Single-chain RANKL Provides Insights into RANK Receptor Oligomerization and a Novel Approach to Osteoclast Inhibition

Julia Therese Warren
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds

Part of the Biology Commons

Recommended Citation
https://openscholarship.wustl.edu/art_sci_etds/466
Single-chain RANKL Provides Insights into RANK Receptor Oligomerization and a Novel Approach to Osteoclast Inhibition

by

Julia Therese Warren

A dissertation presented to the Graduate School of Arts and Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy

May 2015
St. Louis, Missouri
Table of Contents

List of Figures .. iv
List of Tables ... v
Acknowledgements .. vi
Abstract .. viii

Chapter 1 - Introduction ...1
 1.1 Background ..2
 1.2 Rationale for Thesis ..12
 1.3 Tables ..13
 1.4 References ..15

Chapter 2 - Manipulation of Receptor Oligomerization as a Novel Strategy for
 TNF Superfamily Inhibition ...27
 2.1 Abstract ...29
 2.2 Introduction ..27
 2.3 Materials and Methods ...32
 2.4 Results ...40
 2.5 Discussion ..46
 2.6 References ...49
 2.7 Figure Legends ...56
 2.8 Figures ...60

Chapter 3 - Optimized RANKL/RANK Binding Kinetics Exert a Biphasic Effect on
 Osteoclast Formation and Function ..73
 3.1 Abstract ..74
 3.2 Introduction ..75
 3.3 Materials and Methods ...77
 3.4 Results ...80
 3.5 Discussion ...84
 3.6 References ...87
 3.7 Figure Legends ...92
 3.8 Table 3.1 ...94
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9 Figures</td>
<td>95</td>
</tr>
<tr>
<td>Chapter 4 - Conclusions and Future Directions</td>
<td>100</td>
</tr>
<tr>
<td>4.1 Conclusions</td>
<td>101</td>
</tr>
<tr>
<td>4.2 Future Directions</td>
<td>105</td>
</tr>
<tr>
<td>4.3 References</td>
<td>110</td>
</tr>
<tr>
<td>4.4 Figure Legend</td>
<td>116</td>
</tr>
<tr>
<td>4.5 Figure</td>
<td>117</td>
</tr>
</tbody>
</table>
List of Figures

Chapter 2
Figure 2.1 ...60
Figure 2.2 ...61
Figure 2.3 ...62
Figure 2.4 ...63
Figure 2.5 ...64
Figure 2.6 ...65
Figure 2.7 ...66
Figure 2.8 ...67
Figure 2.9 ...68
Figure 2.10 ...69
Figure 2.11 ...70
Figure 2.12 ...71
Figure 2.13 ...72

Chapter 3
Figure 3.1 ...94
Figure 3.1 ...95
Figure 3.1 ...96
Figure 3.1 ...97
Figure 3.S1 ...98

Chapter 4
Figure 4.1. ..116
List of Tables

Chapter 1

Table 1.1 ...13
Table 1.2 ...14

Chapter 3

Table 3.1 ...93
Acknowledgements

The completion of this thesis would not have been possible without the scientific and personal support of many. First, I would like to thank my mentor Dr. Steven Teitelbaum, whose commitment to asking new questions and finding unexpected answers, combined with a passion for mentoring the next generation of scientists, has made it a pleasure to work with him for the past several years. Working in the Teitelbaum lab has also provided me with the opportunity to have as my colleagues a wonderful group of inquisitive and supportive people. Specifically, I would like to thank Jean Chappel and Cheryl Adles for their expert technical assistance, Monica Croke for her patience in teaching me many things about the osteoclast and about being a graduate student, Nidhi Rohatgi and Wei Zou for their constant encouragements and input, and Tomo Fukunaga for tolerating my physical proximity as a desk-mate, bench-mate, and hood-mate. Working in the Teitelbaum lab has also given me the chance to receive input from many of the world’s leading experts in bone biology through formal and impromptu meetings. Their input and advice have made this project more rigorous and exciting. Finally, working at the Musculoskeletal Center has given me the chance to interact with a number of scientists who I now feel privileged call my friends.

