two-dimensional systems, then move to 3-D, and finally to a general form for arbitrary

dimensions.

For all of these, we will make use of the following preliminary Lemma:

Lemma 3 Let u1(t),u2(t) ∈ Ψc. Then

dJ = x′u1
W−1(T )xu2 (3.8)
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Proof 3 From [17], the following expression is given for the input novelty dJ(u1,u2) for certain

classes of inputs, one of which is Ψc, the class of minimum-energy inputs:

dJ(u1,u2) =
1

T
√

γu1γu2

∗ [
(xu1 f − eAT xu10)

′W−1(xu2 f − eAT xu20)

+
√
(γu1T −Emin1)(γu2T −Emin2)

]
(3.9)

where xu10,xu1 f ,xu20, and xu2 f are the initial and terminal states of a linear system driven by

the inputs u1(t) and u2(t), respectively, and where Emin1 and Emin2 are the energies of the

the minimum-energy inputs associated with the state transfers from the origin to xu1, f and

xu2, f , respectively.

We may make several simplifications to (4.9). Since here we are dealing with minimum

energies for both state transfers, we have that γu1T = Emin1 and γu2T = Emin2 . Also, we may,

without loss of generality, let c = 1 in (3.7), for any other value of c would just create a scaled

version of the ellipsoid. Thus, 1
T√γu1γu2

= 1. Finally, since the point of departure for each

state transfer is the origin, we have that (xu1, f − eAT xu1,0) = xu1 and (xu2, f − eAT xu2,0) = xu2

for desired final states xu1 and xu2 . With these simplifications, we arrive at (3.8).

3.3.1 2-dimensional case

We first introduce parameters φ1,φ2 ∈ [0,2π], which describe the locations of xu1 and xu2 (at

time T ), respectively, on the ellipse Ξ:

xu1 =

(
1√
λ1

cos(φ1),
1√
λ2

sin(φ1)

)
(3.10)
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xu2 =

(
1√
λ1

cos(φ2),
1√
λ2

sin(φ2)

)
(3.11)

where λ1 and λ2 are the eigenvalues of W−1. (3.10) and (3.11) follow from the general

parametric equations for an ellipse, and the principle axis theorem for quadratic forms in Rn

together with the fact that W−1 is symmetric. Now we are ready to state our first lemma in

terms of these parameters φ1 and φ2:

Lemma 4 : The average novelty dJ(u1,u2) over the time interval [0,T ] between minimum-

energy inputs u1(t) and u2(t) which guide a two-dimensional linear system to terminal states

xu1 and xu2 , respectively, is given by:

dJ(u1,u2) = cos(φ1 −φ2) (3.12)

Proof 4 Since W−1 is symmetric, its eigenvectors (call them v1 and v2) form an orthonormal

basis for R2, we may write

xu1 = α1v1 +β1v2 (3.13)

and

xu2 = α2v1 +β2v2 (3.14)

for some α1,α2,β1,β2 ∈ R, and thus, by substituting (3.13) and (3.14) into (3.8), we have

dJ(u1,u2) = (α1v1 +β1v2)
′W−1(α2v1 +β2v2) (3.15)
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Now, since v1 and v2 are orthonormal, cross terms vanish, and this simplifies further to

dJ(u1,u2) = α1v′1W−1
α2v1 +β1v′2W−1

β2v2

= α1α2v′1W−1v1 +β1β2v′2W−1v2

= α1α2v′1λ1v1 +β1β2v′2λ2v2

= α1α2λ1 +β1β2λ2

If we, without loss of generality, orient the ellipse with the cardinal axes (that is, v1 = e1 and

v2 = e2), we have that α1 =
1√
λ1

cos(φ1) and α2 =
1√
λ1

cos(φ2), since α1 and α2 are simply the

lengths of the projections of xu1 and xu2 , respectively, onto v1 = e1. Likewise, we may write

β1 =
1√
λ2

sin(φ1) and β2 =
1√
λ2

sin(φ2). Thus we have:

dJ = α1α2λ1 +β1β2λ2

=
1√
λ1

cos(φ1)
1√
λ1

cos(φ2)λ1

+
1√
λ2

sin(φ1)
1√
λ2

sin(φ2)λ2

= cos(φ1)cos(φ2)+ sin(φ1)sin(φ2)

= cos(φ1 −φ2)

where the last equality is the result of a basic trigonometric identity.

Remark 5 This result is surprising for two reasons. First, it is independent of the specific

system dynamics. Second, it depends on the parameters φ1 and φ2, which describe the

endpoint locations.
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3.3.2 3-dimensional case

In addition to the φ1 and φ2 previously introduced we need to introduce a second parameter

to describe the output locations on Ξ. To simplify notation, especially when we turn to the

n-dimensional case, we will begin to employ double indexing to the parameters φ and the

coefficients α , so that φi, j refers to the ith parameter describing the location of xu j on Ξ, and

αi, j refers to the ith coefficient of the linear combination of eigenvectors describing output xu j

under input u j. Thus we have

xu1 =

(
1√
λ1

cos(φ1,1)sin(φ2,1),
1√
λ2

sin(φ1,1)sin(φ2,1),
1√
λ3

cos(φ2,1)

)
(3.16)

and

xu2 =

(
1√
λ1

cos(φ1,2)sin(φ2,2),
1√
λ2

sin(φ1,2)sin(φ2,2),
1√
λ3

cos(φ2,2)

)
(3.17)

where the λi are again the eigenvalues of W−1. Using these parametric equations, we can

again derive a sinusoidal formula for the input novelty.

Lemma 5 The average novelty dJ(u1,u2) over the time interval [0,T ] between minimum-

energy inputs u1(t) and u2(t) which guide a three-dimensional linear system to terminal

states xu1 and xu2 , respectively, is given by:

dJ(u1,u2) = cos(φ2,1)cos(φ2,2)+ cos(φ1,1 −φ1,2)sin(φ2,1)sin(φ2,2) (3.18)

Proof 5 For the 3-D case, we generalize (3.13) and (3.14) to obtain

xu1 = α1,1v1 +α2,1v2 +α3,1v3 (3.19)
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and

xu2 = α1,2v1 +α2,2v2 +α3,2v3 (3.20)

By substituting (3.19) and (3.20) into (3.8), we have

dJ(u1,u2) = (α1,1v1 +α2,1v2 +α3,1v3)
′W−1(α1,2v1 +α2,2v2 +α3,2v3)

= α1,1α1,2λ1 +α2,1α2,2λ2 +α3,1α3,2λ3 (3.21)

again since the eigenvectors are orthonormal. Again, without loss of generality, we may orient

the ellipsoid (Ξ) with the cardinal axes. Then we may write α1,1 =
1√
λ1

cos(φ1,1)sin(φ2,1),

α2,1 = 1√
λ2

sin(φ1,1)sin(φ2,1), α3,1 = 1√
λ3

cos(φ2,1), and likewise parameterize α1,2, α2,2, and

α3,2. Thus (3.21) becomes

dJ(u1,u2) =
1√
λ1

cos(φ1,1)sin(φ2,1)
1√
λ1

cos(φ1,2)sin(φ2,2)λ1

+
1√
λ2

sin(φ1,1)sin(φ2,1)
1√
λ2

sin(φ1,2)sin(φ2,2)λ2

+
1√
λ3

cos(φ2,1)
1√
λ3

cos(φ2,2)λ3

= cos(φ1,1)cos(φ1,2)sin(φ2,1)sin(φ2,2)

+ sin(φ1,1)sin(φ1,2)sin(φ2,1)sin(φ2,2)

+ cos(φ2,1)cos(φ2,2)

= cos(φ2,1)cos(φ2,2)

+ cos(φ1,1 −φ1,2)sin(φ2,1)sin(φ2,2)
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Remark 6 We notice that along with being a sinusoidal function of the output parameters

φi, j, (3.18) is in fact a recursive operation on (3.12). That is,

dJ3(u1,u2) = cos(φ2,1)cos(φ2,2)+dJ2(u1,u2)sin(φ2,1)sin(φ2,2) (3.22)

3.3.3 The n-dimensional case

For an arbitrary n-dimensional (ellipsoidal) output space Ξ, we can parameterize the ellipsoid

with n−1 parameters to obtain an analogous closed-form, sinusoidal, recursive expression for

the minimum-energy input novelty dJ. Here we make use of the fact that in arbitrary number

of dimensions n, we may parameterize the (n−1)–ellipsoid by the spherical coordinates

αn =
1√
λ1

cos(φn−1)

αn−1 =
1√
λ2

sin(φn−1)cos(φn−2)

αn−2 =
1√
λ3

sin(φn−1)sin(φn−2)cos(φn−3)

.

.

.

α2 =
1√
λn−1

sin(φn−1)sin(φn−2) . . .sin(φ2)cos(φ1)

α1 =
1√
λn

sin(φn−1)sin(φn−2) . . .sin(φ2)sin(φ1)

where φ2,φ2, . . . ,φn−1 are allowed to range over [0,π], while φ1 ranges over [0,2π]. We can

follow the basic development of the 2-D and 3-D cases (i.e. we add an αn,1αn,2λn term to

the formula for dJ in n− 1 dimensions; see (3.21)). Note that, since each αi,(1 or 2) has a
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coefficient of 1√
λi

, λi is cancelled for each term in the summation.

We saw in (3.22) that the expression (3.12) for dJ2 appears in the expression (3.18) for dJ3 .

We now generalize this pattern to arrive at the following:

Theorem 1 The novelty dJn(u1,u2) between two minimum-energy inputs (u1(t) and u2(t))

guiding the system to end states (xu1 and xu2) on the unit-energy gramian ellipsoid in n

dimensions (n > 2) is given by

dJn = sin(φn−1,1)sin(φn−1,2)dJn−1 + cos(φn−1,1)cos(φn−1,2) (3.23)

where dJ2 = cos(φ1,1 −φ1,2) = sin(φ1,1)sin(φ1,2)+ cos(φ1,1)cos(φ1,2)

Proof 6 The proof is by strong induction, where the base case has been established under

Lemma 1 and Lemma 2. For the inductive step we assume that

dJi = sin(φi−1,1)sin(φi−1,2)dJi−1 + cos(φi−1,1)cos(φi−1,2)

∀i ∈ {3, . . . ,n−1}

Now we expand
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sin(φn−1,1)sin(φn−1,2)dJn−1 + cos(φn−1,1)cos(φn−1,2)

= sin(φn−1,1)sin(φn−1,2)
[
sin(φn−2,1)sin(φn−2,2)dJn−2

+ cos(φn−2,1)cos(φn−2,2)
]
+ cos(φn−1,1)cos(φn−1,2)

= sin(φn−1,1)sin(φn−1,2)sin(φn−2,1)sin(φn−2,2)dJn−2

+ sin(φn−1,1)sin(φn−1,2)cos(φn−2,1)cos(φn−2,2)

+ cos(φn−1,1)cos(φn−1,2)

= sin(φn−1,1)sin(φn−1,2)sin(φn−2,1)sin(φn−2,2)dJn−2

+αn−1,1αn−1,2λ2 +αn,1αn,2λ1

= sin(φn−1,1)sin(φn−1,2)sin(φn−2,1)sin(φn−2,2)

∗
[
sin(φn−3,1)sin(φn−3,2)dJn−3 + cos(φn−3,1)cos(φn−3,2)

]
+αn−1,1αn−1,2λ2 +αn,1αn,2λ1

= sin(φn−1,1)sin(φn−1,2)sin(φn−2,1)sin(φn−2,2)

∗ sin(φn−3,1)sin(φn−3,2)dJn−3 +αn−2,1αn−2,2λ3

+αn−1,1αn−1,2λ2 +αn,1αn,2λ1

.

.

.

= sin(φn−1,1)sin(φn−1,2)sin(φn−2,1)sin(φn−2,2)

. . .sin(φ2,1)sin(φ2,2)dJ2 +
n

∑
i=3

αi,1αi,2λn−i+3

= sin(φn−1,1)sin(φn−1,2)sin(φn−2,1)sin(φn−2,2)

. . .sin(φ2,1)sin(φ2,2)∗
[
sin(φ1,1)sin(φ1,2)

+ cos(φ1,1)cos(φ1,2)
]
+

n

∑
i=3

αi,1αi,2λn−i+3

=
n

∑
i=1

αn,1αn,2λn−i+1 = dJn 42



Thus we have an expression for dJn which is recursive, sinusoidal, and depends only on the

output parameters φi, j.

Remark 7 Since dJn is a composition of sinusoids, we know that −1≤ dJn(u1,u2)≤ 1 ∀u1,u2 ∈

Ψc. In fact, these extremal values can always be reached, for if u1(t) = ±u2(t) ∀t ∈ [0,T ],

then (4.6) is clearly ±1. To see this from (3.23), consider that if u1 = ±u2, then xu1 =∫ T
0 eA(T−τ)B(±u2)(τ)dτ = ±xu2 . If xu1 = xu2 , then φi,1 = φi,2 ∀i ∈ {1, . . . ,n} and therefore

(3.23) equals 1 ((3.12) with an easy inductive argument shows this). If xu1 = −xu2 , then

φ1,1 = φ1,2+π and φi,1+φi,2 = π ∀i ∈ {1, . . . ,n−1}. Then again by an easy induction, together

with the product-to-sum trigonometric identities, we have that (3.23) equals -1.

3.4 Implications for Endpoint Decoding Schemes

The goal of a discriminative artificial neural network is to separate inputs that are different,

and concentrate inputs that are similar. In this section we will give principles by which our

result, at a strictly conceptual level, could be used to this end in two different noise scenarios.

For both scenarios, we make use of how the geometry of the ellipsoid Ξ, which determines

the parametrization of the endpoints, affects the relationship between the positions of these

endpoints and the input novelty (see Fig. 3.1).

3.4.1 Robust discrimination with regard to measurement noise

If we assume ε noise in the output measurements (i.e. ‖xui,observed−xui,actual‖< ε , then we will

want to ensure that the inputs we aim to discriminate lead to actual outputs whose ε-balls

do not intersect (see Fig. 6.8). In order to maximize feasible ε values which will not lead to

overlapping (and thus the possibility of misclassification), we need to intelligently position

the desired output states with respect to the relationship between parametric separation

43



-0.5 0.5

-0.6

-0.4

-0.2

0.2

0.4

0.6

Figure 3.1: Trajectories under minimum-energy inputs are not uniformly distributed over
the ellipse Ξ. Here, color bands represent an equal number of inputs, and all inputs
ui i ∈ {1, . . . ,m} are uniformly distributed with respect to the novelty measure dJ (i.e.
dJ(ui,ui+k) = dJ(u j,u j+k) ∀i, j ∈ {1, . . . ,m−1},∀k ∈ {1, . . . ,m−max{i, j}}

and Euclidean distance. From our result we know that equally distant pairs of inputs

(according to dJ) will create equally separated pairs outputs with respect to the parameters

φi, i ∈ {1, . . . ,n−1}, but not necessarily with respect to Euclidean distance.

For instance, examining Fig. 6.8 we can see that the endpoint distance will depend not

only on the input novelty, but also on the general shape of the gramian ellipsoid Ξ, and on

the location of the endpoints on Ξ. Under some inputs u1 and u2 leading to outputs xu1

and xu2 ending up at the ‘tips’ of a highly eccentric ellipsoid (this corresponds to moving in

an ‘easy’ eigendirection), and having some novelty dJ(u1,u2) = c, we may indeed find that

‖xu1(T )−xu2(T )‖< ε , while another pair of inputs u3 and u4, leading to outputs xu3 and xu4 on

the ‘flat’ part of the eccentric ellipsoid (corresponding to movement in a ‘hard’ eigendirection),

and having the same novelty (dJ(u3,u4) = c) may result in ‖xu3(T )−xu4(T )‖>> ε . In such

a case, we will want to distribute our desired output states on the controllability gramian

such that ‘nearby’ inputs from different input classes are mapped to the flat parts of the

ellipsoid (since then smaller input novelties will lead to relatively greater Euclidean output
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Figure 3.2: ε-balls around final states generated by equally-spaced (in terms of novelty
measure dJ) inputs

distance, as shown below), while classes with relatively different inputs can be mapped to the

tips of the ellipsoid, since the large input novelty should prevent overlapping of the reachable

output regions (i.e. the ε-balls).

3.4.2 Robust discrimination with respect to input noise

Thus far we have used the standard Euclidean metric on the output space, and thus we

have spoken in terms of ε-balls, but there is a subtlety that should not be overlooked. If we

assume that noise corrupts the inputs, then the ε-balls become self-similar ellipsoids (see Fig.

3.3). Assume w(t), t ∈ [0,T ] is a noise vector which acts on the system. Then the dynamics

become ẋ = Ax+B(u+w), and the state of x at time T becomes

x(T ) = eAT x(0)+
∫ T

0
eA(T−τ)B(u(τ)+w(τ))dτ

=
∫ T

0
eA(T−τ)Bu(τ)τ +

∫ T

0
eA(T−τ)Bw(τ)dτ
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where we recall that we are taking x(0) as the origin. Since, then, the outputs are additive,

the trajectories resulting from noisy inputs will wind up within the perimeter of the smaller

ellipsoids (again, see Fig. 3.3). We assume that the energy of the input u is greater than

that of the noise w; that is, u′(t)u(t)>> w′(t)w(t) ∀t ∈ [0,T ]. We say ‘within’ the perimeter

because a noise input w(t) will in general not be the minimum-energy input for its total

prescribed energy. Under conditions of input noise, then, an ε-ball based choice of desired

output states will not be sufficient, and we will need to consider the distribution of endpoints

with respect to these smaller ellipsoids, which are self-similar to Ξ.

This can simplify the problem, since an optimal packing of these self-similar ellipsoids on

the larger one will be a function of the parameters. In fact, in many 2-D simulations

(unfortunately, we have yet to prove this), we have found that an optimal packing of self-

similar ellipses onto a larger copy is given when we simply take equal divisions of the ellipse

parameter φ . That is, if we want to pack n ellipses onto one which is self-similar and larger,

we can simply take as increment k = 2π

n and position the centers of the smaller ellipses at

(a cos(k ∗ i),b sin(k ∗ i)), i ∈ {1, . . . ,n}. Such a packing is shown in Fig. 3.3. Of course the

size of these ellipses, if they are not to overlap, will vary inversely with n.

We have found a very good heuristic: letting a denote the semi-major axis length of the

larger ellipse, and a′ denote that of the smaller ellipse, we set n = b a
a′ πc. Again, we leave this

unproven, but we remark that it is strikingly sharp across a wide range of ellipses eccentricities

and ratios a
a′ . Of course an optimal ellipse packing in 2-D is a mathematical curiosity unless

it can be generalized to higher dimensional ellipsoids. This, unfortunately, is elusive [40].

However, the principle remains that effective parametric placement of the endpoints, for

robust discrimination in the presence of noisy inputs, will reduce to an ellipsoid-packing

problem.
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Figure 3.3: Self-similar ellipses around terminal points. Left shows trajectories of xui under
minimum-energy input ui. Right shows xui under ui +w j, where w j is noise (here constant
for purpose of visualization).

