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Cellulose is biodegradable, renewable, and abundant in nature thus cellulose (or paper)-based 

products can be inexpensively produced and recycled.  Among cellulosic materials, bacterial 

nanocellulose (BNC) draws a special research attention due to the inherent three-dimensional 

nanofibrous structure, excellent mechanical flexibility, high purity and well-defined surface 

chemistry, and cost-efficient, scalable and environment-friendly synthesis.  BNC can be 

biosynthesized by Gluconacetobacter xylinus, which is the most characterized BNC producer 

among various microorganisms.  BNC is composed of highly pure cellulose nanofibrils, produced 

from well-defined dextrose through biochemical steps and subsequent self-assembling of the 

secreted cellulose fibrils which has the dimension ranges from 25 to 100 nm in diameter from 

bacteria in the culture medium.  During the biosynthesis of BNC, shape-controlled hydrogels with 

well-defined network structure pore diameters below 10 µm can be easily achieved.  For all the 

above-mentioned reasons, BNC is a highly promising platform material for the fabrication of 

functional composites through in situ growth or adsorption of pre-synthesized nanostructures on 

the nanoscale cellulose fibers.   

In this work, we have designed and demonstrated novel strategies to realize BNC-based functional 

nanocomposites with applications in sensing, water purification and energy storage.  We have 



xix 
 

demonstrated a BNC film-based surface enhanced Raman scattering (SERS) substrate which has 

3D porous structure and ultrafine fibers with uniform and dense adsorption of plasmonic 

nanostructures, resulting large SERS enhancement and excellent uniformity of SERS activity.  

For the first time, we have demonstrated a novel, highly scalable, cost-effective and green strategy 

to realize functional BNC-based foams/membranes.  Functional materials such as graphene oxide 

(GO), polydopamine (PDA) can be efficiently incorporated within BNC matrix during its growth.  

Owing to the intercalation of functional materials within the layered BNC matrix, the functional 

composites showed excellent mechanical robustness and flexibility, which is crucial for efficient, 

large-scale applications, either as a foam or as a membrane.  

Specifically, we have designed and developed a bilayered hybrid biofoam comprised of BNC and 

RGO and a completely biodegradable bilayered foam based on BNC and PDA for highly efficient 

solar steam generation, which can be a sustainable solution to alleviate global water crisis.  An 

innovative water filtration membrane based on BNC and RGO which harvests sunlight to kill 

microorganisms has been developed to provide a novel anti-biofouling approach.  We have also 

demonstrated a robust filtration membrane based on BNC loaded with GO and PdNPs, which 

exhibited excellent dye degradation performance for highly efficient wastewater treatment.  

Furthermore, the in situ fabrication approach has been extended to polymeric materials such as 

poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) to realize hybrid flexible 

supercapacitor electrodes based on RGO, BNC and PEDOT:PSS.   

The fabrication strategies and materials design demonstrated in this work can be easily extended 

to realize various BNC-based nanocomposites with applications in water purification, energy 

harvesting, sensing, catalysis, and life sciences.
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Chapter 1: Introduction and Motivation 

1.1 Bacterial Nanocellulose 

Cellulose is biodegradable, renewable, and abundant in nature thus cellulose (or paper) based 

products can be inexpensively produced and recycled.1  Among cellulosic materials, bacterial 

nanocellulose (BNC) draws a special research attention due to the inherent three-dimensional 

nanofibrous structure, excellent mechanical flexibility, high purity and well-defined surface 

chemistry, and cost-efficient, scalable and environment-friendly synthesis.2-6  BNC can be 

biosynthesized by Gluconacetobacter xylinus under static culture conditions, which is the most 

characterized BNC producer among various microorganisms.7  BNC is composed of highly pure 

cellulose nanofibrils, produced from well-defined dextrose through biochemical steps and 

subsequent self-assembly of the secreted cellulose fibrils from bacteria in the culture medium.6, 8-

9  In contrast to paper substrates obtained from plant cellulose, which comprise of carbonyl and 

carboxyl functional groups along with hydroxyl, BNC possesses only hydroxyl functional 

groups.10  The dimensions of BNC nanofibrils range from 25 to 100 nm in diameter and several 

micrometers in length.  BNC as a biomaterial offers the special benefit of in situ control of cellulose 

formation, such as the shape and supramolecular structure of the products.3  During the 

biosynthesis of BNC, shape-controlled hydrogels with well-defined network structure pore 

diameters below 10 µm can be easily achieved.  The as synthesized BNC is harvested and 

processed to obtain nanocellulose hydrogel with extremely high-water content (~99% by weight).  

For all the above-mentioned reasons, BNC is a highly promising platform material for the 

fabrication of functional composites through in situ growth or adsorption of pre-synthesized 

nanostructures on the nanoscale cellulose fibers.11-20   
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1.2 Surface Enhanced Raman Scattering (SERS) and Flexible SERS swab 

Surface enhanced Raman scattering (SERS) involves the large enhancement (under ideal 

conditions up to 1011 times) of Raman scattering signal from molecules adsorbed on or in close 

proximity to a nanostructured metal surface.21-27  SERS is a highly promising transduction platform 

for the detection of trace levels of known and unknown chemical compounds with applications 

spanning from forensics to homeland security.28-33  The advantages of SERS as an analytical tool 

include (i) rich and unique molecular fingerprint corresponding to the target analytes; (ii) ultrahigh 

sensitivity (single molecule sensitivity under ideal conditions); (iii) absence of interference from 

water (making it tolerant to humidity variations); and (iv) ease of sample preparation. Extensive 

efforts have focused on the design and fabrication of SERS substrates with high sensitivity and 

large-scale uniformity.  For many real-world applications, the ease and efficiency of the sample 

collection is very important.  For example, collection and detection of trace amounts of hazardous 

and pathogenic chemical and biological analytes present on solid surfaces is a powerful screening 

method.  Among various sample collection methods, physical swabbing has been recognized as a 

highly efficient and practical method to maximize the sample collection on a solid surface using a 

flexible and functional swab. 34-35,36-37 Paper-based SERS swabs developed by our group have been 

successfully demonstrated to collect chemical analytes from solid surfaces.38 However, past efforts 

have been limited to the use of off-the-shelf filter paper substrates, providing limited control over 

the micro/nanoscale roughness, which determines the contact between the SERS swabs and the 

surface of interest.  Thus, novel methods and materials that offer better control over the 

micro/nanoscale structure of these flexible SERS swabs are of great interest. 
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1.3 Novel Materials and Processes for Energy-efficient Water Treatment 

Water scarcity is recognized to be one of the most critical global issues of the 21st century as the 

demand for clean and safe water, critical for human survival, food production and manufacturing, 

continues to rise with increasing world’s population.39-41  Water scarcity is tightly intertwined with 

two other global challenges, namely, energy crisis and climate change.  Innovative methods for 

producing fresh water from sea water (or unpurified water) with significantly reduced energy- and 

economic burden are paramount. 

1.31 Solar steam generation and processes for energy-efficient water treatment 

Solar energy is the most abundant and the cleanest source of energy available on earth that can be 

tapped into for addressing the global fresh water shortage.   Steam generation through efficient 

harvesting of solar energy and thermal concentration is a highly promising technique and has 

attracted tremendous attention in the past few years.42-43  Various solar steam generation devices 

(also called as interfacial evaporators) have been demonstrated within the past four years.   

From the device design standpoint, most of these interfacial thermal evaporators share a few 

common features: (i) the top surface is comprised of materials that exhibit broad light absorption 

over visible and near infrared wavelengths combined with an efficient photothermal conversion; 

(ii) support materials with low thermal conductivity to minimize the heat transfer from the 

evaporative surface to the bulk of the water; and (iii) open porous structure and hydrophilic nature 

of supporting materials that facilitate a rapid transport of water from bulk to the evaporative surface.  

It is highly desirable to utilize materials and processes that are sustainable and energy efficient in 

the fabrication of these interfacial thermal evaporators.  For example, biodegradability of the 

evaporators is an important consideration since the disposal of these devices can quickly pose a 
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significant threat to the environment and marine ecosystems, considering that these evaporators 

will be most commonly utilized in aqueous environments.44  Thus, evaporators based on renewable, 

biodegradable and scalable materials holds a great potential for ultimate solar steam generation 

applications.   

1.32 Graphene oxide (GO)-based membranes for water purification  

Graphene oxide (GO) has emerged as an excellent membrane material owing to the excellent 

mechanical strength, facile synthesis and the ability to be readily dispersed in water and restacked 

into membrane using various methods, including vacuum filtration, spin-coating and drop-

casting.45-48  In contrast to graphene flakes, which have a strong tendency to stack and aggregate 

in aqueous solutions, GO flakes exhibits excellent water dispersibility and thus aqueous 

processability because of the presence of oxygen-containing functional groups (carboxyl, epoxy, 

hydroxyl, and carbonyl groups).49   

Owing to the excellent mechanical strength, facile synthesis and the ability to be readily dispersed 

in water and restacked into membrane using various methods, including vacuum filtration, spin-

coating and drop-casting, GO has emerged as an excellent membrane material.45-48  However, the 

stability of current GO-based membranes is compromised under vigorous agitation, pH, and ionic 

strength variations that are within the range of feed water.50  Thus, there is a need to develop new 

scalable approaches to fabricate stable GO-based membranes. 

1.33 Photothermal effect as a unique solution for tackling membrane biofouling  

In response to the water scarcity, various membrane technologies have emerged and are being 

actively investigated for water purification and reclamation.51-53  However, fouling and consequent 

degradation in performance remain to be a ubiquitous problem in most of these membranes.54  
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Specifically, mineral scaling, organic fouling, and biofouling are three major fouling mechanisms, 

which lead to either temporary or permanent decline in the water flux.55  Among them, biofouling, 

which is ascribed to more than 45% of all membrane fouling, is the “Achilles heel” of the 

membrane technologies due to the difficulty associated with the complete removal of 

microorganisms.56-58    

Various strategies, such as adjusting pH, adding disinfectants and biocides, introducing quorum 

sensing molecules to inhibit the formation of biofilm, have been suggested for controlling 

biofouling.59-62  However, most of these strategies introduce considerable operational costs and/or 

potential hazardous contaminants.  Researchers have also investigated the incorporation of 

nanomaterials (e.g., silver nanoparticles, titanium dioxide nanoparticles and graphene oxide 

nanosheets), polymers (e.g., polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone and 

zwitterionic polymers), and other materials (e.g., small organic molecules and biomacromolecules) 

to engineer fouling-resistant membrane surfaces that can reduce biofilm growth and inactivate 

bacteria.55, 63-68  However, most of these methods involve additional thermal or chemical treatment 

steps.  Furthermore, most of the above techniques are effective only for a short period of time 

because biofilm has the ability to gradually adapt to imposed harsh environments.56  Even if 99.9% 

of biofilm is removed once, the residual cells are sufficient to grow back and form a new biofilm.  

Therefore, there is an immediate need for highly efficient and cost-effective methods that 

overcome biofouling on water purification membranes over a long period of time. 

Photothermal effect, which involves the conversion of incident light into heat, can offer a unique 

solution, obviating the need for harsh chemical treatments to achieve bacterial lysis.  In our 

previous study, gold nanostars grown on graphene oxide (GO) flakes modified on commercial 

membrane were utilized as nanoheaters.  Owing to the photothermal properties of gold nanostars, 
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adjacent Escherichia coli were efficiently killed with laser irradiation to prevent the formation of 

biofilm.68  While this study provided a promising example of utilizing photothermal effect to 

minimize biofouling on membranes, it would be more beneficial if the membrane itself is 

comprised of photothermal materials and even more promising, if renewable and sustainable solar 

illumination can be harnessed as a light source.   

1.34 Metal and transition metal nanoparticles as a novel and efficient catalyst for dye-

contaminated wastewater treatment 

Water contamination caused by chemical and biological species released from industrial and 

agricultural practices is a formidable environmental challenge.51, 69-70  Among all the contaminants 

such as cleaning agents, agricultural chemicals, and noxious microorganisms, organic dyes, which 

are widely employed in textile, leather, cosmetic, pharmaceutical industries, pose significant 

threats to aquatic life and humans due to their carcinogenic and mutagenic nature.71-73  Due to the 

high resistance of organic dyes to traditional biological, physical, and chemical treatment methods, 

there is a critical need for the development of highly efficient and cost-effective methods for dye 

degradation and removal from contaminated water.74-76   

Noble and transition metal nanoparticles, which have been extensively employed in catalysis, 

organic synthesis, hydrogen storage, and water treatment, have shown great promise for organic 

dye removal.77-80  In particular, palladium nanoparticles (PdNPs) have attracted special attention 

for dye degradation owing to their excellent catalytic properties and low environmental impacts.81-

85  To achieve maximum catalytic activity and prevent aggregation of PdNPs, immobilizing PdNPs 

on various substrates such as carbon (e.g., carbon microspheres, carbon nanotubes, and graphene 

oxide), silica, and metal oxides (e.g., titanium dioxide) has been utilized.86-90  GO is a particular 

promising substrate material because of its high mechanical, chemical, thermal stability, and high 
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surface area.91-96 Various self-assembled GO-based composites have been demonstrated for 

wastewater treatment.97-102 To the best of our knowledge, a GO-based filtration membrane with 

transition metal nanoparticles as catalyst has not been reported since previous developed GO-based 

composites have limited aqueous stability and mechanical strength under pressure.    

As mentioned in Chapter 1.1, bacterial nanocellulose (BNC) can serve as an ideal material for 

realizing functional composites by incorporating functional nanomaterials within BNC matrix 

because of its desirable properties such as excellent mechanical strength and toughness, rich 

chemical functionality, and high specific surface area in aerogel state.  It is highly desirable to 

realize a composite based on BNC and GO/PdNPs, which synergizes high catalytic activity and 

mechanical robustness.   

1.4 Flexible supercapacitors and paper-based supercapacitors 

1.41 Hybrid materials for high performance supercapacitor (SCs) 

With an explosive development of portable and flexible electronics such as bendable mobile 

phones, flexible displays and wearable devices, there is an urgent need for high performance, 

flexible energy-storage devices.103-109 Supercapacitors (SCs) have emerged as an important class 

of energy storage devices due to their numerous advantages such as high power density, long cycle-

lifetime and low environmental impact.110-112  Owing to various advantages compared to other 

energy storage devices such as flexibility, lightweight, reliability, and safe operation over a wide 

temperature range, extensive efforts have been devoted to developing flexible all solid-state SCs, 

which hold great potential for next generation of flexible energy storage devices.113-119 

Generally, active materials used in supercapacitors can be classified into two groups: i) 

Electrochemical double layer capacitor (EDLC) materials, which physically store charges via 



8 
 

reversible ion adsorption at the electrode-electrolyte interface; ii) Pseudocapacitors materials, 

which chemically store charges via redox reaction at the vicinity of the surface.  Typically, EDLC 

SCs rely on carbon-based materials (including activated carbon, carbon nanotubes, graphene, 

reduced graphene oxide (RGO) etc.), while pseudocapacitors typically involve transition metal 

oxides (e.g. RuO2, MnO2, CoOx, NiO, Fe2O3, etc.) and conducting polymers (e.g. polypyrrole, 

polyaniline, poly(3,4-ethylenedioxythiophene), etc.).  EDLC material core and pseudocapacitive 

material shell constitutes an attractive combination of core–shell design due to the following merits: 

i) EDLC materials as core have better cycle stability due to their electrostatic charge and discharge 

storage mechanism (i.e. no phase changes), which makes them robust backbones even for large 

number of cycles; ii) EDLC core material also have better electrical conductivity compared to 

pseudocapacitive materials, which facilitates efficient transport of electrons; iii) pseudocapacitive 

materials as shell can effectively offset the low capacitance contribution from EDLC materials 

core as they can introduce Faradaic charge transfer due to reversible redox reactions upon charging 

and discharging, which leads to higher capacitance and energy density.120-140 

1.42 Flexible paper-based SCs and bacterial nanocellulose-based SCs 

Soft and compliant elastomers or plastics such as polydimethylsiloxane (PDMS) and polyethylene 

terephthalate (PET) are often used as substrates or packaging materials for the fabrication of 

flexible SCs. However these plastics introduce considerable cost and environmental impact after 

disposal.141 Cellulose-based paper substrates, on the other hand, are a low cost, highly flexible, 

biodegradable option, which possess a fibrous structure, which facilitates interactions with active 

materials and also provides pathways for ion transport, making them ideal substrates for flexible 

supercapacitors and energy storage devices in general.142-146   
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BNC shows great promise for the fabrication of functional composites through in situ growth or 

adsorption of pre-synthesized nanostructures on the nanoscale cellulose fibers due to its excellent 

mechanical properties, tunable porosity, chemical functionalizability, ease of synthesis, high 

scalability.11, 13, 19, 147-148  Due to these advantages, BNC has been adapted for realizing paper based 

flexible supercapacitors.149-153 However, in order to make high performance BNC-based 

supercapacitors, the fabrication techniques typically involve vacuum filtration152, 154, pyrolysis 

activation150, 155-156, which offer poor prospects in terms of scalability and/or compromise the 

mechanical properties of BNC.  These considerations highlight the need for a radically different 

approach to integrate active materials with BNC that not only preserves the favorable nanofibrous 

structure and mechanical properties of BNC but also synergistically enhances the energy storage 

performance of the active materials.  

1.5 Research Goals and Objectives 

The ultimate goal of this research effort is to design and demonstrate novel bacterial nanocellulose 

(BNC)-based functional composites with tailored properties for diverse emerging applications, 

such as chemical sensing, water treatment and energy storage (Figure 1.1).  Towards this goal, we 

have pursued the following specific objectives: 

Objective 1:  Design and demonstrate a flexible surface enhanced Raman scattering (SERS) swab 

based on bacterial nanocellulose.  

Objective 2: Design and demonstrate novel materials and processes for energy-efficient water 

treatment using bacterial nanocellulose-based composites. 

Objective 2A: Design and develop a strategy of realizing scalable and efficient reduced 

graphene oxide and bacterial nanocellulose interfacial photothermal evaporator for highly 

efficient solar steam generation. 
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Objective 2B: Design and demonstrate a completely biodegradable interfacial 

photothermal evaporator using polydopamine microparticles and bacterial nanocellulose.   

Objective 2C: Design a biofouling-resistant ultrafiltration membrane by harnessing 

sunlight.   

Objective 2D: Design and demonstrate a novel membrane for organic dye-contaminated 

wastewater treatment.     

Objective 3: Design and demonstrate a novel bacterial nanocellulose-based flexible 

supercapacitor electrode materials.     

 

Figure 1.1. Illustration outlining the objectives of the overall research focus. 
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1.6 Overview of the Dissertation 

The current chapter (Chapter 1) provides an overview of the research efforts and provides a brief 

background of BNC and functional composites based on BNC for application in sensors, water 

and energy.   

Chapter 2 describes a BNC film-based SERS substrate fabricated by gravity-assisted filtration 

method.  Due to the 3D porous structure of BNC and its ultrafine fibers network, the uniform and 

dense adsorption of plasmonic nanostructures on the surface and sub-surface regions lead to large 

SERS enhancement and excellent uniformity of SERS activity over the entire substrate.  The ultra-

smooth BNC-based SERS substrate serves as an ideal platform for the collection, detection and 

recognition of microorganisms.  

 In Chapter 3, we introduce an approach for the fabrication of photothermally-active biofoam that 

involves the in situ incorporation of GO flakes into BNC during its growth.  We also demonstrate 

the versatility of the approach by making a bilayer foam simply achieved by sequential addition 

of BNC growth medium.  The bilayered GO/BNC composite foam is tailored for high optical 

absorption, photothermal conversion, heat localization and water transport, resulting in a highly 

efficient solar steam generation. 

Chapter 4 describes a complete biodegradable composites foam made of BNC and PDA as a 

interfacial photothermal evaporator for solar steam generation.  In addition to 2D materials such 

as GO, we demonstrate that 0D nanomaterials such as PDA particles can also be incorporated into 

BNC during its growth, leading to a complete biodegradable foam with comparable solar steam 

generation performance. 

In Chapter 5, a novel anti-biofouling ultrafiltration membrane based on BNC and GO is described, 

which involves in situ incorporation of GO flakes into BNC during its growth and air-drying.  In 
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stark contrast to previously reported GO-based membranes for water treatment, the RGO/BNC 

membrane exhibited excellent aqueous stability under environmentally relevant pH conditions, 

vigorous mechanical agitation/sonication and even high pressure.  Importantly, the membrane 

exhibited bactericidal capability enabled by light, due to its excellent photothermal properties, 

which lead to efficient bacterial lysis, obviating the need for any treatment of the feed water or 

external energy.   

Chapter 6 introduces a simple and scalable approach for the fabrication of Pd/GO/BNC membrane 

for highly efficient dye degradation.  The fabrication of Pd/GO/BNC membrane involves the 

incorporation of GO flakes into the BNC matrix during its growth followed by in situ growth of 

PdNPs on GO flakes.  The layered structure of Pd/GO/BNC, which forms nanocapillaries 

throughout the membrane, maximizes the contact between organic dye contaminants and PdNPs 

anchored on the GO flakes. 

In Chapter 7, we demonstrate that BNC can serve as an ideal layered matrix for incorporation of 

active electrochemical active materials to realize flexible and scalable supercapacitor electrode 

materials.  GO flakes and PEDOT:PSS were incorporated into bacterial nanocellulose (BNC) 

matrix during its growth for the fabrication of flexible and light-weight electrodes for high 

performance supercapacitors. The fabricated flexible super-capacitor electrode exhibited a high 

specific capacitance and stability over 1000 testing cycles.  Solid-state supercapacitor formed by 

sandwiching a BNC-based separator between RGO/PEDOT:PSS/BNC electrodes exhibited 

excellent energy storage performance and mechanical flexibility.  
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Chapter 2: Bacterial Nanocellulose-based Flexible 

Surface Enhanced Raman Scattering Substrate 

2.1 Abstract 

Owing to high purity, simple surface chemistry and three-dimensional (3D) nanofibrous structure, 

biosynthesized bacterial nanocellulose (BNC) is a highly attractive biomaterial for a wide range 

of applications.  Previously, we demonstrated that conventional cellulose-based laboratory filter 

paper, adsorbed with plasmonic nanostructures can be employed as a flexible surface enhanced 

Raman scattering (SERS) substrate.  In this work, we report a BNC film-based SERS substrate 

fabricated by gravity-assisted filtration method.  The 3D porous structure of BNC facilitates 

uniform and dense adsorption of plasmonic nanostructures on the surface and in sub-surface 

regions, which results in large SERS enhancement. Furthermore, significantly lower surface 

roughness of BNC compared to conventional filter paper resulted in an excellent uniformity of 

SERS activity across the entire substrate.  Harnessing the smooth surface of BNC, we show that 

BNC-based SERS substrate serves as an ideal platform for collection, detection and recognition of 

bacteria.  The 3D plasmonic BNC composites demonstrated here are highly attractive for a broad 

range of applications including sensing, catalysis, and energy harvesting.   

2.2 Introduction 

Due to the numerous advantages, such as significant reduction in cost, high specific surface area, 

excellent wicking properties, and compatibility with conventional printing approaches (enabling 

multiplex detection and easy disposability), paper is gaining increased attention as a potential 
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substrate in chemical/biological sensing, tissue engineering, energy harvesting storage and 

implementing engineered gene circuits.157-162 

Previously, we demonstrated that conventional laboratory filter paper decorated with plasmonic 

nanostructures could be employed as a flexible SERS substrate.34, 163-165  Very recently, we 

demonstrated 3D plasmonic foam, composed of bacterial nanocellulose aerogel with a high density 

of plasmonic nanostructures adsorbed on the cellulose nanofibrils.166  The plasmonic biofoam 

provided extraordinarily large plasmonically-active sensing volume (under the laser footprint) 

compared to 2D substrates (e.g. filter paper).  However, the thickness of plasmonic foams (1-5 

mm) fabricated by adsorbing nanostructures on 3D cellulose network using immersion method is 

much higher than the light penetration depth (few tens of microns).  Thus, there is a need to develop 

new fabrication technique to maximally utilized the plasmonic nanostructures.   

In this work, to maximally utilize the plasmonic nanostructures, we employ a filtration method to 

localize the nanostructures to the top portion of the hydrogel while the bottom portion serves as a 

support layer.  Furthermore, filtration method makes the processing much faster (30 min) 

compared to the immersion approach (typically more than 12 hours).  We demonstrate that 

naturally-dried plasmonic BNC film with an ultrasmooth surface can serve as a mechanically-

stable and flexible SERS substrate for efficient collection, recognition and detection of pathogenic 

bacteria. 

2.3 Experimental Section 

Synthesis of gold nanorods (AuNRs): Gold nanorods were synthesized using a seed mediated 

approach.167-168  Seed solution was prepared by adding 0.6 ml of an ice-cold sodium borohydride 

(NaBH4) aqueous solution (10 mM) into a mixture of 9.75 ml of cetyltrimethylammonium bromide 

(CTAB, 0.1 M) and 0.25 ml of chloroauric acid (HAuCl4, 10 mM) solution under vigorous stirring 
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at room temperature (1000 rpm). The color of the seed solution immediately changed from yellow 

to brown after NaBH4 addition.  Growth solution was prepared by mixing 95 ml of CTAB (0.1 

M), 1.0 ml of silver nitrate (10 mM), 4.75 ml of HAuCl4 (10 mM), and 0.55 ml of ascorbic acid 

(0.1 M) in the same order, followed by gentle shaking to homogenize the solution.  To the resulting 

colorless solution, 0.12 ml of freshly prepared seed solution was added to the growth solution.  

After 24 h of aging, AuNR solution was centrifuged at 10,000 rpm for 15 min to remove excess 

reactants and dispersed in nanopure water (18.2 MΩ-cm).  The centrifugation was repeated once 

more to further remove excess CTAB for AuNRs/BNC film and AuNRs filter paper preparation. 