I also received excellent guidance on the goals and execution of this thesis from my committee, chaired by Phil Stahl, who has provided guidance both within and outside of committee meetings. This work was largely a collaboration between the Teitelbaum and Fremont labs, and Daved’s commitment to scientific rigor has challenged me to grow as a scientist. Portions of this work necessitated my almost daily presence in the Fremont lab at times, and I would like to thank the members, especially Chris Nelson, for their willingness to offer experimental advice and to exchange ideas.
I would like to thank my friends from this and other stages of my life for their support through this process. They have been there to celebrate the successes and hear about the failures, all the while providing encouragement and a source of laughter (and occasionally food). In addition, my family have included my biggest cheerleaders no matter what the correlation to actual accomplishments. I would especially like to thank my mother, father, sister, Aunt Lynnie, Aunt Beth, and our extended family Judy and Bob for their constant belief in my potential and their unwavering support. I also would like to thank my grandmother Lucille, who would have been so proud of this document that, the next time I visited, all of her friends would be quoting from my abstract.

Finally, I have received unwavering support and love from my partner, Bob. He has tolerated strange hours away at the lab, inspired me to work harder, and motivated me to come home each day.

This work was supported by the Medical Scientist Training Program T32 training grant and a National Institute of Health F30 training grant.
ABSTRACT OF THE DISSERTATION

Single-chain RANKL Provides Insights into RANK Receptor Oligomerization and a Novel Approach to Osteoclast Inhibition

by

Julia Therese Warren

Doctor of Philosophy in Biology and Biomedical sciences

(Immunology)

Washington University in St. Louis, 2015

Professor Steven L. Teitelbaum, Chairperson

Osteoporosis is a skeletal disease characterized by bone resorption in excess of bone formation. The osteoclast is the sole bone resorbing cell and therefore provides an important avenue for novel therapeutic development. The mature osteoclast is derived from the monocyte/macrophage lineage, and its proper differentiation and function requires the interaction of receptor activator of NF-kB Ligand (RANKL) with its receptor RANK. RANKL exists as a homotrimer, with classical models of receptor activation assuming trimeric clustering of receptor as necessary for signal transduction. We have designed a novel single-chain RANKL (scRANKL) construct to test the assumption that the recruitment of three RANK receptors is necessary for downstream signaling. scRANKL consists of all three RANKL monomers connected by short, protease-resistant linkers, enabling individual manipulation of each RANK binding site and assessment of the receptor clustering state necessary for downstream signaling. We used our co-crystal structure of RANK/RANKL to design mutations in RANKL that abolish binding to RANK. After inserting these variants at one scRANKL site, to create a single-
blocked ligand capable of recruiting only two RANK receptors, we still observe RANK signaling and osteoclast formation, although only at high ligand concentrations. In contrast, double-blocked scRANKL does not form osteoclasts. Hence, dimeric engagement of RANK by RANKL is sufficient and necessary for downstream signaling. Although double-blocked scRANKL may potentially antagonize RANK/RANKL signaling, it competes poorly with endogenous RANKL due to loss of receptor avidity. Therefore, we identified mutations in RANKL, using yeast surface display, that dramatically increase its affinity for RANK.

Concurrently, we sorted for loss of binding to OPG, the RANKL endogenous decoy receptor, with the hypothesis that this trait would allow scRANKL to more efficiently function as a competitive antagonist, in vivo. When inserted at the intact RANK binding sites in single- or double-blocked scRANKL, these novel constructs are highly efficient inhibitors of wild-type RANKL-induced osteoclastogenesis. Our work demonstrates that the manipulation of RANK receptor oligomerization, and the subsequent blockade in signaling, may provide a novel avenue to develop anti-resorptive drugs. Additionally, the design of single-chain TNFSF ligands with individually manipulated receptor binding sites can more broadly inform our knowledge of how these receptors, with diverse biological functions, initiate signal transduction.
Chapter 1

Introduction
1.1 Background

Bone homeostasis

The skeletal system in mammals acts not only as a scaffold whose biomechanical properties are crucial for movement and mineral homeostasis, but also as a key site for the development and maintenance of hematopoietic lineage cells (1). More recently, it has been suggested that the skeleton acts as an endocrine organ to regulate whole organism metabolism (2). Classically, basal conditions within the skeleton were thought to be maintained by a balance between the bone anabolic osteoblast and the bone resorptive osteoclast (3). It is now appreciated that the osteocyte, itself a terminally differentiated osteoblast, plays a critical role in sensing mechanical stress and perhaps in regulating other cell types within the bone marrow cavity (4). Both the osteoblast and the osteocyte are derived from bone marrow stromal cells, and their crucial roles in the synthesis and mineralization of bone matrix have been extensively studied (5).

The osteoclast is a multinucleated cell derived from hematopoietic lineage monocyte/macrophages precursors (6). Osteoclasts act to resorb bone by attaching via the recognition of matrix-embedded "RGD" ligands binding to the avb3 integrin (7-9). Subsequent signaling leads to actin cytoskeletal organization, the formation of an actin-rich sealing zone, and finally the generation of a ruffled plasmalemma border juxtaposed to bone (10, 11). The directional secretion of acid- and collagenolytic enzyme-containing vesicles into the resorptive area promotes dissolution of the inorganic phase of bone, followed by proteolytic cleavage of the demineralized, organic component (12).