3.5 Conclusions and Future Work

We have shown that dJ is a measure on the space of minimum-energy inputs to a linear

system which is invariant to system dynamics, and that this measure, coupled with knowledge

of the controllability gramian, can be of help in understanding the discriminative ability

of such systems and in designing algorithms to discriminate between discrete classes of

inputs. We have highlighted some principles, based on the relationship between dJ and the

Euclidean distance of outputs, which we may use in the selection of desired target states for

artificial neural networks. In so doing we believe that we have introduced a potentially useful

conceptual framework in which to discuss the geometry of dynamical classification systems,

as well as provided part of a mathematical basis for its quantification.

In the future, we would like to expand these ideas to include the whole state trajectory in the

discriminative task instead of just the terminal state. Also, we would like to generalize the

analysis to include other than minimum-energy inputs, with the realization that this analysis

might not admit of such elegant and simple results. Finally, we look forward to the actual

design and implementation of optimization-based methods for exploiting these ideas to create

truly dynamical artificial neural networks.
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In this chapter, we have explored network orientation sensitivity to minimum-energy inputs.

In the next chapter, we will expand our inquiry to include inputs with ‘excess’ energy. It is

intuitive that inputs which are ‘allowed’ arbitrary energy will be able to traverse a very wide

range of possible trajectories and still terminate at some desired target. Thus, two inputs

with arbitrary energy can be very similar along almost the whole length of their trajectories,

perhaps deviating at the very end with a massive energetic push to reach their targets. In

this extreme the network would still be able to discriminate them (based on their endpoints).

We have seen that this is absolutely not the case when inputs are allowed only minimum

energy, thus prescribing the traversal of exactly one possible trajectory. We seek, in the

next chapter, to quantify the way in which different networks make use of excess energy (for

enhanced orientation sensitivity) between these two extremes–i.e. when inputs have excess

energy, but not arbitrary energy.
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Chapter 4

Bispectral Analysis for Measuring

Energy-Orientation Tradeoffs in the Control of

Linear Systems

Many characterizations of linear system controllability revolve around the eigenvalue spectrum

of the controllability gramian, which is a function of the network dynamics. The gramian

spectrum describes the minimum energies associated with inducing movement along orthogonal

directions in Rn. Here, we derive an enhanced interpretation of the spectral properties of the

gramian in non-minimum energy regimes. Indeed, in a non-minimum energetic regime, an

‘excess’ of energy is available to the system for at least (n−1) orthogonal state transfers. We

show that the utility of this excess energy can be quantified in terms of input orientation, or,

simply, the angle between two competing inputs. Based on this notion, we derive the gramian

bispectrum, which describes the relationship between energy and orientation among pairs

of orthogonal state transfers. The bispectrum reflects a fundamental tradeoff between the
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energetic and orientation costs in the control of a linear system. We show how this bispectral

analysis can provide control characterizations that are not apparent from inspection of the

gramian spectrum alone.

4.1 Introduction

4.1.1 Motivation

A long-standing topic in control theory, with recent applications in network control [11–13],

involves the development of analyses to quantify the controllability of linear systems [8–10].

Many of the approaches that have been developed to address this issue involve study of the

spectral properties of the controllability gramian, which, for a controllable linear time-invariant

system in the typical form

ẋ(t) = Ax(t)+Bu(t) (4.1)

is defined as

W(T ) =
∫ T

0
eA(T−τ)B(τ)B′(τ)eA′(T−τ)dτ. (4.2)

Each eigenvalue of W−1 determines the energy required to induce motion in in the direction

of its associated eigenvector. Thus, summary metrics that describe the energetic costs of

controlling a linear system can be derived from the gramian spectrum. Such metrics include

the trace of the gramian [26], [25], the log of its determinant [26], and the maximum eigenvalue

of the inverse gramian [26], [25]. The latter, in particular, is the ‘worst-case’ minimum energy

required to reach the unit hypersphere at a prescribed time T .

In this chapter we seek to characterize the controllability of a system assuming that we have

at least this minimum energy available to meet control objectives. That is, we assume that
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the entire unit hypersphere is reachable at time T . What then, can be said about the system

under consideration? For a non-uniform gramian spectrum, there will be a gradation of

energetic costs, so that we may steer the system in other directions (than the ‘worst-case’

direction) with less (or much less) energy expenditure. To what use, then, is the excess energy

which we have available? Is there a measure of control flexibility that can be realized under

this ‘surplus energy’ scenario?

To answer these questions we consider, in addition to energy, the relative orientation between

two inputs u1(t) and u2(t), which transfer the state of the system to two different endpoints

at time T . Assuming these inputs possess average energy γu1 and γu2 , then over the time

horizon [0,T ] the relative orientation, or, mathematically, the average cosine of the angle

between u1(t) and u2(t), is:
1

T
√

γu1γu2

∫ T

0
u′

1(τ)u2(τ)dτ, (4.3)

If γu1 and γu2 are minimal for the transfers in question, then (4.3) is fixed since u1(t) and u2(t)

can assume only one form. Given excess energy, inputs achieving the transfers may assume a

range of possible relative orientations. We propose that this range constitutes a measure of

the aforementioned control flexibility, and we provide an analytical development that makes

this notion concrete. Specifically, in this chapter we make the following contributions:

1. As a function of available energy, we derive the minimum relative orientation (or,

average angle) between two inputs, each inducing a transfer to points along a different

eigenvector of W−1. A small relative orientation implies that the inputs are relatively

flexible in their orientation range. Indeed, we show that as energy tends to infinity the

angular difference tends to zero, so that the inputs may become arbitrarily similar in

their geometry. The derivation leverages our previous optimal control results in [17]

and [18].
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2. We derive a second-order spectrum, termed the gramian bispectrum that exactly

quantifies the tradeoff between energy and orientation, in the above sense, for each pair

of eigenvalues of the gramian.

3. We demonstrate how the proposed bispectrum may be used to compare the relative

utility of energy in linear systems. We provide examples of such comparisons that show

how a bispectral analysis may reveal control properties not apparent from the spectrum

alone.

4.2 Problem Formulation

4.2.1 Geometric Interpretation of the Controllability Gramian

Our subsequent development will pivot on the spectrum Λ of the controllability gramian

inverse W−1 (see (4.2)), defined as the collection of its eigenvalues with ordered labeling, i.e.,

Λ = {λ1, ...,λn} ,λ1 ≥ λ2 ≥ ...≥ λn (4.4)

and corresponding eigenvectors v1, ...,vn.

Since the minimum-energy cost of driving the system from the origin at time t = 0 to final

point x f at time t = T is given by c(x f ) =
∫ T

0 u′(τ)u′(τ)dτ = x′f W−1(T )x f , for a fixed energy

c(x f ) = c∗ the gramian essentially prescribes a reachable ellipsoid in n-dimensional space,

with vertices located at λ1v1, ...,λnvn. This ellipsoid we formally define as

Ξ ≡
{

x ∈ Rn|x′W−1(T )x = c∗
}

(4.5)
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Figure 4.1: Unit circle with ellipse prescribed by W(T )−1 of a stable two-dimensional system
with the two eigenvectors of W(T )−1 Since the ellipse represents the reachable set with fixed
energy λ1, the distance between the ellipse and circle, in the direction of v2, encodes the
amount of excess energy available if we desire to steer the system to v2. Note that the figure
represents an abstract state space for a 2-d linear system, and thus the axes have no explicit
units.
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Thus, the surface of Ξ encodes the maximal distance to which trajectories can attain at

time T under inputs with total energy c∗ (starting from the origin). A common way to

assay the controllability of a linear system is to deduce the minimum energy, cmin, so that

system is guaranteed access to a unit-radius hypersphere in Rn (i.e., min c∗ such that

Ξ ⊃ {x ∈ Rn|x′x = 1} ), which as follows from (4.5), is simply λ1 in (4.4).

However, as posed in the Introduction, in this scenario, most of the hypersphere is reachable

with an excess of energy and we would like to quantify the utility of this excess. Carrying

forth the geometric interpretation, it is perhaps intuitive to propose a quantification involving

the ratio λi/λ1, i = 2, ...,n, i.e., the eccentricity of the ellipse made by intersecting Ξ with the

(v1,vi)−plane.

As we will show, this quantity not only results in a useful metric for excess energy utilization,

but has a precise interpretation in terms of the relative orientation attainable by putative

inputs to the system at hand. We first make concrete the notion of orientation range.

4.2.2 Input Orientation and Orientation Range

We begin by defining formally the expression for relative orientation between two inputs,

introduced in (4.3). For our purposes we will assume one of the inputs is known a priori.

Definition 4 (Input Orientation) For reference input u1(t) and ‘free’ input u2(t) guiding a

system of the form (5.1) over the time interval [0,T ], we define the relative orientation

dJ(u1(t),u2(t), t ∈ [0,T ])–for ease of notation simplified to dJ(u1,u2)–as follows:

dJ(u1,u2) =
1

T
√

γu1γu2

∫ T

0
u′

1(τ)u2(τ)dτ, (4.6)
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where

γu1 =
1
T

∫ T

0
u′

1(τ)u1(τ)dτ, γu2 =
1
T

∫ T

0
u′

2(τ)u2(τ)dτ (4.7)

are the average energies (up to time T ) of u1(t) and u2(t), respectively.

We again note that, although we refer to dJ(u1,u2) as the relative orientation between inputs

u1 and u2, in a strict mathematical sense it quantifies the average cosine of the angle between

the two inputs.

Under our assumption, the reference is known (thus γu1 is known), and we seek, given some

chosen available energy γu2 , to quantify our freedom in allowing u2(t) to assume different

geometries while still accomplishing a desired state transfer. We now propose a notion of

orientation range based on the maximum similarity between two inputs of fixed energy:

Definition 5 (Maximum Similarity) For inputs of energy γu1 , γu2 , the maximum similarity is

defined as

Max
u2

dJ(u1,u2)

Subject To x1 f =
∫ T

0
eA(T−τ)B(τ)u1(τ)dτ

x2 f =
∫ T

0
eA(T−τ)B(τ)u2(τ)dτ (4.8)

1
T

∫ T

0
u′

1(τ)u1(τ)dτ = γu1

1
T

∫ T

0
u′

2(τ)u2(τ)dτ = γu2

where we require the system to be steered, over the time interval [0,T ], from the points x10

and x20 to endpoints x1 f and x2 f by inputs u1 and u2, respectively. Further, γu1 and γu2 are

energy constraints on the inputs.
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Lemma 6 The optimization problem (4.8) has a provably unique solution u∗
2, and the minimum

relative orientation is given by the following:

dJ(u1,u∗
2)=

1
T
√

γu1γu∗
2

[
(x1 f −eAT x10)

′W−1(x2 f −eAT x20)+
√

(γu1T −Emin1)(γu∗
2
T −Emin2)

]
(4.9)

where to simplify notation we employ W to represent W(T ) (see (4.2)), and where Emin1 and

Emin2 are the minimum energies required for state transfers from the origin to x1 f and x2 f ,

respectively.

Proof 7 The existence and uniqueness of u∗
2 is proved, by deriving optimality conditions

based on the Euler-Lagrange equations, in [17], and a derivation of (4.9) is given in [18].

Remark 8 A critical conceptual point is that relative orientation is minimized when dJ(u1,u∗
2)=

1. The relative orientation decreases as dJ increases, since a larger value means that inputs

are more similar. This is apparent from (4.6), applying the law of cosines.

We note that dJ(u1,u∗
2) = dJ(u2,u∗

1); that is, in considering the general form for relative

orientation given in (4.6), we may choose either u1 or u2 to be the reference input, and the

resulting minimum relative orientation (given by (4.9)) will be equivalent. This is because

if we maximize (4.8) over u1 with respect to u2, the optimization constraints (i.e. those

prescribing terminal states x1 and x2 and input energies γu1 and γu2) are identical to those

in (4.8), and the order of u1 and u2 does not affect the value of (4.6). Indeed, aside from

W,Emin1 , and Emin2 , which are independent of u1 and u2, (4.9) depends only upon these

constraints and is invariant to their indexing (that is, we may ‘swap’ 1’s for 2’s in (4.9)

without changing the value). Thus we may, without ambiguity, speak of the minimum relative
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orientation between inputs required for two state transfers, without deciding which input is

the reference.

Thus, the solution (see [17] for a derivation and expression for u∗
2) to (4.9) provides a direct

characterization of the maximum similarity that two inputs, to two different points in state

space, may attain as a function of energy. This solution, thus, provides us with a concrete

notion of orientation range. We will now operationalize this notion by sampling, in a systemic

way, the space of possible pairs of terminal states (x1 and x2) and possible input energies γu1

and γu2 . As may be surmised, the sampling proceeds along the spectrum of W−1.

4.3 Results

The expression (4.9) is notable because it indicates that the minimum orientation difference

associated with a pair of state transfers (each starting at the origin) depends only on the

energy prescribed to those transfers. That is, while u1 may take many forms (assuming

γu1T > Emin1) its minimum difference with respect to any putative u2 with γu2T > Emin2 is

always the same.

4.3.1 The Gramian Bispectrum

Generally, we seek to compare a set of M n-dimensional systems (or networks), denoted Sk,

k ∈ {1 . . .M}. For each system Sk, we obtain the spectrum of the inverse gramian at some

fixed time T (denoted, as above, by W−1) to ascertain their energy characteristics. For

the bispectral analysis we create, for each Sk, a matrix Bisk showing the minimum relative

orientation required for pairs of inputs guiding the system from the origin to endpoints on the

n-dimensional unit hypersphere. These endpoints are simply the (orthonormal) eigenvectors

57



of W−1, ranked in terms of their corresponding eigenvalues. Since each transfer begins at the

origin, we can simplify (4.9) (we also generalize indices) to obtain

dJ(ui,u j) =
1

T√γuiγu j

(
x′ui

W−1xu j +
√
(γuiT −Emini)(γu jT −Emin j)

)
(4.10)

for target terminal states xui and xu j .

To fully specify Bisk we need to also determine the average energy associated with each state

transfer. The natural choice is to allow γui = γu j =
λmax

T . Thus, the total energy supplied is

λmax, which, as stated in the Introduction, is the smallest amount of energy that enables

access to the entire unit hypersphere.

With these specifications we rewrite (4.10), for any pair of state transfers in the directions of

vi and v j (i, j ∈ {1 . . .n}), as follows

dJ(ui,u j) =
1

T
√

λmax
T

λmax
T

(
v′iW

−1v j +

√(
λmax

T
T −Emini

)(
λmax

T
T −Emin j

))

=
1

λmax

(
v′iW

−1v j +
√
(λmax −Emini)(λmax −Emin j)

)
(4.11)

Now we consider Emini and Emin j . It is well known [41] that the minimum required energy for

a state transfer from the origin to some terminal point x(T ) is given by x′(T )W−1x(T ) (recall

that throughout we are using W−1 to represent W(T )−1), and since in our case we have

x(T ) = vi (or v j), where vi is a (normal) eigenvector of W−1, the minimum energy becomes

Emini = v′i W−1 vi = λiv′ivi = λi (4.12)
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Figure 4.2: Connection graphs for networks P (blue) and Q (green)

Equivalently, Emin j = λ j. Also, we note that

v′iW
−1v j = v′iλ jv j = λ jv′iv j =

 0 when i 6= j

λ j when i = j
(4.13)

Thus, if i 6= j, we can construct the gramian bispectrum element-wise from (4.11) via

Bisk(i, j)≡ dJ(ui,u j) =

√
(λmax −λi)(λmax −λ j)

λmax
(4.14)

while if i = j, we have

Bisk(i, j)≡ dJ(ui,u j) =
1

λmax

(
λ j +

√
(λmax −λi)(λmax −λ j)

)
= 1 (4.15)

which is expected because of the law of cosines and the fact that dJ(ui,u j) is the average

integrated angular difference between inputs ui and u j (4.6).

Thus, it is quite straightforward to calculate the matrix Bisk for system Sk. As a second-order

spectral characterization, we term Bisk the gramian bispectrum of the system Sk.
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Figure 4.3: Spectra of W−1
P and W−1

Q . The horizontal axis indexes the eigenvectors, which are
sorted according to the magnitude of their associated real (since W−1 is real and symmetric)
eigenvalues.

Figure 4.4: Array plots of gramian bispectra for networks P and Q. As explained in detail
in Section 4.3.1, dJ(ui,u j) quantifies the average cosine of the angle between inputs ui and
u j, guiding the system to endpoints on the unit hypersphere in the directions of eigenvectors
(of the gramian inverse W−1) vi and v j, respectively. Thus if dJ(ui,u j) = 1, the inputs may
be identical, which explains why the diagonal entries (where, obviously, vi = v j) are all equal
to 1.
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4.3.1.1 Example: Two Toeplitz Networks

We consider a simple construction of two 20-dimensional linear time-invariant Toeplitz

(i.e. the entries in any diagonal of the adjacency matrix are equal) networks (P and Q),

wherein each node of P has a self-connection and a bi-directional connection with its

immediate neighbors, while Q has those connections as well as bi-directional connections

with its secondary neighbors. The pattern of connectivity is schematized in Figure 4.2. The

eigenspectra for the two networks are shown in Figure 4.3, and the gramian bispectra given

in Figure 4.4. As we examine Figure 4.4, we notice that the overall contour of the ranked

eigenvalues (Figure 4.3) is reflected in the bispectra, but that, especially for network Q, there

are subtleties reflected in the pairwise representation (i.e. the gramian bispectra) that can

not be inferred from the eigenspectra, as we will explore below in Section III.C.

Since the gramian bispectrum is essentially a tabulation of within-system control flexibility

which characterizes how a system may trade energy for a diversity of inputs to reach orthogonal

points in state-space, worthy of special attention is the fact that the first row and column of the

gramian bispectrum is always 0 (aside from the {1,1}th entry, whose value will be explained

below), which, while apparent from (4.14), at first seems conceptually counterintuitive. The

pairs of transfers whose minimum input orientation differences are encoded in the first row

or column of the bispectrum are such that one of the state transfers employs a minimum

energy input; that is λi = λmax (first row) or λ j = λmax (first column). It would seem that,

since the other input has an increasing amount of excess energy as we move along the first

row or down the first column, that the orientation cost should decrease for the pair of inputs.

That is, since λi1 ≥ λi2 when i1 < i2, more excess energy is available for state transfers the

farther we go along row 1 (or column 1, substituting j for i), which intuitively would seem to

indicate greater input flexibility. However, this is not the case: when λi = λmax or λ j = λmax,
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it does not matter how much excess energy is provided for the other transfer, the best we

can do is to be, on average, orthogonal. We formalize this notion in the following lemma:

Lemma 7 For inputs u1(t) and u2(t), guiding the system (over time horizon t ∈ [0,T ]) from

the origin to v1 and v2, respectively, where v1 and v2 are eigenvectors of W−1(T ), and where

exactly minimum energy is provided for at least one of the transfers, dJ(u1,u2) = 0.