Bacterial nanocellulose (BNC) and AuNRs/BNC substrate preparation: Gluconacetobacter 

hansenii (ATCC®53582) was grown in test tubes containing 6 ml of #1765 broth at 30°C under 

shaking at 250 rpm.  The #1765 broth is composed of 2% (w/v) glucose, 0.5% (w/v) yeast extract, 

0.5% (w/v) peptone, 0.27% (w/v) disodium phosphate, and 0.5% (w/v) citric acid.  After 3 days 

of growth, 1.0 ml of the above solution was inoculated to 6ml of broth in a 6 cm petri dish, followed 

by gentle mixing and kept covered at room temperature without disturbance.  After 3 days, a thin 

film of bacterial nanocellulose (~1.0 mm) formed on the air-liquid interface.  To purify the film, 

the grown film was washed in a 500 ml of 0.1 M NaOH aqueous solution under boiling for 1 h, 

followed by dialysis for 2 days in nanopure water.  To prepare AuNRs/BNC substrate, 3 ml of 

concentrated AuNRs solution with extinction intensity ~20 was filtered through a hydrated BNC 

film, which was placed on a glass filter.  Once the infiltration is complete within 30 min, 

AuNRs/BNC hydrogel film was stored in hydrated condition for further use.  The AuNRs density 

in the final SERS substrate can be tuned by varying the concentration of AuNRs in the feed 

solution. 
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Spectroscopy measurements: SERS substrates were exposed to R6G or pMBA solutions of 

known concentrations for 1 hour followed by thorough rinsing to remove unadsorbed or weakly 

bound molecules.  Subsequently, SERS substrates were left to naturally dry before measurements.  

Raman spectra were obtained using a Renishaw inVia confocal Raman spectrometer mounted on 

a Leica microscope equipped with 20X objective (NA = 0.4) and 785 nm wavelength diode laser 

(0.7 mW). The spectra were obtained in the range of 600−1800 cm−1 with 10 s exposure time.  Five 

spectra were collected from different spots across each sample.  Shimadzu UV-1800 

spectrophotometer was employed for collecting UV-vis extinction spectra from solution and the 

AuNRs/BNC substrate. 

E.coli swab test: E.coli (ATCC®35218) was cultured in nutrient broth medium for 18 hours at 

30°C under shaking at 250 rpm until they reached their stationary growth stage. This corresponded 

to a bacteria concentration in the range of 107-108 CFU/ml.169  After washing twice with phosphate 

buffer saline (PBS) buffer by centrifugation, 10 µl of the E.coli suspension was spread on a spinach 

leaf surface with surface area of 2×2 cm2.  Following natural drying of E.coli on the spinach leaf, 

plasmonic BNC paper of 1×2 cm2, wetted with PBS buffer, was swabbed on the leaf surface with 

pre-spread E. coli.  After collecting E.coli with plasmonic BNC paper, the samples were 

characterized using optical microscopy and Raman spectroscopy. 

Microscopy Characterization: Scanning electron microscope (SEM) images were obtained using 

a FEI Nova 2300 Field Emission SEM at accelerating voltage of 10 kV.  Plasmonic paper was 

gold sputtered for 60 sec prior to SEM imaging.  Atomic force microscopy (AFM) images were 

obtained using Dimension 3000 (Digital instruments) AFM in light tapping mode.  
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2.4 Results and Discussion 

2.41. Comparison of BNC film and Common Filter Paper 

Bacterial nanocellulose (BNC) was biosynthesized under static culture conditions using 

Gluconacetobacter xylinus, which is the most extensively characterized nanocellulose producing 

bacterium among various microorganisms.7  BNC film is composed of highly pure cellulose 

nanofibrils, produced from dextrose through a series of biochemical steps followed by the self-

assembly of the secreted cellulose fibrils from bacteria in the culture medium.6, 8-9  Similar to plant-

derived cellulosic materials, BNC possesses surface hydroxyl groups, but does not contain 

carbonyl or carboxyl functional groups.6, 10  Owing to pure surface chemistry, nanofibrous and 

microporous structure, the properties of BNC are significantly different from those of conventional 

filter paper.170-172  After growing the BNC film to a desired thickness (~1 mm), it is harvested and 

washed using sodium hydroxide and water to remove bacteria and residual growth medium (see 

Experimental Section for details).  The resulting hydrogel is comprised of a highly swollen 

network of nanoscale cellulose fibers with up to 99 wt% water.   

BNC exhibits strikingly different 3D structure and surface morphology compared conventional 

filter paper.   Freeze-dried BNC aerogel exhibits large surface area, composed of nanofibrils of 

20-100 nm in diameter (see appendix 1, Figure S1.1).166  Considering that bacteria form the 

cellulose fibers at the air/liquid interface, the cellulose nanofibrils are preferentially oriented 

parallel to the surface (i.e. normal to the thickness) of the aerogel structure, which results in denser 

physical entanglements of the cellulose nanofibrils parallel to the surface compared to that along 

the thickness.3, 6  A representative cross-section SEM image of BNC aerogel reveals dense layers 

of cellulose fibers separated by a layer of sparse “tie” fibers resulting in a layered structure (Figure 

S1).    BNC film of ~20 µm thickness, obtained by naturally drying ~1 mm thick BNC hydrogel, 
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exhibited a smooth surface morphology over a large scale due to the irreversible collapse of 

cellulose nanofibril network during dehydration (Figure 2.1A).  AFM images revealed the RMS 

surface roughness of dry BNC film to be 25.6 nm over 3 × 3 µm2 area (Figure 2.1B).  In contrast, 

conventional filter paper exhibited an extremely rough, hierarchical fibrous morphology (Figure 

2.1C).  The filter paper largely consisted of micro scale (up to 20 µm) cellulose fibrous strands 

interwoven together.  Smaller microfibers made part of the large fibrous structure with nanofibers 

braided in between.  In a relatively smooth area, the RMS surface roughness of the paper was 

measured to be 59.6 nm over 3 × 3 µm2, which is still much higher compared to the naturally-dried 

BNC film.   

2.42. Preparation and Characterization of Plasmonic BNC 

We employed gold nanorods (AuNRs) as plasmonic nanostructures to fabricate a 3D SERS 

substrate based on BNC.  Owing to their tunable localized surface plasmon resonance (LSPR) and 

strong electromagnetic field at the edges, AuNRs have been widely used for sensing 

applications.173-175  We employed simple filtration method to realize 3D plasmonic hydrogel, 

which enables the uniform adsorption and maximal utilization of plasmonic nanostructures on 

porous cellulose nanofibrils (Figure 2.2).  Simple filtration not only facilitates the transport and 

adsorption of AuNRs into porous BNC hydrogel, but also makes the processing much faster (30 

min) than immersion approach (typically more than 12 hours). 

One of the distinct advantages of nanocellulose-based materials compared to conventional filter 

paper is the optical transparency. Transparent cellulose-based materials have gained significant 

interest in recent years as substrates for various electronic and optoelectronic devices.162, 176  The 

optical transmittance of BNC hydrogel was measured to be ~80% at 600 nm, which is significantly 

higher compared to that of the opaque filter paper (Figure 2.3A).  The AuNRs employed in 
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plasmonic hydrogel were 51±3 nm long and 14±1 nm in diameter, making the aspect ratio 

approximately 3.6 (see appendix 1, Figure S1.2). UV-Vis extinction spectra of the AuNRs solution 

showed the two characteristic peaks at ~513 nm and 768 nm corresponding to the transverse and 

longitudinal plasmon resonances of AuNRs, respectively (Figure 2.3B).177 After filtration of the 

AuNR solution through the BNC hydrogel, the AuNRs were either adsorbed or trapped within the 

first few microns of the BNC hydrogel.  The colorless filtrate contained no AuNRs as confirmed 

by the absence of characteristic LSPR bands of AuNR in the UV-vis extinction spectra. Extinction 

spectrum obtained from plasmonic hydrogel fabricated with filtration method showed a red shift 

in longitudinal plasmon resonance wavelength with a slight broadening of the LSPR band, 

compared to the gold nanorod solution (Figure 2.3B).  The observed red shift and LSPR band 

broadening can be attributed to plasmonic coupling between closely packed AuNRs and an 

effective increase in the refractive index of the surrounding medium (from water to 

water+cellulose).  Due to the higher refractive index sensitivity of the longitudinal plasmon 

resonance compared to the transverse band, the longitudinal plasmon band exhibited a larger red 

shift (~25 nm) compared to the transverse band (< 5 nm).178   

We further examined the distribution of AuNRs incorporated in the plasmonic hydrogel.  SEM 

images revealed uniform and dense adsorption of the AuNRs on the cellulose nanofibrils surface 

without any signs of large scale aggregation (Figure 2.3C).  Furthermore, the presence of AuNRs 

in the subsurface regions (embedded under the cellulose fibrils at the surface) of the porous 

hydrogel is revealed by SEM images (inset of Figure 2.3C and Figure S1.3 in appendix 1).  From 

a number of SEM images, the number density of AuNR monolayer on the BNC film surface was 

found to be ~100/μm2 (Figure 2.3C).    Based on the amount of AuNRs in the feed solution and 

the surface coverage of AuNR on the BNC, we estimate that approximately first 10 layers of 
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cellulose fibers in the BNC hydrogel are decorated with AuNRs.  Gravity-assisted infiltration of 

AuNRs into the highly swollen BNC hydrogel enables the incorporation of AuNRs into the 

subsurface layers of BNC.  Following the infiltration, the BNC hydrogel is naturally dried, thus 

collapsing the fiber network and trapping the nanostructures within the network.   The overall 

distribution of AuNRs in the plasmonic hydrogel can be tuned by varying the concentration of 

AuNRs and the volume of the feed solution.  Following the incorporation of AuNR into the BNC, 

even vigorous rinsing with water or alcohol did not result in noticeable desorption of the AuNRs 

from BNC, suggesting the stability of the BNC-based SERS substrate for deployment in liquid 

environments.  Cellulose has a large number of hydroxyl groups, which facilitates the adsorption 

of positively charged species.179-180  The uniform, irreversible, and high density adsorption of the 

AuNRs is possibly due to the electrostatic and van der Waals interactions between the positively 

charged AuNRs and the hydroxyl-rich cellulose surface.181  In case of filter paper, AuNRs were 

found to form a monolayer on the surface of the microfibers of the paper surface.  The number of 

AuNR bound on the surface of the filter paper substrate was found to be in agreement with the 

amount of AuNRs absent in the solution after incubation of the paper substrate, which confirms 

the absence of AuNR in subsurface regions (Figure 2.3D).  Owing to ability to load AuNRs in the 

subsurface regions, the amount of AuNRs loaded in the BNC-based plasmonic hydrogel was found 

to be 10X higher than that adsorbed on the filter paper.  Such higher loading of plasmonic 

nanostructures is expected to result in higher SERS activity of BNC compared to plasmonic paper. 

2.43. SERS Performance of Plasmonic BNC 

Now we turn our attention to the SERS performance of plasmonic hydrogel in comparison to the 

2D plasmonic paper we developed previously.  We exposed plasmonic hydrogel and plasmonic 

paper with similar surface coverage of AuNRs to the same concentration of rhodamine (R6G), a 
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model analyte with a strong affinity to gold.  SERS spectrum of R6G adsorbed on AuNRs exhibited 

strong Raman bands at 612, 1311, and 1363/1509 cm-1, which correspond to C-C-C ring in-plane 

vibration, C-O-C stretching, and aromatic C-C stretching vibration, respectively (Figure 2.4A).182-

183  The intensity of the SERS spectra obtained from plasmonic hydrogel was found to be nearly 

10X higher than that from plasmonic paper.181   The significantly superior SERS performance of 

plasmonic hydrogel can be ascribed to the large plasmonically-active surface area of 3D BNC with 

higher number of AuNRs within the excitation laser footprint.  While the porous nature of BNC 

hydrogel facilitates the diffusion and adsorption of the analytes on subsurface AuNR, the optical 

transparency of BNC ensures the excitation of the subsurface AuNR.  Figure 2.4B shows the SERS 

spectra obtained from plasmonic hydrogel after exposure to different concentrations of R6G.  The 

SERS intensity of the characteristic Raman bands of R6G increased with increasing concentration 

of the model analyte.  The most intense Raman band at 1363 cm-1 was used to analyze the trace 

detection ability of plasmonic hydrogel.  The plot of SERS intensity at Raman band 1363 cm-1 vs. 

concentration of R6G obtained from plasmonic hydrogel shows a monotonic increase of the SERS 

intensity with increasing concentrations of R6G (Figure 2.4C).  From the higher resolution spectra, 

the Raman bands corresponding to R6G are clearly distinguishable (signal to noise ratio (SNR) > 

3) down to a concentration of 1 nM (Figure 2.4D).   

Apart from high SERS intensity, uniformity of SERS signals across the substrate is extremely 

important for quantitative detection of the analytes of interest.184  The homogeneity of SERS 

signals determines the noise floor of the spectral intensity, which in turn determines the limit of 

detection.  We set out to investigate the SERS uniformity of plasmonic hydrogel compared to 

plasmonic paper.  To demonstrate that the plasmonic hydrogel can be used in other common 

solvents (i.e. not limited to water), we chose p-mercaptobenzoic acid (pMBA) as a model molecule 
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to investigate SERS uniformity.  The SERS measurement was performed after exposing the 

plasmonic hydrogel to 1 mM of pMBA in ethanol, followed by thorough rinsing with ethanol.  

Bright-field optical images revealed the smooth surface morphology of BNC after natural drying 

(Figure 2.5A).  This smooth surface morphology of BNC film, which in agreement with the SEM 

images described above, results from the irreversible collapse of BNC nanofibrous structure.  A 

SERS map was collected over a 26×34 µm2 area (indicated in the bright-field optical image) of 

plasmonic hydrogel after exposure to pMBA and naturally drying (Figure 2.5B).  The SERS 

intensity map corresponding to the Raman band at 1590 cm-1 (aromatic ring mode of pMBA) 

exhibited remarkable uniformity with a relative standard deviation of ~4%, calculated from 221 

pixels in the map.   Three representative spectra from different regions of the SERS map (indicated 

in the SERS map) further confirm the small variation in the SERS activity over the mapped region 

(Figure 2.5C).  In contrast to BNC-based SERS substrate, the optical micrograph of plasmonic 

paper reveals the microfibrous structure and rough surface morphology as evidenced by the focus 

variations within the field-of-view (Figure 2.5D). The SERS map obtained from plasmonic paper 

over a 30 × 30 µm2 area revealed much larger variation in the intensity compared to that from the 

BNC substrate (Figure 2.5E).  The spatial variation in the SERS intensity largely stems from the 

rough surface morphology of the paper, which results in focus variations within the mapped region.  

Representative SERS spectra from different regions of the SERS map confirm the larger variations 

in the intensity of SERS signals compared to that from BNC-based SERS substrate (Figure 2.5F).  

The relative standard deviation of the SERS intensity from the plasmonic paper substrates was 

found to be ~25%, calculated from 225 pixels in the map, which is significantly higher compared 

to the BNC substrate.    
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2.44. BNC-based SERS Swab for Bacteria Collection and Detection  

Owing to the extremely high sensitivity and strain-specific spectroscopic signature, SERS is 

considered to be a powerful tool to detect pathogens for food safety and healthcare applications.185-

188  Typical SERS substrates are based on rigid substrates, such as silicon and glass, which are not 

suitable for sample collection through physical swabbing.  BNC-based SERS substrate developed 

here can be employed as a flexible SERS swab to collect pathogens present on various surfaces.  

More importantly, the smooth surface morphology of BNC facilitates the easy recognition of 

bacteria for obtaining strain-specific fingerprint.  As a proof-of-concept, we chose Escherichia coli 

(E. coli) as a model pathogen to demonstrate the efficient collection, recognition and detection of 

pathogens using a BNC-based SERS swab.  To demonstrate the unique sample collection ability, 

we swabbed a slightly wet (in buffer) plasmonic BNC substrate on the surface of a spinach leaf 

with ~105 E.coli spread over 2×2 cm2 area (Figure 2.6A).  As expected, owing to the low surface 

roughness of BNC substrate, the collected bacteria could be clearly visualized using optical 

microscope under both bright field and dark field illumination for further SERS spectroscopic 

analysis (Figure 2.6B, 2.6C).  SERS spectra obtained from individual E. coli collected on the SERS 

swab showed the characteristic Raman bands of E. coli, which can be easily analyzed considering 

the minimal interference from the BNC-based SERS substrate (Figure 2.6D).  Four prominent 

Raman bands attributed to E. coli were observed: 1070 cm-1 corresponding to O=P-O- stretching 

in DNA, 1379 cm-1 corresponding to COO- stretching, 1583 cm-1 corresponding to guanine and 

adenine of DNA, and 1618 cm-1 corresponding to tyrosine, phenylalanine and amine I of E. coli.187, 

189 Using additional data processing methods such as principal component analysis, it has been 

demonstrated that SERS can be employed to distinguish between different species and to classify 

different bacteria strains.190  Considering the highly efficient sample collection, excellent 



24 
 

sensitivity and ease of fabrication, the flexible SERS substrate demonstrated here can serve as a 

promising platform for rapid collection and identification of microorganisms.   

2.5 Conclusions 

In conclusion, we have demonstrated a flexible SERS substrate based on BNC uniformly adsorbed 

with AuNRs through simple filtration method.  Apart from the highly dense adsorption on the 

surface, the AuNRs are trapped within the subsurface layers (about 10 layers) of BNC, which result 

in nearly an order of magnitude higher SERS intensity compared to the SERS substrate based on 

filter paper with similar surface coverage of plasmonic nanostructures. The smooth surface 

morphology of plasmonic BNC film, stemming from the irreversible collapse of nanoscale fiber 

network, renders optical transparency and excellent uniformity in SERS activity compared to 

plasmonic paper.   The plasmonic BNC film with large and uniform SERS activity combined with 

low surface roughness is employed as a flexible swab to demonstrate the collection, identification 

and detection of model pathogens on real-world surfaces. The approach demonstrated here can be 

easily extended to other functional nanostructures to realize biotic/abiotic composites with tailored 

optical, electrical, magnetic and catalytic properties for a broad range of applications.       

2.6 Supporting information 

Supporting Information for chapter 2 is provided in appendix 1. 
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2.7 Figures 

 

Figure 2.1. Surface morphology comparison of BNC and common filter paper. (A) SEM image of naturally 

dried pristine BNC paper (inset: higher magnification image showing the nanofibers of BNC paper). (B) 

AFM image of pristine BNC paper (Height scale: 250 nm). (C) SEM image of pristine filter paper 

(Whatman™ #1) composed of microfibers with a wide range of diameters. (D) AFM image showing the 

significantly rougher surface of filter paper compared to BNC paper (Height scale: 450 nm). 
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Figure 2.2. Schematic illustration showing the steps involved in the preparation of plasmonic hydrogel from 

bacterial nanocellulose and photographs showing BNC hydrogel and plasmonic BNC hydrogel. 
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Figure 2.3. Optical properties and surface morphology of plasmonic BNC film and filter paper.  (A) 

Transmission spectra showing the optical transparency of BNC hydrogel in comparison to the opaque filter 

paper (Inset photograph shows the filter paper and BNC hydrogel placed on Washington University logo 

to illustrate the contrast). (B) Extinction spectra of AuNRs solution and BNC hydrogel embedded with 

AuNRs (Inset photograph shows plasmonic hydrogel placed on Washington University logo). SEM images 

of (C) naturally dried BNC hydrogel embedded with AuNRs (Inset high resolution SEM image showing 

AuNRs penetrated into the subsurface layers of cellulose fibers) and (D) filter paper adsorbed with AuNRs. 
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Figure 2.4. SERS performance of BNC-based plasmonic hydrogel. (A) SERS spectra obtained from BNC-

based plasmonic hydrogel and filter paper after exposure to 10 µM of R6G aqueous solution. (B) SERS 

spectra obtained from AuNRs adsorbed on BNC after exposure to different concentrations of R6G. (C) Plot 

of SERS intensity as a function of R6G concentration obtained from AuNRs/BNC substrate. (D) Higher 

resolution SERS spectra showing the detection limit of R6G compared with AuNRs/BNC control sample. 

  

A 

C 

B 

D 

600 800 1000 1200 1400 1600

15111363

1311

1183

612

10 M R6G

  

 

AuNR filter paper

 

2000 cps

AuNR BNCS
E

R
S

 in
te

n
si

ty

Raman shift (cm-1)
600 800 1000 1200 1400 1600

 

 

5000 cps

S
E

R
S

 in
te

n
si

ty

Raman shift (cm-1)

0 nM

1 nM
10 nM

100 nM

1 M

10 M

800 900 1000 1100 1200 1300 1400

1363

1183

 

 

100 cps
S

E
R

S
 in

te
ns

ity

Raman shift (cm-1)

1 nM

0 nM

1 10 100 1000 10000

0

2000

4000

6000

8000

10000

12000

14000

16000
 

 

S
E

R
S

 in
te

n
si

ty
 a

t 
13

63
 c

m
-1
 (

cp
s)

Concentration of R6G (nM)



29 
 

 

Figure 2.5. Uniformity of SERS intensity from BNC-based SERS substrate and plasmonic paper. Optical 

micrographs of (A) AuNRs/BNC and (D) AuNRs/filter paper substrates, and (B, E) corresponding SERS 

intensity maps of 1590 cm-1 band from the area indicated with dashed lines in the optical images A and D, 

respectively. Representative SERS spectra of pMBA collected from (C) BNC-based SERS substrate and 

(F) plasmonic paper substrates from the pixels marked with squares in B and E, respectively.  
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Figure 2.6. Flexible BNC-based SERS swab for bacteria collection and detection. (A) Photograph showing 

a plasmonic BNC SERS substrate being swabbed on a spinach leaf surface intentionally contaminated with 

E.coli. (B) Bright field and (C) dark field optical micrographs of pristine AuNRs/BNC paper and E. coli 

adsorbed on AuNRs/BNC paper collected by swabbing. (D) Representative SERS spectra collected from 

E.coli adsorbed on the AuNRs/BNC swab showing characteristic Raman bands of E. coli. 
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Chapter 3: Bilayered Biofoam for Highly Efficient 

Solar Steam Generation 

3.1 Abstract 

Solar steam generation by heat localization is highly promising for large-scale desalination and 

water purification, can alleviate water shortage and their consequences, especially in resource-

limited regions.  However, most of the interfacial evaporators demonstrated so far involve either 

expensive materials such as noble metal nanostructures or complex fabrication methods with poor 

prospects in terms of scalability. Here, a novel bilayered biofoam is realized using bacteria-

mediated fabrication which brings bacterial nanocellulose and reduced graphene oxide together 

for highly efficient solar steam generation. The biofoam exhibits a solar thermal efficiency of 

~83% under simulated solar illumination (10 kW/m2).  The facile fabrication of this novel 

bilayered biofoam is highly scalable and cost-efficient. 

3.2 Introduction 

Steam generation (distillation) through efficient harvesting of solar energy is highly promising for 

large scale power generation, desalination and water purification. Most of the existing solar steam 

generation systems, which involve heating water using optical concentrators, suffer from poor 

efficiency due to losses associated with heating the bulk water. Confining heat to air/water 

interface (i.e. the evaporating surface) is a highly promising approach to improve the efficiency of 

evaporation and steam generation process. Over the past three years, various heat localization 

layers have been demonstrated to significantly improve the steam generation efficiency compared 

to conventional bulk heating methods. However, most of these designs involve either expensive 
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materials such as noble metal nanostructures or complex fabrication methods with poor prospects 

in terms of scalability. Thus, there is an immediate need for cost-effective novel materials and 

processes for highly-efficient solar distillation.  

Graphene oxide (GO) exhibits a broad optical absorption over visible and near infrared (NIR) parts 

of the electromagnetic spectrum and excellent photothermal transduction.191-195 Unlike graphene 

flakes, which tend to stack and aggregate in aqueous solutions, GO exhibits excellent water 

solubility.  GO is essentially sheets of graphene with carboxylic functional groups at the edges and 

phenol hydroxyl and epoxide groups on the basal planes.49  So, the hydrophilicity of GO is 

attributed to the hydroxyl and epoxide groups on the basal planes and carboxyl functionalities at 

the edges. Crumpled graphene oxide and crumpled reduced graphene oxide produced by aerosol 

synthesis methods also exhibit excellent stability and hydrophilicity.196-197 Graphene-based 

materials have been extensively investigated for various optoelectronic applications including 

transparent electrodes, photodetectors, and as electron and hole transport layers in photovoltaic 

devices.198-200  While being electrically conductive, a single layer of graphene exhibits only small 

optical absorbance (~3%), making it an excellent candidate for transparent electrodes.  However, 

the cumulative optical absorbance of a few graphene monolayers in tandem can quickly add up, 

making graphene materials an excellent choice for applications demanding high optical absorption.  

We hypothesize that a novel composite material that can stabilize the tandem configuration of 

RGO layers at the surface of the water and facilitate the facile transport of water to the 

photothermally-active interstitial space (between RGO layers) will be an excellent candidate for a 

solar steam generation.   

In this work, we introduce a bilayered hybrid biofoam comprised of bacterial nanocellulose (BNC) 

and RGO for solar steam generation through heat localization at the evaporation surface. BNC is 
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composed of highly pure cellulose nanofibrils, produced from dextrose through a series of 

biochemical steps followed by the self-assembly of the secreted cellulose fibrils from bacteria in 

the culture medium.3, 201  BNC is a highly attractive material for the fabrication of functional foams 

due to its large specific surface area, open microporous structure, excellent mechanical properties, 

and facile and scalable synthesis.11  So far, most of the functional foams based on BNC rely on 

either in situ growth or adsorption of functional nanostructures or infiltration of polymers in the 

porous cellulose network after harvesting the BNC from the culture.13-19 Here, we demonstrate a 

novel approach for the fabrication of photothermally-active biofoam that involves the in situ 

incorporation of GO flakes into BNC during its growth. The bilayer structure of the functional 

foam is tailored for high optical absorption, photothermal conversion, heat localization, and water 

transport to the evaporation surface resulting in a highly efficient solar steam generation.  The 

bilayer structure exhibited excellent stability even under vigorous mechanical agitation and harsh 

chemical conditions, which is quite remarkable considering the simplicity of the two-step 

fabrication approach demonstrated here. 

3.3 Experimental Section 

Preparation of RGO/BNC aerogel: Gluconacetobacter hansenii (ATCC®53582) was cultured in 

test tubes containing 16 ml of #1765 medium at 30°C under shaking at 250 rpm.  The #1765 

medium is composed of 2% (w/v) glucose, 0.5% (w/v) yeast extract, 0.5% (w/v) peptone, 0.27% 

(w/v) disodium phosphate, and 0.5% (w/v) citric acid.  Graphene oxide was synthesized using an 

improved method reported by Tour and coworkers.202  Graphene oxide solution (28 mL of 0.1 

wt%)  was centrifuged and redispersed in #1765 medium and then centrifuged again to leave a wet 

mixture of GO and medium after decanting supernatant.  Bacterial culture solution (incubated 3 

days) was added to the GO/medium wet mixture to make it to a total 7 ml (with GO concentration 
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of 0.4 wt %).  The solution was subsequently transferred to petridish (diameter: 6 cm) and 

incubated at room temperature without disturbance.  After 5 days, a thin film of GO/BNC was 

formed at the liquid/air interface.  Subsequently, 7ml of bacterial growth solution was added on 

top of the GO/BNC film.  After another 5 days, a bilayer of BNC and GO/BNC film was formed.  

For purification, the film was harvested from the petri dish and washed in a 500ml of 0.1 M NaOH 

aqueous solution under boiling condition for 2 h.  The obtained RGO/BNC:BNC hydrogel was 

then dialyzed in nanopure water for 2 days.  The purified RGO/BNC:BNC hydrogel was then cut 

into desired dimensions, typically 1 cm x 1 cm with a thickness of 21 mm, and then freeze-dried 

for 12 hours. 

Microstructure characterization and properties measurement: Scanning electron microscope 

(SEM) images were obtained using a FEI Nova 2300 Field Emission SEM at accelerating voltage 

of 10kV.  Atomic force microscopy (AFM) images were obtained using Dimension 3000 (Bruker 

Inc.) in light tapping mode. Shimadzu UV-1800 spectrophotometer was employed for collecting 

UV-vis extinction spectra in transmission mode.  Raman spectra were obtained using a Renisha 

inVia confocal Raman spectrometer mounted on a Leica microscope with 20x objective and 

514nm wavelength diode laser as an illumination source.  Fourier transform infrared spectrometer 

(FTIR) spectra were recorded using a Nicolette Nexus 470 spectrometer. XPS analysis was 

performed using Physical Electronics® 5000 VersaProbe II Scanning ESCA (XPS) Microprobe.  

The specific surface areas of GO/BNC bilayer aerogel were measured by the Brunauer-Emmett-

Teller (BET) method using an Autosorb-1C (AX1C-MP-LP) at 298 K.  

Thermo- gravimetric analysis (TGA) to measure RGO loading in RGO/BNC:BNC: TGA was 

used to measure the mass loading of RGO in RGO/BNC:BNC.  Both BNC film and air- dried 

RGO/BNC:BNC bilayer film are tested (see appendix 2, Figure S2.1).  BNC film showed an initial 
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mass loss which has been attributed to absorbed water, a mass loss (~70 %) at ~280 °C is due to 

the degradation of cellulose and a mass loss (~25 %) at ~390 °C is due to the decomposition of 

cellulose residual which will generate CO2 and H2O.203  As for RGO/BNC:BNC, the first mass 

loss (~2 %) of at ~100 °C is still due to the loss of absorbed water.  The second mass loss (~3 %) 

at ~200 °C is due to the decomposition of functional groups of GO.  The third mass loss (~52 %) 

of at 280 °C is due to the degradation of cellulose.  The fourth mass loss (~40 %) at 390 °C is due 

to the decomposition of cellulose residual and sublimation or burning of the damaged graphitic 

regions.204  Based on TGA results, the mass loading of RGO in RGO/BNC:BNC is calculated to 

be 27 wt%.   

Stability of RGO/BNC:BNC: As the RGO/BNC:BNC hydrogel was base washed during cleaning, 

it proved its stability in strongly basic environments.  For the stability in an acidic environment, 

we put one RGO/BNC:BNC hydrogel in a petridish filled with pH 1.5 solution and sonicated for 

one hour and the hydrogel was still intact (see appendix 2, Figure S2.3).  

Thermal conductivity measurement of wet/dry RGO/BNC aerogel and bare BNC: The 

thermal conductivity of wet/dry RGO/BNC aerogel and BNC aerogel is measured by sandwiching 

the material between two glass microscope slides.  The sandwich is placed between a hot plate and 

a glass slide with ice on top.  The temperature distribution along the thickness was monitored by 

an IR camera (ICI 7320 USB camera). We assume the emissivity coefficient of glass slide and 

sample to be 0.9 to obtain the temperature distribution.Emissivity Coefficients of some common 

Materials,(Febrary,2016) Retrieved from http://www.engineeringtoolbox.com/emissivity-

coefficients-d_447.html  Fourier equation was used to calculate the thermal conductivity of each 

sample:205 

𝑞ᇱ = 𝐾
∆𝑇

∆𝑋
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Since the thermal conductivity (K) is known for glass slides (1.05 W m-1 K-1 was used), the heat 

flux q’ per unit area, was calculated.  Assuming the samples and the glass slides were experiencing 

same heat flux, the thermal conductivity of the samples was calculated. 

Solar steam generation experiment: A 1 cm x 1 cm bilayer RGO/BNC:BNC aerogel with a 

thickness of around 21 mm was floating on water in a plastic cuvette with dimensions of 12.5 mm 

(W) × 12.5 mm (D) × 49 mm (H).  The solar beam from a solar simulator (Newport AM1.5) was 

concentrated using a magnifying lens and illuminated onto the floating aerogel.  The power density 

of the solar beam at the sample surface was controlled to be 10 kW/m2.  Each sample was 

illuminated for 15 min and the weight loss over the entire duration was recorded.  The temperature 

was measured using an IR camera and the weight change from evaporation was measured using 

an electronic mass balance with an accuracy of 0.1 mg.  We assume that the steam is generated at 

100°C under 10 kW/m2 illumination.  The evaporation efficiency (𝜂) is given by 205: 

 𝜂 =
𝑚̇ℎ௅௏

𝐼
 

Where 𝜂 is evaporation efficiency, 𝑚̇ is the evaporation rate, ℎ௅௏ is the total enthalpy of sensible 

heat (294 J/g, from 30 °C to 100 °C with specific heat 4.2 J/gK) and phase change of liquid to 

water (2256 J/g), and 𝐼 is the incident laser power density. 

3.4 Results and Discussion 

3.41 The Fabrication of the Bilayered Biofoam 

The fabrication of the bilayer structure involves growing Gluconacetobacter hansenii bacteria in 

the presence of GO flakes under aerobic and static growth conditions (Figure 3.1A).  GO flakes 

were obtained using a method recently reported by Tour and co-workers.202  It is known that the 

thickness of a monolayer of GO is ~0.72 nm and the higher thickness of GO compared to a 
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monolayer of graphene (0.34 nm) is ascribed to the presence of epoxy and hydroxyl groups on the 

basal plane.206  Atomic force microscope (AFM) images revealed the average thickness of GO 

flakes deposited on a silicon substrate to be ~1±0.2 nm, which corresponds to a bilayer of GO.  

Raman spectrum of graphene oxide showed characteristic graphitic band (G-band) at (1580-1600 

cm-1) assigned to the E2g phonons at the Brillouin zone center and a defect band (D-band) at (1330-

1340 cm-1) associated with the defect-activated breathing modes of six-membered carbon rings 

(Figure 3.1D).207  GO flakes were dispersed in the broth solution with bacteria at a predetermined 

concentration to achieve a desired BNC growth rate (see experimental section for details).  The 

mixture is homogenized and left under the static condition to obtain a BNC layer with desired 

thickness and uniformly embedded with GO flakes.  Subsequently, additional broth with bacteria 

was added on the surface of the GO filled BNC hydrogel to form an additional layer of pristine 

BNC.  The GO filled BNC/BNC bilayer film (called GO/BNC:BNC henceforth) was washed using 

NaOH solution (0.1 M) under high temperature to remove bacteria and residual growth medium.  

GO was found to be partially reduced during the washing process, which results in a color change 

of the hydrogel from brown to black (discussed in detail below).  The as cleaned RGO/BNC:BNC 

hydrogel was freeze-dried to obtain highly porous bilayered aerogel (Figure 3.1A,B).  The 

RGO/BNC:BNC has ~27 wt% of RGO loading based on TGA study (see appendix 2, Figure S2.1 

and experimental section). 

3.42 Probing the Structure of the Bilayered Biofoam 

Pristine BNC aerogel obtained by freeze drying BNC hydrogel exhibited ~98% porosity, ultralow 

density (~20 kg m-3) and extremely large specific surface area (~75 m2 g-1) (Figure 3.2A).  BNC 

aerogel is comprised of a highly open microporous non-woven 3D network of cellulose nanofibrils 

(diameter of 20-100 nm).  The cellulose fibers are first formed by the bacteria at the air/medium 
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interface and fibers entangle to form a “layer” at the surface.3, 201  As the oxygen diffuses deeper 

into the medium, the first layer guides the formation of the subsequent BNC layers, which stack 

together to form a 3D BNC network.  Considering that bacteria form the cellulose fibers at the 

air/liquid interface, the cellulose nanofibrils are preferentially oriented parallel to the surface (i.e. 

normal to the thickness) of the aerogel structure, which results in denser physical entanglements 

of the cellulose nanofibrils parallel to the surface compared to that along the thickness.  A 

representative cross-section SEM image of BNC aerogel reveals dense layers of cellulose fibers 

separated by a layer of sparse “tie” fibers resulting in a layered structure (Figure 3.2A).  Addition 

of the GO to the bacterial broth and base wash led to the formation of BNC hydrogel loaded with 

RGO (Figure 3.2B, b1).  The “layered” formation of BNC starting from the liquid/air interface 

facilitated the layered arrangement of RGO flakes within the BNC (Figure 3.2B, b2 and b3).  The 

layered incorporation of the RGO into the layered structure of BNC was clearly evident in the 

cross-sectional SEM images of the naturally dried RGO/BNC film (see appendix 2, Figure S2.2).  

SEM images of the aerogel also reveal the uniform incorporation of the RGO flakes into the 

cellulose fiber network.  It is worth noting that most of the RGO flakes are arranged parallel to 

BNC layers (see SEM image of the cross-section in Figure 3.2B, b2).   

3.43 The Stability of the Bilayered Biofoam 

As briefly mentioned above, bilayered biofoam comprised of RGO/BNC and BNC layers was 

obtained by adding fresh broth containing bacteria following the formation of GO/BNC layer.  The 

bilayered hydrogel subjected to rigorous mechanical agitation and strong basic solution during 

cleaning procedure to remove the bacterial and culture medium residue did not exhibit any signs 

of delamination.  To further test the stability of the bilayer structure, we subjected the bilayer to a 

strong acidic environment (pH 1.5) and ultrasonication for 1 hr.  The bilayered hydrogel subjected 
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to these extreme conditions remained mechanically stable and the RGO flakes remained embedded 

within the nanocellulose layers of BNC (see appendix 2, Figure S2.3).  These findings suggest that 

the RGO/BNC:BNC has excellent mechanical and chemical stability even under extreme 

environments.  Such strong interfacial interaction between the two layers formed in a sequential 

manner indicates that the nanoscale fibrils generated by the newly added bacteria entangled 

seamlessly with the existing BNC network.  The bilayer exhibited a sharp interface in terms of 

RGO content between the RGO doped BNC and pristine BNC (Figure 3.2C; c1 and c2).  The 

structures of the pristine and RGO filled regions of the bilayer were found to be identical to the 

corresponding monolayer films described above (Figure 3.2C; c3).  

3.44 Probing the Properties of the Bilayered Biofoam 

The RGO/BNC:BNC aerogel (with thickness of 2.1 mm) exhibited extremely small optical 

transmittance (~1.5%) and reflectance (~2.5%) in the visible and near infrared regions, indicating 

the large optical extinction (~96%) of the bilayer (Figure 3.3A).  The large extinction of the bilayer 

owes to the optical absorption of the RGO flakes and the light scattering from the nanoscale 

cellulose fibers that increase the optical path length within the bilayer.  Such large optical 

extinction of the bilayer structures combined with the excellent photothermal activity of RGO 

makes RGO/BNC:BNC an excellent candidate for a solar steam generation.  Natural drying of 

RGO/BNC hydrogel (as opposed to freeze drying described above) resulted in the collapse of the 

3D BNC structure into a flexible thin film (inset of Figure 3.3B).  This bilayer thin film appeared 

light grey in color and exhibited a metallic luster, indicating the partial reduction of GO.208  We 

measured the electrical conductivity of the thin film on both sides (i.e. RGO/BNC and pristine 

BNC) under different bending angles (Figure 3.3B).  As expected, the pristine BNC exhibited 

extremely small electrical conductivity (~2.4×10-6 S·m-1).  On the other hand, RGO/BNC exhibited 
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significantly higher electrical conductivity (~14.5 S·m-1), which was found to be insensitive to the 

bending angle of the flexible film (inset of Figure 3.3B).  The electrical conductivity of RGO/BNC 

film without any special reduction procedure was higher compared to BNC/silk/MWCNT 

composite membrane (0.2 S·m-1)209 and BNC/PANI nanocomposite membrane (5 S·m-1)210 and 

comparable to previous BNC/RGO nanocomposite (23.8 S·m-1)211. 

The high electrical conductivity and metallic luster of RGO/BNC film suggests the possible 

chemical reduction of GO during the BNC cleaning process.  We investigated the effect of the 

high-temperature base wash (conditions employed in BNC cleaning process) on the GO flakes to 

further understand the chemical reduction of GO.  When subjected to high-temperature base wash, 

the initially clear brown GO suspension turned into a black aggregate, which indicates the partial 

reduction and restacking of the RGO.  We employed X-ray photoelectron spectroscopy (XPS) to 

confirm the chemical modification of GO upon base wash (Figure 3.3C, 3.3D).  The 1s spectra of 

carbon can be deconvoluted into three peaks corresponding to sp2 domains (C=C with a binding 

energy of 284 eV) and oxidized sp3 domains (C–O with a binding energy of 286 eV and C=O with 

a binding energy of 288 eV).212  For as synthesized GO, the C/O ratio (1.74) obtained from the 

ratio of the area under the peaks suggests ~57% of the surface of GO is oxidized (Figure 3.3C).  

After extensive base wash, the C/O ratio increased to 4.95 indicating that only ~20% of the surface 

of GO is oxidized (Figure 3.3D).  FTIR absorption spectrum of GO/BNC before base wash showed 

bands at 1743 cm-1, 1620 cm-1 corresponding to C=O and COOH groups, respectively.213  On the 

other hand, in the case of RGO/BNC, a dramatic decrease in the intensities of these peaks was 

observed, indicating the partial reduction of GO flakes (see appendix 2, Figure S2.4).  These 

findings confirm that the base wash can remove the oxidative debris from the GO flakes.204, 214  

While such large degree of reduction of GO can compromise their stability in aqueous solutions, 
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the RGO flakes embedded within the swollen network of nanocellulose fibers of BNC are locked 

in their tandem and layered configuration.  

We then investigated the thermal conductivity of individual layers of RGO/BNC:BNC according 

to different conditions during steam generation.  Since BNC layer is in a hydrated state during 

solar steam generation, it is important to understand the thermal conductivity of this layer in the 

wet state.  We measured the thermal conductivity of BNC layer in the wet state using an infrared 

camera (see experimental section for details).  The IR images of the BNC layer sandwiched 

between two glass slides maintained at different temperatures reveal a gradient in the temperature 

along the thickness of the BNC layer (insets of Figure 3.3E).  The thermal conductivity of BNC 

layer was found to be 0.46 W m-1 K-1, which is lower than that of water (0.6 W m-1 K-1 at room 

temperature).215  The thermal conductivity of wet BNC layer is comparable to the heat insulating 

layers employed in recently demonstrated gold nanoparticle film and double layer carbon foam for 

solar steam generation in wet state.205, 216  As for RGO/BNC layer, it is important to measure its 

thermal conductivity in both dry and wet state because this layer is semi-wet during the steam 

generation.  Despite the high electrical conductivity of the air-dried RGO/BNC film, the thermal 

conductivity of wet RGO/BNC (0.816 W m-1 K-1) was found to be only slightly higher than water 

(see Figure 3.3F).  It is worth noting that the thermal conductivity of wet RGO/BNC is lower than 

that of exfoliated graphite in the wet state (0.959 W m-1 K-1)205, which has been employed as light-

to-heat conversion layer for a solar steam generation.  The lower thermal conductivity of wet 

RGO/BNC is due to the presence of the nanocellulose layers separating the RGO layers, which 

serve as thermal insulators.  As for dry RGO/BNC, the thermal conductivity (0.069 W m -1 K-1) is 

just slightly higher than air (see appendix 2, Figure S2.5). Due to high porosity, most of the dry 

RGO/BNC layer is comprised of air pockets with a thermal conductivity of 0.024 W m-1 K-1 (at 
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room temperature).  Thus, the semi-wet RGO/BNC layer can greatly reduce the heat transferred 

from the evaporative surface to the following wet BNC layer.   Overall, the low thermal 

conductivity of RGO/BNC:BNC results in the confinement of heat to the evaporative surface by 

minimizing the heat transfer (loss) to bulk water and improves the overall efficiency of the solar 

steam generation.   

3.45 Photothermal and Solar Steam Generation Performance 

Now we turn our attention to the photothermal and solar steam generation ability of 

RGO/BNC:BNC.  We investigated the steam generation ability of RGO/BNC: BNC under near-

infrared (NIR) laser (808 nm) and simulated solar illumination (Figure 3.4 and appendix 2, Figure 

S2.6).  RGO exhibits large and broad optical absorption over visible and NIR regions and has been 

employed as a photothermal contrast agent for locoregional photothermal therapy.193-195  IR 

imaging was employed to monitor the temperature rise in the RGO/BNC:BNC floated at air/water 

interface upon irradiation with a simulated solar beam (power density of 10 KW/m2) or NIR laser 

(power density of 5 KW/m2).  Upon irradiation, the temperature of the RGO/BNC rapidly 

increased from room temperature (30°C) to ~78°C in the case of the solar beam and to ~60°C in 

the case of 808 nm laser beam (Figure 3.4B, C and appendix 2, Figure S2.6). The temperature 

rapidly increased within tens of seconds after the irradiation and remained constant over the entire 

duration (900 sec) of the irradiation.  On the other hand, the temperature rise of water in the absence 

of RGO/BNC layer was found to be significantly smaller (2-4°C).  As briefly discussed above, the 

large rise in temperature owes to the high optical absorption of RGO combined with the multiple 

scattering of incident light from the nanoscale cellulose fibers resulting in an effective increase of 

the optical path length and maximizing the light absorption within the hydrated aerogel.  The large 
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rise in temperature of RGO/BNC film illumination resulted in the appearance of steam above the 

cuvette, evidencing the rapid evaporation of water (Figure 3.4D).  

The steam generation efficiency of the RGO/BNC:BNC was quantified by measuring the weight 

loss (due to water evaporation) as a function of irradiation time.  The cumulative weight loss was 

found to increase linearly with irradiation time (Figure 3.4E).  Under solar beam irradiation (10 

KW/m2), the weight loss over the duration of 900 sec was found to be 0.4 g over 1 cm2.  The steady 

state evaporation rate, achieved after ~300 sec of irradiation, was calculated to be 11.8 kg/m2/hr.  

On other hand, in the absence of the RGO/BNC:BNC, the evaporation rate of water under identical 

irradiation condition was found to be 4.8 kg/m2/hr, which is nearly 2.5 times lower compared to 

that with the bilayer structure.  Similarly, the steady state evaporation rate under NIR laser 

irradiation of RGO/BNC bilayer was found to be 6.1 kg/m2/hr, which is nearly 13 times higher 

compared to the evaporation rate in the absence of RGO/BNC layer under identical irradiation 

condition (0.46 kg/m2/hr).  The RGO/BNC:BNC were highly stable and could be reused multiple 

times without any noticeable degradation of the structure or steam generation ability.  Over 8 

cycles of reuse, the steady state evaporation rate and cumulative weight loss for 900 sec irradiation 

were found to exhibit less than 3% variation (Figure 3.4F).  

Without considering the losses involved in the test facility, such as reflection and surface radiation, 

the evaporation efficiency of RGO/BNC:BNC aerogel was calculated to be 83% at a power density 

of 10 kW/m2 (see experimental section for details).  Replacing the RGO/BNC:BNC with 

RGO/BNC layer alone led to a drop in the evaporation efficiency by about 30%.  This observation 

highlights the importance of bilayer structure in which the RGO/BNC layer at the top acts as a 

light-to-heat conversion layer and the pristine BNC layer at the bottom minimizes the heat loss to 

the bulk of by serving as a heat insulation layer.  It is important to note that the BNC layer exhibited 
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lower thermal conductivity (0.46 W m-1 K-1) compared to that of water (0.6 W m-1 K-1).  We 

suggest that the excellent steam generation efficiency of RGO/BNC:BNC aerogel owes its origin 

to the following four factors: (i) broad light absorption RGO flakes over visible and near infrared 

wavelengths combined with excellent photothermal conversion efficiency; (ii) high density of 

RGO flakes in the aerogel combined with the multiple light scattering enabled by nanocellulose 

fibers, which greatly increase the optical path length and light absorption; (iii) low thermal 

conductivity of RGO/BNC layer due to BNC matrix as well as low thermal conductivity of wet 

BNC supporting layer, which minimize the heat transfer from the evaporation surface to the bulk 

water; and (iv) open porous structure and hydrophilic nature of BNC aerogel enabling the rapid 

transport of water from bulk to the evaporative surface.   

3.5 Conclusions 

In summary, we have demonstrated the facile fabrication of a bilayered hybrid biofoam comprised 

of BNC and RGO for highly efficient solar steam generation.  In stark contrast to conventional 

approaches, the functional biofoam is fabricated by incorporating GO flakes within the 

nanocellulose fiber layers during the bacteria-mediated growth of the BNC hydrogel.  The bilayer 

structure exhibited excellent stability even under vigorous mechanical agitation and harsh 

chemical conditions.  Owing to the large light absorption, excellent photothermal conversion, heat 

localization and efficient transport of water from bulk to evaporative surface, the novel bilayered 

structure exhibited a remarkably high solar thermal efficiency.  The fabrication approach 

demonstrated here can be extended to other functional nanomaterials to realize biofoams with 

applications in energy harvesting, sensing, catalysis and life sciences.  
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3.6 Supporting Information 

Supporting Information for chapter 3 is provided in appendix 2. 

3.7 Figures 

 

Figure 3.1. (A) Schematic illustration showing the fabrication of RGO/BNC:BNC aerogel. (B) Photographs 

of the as cleaned RGO/BNC:BNC hydrogel and RGO/BNC:BNC aerogel. The scale bars represent 1cm. 
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(C) AFM image of GO flakes deposited on a silicon substrate. (D) Raman spectrum of GO flakes showing 

the characteristic G and D bands. 

 

 

  

Figure 3.2. Structure of BNC and RGO/BNC and RGO/BNC:BNC aerogels. (A) Optical image (a1) and 

SEM images of cross-section (a2) and top surface (a3) of BNC aerogel. (B) Optical image (b1) and SEM 

images of cross-section (b2) and top surface (b3) of RGO/BNC aerogel. (C) Optical image (c1) and SEM 

images of cross-section at the interface (c2) and the two surfaces (c3) of RGO/BNC:BNC aerogel.  
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Figure 3.3. (A) Transmittance and reflectance spectra of RGO/BNC:BNC aerogel. (B) Conductance of air-dried 

RGO/BNC:BNC film under various degrees of bending. XPS spectra of (C) pristine GO and (D) base-washed 

RGO. Thermal conductivity of (E) wet BNC aerogel and (F) wet RGO/BNC aerogel. Insets: Representative IR 

images showing the temperature gradient along the thickness of hydrated BNC and RGO/BNC layers. 
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Figure 3.4. Photothermal and solar steam generation efficiency of RGO/BNC:BNC biofoam. (A) Schematic illustration of 

steam generation with the RGO/BNC:BNC biofoam floated at air/water interface. (B) IR images showing the temperature 

of water and RGO/BNC:BNC aerogel floated at air/water interface under solar illumination at various time points. (C) Plot 

showing the surface temperature of water and RGO/BNC:BNC aerogel at air/water interface under solar illumination of 10 

kW/m2 as function of irradiation time. (D) Photograph showing RGO/BNC:BNC aerogel floated at the air/water interface 

and steam generation under simulated solar illumination (also see video S1 in Supporting Information). (E) Plot showing 

the cumulative weight loss through water evaporation under solar illumination as a function of irradiation time. (F) Weight 

loss through water evaporation after 900 sec irradiation of RGO/BNC layer over 8 cycles showing the reusability of 

RGO/BNC:BNC. 
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Chapter 4: Polydopamine-filled Bacterial 

Nanocellulose as Biodegradable Interfacial 

Photothermal Evaporator 

4.1 Abstract 

Solar steam generation by heat localization is considered to be a highly efficient, sustainable way 

to alleviate water shortage in resource-limited regions.  However, most of the interfacial 

photothermal evaporators demonstrated so far involve non-biodegradable nanoscale materials, 

which can quickly pose a significant threat to environment and ecosystems, especially marine 

ecosystems, after their disposal.  For the first time, a flexible, scalable and, more importantly, 

completely biodegradable photothermal evaporator for highly efficient solar steam generation is 

introduced.  The bilayered evaporator is comprised of bacterial nanocellulose densely loaded with 

polydopamine (PDA) particles during its growth. The biodegradable foam introduced here exhibits 

large light absorption and photothermal conversion, heat localization, and efficient water 

transportation, leading to excellent solar steam generation performance under one sun (efficiency 

of ~78%).  The novel material and scalable process introduced here can be a sustainable solution 

to alleviate global water crisis. 