Proof 8 Let us examine (4.6) and assume we provide minimum energy for u1. Since x(0) is the

origin and x(T ) = v1, where v1 is an eigenvector of W−1(T ), classical control theory (see [41],

for example) tells us that minimum energy input u1 is given by: u1(t)=B′(t)eA′(T−t)W−1(T )v1.

Substituting into (4.6), we obtain

dJ(u1,u2) =
1

T
√

γu1γu2

∫ T

0
(B′(τ)eA′(T−τ)W−1(T )v1)

′u2(τ)dτ

=
1

T
√

γu1γu2

∫ T

0
v′1W−1(T )eA(T−τ)B(τ)u2(τ)dτ

=
1

T
√

γu1γu2

v′1W−1(T )
∫ T

0
eA(T−τ)B(τ)u2(τ)dτ

=
1

T
√

γu1γu2

v′1W−1(T )v2

=
1

T
√

γu1γu2

λ2v′1v2 = 0 (4.16)

This somewhat surprising result means that any u2 which we choose to guide the system to

v2 will have the same average angular difference (π

2 ) from the minimum energy u1. Thus we

obtain a sort of paradoxical freedom wherein we can do anything we want with u2 (subject

to endpoint constraints) but we cannot improve on its similarity to u1.
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4.3.2 Geometric Interpretation

Since the lengths of the axes of Ξ (see (4.5), where for the present purposes we let c∗ = 1)

are given by 1√
λn
, . . . , 1√

λ1
, we define E1,i to be the 2-D ellipse which results from a projection

of Ξ onto the axes given by v1 and v j, the eigenvectors associated with λ1 and λ j (recall that

λ1 is the largest eigenvalues of W−1(T ), so we’ll represent it, as above, by λmax). Then the

eccentricity (we will call it eccE1,i) of E1,i is given by

eccE1,i =

√√√√√1−

( 1√
λmax

)2( 1√
λi

)2 =

√
1− λi

λmax

=

√
λmax −λi

λmax
(4.17)

Choosing another such projected ellipse E1, j and its associated eccentricity eccE1, j =
√

λmax−λ j
λmax

,

we notice that

eccE1,i ∗ eccE1, j =

√
λmax −λi

λmax

√
λmax −λ j

λmax

=

√
(λmax −λi)(λmax −λ j)

λmax
(4.18)

= dJ(ui,u j) (Compare with (4.14))

That is, the minimum relative orientation between inputs ui and u j, utilizing total energy λmax

and driving the system to points on the unit hypersphere along the directions of eigenvectors

vi and v j, respectively, is the same as the multiple of the eccentricities of the 2-D ellipses

generated from the projections of Ξ onto v1 together with vi and v j, respectively. Note

that for different values of c∗ (again see (4.5)), Ξ is simply scaled and the eccentricity is

not affected. Further, a uniform scaling of the energy used by ui and u j does not affect
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dJ(ui,u j) (see (4.20)). Thus (4.18) holds for c∗ 6= 1. The geometric interpretation further

highlights the fact that the gramian bispectrum furnishes a nice overall picture of system

controllability in terms of energy, since these various eccentricities are exactly correlated with

relative minimum energy requirements.

We now move on to concentrate on comparisons of gramian bispectra across-system for

different networks.

4.3.3 Comparing Orientation Bispectra

The various energy-based control metrics are useful primarily because of their comparative

power; that is, given some energy metric and set of networks, we can easily rank the networks

in terms of the energy costs. Since orientation difference is a more relativistic notion, we

compare networks by calculating the gramian bispectral difference matrix

DP,Q = BisP −BisQ (4.19)

for networks P and Q. The {i, j}th entry of DP,Q tells us the difference in relative orientation

required (between the two networks) to accomplish the pair of transfers in the directions of

the ith and jth eigenvectors (of the respective networks).

4.3.3.1 Example: Toeplitz networks reveal informative bispectral differences

We continue our analysis using the same Toeplitz networks (P and Q) used in Example 1.

If we examine Figure 4.3 we can make some conclusions about the relative controllability of

networks P and Q, namely that P requires less energy to steer in most directions of the

state space. For only the three ‘easiest’ directions is Q more energy-efficient. This may be

all we desire to know in comparing the two systems if energy is our primary consideration.
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However, if we know that we have energy to spare, we can examine the bispectral difference

of the two networks to evaluate their relative efficiency in trading excess energy for input

flexibility.

To make a fair comparison of the two networks, we will rescale the eigenspectra so that their

maximum eigenvectors are equal–that is, λP,1 = λ ∗
Q,1, where λ ∗

Q,1 ∈ Λ∗
Q, the transformed

eigenspectrum for network Q. Note that this will not affect the gramian bispectra, for, if

we scale the spectrum (i.e. all of the eigenvalues) of W−1 by some constant α and evaluate

(4.14), we have

d∗
J(ui,u j) =

√
(αλmax −αλi)(αλmax −αλ j)

αλmax

= dJ(ui,u j) (4.20)

Now, let λP,max and λQ,max be the maximal inverse gramian (W−1) eigenvalues of networks

P and Q, respectively. As in (4.4), let us denote the ordered spectra of W−1 for the two

networks by ΛP and ΛQ, respectively. By (4.20), we can let Λ∗
Q = c ΛQ, where

c =
λP,max

λQ,max
, (4.21)

such that the rescaled spectrum Λ∗
Q results in no change to Q’s gramian bispectrum (that is,

Bis∗Q = BisQ). Then we have, for network Q,

BisQi, j = dJ(ui,u j)

=

√
(λQ,max −λQ,i)(λQ,max −λQ, j)

λQ,max

=

√
(λP,max − c λQ,i)(λP,max − c λQ, j)

λP,max
(4.22)
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Figure 4.5: Spectra of P and Q, with the latter normalized by c (see (4.21)) so that the
largest eigenvalues agree. This normalization does not affect the bispectral analysis (see
(4.22)). As in Figure 4.3, the horizontal axis indexes the eigenvectors, which are sorted
according to the magnitude of their associated eigenvalues.

This rescaling, applied to our networks P and Q, results in spectra as shown in Figure 4.5.

The reason this rescaling is advantageous is that it allows us to investigate how different

spectral profiles are manifest in the respective gramian bispectra, and ultimately in the

bispectrum difference matrix. For example, it is evident from (4.14) that there must exist

crossings in the normalized spectra in order for there to be any nontrivial comparison. For,

if, without loss of generality, λP,i > λ ∗
Q,i ∀i ∈ {2, . . . ,n} (recall that the normalization ensures
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that λP,max = λ ∗
Q,max = λmax) then

DP,Qi, j = BisPi, j −BisQi, j

=

√
(λP,max −λP,i)(λP,max −λP, j)

λP,max
−

√
(λ ∗

Q,max −λ ∗
Q,i)(λ

∗
Q,max −λ ∗

Q, j)

λ ∗
Q,max

=

√
(λmax −λP,i)(λmax −λP, j)−

√
(λmax −λP,i)(λmax −λP, j)

λmax

< 0 ∀{i, j} i ∈ {2, . . . ,n}, j ∈ {2, . . . ,n} where i 6= j

and thus the bispectrum difference matrix would reveal that network Q is easier to control

(in terms of input flexibility) for all pairwise maneuvers. Clearly, Q would be easier to

control in terms of minimum energies as well. But a more complex picture may emerge

when the normalized spectra have crossings. The fact that (4.14) is a nonlinear function of

the magnitudes of λmax, λi, and λ j makes it impossible to predict, upon inspection of the

eigenspectra, whether DP,Qi, j will be positive or negative when either
(
λP,i > λ ∗

Q,i

)
∧
(
λP, j <

λ ∗
Q, j

)
or
(
λP,i < λ ∗

Q,i

)
∧
(
λP, j > λ ∗

Q, j

)
(where ∧ is the logical ‘and’ operator).

We seek now to understand how this bispectral difference analysis can be interpreted to infer

relative controllability strengths and weaknesses, using Figure 4.6 (which was constructed by

using the sign function on the entries of DP,Q) as an example. The first thing that strikes

us in examining Figure 4.6 is that for most pairs of maneuvers wherein one has relatively

little excess energy (this corresponds to the first rows and columns of the matrix), network Q

has lower pairwise orientation cost, as represented by the large swaths of green in the early

rows and columns of Figure 4.6. Now, examining Figure 4.5, we see there is a crossing at

the 6th eigenvalue, so we would expect to see a change in the difference matrix at the sixth

row/column (recall that DP,Q is always symmetric). Indeed we do see green give way to blue,
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Figure 4.6: A visualization of bispectrum difference matrix DP,Q, a tool for comparing the
excess energy utility of the two networks. The {i, j}th entry is colored blue where network
P has the lower required angular input separation for maneuvers to vi and v j, and colored
green if network Q is better in this respect.

representing the fact that network P has a lower orientation cost for pairwise maneuvers to

eigenvectors with associated eigenvalues in the ‘middle’ section of the spectrum.

However, the change is more complex than can be inferred from the spectra alone. Notice, in

Figure 4.6, the protrusions of blue into the green section which appears in the 4th and 5th

rows (columns) and the 10th column (row). This indicates that, for pairwise maneuvers where

one of the maneuvers involves the 10th eigenvector (v10) and the other involves vi i ∈ {4,5},

network P has the better excess energy utility, while if the vi i ∈ {4,5} are paired with any

other eigenvector, network Q is more favorable. Clearly, by examining only the sign of the

entries of DP,Q, we limit the possible depth of the analysis. If we include magnitudes in

our consideration, an even richer characterization may emerge. For example, it may be that

network P is better (according to our objective) for only a few pairs of directions, but for

those pairs it is much better. If our control objectives prioritize input flexibility in traversing

these directions of the state space, we may deem P the more efficient network.
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If, on the other hand, we desire an even further simplification, we could condense the

information provided by the bispectral difference into one summary statistic by simply

summing over the entries of DP,Q to obtain an overall picture of which network best utilizes

its excess energy. However, much of the nuanced interpretation would be lost by doing so.

4.4 Conclusions and Future Work

We have introduced a mathematical construct, the gramian bispectrum, which provides a

characterization of how a system trades off energy for control versatility in the sense of an

angular distance metric. We remark that, while certainly the standard (energy) spectra

give some indications as to what we might expect to see in the relative gramian bispectral

matrices (i.e. the DP,Q), these matrices themselves furnish a richer picture of the relative

control versatility for maneuvers in the different (in these cases orthogonal) directions. We

suggest that the interpretive possibilities of the gramian bispectrum concept hold potential

in the study and comparison of linear systems and networks.

We have thus far derived, deployed (in several ways), and extended the idea of orientation

sensitivity as a measure of network information-processing ability. We now pursue a method

of holistic characterization of information processing–namely, total Fisher information in a

network with respect to its afferent inputs. We conduct this analysis in the next chapter in

the paradigm of an inner product-based readout. That is, we ask: How much can we know

about an input u by a readout of the projection of its corresponding state xu(t)’s projection

onto a ‘background’ state. The reasons for using this setup are discussed at length in the

chapter–in a nutshell, neuroscience has experimentally confirmed the existence of definitive

default states in the brain, against which all other activity must therefore be measured. Hence

we examine Fisher information with respect to a projection onto this background state. Of
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course, the background state is variable, and one of the chapter’s contributions is a derivation

of a way to optimize the Fisher information over the space of possible backgrounds–i.e. to

find the optimal default state.

70



Chapter 5

Information spectra and optimal background

states for dynamical networks

We consider the notion of stimulus representation over dynamic networks, wherein the network

states encode information about the identify of an afferent input (i.e. stimulus). Our goal is

to understand how the structure and temporal dynamics of networks support information

processing. In particular, we conduct a theoretical study to reveal how the background or

‘default’ state of a network with linear dynamics allows it to best promote discrimination

over a continuum of stimuli. Our principal contribution is the derivation of a matrix whose

spectrum (eigenvalues) quantify the extent to which the state of a network encodes its inputs.

This measure, based on the notion of a Fisher linear discriminant, is relativistic in the sense

that it provides an information value quantifying the ‘knowablility’ of an input based on its

projection onto the background state. We subsequently optimize the background state and

highlight its relationship to underlying state noise covariance. This result demonstrates how

the best idle state of a network may be informed by its structure and dynamics. Further, we
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relate the proposed information spectrum to the controllabilty gramian matrix, establishing

a link between fundamental control-theoretic network analysis and information processing.

5.1 Introduction

In network science, considerable effort has been directed at structural analysis that reveals

the interconnection architecture of engineered and biological networks [42–47]. While such

analysis can illuminate intriguing and common architectural principles of complex systems, it

alone cannot tell us the functionality of such architecture. In other words, to what end is

the revealed structure useful? Our goal in this work is to analyze the relationship between

structure, dynamics and function of (networked) systems. The specific notion of function that

we consider is information coding, which has to do with how networks represent a stimulus

or extrinsic input in a way that is useful for downstream processing (i.e., so that an agent

can decode the identity of input stimuli based on a ‘read out’ of the state of the network).

This sort of coding has been a topic of much interest in theoretical neuroscience, where

understanding how networks of neurons represent stimuli is a foundational question [14–16].

Of course, many general principles of information coding are known from communication

theory [48]. However, it is not clear how principles of information transmission, coding/de-

coding and capacity are impacted when enacted over a networked system, especially one

with continuous time dynamics. That is, what structure and dynamical aspects of a network

make it a good information encoder? To this end, we principally address two questions: 1)

What sorts of dynamics shape the input/output relationship of a network in a way which is

effective in the Shannon sense (i.e. some, but not too much, redundancy to enable robust,

efficient communication in the presence of noise)? It is especially unclear whether dynamical

networks that do a good job encoding and/or processing information are also those that are
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most responsive to their inputs in a control-theoretic sense. Hence the second question: 2) Is

a network that is easily controlled by its inputs necessarily one that also effectively encodes

information about those inputs? These two related questions constitute the primary focus of

the chapter.

We consider information processing defined in terms of the extent to which network states/out-

puts encode their respective inputs. Our particular focus is on the background state of a

network and its ability to facilitate information extraction regarding other afferent inputs.

Non-zero background states are frequently observed in natural dynamical systems. For

example, in the study of brain networks the existence of a ‘resting state’ is well-established

experimentally [49–52]. Our goal is to provide a theoretical framework with which we can

better understand how non-zero resting states confer informational utility. Specifically, we

will derive a background state that is optimal according to a novel information measure (also

herein derived). In mathematical terms, suppose that a stimulus u induces a network state

xu. We will quantify the ‘knowability’ of u by comparing xu against a reference background

state xref. The optimal xref can be interpreted as a ‘state of readiness’ at which the network

may be sustained in preparation for activity to follow.

The information measure we employ is based upon the inner product 〈xref,xu〉, and is rooted

in the method of Fisher linear discriminants [53–55]. This inner product, as is well-known,

prescribes the projection of xu onto xref. For vectors of known magnitude, this projection

gauges angular separation. Thus, essential characteristics of xu (and by extension, of u) can

be gleaned in an easily codified and quantified manner. The potential informational value

to be derived from a projection of xu onto xref, depends critically on the effective choice of

the background state xref and uncertainty/noise. The choice of xref, in turn, depends largely

on how a network responds to its inputs as a function of time (see Figure 5.1). Noise and

uncertainty, likewise, are impacted by the network dynamics.
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The formulation of a continuous-time dynamical (networked) system with afferent input

is fundamentally aligned with analysis from control theory. A key aspect of our results

will be the derivation of a Fisher information matrix, Iu, associated with the above inner

product. As we will see, the spectrum of Iu quantifies the extent to which different afferent

inputs produce different state representations. It turns out that this information spectrum

has a particular statistical relationship with a traditional element from control theory, the

controllability gramian matrix [9]. This is perhaps intuitive since the control gramian is

mathematically equivalent to the covariance of a network in response to white noise, a key

source of uncertainty (and, thus, information loss). We will formalize this relationship in our

results.

Assessment of information propagation through noisy networks has been a topic of increasing

interest, and while there are many contexts for which such analyses are relevant, quantifying

the information-carrying capacity of (real and/or artificial) neural networks has been an

especially active research area [15,16,56,57]. For example, in Zylberberg et al. [16], linear

Fisher information is evaluated for a two-layer feedforward network in which a scalar signal

is distributed to first-layer nodes and then propagated to the second layer via a weighted

matrix, with noise corrupting the output of both layers. The amount of information available

about the stimulus, they observe, is dependent on the noise covariance structure at each

layer, and on how these covariances relate to one another and to the direction of signal

propagation (i.e. the tuning curve). However, the network considered in this work is static,

so that input-output relationships are fully determined by network structure alone (i.e. there

is no recurrent modulation of the signal, though noise does play a role, obviously).

In contrast, Ganguli et al. [15] quantify the stimulus-encoding capacity of a linear dynamical

network, again employing linear Fisher information theory. Here, the stimulus is presented as
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a pulse at a specific time, the ‘memory trace’ of which is preserved by the network over time

to an extent depending on the network’s topology, and the statistical behavior of state noise.

Our work employs the dynamical framework of Ganguli et al. [15], while considering multi-

variate stimuli, akin to the ‘tuning curves’ of Zylberberg et al. [16] In fact our framework

allows for stimuli of arbitrary dimensions, although here we do constrain the inputs (stimuli)

to be constant (for reasons addressed in the Discussion). Also our notion of how stimulus

information is encoded is different. Specifically, we employ the inner-product based readout,

facilitating a comparison between an output vector xu and a reference xref, as mentioned

above.

5.2 Results

5.2.1 Problem Formulation and Preliminaries

5.2.1.1 Linear Dynamical Networks

Linear dynamics have been used to describe complex networks in several contexts [58–60],

with the caveat that such dynamics provide only local approximations of more complex,

nonlinear regimes. Proceeding with this limitation in mind, we consider a linear dynamical

system (network) with noise, of the form:

ẋ(t) = Ax(t)+Bu+w(t) (5.1)

where the n-dimensional state vector x’s recurrent dynamics are described by adjacency

matrix A ∈ Rnxn, input matrix B ∈ Rnxm mediating the m-dimensional input u, taken here to

be constant (see Discussion), and zero-mean gaussian noise w(t), which has covariance matrix
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Σw. We point out the fact that the term dynamical network, in the sense used here, does not

imply time-varying dynamics; that is, A is constant. We wish to consider the linear Fisher

information regarding u given the inner product of the state x(t) (which varies in time) and

a reference background xref. By basic linear system theory

x(t)∼ N

(∫ t

0
eA(t−τ)dτBu,Σx(t)

)
, (5.2)

where Σx(t) ∈ Rn×n is a covariance matrix determined by the system dynamics.

5.2.1.2 Inner Product and Fisher Information

As we seek to quantify the extent to which the inner product of x(t) and xref encodes

information about the input u giving rise to x(t), we employ the Fisher information matrix,

denoting it Iu, which is given by

Iu(t) =
∂
(
E[〈x(t),xref〉]

)T

∂u
Σ
−1
〈x(t),xref〉

∂E[〈x(t),xref〉]
∂u

(5.3)

where 〈x,xref〉 = xT xref and Σ〈x,xref〉 denotes the variance of this inner product. The inner

product can be interpreted in several ways, including as the correlation or contrast between

two competing states. The Fisher information lower bounds the variance of an estimate of u

based on measurement of the inner product.

From (6.35), and taking into account the independence of x and xref we have

Iu =
∂
(
E[x]TE[xref]

)T

∂u
Σ
−1
〈x,xref〉

∂E[x]TE[xref]

∂u
(5.4)

(where we have dropped dependence on t for notational convenience).
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Figure 5.1: The optimal background state xref amounts to a Fisher linear discriminant, onto
which state distributions (induced by inputs) are projected. In the case of Gaussian noise,
uncertainty can be visualized in terms of ellipsoids (with principal axis vmax) about the mean.
Since the networks are dynamic, the optimal xref will vary with time as the dynamics carry
the states forward.

Defining

Γ ≡
∫ t

0
eA(t−τ)dτ (5.5)

we obtain

Iu =
∂
(
E[x]TE[xref]

)T

∂u
Σ
−1
〈x,xref〉

∂
(
E[x]TE[xref]

)
∂u

(5.6)

=
∂
(
(ΓBu)T xref

)T

∂u
Σ
−1
〈x,xref〉

∂
(
(ΓBu)T xref

)
∂u

(5.7)

= BT
Γ

T xrefΣ
−1
〈x,xref〉x

T
refΓB (5.8)

Using the derivation given explicitly in the Methods section, we obtain the Fisher information

matrix

Iu =
BT ΓT xrefxT

refΓB
xT

refΣxxref
(5.9)

where Σx is the state covariance matrix as introduced in (6.34).
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In seeking a holistic assessment of the matrix Iu, we employ the trace, which is the summed

component-wise variance in our estimation of u. Since the Iu is an outer product of two

vectors (scaled by the denominator) we may express its trace as their scaled inner product:

tr(Iu(t)) =
xT

refΓ(t)BBT Γ(t)T xref

xT
refΣx(t)xref

, (5.10)

where dependence on t has again been made explicit.

5.2.1.3 Linear Dynamics and Noise Ellipsoids

Figure 5.1 provides a schematic of the problem formulation. Because our dynamics are linear,

at any given time t the state of the network is a Gaussian random vector. The covariance of

the state can be used to parameterize a quadratic form whose level sets constitute ellipsoids

that encapsulate the mean. We denote the principal eigenvector of the covariance matrix as

vmax. These ellipsoids capture the noise-driven uncertainty in the state. As we will soon see,

the optimal xref amounts to a Fisher linear discriminant that best disassociates two competing

state distributions (ellipsoids), each associated with a different stimulus. As the network

dynamics carry these trajectories forward in time, the optimal xref will in general change.

5.2.1.4 Network Parameterization, Actuated Nodes and Steady-State Assumption

We will focus our attention on networks that have a Barabási-Albert (scale-free) topology [61].

The off-diagonal elements of A are binary, while the diagonal elements are assigned large

enough negative values to ensure stability (see Methods). The dynamics of such networks

are asymptotically stable so that in the absence of stimuli and noise, all states return to the

origin.
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In our analysis we will vary the structure of how inputs impinge on network nodes. In

particular, for an n node network, only nd ≤ n nodes will receive input. These actuated nodes

are sometimes referred to as ‘driver’ nodes [11,62,63]. We will mostly consider the case when

each actuated node recieves an independent input, so that

B =

 Ind

0

 (5.11)

where Ind is the identity matrix of dimension nd (the number of driven nodes).

We make the assumption that the noise covariance is always at steady-state. In concept

here is that the dynamics of the network are persistently excited by ongoing noise, while

receiving stimuli in a temporally punctate manner. To be mathematically precise, under this

assumption (6.34) becomes:

x(t)∼ N

(∫ t

0
eA(t−τ)dτBu,Σx(∞)

)
, (5.12)

We also assume the pair A,B is controllable, so that the controllability gramian (precisely

defined later) is full-rank. A final important assumption pertains to the specification of t.

In cases when t is assumed to be at steady state, we set t = 10 (which we find is five times

longer than the time-constant of our considered networks). In other cases, we will vary t to

assess the role of dynamics.
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5.2.2 An optimal reference state xref exists, maximizing information about

u.

We are interested, for the moment, in which choice of xref will maximize (5.10). That is, we

seek to answer the question: Of all possible background states xref, which one will provide

the most information about a stimulus u (with its resultant output x), given a readout of the

inner product 〈xref,x〉. In order to find this ‘ideal’ reference stimulus, we transform (5.10) as

follows:

tr(Iu) =
xT

refΓBBT ΓT xref

xT
refLLT xref

(5.13)

where LLT (L is lower-triangular) is the Cholesky decomposition of Σx.Continuing, we have

tr(Iu) =
xT

refΓBBT ΓT xref

xT
refLLT xref

(5.14)

=
xT
∗ L−T ΓBBT ΓT L−1x∗

xT
∗ x∗

(5.15)

where x∗ = LT xref. Therefore, for simplicity of notation letting S = L−1ΓBBT ΓT L−T , we have

the familiar Rayleigh quotient

tr(Iu) =
xT
∗ Sx∗
xT
∗ x∗

(5.16)

whose values lie in the range λmin ≤ tr(Iu)≤ λmax and which achieves its extrema for x∗ = x∗min

and x∗ = x∗max where x∗min and x∗max are the eigenvectors of S associated with eigenvalues λmin

and λmax respectively. We then make the reverse transformation

xref = L−T x∗max (5.17)
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to obtain our ideally contrasting reference state. Mathematically (and as depicted in Figure

5.1) xref is in fact the Fisher linear discriminant that best separates the induced state

distributions associated with any two randomly chosen inputs.

Previous results [16] have shown that an optimally informative ‘signal direction’ in a non-

dynamical feedforward network is one which align with the principal axis of the noise

covariance ellipsoid. Similarly, with our dynamical setup, we decided to explore the optimal

xref qualitatively by examining to what extent it aligns with the principal axis of the noise

covariance ellipsoid (vmax of Σx in (5.10)). The results are shown in Figure 5.2. We notice in

Figure 5.2 that the ideal xref changes its orientation relative to vmax as a function of nd. This

orientation is virtually uncorrelated with network size and is very predictable, as we ran 30

network realizations for each n,nd pair and found little variability. We hypothesized that this

was due to prioritization of the fidelity of the portion of xref corresponding to actuated nodes,

which would explain why relatively under-actuated networks showed greater overall angular

divergence between xref and vmax. This is indeed the case, as shown in Figure 5.3. We first

examined actuated nodes, then non-actuated nodes, by segmenting xref and vmax into the

first nd elements (Figure 5.3(a)), then the last n−nd elements (Figure 5.3(b)). Clearly, the

actuated part of xref is required to be much more similar to the corresponding part of vmax

than is true for the non-actuated part.

Aside from the dependence of the optimal xref on input structure (particularly nd), we also

analyzed how the orientation of xref, relative to vmax, changes with time. Since, as mentioned

above, we are working in a dynamical regime, a time-dependent analysis is straightforward.

To this end, we evaluated the orientation of xref, relative to vmax, at several time points, using

the same methodology employed above, with the results shown in Figure 5.4. We see that

the orientation of xref relative to vmax does indeed change with time, apparently smoothly,
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(b)

(a)

d

Figure 5.2: Fidelity of optimally contrasting reference state xref to system noise covariance
decreases monotonically with nd. Shown is how xref aligns with the principal eigenvector
(denoted vmax) of noise covariance matrix Σw. µCos(θ) is the mean, over 30 network realizations,
of the cosine of the angular difference (θ) between xref and vmax. Error bars are standard
deviations. 30 realizations were evaluated for (a) identity and (b) random B matrices.
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(a)

(b)
d

d

Figure 5.3: Actuated nodes of the ideal background (xref) are ‘required’ to be aligned with
noise; non-actuated nodes are not. Shown is alignment of xref with principal noise covariance
direction vmax (as in Fig. 5.2); here xref and vmax are partitioned so that (a) reflects only
actuated and (b) only non-actuated nodes. µCos(θ) is as in Fig. 5.2, again for 30 network
realizations.
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Figure 5.4: The ideal contrast becomes more aligned with noise covariance as time progresses.
Shown is the time-evolution of the relative orientation between the optimally contrasting state
xref and the principal noise eigenvector vmax. At lower values of T , xref is nearly orthogonal
to vmax, while as T gets larger, xref becomes much more aligned with vmax, although this
alignment approaches a limit, which also varies monotonically with nd.

and that xref becomes more similar to vmax as time advances. This is especially true for fully-

or nearly fully-actuated networks, but is generally true for all input scenarios.

Thus, the optimally contrasting background/reference state is fundamentally dependent on

the input structure of the network and the time evolution of network dynamics.

5.2.3 An optimal reference input uref exists, maximizing information about

u.

We expanded our inquiry to analyze admissible reference inputs uref which could give rise to

an optimally contrasting state xref. More generally, we asked: Of all possible stimuli, does

there exist a best one uref, resulting in an output x̃ref, that provides information about all
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Figure 5.5: The optimally contrasting input uref targets network ‘hubs’, but to a degree
which varies with nd. 30 networks were realized with for each size (n) and driver node (nd)
combination. For a given network size, the graph shows the mean (µi) of the squared entries
of the (normalized) optimal uref. The entries of uref are sorted according to the degree of
targeted nodes (abscissa is a percentile, binned in increments of 5%, so that each bi represents
5% of the nodes). Note that when n = 100 and nd = n

10 there are twice as many bins as
controlled nodes, hence the duplicity of values.
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Figure 5.6: Same setup as in Figure 5.5, but simulations are run for randomly connected
networks (edge probability p = .5). Note the much smaller range of values on the vertical
axis when compared with Figure 5.5. Nodes of high degree (‘hubs’) are targeted, but to a
lesser extent than for the scale-free networks. Skewness of the graphs is inversely related
to nd; that is, it is less necessary to target hubs for more fully actuated networks, until at
nd = n, uref is essentially uniform.
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others. In this formulation, x̃ref is not longer unconstrained, but rather is determined by:

x̃ref = ΓBuref (5.18)

Using (5.18), we can find the optimal reference stimulus via a similar sequence of steps as in

the previous subsection, defining

tr(Iu) =
uT

refB
T ΓT ΓBBT ΓT ΓBuref

uT
refBT ΓT ΣxΓBuref

(5.19)

=
uT

refB
T ΓT ΓBBT ΓT ΓBuref

uT
refLLT uref

(5.20)

where LLT (L is lower-triangular) is the Cholesky decomposition of BT ΓT ΣxΓB, which

is positive-definite (a requirement for this decomposition) since covariance matrix Σx is

inherently positive-definite and thus can be Cholesky decomposed into LΣLT
Σ
, so that the

matrix BT ΓT ΣxΓB can be written QQT for Q = BT ΓT LΣ and is thus positive-semidefinite,

while the full-rank condition of Q ensures positive-definiteness.

Defining Su ≡ L−T BT ΓT ΓBBT ΓT ΓBL−1, we arrive at

tr(Iu) =
uT
∗ Suu∗
uT
∗ u∗

(5.21)

whose values lie in the range λmin ≤ tr(Iu)≤ λmax and which achieves its extrema for u∗ = u∗
min

and u∗ = u∗
max where u∗

min and u∗
max are the eigenvectors of Su associated with eigenvalues λmin

and λmax, respectively. We then make the reverse transformation uref = L−T u∗
max to obtain

our ideally contrasting reference input.
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We pause for a moment to consider the significance of this ‘optimal’ uref (i.e. the eigenvector

of Su which optimizes (5.21)). The existence of such an optimum means that for a given

network, there is one input whose induced state best contrasts those of all other inputs.

5.2.4 The optimally contrasting input targets specific nodes in a concentrated

manner, but not necessarily nodes of highest degree

We sought to characterize the ‘optimally informative’ uref by examining its entries (recall

that we are in the domain of constant inputs) as they relate to the connectivity degree of

actuated nodes. Clearly, uref has cardinality nd (see (5.11)). Since, then, there is a one-to-one

relationship between the nd entries of uref and the driven nodes, we are able to learn about

which nodes may be specially ‘targeted’ by an optimally contrasting uref. Intuition would

suggest that the targeted nodes would simply be the hubs, that is, that the higher the

degree of a node, the higher the value of the corresponding entry of uref. This is borne

out in simulation, but to an extent which varies consistently with network size (n) and nd.

Examining Figure 5.5, we see that for larger networks wherein all nodes are controlled, nearly

all of the large entries of uref are concentrated toward nodes in the top 5% by degree ranking

(i.e. the hubs), while as we control fewer nodes, a majority of the large entries are directed

toward the hubs, but this majority becomes smaller as nd decreases. Also, looking at the

different network sizes, we see that, in general, larger networks show a more pronounced

‘targeting’ of the hubs, while in smaller networks the hubs are still targeted but to a lesser

extent. It should be pointed out that uref is unitary, meaning there is an essential trade-off

between how much energy can be focused on hubs and how much can be focused elsewhere

(as is easily seen in Figure 5.5), so that in very hub-oriented scenarios (i.e. large networks

with high fraction of controlled nodes), uref is nearly a standard basis vector, while in smaller

networks wherein fewer nodes are controlled, uref is more homogenous.
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For comparison’s sake, we ran simulations with randomly connected (with .5 edge probability)

instead of scale-free networks. These networks were also undirected and rendered stable by

the same method (described in Methods). We did use small (<.1) positive edge weights,

rather than unitary weights, for these networks to render their analysis more numerically

tractable. We see in Figure 5.6 that the optimal uref also tends to target nodes of higher

degree in random networks, but to a much lesser extent than for scale-free networks. We

hypothesize that this is because the degree distribution for scale-free networks is given by a

power-law, which means there are many nodes of very low degree, and a few of very high

degree. Random networks have a binomial degree distribution, with more nodes of average

degree and none of very high degree. Thus, it may be less crucial for the input to target

the higher-degree nodes in random networks, simply because the higher-degree nodes are

not much higher-degree nodes. In the random networks, we see a skewing of the values of

uref which is inversely correlated with nd. That is, for less-actuated networks, the hubs tend

to be more targeted, while for more fully-actuated networks, this targeting becomes less

pronounced until at the limiting case (nd = n), the entries of uref are all nearly identical.

5.2.5 Information Spectra (of Su) are Sensitive to Network Parameterization

We now turn our attention to the problem of comparing different networks according to their

information capacity, as quantified by Iu. For this we examine the information capacity by

varying uref in (5.21), where the intuitive strategy is to let u∗ range over the eigenvectors of Su.

Thus, a holistic characterization of tr(Iu) is provided simply by the eigenvalue spectrum of

Su (recall that (5.21) takes on the value λi, the ith eigenvalue, when uref is the ith eigenvector),

heretofore termed the information spectrum of a network.

We obtained a distribution of information spectra for several network parametrizations. We

here restricted our attention to steady state characterizations. Each distribution amounts
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Figure 5.7: 5.7a: Information spectra as function of number of actuated nodes (distributions
aggregated over n = 100,200,300,400). Spectra consist of a primary mode and a smaller
secondary mode. 5.7b: Spectra of the controllability gramian for different fractions of actuated
nodes. As noted in previous work, these spectra display an increasing number of modes as
nd decreases. The principal mode is inset. Comparing to the information spectra in Figure
5.7a, we see that information spectra show marked similarity to first mode of control spectra,
and both spectra reveal outlying, small modes corresponding to easiest (control) and most
informative (information) directions.
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to an empirical probability distribution of the eigenvalues of Su over (random) network

realizations. We assumed used zero-mean, unit-variance, uncorrelated noise (i.e. E[wiw j] =

E[wi]E[w j] = 0∀i, j ∈ {1, . . . ,n}, i 6= j and E[wiwi] = 1∀i ∈ {1, . . . ,n}), though similar results

were obtained for correlated noise.

Figure 5.7a depicts the information spectra for several fractions of actuated (driver) nodes

(aggregates over several values of n). A first observation is the presence of a small, secondary

mode to the right of the principal mode. This secondary mode reflects the presence of a few

particularly salient inputs that most informatively correlate with all others. It is notable

that this mode, which represents the largest eigenvalue of Su, systematically decreases with

smaller values of nd. Certain intuition about these observations can be deduced from the

rich body of work on spectra of random matrices. One such spectral characterization [64]

shows that the principal eigenvalue of the adjacency matrix (here denoted A) for undirected,

binary scale-free networks (such as those used for our simulations, with the exception that

the diagonal of our A is adjusted, as described in Methods, to ensure stability) approximates

n
1
4 , where n is the number of network nodes. Further, recent work [65] has shown that this

maximum eigenvalue, for weighted scale-free networks with expected degree distributions,

varies monotonically with the maximum node degree. Maximum degree, in turn, increases

dramatically as n increases, because of the preferential attachment-based network creation

algorithm [66]. Thus we would expect the spectrum of Su, and in particular its principle

eigenvalue, to depend on effective network size, which itself depends on nd (see (5.11), and

note the effect of B on (5.20)). This makes sense intuitively, as well: We would expect

higher-dimensional input spaces to admit a richer set of encoded representations.

Further, as nd decreases, the distribution of the main mode becomes broader and more

entropic. No additional modes or ‘humps’ appear as nd varies, a point we will return to

shortly.
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5.2.6 Information Spectra are Related to the Controllability Gramian

As noted previously, the information spectrum is fundamentally time-varying (governed by

the network dynamics, driven by the input in question). We were particularly interested in

the relationship between the information spectrum and that of the controllability gramian

matrix

W(t) =
(∫ t

0
eA(t−τ)BBT eAT (t−τ)dτ

)
,

which also fundamentally characterizes the input-output relationship of a linear (networked)

system. Indeed, it is well known that in the limit as t → ∞, the gramian is exactly equivalent

to Σx, i.e., the denominator of Iu. Thus, we sought to compare the information spectrum to

that of W(∞).

The gramian matrix has been a pivotal entity in the analysis of linear systems and similarly

modeled networks [41, 67, 68], including certain types of brain networks [50, 69]. Recent

theoretical work [61] has characterized the nature of the infinite-time gramian spectrum as

a function of the number of driven nodes (nd). It is shown there that for small fractions of

driven nodes the spectrum manifests a series of modes or ‘humps,’ over which eigenvalues are

randomly distributed (over network realizations). As is well known in linear systems theory,

the magnitude of a gramian eigenvalue determines the minimum input energy needed to

reach the unit hypersphere in the direction of its associated eigenvector. Thus, the principal

mode of the gramian spectrum describes those directions that are ‘easiest’ to induce.