4.2 Introduction 

Water scarcity is one of the most critical global issues of the 21st century.39-41  Increasing world 

population, unprecedented socioeconomic development, and significant depletion of traditional 

water sources call for more sustainable ways to secure clean and safe water. Steam generation 
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(distillation) through efficient harvesting of solar energy is highly promising for large-scale 

desalination and water purification, can alleviate water shortage and their consequences, especially 

in resource-limited regions.217-223 In stark contrast to conventional solar steam generation systems 

which suffer from poor efficiencies due to losses associated with heating the entire water (bulk 

heating), recently introduced interfacial evaporation systems can convert incident sunlight to 

localized heat at the air-water interface, greatly improving the efficiency of steam generation 

process.205, 224  These evaporation systems are comprised of materials that have excellent 

photothermal, heat insulating, and water transport properties.  

Over the last several years, various interfacial evaporator materials with tailored design and 

excellent performance have been demonstrated.216, 225-237 However, most of them involve non-

biodegradable photothermal materials (graphite, reduced graphene oxide, carbon nanotubes, gold, 

aluminum, titanium oxide, polypyrrole, etc.) or support materials (aluminum, polystyrene thermal 

foam, stainless steel mesh, polyethyleneimine, etc.) leading to negative or unknown impacts on 

the environment.  It should also be noted that most of these materials have a finite lifetime owing 

to pore clogging, degradation of the photothermal properties, and alteration of the surface 

properties of the water transport layer.  Disposal of these materials can quickly pose a significant 

threat to the environment and ecosystems. In particular, degradation and leaching of nanoscale 

photothermal materials into marine ecosystems, where these materials are most likely deployed, 

can have lasting negative consequences.238-242  These considerations clearly highlight the need for 

a scalable material platform that is environmentally benign and easy to produce, utilize, and 

dispose.      

Polydopamine (PDA), formed by the oxidation of dopamine, is an important eumelanin-like 

biopolymer known for its versatile adhesion properties and universal surface modification.243  Due 
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to the structural similarity to eumelanin, PDA possesses many striking properties of naturally 

occurring eumelanin. For example, it can absorb 99% incident photon energy over a broad solar 

spectrum and rapidly convert it into heat within tens of picoseconds, thus offering the protection 

to living organisms against ultraviolet injury.244-246 Owing to its superb photothermal ability and 

biodegradability, extensive efforts have been dedicated to utilizing PDA nanostructures as contrast 

agents for photothermal therapy.247-249   

Bacterial nanocellulose (BNC) is a highly pure form of cellulose that is produced from dextrose 

through a series of biochemical steps followed by the self-assembly of secreted cellulose fibrils 

from bacteria in the culture medium.3  BNC exhibits outstanding mechanical properties, high 

porosity, chemical functionalizability, ease of  synthesis, high scalability, and more importantly, 

low environmental impact.250  Hence BNC is a highly versatile material platform for fabricating 

functional composites through in situ growth or adsorption of pre-synthesized nanostructures on 

the nanoscale cellulose fibers.11-20, 147  In addition, the hydrophilicity and low thermal conductivity 

of BNC provide effective water transport and heat management, making it a highly promising 

supporting material for interfacial solar steam generation.147    

In this work, we introduce a completely biodegradable, scalable, and flexible bilayered interfacial 

solar steam generator comprised of BNC and PDA impregnated BNC layers.  The bilayered 

interfacial evaporator has outstanding optical absorption, photothermal conversion, heat insulation, 

and stability, leading to highly efficient solar generation under one sun condition (i.e., 1 kW m-2).  

The highly scalable and cost-effective materials and processing combined with the highly 

biocompatible and biodegradable nature of the materials makes this interfacial evaporator a great 

candidate for solar steam generation, water distillation in resource-limited regions around the 

world.  
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4.3 Experimental Section 

Preparation of PDA/BNC: Gluconacetobacter hansenii (ATCC®53582) was cultured in test 

tubes containing 16 ml of #1765 medium at 30 °C under shaking at 250 rpm.  The #1765 medium 

is composed of 2% (w/v) glucose, 0.5% (w/v) yeast extract, 0.5% (w/v) peptone, 0.27% (w/v) 

disodium phosphate, and 0.5% (w/v) citric acid.  Polydopamine (PDA) particles were prepared 

using a method reported by Lu and co-workers.251 To synthesize PDA particles with the size of 1 

µm, ammonia solution (NH4OH, 0.14 ml, 28-30%) was mixed with 31.5 ml of nanopure water (18 

MΩ·cm) and 14 ml of ethanol and the above mixture was shaken for 30 minutes.  Dopamine 

hydrochloride solution (3.5 ml, 0.05 g ml-1) was added into the above solution and then transferred 

to a petridish.  After 30 hours of mild shaking at room temperature, the PDA particles were 

collected by centrifugation (7000 rpm, 20 min) and washed with water for three times and 

dispersed in nanopure water (40 ml).  Bacterial culture solution (3 ml, incubated 3 days) was added 

to #1765 medium (15 ml) to make a total 18 ml bacterial growth solution.  The solution was 

subsequently transferred to a petridish (diameter: 6 cm) and incubated at room temperature without 

disturbance.  After 5 days, a thick BNC hydrogel (~ 4 mm) was obtained.  PDA particle solution 

described above (40 ml) was centrifuged and dispersed in bacterial growth medium (7 ml) and was 

then added on top of the thick BNC hydrogel.  After 12h, PDA particles precipitated on the BNC 

hydrogel and excess medium was removed.  After another 12 h, a thin layer of PDA/BNC (~ 100 

µm) was formed on top of the prior thick BNC hydrogel. The bilayered hydrogel was then 

harvested and washed in boiling water for 2 hours, then dialyzed in nanopure water for one day. 

The purified PDA/BNC bilayer was then freeze-dried overnight.  For PDA/BNC with bigger size, 

above procedure were simply scaled up and performed in bigger containers.  
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Microstructure Characterization Methods: Scanning electron microscope (SEM) images were 

obtained using a FEI Nova 2300 Field Emission SEM.  Transmission electron microscope (TEM) 

images were obtained using a JEOL JEM-2100F field emission microscopy.  Dynamic light 

scattering (DLS) measurements were performed using Malvern Zetasizer (Nano ZS).  Shimadzu 

UV-1800 spectrophotometer was employed for obtaining UV-vis extinction spectra and 

transmittance spectra.  Reflectance spectra were obtained using a CRAIC micro spectrophotometer 

(QDI 302) coupled to a Leica optical microscope (DM 4000M) with 20× objective in the range of 

450–800 nm with 10 accumulations and 100 ms exposure time in reflection mode. Raman spectra 

were obtained using a Renishaw inVia confocal Raman spectrometer mounted on a Leica 

microscope with 20 x objective and 785 nm wavelength diode laser as an illumination source.  

Thermogravimetric analysis (TGA) was performed using TA Instruments Q5000 IR 

Thermogravimetric Analyzer in air (at rate of 5 °C min-1). 

Thermal conductivity measurements of wet/dry PDA/BNC: The thermal conductivities of 

wet/dry PDA/BNC were measured by sandwiching the material between two glass microscope 

slides.  The sandwich was placed between a hot plate and a glass slide with ice on top.  The 

temperature distribution across the thickness was monitored by an IR camera (ICI 7320 USB 

camera).  The emissivity coefficient of a glass slide and a sample was assumed to be 0.9 to obtain 

the temperature distribution.  Fourier equation was used to calculate the thermal conductivity of 

each sample: 147 

𝑞ᇱ = 𝐾
∆𝑇

∆𝑋
 

The heat flux (q´) was calculated by assuming the thermal conductivity (K) of 1.05 W m-1 K-1 for 

glass slides.  Because the glass slide and samples experience the same heat flux, the heat flux value 

obtained for glass slide was used to measure the thermal conductivity for PDA/BNC samples. 
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Solar steam generation experiment: In a typical test, a circular bilayer of PDA/BNC with 3 cm 

diameter and 2.1 mm thickness was floated on water in a 100-ml beaker.  The solar beam from a 

solar simulator (Newport 66921 Arc Lamp) was directly or concentrated using a magnifying lens 

illuminated onto the PDA/BNC.  The power density of the solar beam on the sample surface was 

controlled to be 1 and 3 kW m-2.  Each sample was illuminated for 45 min and the weight loss over 

the entire duration was recorded.  For the cycling experiments, a 1 cm x 1 cm sample with 4 mm 

thickness floating on water in a plastic cuvette with dimensions of 12.5 mm (W) × 12.5 mm (D) × 

49 mm (H) was used. The power density of the solar beam at the sample surface for cycling was 

controlled to be 7 kW m-2 (7 sun) for 15 min illumination duration. The temperature was measured 

using an IR camera and the weight change from evaporation was measured using an electronic 

mass balance with an accuracy of 0.1 mg.  It is assumed that the steam was generated at 100 °C.  

The evaporation efficiency (𝜂) is given by: 205 

 𝜂 =
𝑚̇ℎ௅௏

𝐼
 

Where 𝜂 is evaporation efficiency, 𝑚̇ is the evaporation rate, ℎ௅௏ is the total enthalpy of sensible 

heat (294 J g-1, from 25 °C to 100 °C with specific heat 4.2 J g-1 K-1) and phase change of liquid 

to water (2256 J g-1), and 𝐼 is the incident illumination power density. 

4.4 Results and Discussion 

4.41 The fabrication of PDA/BNC and Characterizations of PDA particles and PDA/BNC 

The fabrication of interfacial solar steam generator (called PDA/BNC henceforth) with desired 

size and shape involves a two-step BNC growth under aerobic and static growth conditions (Figure 

4.1 and see experimental details).  PDA particles were obtained using a method reported by Lu 

and co-workers through oxidation and self-polymerization of dopamine monomers in a mixture of 
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water, ethanol and ammonia at room temperature.251  The size of PDA particles, which alters the 

optical properties, can be easily tuned by varying the ratio of ammonia to dopamine monomers.  

The size of the PDA particles was optimized to efficiently trap PDA particles within the BNC fiber 

matrix and to ensure significant overlap between the optical absorption of the PDA particles and 

the solar spectrum in the visible and near infrared region (Figure 4.2A).  Transmission electron 

microscopy (TEM) and scanning electron microscopy (SEM) images revealed that the PDA 

particles were spherical in shape with a diameter of ~1 µm (Figure 4.2B and appendix 3, Figure 

S3.1A).  Dynamic light scattering (DLS) also revealed the hydrodynamic size of the PDA particles 

to be ~1 µm (see appendix 3, Figure S3.1B).  Raman spectrum of dopamine monomers showed 

characteristic bands of C-C stretching (724, 948, 1324 and 1422 cm-1), C-O stretching (1290 cm-

1), and C-N stretching (795 cm-1). The Raman spectrum of PDA particles exhibited two broad 

bands (1371 and 1578 cm-1), suggesting catechol deformation. This provides an additional 

confirmation of successful PDA particles synthesis (Figure 4.2C).252-253 

Pristine BNC aerogel exhibited ~ 98% porosity, ultralow density (~20 kg m-3) and extremely large 

specific surface area (Figure 4.2D).13, 147   Furthermore, BNC aerogel forms a highly open 

microporous non-woven 3D network of cellulose nanofibrils (diameter of 20-100 nm) with highly 

abundant hydroxyl groups, promoting high hydrophilicity (Figure 4.2E, F).  Thus, the highly 

porous and hydrophilic nature of the BNC aerogel facilitates the transport of water to the 

evaporative surface, making it as an ideal supporting material for an interfacial solar steam 

generator.  The bilayered structure of PDA/BNC was achieved by growing a thin BNC layer (~ 

100 µm) with PDA particles (as a photothermally active layer) on top of a thick pristine BNC 

hydrogel (~ 4 mm, as a heat insulation and water transport layer) (Figure 4.2G).  As the bacteria 

produce a dense entangled layer of cellulose fiber network at the air/bacteria-growth medium 
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interface, the high density of PDA particles can be loaded within the top layer, which is evident in 

the surface and cross-sectional SEM images (Figure 4.2H, I).  A cross-sectional SEM image also 

shows the sharp interface between the PDA-loaded and pristine BNC layers.  Thermogravimetric 

analysis (TGA) determined that the loading of PDA particles to be around 43 % (appendix 3, 

Figure S3.2). 

4.42 Optical and Thermal Properties of PDA/BNC 

To evaluate the light absorption properties of PDA/BNC, we measured the optical transmittance 

and reflectance of BNC and PDA/BNC.  Pristine BNC hydrogel (~ 4 mm) showed high 

transmittance (~ 80%) and reflectance (~ 4.8%) in the visible region, which translates to relatively 

small light extinction (~ 15.2%) (Figure 4.3A).  On the other hand, the PDA/BNC hydrogel (with 

thickness of ~ 4.1 mm) exhibited extremely small optical transmittance (~ 1.2%) and reflectance 

(~ 0.96%) in the visible region, indicating a large optical extinction (~ 98%) of the bilayer (Figure 

4.3B).  The large light extinction of the PDA/BNC results from the light absorption corresponding 

to the densely loaded PDA particles and the light scattering from the nanoscale cellulose fibers, 

which increases the optical path length within the bilayer.  Such large optical extinction of the 

bilayer structures combined with the excellent photothermal activity of PDA particles makes 

PDA/BNC a highly promising candidate for the interfacial solar steam generation.   

As mentioned above, one of the most intriguing properties of PDA is its strong adhesion to a broad 

range of materials with widely different surface chemistries.243  Hence, it is natural to imagine that 

PDA coating on BNC via self-polymerization under oxidative condition is a facile strategy for 

achieving PDA/BNC interfacial solar evaporator.  However, even after five polymerization cycles 

(each for over 12 hours), the PDA/BNC hydrogel exhibited significantly lower light extinction (~ 

87 %) than PDA-filled BNC (~ 98%) described above (appendix 3, Figure S3.3).    The coating 
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process via polymerization results in only a thin layer of PDA on the nanofibers of the highly 

porous BNC.  The significantly lower amount of PDA in the PDA-coated BNC compared to that 

in PDA particle-filled BNC results in the significantly lower light extinction of the former 

compared to the latter. This observation further underscores the importance of loading PDA 

particles with optimal optical properties (absorption matching solar spectrum) into the BNC matrix 

via an in situ growth strategy. 

As the thermal conductivity of interfacial solar evaporator plays a key role in confining the heat to 

the evaporative surface, we investigated the thermal conductivity of the PDA/BNC under both dry 

and wet conditions considering that the PDA/BNC is in a semi-wet state during solar steam 

generation.  PDA/BNC samples were sandwiched between two glass slides maintained at different 

temperatures at both ends.  The gradient in the temperature along the thickness of samples was 

observed using an IR camera (insets of Figure 4.3C, D).  The thermal conductivity of dry 

PDA/BNC (0.037 W m-1 K-1) is just slightly higher than air (Figure 4.3C).  The low thermal 

conductivity of dry PDA/BNC owes to the large porosity (i.e. filled with air pockets with a thermal 

conductivity of 0.024 W m-1 K-1 at room temperature) of the structure.  On the other hand, wet 

PDA/BNC exhibited a thermal conductivity (0.442 W m-1 K-1) lower than water (0.600 W m-1 K-

1 at room temperature) (Figure 4.3D).  The low thermal conductivity of wet PDA/BNC results 

from the low thermal conductivity of bulk BNC layer and nanocellulose fibers surrounding PDA 

particles, which serve as thermal insulators.  Thus, the semi-wet PDA/BNC can significantly 

reduce the heat transferred from the evaporative surface to bulk water.  Therefore, the low thermal 

conductivity of PDA/BNC confines the photothermal heat close to the evaporative surface by 

minimizing the heat transfer (loss) to bulk water and improves the overall efficiency of the solar 

steam generation.   
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4.43 Solar Steam Generation Performance of PDA/BNC 

Now we turn our attention to the solar steam generation performance of the PDA/BNC under 1 

kW m-2 (~ one sun) and 3 kW m-2 (~ three sun).  IR imaging was employed to monitor the 

temperature rise in the PDA/BNC floated at air/water interface upon irradiation with a simulated 

solar beam (power density of 1 kW m-2 or 3 kW m-2).  Upon irradiation (3 kW m-2), the temperature 

of the PDA/BNC rapidly increased from room temperature (25 °C) to ~ 43 °C in the case of 1 kW 

m-2 irradiation and to ~ 72 °C (Figure 4.4A, B).  On the other hand, the temperature rise of water 

in the absence of PDA/BNC layer was found to be significantly smaller (2-4 °C).  The large rise 

in temperature of PDA/BNC film under 3 kW m-2 illumination resulted in the appearance of steam 

above the 100-mL beaker, evidencing the rapid evaporation of water (Figure 4.4A).  

The efficiency of the PDA/BNC interfacial evaporator was quantified by measuring the weight 

loss (due to water evaporation) as a function of irradiation time (all tests were performed for 45 

min).  The cumulative weight loss was found to increase linearly with irradiation time (Figure 

4.4C).  Under one sun irradiation, the evaporation rate was found to be 1.13 kg m-2 h-1.  On the 

other hand, in the absence of the PDA/BNC steam generator, the evaporation rate of water under 

identical irradiation was only 0.46 kg m-2 h-1, which is around 2.45 times lower than that of the 

PDA/BNC.  Similarly, the steady state evaporation rate under 3 kW m-2 with PDA/BNC is 3.47 kg 

m-2 h-1, 2.4 times higher than unaided water.  Without considering the losses involved in the test 

setup, such as reflection and surface radiation, the evaporation efficiency of PDA/BNC was 

calculated to be 78% under one sun, which is comparable to other reported evaporators that rely 

on potentially toxic carbon nanomaterials.232, 254-255  The evaporation efficiency of unaided water 

is only 32% due to the poor photothermal conversion and the large energy loss associated with 

bulk water heating.  With increasing solar power density, the evaporation efficiency also increased, 
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reaching 82% under 3 kW m-2 (Figure 4.4D).  We suggest that the excellent steam generation 

efficiency of PDA/BNC owes to the following four factors: (i) tailored absorption of PDA particles, 

which matches with solar spectrum combined with outstanding photothermal conversion 

efficiency; (ii) high density of PDA particles loaded in the top layer of PDA/BNC combined with 

the efficient light scattering enabled by nanocellulose fibers, which greatly increase the optical 

path length and light absorption; (iii) low thermal conductivity of PDA/BNC layer due to BNC 

matrix, which minimizes the heat transfer from the evaporation surface to the bulk water; and (iv) 

open porous structure and hydrophilic nature of BNC aerogel enabling the rapid transport of water 

from bulk to the evaporative surface.   

4.44 Robustness of PDA/BNC 

We then evaluated the robustness of the PDA/BNC foam.  The PDA/BNC is subjected to rigorous 

mechanical agitation and boiling for 2 hours during cleaning procedure to remove the bacteria and 

culture medium residue.  Despite the strong mechanical agitation, PDA/BNC did not exhibit any 

signs of disintegration or loss of PDA particles.  To further test its stability, we subjected 

PDA/BNC to ultrasonic agitation (483 W) for 5 hours and vigorous shaking for 30 days.  Even 

after the vigorous mechanical agitation, the membrane did not exhibit any signs of disintegration 

or loss of PDA particles (Figure 4.5A, left part).  For comparison, we have prepared a PDA/BNC 

composite by depositing PDA particles onto BNC via vacuum filtration method.  After only 15 

min of ultrasonic agitation or shaking, most of the PDA particles detached from BNC, which 

indicates poor stability, highlighting the advantage of using in situ growth strategy to load PDA 

particles (Figure 4.5A, right part).  The robustness of PDA/BNC solar steam generator enables us 

to reuse it multiple times without any noticeable degradation of the structure or steam generation 

ability.  Over 20 cycles of reuse, the steady-state evaporation rate and cumulative weight loss over 
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15 min irradiations (even under a higher power density, 7 kW m-2) was found to exhibit less than 

6% variation (Figure 4.5B). The structure of PDA/BNC evaporator remained unaltered after 

cycling tests (involving around 5 h high temperature solar exposure), which is evident from SEM 

images of the PDA/BNC surface before and after cycling (Figure 4.5C).  TGA results also 

suggested the excellent thermal stability of BNC (up to 280 °C) and PDA (with 58% left up to 800 

°C) (appendix 3, Figure S3.2).   

4.45 Biodegradability of PDA 

Finally, we turn our attention to the biodegradability of the solar steam generator.   As mentioned 

above, both BNC and PDA are well-known biocompatible and biodegradable materials.  

Numerous reports in the past have demonstrated the enzymatic degradation of BNC.256-262  

However, very limited amount of work has addressed the enzymatic degradation of PDA and PDA 

microparticles.244  It has been shown that natural occurring melanin can be degraded by microbial 

species due to the presence of melanin-degrading enzymes, such as manganese peroxidase, lignin 

peroxidase and laccase.263-266 Considering the structural similarity between eumelanin and PDA, 

we employed laccase to demonstrate the enzymatic degradation of PDA particles. After subjecting 

PDA particles to an extremely high enzymatic concentration (50 mg/mL, 0.5 U/mg) for 48 hours 

(accelerated testing), the colour of the PDA solution faded, indicating the enzymatic degradation 

of PDA (Figure 4.6A).  UV-vis spectra of pristine PDA particles showed a strong absorbance band 

around 700 nm. On the other hand, laccase-treated PDA solution exhibited a broad and 

significantly weaker absorbance band around 550 nm (Figure 4.6B).  The weak absorbance band 

corresponds to the residue PDA particles with significantly smaller size.  The biodegradation of 

the PDA particles is also evident from SEM images obtained before and after exposing them to 

the enzyme (Figure 4.6C, D).  It should be noted that the biodegradation tests demonstrated above 
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are highly accelerated by using high enzyme concentration.  In reality, degradation timescales are 

expected to be much longer than the life-time of the photothermal evaporator.  Furthermore, the 

high temperature at the surface of the solar steam generator can kill microorganisms, which will 

prolong the biodegradation time. 

4.5 Conclusions 

In summary, we have demonstrated a flexible, scalable and, more importantly, completely 

biodegradable photothermal evaporator for highly efficient solar steam generation.  The 

PDA/BNC bilayered evaporator was achieved by high density loading PDA particles within a BNC 

hydrogel during its growth.  The size of the PDA particles could be independently tailored to 

achieve light absorption properties matching the solar spectrum.  Owing to its large light 

absorption, outstanding photothermal conversion, heat localization, and efficient water 

transportation, the PDA/BNC bilayer foams exhibited excellent solar steam generation 

performance under one sun (efficiency of ~78%).  The material platform introduced here is 

completely biodegradable and highly environmentally-friendly, while not compromising the solar 

steam generation efficiency.  Ultimately, the novel material and process introduced here can be a 

sustainable solution to alleviate global water crisis.      

4.6 Supporting Information 

Supporting Information for chapter 4 is provided in appendix 3. 
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4.7 Figures 

 

Figure 4.1. (A) Schematic illustration depicting the fabrication of bilayered PDA/BNC. (B) Photographs 

showing PDA/BNC hydrogel with tunable sizes and shapes. 

A 

B 
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Figure 4.2. Characterizations of PDA particles and PDA/BNC. (A) Vis-NIR extinction spectra of PDA 

particles with varying sizes (inset is the photograph of PDA particles solution). (B) TEM images of the 

PDA particles. (C) Raman spectra of Dopamine and PDA. Optical image (D) and SEM images of (E) 

surface (inset is the image of higher resolution) and cross-section (F) of a pristine BNC foam. Optical image 

(G) and SEM images of (H) surface (inset is the image of higher magnification) and cross-section (I) of a 

PDA/BNC foam. 
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Figure 4.3. Optical and thermal properties of PDA/BNC. Transmittance and reflectance spectra of (A) BNC 

hydrogel and (B) PDA/BNC hydrogel. Thermal conductivities of (C) dry BNC/PDA foam and (D) wet 

PDA/BNC hydrogel. Insets: Representative IR images showing the temperature gradient along the 

thickness of the samples. 
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65 
 

 

Figure 4.4. Solar steam generation performance of PDA/BNC. (A) IR images of water under 1 kW m-2 solar 

irradiation, PDA/BNC under 1 kW m-2 and 3 kW m-2 solar irradiation and optical image, showing visible 

steam generation under 3 kW m-2. (B) Surface temperatures of water and PDA/BNC foam under 1, 3 kW 

m-2 irradiations. (C) Plot showing the cumulative weight losses through water evaporation of water and 

PDA/BNC foam under different solar irradiations. (D) Steam generation efficiencies of water and 

PDA/BNC foam under different solar irradiations. 
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Figure 4.5. Stability of PDA/BNC. (A) Optical images of PDA/BNC foam achieved via in situ growth and 

vacuum filtration that have been subjected to sonication and shaking for extended duration. (B) Cycling 

solar steam generation tests under 7 kW m-2 solar irradiation for 15 min over 20 cycles. (C) High-resolution 

SEM images of the PDA/BNC surface before and after 20 cycles of solar steam generation depicting the 

intact structure of the PDA/BNC foam.  
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Figure 4.6. Biodegradability of PDA. (A) Optical images showing the pristine PDA and laccase-treated 

PDA solution.  (B) Vis-NIR extinction spectra of pristine, laccase-treated PDA solution.  SEM images of 

(C) pristine PDA and (D) laccase-treated PDA solutions. 
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Chapter 5: Biofouling-resistant, photothermally-active 

Ultrafiltration Membrane 

5.1 Abstract 

By severely decreasing water flux and driving up operational costs, biofouling poses one of the 

most serious challenges to membrane technologies. Here, we introduce a novel anti-biofouling 

ultrafiltration membrane based on reduced graphene oxide (RGO) and bacterial nanocellulose 

(BNC), which incorporates GO flakes into BNC in situ during its growth. In contrast to previously 

reported GO-based membranes for water treatment, the RGO/BNC membrane exhibited excellent 

aqueous stability under environmentally relevant pH conditions, vigorous mechanical 

agitation/sonication, and even high pressure. Importantly, due to its excellent photothermal 

properties, under light illumination, the membrane exhibited effective bactericidal activity, 

obviating the need for any treatment of the feed water or external energy.  The novel design and 

in situ incorporation of the membranes developed in this study present a proof-of-concept for 

realizing new highly efficient and environmental-friendly anti-biofouling membranes for water 

purification.  