Figure 5.7b depicts the gramian spectrum for the same networks as in Figure 5.7a(a) (i.e., with

varying fraction of actuated nodes). The aforementioned modes are readily evident. What is

notable from this figure is the correspondence between the information spectra to the two

rightmost modes of the gramian spectrum (that is, the principal mode and the much smaller
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mode at far right). In interpreting this result, it is important to note that the information

and gramian spectra are of different dimensions (W−1(t f ) ∈ Rnxn while Su ∈ Rmxm). This is

because the information spectrum captures only constant inputs, thus for a fixed time the

state is restricted to an m-dimensional subspace. In this sense, we postulate that the principal

mode of the gramian spectrum corresponds not simply to the ‘easiest’ to reach directions,

but also those associated with constant (m-dimensional) inputs.

Let us now seek to understand this numerical correspondence between control and information,

shown in Figure 5.7b, at a conceptual level. What does it mean that the easiest directions of

control (quantified by the largest eigenvalues of W−1) and network information (quantified

by Iu) show such similarity? We hypothesize that this correspondence may be indicative of

an underlying link between controllability metrics and information-based analyses generally.

Indeed, this is not a novel idea; the mathematical basis for this link has been explored [70,71]

in contexts different, but related, to ours. We can summarize the essence of these discussions,

as it relates to our formulation, simply by noting that Iu depends fundamentally on a

derivative of the state (to be more precise, an inner product of two states) with respect to u.

Thus when system dynamics are such that incremental changes are made to u which result

in large changes to the state, it increases the informational value. This information is, to

some extent, a measure of network sensitivity to its inputs, and sensitivity to inputs is, of

course, exactly what controllability analysis seeks to quantify.

5.3 Discussion

We developed an analysis to quantify the amount of information about an input u that can

be gleaned from the contrast/correlation between its induced state xu and a reference or

background state xref. Our analysis shows that there exists an optimally informative xref
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in this context. This theoretical result reinforces intuition about how proper choice of a

contrasting background might enable more rapid decoding and subsequent processing of input

stimuli. We showed that the orientation of xref relative to the principal axis of noise covariance

decreased monotonically with increasing fraction of nodes actuated and that this separation

also decreased over time, but to an extent limited by nd This dynamical relationship between

the informational optimum and the noise covariance is complementary to results based on

static models [16].

We expanded our inquiry to examine the uref which would give rise to xref. We found that

the optimal uref tends to target network hubs, but in a way which varies consistently with

number of nodes driven nd (See Figure 5.5). We then derived an information spectrum

that characterizes the full encoding capacity (in terms of inner product readout) of inputs.

We showed that this spectrum has nuanced dependency on network size and fraction of

driven nodes, with the presence of a low-dimensional set of inputs to which networks appear

particularly well-tuned. Further, we reconciled the information encoding of a network with

its control-theoretic properties, which characterize how the ‘energy’ of an input allow for

the state space to be traversed. Our results suggest that inputs that produce ‘easy’ state

excursions–recall that these inputs are postulated to be constant or near-constant (see Section

5.2.6)–are also those that are well-encoded.

It may reasonably be asked why we have chosen inputs to be constant in the overall paradigm.

There are a couple of reasons for this. At a conceptual level, our information analysis

is fundamentally predicated on the derivative ∂ 〈x,xref〉
∂u . That is, we seek to quantify the

extent to which changes in the projection of system state x onto background xref reflect

incremental changes in u. This is straightforward for a constant u–we can easily imagine a

slight perturbation of a vector of constant values. However, it is more problematic for a time-

varying u(t). What does it mean to make an incremental change in the function u(t)? Here
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we are dealing with a variational problem in the infinite-dimensional function space, and it

makes intuition more difficult. Also, the mathematics of including a time-varying u(t) creates

difficulties. Examining (6.35), we see that taking a derivative with respect to u(t) presents

us with the task of taking the derivative of one function of t (E[〈x(t),xref〉]) with respect to

another function (u(t)). In general, for functions f (t) and g(t), ∂g(t)
∂ f (t) =

∂g(t)
∂ t · ∂ t

∂ f (t) =
∂g(t)

∂ t
∂ f (t)

∂ t

= g′(t)
f ′(t) .

Thus Iu would become dependent on u′(t). But we conduct our analysis with respect to the

objective of learning about u from a ‘readout’ of only the projection of x(t) onto xref. To

assume a knowledge of the time derivative of u(t) changes the setup completely. One way

around this dilemma would be to project u(t) onto a set of orthogonal basis functions (a

Fourier basis, for example). If we denote a vector of basis functions (truncated so as not to

be infinite) as h(t), we can approximate (almost) any u(t) by Uh(t), where U is a constant

projection, or coefficient, matrix. Then, Iu becomes linear in U, so ∂

(
E[〈x(t),xref〉]

)T

∂U yields

an expression which is independent of coefficient matrix U, and the basic formulation is

preserved, with the change that instead of seeking to infer constant input u via the state

projection, we seek to infer coefficient matrix U, with which a time-varying u(t) can be

reconstructed. We derive the basic equation for the Fisher information in such a paradigm in

the Methods section, but we do not characterize solutions in this work.

Having highlighted the results from the exploration of Iu, let us take a slightly higher-level

look at the information processing which Iu quantifies. Considering the inner product as the

‘readout’ (which forms the basis of information measure Iu) is intuitive since it measures

correlation/contrast between two competing representations of a stimulus. In this sense, it is

a highly condensed representation of potentially high-dimensional stimuli. However, it is far

from clear whether a network itself could accomplish this readout, and whether this is in

fact a reasonable strategy for actual information processing tasks such as input classification.

The linearity of the model considered is certainly a limiting factor in this regard.
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Nonetheless, we believe our results highlight an interesting direction toward analyzing not

simply the structural aspects of networks, but also their dynamics and ultimately their

functionality. It is straightforward to envision generalizing our framework to examine other

network topologies, dynamical nonlinearities and wider time-scales, as well as alternative

information metrics. These types of analyses can shed light on the functional advantages

of biological networks (e.g., those in the brain) and/or principles for guiding the design of

engineered systems.

5.4 Methods

5.4.1 Derivation of Iu

Proceeding from (5.7), we make use of the fact that Σ〈x,xref〉 is a scalar (being the variance of

a scalar inner product), so that

Iu =
BT ΓT xrefxT

refΓB
Σ〈x,xref〉

(5.22)

In seeking a holistic assessment of the matrix Iu, we employ the trace, which is the summed

component-wise variance in our estimation of u. Since Iu is an outer product of two vectors

we may express its trace as their inner product

tr(Iu) =
xT

refΓBBT ΓT xref

Σ〈x,xref〉
(5.23)
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We now examine the inner product variance Σ〈x,xref〉. It is straightforward to obtain

Σ〈x,xref〉 = E[〈x,xref〉2]−
(
E[〈x,xref〉]

)2 (5.24)

= E[(xT xref)
T (xT xref)]−

(
E[x]TE[xref]

)2 (5.25)

= xT
refE[xxT ]xref − (uT BT

Γ
T xref)

2 (5.26)

Note that E[xxT ] is the correlation matrix of x, so that

Σx = E
[
(x−E[x])(x−E[x])T ] (5.27)

= E
[
xxT ]−ΓBuuT BT

Γ
T (5.28)

Therefore

E
[
xxT ]= Σx +ΓBuuT BT

Γ
T (5.29)

and combining (5.29) with (5.26) we have

Σ〈x,xref〉 = xT
ref
(
Σx +ΓBuuT BT

Γ
T)xref

− (uT BT
Γ

T xref)
2 (5.30)

= xT
refΣxxref (5.31)

Thus, plugging (5.31) into (5.22) we have the Fisher information matrix

Iu =
BT ΓT xrefxT

refΓB
xT

refΣxxref
(5.32)

as given in the main body of the text.
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5.4.2 Network parameterization and simulations

To ensure stability, it is sufficient [61] to ensure that, ∀i ∈ {1, . . . ,n}, the ith diagonal element

of binary adjacency matrix A is at least as negative as the sum of the non-diagonal elements

in row i. That is, ∑
j 6=i

Ai, j +Ai,i < 0. Accordingly, in constructing networks, we first created a

scale-free degree distribution and then formed a corresponding random graph, thus prescribing

adjacency matrix A. Next we simply assigned Ai,i =−( ∑
j 6=i

Ai, j +δi), where each δi was picked

at random from (0,1).

Creation of these adjacency matrices and the B matrices, as well as the calculations of

optimally contrasting background state xref and reference stimulus uref, with the associated

statistical analyses, were performed using Mathematica, with the exception of the calculations

of controllability gramians, which were done by exporting these matrices to MATLAB, and

using the lyap() command.

5.4.3 Time-varying u

To evaluate the information

Iu =
∂
(
E[x]TE[xref]

)T

∂u
Σ
−1
〈x,xref〉

∂E[x]TE[xref]

∂u
(5.33)

for time varying u = u(τ), τ ∈ [0, t], we must reformulate E[x(t)] as follows

E[x(t)] =
∫ t

0
eA(t−τ)Bu(τ)dτ (5.34)
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Now, recalling that xref is idealized and not subject to noise so that E[xref] = xref, and that

Σ〈x,xref〉 is a scalar, we obtain:

Iu =

∂

(∫ t
0 eA(t−τ)Bu(τ)dτ

)T

∂u(τ) xrefxT
ref

∂

(∫ t
0 eA(t−τ)Bu(τ)dτ

)
∂u(τ)

Σ〈x,xref〉
(5.35)

which corresponds to (9) for the constant u case, and the trace, corresponding to (10),

becomes

tr(Iu) =
xT

ref
∂

(∫ t
0 eA(t−τ)Bu(τ)dτ

)
∂u(τ)

∂

(∫ t
0 eA(t−τ)Bu(τ)dτ

)T

∂u(τ) xref

Σ〈x,xref〉
(5.36)

We are now faced with the task of taking the derivative of one function (for simplicity, we’ll

denote it g(τ) =
∫ t

0 eA(t−τ)Bu(τ)dτ) with respect to another function ( f (τ) = u(τ)). Now

∂g(τ)
∂ f (τ)

=
∂g(τ)

∂τ
· ∂τ

∂ f (τ)
=

∂g(τ)
∂τ

∂ f (τ)
∂τ

=
g′(τ)
f ′(τ)

(5.37)

But our overall goal, that of inferring something about input u by observing a projection

of the state x onto a background state, does not presuppose any knowledge of u (or its

time derivative). Does this preclude any possibility of including a time-varying u in our

formulation? Not necessarily, for we may express u(τ) as a projection onto an alternative

set of basis functions–the Fourier basis, for example. By truncating the (infinite) Fourier

basis functions (in complex exponential form) to include the first m harmonics, we can, by

changing m, approximate u(τ) to any degree of precision: u(τ)≈ Uh(τ) where the coefficient

matrix U ∈ Rn x m and
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h(τ) =



e2πiω0τ

e2πi2ω0τ

e2πi3ω0τ

.

.

e2πimω0τ


for fundamental angular frequency ω0.

Now whatever information we are able to infer about the constant Fourier coefficient matrix U

gives us precise information about u(τ) (with precision determined by m), so we can simplify

(5.36), taking derivatives with respect to U:

tr(Iu)≈
xT

ref
∂

(∫ t
0 eA(t−τ)BUh(τ)dτ

)
∂U

∂

(∫ t
0 eA(t−τ)BUh(τ)dτ

)T

∂U xref

Σ〈x,xref〉
(5.38)

This is now a linear differentiation in U, and thus we are able to preserve our original

motivation, that of inferring information about u(τ) by observing only the state. (5.38) is

by no means easy to compute in general, however: differentiation by the matrix U yields a
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three-dimensional tensor. This can be remediated somewhat by letting

Uh(τ)= vec(U)T (In⊗h(τ))=
[

U1,1...m U2,1...m . . . Un,1...m

]



e2πiω0τ

e2πi2ω0τ

e2πi3ω0τ

.

.

e2πimω0τ

0 0 . . . 0

0

e2πiω0τ

e2πi2ω0τ

e2πi3ω0τ

.

.

e2πimω0τ

0 . . . 0

... . . .

... . . .

0 0 . . . 0

e2πiω0τ

e2πi2ω0τ

e2πi3ω0τ

.

.

e2πimω0τ


(5.39)

Now, by Leibniz’ rule, we can rewrite (5.38) as

tr(Iu)≈
xT

ref
(∫ t

0 eA(t−τ)B∂ Uh(τ)
∂U dτ

)(∫ t
0 eA(t−τ)B∂ Uh(τ)

∂U dτ
)T xref

Σ〈x,xref〉

≈
xT

ref
(∫ t

0 eA(t−τ)B∂ vec(U)T (In⊗h(τ))
∂U dτ

)(∫ t
0 eA(t−τ)B∂ vec(U)T (In⊗h(τ))

∂U dτ
)T xref

Σ〈x,xref〉

Then, since ∂ vec(U)T (In⊗h(τ))
∂U = (In ⊗h(τ))T , we let H = (In ⊗h(τ)) for notational convenience

to obtain

tr(Iu)≈
xT

ref
(∫ t

0 eA(t−τ)BHT dτ
)(∫ t

0 eA(t−τ)BHT dτ
)T xref

Σ〈x,xref〉
(5.40)

At this point the problem is well-posed and, in theory, solvable. However, a characterization

of its solution is beyond the scope of this dissertation; in fact, we plan to use this formulation

to extend the results of this chapter in future work.
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Having explored, thus far, many facets of information processing, especially as it related to

control-theoretic concepts, we now seek to overcome a fundamental limitation in all our work

to this point–namely, we have analyzed systems with linear dynamics throughout. In the

next chapter, we extend our analysis to include networks having sigmoidal nonlinearities, and

thus make our work much more applicable to real-world dynamical systems.
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Chapter 6

Quasilinear approximation of Fisher

information in networks with sigmoidal

nonlinearities

6.1 Introduction

In recent work [20], we addressed the problem of quantifying the extent to which linear

dynamical systems encode information about their afferent inputs. To this end, we em-

ployed Fisher information theory [53], optimizing network parameters with the objective of

maximizing information. In this chapter, we extend this information-based analysis to the

nonlinear regime, enabling the evaluation of approximate Fisher information for networks

with sigmoidal nonlinearities, which, as we will see, are particularly relevant in the neural

setting.
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Our analysis proceeds in two phases. First, we build upon previous work [21] to derive a

method for approximating the dynamics of network with sigmoidal, saturating nonlinearities

with a simple component-wise scaling and bias applied to a linear dynamical system. We

refer to the resulting dynamical system as a quasilinear approximation of the nonlinear one.

Then, having characterized the quality of the quasilinear approximation and quantified its

accuracy (which tends to be remarkably faithful to the nonlinear system), we will proceed

to derive a Fisher information-based measure of network stimulus representation for the

quasilinear system, comparing results to those obtained for the corresponding unconstrained

linear system (i.e. the original system without the sigmoidal nonlinearity).

We conduct our analysis under two distinct formulations, the first of which has Gaussian

white noise added outside the sigmoidal function (and hence the quasilinear transformation

in the approximation), and thus has general nonlinear form

ẋ = f (x,u)+ζ (6.1)

for state x, sigmoidal function f (·), input u, and noise process ζ .

The second of which has noise added inside the sigmoid, and has general form

ẋ = f (x,u,ζ ) (6.2)

We show that this change in formulation makes a critical difference in the Fisher information

analysis. In particular, we show (analytically for a special case) that the quasilinear Fisher

information (QFI) is categorically worse than the linear Fisher information (LFI) under

formulation 1–(6.1)–but that the reverse is true under formulation 2–(6.2). We derive

an analytic expression precisely relating (under mild assumptions) the QFI under the two

formulations. We assess the implications of this reversal for the accurate modeling of stochastic
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dynamical systems, and taking into account the relative merits of each formulation, derive

conclusions about the advantages and disadvantages–from an informational perspective–

inherent in systems with sigmoidal nonlinearities, which are prevalent in natural (especially

neural) networks [72–76].

We also conduct a numerical study showing how the relation between QFI and LFI monotoni-

cally depends on the saturation limits of the sigmoid (or, more precisely, the saturation limits

of a piecewise linear sigmoidal approximation). This is performed for both formulations,

again showing an inverse relationship between the two. That is, under formulation (6.2),

QFI>FI, but QFI decreases asymptotically toward FI as the ‘no saturation’ range expands

(in the limiting case there would be no saturation at all so the systems would be identical),

while under formulation (6.1) QFI<FI but QFI increases asymptotically toward FI. We show

that for system (6.2), where QFI radically outperforms FI when saturation limits are narrow,

there is a fundamental trade-off between information and speed of dynamic evolution; that is,

we can have better information, in the long run, with a narrow sigmoid, but the scaled-down

dynamics lead to relatively slow response.

6.2 Problem Formulation 1

We begin by defining the dynamics of the nonlinear system of differential equations for state

variables xi i ∈ {1, . . . ,n}, represented collectively as the state vector x ∈ Rn:

ẋ(t) = f (Ax+Bu)+Gz(t) (6.3)

where A ∈ Rn×n is a constant weighted adjacency matrix, u ∈ Rm is a constant input vector,

B ∈ Rn×m is a constant input-weighting matrix, z(t) is a zero-mean, unit-variance, stationary

Gaussian noise process, G is a diagonal matrix of noise gains, and where a sigmoidal
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nonlinearity is approximated by the piecewise linear function

f (x) =


β , x ≥ β

x, α < x < β .

α, x ≤ α

(6.4)

We seek to find constant diagonal matrix N ∈ Rn×n and constant vector µ ∈ Rn such that we

can closely approximate the dynamics of (6.3) by the linear stochastic system

˙̂x(t) = N(Ax̂+Bu)−Nµ +Gẑ(t) (6.5)

We think of N (or, more precisely, the diagonal of N) as a quasilinear gain and µ as a

quasilinear offset, or bias. To make these approximations meaningful, we must pick a

stationary regime of the stochastic process upon which f (·) acts–namely, when the system is

in steady-state. Thus our task is to choose parameters N and µ such that the distribution

of the process–about the steady-state–in (6.5) is as similar as possible to that of (6.3). We

subtract µ because it represents a scaled mean difference between the dynamics which would

prescribed by a simple scaling by N and the actual dynamics prescribed by f (·). That is,

letting

Nµ = E [N(Ax̂+Bu)− f (Ax+Bu)]

= NE[Ax̂+Bu]−E[ f (Ax+Bu)] (6.6)

we have

NE[Ax̂+Bu]−Nµ = E[ f (Ax+Bu)] (6.7)
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To find optimal values of N and µ , we seek to minimize the error function

ε(N,µ) = E
[
(x(t)− x̂(t))2] (6.8)

Since the E[z(t)− ẑ(t)] = 0 ∀t, we can rewrite (6.8) as

ε(N,µ) = E
[(

f (Ax+Bu)−N(Ax̂+Bu−µ)
)2] (6.9)

To find the matrix N which will minimize this function, we recall that N is diagonal so that

for n = N ·1, and for generic vector v,

n�v = Nv = v�n (6.10)

where � denotes element-wise multiplication. Thus we can reframe (6.9) as

ε(n,µ) = E
[(

f (Ax+Bu)−n� (Ax̂+Bu−µ)
)2] (6.11)

Now we can differentiate (6.11) with respect to n, setting the derivative equal to 0 for

minimization:

dε

dn
= E

[
2
(

f (Ax+Bu)− (n� (Ax̂+Bu−µ)
)
� (Ax̂+Bu−µ)

]
= 0 (6.12)

For simplicity of notation we will let y and ŷ denote Ax+Bu and Ax̂+Bu−µ , respectively.

Thus (6.12) becomes
dε

dn
= E

[
2
(

f (y)− (n� ŷ)
)
� ŷ
]
= 0 (6.13)

We now make an inherently recursive assumption-namely, that the approximation x̂(t) of

the state x(t), for any given t, is close enough that we can rewrite (6.13) all in terms of x(t)
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(and therefore of y), thus allowing us to accurately estimate x(t) by finding optimal n and µ .

This is a fairly subtle point, and it will impact all of the technical development henceforth.

Operating under this assumption, we have

dε

dn
= E

[
2
(

f (y)− (n�y)
)
�y
]
= 0 (6.14)

Thus, by the linearity of expectation,

E
[

f (y)�y] = n�E
[
y�y

]
(6.15)

We make the assumption that y(t) is a stationary Gaussian process (at steady-state), since

ẑ(t) is such, with the caveat that since y includes recurrent dynamics on x, this may not

always be strictly true. Proceeding with this assumption, and taking into account that f (·)

is piecewise differentiable, we have

E
[

f (y)�y
]
= E

[
y�y

]
�E

[
d f
dy

∣∣∣∣
y=y(t)

]
= E

[
d f
dy

∣∣∣∣
y=y(t)

]
�E
[
y�y

]
(6.16)

where

(
d f
dy

∣∣∣∣
y=y(t)

)
–henceforth denoted f ′(y(t))–is a component-wise differentiation. Thus by

(6.15) and (6.39), the optimal n becomes

n = E
[

f ′(y(t))
]

(6.17)

and thus

N = diag
(
E
[

f ′(y(t))
])

(6.18)
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Now, to find the optimal µ , we take the derivative of (6.8) with respect to µ . Using the same

notation as above (and again letting n = N ·1), we have

dε

dµ
= E

[
2
(

f (y)− (n� ŷ)
)
� d(n� ŷ)

dµ

]
= E

[
2
(

f (y)− (n� ŷ)
)
�n
]

= 2 E [ f (y)− (n� ŷ)]�n

Setting this equal to 0, we can cancel the terms outside the expectation to obtain

E [ f (y)− (n� ŷ)] = 0

so that (again by the linearity of expectation)

E[ f (y)] = E[n� ŷ] = E[Nŷ] (6.19)

Now, Nŷ = N(Ax̂+Bu)−Nµ, as in (6.5). We recall that we seek the approximation µ at

steady-state; thus, we set ˙̂x in (6.5) to zero to obtain (recalling that z(t) is a zero-mean

process)

0 = N(Ax̂+Bu)−Nµ = E[Nŷ]ss (6.20)

Since Nŷ is by definition an approximation of f (y), we evaluate the expectation (6.20) with

respect to f (y). We make an assumption of the Gaussianity of f (y). This is mostly justified

when there is sufficiently narrow bandwidth (i.e. when the system (6.3) acts as a low-pass

filter). Further, we assume that f ′(y), which is a Gaussian fed through a linear transformation

(namely a derivative, which acts as a linear filter), is Gaussian. Proceeding under these
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(relatively mild) assumptions, we make use the definition of the expectation of a Gaussian

random variable together with (6.18) and (6.20) to form n sets of coupled equations prescribed

by:

Ni,i = ni =
∫

∞

−∞

d
dyi

f (yi)
√

2πσyi

exp

(
−(yi −µi)

2

2σ2
yi

)
dyi (6.21)

0 = E
[
Nŷ
]

i = E
[

f (yi)
]
=
∫

∞

−∞

f (yi)√
2πσyi

exp

(
−(yi −µi)

2

2σ2
yi

)
dyi (6.22)

for i ∈ {1, . . . ,n}.

Since these equations depend on the standard deviations of the yi (σyi), which are functions

of y’s covariance, we next examine that covariance. First, we note that the covariance of a

nonlinear system (more precisely in our case, one with a piecewise-linear nonlinearity) is not

computable explicitly, so we instead seek the covariance of the estimated, linear dynamics on

ŷ. Since the covariance of ŷ is really just the covariance of x̂ with respect to the stochastic

noise input, and since we are finding the covariance in steady-state, we can simply find the

infinite-time controllability gramian for the linear system ˙̂x = NAx+Gz; that is, we solve

the following Lyapunov equation for ΣN (we use the subscript N to keep in mind the explicit

dependence of the covariance on quasilinear gain N).

(NA)ΣN +ΣN(NA)T +GGT = 0 (6.23)

Now, since we seek the component-wise standard deviation of x̂ (hence ŷ), we have to

distribute the variances and covariances encoded in ΣN, weighted by A, to obtain the variance

of ŷi i ∈ {1, . . . ,n}:

σ
2
ŷi
= var(ŷi) = Mi,i (6.24)
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where

M = AΣN AT (6.25)

where we have used the fact that ΣN is symmetric. Since, then, the variance (hence the

standard deviation) depends explicitly on N, we can solve the system of paired equations

(6.21),(6.22) for the n diagonal entries of quasilinear gain matrix N and the n entries of bias

vector µ. Note that each Ni,i and µi, i ∈ {1, . . . ,n} is found separately as a pair. We spare

the reader the details of how solutions are obtained; it is sufficient to notice that (6.21)

and (6.22), by construction the expectations of (quasi-)Gaussian random variables d
dyi

f (yi)

and f (yi), respectively, are solved by means of partitioning the domain (−∞,∞) into parts

determined by the limits of the saturation function f (·) (α and β–see (6.4)) and using the

error function

erf(x) =
2√
π

∫ x

0
e−t2

dt (6.26)

Expressed in terms of the error function, (6.21) and (6.22) become

Ni,i =
1
2

[
erf

(
β −µi√

2σŷi

)
− erf

(
α −µi√

2σŷi

)]
(6.27)

and

0 =
α +β

2
− β −µi

2
erf

(
β −µi√

2σŷi

)
+

α −µi

2
erf

(
α −µi√

2σŷi

)

−
σŷi√
2π

exp

−

(
β −µi√

2σŷi

)2
− exp

−

(
α −µi√

2σŷi

)2
 (6.28)

These equations, though difficult or impossible to solve analytically, are readily solved using

numerical optimization techniques. We used Mathematica’s NMinimize command, using

the norm of the difference between lhs and rhs of (6.27) and (6.28), concatenated, as the
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objective function and minimizing over variables n and µ. Global minima were found the

vast majority of the time, evidenced by objective function values on the order of 10−10.

6.2.1 Quality of quasilinear approximation

To begin our assessment of the quality of the quasilinear approximation, we simulated

trajectories of systems (6.3) and (6.5), perturbed by the same noise process. We used a

forward-Euler method with time step δ and total number of timesteps k; thus the k sampled

values of the noise process z(t) were applied identically to each system. For comparisons sake,

we also simulated the system

ẋJ(t) = AxJ +Bu+Gz(t) (6.29)

with all terms exactly as in (6.3) (or (6.5)) but without the nonlinearity f (·) (or the associated

approximation terms N and µ). This can be thought of as a Jacobian linearization around a

stable fixed point of (6.3), but since we apply it even in cases where the sigmoid argument is

below α or above β (component-wise), we still employ a gain (slope) of 1, so it is not strictly

a Jacobian linearization; we will sometimes refer to it as a heuristic Jacobian linearization.

A few illustrated examples show the clear superiority of the quasilinear approximation over

the heuristic Jacobian linearization. Figure 6.1 shows trajectories for a 2-dimensional system.

Note that the variance of the quasilinear trajectory is much more aligned with that of the

sigmoidal trajectory than is that of the Jacobian-linearized version. Figure 6.2 shows the

same qualitative result.

To gauge the accuracy of the quasilinear approximation (6.5) with respect to the original

system (6.3) in arbitrary dimensions, a statistical approach is obviously needed. We simply

integrate the mean squared difference between x(t) and x̂(t) over the time domain [0,T ] and
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Figure 6.1: An example illustrating the quality of the quasilinear approximation in 2D. (a)
shows the state trajectory of the sigmoidal system (red) and the quasilinear system (blue).
(b) shows the same sigmoidal trajectory (red) and the (heuristic) Jacobian-linearized system
trajectory (green).

Figure 6.2: An example illustrating the quality of the quasilinear approximation in 3D. (a)
shows the state trajectory of the sigmoidal system (red) and the quasilinear system (blue).
(b) shows the same sigmoidal trajectory (red) and the (heuristic) Jacobian-linearized system
trajectory (green).
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scale by the total squared displacement of x(t):

εtotal(N,µ) =

∫ T
0 ‖x(t)− x̂(t)‖dt∫ T

0 ‖x(t)‖dt
(6.30)

Although it is theoretically possible for this quantity to exceed 1, in practice it never happens,

so εtotal ∈ {0,1} furnishes a good measure of quasilinear accuracy. In practice, since we are

using a forward-Euler method (with k timesteps) of integration for our simulations, (6.30) is

discretized to become

ε
∗
total(N,µ) =

k
∑

i=1
‖xi − x̂i‖

k
∑

i=1
‖xi‖

(6.31)

It is also critically important that the covariance structure of the output of (6.5) be similar to

that of (6.3). The example figures (Figures 6.1 and 6.2) have suggested this, but to quantify

it precisely, we evaluated that following simple measure

εvar =
‖var(x(t))−var(x̂(t))‖

‖var(x(t))‖
(6.32)

and its discrete-time approximation

ε
∗
var =

‖var(x)−var(x̂)‖
‖var(x)‖

(6.33)

where the var(x) is the component-wise variance of x, evaluated over the whole timecourse

i ∈ {1, . . . ,k}.

A statistical characterization of the accuracy of the quasilinear approximation and a compari-

son of this accuracy with that of the (heuristic) Jacobian linearization, is given in Figure

6.3, for which we ran 50 trials with networks of size n = 100, computed normed differences of
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Figure 6.3: We ran simulations of 50 networks each of quasilinear, Jacobian-linearized, and
sigmoidal systems ((6.5),(6.29), and (6.3), respectively) with the same dynamical matrices
(A,B), same noise gain matrix (G = 2.3∗ I), the same (random for each trial) constant input
u (with 0 ≤ ui ≤ 15 ∀i ∈ {1, . . . ,n}) and same noise input (z(t)) for each trial. Each trial was
run using a forward-Euler integration method with k = 10,000 time steps, and saturation
limits α =−2 and β = 3. (a) shows mean and standard deviation of the value of (6.31) over
the 50 trials. Note that for the Jacobian-linearized vs sigmoidal error (green), we just use xJ
(see (6.29)) in place of x̂ in (6.31). (b) shows mean and standard deviation of the variance
discrepancy, as quantified by (6.32), over the 50 trials.

state trajectories and variances, as described above and quantified by (6.31) and (6.33), and

plotted mean and standard deviation for the 50 trials.

6.2.2 Quasilinear Fisher information under formulation 1

We sought to evaluate the implications of quasilinearization for information processing in

dynamical networks. To do so, we employ a simple notion of information processing–stimulus

encoding. Specifically, we seek to quantify the extent to which a dynamical system encodes

information about its afferent inputs by means of a state ‘readout’. The calculation of the

Fisher information is straightforward for a linear system. In particular, since we consider

the noise input to be Gaussian with zero mean, by basic linear systems theory together

with dynamics prescribed by (6.5), the state x(t) (we will drop the notation x̂ henceforth for
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greater notational simplicity) is Gaussian according to

x(t)∼ N

(∫ t

0
eNA(t−τ)dτNBu+

∫ t

0
eNA(t−τ)dτNµ,ΣN

)
, (6.34)

where ΣN ∈ Rn×n is the covariance matrix of x(t) given as the solution to (6.23). Hence, we

make the assumption that the noise covariance is always at steady-state. Conceptually, this

assumption means that the dynamics of the network are persistently excited by ongoing noise,

while receiving stimuli in a temporally punctate manner.

Since x(t) is Gaussian, the Fisher information matrix quantifying the amount of information

‘preserved’ or ‘encoded’ about constant stimulus u is given by

I Q
u (t) =

∂E[x(t)]T

∂u
ΣN

−1 ∂E[x(t)]
∂u

(6.35)

The expectation of x(t) is straightforward and is given explicitly in (6.34). Thus the derivation

proceeds very easily as follows, where we define

ΓN(t) =
∫ t

0
eNA(t−τ)dτ (6.36)

for sake of clarity. Then

I Q
u (t) =

∂ (ΓN(t)NBu+ΓN(t)Nµ)T

∂u
ΣN

−1 ∂ (ΓN(t)NBu+ΓN(t)Nµ)

∂u

= (ΓN(t)NB)T
ΣN

−1(ΓN(t)NB)

= BT NT
ΓN(t)T

ΣN
−1

ΓN(t)NB (6.37)

where we use the superscript Q to indicate that it is the Fisher information for the quasilinear

system (6.5).
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We see that the information value I Q
u depends critically on quasilinear gain N, and indirectly

on quasilinear bias µ , since it figures into the calculations for N–see (6.21). These quasilinear

terms, in turn, depend on choices of saturation levels α and β , as is clear from (6.4),(6.21),

and (6.22).

Since we have seen that the quasilinear approximation is, in fact, quite good as a linear

estimate of the nonlinear system, we proceed to compare the Fisher information (given in

(6.37)) of the quasilinear system with the same Fisher information in the corresponding

unsaturated linear system ẋ = Ax+Bu+Gz. By this comparison we hope to ascertain

whether there is an advantage or disadvantage, from an informational perspective, from

having a sigmoidal nonlinearity modulating the dynamics.

Since all comparisons will fundamentally depend on quasilinear gain N, we begin by noting

that the expression for N given in (6.21) will always satisfy

0 ≤ Ni,i ≤ 1 ∀i ∈ {1, . . . ,n} (6.38)

because the formulation of f (·) given in (6.4) guarantees that 0 ≤ f ′(x)≤ 1 ∀x ∈ R (notice

that the slope of f is 0 for all x ≤ α and x ≥ β and 1 for all α < x < β ) and thus the expected

value Ni,i = E[ f ′(yi)] must lie in this range. This fact will be fundamental to all subsequent

analyses.

We need a precise formulation for the steady-state quasilinear Fisher information. Toward

this end, we examine (6.37) and seek a steady-state characterization of ΓN(t) (see (6.36)). We

recall an important identity–that for generic matrix A and terminal time t, by definition of
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the matrix exponential we have

∫ t

0
eAτdτ =

∫ t

0

(
I +Aτ +

(Aτ)2

2!
+

(Aτ)3

3!
+ · · ·+ (Aτ)n

n!
+ . . .

)
dτ

= I
∫ t

0
dτ +A

∫ t

0
τdτ +

A2

2!

∫ t

0
τ

2dτ +
A3

3!

∫ t

0
τ

3dτ + . . .

= It +
At2

2
+

A2t3

2!3
+

A3t4

3!4
+ . . .

= A−1
(

At +
(At)2

2!
+

(At)3

3!
+ . . .

)
= A−1

(
eAt − I

)
(6.39)

Therefore we have

ΓN(t) =
∫ t

0
eNA(t−τ)dτ

= eNAt
∫ t

0
e−NAτdτ

= eNAt
[
−(NA)−1

(
e−NAt − I

)]
= eNAt

[
−(NA)−1e−NAt +(NA)−1

]
(6.40)

=−eNAte−NAt(NA)−1 + eNAt(NA)−1 (6.41)

=−(NA)−1 + eNAt(NA)−1 (6.42)

(6.43)

where the step from (6.40) to (6.41) is possible because of the commutivity of a matrix A and

its matrix exponential eAt (this is obvious by looking at the Taylor expansion of the matrix

exponential). Now, since A is assumed to be stable, as t → ∞, eNAt → 0, so evaluating (6.42)

at steady-state we have

ΓN(∞) =−(NA)−1 =−A−1N−1 (6.44)
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Therefore, by (6.37) and (6.44), the steady-state Fisher information I Q
uss is given by

I Q
uss

= BT N(NA)−T
ΣN

−1(NA)−1NB

= BT A−T
ΣN

−1A−1B (6.45)

Now to compare quasilinear Fisher information (which we have denoted I Q
uss) and linear

Fisher information (which we will henceforth denote I L
uss

) is, in the general case, difficult

analytically. Hence we will provide numerical characterizations later (Sections 6.2.2.2,6.3.1.2,

and 6.4). However, analytical comparisons are possible under certain special conditions, one

of which we now consider.

6.2.2.1 Analytic relation between linear and quasilinear Fisher information (under formula-

tion 1) for a special case–uniform diagonal N

We consider the special case that N has a uniform diagonal. That is, we define

Ñ , λ I (6.46)

for some 0 < λ ≤ 1. We will first relate the respective covariances Σ and ΣÑ. We show that,

where (6.46) holds, if Σ is a solution to

AΣ+ΣAT +GGT = 0 (6.47)

which is the steady-state covariance of the system (6.29) with respect to noise, then

ΣÑ = Ñ−1
Σ (6.48)
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is a solution to (6.23). Starting with a recapitulation of (6.23), we have

(ÑA)ΣÑ +ΣÑ(ÑA)T +GGT = (ÑA)Ñ−1
Σ+ Ñ−1

Σ(ÑA)T +GGT

= AÑÑ−1
Σ+ΣÑ−1AT ÑT +GGT

= AΣ+ΣÑ−1ÑT AT +GGT

= AΣ+ΣÑ−1ÑAT +GGT

= AΣ+ΣAT +GGT (6.49)

which is identical to the LHS of (6.47). Note that we have used the facts that Ñ (and thus

Ñ−1) is symmetric and commutes with any matrix (due to (6.46)).

Therefore, substituting (6.48) into (6.45), we have steady-state quasilinear information

I Q
uss

= BT A−T
Σ
−1ÑA−1B

= ÑBT A−T
Σ
−1A−1B (6.50)

Now this is significant, because the (steady-state) Fisher information for the linear system

(6.29) is given by

I L
uss

= BT A−T
Σ
−1A−1B (6.51)

by an identical derivation as we used to derive (6.37), but without the gain matrix N and

with covariance matrix Σ (see (6.47)) instead of ΣN. That is, under the condition (6.46),

I Q
uss

= ÑI L
uss

= λ I I L
uss

(6.52)

and thus

tr
(
I Q

uss

)
= tr

(
λ I I L

uss

)
= λ tr

(
I L

uss

)
(6.53)
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This means that, since λ (and thus the diagonal elements of Ñ) are always between 0 and 1

(see (6.38)), the quasilinear Fisher information is always poorer (unless λ = 1, in which case

(6.5) reduces to (6.29)) than the corresponding linear Fisher information. That is,

tr
(
I Q

uss

)
≤ tr

(
I L

uss

)
(6.54)

with equality only in the trivial case where the systems are identical.