5.2 Introduction 

Water scarcity is recognized as one of the most critical global challenges in the 21st century.39-41  

In response to this dire need, various membrane technologies are being actively investigated for 

water purification and reclamation.51-53 However, fouling and consequent degradation of 

membranes during performance still remain a ubiquitous problem.54  The three major fouling 

mechanisms, mineral scaling, organic fouling, and biofouling, all lead to a decline in water flux.55  
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Among them, biofouling, accounting for more than 45% of all membrane fouling, is the Achilles 

heel of the technologies, due to the difficulty of completely removing microorganisms.56-58    

To inhibit the formation of biofilm, various biofouling controlling strategies, such as adjusting pH, 

adding disinfectants and biocides, and introducing quorum sensing molecules, have been 

suggested.59-62  However, most of these strategies introduce considerable operational costs and/or 

potential hazardous contaminants.59  Researchers have also investigated the incorporation of 

nanomaterials (e.g., silver nanoparticles, TiO2 nanoparticles, and graphene oxide nanosheets), 

polymers (e.g., polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, and zwitterionic 

polymers), and other materials (e.g., small organic molecules and biomacromolecules) to engineer 

fouling-resistant membrane surfaces that can reduce biofilm growth and inactivate bacteria.55, 63-68  

However, most of these methods involve additional thermal or chemical treatment steps.  

Furthermore, most of the above techniques are effective for only a short period of time, because 

biofilm gradually adapts to imposed harsh environments.56  Even if 99.9% of biofilm is removed, 

the residual cells are sufficient to grow back and form a new biofilm. Highly efficient and cost-

effective methods that overcome biofouling on water purification membranes over a long period 

of time would immediately help meet the grand challenge of providing access to clean water. 

The photothermal effect of materials can offer a unique solution to biofouling, obviating the need 

for harsh chemical treatments to achieve bacterial lysis. Photothermally-active materials can 

effectively absorb light and then convert it into heat. In our recent study, gold nanostars grown on 

graphene oxide (GO) flakes coating a commercial membrane were utilized as nanoheaters.68 In the 

study, with laser irradiation, the photothermal properties of the gold nanostars and GO were 

utilized to quickly kill adjacent Escherichia coli bacteria, inhibiting the formation of biofilm on 

reverse osmosis membranes. While this study provided a promising example of utilizing the 
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photothermal effect to minimize biofouling on membranes, it would be even more beneficial if the 

membrane itself were comprised of photothermal materials. 

GO has been recognized as efficient photothermal material because the closely spaced energy level 

from loosely bonded π electrons absorb the broad electromagnetic spectrum.267-269 The absorbed 

light energy excites electrons, and its electron relaxes to ground state through non-radiative decay, 

releasing the energy by heat.267-269 In addition to having an intriguing photothermal property, GO 

has frequently been employed as a membrane component owing to its excellent mechanical 

strength, facile synthesis, and ease of attachment by vacuum filtration, spin-coating, and drop-

casting.45-48 In contrast to graphene flakes, which have a strong tendency to stack and aggregate in 

aqueous solutions, GO flakes are easily dispersed, making the membrane preparation process 

easier in aqueous media.270-271 This dispersibility comes from rich oxygen-containing functional 

groups (carboxyl, epoxy, hydroxyl, and carbonyl groups).49 However, the stability of current GO-

based membranes is compromised by vigorous agitation, and pH and ionic strength variations that 

are within the typical range of feed waters.50  Thus, there is a need to develop new scalable 

approaches to fabricate stable GO-based membranes. 

Bacterial nanocellulose (BNC) is a highly pure cellulose produced by bacteria with low-molecular 

weight sugar as a food source. Through a series of biochemical steps, the bacteria form exterior 

cellulose nanofibers in aqueous cultures, and these fibers become entangled to form a 3D network 

hydrogel.3  Similar to other cellulose nanofibers and cellulose nanocrystals (CNC), BNC is highly 

attractive for membrane technologies in view of its excellent mechanical properties, tunable 

porosity, chemical functionalizability, easy synthesis, high scalability, and most important, low 

environmental impact.250 Therefore, BNC is a promising material for fabricating functional 
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composites through in situ growth or by adsorption of pre-synthesized nanostructures on the 

nanoscale cellulose fibers.11-20   

Here, we demonstrate a novel and facile approach for fabricating an anti-biofouling ultrafiltration 

membrane, involving in situ incorporation of GO flakes into BNC during its growth. The reduced 

graphene oxide (RGO) incorporated BNC membrane not only exhibited outstanding mechanical 

and chemical stability under environmentally-relevant pH conditions and vigorous mechanical 

agitation/sonication, but also showed stable water flux under high pressure.  Particularly, owing to 

its photothermal properties, the membrane exhibited light-enabled bactericidal activity, avoiding 

the need for any treatment of the feed water or any external energy. The novel design and 

preparation method introduced here are suggested the first steps toward realizing highly efficient, 

environmental-friendly, and biofouling-resistant membranes for water purification. 

5.3 Experimental Section 

Fabrication of RGO/BNC membranes. Gluconacetobacter hansenii (ATCC®53582) was 

employed to synthesize the cellulose nanofibers. To produce a dense bacterial suspension, the 

bacteria were cultured in test tubes containing 16 ml of #1765 medium at 30 °C for 3 days under 

shaking at 250 rpm. The #1765 growth medium is composed of 2% (w/v) glucose, 0.5% (w/v) 

yeast extract, 0.5% (w/v) peptone, 0.27% (w/v) disodium phosphate, and 0.5% (w/v) citric acid. 

To synthesize GO, we employed an efficient oxidation process, reported by Tour and co-

workers.202 For in situ incorporation of GO sheets in a BNC membrane, GO solution (150 mL of 

0.0725wt%) was sonicated (2 hours), centrifuged, re-dispersed in #1765 medium, and then 

centrifuged again to concentrate a wet mixture of GO and medium after supernatant was decanted. 

Then the densely cultured Gluconacetobacter hansenii suspension was added to the GO/medium 

wet mixture, making a total of 150 ml with 0.0725 wt% GO contents.  The solution was 
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subsequently transferred to a Pyrex bakeware dish (18 cm ×  18 cm) and incubated at room 

temperature without disturbance.  After 2 days, a thin hydrogel of GO/BNC had formed, and it 

was harvested from the bakeware for cleaning. To remove the residual bacteria and growth 

medium, the hydrogel was boiled in 2.5 L of 0.1 M NaOH aqueous solution for 2 h. The obtained 

RGO/BNC hydrogel was then dialyzed in de-ionized water for 1 day. The purified RGO/BNC 

hydrogel was dried to obtain an RGO/BNC membrane. 

Microstructure characterization and property measurements. Scanning electron microscopy 

(SEM, FEI Nova 2300 Field Emission SEM at an accelerating voltage of 10 kV) provided micron-

scale images of RGO/BNC and pristine BNC.  Atomic force microscopy (AFM) images were 

obtained for determining the thickness of GO flakes, using a Dimension 3000 (Bruker Inc.) 

instrument in light tapping mode. To investigate the relative oxygen and carbon ratio of GO and 

RGO flakes, carbon 1s peak was analyzed by X-ray photoelectron spectroscopy (XPS, a Physical 

Electronics® 5000 VersaProbe II Scanning ESCA Microprobe). The pore size distribution of 

RGO/BNC membranes was measured by the Brunauer-Emmett-Teller (BET) method using an 

Autosorb-1C (AX1C-MP-LP) at 298 K. 

Stability tests of RGO/BNC membrane. To study the stability of the RGO/BNC membrane, we 

placed it in Petri dishes filled with solutions at pH 4, 7, and 9 and sonicated them for 5 hours. The 

pH values were chosen because they occur in many natural and engineering aqueous systems.272 

Subsequently, the release of RGO from the membrane was quantified from the UV-Vis absorbance 

spectra (Shimadzu UV-1800 spectrophotometer, 400 nm to 1000 nm) of the solutions. SEM was 

used to monitor the surface morphologies of the RGO/BNC film after sonication.  To study the 

mass change of RGO/BNC membrane before and after sonication, thermo-gravimetric analysis 
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(TGA) was performed using a TA Instruments Q5000 IR Thermogravimetric Analyzer in air (at 

rate of 5 °C/min).   

Because the GO membranes were frequently prepared by vacuum filtration, we made two 

types of control samples for comparison.46-48  First, a similar amount of base-washed RGO flakes 

was deposited on top of a BNC hydrogel, using the vacuum-assisted method, and dried to obtain 

a dry film. Second, BNC dispersions were pre-mixed with GO solutions and were then filtered to 

make membranes. Both control membranes were subjected to the same aqueous stability tests as 

the RGO/BNC membrane (appendix 4, Figure S4.1). 

Evaluation of mass transport performance of RGO/BNC membranes. The mass transport 

performance of RGO/BNC membranes was evaluated by using a side-by-side diffusion cell system. 

An RGO/BNC membrane was first mounted between the two cells (Adams & Chittenden 

Scientific Glass, 5 mL volume).  Then, ethanol and water were used to rinse the membrane several 

times to avoid subsequent air bubble formation. To test diffusion-driven transport through an 

RGO/BNC membrane, 0.5 mM of rhodamine 6G (R6G, ~ 1 nm, 479 Da) and lysozyme (3.8–4 nm, 

14300 Da) were used. R6G is cationic dye, thus it is positively charged.273 The isoelectric points 

for lysozyme are 10.5, and its pH value at 0.5 mM concentration is 3.53, indicating that lysozyme 

is positively charged under our experimental condition.274 The solute was introduced on the feed 

side, while the dialysate side was just DI water.  Solutions in both cells were subjected to vigorous 

stirring to minimize concentration polarization effects close to the membrane. The diffusing 

concentration of the solute was monitored in the wavelength range of 300−700 nm, using a 

Shimadzu UV-1800 spectrometer. For replicates, we utilized the RGO/BNC membranes grown in 

independent batches, and diffusion tests were conducted with three replicates. 
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Ultrafiltration efficiency and flux tests. The water fluxes of the RGO/BNC membrane and 

commercial ultrafiltration membrane (YMGESP3001, GE) were tested using a benchtop cross-

flow system, and then compared those permeate flux. The commercial ultrafiltration membrane, 

used for comparison, was designed for pre-treatment, dye reduction, and purification with 1,000 

Dalton cut-off sizes. The benchtop cross-flow system included a crossflow membrane cell 

(CF042D, Sterlitech Corp.) and a Hydracell pump (M03S, Wanner Engineering, Inc). During the 

measurement of the permeate flux, we set the pressure and the feed flux at 100 psi and 0.66 L/min, 

with 25 °C water. For replicates, we utilized the RGO/BNC membranes grown in independent 

batches and measured the water fluxes with three replicates. Furthermore, gold nanoparticles 

(AuNPs) with a diameter around 5 nm were synthesized using the seed-mediated growth 

method,275  and their size distribution was determined from TEM images. AuNP solutions were 

then filtered by RGO/BNC membranes, using above cross-flow system under 100 psi.  Before and 

after filtration, AuNP concentrations in filtration/permeate solutions were measured by UV-Vis 

spectrometry (400 nm to 1000 nm).  The rejection rate (RR) was calculated using the equation 

below: 

𝑅𝑅 =
ா೑

ா೛
× 100, 

where 𝐸௙  is the optical extinction of the feed solution, and 𝐸௣  is the optical extinction of the 

permeate solution. 

Photothermal and bactericidal performance of RGO/BNC membranes under illumination. 

The Photothermal performance of the membranes was tested using a solar simulator (Newport 

66921, Arc Lamp).  Both the RGO/BNC membrane and BNC membrane were illuminated at a 

power density of 2.9 kW/m2 for 180 sec.  The temperature map of the surface of both membranes 

under water was monitored by an IR camera. To test bactericidal activity, MG 1655 E. coli was 
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grown in Luria-Bertani liquid medium at 37 °C.  All cultures were in 125 mL baffled shake flasks 

(25 mL working volume, shaking at 225 rpm). Cells in log phase (>108 live cells/ mL) were 

harvested after 12 h of incubation and then used for bactericidal tests. A layer of MG 1655 E. coli 

biofilm was grown on the RGO/BNC and BNC membrane surfaces, and then exposed to simulated 

sunlight for 180 secs at 2.9 kW/m2. Before/after light illumination, the biofilms were exposed to 

fluorescent dyes (Molecular Probes Live/Dead Bacterial cell viability kit) for 30 min, and then 

imaged under a Leica microscope to identify live (blue fluorescent filter, 340-380 nm) and dead 

(green fluorescent filter, 450-490 nm) cells.276 

5.4 Results and Discussion 

5.41 The fabrication of RGO/BNC membrane 

The RGO/BNC membranes were fabricated by in situ incorporation of GO flakes within the BNC 

network via bacteria-mediated growth under aerobic and static conditions (Figure 5.1). To 

determine the average thickness of synthesized GO flakes, they were deposited on a silicon 

substrate and measured with AFM. The thicknesses were ~ 1.0 ± 0.2 nm, corresponding to a bilayer 

of GO (the thickness of a monolayer is ~ 0.7 nm ) (Figure 5.2A).206 After washing, GO flakes were 

dispersed in broth solution with bacteria at an optimized concentration to achieve a desired BNC 

growth rate (Figure 5.1A). The GO dispersed solution was left undisturbed under ambient 

conditions to obtain GO/BNC hydrogels. To remove bacteria and residual broth solution from in 

situ grown GO/BNC hydrogel, it was immersed in NaOH solution (0.1 M) at boiling temperature, 

which partially reduced the GO flakes (discussed in detail below). The cleaned RGO/BNC 

hydrogel was dried to obtain a large, robust RGO/BNC membrane (Figure 5.1B).  
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5.42 Chemical Composition and Ultrastructure of RGO/BNC Membrane 

To understand the chemical reduction of GO during cleaning, GO flakes were added to a boiling 

temperature 0.1 M NaOH solution, which turned uniformly distributed GO particles into black 

aggregated particles, indicating the partial reduction and restacking of the RGO. To confirm the 

reduction of GO after exposure to the basic solution, X-ray photoelectron spectroscopy (XPS) was 

utilized (Figure 5.2B, 2C). The high resolution 1s spectra of carbon were obtained and were 

deconvoluted into three peaks, corresponding one sp2 domain (C=C with a binding energy of 284.6 

eV) and two oxidized sp3 domains (C–O with a binding energy of 286.6 eV, and C=O with a 

binding energy of 288.2 eV).212  The relative carbon and oxygen ratio was calculated based on the 

peak area, and this ratio was utilized to estimate the reduction extent of GO. For synthesized GO, 

the C/O ratio was 1.7, suggesting that ~ 58% of the GO surface was oxidized (Figure 5.2B). After 

an extensive base wash, the C/O ratio increased to 4.6, indicating that ~37% of the oxygen 

functional groups were reduced (Figure 5.2C). This result confirms that base washing to kill 

residual bacteria also reduces GO flakes in the BNC matrix. 

In the absence of GO flakes, bacteria-mediated growth results in a white,  translucent BNC 

membrane with outstanding flexibility and mechanical strength (Figure 5.2D).201  Because 

bacteria-mediated synthesis of nanocellulose requires oxygen, a dense network of nanocellulose 

fibers (20 –100 nm in diameter) forms near the air/liquid interface, where abundant oxygen is 

available (Figure 5.2E).  As the oxygen diffuses deeper into the medium, the first dense layer sinks, 

and makes way for the formation of subsequent BNC layers, which, upon sinking, stack together 

to form a 3D BNC network.3, 20  Due to this “layer-by-layer” formation, the cellulose nanofibrils 

are preferentially oriented parallel to the surface (i.e., normal to the thickness) of the membrane, 

which results in denser physical entanglements of the cellulose nanofibers parallel to the surface 
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(Figure 5.2F). To form RGO/BNC membranes, GO flakes were added during in situ growth, and 

a subsequent base washing process was conducted (Figure 5.2G). Compared to pristine BNC 

membrane, the RGO/BNC membrane is smoother and has fewer fibrils protruding from the surface, 

due to the presence of 2D RGO sheets (Figure 5.2H).  Cross-sectional SEM images showed that 

the membrane was ~8 µm thick (Figure 5.2I).  The images also show the embedded RGO flakes 

between BNC layers due to the “layered” formation of BNC, starting from the liquid/air interface 

as described above (Figure 5.2I). 

5.43 Stability of RGO/BNC Membrane 

To investigate the mechanical and chemical stability of the membrane, we exposed it to ultrasonic 

agitation (483 W, 8892, Cole-Parmer) for 5 hours in solutions at pH 4, 7, and 9 (appendix 4, Figure 

S4.1).  Even after this vigorous mechanical agitation at environmentally-relevant pH conditions, 

the membrane did not exhibit any signs of disintegration or loss of RGO flakes (Figure 5.3A and 

its inset).  This result was further supported by SEM images of the membrane surface, which did 

not show a discernable change in the morphology after sonication (Figure 5.3B).  Then, to evaluate 

the thermal stability of the RGO/BNC membrane, thermogravimetric analysis was conducted. The 

membrane showed a first mass loss of ~2 wt.% at ~100 °C, due to the loss of absorbed water. A 

second mass loss of ~3 wt.% at ~200 °C was attributed to the decomposition of functional groups 

of GO.204 A third mass loss of ~46 wt.% began at 280°C, and was due to the degradation of 

cellulose. A fourth mass loss (~49 wt.%) at 390 °C was attributable to the continued decomposition 

of cellulose residual and sublimation or burning of damaged graphitic regions.203 Based on the 

mass loss profiles of the RGO/BNC membrane, RGO, and pristine BNC membrane, the mass 

loading of RGO in RGO/BNC was calculated to be ~45 wt.%, and it suggested excellent thermal 

stability of the RGO/BNC membrane up to 200 °C. The RGO/BNC membrane after ultrasonic 
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treatment also showed an identical mass loss profile, implying that the embedded RGO flakes 

within the BNC matrix remained intact (Figure 5.3C). 

As mentioned above, GO-based membranes have been extensively investigated in the past several 

years.  Most of these membranes were fabricated by vacuum filtration of GO flakes onto a 

supporting membrane, but this coating method always leaves doubt about its long-term aqueous 

stability.50 Here, we compared the mechanical stability of in situ embedded  RGO/BNC with that 

of an RGO/BNC membrane prepared by depositing RGO particles (base-washed) on top of a BNC 

membrane using vacuum filtration.  After 5 h of ultrasonic agitation in solutions at pH 4, 7, and 9, 

the RGO particles had disintegrated completely, and the solution exhibited broad absorbance, a 

feature of RGO flakes in solution (Figure 5.3D). This disintegration was further confirmed by 

surface SEM images and quantified by TGA. After sonication, the membrane prepared through 

vacuum filtration showed an initial mass loss (~5%) at 100 °C, attributed to absorbed water, and 

the decomposition of cellulose at ~280 °C (~63%) and at ~340 °C (~32%). All of these findings 

indicated the absence of RGO flakes (Figure 5.3F).  

Conventional GO-based membranes rely on hydrogen bonding or metal ion incorporation for 

mechanical stability.  However, mechanical agitation during water filtration or cleaning procedures, 

as well as pH variations in the feed water, can compromise the mechanical stability of these 

membranes (appendix 4, Figure S4.1).  In contrast, in situ RGO/BNC membranes are robust 

because during the BNC growth, plate-like GO particles are physically locked into the layered 

BNC matrices, which provides its excellent mechanical and chemical stability.  Moreover, 

intensive vortexing has been employed to wash used in situ RGO/BNC membrane without 

damaging it (appendix 4, Figure S4.1D).  This finding further suggests the durability of the in situ 

RGO/BNC membrane for practical use. 
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5.44 Mass Transport Performance and Water Flux Tests 

To probe the diffusive transport capability of small molecules across the RGO/BNC membranes, 

we employed a two-cell setup (Figure 5.4A) and tested it with 0.5 mM of two model solute systems, 

having different sizes and molecular weights: rhodamine 6G (R6G, ~ 1 nm, 479 Da) and lysozyme 

(3.8–4 nm, 14300 Da).277 Because ultrafilters have pore sizes between 1 nm to 100 nm, and thus 

remove contaminants via a size exclusion mechanism, these two different solutes helped to 

determine the filtration capability of RGO/BNC membranes.278 A UV-vis spectrometer was used 

to monitor the concentration of model solutes from the feed side to the permeate side (see 

experimental section for details).  For pristine BNC membrane, all two solutes rapidly diffused 

through because the BNC fiber network is composed of micro-scale pores even if the nanofibers 

are densely packed (Figure 5.4B). By contrast, the addition of graphene oxide flakes within the 

matrix completely blocked the diffusion of lysozyme (3.8–4 nm), although R6G (~1 nm) passed 

through (Figure 5.4B).  These results are in accordance with the BET measurements which indicate 

the pore size of the RGO/BNC membrane is around 2.2 nm (radius), which falls into the range of 

ultrafiltration membranes (appendix 4, Figure S4.3).279  

Moreover, the unique mass transport properties of GO-based membranes originate from the 

nanocapillary network formed by lamellar stacking of GO, and the mass-transport behavior can be 

adjusted by tuning functional groups or inserting external species with desired dimensions. 45,48  In 

this work, the presence of bacterial cellulose nanofibers between RGO flakes will lead to an overall 

tortuous network of pores in the membrane, even though no visible pores can be seen in a SEM 

image of the surface of RGO/BNC membranes. 

To further demonstrate the potential of the novel RGO/BNC membrane for an ultrafiltration 

system, we performed flux tests and particle rejection tests using size-controlled gold nanoparticles 
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(AuNPs) via a benchtop cross-flow system (setup diagram in Figure 5.4C). For a particle rejection 

test, spherical gold nanoparticles with diameters of 5.15 ± 0.4 nm were synthesized using the seed-

mediated method.275  The prepared AuNPs showed a very narrow size distribution (RSD < 8 %), 

which made the particle rejection study accurate (appendix 4, Figure S4.2B). The particle rejection 

rates were calculated by measuring the UV-vis extinction spectra of solutions before/after filtration 

through the RGO/BNC membranes (Figure 5.4D). This result suggested that AuNP of 5 nm 

diameter were ~100% rejected (inset of Figure 5.4D). In the same way, the rejection test was also 

performed for a commercial ultrafiltration membrane (pore size of around 1.66 nm), which also 

showed ~ 100% rejection for 5 nm gold nanoparticles (appendix 4, Figure S4.2C). 

Under 100 psi, the RGO/BNC membranes showed higher water fluxes than a commercial 

ultrafiltration (UF) membrane. Because the pore size for both membrane types belongs to the range 

between UF and nanofiltration (NF), we intentionally tested water flux at a higher operating 

pressure than the usual operating pressure for UF (7.3 – 73 psi). Over a five-hour-long flux test 

after stabilization, the water flux of the RGO/BNC membrane was found to be 52.6 ± 2.5 L/m2 h, 

and that of the commercial ultrafiltration membrane was 21.6 ± 0.8 L/m2 h (Figure 5.4E).  

Importantly, the RGO/BNC membrane withstood an operating pressure as high as 100 psi without 

any supporting membrane. This performance emphasized the remarkable mechanical strength of 

RGO/BNC, considering that most of the GO-based membranes reported in the literature require a 

support membrane or a carefully designed apparatus due to their limited mechanical strength.280-

284  

5.45 Photothermal and Bactericidal Performance under Light 

Next, we examined the photothermal and bactericidal ability of the RGO/BNC membrane using a 

Newport 66921 Arc Lamp with a power density of 2.9 kW/m2. We used IR imaging to monitor 
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the temperature profile of the RGO/BNC membrane in an aqueous environment during 

illumination (Figure 5.5B). Upon illumination, the temperatures of the RGO/BNC membrane 

rapidly increased from room temperature (26 °C) to ~60 °C (Figure 5.5C). Specifically, the 

temperature rapidly increased during the first 20 seconds after the onset of irradiation and remained 

constant over the entire duration (120 sec).  In comparison, the pristine BNC membranes showed 

only a small temperature increase (3 °C). The large rise in temperature was caused by the broad 

optical absorption of many RGO flakes arranged within the BNC matrix. Once light was absorbed 

by the RGO flakes, they immediately generated heat, which then dissipated to the surrounding 

water and BNC.20 Due to the decrease of thermal radiation along the distance between IR camera 

and surface (~30 cm), the temperature profile obtained from the IR camera underestimated the 

actual temperature at the surface of the RGO/BNC membrane. Therefore, biological species were 

exposed to temperature higher than ~60 °C.  To demonstrate that the heat generated by light 

exposure will not damage the mass transport and water flux performance of the RGO/BNC 

membrane, we performed BET and water flux tests before and after long duration of light exposure 

(2.9 kW/m2).  Both the pore size distribution and the water flux performance of RGO/BNC 

membrane remained the same after light exposure (appendix 4, Figure S4.3, S4.4).  