6.2.2.2 Numerical characterization of I Q
uss and I L

uss

In the general case (where N is not a uniform diagonal matrix), we need to rely on numerical

characterizations. Figure 6.4 shows mean and standard deviation of I Q
uss and I L

uss
over 50

realizations of networks sized n = 100. Matrices Ai i ∈ {1, . . . ,50} were constructed to be

stable, and matrices Bi i ∈ {1, . . . ,50} were created by choosing random positive numbers from

a uniform distribution over (0,1) and then scaling each row to have unit norm. Parameters

were identical to those in Figure 6.3. We see that, as in the special case, the quasilinear Fisher

information I Q
uss is quite poor compared to the linear Fisher information I L

uss
. However, the

extent of this information disadvantage is critically dependent on saturation limits α and β ,

as we show in Section 6.4.

If we consider this carefully, it is not surprising. Looking at Figures 6.1 and 6.2, it is clear that

the ‘cloud’ of covariance surrounding the steady-state mean of the original nonlinear system

is under-represented in the Jacobian linearization, while it is more accurately represented

in the quasilinear approximation. Since the covariance is wider for the nonlinear (hence

quasilinear) system, there is more uncertainty about where the actual state may be relative

to its expectation, which is explicitly given in (6.34). Thus, though the Jacobian linearization
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Figure 6.4: Mean and standard deviation of I Q
uss and I L

uss
over 50 realizations of networks

sized n = 100. Parameters as in Figure 6.3.

is a much poorer approximation of the sigmoidal system, it nonetheless more accurately

encodes its input in the state.

What is even more interesting, is that, given an alternative formulation, based, perhaps, on

more realistic assumptions, this phenomenon exactly reverses, as we show in the next section.

6.3 Problem formulation 2

An important consideration which may be easily overlooked is the placement of noise in

the equations (6.3) and (6.5). By placing the noise outside the arguments of the saturating

function and quasilinear gain, respectively, we are making an implicit assumption about

the nature of that noise–namely that the source of the noise is from outside the dynamical

‘channels’ and thus conceptually corresponds to an external type of noise disturbance. But

this assumption is not always warranted. In particular, since we are dealing with a multi-node,

recurrent network, noise in the ‘signal’ of one state variable will propagate to the others
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dynamically. If we make the assumption that the weighted sum (via dynamics matrix A) of

these noises is Gaussian (this would trivially hold if the variables were independent, which of

course they are not), and/or that there is Gaussian noise on the input signal mathb f u, then

it makes sense to model the system with the noise inside the saturation function (and thus

inside the argument scaled by quasilinear gain N). Thus the dynamical equations for x and x̂

become

ẋ(t) = f (Ax+Bu+Gz(t)) (6.55)

˙̂x(t) = N(Ax̂+Bu+Gẑ(t))−Nµ (6.56)

This does not have major implications for the mathematics of the derivation of optimal gain

N and bias µ, but it does have important implications for the solutions of the fixed point

equations (6.21) and (6.22) because of the change in the variance of x (hence x̂) and thus of

y and ŷ, which now become Ax+Bu+Gz and Ax̂+Bu+Gz+µ, respectively. Specifically,

(6.23) becomes

(NA)Σ∗
N +Σ

∗
N(NA)T +NG(NG)T = 0 (6.57)

and (6.24), (6.25) become

σ
2
ŷi
= var(ŷi) = M∗

i,i (6.58)

where

M∗ = AΣ
∗
N AT +GGT (6.59)

The resulting values for N and µ (obtained from (6.27) and (6.28), now using σŷi obtained from

(6.58) instead of (6.24)) are again quite good, as we see in Figures 6.5 and 6.6. Interestingly,

the figures show that the covariance ‘cloud’ of the quasilinear system is very similar to

122



1 2 3 4 5 6 7

1

2

3

4

5

6

1 2 3 4 5 6 7

1

2

3

4

5

6

(a) (b)

Figure 6.5: An example illustrating the quality of the quasilinear approximation in 2D,
under formulation 2. (a) shows the state trajectory of the sigmoidal system (red) and the
quasilinear system (blue). (b) shows the same sigmoidal trajectory (red) and the (heuristic)
Jacobian-linearized system trajectory (green). Notice that, in contrast with Figure 6.1,
where the Jacobian linearization under-represents the variance of the original system, here it
over-represents the variance. In both cases the quasilinear approximation is clearly much
better.

that of the original (sigmoidal) system, but that the heuristic-Jacobian linearization grossly

over-represents this covariance, in striking contrast to our initial formulation (noise outside

sigmoid), where the heuristic-Jacobian linearization grossly under-represents this covariance.

This is somewhat intuitive mathematically, since the sigmoidal saturation (and quasilinear,

sub-unitary gain) have the effect of ‘squashing’ the noise effects when the noise is inside, while

when the noise is outside the noise effect is not diminished (except through its dynamical

effects on the state variables.

A statistical characterization of the accuracy of the quasilinear approximation and a compari-

son of this accuracy with that of the (heuristic) Jacobian linearization, is given in Figure 6.7.

The setup is identical to Figure 6.3 but here we use formulation 2, and some of the parameter

values are adjusted (exact values in the figure caption). There reasons for adjusting the
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Figure 6.6: An example illustrating the quality of the quasilinear approximation in 3D, under
formulation 2. (a) shows the state trajectory of the sigmoidal system (red) and the quasilinear
system (blue). (b) shows the same sigmoidal trajectory (red) and the (heuristic) Jacobian-
linearized system trajectory (green). Again the Jacobian linearization over-represents the
variance of the original system, while the quasilinear approximation closely represents the
original system dynamics.
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Figure 6.7: We ran simulations of 50 networks each of quasilinear, Jacobian-linearized, and
sigmoidal systems ((6.56),(6.29), and (6.55), respectively) with the same dynamical matrices
(A,B), same noise gain matrix (G = .9∗ I), the same (random for each trial) constant input u
(with 3 ≤ ui ≤ 9 ∀i ∈ {1, . . . ,n}) and same noise input (z(t)) for each trial. Each trial was run
using a forward-Euler integration method with k = 10,000 time steps, and saturation limits
α =−.5 and β = 1.5. (a) shows mean and standard deviation of the value of (6.31) over the
50 trials. Note that for the Jacobian-linearized vs sigmoidal error (green), we just use xJ
(see (6.29)) in place of x̂ in (6.31). (b) shows mean and standard deviation of the variance
discrepancy, as quantified by (6.32), over the 50 trials.

parameters are 1) to provide a more holistic view of the quasilinear approximation generally

2) under some parameter configurations, the system remained in a linear regime the whole

time, in which case the sigmoid would never be invoked, and a trivial equality between

systems (6.56), (6.29), and (6.55) is observed. Again we ran 50 trials with networks of size

n = 100, computed normed differences of state trajectories and variances as quantified by

(6.31) and (6.33), and plotted mean and standard deviation for the 50 trials.

6.3.1 Quasilinear Fisher information under formulation 2

For the system (6.56), the distribution of state values at time t follows

x(t)∼ N

(∫ t

0
eNA(t−τ)dτNBu+

∫ t

0
eNA(t−τ)dτNµ,Σ∗

N

)
, (6.60)
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where Σ∗
N ∈Rn×n is the covariance matrix given as the solution to (6.57). Again, we make the

assumption that the noise covariance is always at steady-state.

The expression for Fisher information I Q∗
u (t) under formulation 2 is exactly the same as

under formulation 1, with the exception that Σ∗
N replaces ΣN in (6.37) so that

I Q∗
u (t) = BT NT

ΓN(t)T
Σ
∗
N
−1

ΓN(t)NB (6.61)

Therefore, by (6.61) and (6.44), the steady-state Fisher information I Q∗
uss is given by

I Q∗
uss

= BT N(NA)−T
Σ
∗
N
−1(NA)−1NB

= BT A−T
Σ
∗
N
−1A−1B (6.62)

We will characterize the statistical behavior of (6.62) (especially as it relates to linear

information (6.51)) numerically in Sections 6.3.1.2 and 6.4, but first we will again treat the

special case of uniform diagonal N, deriving a result which is precisely the opposite of that

for formulation 1.

6.3.1.1 Analytic relation between linear and quasilinear Fisher information (under formula-

tion 2) for a special case–uniform diagonal N

To compare linear Fisher information (for the system (6.29)) and the quasilinear Fisher

information under formulation 2 (for (6.56)), we again consider the special case where

Ñ , λ I (6.63)
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for some 0 < λ ≤ 1. We again relate respective covariances–this time Σ and Σ∗
Ñ
–with a

fundamentally different result. We show that, where (6.46) holds, if Σ is a solution to

AΣ+ΣAT +GGT = 0 (6.64)

then

Σ
∗
Ñ
= ÑΣ (6.65)

is a solution to (6.57). Starting with a recapitulation of (6.57), we have

(ÑA)Σ∗
Ñ
+Σ

∗
Ñ
(ÑA)T +(ÑG)(ÑG)T = 0

=⇒ (ÑA)ÑΣ+ ÑΣ(ÑA)T + ÑGGT ÑT = 0

=⇒ ÑÑAΣ+ ÑÑΣAT + ÑÑGGT = 0

=⇒ ÑÑ
(
AΣ+ΣAT +GGT)= 0

=⇒ AΣ+ΣAT +GGT = 0 (6.66)

(6.67)

which is identical to (6.47). Again we have used the facts that Ñ (and thus Ñ−1) is symmetric

and commutes with any matrix (due to (6.46)).

Therefore, substituting (6.65) into (6.62), we have steady-state quasilinear information

I Q∗
uss

= BT A−T
Σ
−1Ñ−1AB

= Ñ−1BT A−T
Σ
−1AB (6.68)
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Thus, in comparison with the Fisher information for the linear system (6.29)–given by

(6.51)–we have

I Q∗
uss

= Ñ−1I L
uss

=
1
λ

I I L
uss

(6.69)

and

tr
(
I Q∗

uss

)
= tr

(
1
λ

I I L
uss

)
=

1
λ

tr
(
I L

uss

)
(6.70)

Since λ (and thus the diagonal elements of Ñ) are always between 0 and 1 (see (6.38)), the

quasilinear Fisher information under formulation 2 is always better (unless λ = 1, in which

case (6.5) reduces to (6.29)) than the corresponding linear Fisher information. That is,

tr
(
I Q∗

uss

)
≥ tr

(
I L

uss

)
(6.71)

with equality only in the trivial case where the systems are identical.

6.3.1.2 Numerical characterization of I Q∗
uss and I L

uss

Again, for the general case (where N is not a uniform diagonal matrix), we need to rely on

numerical characterizations. Figure 6.8 shows mean and standard deviation of I Q∗
uss and I L

uss

over 50 realizations of networks sized n = 100. A and B matrices were created as for Figure

6.4. Parameters were identical to those in Figure 6.7. We see that, as in the special case,

the quasilinear Fisher information I Q∗
uss is completely superior compared to the linear Fisher

information I L
uss

. However, the extent of this information advantage is critically dependent

on saturation limits α and β , as we show in Section 6.4.
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Figure 6.8: Mean and standard deviation of I Q∗
uss and I L

uss
over 50 realizations of networks

sized n = 100. Parameters as in Figure 6.7.

6.4 Fisher information differences as a function of saturation limits

α and β

Since, as is seen in Figures 6.4 and 6.8, there is such a pronounced difference in information

content of the quasilinear and linear systems, we decided to see how this difference changed

as a function of saturation limits α and β . Clearly, if α << 0 and β >> 0, the saturation

function f (·) will never ‘kick in’ and thus the system will always remain in the linear regime.

In this case we expect I Q
uss = I L

uss
= I Q∗

uss and I L
uss

. At the other extreme, if the difference

|α −β‖ is very small (with α < 0 and β > 0) then f (·) will almost always be invoked. In this

case, we expect the diagonal values of N to be very small (recall (6.18), which shows that

N = diag
(
E
[

f ′(y(t))
])

) because the derivative of f (·) is zero outside the saturation limits and

thus its expected value will be very small.

To explore this systematically, we varied |α| and |β | (with α < 0 < β ) concurrently from .5

to 10 in increments of .5, and ran 10 trials with network size n = 40 for each (α,β ) pair. A
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Figure 6.9: We varied |α|= |β |, where α < 0 < β , between .5 and 10 (in increments of .5),
simulating 10 networks of size n = 40 for each (α,β ) pair. Matrices Ai i ∈ {1, . . . ,10} were
constructed to be stable, and matrices Bi i ∈ {1, . . . ,10} were created by choosing random
positive numbers from a uniform distribution over (0,1) and then scaling each row to have
unit norm. The same noise gain matrix (G = 2.3∗ I) was used throughout. For each trial,
the same noise input (z(t)) was applied to the quasilinear and linear system. Shown, for each
(α,β ) pair, are the mean and standard deviation of the quasilinear (under formulation 1)
information I Q

uss and linear information I L
uss

over the 10 network realizations.

and B matrices were created as for Figures 6.4 and 6.8, and parameters (excluding α and β )

were as for Figure 6.3.

The results confirm intuition: Under formulation 1, larger |α|= |β | (i.e. a wider ‘no-saturation’

range) resulted in better information values I Q
uss , while I L

uss
, being obviously unaffected by

the saturation function, simply expressed a natural variability–see Figure 6.9. It can be

remarked that, compared to the results under formulation 2 (Figure 6.10), the information

values I Q
uss (and I L

uss
) are quite small here. We will explore this phenomenon in detail,

proving analytically (under mild restrictions) what we see here numerically.
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Figure 6.10: Identical setup and parameters as for Figure 6.9, except here information is
evaluated for quasilinear information (I Q∗

uss ) under formulation 2 vs linear information I L
uss

.

Under formulation 2, it is seen that information for the quasilinear system I Q∗
uss actually

decreases with increasing |α|= |β |, following a clear power law (with negative exponent), to

approach convergence with I L
uss

. What is fascinating is how much the saturation function

(here apprised by its quasilinear approximation) acts to increase information. While the

reasons for this are not totally clear, we can say that quasilinear gain N scales inversely

(though not linearly) with the covariance as it relates to α and β . Simply put, the more

the argument to f (·) (we denoted it y previously) strays outside the saturation bounds, the

smaller is the expected slope of f (·) and hence the smaller is N (see (6.18)). Thus when

the saturation bounds are tight, the expected value of N entries can be very small. This, of

course, reduces the magnitude of noise covariance, conferring an informational advantage.

There is a price paid for this informational advantage, however. For exactly the same reason–

the smallness of n when |α| and |β | are small–the dynamics can be scaled-down to a point that
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Figure 6.11: Projection onto the first 2 of n = 40 dimensions. All parameters are identical to
those used in Figures 6.9 and 6.10. Here we chose three values for |α|= |β |–.5, 5, and 10–to
see how state-space trajectories evolved as a function of time. Terminal time t = 10seconds
for all panels. Notice that for |α|= |β |= .5 (panel (a)), the time-evolution for the sigmoidal
(red) and quasilinear (blue) systems is very slow compared to the Jacobian-linearized (green)
system. This is predicted by the quasilinear theory, which says a small expected slope of f (·)
leads to small values on N’s diagonal and thus a slowing of dynamics. This phenomenon is
still present to some degree for |α|= |β |= 5 (panel (b)), but for |α|= |β |= 10 (panel (c))
there is a nice blend of steady-state behavior in the sigmoidal and quasilinear trajectories
combined with better information (evidenced by the smaller covariance ‘cloud’) relative to
the Jacobian trajectory. This figure again serves to illustrate the quality of the quasilinear
approximation generally, since even for higher-dimensional networks tracking of the sigmoidal
system is good in all dimensions.

system evolution becomes very slow. In Figure 6.11, we see how the trajectories (projected

down to 2 dimensions) at time t = 10seconds compare for different values of |α|= |β |. It is

clear that for the sigmoidal Thus, while there may be a large informational advantage in

steady-state, in practice it may take the system a very long time to reach the steady state.

Though we do not address this competition between information and time analytically here,

a weighted optimization problem could be posed in this regard. Intuitively, the knee (i.e.

where the slope of the tangent is about -1) of the curve shown in Figure 6.10 looks like a

good trade-off point. It would be interesting to investigate whether, in real networks with

sigmoidal nonlinearities, saturation limits tend to be close to such points.
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6.5 Relation between Fisher information under the two formula-

tions

We would like to now explore the relation between I Q∗
uss and I Q

uss . We recall that, under

condition of uniform diagonal N (see (6.46)), we have I Q
uss = NI L

uss
(see (6.52)) and I Q∗

uss =

N−1I L
uss

(see (6.69)) and thus

I Q∗
uss

= N−2I Q
uss

(6.72)

in this special case.

However, because simulations showed a more generally consistent relationship–even when N

does not have uniform diagonal, which it usually does not–we explored this relation under

more ‘realistic’ conditions–namely, where A and B are symmetric, and where G is a uniform

diagonal matrix; that is, where

G = γI (6.73)

for some γ ∈ R++. Essentially this means that all state variables x̂i will get noise with the

same variance and that the noise to x̂i will be uncorrelated with noise to x̂ j ∀i 6= j. This is a

quite common assumption.

In particular, we will focus on the relation between holistic information measures tr
(
I Q∗

u

)
and tr

(
I Q

u

)
.

First, we recall that the Lyapunov solution (to (6.57)) for the quasilinear system (6.56) is

the infinite-time controllability gramian with respect to noise. That is,

Σ
∗
N =

∫
∞

0
eNAτ(NG)(NG)T e(NA)T τdτ (6.74)
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By the symmetry of A and N, and the fact that G is a uniform diagonal matrix, and thus

commutes with any matrix, we have:

Σ
∗
N = G2

∫
∞

0
eNAτNNe(NA)T τdτ

= G2
∫

∞

0

(
I+NAτ +

(NAτ)2

2!
+ . . .

)
NN
(

I+ANτ +
(ANτ)2

2!
+ . . .

)
dτ

= G2
∫

∞

0

(
N+NANτ +

(NA)2Nτ2

2!
+ . . .

)(
N+NANτ +

N(AN)2τ2

2!
+ . . .

)
dτ

= G2
∫

∞

0

(
N+NANτ +

NANANτ2

2!
+ . . .

)(
N+NANτ +

NANANτ2

2!
+ . . .

)
dτ

= G2
∫

∞

0
N
(

I+ANτ +
ANANτ2

2!
+ . . .

)(
I+NAτ +

NANAτ2

2!
+ . . .

)
Ndτ

= G2N
∫

∞

0
e(NA)T τe(NA)τdτ N

= N
(

G2
∫

∞

0
e(NA)T τe(NA)τdτ

)
N (6.75)

Now, by the uniformity and symmetry of diagonal matrix G (see (6.73)), we have

G2
∫

∞

0
e(NA)T τe(NA)τdτ =

∫
∞

0
e(NA)T τGT Ge(NA)τdτ (6.76)

is by definition the transpose of the infinite-time controllability gramian for the system (under

formulation 1) (6.5), and since the controllability gramian is symmetric, (6.76) is precisely ΣN,

the solution to the Lyapunov equation (6.23) for the quasilinear system under formulation 1.

Thus, (6.75) becomes

Σ
∗
N = NΣN N (6.77)
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Now, by substituting the RHS of (6.77) for Σ∗
N in 6.61, and recalling, from (6.44), that

ΓN(∞) = A−1N−1 we obtain

I Q∗
uss

= BT NT
ΓN(∞)T

Σ
∗
N
−1

ΓN(∞)NB

= BNT (A−1N−1)T (NΣN N)−1A−1N−1NB

= BNN−1A−1N−1
ΣN

−1 N−1A−1N−1NB

= BA−1N−1
ΣN

−1 N−1A−1B (6.78)

where we have used the symmetry of A, B, and N. Now, since all matrices in (6.78) are

symmetric, the trace is invariant to any permutation of matrix ordering. Thus

tr
(
I Q∗

uss

)
= tr

(
BA−1N−1

ΣN
−1 N−1A−1B

)
= tr

(
N−2BA−1

ΣN
−1A−1B

)
(6.79)

Now we derive, proceeding from 6.37, a simplified expression for I Q
uss :

I Q
uss

= BT NT
ΓN(t)T

ΣN
−1

ΓN(t)NB

= BN(NA)−T
ΣN

−1(NA)−1NB

= BNN−1A−1
ΣN

−1A−1N−1NB

= BA−1
ΣN

−1A−1B (6.80)

Therefore, by (6.80) and 6.79, we have

tr
(
I Q∗

uss

)
= tr

(
N−2I Q

uss

)
(6.81)
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Then, since I Q
uss is positive definite and thus has positive diagonal values, and N is diagonal

with all positive entries (see 6.38), by an application of the Cauchy-Schwarz inequality, we

have

tr
(
I Q∗

uss

)
≤ tr

(
N−2) tr

(
I Q

uss

)
(6.82)

Now, by (6.77) we have

Σ
∗
N = NΣN N

=⇒ ΣN = N−1
Σ
∗
N N−1 (6.83)

Plugging (6.83) into (6.80) we have

I Q
uss

= BA−1
ΣN

−1AB

= BA−1 (N−1
Σ
∗
N N−1)−1 AB

= BA−1NΣ
∗
N
−1 NAB (6.84)

Therefore,

tr
(
I Q

uss

)
= tr

(
BA−1NΣ

∗
N
−1 NAB

)
= tr

(
N2BA−1

Σ
∗
N
−1A−1B

)
(6.85)

and by the same Cauchy-Schwarz inequality, we have

tr
(
I Q

uss

)
≤ tr

(
N2) tr

(
I Q∗

uss

)
(6.86)

But then

tr
(
I Q∗

uss

)
≥ tr

(
N−2) tr

(
I Q

uss

)
(6.87)
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which is only possible if (6.82) is a strict equality, and thus we have arrived at

tr
(
I Q∗

uss

)
= tr

(
N−2) tr

(
I Q

uss

)
(6.88)

6.6 Discussion

The relation (6.71) and the simulation results (see Figures 6.8 and 6.10), which shows

that for system (6.55) (and its approximation (6.56)) QFI>LFI, have potentially important

implications regarding the etiology of sigmoidal nonlinearities in complex networks (such as

neural networks). It is natural to assume that these nonlinearities arise from fundamental

physical limitations, often as a result of homeostatic mechanisms. For example, in a neuron,

after the rapid depolarization precipitating an action potential, ion pumps in the cell membrane

strongly react to quickly repolarize the cell. This reaction inaugurates what is called a

refractory period, during which it is almost impossible for the neuron to fire again. These

refractory periods impose a fundamental limit on neuronal firing rate. Thus, when modeling

an input-output relationship for the neuron, it is necessary to include a saturating, or

sigmoidal, function, which keeps firing with realistic bounds in model simulation.

This describes (part of) the what of the nonlinearity, but it does not address the why. It is

natural to assume that the sigmoidal nonlinearity in firing rate is inherently a physical process,

without any intrinsic utility (other than the preservation of electrodynamic homeostasis)

for network function. However, our results suggest the possibility that the nonlinearity

does confer a functional advantage–namely, better (i.e. more informative by the Fisher

metric) input encoding in the network state. If this is the case, perhaps this functional

advantage was a causative factor in the formation of the network dynamics. We have shown

that there is a cost to this advantage (see Figure 6.11)–namely, slower dynamics. Since the
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curve for QFI (specifically, the value of tr
(
I Q∗

uss

)
as a function of saturation limits α and β )

shown in Figure 6.10 is smooth and displays a clear (negative) power law, there is a knee at

which, theoretically, sigmoidal saturation limits α and β would provide an optimal blend of

information and speed. By careful experimentation, appropriate modeling and application

of some of the ideas presented in this chapter, it may be discovered to what extent real

sigmoidal systems, especially those in neural networks, utilize saturation limits corresponding

to this optimal ‘knee’. Indeed, were it found that the saturation limits correspond to some

sort of informational-dynamical optimum, it would be hard to account for the existence of

sigmoidal nonlinearities solely on the basis of physical necessity.

On the other hand, quasilinearization, as we have seen, can closely approximate a system

with a sigmoidal nonlinearity. Thus, if functional advantage was the causative factor in the

genesis of network dynamics, why would not those dynamics be quasilinear? Presumably,

this would be less biologically expensive to implement than a nonlinearity dependent on

complex interactions. Thus, ironically, the very analytical technique we used to probe the

idea of information coding in sigmoidal networks may be one of the best arguments against

an information-based etiology for their existence. The Discussion, to this point, has been

conducted with reference to formulation 2–first introduced, in its most general form, in

(6.2), then more concretely in (6.55) and (6.56)–where noise was assumed to corrupt the

argument of the sigmoidal function, as opposed to formulation 1 (see (6.1), (6.3), and (6.5)),

where ‘external’ noise corrupts the system independently of the sigmoid . Let us now try

to understand the nature of the profound difference between results obtained from the two

formulations–namely that tr
(
I Q∗

uss

)
(formulation 2) is categorically superior, in terms of

information coding, to tr
(
I Q

uss

)
(formulation 1). This difference was seen in the two relations

(6.53) and (6.70) (for the special case of N being a uniform diagonal matrix). It was seen

when, under assumption of the symmetry of dynamical matrices A, B and equal, independent
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noise variance fed to all state variables at any time t (this is distinct from noise covariance

aggregated by the dynamics), an explicit relation (6.88) was derived in Section 6.5. Finally,

it was illustrated generally by extensive simulations (see Figures 6.9 and compare with 6.10).

Of course, it is a mathematical fact that scaling the noise by N (as we do when moving from

formulation 1 to formulation 2) diminishes its effect overall. This, however, does not account

for the entire difference, which is on the oder of N2. It also does not explain the superiority of

I Q∗
uss over I L

uss
(information for the Jacobian-linearized system (6.29)), since noise and input

are scaled together in (6.56) relative to (unscaled) noise and input in (6.29). While we do

not here propose to completely characterize the mechanism for these marked differences in

information coding, we do reference [16], where for an admittedly quite different setup (i.e.

a two-layer feedforward network), Fisher information (with respect to a scalar signal) was

shown to critically depend on the relationship between signal direction and direction of noise

covariance. Particularly relevant to our case was their finding that when signal and noise

covariance shared the same direction in the first layer of processing, Fisher information was

maximized regardless of orientation of noise covariance in the second layer (signal orientation

remained constant). Here, since we are dealing with a recurrent network, we may draw a

parallel between their ‘first layer’ and our network configuration at some specific time t.

Their second layer would correspond to some subsequent time t +∆t. Although we do not

conduct a rigorous analysis with respect to noise gain matrix G, with which we could precisely

control noise covariance, we note that the sigmoidal function (and corresponding quasilinear

approximation) limits the range of its argument and thus the extent to which noise can ‘lead

the state astray’. Thus the signal (input u) will play a larger role in determining the direction

of noise covariance Σ∗
N , because this is really the state covariance with respect to noise. Thus,

since at time t, state (via noise) covariance is more highly aligned with input direction than

would be the case in a basic linear system, at time t +∆t, we expect, according to reasoning
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along the lines of [16], to have more information regarding u than in the linear case. Since

the sigmoid still acts on the dynamics at time t +∆t, input and noise directions will again be

more aligned relative to the linear case, so information will be better at t +2∆t, and so on.

One obvious conclusion from these arguments is that, in creating dynamical models, placement

of noise in the dynamical equations must be carefully considered. The implications of this

placement have been seen in the (analytically and numerically) calculated information values,

but more geometrically in the noise covariance ‘clouds’ surrounding the steady-state fixed

points of the respective systems. Put simply, a bigger covariance ‘cloud’ means less certainty

and hence less information with respect to the stimulus. This phenomenon has been manifest

in the equations, as well as in all of the simulation figures. Undoubtedly even more nuanced

ways of ‘shaping’ noise covariance geometry in neural-like networks can be found–this issue

has been addressed ( [15], [77], [78]), often in the context of speech ‘de-corruption’ and/or

speech recognition.

Also, a natural question arises: What other types of nonlinearities might confer similar

informational advantages, perhaps even to a larger extent, by their continuous transformation

of relative signal and noise directions? Or maybe the sigmoid is an optimal function in this

respect, in which case we would (again) have to ask: Is it just coincidence that a byproduct

of physical constraints (as is usually the assumed etiology of saturating nonlinearities in

nature–see above) confers such a pronounced informational advantage?

6.7 Conclusions and future work

With appropriate quasilinear approximation of dynamical systems with sigmoidal nonlineari-

ties, the Fisher information quantifying the efficacy of the nonlinear network in encoding its

afferent inputs (in state trajectories) can also be approximated, by calculating the Fisher
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information for the quasilinear system. Clearly the information approximation’s quality

depends on the quality of the initial quasilinear approximation. In this chapter we have

shown the methodology of this approximation, and we have shown that the approximation is

statistically quite good, especially in comparison with the most commonly-used linearization

procedure–Jacobian linearization. We derived the Fisher information matrix for a quasilinear

network, and showed analytically that this information is better, or worse, than that of

the Jacobian (or, unconstrained) linear system, depending on where noise is placed in the

dynamical equations. Taking noise inside the sigmoid, as in formulation 2 (6.3)–probably a

more realistic assumption than formulation 1 (6.55)–confers informational advantage relative

to the linear system. We discussed reasons for this in terms of the drastically different

‘clouds’ of uncertainty generated by the systems’ respective noise covariances. Further, we

showed, analytically and numerically, relations between Fisher information under the two

formulations. We addressed the implications of this phenomenon for system modeling and

design, and presented preliminary hypotheses regarding its mechanistic origin. We showed

also that the informational advantage conferred by the presence of sigmoidal nonlinearities

(and their quasilinear approximations) is tempered by the competing objective of time–that

is, parameterizations most favorable for high information coding in sigmoidal networks also

led to very slow dynamics. Since these two competing objectives varied smoothly, however,

the presence of an optimum, or ‘sweet spot’ wherein the system would efficiently propagate

noise and simultaneously maintain responsive dynamics, was implicated.

At the highest level, we discussed possible reasons for the presence of sigmoidal nonlinearities

in complex (especially neural) networks, evaluating the competing hypotheses 1) that the

nonlinearities might exist to confer informational advantage and that this was the prime

causative reason for their incorporation into network dynamics, vs. 2) the nonlinearities

are byproducts of homeostatic physical mechanisms, and any informational advantage arises
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because networks have adapted to functionally excel despite physical limitations. We did

not reach any hard conclusions concerning this (indeed it would have been the height of

presumptive speculation to do so), but we reasoned that, precisely because of the ability of

a network to ‘simulate’ sigmoidal dynamics by a simple linear approximation, it is unlikely

that hypotheses (1) is correct because of the biological cost associated with engineering

a nonlinearity relative to making a quasilinear adjustment. However, were the presence

of sigmoidal parameterization operating in an optimal regime (as discussed above) to be

experimentally verified in real (especially neural) networks, it would have to be conceded

that the presence of sigmoidal nonlinearities in general is probably due to their conferral of

informational advantage to the dynamical systems they modulate.
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Chapter 7

Conclusion

7.1 Summary

There are several important conclusions which can be drawn from the work presented here.

Taken broadly, we have seen that measurement of information propagation through complex

dynamical networks is tractable from conceptual, algorithmic, and computational points of

view. The study of information processing over networks has been a topic of considerable

interest in the theoretical and computational neuroscience community. We believe that we

have, by means of the theoretical derivations, practical analyses, and careful considerations

included in this work, furthered this tractability and provided new tools and ideas for use

in the field. More specifically, the individual results support an advancing line of reasoning

concerning the interplay between the dynamics of a network and its propensity for information

processing.

143



First, we have shown that network sensitivity to small input differences, the quantification

of which was derived in Chapter 4.6, is related to, but distinct from, traditional control-

theoretic measures, and constitutes the underpinnings of an informational analysis. Simply

put, more sensitivity means better information coding. This is especially true when noise

is taken into consideration; we addressed this, in the context of discriminability of inputs

(to a linear system) based on state-space representations, in Chapter 3, providing a precise

geometric characterization of the way in which input differences are translated, via network

dynamics, into locations in the reachable state-space. Since sensitivity is foundational to

information processing, especially in discrimination/classification scenarios, we surmised that

sensitivity must be ‘prioritized’ by informational dynamical systems, such as neural networks,

but that there may be an energy cost associated with heightened sensitivity balancing this

prioritization. Indeed, we found this to be the case, as described in Chapter 4, where we

derive, and analytically deploy, a quantification of the extent to which linear dynamical

systems trade off energy for sensitivity as a function of network topology and dynamics.

The characterization of this trade-off was shown to depend also on particular directions of

state-space traversal; in particular, to reach endpoints on the reachable ellipsoid determined

by fixed energy c, but given energy in excess of c, we showed that the amount of excess, being

a function of state-space direction v, is correlated–in a precise and elegant mathematical

way–with network sensitivity to inputs driving the system in the direction v.

Having established the importance of input sensitivity and characterized many of its salient

features, we went on to seek a holistic quantification of information flow in dynamical

networks, addressing first the linear case. Accordingly, in Chapter 5 we derived a Fisher

information-based measurement of the extent to which input information is encoded in the

network state. Since we have focused our efforts in the domain of computational neuroscience,

we derived this information measure Iu, with respect to a background, or ‘resting’ state,
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sometimes referred to in the neuroscience literature as the ‘default mode’. We showed how

Iu can be maximized over the space of possible backgrounds, giving an analytic expression

for the optimum. In quantifying information flow, we wanted to address a fundamental,

and somewhat natural question: what is the relation between information-theoretic and

control-theoretic properties in dynamical networks? Our exploration of this relation, though

nuanced, led to the basic conclusion that easily-controlled networks tend to be informative

networks. This relation is fundamentally rooted in the idea of sensitivity, which, as we

have seen, has been critical in the development of our work. Mathematically, the Fisher

information of a dynamical system ẋ = f (x,u), with respect to the input u, is proportional to

the sensitivity of f (·) to changes in u–namely, d f (·)
du . But sensitivity to inputs is exactly what

controllability analysis seeks to quantify, though framed in terms of sensitivity to the energy

of u.

Finally, in Chapter 6, we have sought to overcome a limitation inherent in all the previous

formulations–namely, the assumption of linearity. Specifically, we introduced a novel modifi-

cation and application of quasilinearization theory, approximating the dynamics of networks

with sigmoidal nonlinearities by means of an optimization-based affine transformation. The

accuracy of this approximation was confirmed by a statistical analysis comparing the quasi-

linear approximation with a Jacobian linearization. Using the quasilinear approximation, we

derived and evaluated a Fisher information-based measure of network input encoding ability.

Analytical and numerical results were given showing that Fisher information is better for the

quasilinear (hence sigmoidal) system than for the Jacobian-linearized, ‘unconstrained’ linear

system. This relation was shown to reverse when the noise is placed outside the sigmoid in

the model, highlighting an important connection between the relative directions of signal and

noise covariance, and elucidating the nature of the link between extent of noise covariance

and uncertainty.
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7.2 Future work

The extension of our analysis into the nonlinear domain (given in Chapter 6) gives promise

that continued effort and advancement will yield tractable methods of assessing information

for systems with more fundamental nonlinearities, such as are found in the most true-to-life

(usually spiking) neural network models. Although the quasilinearization technique is geared

only for a special class of nonlinear functions, the basic optimization paradigm may yield

other simplifications of nonlinearities.

Practically speaking, the quasilinear techniques could prove of value in artificial neural

networks, where sigmoidal saturating functions are typically used to modulate the output

activity variables at each layer. In a recurrent network, which can be thought of as an infinite-

layered deep network, the combination of easily approximating these sigmoidal functions with

algorithmic and computational efficiency, could make quasilinearization a viable alternative

to the use of sigmoids in large-scale artificial networks. This at least warrants some careful

study.

Finally, we would like to explore the mechanisms for small-ensemble neural representation of

complex stimuli via nonlinear, perhaps chaotic, dynamics. Very small non-linear dynamical

networks, under certain classes of equations usually involving chaos, symmetry, or both, can

literally represent, in their induced state trajectories, many three-dimensional objects (trees,

flowers, clouds, etc.). Discrete-time linear systems, with dynamics determined by picking

probabilistically from a small set of transformations at each time step (i.e. a Markovian

model), can also create very ‘lifelike’, complex state trajectories, which are quite impervious to

noise. Is the brain using one of these representation strategies, or some variation thereof? To

answer this question would, in addition to shedding light on how the brain operates, advance

basic research in math and engineering. The mathematics of chaotic and Markovian dynamics
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has been well-described, but thorough explanations on how real systems can integrate these

dynamics into specific problem-solving paradigms (here the problem is efficient, accurate

encoding) have been lacking.

Of course, any future study in computational neuroscience will be predicated on discoveries

which are constantly being made; given the intense push inside (and outside) the academic

world for a more thorough understanding of the brain, we expect the rate of these discoveries to

accelerate. Control-theoretic ideas and state-space models will become increasingly important

as the capacity for precise, single neuron-scale control becomes possible through optogenetic

stimulation/inhibition (and other emerging, possibly even less invasive) technologies. Perhaps

the world awaits another Galileo or Newton to find simple laws governing much of what

now appears to be a tangled mess. Or perhaps another Einstein will come and show us

that many of our intuitions about neural function need to be completely discarded and

revolutionary concepts adopted. It seems more likely that the consistent, concerted effort of

many scientists–whose distinct advantages over these pioneers include a huge, growing body of

relevant literature, wonderful technologies for exploration, and instantaneous communication

channels allowing collaboration on an unprecedented scale–will, over time, yield a relatively

complete picture of the workings of what is considered the most complex single entity in the

universe–the human brain.
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