To test the bactericidal ability, the RGO/BNC membrane was covered with stained E. coli bacteria 

from a live/dead cell viability assay, and then light was shined on the membrane surface. Before 

irradiation, both RGO/BNC and pristine BNC membranes showed substantial and well distributed 

green fluorescence, corresponding to live bacteria, and no sign of red fluorescence, indicating the 

absence of dead bacteria (Figure 5.5D).  After irradiation (2.9 kW/m2) for 180 secs, the bacteria 

on the RGO/BNC membrane exhibited predominantly red fluorescence (dead bacteria) and a 

complete visible absence of green fluorescence. However, the E.coli-covered pristine BNC 
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membrane exhibited green fluorescence corresponding to live bacteria, even after irradiation 

(Figure 5.5E). The SEM images showed morphology changes and leakage of bacteria, indicating 

that the high temperature at the RGO/BNC membrane had disrupted the cell walls and cell 

membranes (Figure 5.5F, G). Before light irradiation, live E. coli bacteria on an RGO/BNC 

membrane showed a rod-like structure, while after irradiation they were significantly shrunken 

and wrinkled. Because the cell walls of E. coli are known to deteriorate near 70 °C,285 this change 

implied that upon illumination, the surface of the RGO/BNC membrane had rapidly heated to 

above 70 °C and killed bacteria within a short time (180 sec).  Live E. coli bacteria on an 

RGO/BNC membrane without illumination showed no dead bacteria cells even after 1hour 

exposure, indicating the bactericidal activity of RGO/BNC membrane only occur upon light 

illumination (appendix 4, Figure S4.5).  Here, we demonstrated the excellent bactericidal 

performance of the RGO/BNC membrane in harvesting light, and this capability makes the 

RGO/BNC membrane highly attractive for energy-saving and environmentally-friendly water 

purification applications. 

5.5 Conclusions 

In this study, we presented an innovative approach that uses the photothermal effect of RGO by 

embedding it in BNC structures. This new type of membrane can enhance the stability and 

durability of a membrane and inhibit or delay microorganism growth on its surface. While the 

most contemporary approaches to resisting biofouling rely on temporary chemical treatments, 

combining the photothermal effect with a noble membrane design shows that anti-biofouling can 

be achieved with sustainable and abundant sunlight. 

We note that fully utilizing the photothermal property of RGO/BNC membranes can be 

challenging. A possible implementation involves modifying a spiral-wound module system, as 
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shown in Figure 5A.  The inner and outer surfaces of the membrane modules or feed channel 

spacers can be equipped with low-energy LEDs for illumination, and can potentially be powered 

by renewable energy sources, such as low-cost photovoltaic devices or triboelectric 

nanogenerators (TENGs).286 In TENGs, mechanical energy generated through fluid flow in the UF 

process can be harnessed to produce light and to heat the membrane surface, reducing the overall 

operational expense. In addition to spiral-wound module system, this suggested system can also 

be applied to plate sheet membrane module by adding LED-equipped plates between the 

membrane modules. This would be an exciting future research direction for realizing photothermal 

membrane water filtration. 

The novel fabrication method of incorporating RGO during ‘layer-by-layer’ growth of BNC yields 

a well stacked the structure, with a pore size in the UF membrane range. In addition, BNC 

production is considered eco-friendly because it needs only low-molecular weight sugar and 

oxygen as food sources. 

Until now, many researchers prepared GO membranes through vacuum filtration or spin coating 

without a polymer matrix45-48, but these fabrication methods inevitably raised the mechanical 

stability concerns. However, the RGO/BNC membrane, reported here, exhibits stable water flux 

under 100 psi loading and maintains chemical stability at solution pH varying from 4 to 9. The 

water flux is higher than that of commercial UF membranes under identical pressure. In summary, 

RGO/BNC membrane demonstrated here not only provides a novel anti-biofouling approach 

powered by solar energy, but also suggests a scalable, eco-friendly, and cost-effective way to 

fabricate UF membranes for water purification. 

5.6 Supporting Information 

Supporting Information for chapter 5 is provided in appendix 4. 
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5.7 Figures 

 
Figure 5.1. Fabrication of RGO/BNC membrane. Optical images showing (A) GO in bacterial medium and 

(B) in situ grown RGO/BNC membrane after cleaning and drying.    

B A 
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Figure 5.2. Chemical composition and ultrastructure of RGO/BNC membrane. (A) AFM image of GO 

flakes deposited on a silicon substrate. X-ray photoelectron spectra of (B) pristine and (C) base-washed GO. 

Optical image (D) and SEM images of (E) surface and (F) cross-section of a pristine BNC membrane. 

Optical image (G) and SEM images of (H) surface and (I) cross-section of a RGO/BNC membrane. 
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Figure 5.3. Stability of RGO/BNC membrane. UV-vis absorption spectra of (A RGO/BNC and (D) RGO-coated 

BNC immersed solutions (at pH 7) before and after ultrasonic agitation for 5 h. The insets show the optical images 

of a RGO/BNC membrane and a RGO-coated BNC layer after sonication. SEM images of (B) a RGO/BNC and (E) 

a RGO-coated BNC layer before and after ultrasonic agitation. TGA analyses of (C) a RGO/BNC, (F) a RGO-

coated BNC before and after ultrasonic agitation. 
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Figure 5.4. Mass transport performance and water flux tests. (A) Schematic diagram of a two-cells diffusion 

setup. (B) Diffusion of model solutes through pristine BNC membrane and RGO/BNC membrane. (C) 

Schematic diagram of cross-flow flux test setup. RGO/BNC membranes are placed in between the cross-

flow cell and tightly sealed.  (D) UV-vis extinction spectra indicating the rejection of AuNPs with 5 nm in 

diameter filtered through RGO/BNC membranes (inset is the picture showing feed and permeate solutions).  

(E) Water flux of RGO/BNC membranes (~8 µm thick) and commercial ultrafiltration membranes.  100 

psi was applied for the flux tests.   
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Figure 5.5. Photothermal and bactericidal performance under light. (A) Schematic showing antifouling mechanism 

of RGO/BNC membrane and a possible configuration of spiral wound UF module coupled with LEDs.  (B) IR 

images showing the temperature of the pristine BNC and the RGO/BNC membrane in water under illumination at 

various time points. (C) Plot showing the temperature of pristine BNC and the RGO/BNC membrane in water under 

light of 2.9 kW/m2 as a function of irradiation time. Fluorescence images of E. coli on BNC and RGO/BNC 

membranes (D) before and (E) after irradiation.  SEM images of E. coli on RGO/BNC membranes (F) before and 

(G) after irradiation. 
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Chapter 6: Catalytically-active Bacterial 

Nanocellulose-based Ultrafiltration Membrane 

6.1 Abstract 

Large quantities of highly toxic organic dyes in industrial wastewater is a persistent challenge in 

wastewater treatment processes.  Here, a novel membrane based on bacterial nanocellulose (BNC) 

loaded with graphene oxide (GO) and palladium nanoparticles (PdNPs) for highly efficient 

wastewater treatment is demonstrated.  This Pd/GO/BNC membrane is realized through the in situ 

incorporation of GO flakes into BNC matrix during its growth followed by the in situ formation 

of palladium nanoparticles.  The Pd/GO/BNC membrane exhibits highly efficient methylene 

orange (MO) degradation during filtration (up to 99.3% over a wide range of MO concentrations, 

pH and multiple cycles of reuse).  Multiple contaminants (a cocktail of 4-nitrophenol, methylene 

blue and rhodamine 6G) can also be effectively treated by Pd/GO/BNC membrane simultaneously 

during filtration. Furthermore, the Pd/GO/BNC membrane demonstrates stable flux (33.1 L/m2·h) 

under 58 psi over long duration.   The novel and robust membrane demonstrated here is highly 

scalable and holds a great promise for wastewater treatment.  

6.2 Introduction 

Water contamination caused by chemical and biological species released from industrial and 

agricultural practices is a formidable environmental challenge.51, 69-70  Among all the contaminants 

such as cleaning agents, agricultural chemicals, and noxious microorganisms, organic dyes, which 

are widely employed in textile, leather, cosmetic, pharmaceutical industries, pose significant 

threats to aquatic life and humans due to their carcinogenic and mutagenic nature.71-73  Due to the 
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high resistance of organic dyes to traditional biological, physical, and chemical treatment methods, 

there is a critical need for the development of highly efficient and cost-effective methods for dye 

degradation and removal from contaminated water.74-76  Membrane technologies are being 

extensively investigated in wastewater treatments owing to its high efficiency, chemical stability, 

and low environmental impact.287-289  To achieve nearly complete removal of organic compounds 

from wastewater, a promising approach involves the utilization of membranes with specifically 

tailored micro- and nano-scale structures and permeation characteristics.  These membranes can 

be further integrated with emerging technologies such as photocatalytic degradation, chemical 

oxidation, physical adsorption.290-292  However, realizing scalable membranes with desired 

permeation properties and highly efficient organic dye removal performance remains to be a great 

challenge. 

Noble and transition metal nanoparticles, which have been extensively employed in catalysis, 

organic synthesis, hydrogen storage, and water treatment, have shown great promise for organic 

dye removal.77-80  In particular, palladium nanoparticles (PdNPs) have attracted special attention 

for dye degradation owing to their excellent catalytic properties and low environmental impacts.81-

85  To achieve maximum catalytic activity and prevent aggregation of PdNPs, immobilizing PdNPs 

on various substrates such as carbon (e.g., carbon microspheres, carbon nanotubes, and graphene 

oxide), silica, and metal oxides (e.g., titanium dioxide) has been utilized.86-90  Recently, Hu and 

coworkers reported a novel mesoporous, three-dimensional (3D) wood which can be used as a 

robust substrate for PdNPs to achieve high-performance filtration membrane for efficient waste 

water treatment.293   

Graphene oxide (GO) is a particular promising substrate material because of its high mechanical, 

chemical, thermal stability, and high surface area.91-96 Various self-assembled GO-based 
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composites have been demonstrated for wastewater treatment.97-102 To the best of our knowledge, 

a GO-based filtration membrane with transition metal nanoparticles as catalyst has not been 

reported since previous developed GO-based composites have limited aqueous stability and 

mechanical strength under pressure .   

Owing to its desirable properties such as excellent mechanical strength and toughness, rich 

chemical functionality, and high specific surface area in aerogel state, bacterial nanocellulose 

(BNC) serves as an ideal material for realizing functional composites by incorporating functional 

nanomaterials within BNC matrix.11-19, 44, 250  Recently, we have demonstrated a novel, highly 

scalable, cost-effective and green strategy to realize functional GO/BNC-based membranes.294-295  

GO sheets can be efficiently incorporated within BNC matrix during its growth, which can be 

applied to other two-dimensional (2D) materials.  Owing to the intercalation of GO flakes within 

the layered BNC matrix, the membrane showed mechanical robustness, which is crucial for 

efficient, large scale water treatment.   

Here, for the first time, we introduce a simple and scalable approach for the fabrication of 

Pd/GO/BNC membrane for highly efficient dye degradation.  The fabrication of Pd/GO/BNC 

membrane involves the incorporation of GO flakes into the BNC matrix during its growth followed 

by in situ growth of PdNPs on GO flakes.  The layered structure of Pd/GO/BNC, which forms 

nanocapillaries through out the membrane, maximizes the contact between organic dye 

contaminants and PdNPs anchored on the GO flakes.  We demonstrate the novel membrane to 

effectively remove organic dyes, showing a great promise for wastewater treatment and separation 

applications. 
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6.3 Experimental Section 

Preparation of GO/BNC aerogel: Gluconacetobacter hansenii (ATCC®53582) was cultured in 

test tubes containing 16 ml of #1765 medium at 30 °C under shaking at 250 rpm.  The #1765 

medium is composed of 2% (w/v) glucose, 0.5% (w/v) yeast extract, 0.5% (w/v) peptone, 0.27% 

(w/v) disodium phosphate, and 0.5% (w/v) citric acid.  GO was synthesized using an approach 

reported by Tour and co-workers.202  The as synthesized GO (150 mL of 0.0725 wt%) was 

centrifuged and redispersed in #1765 medium and then centrifuged again to obtain a wet mixture 

of GO and medium after decanting the supernatant.  Subsequently, Gluconacetobacter hansenii 

culture solution and fresh medium were added into the above mixture to make a solution of total 

150 mL (with GO concentration of 0.0725 wt%). The above solution was then transferred to a 

Pyrex bakeware (18 × 18 cm) and left without disturbance at room temperature.  After 3 days, a 

hydrogel was formed, which is washed in boiling NaOH (0.1 M) aqueous solution for 2 h and then 

dialyzed in nanopure water for 12 h.  The cleaned GO/BNC hydrogel was then cut into desired 

dimensions, typically 3×3 cm2, and then freeze-dried for 12 h to obtain GO/ BNC aerogel. 

Preparation of Pd/GO/BNC membrane: GO/BNC aerogel (3 × 3 cm2) was immersed in the 

PdCl2 solution (2.5 wt% in 5 wt% of HCl) for 8h.  The GO/BNC aerogel was transferred into a 

petridish and placed in an oven at 60 °C for 1h.  The dried GO/BNC membrane was then immersed 

into NaBH4 solution (80 mM) for 10 min to achieve in situ formation of Pd nanoparticles.  The 

obtained Pd/GO/BNC membrane was dried in an oven at 60 °C for 1h. 

Microstructure and chemical composition characterization: Scanning electron microscope 

(SEM) images were obtained using a FEI Nova 2300 Field Emission SEM at an acceleration 

voltage of 10 kV.  Transmission electron microscopy (TEM) images were obtained using JEM- 

2100F (JEOL) field emission instrument. Raman spectra were obtained using a Renishaw inVia 
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confocal Raman spectrometer mounted on a Leica microscope with 50x objective and 785 nm 

wavelength diode laser as an illumination source.  X-ray photoelectron spectroscopy (XPS) 

analysis was performed using Physical Electronics® 5000 VersaProbe II Scanning ESCA (XPS) 

Microprobe.  The X-ray diffraction (XRD) measurements of the samples were obtained using a 

Bruker D8-Advance X-ray powder diffractometer using Cu Kα radiation (λ = 1.5406 Å). 

Thermalgravimetric analysis (TGA) to measure Pd loaing in Pd/GO/BNC: 

Thermogravimetric analysis (TGA) was performed in nitrogen using a TA Instruments Q5000 IR 

Thermogravimetric Analyzer at a heating rate of 5 ºC min-1.  GO/BNC, Pd/GO/BNC (with same 

loading of GO as GO/BNC membrane), Pd/BNC and pristine BNC were tested using above condition 

(appendix 3, Figure S3.2).  For Pd/GO/BNC, the first mass loss (~10 %) can be attributed to absorbed 

water.  The second mass loss (~13 %) at ~ 160 °C is due to the decomposition of functional groups of 

GO.  The third mass loss (~26 %) at ~280 °C is due to the degradation of cellulose and a mass loss 

(~12.8 %) at ~390 °C is due to the decomposition of cellulose residue, which generates CO2 and H2O 

and the sublimation or burning of the damaged graphitic regions.203-204   The remaining mass (~38 %) 

is composed of PdNPs and carbon residues.  The mass of carbon residues for GO/BNC before the 

growth of Pd/GO/BNC is around 25.7 %.  Based on the above results, the mass loading of PdNPs in 

Pd/GO/BNC is calculated to be 12.3 wt%.   

Evaluation of catalytic activity of Pd/GO/BNC membrane: To investigate the catalytic activity 

of the Pd/GO/BNC membrane, the catalytic degradation of MO in the presence of NaBH4 was 

employed as a model reaction.  40 µL NaBH4 solution (0.02 mg/L) was rapidly added into MO 

solution (25.7 mg·L-1, 1.5 mL) under constant stirring.  Subsequently, Pd/GO/BNC membrane 

(1×0.5 cm) was placed in the above mixture.  The concentration of reactant, MO (absorbance at 

465 nm), was monitored by acquiring UV–vis absorption spectra using a Shimadzu UV-1800 

UV−vis spectrometer.  Pseudo-first-order kinetics was employed to evaluate the rate constants.  
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Thus, the rate of the degradation reaction of MO using the Pd/GO/BNC as catalyst can be 

calculated the following equation:296 

ln ቀ
C଴

C୲
ൗ ቁ = κt 

Where, C is the concentration of the reactant, k is the reaction rate constant, t is the reaction time.  

In this reaction, the ratio of Ct to C0 is calculated from the relative absorbance intensity of At /A0. 

Evaluation of the performance of Pd/GO/BNC filtration membrane for wastewater 

treatment: The dye degradation performance was evaluated by filtering dye-contaminated water 

through the membrane via a benchtop filtration setup.  Feed solutions containing different 

concentrations of MO (25.7 to 80 mg·L−1, 10 mL) in the presence of NaBH4 (140 mg·L−1) at 

different pH (3, 5, 7, 9) were filtered through a bench-top filtration set-up under 0.8 bar (11.6 psi).  

The optical absorption of the solutions before and after the filtration was monitored using a 

Shimadzu UV-1800 spectrometer in the wavelength range of 300−700 nm.  The dye-contaminated 

water treatment efficiency was calculated using the following equation:  

MO degradation efficiency (%)= 
஼బି஼೟

஼బ
× 100 =

஺బି஺೟

஺బ
× 100 

Where A0 is the initial MO optical absorption and At is the MO optical absorption after filtration. 

A cocktail of contaminants was prepared by mixing 4-nitrophenol, rhodamine 6G, and methylene 

blue (50 mL, each with 10 mgL-1 in 140 mgL-1 NaBH4).  The cocktail was then filtered throgh 

the Pd/GO/BNC membrane.  The optical absorption of the solutions before and after the filtration 

was monitored using a Shimadzu UV-1800 spectrometer in the wavelength range of 300−800 nm.  

Flux and particle rejection tests: Water flux of Pd/GO/BNC membrane, commercial 

ultrafiltration membrane (YMGESP3001, GE, pore size ~ 1000 Da) and commercial nanofiltration 

membrane (YMDKSP3001, GE, pore size ~ 150-200 Da) was measured using a benchtop cross-
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flow system, which includes a crossflow membrane cell (CF042D, Sterlitech Corp.) and a 

Hydracell pump (M03S, Wanner Engineering, Inc).  Gold nanoparticles (AuNPs) with a diameter 

around 5 nm were synthesized using seed-mediated growth method.275  AuNPs solutions were then 

filtered by Pd/GO/BNC membranes using above cross-flow system under 58 psi.  Before and after 

filtration, the optical extinction of filtration/permeate solutions were measured by UV-vis 

spectrometer (400 nm to 1000 nm).  The rejection rate (RR) is calculated using equation below: 

𝑅𝑅 =
Ef

𝐸𝑝
× 100 

Where Ef is the optical extinction of filtration solutions and Ep is the optical extinction of permeate 

solutions. 

Stability tests: Freestanding GO membranes were prepared by vacuum-filtrating a GO suspension 

(0.4 wt%, 10 mL) onto a smooth PVDF membrane.  After completely dried, the membranes were 

carefully peeled off.   GO membranes and Pd/GO/BNC membranes were subjected to sonication, 

mechanical agitation and direct negative pressure without any support. 

6.4 Results and Discussion 

6.41 The fabrication of Pd/GO/BNC 

The fabrication of the Pd/GO/BNC membranes involves the culture of Gluconacetobacter hansenii 

under static growth conditions with graphene oxide (GO) flakes incorporated into the growth 

medium.  GO flakes are dispersed in bacteria growth medium at a desired concentration to achieve 

a GO/BNC hydrogel with a thickness ~2 mm (Figure 6.1).  The presence of epoxy and hydroxyl 

groups on the basal plane of GO facilitates the uniform dispersion of GO flakes in the growth 

solution without aggregation or restacking into multilayer structures (Figure 6.1A).  The uniform 

dispersion in turn enables the incorporation and intercalation of GO flakes within BNC matrix in 
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a “layer-by-layer” manner without any covalent crosslinking.  The as grown hydrogel was cleaned 

in boiling alkaline water (pH 13) and freeze-dried to obtain GO/BNC aerogel. The resulting 

GO/BNC aerogels exhibit an open porous structure and large specific surface area (see appendix 

5, Figure S5.1A).  Subsequently, PdNPs were in situ grown within the matrix to obtain 

Pd/GO/BNC membrane (see supporting information for details).  After washing and air-drying, a 

Pd/GO/BNC membrane was obtained (Figure 6.1B).  

6.42 Micro and Nanostructure and Chemical Composition of Pd/GO/BNC Membrane 

Pristine BNC film, prepared without GO flakes in the growth solution, is white and translucent as 

shown in Figure 6.2A1.  Scanning electron microscopy (SEM) image of the top surface of pristine 

BNC membrane reveals the entangled network of nanocellulose fibers of 20–100 nm in diameter 

(Figure 6.2A2).  Considering that bacteria form the densest cellulose fiber network at the air/liquid 

interface, the cellulose nanofibrils are preferentially oriented parallel to the surface (i.e. normal to 

the thickness) of the film, which results in denser physical entanglements of the cellulose 

nanofibrils parallel to the surface compared to that along the thickness.  Cross-section image of 

the BNC film reveals such layered structure of nanocellulose fibers (Figure 6.2A3).  Addition of 

GO flakes to the growth solution results in the formation of a GO/BNC composite hydrogel (see 

appendix 5, Figure S5.1A).  GO/BNC membrane formed by air-drying GO/BNC hydrogel has 

smoother surface (less fibrillar) structure compared to pristine BNC membrane due to the presence 

of 2D GO sheets (see appendix 5, Figure S5.1B).  Pd/GO/BNC membrane is dark and opaque due 

to the presence of GO flakes and PdNPs (Figure 6.2B1).  As mentioned above, PdNPs were in situ 

grown in the GO/BNC composite by exposing the GO/BNC aerogel to Pd precursor solution. The 

highly porous nature of GO/BNC allows large uptake of palladium precursor over the entire matrix, 

resulting in a large loading of PdNPs in the final membrane (12.3 % from thermogravimetric 
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analysis, see experimental section and appendix 5, Figure S5.2 for details).  Similar to GO/BNC, 

the surface of the Pd/GO/BNC membrane shows smoother structure compared to the bare BNC 

film because of the presence of GO flakes and dense, uniform distribution of PdNPs (Figure 6.2B2).  

The cross-sectional SEM image of the Pd/GO/BNC film reveals a laminated structure with a 

thickness of ~7 µm, which stems from the packing of GO flakes within the BNC fibers (Figure 

6.2B3).   

Transmission electron microscopy (TEM) image of Pd/GO/BNC membrane reveals that the in situ 

growth method employed here results in a uniform distribution of the Pd nanoparticles on the GO 

sheets (Figure 6.2C).  The in situ grown PdNPs in GO/BNC matrix appears to be coalesced instead 

of individual nanoparticles owing to the absence of a surfactant or capping agent during the 

formation of PdNPs.  Furthermore, a high density of nucleation sites on GO surface can also result 

in the formation of a branched network of PdNPs.297  The size of the PdNPs (estimated from the 

width of the PdNPs chains) was found to be 7.3 ± 2.5 nm.  High resolution TEM images of the 

PdNPs on GO/BNC show lattice fringes with a lattice spacing of 0.23 nm, corresponding to (111) 

planes of Pd (Figure 6.2D).298  Energy-dispersive X-ray spectroscopy (EDS) analysis in TEM 

further confirm the presence of Pd in the membrane (Figure 6.2E).  The strong signal 

corresponding to Cu originates from the TEM grid made of copper.  The presence of Pd 

nanoparticles in the membrane was also verified by XRD measurements.  XRD pattern exhibited 

three peaks at 40.1, 46.5, and 68.1° corresponding to the (111), (200), and (220) planes of Pd, 

respectively (see appendix 5, Figure S5.3A).299     

To further understand the chemical composition of Pd/GO/BNC membrane, we have performed 

XPS measurements.  The binding energy of Pd 3d5/2 and Pd 3d3/2 obtained from the Pd/GO/BNC 

at 335.1 and 340.4 eV can be assigned to Pd(0), indicating the metallic form of Pd (PdNPs).  The 
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peaks at 336.8 and 342.1 eV correspond to the oxidized form of Pd (Pd2+).300-302  It is calculated 

that the Pd(0): Pd(II) ratio is around 9:5, indicating the major species present on GO are Pd(0).303  

High resolution spectrum of C1s region was deconvoluted into three peaks corresponding to sp2 

domains (C=C with a binding energy of 284.6 eV) and oxidized sp3 domains (C–O with a binding 

energy of 286.6 eV and C=O with a binding energy of 288.2 eV) (see appendix 5, Figure S5.4A, 

B).212  The C/O ratio obtained from the area under the peaks can be used to evaluate the degree of 

reduction of GO.  For GO/BNC, the C/O ratio was found to be 0.23 and it was found to increase 

to 0.98 after the growth of PdNPs, indicating the partial reduction of GO by NaBH4 during the 

growth of PdNPs on the GO/BNC.  The Raman scattering spectrum of both the GO/BNC 

membrane and the Pd/GO/BNC membrane exhibited Raman bands at 1590-1600 cm−1 and 1320-

1330 cm−1, which correspond to the G band and D band of GO, respectively (see appendix 5, 

Figure S5.4C).304  The ratio of the intensity of D/G bands was found to increase from 0.39 to 0.45, 

also indicating the reduction of GO.305 

6.43 Dye Degradation Activity of Pd//GO BNC Membrane 

To evaluate the catalytic activity of Pd/GO/BNC membrane, we selected the degradation of MO 

in the presence of NaBH4 as a model catalytic reaction of organic dye molecules.  UV-vis 

spectroscopy was employed to monitor the reaction kinetics in 20 sec intervals.  A strong 

absorption peak at 465 nm can be ascribed to the characteristic absorbance of MO and no visible 

color change can be observed even after the addition of NaBH4 solution, suggesting that the 

degradation reaction of the MO requires the presence of a catalyst.  Once the Pd/GO/BNC 

membrane was immersed into the solution, the intensity of the absorption peak at 465 nm 

decreased rapidly and disappeared completely after 5 min, suggesting the complete degradation of 

MO (Figure 6.3A).  The degradation is also evident from the color change of the solution, which 
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turned from orange to colorless (inset of Figure 6.3A). For comparison, BNC and GO/BNC 

membranes without PdNPs were immersed into the MO solution in the presence of NaBH4.  The 

intensity of absorption peak at 465 nm remained virtually unchanged within 5 min, suggesting that 

the PdNPs are primarily responsible for the catalytic activity of Pd/GO/BNC and MO degradation 

in the presence of NaBH4 (Figure 6.3B).  

To demonstrate the advantage of utilizing GO as a template for the in situ growth of PdNPs, a 

Pd/BNC membrane was prepared via in situ formation of PdNPs on BNC fibers and its catalytic 

activity was investigated along with Pd/GO/BNC under identical conditions.  The rate of MO 

degradation with Pd/BNC membrane was found to be lower compared to Pd/GO/BNC (Figure 

6.3B).  Langmuir−Hinshelwood apparent first-order kinetics was employed to determine the 

reaction rate constants of MO degradation.306  From the first-order kinetics results, the rate constant 

with Pd/GO/BNC membrane is found to be 0.0152 s−1, which is higher than that with Pd/BNC 

membrane (0.0111 s−1) (Figure 6.3C).   

The recovery of catalysts is critical for recycling the catalyst, which can be an important 

consideration for dye removal technologies in industrial settings.  Both Pd/GO/BNC and Pd/BNC 

could be easily withdrawn from the reaction mixture and washed with distilled water/ethanol for 

the next reaction cycle.  The Pd/GO/BNC retained 94.7% of its catalytic activity even after ten 

cycles, which indicates the excellent catalytic stability of the Pd/GO/BNC membrane.  In stark 

contrast, the MO degradation efficiency of Pd/BNC catalyst dropped to ~67.7% after ten cycles, 

due possibly to desorption and leaking of PdNPs from the BNC matrix during multiple cycles of 

extensive washing (Figure 6.3D).  

Based on the results, Pd/GO/BNC membrane exhibits superior catalytic efficiency and stability 

compared to Pd/BNC membrane.  We believe that remarkable properties of Pd/GO/BNC  largely 
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stem from the following factors: (i) the presence of GO increases the surface area for efficient in 

situ growth and anchoring of PdNPs, leading to higher loading of PdNPs; (ii) the distribution of 

PdNPs on GO flakes is more uniform compared to that on pristine BNC fibers, which exhibited 

severe aggregation (see appendix 5, Figure S5.5, S5.6); and (iii) strong interactions between in situ 

formed PdNPs and GO due to abundant chemical functionality on GO flakes and tight packing of 

GO flakes, reducing the loss of PdNPs during multiple reaction cycles (see appendix 5, Figure 

S5.7).   

6.44 Pd/GO/BNC as a Filtration Membrane for Organic-contaminated Water Treatment 

Next, we set out to investigate the applicability of Pd/GO/BNC as a filtration membrane for a dye-

contaminated water treatment. The performance was evaluated by filtering dye-contaminated 

water through the membrane via a benchtop filtration setup (Figure 6.4B).  It can be seen that the 

orange-colored MO solution became completely colorless after passing through the membrane and 

the filtration only took a few minutes.  Noticeably, the Pd/GO/BNC membrane exhibited 

outstanding MO degradation performance over a wide range of MO concentrations (Figure 6.4C).  

The fact that the Pd/GO/BNC membrane resulted in 99.3% dye degradation efficiency for all MO 

concentrations up to 60 mg·L-1 (which is close to the lethal dose to animals, 60 mg·L-1) is 

remarkable.307  Even at a concentration of 85 mg·L-1, the degradation efficiency dropped only 

slightly (to 90.5%) indicating the excellent catalytic efficiency of the membrane.  The dye 

degradation of Pd/GO/BNC was found to be insensitive to pH variation of the feed water (Figure 

6.4D).  The degradation efficiency remained very high (99.3%) across a broad range of 

environmentally-relevant pH (pH 3 to 9), which occur in many natural and engineered aqueous 

systems.272  The Pd/GO/BNC membrane also exhibited a good cycling stability and its 

performance decreased only slightly (to 99.2%) after six cycles of filtration (Figure 6.4E).  In 
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contrast, GO/BNC and bare BNC membrane without PdNPs exhibited negligible dye degradation 

efficiency, confirming that the dye degradation of Pd/GO/BNC stems from the catalytic efficiency 

of Pd rather than the adsorption or rejection of MO (see appendix 5, Figure S5.8).   

Besides MO, an anionic dye, we have also evaluated the performance of Pd/GO/BNC membrane 

for the treatment of cationic dye and organic contaminant.  A cocktail (50 mL) of contaminants 

(4-nitrophenol, a toxic organic compound; rhodamine 6G and methylene blue, cationic dyes with 

non-overlapping characteristic absorbance band, each with a concentration of 10 mgL-1) was 

filtered through the Pd/GO/BNC membrane (Figure 6.4F).  It can be seen that all the contaminants 

can be effectively treated (4-nitropheneol can be reduced to 4-aminophenol, leading to a new 

absorbance peak around 300 nm) simultaneously (Figure 6.4G).   

6.45 Particle Rejection and Water Flux Tests 

To further demonstrate the potential of Pd/GO/BNC membrane for large-scale water treatment, 

we tested the water flux and particle rejection capability of the Pd/GO/BNC membrane using a 

benchtop cross-flow system (schematic setup diagram in Figure 6.5A).  We examined the particle 

rejection capability using gold nanoparticles (AuNPs) with diameters of 5.15 ± 0.4 nm, which were 

synthesized by a seed-mediated method.275  The as-synthesized AuNPs exhibited very narrow size 

distribution, which is critical for accurate study of particle rejection (Figure 6.5B).  The particle 

rejection rates were determined by measuring the UV-vis extinction spectra of feed/permeate 

solutions containing AuNPs (Figure 6.5D).  The Pd/GO/BNC membrane showed ~100% rejection 

for particles with a diameter of 5 nm, indicating that the pore size of the Pd/GO/BNC is below 5 

nm (inset of Figure 6.5D).  Considering that Pd/GO/BNC membrane showed no rejection of MO 

(with molecular size of ~1.2 nm) in the absence of NaBH4 during filtration tests, the Pd/GO/BNC 

membrane falls into the range of ultrafiltration membrane (see appendix 5, Figure S5.9).279, 308  The 
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nanochannels within GO-based membrane, which determine the mass transport properties can be 

altered by introducing exogenous spacers of desired dimensions.45, 48  In this work, the presence of 

BNC fibers and PdNPs between GO flakes lead to an overall tortuous network of pores throughout 

the membrane even though no visible pores can be observed on the surface of the membrane.  The 

Pd/GO/BNC membrane showed stable water flux (33.1 L/m2h) over a 6-hour flux test after 

stabilization under positive pressure of 58 psi (4 bar), which is 2.3 and 2.8 times higher than the 

flux performances of commercial ultrafiltration color reduction membrane (YMGESP3001, pore 

size ~ 1000 Da) with MO rejection rate of 95.2% (14.5 L/m2h under 58 psi) commercial 

nanofiltration membrane (YMDKSP3001, pore size ~ 150-200 Da) with MO rejection rate of 

100% (11.8 L/m2h under 100 psi) (Figure 6.5E and Figure S5.10).  The above results demonstrate 

that Pd/GO/BNC membrane holds potential for large-scale ultrafiltration process. 

It is remarkable that the Pd/GO/BNC membrane can withstand the operation pressure as high as 

58 psi without any supporting membrane while most of the GO-based membranes require a porous 

support membrane and/or carefully designed setups because of their limited aqueous stability and 

poor mechanical stability under pressure.280-283  We performed additional stability tests to 

demonstrate the advantage of the in situ fabricated Pd/GO/BNC membrane against pure GO 

membrane (see details in supporting infomation).  Pd/GO/BNC and GO membranes have been 

subjected to sonication, mechanical agitation and direct negative pressure without any support.  

Pd/GO/BNC membrane exhibited superior robustness under above testing conditions while GO 

membrane disintegrated or broke inevitably (see appendix 5, Figure S5.11). 

6.5 Conclusions 

In conclusion, we showed a novel membrane based on BNC loaded with GO and PdNPs for highly 

efficient wastewater treatment.  Three main factors can enable the Pd/GO/BNC membrane to be 
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effective in dye-degradation: i) the excellent catalytic ability of PdNPs with ultrafine size; ii) 

uniform and high loading of PdNPs within the entire membrane; and iii) the lamellar structure of 

the membrane allowing mass transport through the nanocapillaries between GO flakes, greatly 

increasing the path length of organic contaminants, thus maximizing the interaction with the 

catalytic PdNPs and the probability of degradation.  The bacteria-mediated growth of the BNC 

membrane, in situ incorporation of the GO flakes and in situ synthesis of the PdNPs makes the 

whole process simple and highly scalable.  The excellent dye degradation performance 

(degradation of methylene orange (MO) up to 99.3% even at a concentration of 60 mg/L) as well 

as the ability for the treatment of multiple contaminants simultaneously, stable flux (33.1 L/m2h 

under 58 psi), and the scalable fabrication of the membrane collectively make the approach 

suggested here highly attractive for wastewater treatment even at industrial scales.  The novel 

membrane design suggested here can be easily adapted to realize other GO/BNC-based functional 

membranes with potential applications in catalysis, separations, energy storage, and environmental 

remediation. 

6.6 Supporting Information 

Supporting Information for chapter 6 is provided in appendix 5. 
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6.7 Figures 

 

Figure 6.1. Schematic illustration and photographs showing the various steps including (A) GO/BNC 

hydrogel (B) Pd/GO/BNC membrane involved in the fabrication of Pd/GO/BNC membrane. 

 

 

A B 
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Figure 6.2. Micro and nanostructure and chemical composition of Pd/GO/BNC membrane. (A) Pristine 

BNC membrane: Photograph (A1) and SEM images of top surface (A2) and cross-section (A3). (B) 

Pd/GO/BNC membrane: Photograph (B1), SEM image of top surface (B2), and SEM images of cross-

section (B3). (C) TEM image of Pd/GO/BNC membrane and the inset show the size distribution of Pd NPs. 

(D) HRTEM image of a single Pd NP on the GO/BNC membrane. (E) EDS of the Pd/GO/BNC membrane 

(strong Cu peaks correspond to the TEM grid made of Cu). 
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Figure 6.3. Dye degradation activity of Pd/GO/BNC membrane. (A) UV−vis spectra showing the 

degradation of MO in the presence of NaBH4 and Pd/GO/BNC membrane. (B) Plot showing the degradation 

of MO in the presence of NaBH4 over time. (C) Langmuir−Hinshelwood apparent rate constant for MO 

degradation by Pd/BNC and Pd/GO/BNC as catalysts. (D) The degradation performance of MO solution 

(25.7 mg L-1) with NaBH4 over 10 cycles for the Pd/GO/BNC membrane and Pd/BNC membrane catalysts. 
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Figure 6.4. Pd/GO/BNC as a filtration membrane for organic-contaminated water treatment. (A) Schematic view to 

illustrating the filtration mechanism of the Pd/GO/BNC film. (B) Photograph of the bench-top filtration setup using 

Pd/GO/BNC film as a membrane. The yellow colored feed solution contains MO and NaBH4. Dye degradation 

efficiency of Pd/GO/BNC film at different (C) MO concentrations and (D) different pH values. (E) Dye degradation 

efficiency of Pd/GO/BNC film over multiple cycles of reuse showing recyclability. (F) UV−vis spectra showing the 

degradation of a cocktail (50 mL) of organic contaminants: 4-nitrophenol (4-NP), rhodamine 6G (R6G) and 

Methylene blue (MB) (each with a concentration of 10 mg·L-1) in the presence of NaBH4 (140 mg·L-1). (G) Images 

showing the contaminants cocktail before and after filtration treatment. 
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Figure 6.5. Particle rejection and water flux tests. (A) Schematic diagram of cross-flow flux test 

setup. (B) TEM images of gold nanoparticles with a diameter of 5 nm. (C) Image showing 

Pd/GO/BNC membrane placed in the cross-flow cell. (D) UV-vis extinction spectra indicating the 

rejection of AuNPs filtered through Pd/RGO/BNC membranes (inset is the picture showing feed 

and permeate solutions.) (E) Water flux of Pd/GO/BNC membrane, commercial color reduction 

membrane (58 psi was applied for the flux tests) and commercial nanofiltration membrane (100 psi 

was applied). 
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Chapter 7: An In situ Grown Bacterial 

Nanocellulose/Graphene Oxide Composite for Flexible 

Supercapacitor   

7.1 Abstract 

Recently, the development of flexible supercapacitors has received significant attention due to 

their application in flexible electronics such as bendable mobile phones, flexible displays and 

wearable devices. Owing to numerous advantages such as excellent mechanical strength, low cost, 

high porosity and natural abundance, bacterial nanocellulose (BNC) is considered to be highly 

attractive for the fabrication of flexible supercapacitors. This work demonstrates that BNC can 

serve as an ideal layered matrix for incorporation of active two-dimensional (2D) materials.  A 

novel strategy for the incorporation of graphene oxide (GO) sheets into layered BNC during its 

growth is presented. GO flakes can be interlocked within nanocellulose network during BNC 

growth, enabling facile chemical reduction of GO sheets, which prevents their restacking and loss 

of active area, and leads to excellent energy storage performance as well as mechanical flexibility. 

Significantly, the fabrication approach demonstrated here can be extended to other 2D 

nanomaterials to realize flexible BNC-based energy storage devices. 

7.2 Introduction 

With the rapid development of portable and flexible electronics such as bendable mobile phones, 

flexible displays and wearable devices, there is a great need for high performance, flexible energy-

storage devices.103-109  Supercapacitors (SCs) have emerged as an important class of energy storage 
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devices due to their high power density, long cycle-lifetime, fast charge-discharge characteristics 

and low environmental impact.110-112 Owing to various advantages such as flexibility, light-weight, 

reliability, and safe operation over a wide temperature range, extensive efforts have been devoted 

to developing flexible all solid-state SCs, which hold great potential for next generation of flexible 

energy storage devices.113-119, 309-311 

Carbon based materials, such as activated carbon, carbon nanotubes, graphene and its derivative 

reduced graphene oxide, are widely used as the active electrode material for flexible 

supercapacitors due to their high electrical conductivity, large surface area, chemical stability, 

which leads to long cycle life-time, and natural abundance.120-131 Carbon materials are commonly 

combined with pseudocapacitive materials including transitional metal oxides (e.g., MnO2, CoO, 

NiO) and conducting polymers, such as polyaniline (PANI), poly(3,4-ethylenedioxythiophene) 

(PEDOT), polypyrrole (PPy), for preparing flexible supercapacitors, which store charges through 

fast and reversible  redox (Faradaic) reactions, leading to higher capacitance and energy density.132-

140, 312-313 

In order to obtain flexibility while maintaining mechanical strength, soft and bendable plastics 

such as polydimethylsiloxane (PDMS) and polyethylene terephthalate (PET) are often used as 

substrates or packaging materials, however these plastics introduce considerable cost and 

environmental burden after disposal.141  Cellulose-based substrates, on the other hand, are a low 

cost, highly flexible, renewable, biodegradable option.  Paper substrates possess fibrous structure 

that facilitates interactions with active materials and provides pathways for ion transport, which 

make them ideal for use as substrates for flexible supercapacitors.142-146 Recently, Hu and  co-

workers have reported an all-wood supercapacitor with excellent performance and almost all 

components coming from the renewable and biodegradable materials, further signifying the 
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advantages of cellulose-based supercapacitors.314  Among all cellulose materials, bacterial 

nanocellulose (BNC), which is a highly pure form of cellulose produced from dextrose through a 

series of biochemical steps followed by the self-assembly of secreted cellulose fibrils from bacteria 

in the culture medium, shows great promise for the fabrication of functional composites through 

in situ growth or adsorption of pre-synthesized nanostructures on the nanoscale cellulose fibers 

due to its excellent mechanical properties, tunable porosity, chemical functionalizability, ease of 

synthesis, high scalability.11, 13, 19, 147-148  Due to these advantages, BNC has been adapted for 

fabricating BNC-based flexible supercapacitors.149-153  However, in order to make high 

performance BNC-based supercapacitors, the fabrication techniques usually involve vacuum 

filtration152, 154, pyrolysis activation150, 155-156, which either have prospects in terms of scalability 

or compromise the mechanical properties of BNC.  Thus, there is an immediate need for facile and 

scalable methods for the fabrication of BNC-based electrode with high energy storage performance. 

In this work, we introduce a novel strategy that involves the in situ incorporation of graphene oxide 

(GO) flakes and poly(3,4-ethylenedioxythiophene)-poly(styrfienesulfonate) (PEDOT:PSS) into 

BNC matrix during its growth for the fabrication of flexible, light-weight BNC-based electrodes, 

which exhibit excellent electrochemical performance (373 F/g at 1 A/g) and cycling stability 

(~85% capacitance retention over 1000 cycles). Using a BNC-based separator, 

RGO/PEDOT:PSS/BNC electrodes are assembled to obtain all solid-state supercapacitors, which 

exhibited excellent energy storage performance, flexibility and robustness.  The facile and scalable 

fabrication method combined with the low cost of the materials, makes the approach suggested 

here highly attractive for all solid-state supercapacitors.   
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7.3 Experimental Section 

Materials: Graphite flakes, PEDOT:PSS solution (Orgacon™ HIL-1005, 1 wt% in water, high 

conductivity grade), hypophosphorous acid (HPA) and all chemicals for bacterial medium are 

purchased from Sigma-Aldrich. Gluconacetobacter hansenii was purchased from ATCC (ATCC® 

53582). 

Preparation of RGO/PEDOT:PSS/BNC electrodes: Gluconacetobacter hansenii 

(ATCC®53582) was cultured in test tubes containing 16 ml of #1765 medium at 30°C under 

shaking at 250 rpm.  The #1765 medium is composed of 2% (w/v) glucose, 0.5% (w/v) yeast 

extract, 0.5% (w/v) peptone, 0.27% (w/v) disodium phosphate, and 0.5% (w/v) citric acid.  

Graphene oxide was synthesized using an improved method reported by Tour and coworkers.  

Graphene oxide solution (28 mL of 0.1wt%) was centrifuged and redispersed in #1765 medium 

and then centrifuged again to leave a wet mixture of GO and medium after decanting supernatant.  

Bacterial culture solution (incubated 3 days) and 2 ml of 1 wt% PEDOT:PSS (Sigma Aldrich) was 

added to the GO/medium wet mixture to make it to a total 8ml (with GO concentration of 0.35 

wt%, PEDOT:PSS concentration of 0.25 wt%).  The solution was subsequently transferred to 

petridish (diameter: 6 cm) and incubated at room temperature without disturbance for 5 days to 

obtain a GO/PEDOT:PSS/BNC semi-dry film.    For purification, the film was harvested from the 

petri dish and washed in a 500 ml of 0.1 M NaOH aqueous solution under boiling condition for 2 

h.  The GO/PEDOT:PSS/BNC hydrogel was then dialyzed in nanopure water for 2 days.  The as 

cleaned hydrogel was then immersed in 5 wt% HPA and then heated to 60 °C for 24 hours, dialyzed 

in nanopure water and dried under ambient conditions.  To show the scalability of the fabrication 

technique, a large electrode was prepared in a Pyrex bakeware (18×18 cm) in the same manner 

mentioned above.  
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Preparation of flexible all-solid state supercapacitors: A PVA/H2SO4 gel electrolyte was 

prepared by mixing 3 g of PVA powder, 3 g of H2SO4, and 30 mL nanopure water together, and 

then heated to 85 °C under vigorous stirring until the solution became clear. After the solution 

cooled down to room temperature, two pieces of RGO/PEDOT:PSS/BNC electrodes and a BNC 

paper as separator were immersed into the PVA/H2SO4 gel for 10 mins and they were assembled 

into a flexible all- solid state device.  The device was dried overnight in fume hood to remove 

excess water. 

Microstructure characterization and properties measurement: Scanning electron microscope 

(SEM) images were obtained using a FEI Nova 2300 Field Emission SEM at accelerating voltage 

of 10kV.  Atomic force microscopy (AFM) images were obtained using Dimension 3000 (Bruker 

Inc.) in light tapping mode. Raman spectra were obtained using a Renisha inVia confocal Raman 

spectrometer mounted on a Leica microscope with 50x objective and 785 nm wavelength diode 

laser as an illumination source.  XPS analysis was performed using Physical Electronics® 5000 

VersaProbe II Scanning ESCA (XPS) Microprobe.  

Electrochemical characterizations: Cyclic voltammetry (CV) and galvanostatic 

charge/discharge studies analysis were carried out using CHI 760 bipotentiostat (CH Instruments, 

Austin, USA). Chronopotentiometry technique used to run the charge/discharge measurements in 

the potential range from 0 to 0.8 V. Electrochemical studies were carried out using three electrode 

and two electrode configurations (solid-state device). In three electrode setup, 

RGO/PEDOT:PSS/BNC composite served as working electrode, Ag/AgCl as reference, and 

platinum wire as counter electrode. The electrolyte solution used here is 1 M H2SO4. 

Preparation of PEDOT:PSS/BNC, GO/BNC and rGO/BNC films:  PEDOT:PSS/BNC film 

was prepared by adding 2ml of 1 wt% PSS:PEDOT solution to 6ml BNC culture solution (overall 
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8ml, the concentration of PSS:PEDOT in solution is 0.25 wt%. After 5 days, the hydrogel was 

harvested and cleaned in the manner discussed above.  GO/BNC film was prepared by adding a 

mixture of BNC culture solution and graphene oxide solution (overall 8ml), the concentration of 

GO in solution is 0.3 wt%. After 5 days, the hydrogel was harvested and cleaned in the manner 

discussed above.  RGO/BNC film was prepared by adding a mixture of BNC culture solution and 

graphene oxide solution (overall 8ml, the concentration of GO in solution is 0.3 wt%. After 5 days, 

the hydrogel was harvested, cleaned, dried and reduced in the manner mentioned above.  

Calculation details:  The mass specific capacitances (Cs, CV) of the electrodes and device are all 

calculated from CV profile by the equation below: 

𝐶௦,஼௏ =
𝐼௔ − 𝐼௖

𝑚 ∗ (𝑑𝑉/𝑑𝑡)
 

where Ia, Ic, m, and dv/dt are the anodic current, cathodic current, electrode mass, and scan rate, 

respectfully.   

The mass specific capacitances (Cs, C-D) of the electrodes and device are all calculated from GCD 

profiles by the equation below: 

𝐶௦,஼ି஽ =
𝐼∆𝑡

𝑚∆𝑉
 

Where I, Δt, m, ΔV are the applied current, the elapsed time, the mass of the electrode, and the 

voltage range, respectfully. 

7.4 Results and Discussion 

7.41 The Fabrication of RGO/PEDOT:PSS/BNC Electrode 

The fabrication of the RGO/PEDOT:PSS/BNC electrode is achieved by culturing 

Gluconacetobacter hansenii bacteria in the presence of GO flakes and PEDOT:PSS under aerobic 



115 
 

and static growth conditions (Figure 7.1A).  GO flakes were synthesized using a method reported 

by Tour and co-workers.202  It is known that the thickness of a monolayer of GO is ~0.72 nm and 

the higher thickness of GO compared to a monolayer of graphene (0.34 nm) is ascribed to the 

presence of epoxy and hydroxyl groups on the basal plane.206  Atomic force microscope (AFM) 

images revealed the average thickness of GO flakes deposited on a silicon substrate to be ~1 ± 0.2 

nm, which corresponds to a bilayer of GO (appendix 6, Figure S6.1B).  GO flakes were washed 

and dispersed in the broth solution with PEDOT:PSS and bacteria at a predetermined concentration 

to achieve a desired BNC growth rate (Figure 7.1B and see experimental section for details).  The 

mixture is homogenized and set aside under static condition for 5 days to obtain a 

GO/PEDOT:PSS/BNC semi-dry film with desired thickness and uniformly embedded with GO 

flakes and PEDOT:PSS.  The GO/PEDOT:PSS/BNC semi-dry film was then washed using boiling 

NaOH solution (0.1 M) with mechanical agitation and then nanopure water to remove bacteria and 

residual growth medium.  The as cleaned film was then treated by 6% hypophosphrous acid (HPA) 

at 85 °C overnight to reduce GO flakes and washed in nanopure water for 2 days and then air-dried 

to obtain a RGO/PEDOT:PSS/BNC film with thickness of ~8 µm and active materials loading of 

0.54 mg/cm2 and overall density of 0.64 mg/cm2 (Figure 7.1C).   Note that during the rigorous 

aqueous processing mentioned above, the film remained intact and the mechanical robustness can 

be attributed to the mechanical interlocking of the loaded RGO flakes and PEDOT:PSS within the 

nanofiber network during the BNC growth.  The entangled network of highly crystalline BNC 

nanofibers and imbedded active materials resulted in the excellent tensile strength of the electrode 

(σs= ~240 MPa, see appendix 6, Figure S6.6) 
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7.42 Characterizations and Optimization of The RGO/PEDOT:PSS/BNC Electrode 

Pristine BNC film (produced in the absence of GO flakes and PEDOT:PSS in the broth) is white 

and translucent and shows excellent flexibility and mechanical strength (Figure 7.2A).201 The 

bacteria first form an entangled layer of cellulose fibers (20-100 nm in diameter) at the air/medium 

interface (Figure 7.2A1).  As the oxygen diffuses deeper into the medium, the subsequent BNC 

layers are formed below the surface layer, which stack together to form a 3D BNC network.3, 20  

This “layer-by-layer” formation leads to network of cellulose nanofibrils that are preferentially 

oriented parallel to the surface (i.e. normal to the thickness) of the film.  The cellulose nanofibril 

network exhibits denser physical entanglements parallel to the surface compared to that along the 

thickness (Figure 7.2A2).  Addition of GO flakes to the bacterial broth followed by base wash and 

HPA treatment led to the formation of RGO/BNC film which appeared light grey in color and 

exhibited a metallic luster, indicating the reduction of GO (Figure 7.2B).208  The surface of the 

RGO/BNC film is smoother and less fibrillar compared to the pristine BNC film due to the 

incorporation of GO flakes (Figure 7.2B1).  The “layered” formation of BNC starting from the 

liquid/air interface facilitated the layered arrangement of RGO flakes between the BNC layers as 

evidenced by the cross-sectional SEM images of the RGO/BNC film (Figure 7.2B2).  Addition of 

PEDOT:PSS in GO/BNC broth and subsequent treatment resulted in a dark blue 

RGO/PEDOT:PSS/BNC film (Figure 7.2C).  Compared to RGO/BNC film, the surface of 

RGO/PEDOT:PSS/BNC film exhibited granular surface morphology, possibly due to the 

formation of polymer aggregates.315  The PEDOT:PSS fills the interstices within the RGO/BNC 

layered structure as evidenced by the cross-sectional SEM images of the RGO/PEDOT:PSS/BNC 

film (Figure 7.2C2). Raman scattering spectrum of the prisitine GO showed the characteristic 

graphitic band (G-band) at 1580–1600 cm−1 and defect band (D-band) at 1330–1340 cm−1.207  
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Pristine PEDOT:PSS exhibited characteristic bands of symmetric stretching mode of the aromatic 

C=C (1425 cm-1), antisymmetric C-C and C-C stretching deformations (1530 cm-1, 1374 cm-1 and 

1261 cm-1) and also oxyethylene ring deformation (989 cm-1,577 cm-1).316  The Raman spectrum 

of the RGO/PEDOT:PSS/BNC film also exhibited these characteristic bands, although with a 

weaker intensity (Figure 7.2D).  

To understand the reduction state of GO flakes during the fabrication, we subjected as-synthesized 

GO flakes to high-temperature base wash and/or HPA treatment.  X-ray photoelectron 

spectroscopy (XPS) was employed to probe the degree of reduction of GO upon base wash and/or 

HPA treatment.  The 1s spectra of carbon can be deconvoluted into three peaks corresponding to 

sp2 domains (C=C with a binding energy of 284 eV) and oxidized sp3 domains (C–O with a binding 

energy of 286 eV and C=O with a binding energy of 288 eV).212  For as synthesized GO, the C/O 

ratio (1.7) obtained from the ratio of the area under the peaks indicates ~58% of the surface of GO 

is oxidized.  After extensive base wash, the C/O ratio increased to 4.6 indicating that only ~21% 

of the surface of GO is oxidized.  After further HPA treatment, the C/O ratio increased to 7.8, 

which indicates that only ~11% of the surface GO is oxidized (Figure 7.2E and appendix 6, Figure 

S6.2).  The chemical reduction of GO flakes in the BNC matrix lead to an increased electrical 

conductivity.  With the increase of GO content in the film up to 78 wt%, (corresponding to a 

concentration of 0.35 wt% in the broth), the conductivity of the RGO/BNC film increased to 15.6 

S.cm-1 (appendix 6, Figure S6.3).  With further increase of GO concentration in the broth (i.e. 

above ~0.4 wt%), the viscosity of broth becomes too high leading to insufficient oxygen transport 

and unsuccessful film growth.  The highest GO loading content achieved using the in situ growth 

and HPA reduction method is not sufficient to allow fast surface charge transfer, thus leading to 

poor capacitance performance (Figure 7.3A).  With the addition of PEDOT:PSS into the BNC 
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matrix, the electrical conductivity and capacitance of the hybrid electrode can be greatly enhanced 

(Figure 7.2F and Figure 7.3A).  However, the amount of PEDOT:PSS added to the bacterial broth 

needs to be carefully optimized.  The PEDOT:PSS solution is highly acidic (pH 1.2 for 1 % 

aqueous solution) and addition of excess PEDOT:PSS solution causes a drop in the pH of the broth 

solution below pH 3 (optimal pH for BNC film growth), and also dilutes the nutrients in the broth, 

both of which compromise the growth of BNC film.  Hence the concentration of PEDOT:PSS in 

the broth is a tradeoff between the film growth and conductivity of the composite film.  Film with 

highest conductivity (274 S cm-1) and highest capacitance was achieved at PEDOT:PSS and GO 

concentrations of 0.25 wt% and 0.35 wt% in the broth solution, respectively (which correspond to 

22 wt% PEDOT:PSS and 63 wt% RGO in the dried film) (Figure 7.2F).  For subsequent studies, 

BNC-based electrodes were prepared using broth solution corresponding to the highest 

conductivity and capacitance mentioned above.   

7.43 Electrochemical Behavior of the RGO/PEDOT:PSS/BNC electrodes 

We then investigated the electrochemical behavior of the RGO/PEDOT:PSS/BNC electrodes 

using cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) in a three-electrode 

configuration in H2SO4 (1 M) aqueous solution.  The advantage of combining RGO and 

PEDOT:PSS for electrode preparation is evident from the CV curve of the 

RGO/PEDOT:PSS/BNC electrode, which has a larger integral area and rectangular shape than that 

of both RGO/BNC and PEDOT:PSS/BNC with same RGO or PEDOT:PSS loading, indicating a 

higher capacitance and faster charge transfer rate (Figure 7.3A).  With an increase in the scan rate 

from 5 to 100 mV/s, the peak current density gradually increased; however, the shape of the CV 

curves deviates from the rectangular shape, which represents an ideal capacitance, to a spindle 

shape due to charge transfer resistance from the BNC matrix (Figure 7.3B).   Specific capacitance 
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(Cs, CV) of the electrodes calculated from the CV curves exhibited a decrease from 376 F/g to 55 

F/g as the scan rates increased from 5 mV/s to 100 mV/s (Figure 7.3C).   

GCD was performed at various current densities to study the cycling performance and capacitance 

retention (Figure 7.3D).  It can be seen that the charge-discharge curves retain approximately 

symmetrical shape at different current densities from 0.5 to 5 A/g, indicating that the electrodes 

can be operated over a wide current range with reversible redox reaction and fast charge-discharge 

rate.  From the charge-discharge curves, the specific capacitance (Cs,C-D) of 

RGO/PEDOT:PSS/BNC electrode was found to decrease from 470 F/g to 194 F/g (corresponds to 

41% retained specific capacitance) with an increase in current density from 0.5 to 5 A/g.  The Cs,C-

D (470 F/g) at 0.5 A/g  and Cs,CV (376 F/g) at 5 mV/s are higher compared to previous RGO/PEDOT 

based electrodes at the same current density and scan rate despite the internal resistance of non-

conductive BNC matrix due possibly to the high conductivity PEDOT:PSS (382 ± 7.2 S cm-1) 

employed here. More comparison between the presented electrode and other paper-based, carbon-

based supercapacitors can be found in Table S6.1 in appendix 6.     

The long-term stability of the electrode was examined using a galvanostatic charge-discharge 

method for 1000 cycles in aqueous solution.  The capacitance retention of the electrode was 

calculated for each cycle based on the charge-discharge curves at a current density of 5 A/g (Figure 

7.3F).  It can be seen that although the capacity drops slightly in the first 200 cycles, the electrode 

retains more than 85% of its capacitance with no discernable changes in the capacitance over the 

last 800 cycles. These results indicate RGO/PEDOT:PSS/BNC electrode has excellent cycling 

stability, which is also evident from almost identical charge-discharge curves for 20 consecutive 

cycles randomly chosen (inset of Figure 7.3F).  The high degree of cycling stability makes the 

RGO/PEDOT:PSS/BNC electrode promising for use in solid-state flexible supercapacitor devices.    
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7.44 The Performance of All Solid-state Flexible Supercapacitors devices  

Now we turn our attention to exploring the advantages of using RGO/PEDOT:PSS/BNC 

electrodes and BNC papers for preparing all solid-state flexible supercapacitor devices. The 

devices were prepared by sandwiching a H2SO4/PVA/BNC paper as separator between two 

RGO/PEDOT:PSS/BNC electrodes without using any additional flexible substrates such as 

polyethylene terephthalate (PET) (see experimental section and Figure 7.4A).  CV curves of the 

solid-state device exhibited rectangular shape up to scan rate of 50 mV/s, indicating good 

performance of the device at higher scan rate (Figure 7.4B).  GCD was performed at different 

current densities ranging from 0.5 A/g to 8.0 A/g and these curves closely match the ideal 

symmetrical triangular curve.  Even with a discharge at a current density of 4 A/g, the discharge 

time was found to be 48 s with no major sign of self-discharging (Figure 7.4C).  One of the 

advantages of incorporating RGO and PEDOT:PSS in BNC matrix during the growth of the latter 

is that the electrode and device can inherit the excellent mechanical properties of BNC, obviating 

the need for flexible substrates such as PET.  The fabricated devices exhibited excellent 

mechanical flexibility and could be bent to almost 180° multiple times without signs of fracture or 

delamination of the layers (Figure 7.4F).  CV curves (at a scan rate of 50 mV/s) were also found 

to be insensitive to the bending angle between 0 to 180°, indicating excellent stability and 

flexibility of the device (Figure 7.4D).  Subsequently, the cyclic stability of the devices was 

evaluated over 4,500 charge-discharge cycles (Figure 7.4E).  The capacitance of the electrodes 

stabilized after the first 1000 cycles and remained essentially constant for the following 3500 

cycles.  To further demonstrate the potential application of the RGO/PEDOT:PSS/BNC 

electrodes-based flexible all solid-state supercapacitors, three devices were connected in tandem 

to power a red LED for a total of 3 minutes (Figure 7.4G).  
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7.5 Conclusions 

In conclusion, we have demonstrated a novel and facile fabrication of RGO/PEDOT:PSS/BNC 

flexible electrode achieved via incorporation of GO flakes and conducting polymer PEDOT:PSS 

within the nanocellulose matrix during bacteria-mediated growth of the BNC hydrogel followed 

by aqueous processing for reduction of GO.  The obtained electrodes exhibited excellent 

electrochemical performance (373 F/g at 1 A/g) and cycling stability (~85% capacitance retention 

over 1000 cycles) and they can be easily assembled with a BNC based separator to form a flexible 

all solid-state supercapacitor device.  The light-weight device showed remarkable mechanical 

flexibility, performance stability under extreme mechanical deformation and ~88% capacitance 

retention over 4500 cycles, obviating the need for additional substrates such as PET.  The 

fabrication approach demonstrated here, which is highly scalable and cost-effective, and offers 

great promise for energy storage devices in flexible, wearable and portable electronic devices.    

7.6 Supporting Information 

Supporting Information for chapter 7 is provided in appendix 6. 
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7.7 Figures 

 

Figure 7.1. Fabrication of RGO/PEDOT:PSS/BNC electrode (A) Schematic illustration depicting the 

various steps involved in the fabrication of RGO/PEDOT:PSS/BNC electrode. Photographs showing (B) 

bacterial medium with GO and PEDOT:PSS and (C) dried RGO/PEDOT:PSS/BNC electrode. 

 

A 

C 

B 
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Figure 7.2. A) Optical image (A) and SEM images of top surface (A1) and cross-section (A2) of BNC film. 

(B) Optical image (B) and SEM images of top surface (B1) and cross-section (B2) of RGO/BNC film. C) 

Optical image (C) and SEM images of top surface (C1) and cross-section (C2) of RGO/PEDOT:PSS/BNC 

film. (D) Raman spectra of original GO flakes, RGO/PEDOT:PSS/BNC film and PEDOT:PSS/BNC film. (E) 

XPS spectra of original, base-washed and HPA treated GO. (F) Electrical conductivity and the mass specific 
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capacitance of RGO/PEDOT:PSS/BNC electrodes with different RGO concentrations and fixed PEDOT:PSS 

concentration (~0.25 wt%) in the bacterial broth. 

 

Figure 7.3. (A) CV curves of RGO/BNC film, PEDOT:PSS/BNC film and RGO/PEDOT:PSS/BNC electrode. (B) 

CV curves of RGO/PEDOT:PSS/BNC electrode at different scan rates (5 to 100 mV/s). (C) Mass specific 

capacitance of RGO/PEDOT:PSS/BNC electrode calculated from CV curves as a function of scan rate. (D) 

Galvanostatic charging/discharging (GCD) curves of RGO/PEDOT:PSS/BNC electrode. (E) Mass specific 

capacitance of RGO/PEDOT:PSS/BNC calculated from GCD curves as a function of current density. (F) 

Capacitance retention of RGO/PEDOT:PSS/BNC electrode over 1000 cycles.  The inset shows the randomly picked 

20 GCD curves. 
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Figure 7.4. (A) Photographs showing the flexibility of the components (electrode and separator) of device and a schematic showing 

the structure of the solid-state supercapacitor device based on RGO/PEDOT:PSS/BNC electrodes. (B) CV curves of assembled 

supercapacitor at different scan rate from 5 to 100 mV/s. (C) GCD curves of assembled supercapacitor at different current densities. 

(D) CV curves of assembled supercapacitor under different bending angles at a scan rate of 100 mV/s. (E) Cycling stability of 

assembled supercapacitor over 4500 cycles.  The inset shows randomly picked 10 GCD curves. (F) Optical image showing the 

flexibility of assembled supercapacitor. (G) LED indicator lighted by assembled device. 
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Chapter 8: Conclusions  

8.1 General conclusions 

Owing to its desirable properties such as excellent mechanical strength and toughness, rich 

chemical functionality, and high specific surface area in aerogel state, bacterial nanocellulose 

(BNC) can serve as an ideal matrix for realizing functional composites.  Over the last three years, 

we have introduced several scalable BNC-based functional composites mainly using a “bacterial 

factory” method.  By simply introducing functional nanomaterials during the bacteria-mediated 

BNC growth, functional nanocomposites can be formed in a scalable, green, and cost-effective 

manner.  This dissertation demonstrates several examples of BNC-based functional 

nanocomposites with applications in sensing, water purification and energy storage.   

We have demonstrated a BNC film-based surface enhanced Raman scattering (SERS) substrate, 

achieved via gravity-assisted filtration of plasmonic nanostructures.  The 3D porous structure and 

ultrafine fibers of BNC facilitates uniform and dense adsorption of plasmonic nanostructures on 

the surface and in sub-surface regions, which results in large SERS enhancement and excellent 

uniformity of SERS activity across the entire substrate.  Harnessing the smooth surface of BNC, 

we show that BNC-based SERS substrate serves as an ideal platform for collection, detection and 

recognition of bacteria.   

We have demonstrated a novel, highly scalable, cost-effective and green strategy to realize 

functional BNC-based foams/membranes, taking advantage of the bacterial production of BNC.  

Functional materials with different dimensions (0D to 3D) such as graphene oxide (GO), 

polydopamine (PDA) can be efficiently incorporated within the BNC matrix during its growth. 

The functional composites achieved by this approach showed excellent mechanical robustness and 
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flexibility owing to the intercalation of functional materials within the layered BNC matrix, which 

is crucial for efficient, large-scale applications, either as a foam or as a membrane.   

We have designed and developed a bilayered hybrid biofoam comprised of BNC and RGO for 

highly efficient solar steam generation.  Owing to the large light absorption, excellent 

photothermal conversion, heat localization and efficient transport of water from bulk to 

evaporative surface, the novel bilayered structure exhibited a remarkably high solar thermal 

efficiency.  A flexible, scalable and, more importantly, completely biodegradable photothermal 

evaporator for highly efficient solar steam generation has then been demonstrated.  The 

biodegradable PDA/BNC foam introduced here exhibits large light absorption and photothermal 

conversion, heat localization, and efficient water transportation, leading to excellent solar steam 

generation performance under one sun.   An innovative water filtration membrane based on BNC 

and RGO, which harvests sunlight to kill microorganisms has been demonstrated to provide a 

novel anti-biofouling approach.  The RGO/BNC membrane exhibited outstanding mechanical and 

chemical stability and stable water flux under high pressure.  Particularly, owing to its 

photothermal properties, the membrane exhibited light-enabled bactericidal activity, avoiding the 

need for any treatment of the feed water or any external energy. 

Additionally, we have demonstrated that the in situ prepared nanocomposites can also serve as a 

platform for further uniform modification of other nanomaterials due to the ease of handling and 

robustness of the nanocomposites. We have demonstrated a robust filtration membrane based on 

BNC loaded with GO and PdNPs which has excellent dye degradation performance for highly 

efficient wastewater treatment.  The Pd/GO/BNC membrane is realized by post formation of 

PdNPs in an in situ prepared GO/BNC membrane. The Pd/GO/BNC membrane exhibited highly 

efficient methylene orange (MO) degradation during filtration (over a wide range of MO 
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concentrations, pH and multiple cycles of reuse).  Multiple contaminants (a cocktail of 4-

nitrophenol, methylene blue and rhodamine 6G) could also be effectively treated by Pd/GO/BNC 

membrane simultaneously during filtration.  The Pd/GO/BNC membrane also demonstrated stable 

flux under high pressure over long duration. 

Furthermore, hybrid functional composites can be realized to achieve optimal performance due to 

synergistic effect by introducing multiple functional materials such as GO and poly(3,4-

ehylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS). The obtained RGO-

/PEDOT:PSS/BNC electrodes exhibited excellent electrochemical performance and cycling 

stability and they can be easily assembled with a BNC based separator to form a flexible all solid-

state supercapacitor device.  The light-weight device showed remarkable mechanical flexibility, 

performance stability under extreme mechanical deformation, obviating the need for additional 

substrates such as PET. 

8.2 Significance and Outlook 

In addition to the representative nanocomposites demonstrated in this study, the fabrication 

strategies and design principles demonstrated in this work can have far reaching implications to 

realize various nanocomposites with applications in water purification, energy harvesting, sensing, 

catalysis, and life sciences.  Especially with the incorporation of emerging materials (such as GO, 

PDA, Mxenes and Metal organic frameworks, etc.), unprecedented multifunctional 

nanocomposites can be achieved in a scalable, cost-effective way.
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Appendix 

Appendix 1 

 

Figure S1.1. SEM images of (A) top surface and (B) cross section of freeze-dried pristine BNC aerogel 

(Inset image: high resolution SEM image showing individual BNC fibers of 20-100 nm in diameter). 
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Figure S1.2. Representative transmission electron microscopy (TEM) image of gold nanorods employed in 

this study 

 

 

Figure S1.3. Representative high-resolution SEM image showing AuNRs on the surface and underneath 

the cellulose fibers. 
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Figure S1.4. SERS spectra collected from different points of E.coli adsorbed on the AuNRs/BNC swab 

showing characteristic Raman bands of E. coli. 

 

Figure S1.5. Photographs of AuNRs/BNC film before and after (A) swabbing 50 times and (B) 1 hour of 

sonication.  No color change in AuNRs/BNC film confirmed strong adsorption of AuNRs on BNC film. 
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Appendix 2 

 

Figure S2.1. TGA curves for BNC film and air-dried RGO/BNC:BNC film. 

 

 
Figure S2.2. Cross-sectional SEM image of air- dried (A) RGO/BNC, (B) BNC film. 
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Figure S2.3. Stability of RGO/BNC:BNC  as evidenced by the mechanically stable 

films after ultrasonication for 1 hr in at pH 7 and pH 1.5. 

 

 

Figure S2.4. FTIR spectra of RGO/BNC, GO/BNC and BNC dry film. 
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Figure S2.5. Thermal conductivity of dry BNC and RGO/BNC foams. 

 
Figure S2.6. Solar steam generation of RGO:BNC/BNC upon irradiation with 808nm laser  (A) IR images  

showing  the  temperature  of  water  and  RGO/BNC:BNC  aerogel  floated  at  air/water interface under 808 nm 

laser illumination (510mK/cm2) at various time points. (B) Plot showing the surface temperature of water and 

RGO/BNC:BNC aerogel at air/water interface as function of irradiation time. (C) Plot showing the cumulative 

weight loss through water evaporation under solar illumination as a function of irradiation time. 
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Appendix 3 

 

Figure S3.1 (A) SEM image of PDA particles (B) Hydrodynamic size of PDA particles measured by DLS. 

 

 

Figure S3.2 TGA of pristine BNC, pristine PDA and PDA/BNC. 
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Figure S3.3 (A) Transmittance and reflectance spectra of PDA coated BNC hydrogel. (B) Solar steam 

generation performance of PDA coated BNC compared with PDA/BNC via in situ growth method. 
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Appendix 4 

 

Figure S4.1. Additional stability tests. (A) RGO/BNC membrane remains intact after 5 h sonication in all 

pH conditions. (B) RGO coated BNC prepared by vacuum filtration quickly disintegrated during 

approximately 1 h sonication in all pH conditions. (C) GO was mixed with BNC dispersion and then 

vacuum filtrated to form a membrane. The membrane showed good stability in pH 7 solutions but 

disintegrated during sonication in solutions with different pH (Scale bars: 1 cm). (D) prolonged vortexing 

employed for membrane washing did not damage the membrane.
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Figure S4.2. (A) TEM image of gold nanoparticles of 5 nm in diameter. (B) Size distribution of AuNPs.  (C) UV-vis 

extinction spectra indicating the rejection of AuNPs with 5 nm in diameter filtered through commercial UF 

membranes. 

 

Figure S4.3. Nitrogen isotherm of RGO/BNC membrane (A) before and (B) after 24-hour light illumination 

(2.9 kW/m2). The pore size of RGO/BNC membrane (C) before and (D) after 24-hour light illumination 

(2.9 kW/m2). 
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Figure S4.4. Water flux of RGO/BNC membrane under cyclic illumination. For the first cycle, RGO/BNC 

membrane was exposed to light (2.9 kW/m2) for 12 hours, and 5 hours exposure time was used for the rest 

of cyclic tests. 

 

 

 
Figure S4.5. (A) Bacterial cell viability counts during bactericidal performance under illumination for BNC 

and RGO membranes. (B) Fluorescence images of E. coli on RGO/BNC before and after incubation for 

1hour.    
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Figure S4.6. Surface roughness and contact angle of (A) RGO/BNC and (B) BNC membranes. 
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Appendix 5 

 

Figure S5.1. SEM images of the surface of GO/BNC aerogel (A-A1) and GO/BNC membrane (B-B1). 
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Figure S5.2. TGA curves of BNC, GO/BNC, Pd/BNC, and Pd/GO/BNC. 

 

 

Figure S5.3. XRD (A) and XPS spectrum of Pd 3d3/2 and Pd 3d5/2 regions (B) of Pd/GO/BNC. 
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Figure S5.4. XPS spectra of C 1s regions for GO/BNC (A) and Pd/GO/BNC (B), and Raman spectra (C) of GO/BNC 

and Pd/GO/BNC. 

 

 

 

Figure S5.5. SEM images of the surface of Pd/BNC membrane. 
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Figure S5.6. TEM images of BNC aerogel (A), Pd/BNC membrane (B), GO/BNC aerogel (C) and 

Pd/GO/BNC membrane (D), respectively. 
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Figure S5.7. Leakage of Pd for Pd/BNC membrane and Pd/GO/BNC membrane after 5 days of mechanical 

agitation. 

 

Figure S5.8. UV−vis spectra of MO solution in the presence of NaBH4 and the MO solution filtered through 

the BNC and GO/BNC membrane. 
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Figure S5.9. (A) UV−vis spectra of MO solution in the absence of NaBH4 and the MO solution filter through 

Pd/GO/BNC membrane under 0.8 bar. (B) Image showing the filtration of MO solution through 

Pd/GO/BNC membrane. 

        

Figure S5.10. (A) MO rejection test of YMGESP3001 membrane. Inset is an image showing the setup.  (B) 

MO rejection test of YMDKSP3001 membrane. UV-vis spectra of permeate solution from MO solution 

after 3 days. Inset is an image showing the setup. 
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Figure S5.11.  Stability tests of Pd/GO/BNC and GO membranes. 
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Appendix 6 

 

Figure S6.1. (A) Picture of a bottle of GO solution. (B) AFM image of GO flakes deposited on a silicon 

substrate.  

 

 

Figure S6.2. XPS spectra of pristine GO, base-washed RGO and HPA-treated RGO. 
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Figure S6.3. RGO content in dry film can be tuned by varying GO content in broth. Electrical conductivity 

of RGO/BNC films with various RGO contents. 

 

Figure S6.4. Effect of solution processes on pristine PEDOT:PSS deposited on a silicon substrate. 
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Figure S6.5. Specific energy and power densities of the Flexible device. 

 

 

Figure S6.6. Strain-stress curve of pristine BNC and RGO/PEDOT:PSS/BNC. 
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Table S6.1:  The comparison of recent flexible paper- based and some carbon-based supercapacitors.  

Material name  Electrolyte Electrode Capacitance 
Current collector 

for device 

PEDOT on RGO134 
Not 

available 
108 F g-1 at 0.3 A g-1 

Not available 

PEDOT:PSS-RGO film135 1 M H3PO4 52.7 F g-1 at 10 mV s-1 Yes 

PANI- BNC paper151 1 M H2SO4 273 F g-1 at 0.2 A g-1 Not available 

PEDOT-paper317 1 M H2SO4 115 F g-1 at 0.4 A g-1 No 

CNT-BNC paper149 1 M H2SO4 50.5 F g-1 at 1 A g-1 No 

Graphene-cellulose paper318 1 M H2SO4 120 F g-1 at 1 mV s-1 Yes 

PANI-Au paper319  1 M H2SO4 212 F g-1 at 0.2 A g-1 Yes 

BNC-MWCNTs-PANI paper152 1 M H2SO4 656 F g-1 at 1 A g-1 No 

Graphite/Ni/Co2NiO4- paper320 1 M H2SO4 734 mF cm-2 at 5 mV s-1 Yes 

CNTs/MnO2/CNTs paper142 1 M Na2SO4 327 F g-1 at 10 mV s-1 No 

PPy@nanocellulose paper140 2 M NaCl 185 F g-1 at 2 mA cm-2 Yes 

p-BC@MnO2 paper150 1 M Na2SO4 173.32 F g-1 at 1 A g-1 Yes 

This work PVA-H2SO4 373 F g-1 at 1 A g-1 No 
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