A long-standing question regarding skeletal homeostasis is how osteoclastic bone resorption and osteoblastic bone formation are coupled in time and space. It is believed that
bone formation is directed to areas of recent, active bone resorption thus providing a mechanism by which older, less mechanically sound bone can be equally replaced by new bone (13, 14).

This phenomenon has been recognized for decades (15), and recent efforts have pointed to several candidate factors that may act to link these two processes (16-20). Although the precise molecular mechanisms governing this aspect of bone homeostasis, it is clear that a balance between these two processes is essential.

Diseases Resulting in Low Bone Mass

Although in basal conditions of skeletal homeostasis the actions of the bone anabolic osteoblast and the bone catabolic osteoclast are quantitatively balanced to maintain skeletal mass, many diseases reflect an imbalance toward osteoclast activity. Among these are osteoporosis or the lytic lesions of skeletal metastases, and rheumatoid arthritis. In particular, post-menopausal low bone mass and osteoporosis are estimated to affect roughly over 50 million Americans. Decreased bone mass attending a decline in estrogen levels fuels primarily an increase in osteoclastic bone resorption that osteoblastic bone formation is unable to compensate for (21). These diseases predispose to fragility fractures, likely reflecting not only a decrease in bone mineral density but also compromised bone quality reflected in such parameters as thinning of trabeculae and loss of trabecular connectivity. Additionally, pathologies such as Paget's disease of the bone reflect focal, increase bone turnover with a balance toward resorption (22).

Role of RANK, RANKL and OPG in regulating osteoclasts

Several cytokines influence the formation and function of osteoclasts, but nearly 15 years ago a series of genetic studies demonstrated the interaction of receptor activator of NF-kB ligand...
(RANKL) with its receptor RANK to be key molecular events necessary for these processes (23-26). Around the same time, osteoprotegerin (OPG) was described as a decoy receptor for RANKL, preventing its association with RANK and thus inhibiting osteoclast formation and function (27, 28). Reflecting the role of the RANK/RANKL/OPG axis in bone homeostasis, humans with inactivating mutations in RANK or RANKL can present with osteoclast-poor autosomal recessive osteopetrosis (ARO) (29). This disease is characterized by impaired remodeling, retention of mineralized cartilage, high bone mass and an absence of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts on histological sections (30). Conversely, mutations in OPG result in idiopathic hyperphosphatasia, also known as juvenile Paget’s disease (31). This diminished functionality of OPG causes a state of high bone turnover with hyperactivated osteoclasts and concomitant increased osteoblast activity. Progressive long bone deformities and predisposition to fracture are the result of overall low bone mass. Table 1.1 summarizes currently identified mutations affecting the regions encoding the cytokine/receptor interface.

Tumor Necrosis Factor Superfamily

RANKL is a member of the tumor necrosis factor superfamily (TNFSF) and both RANK and OPG are members of the TNF receptor superfamily (TNFRSF). There are at least 19 TNFSF cytokines and 30 receptors in humans displaying low sequence conservation with high degrees of structural homology (32). The available TNFSF structures all show the cytokine as homotrimeric (reviewed in (33), see also (34-39)) composed of two layered beta sheets named from N- to C-terminal as the A through H sheets with connected loops likewise termed the AA’, A’B, BC etc. loops. The A’/A/H/C/F sheet is mostly buried, forming a hydrophobic core thought
to be important for trimer stability, whereas the B’/B/G/D/E is less buried. Loops connecting the beta sheets face outward from the core of the protein, comprising most of the binding interface formed between two adjacent monomers. All TNFSF members are Type II transmembrane proteins, and in some cases are thought to take on soluble forms after either cleavage off of the cell surface or through alternative splicing.

RANKL is a member of the so-called “conventional” TNFSF ligands, along with TNFα, lymphotoxin alpha (LTα), LTβ, tumor necrosis factor-related apoptosis inducing ligand (TRAIL), FasL, TNF-like ligand 1A (TL1A), lymphotoxin exhibiting inducible expression and competing with herpes simplex virus glycoprotein D for herpesvirus entry mediator a receptor expressed by T lymphocytes (LIGHT), and CD40L. Conserved elements among this family are hydrophobic residues in the DE loop, relatively long CD, DE, and EF loops, and a footprint for the receptor with two clustered contact areas (33, 40). The other loop making substantial contact with receptor, the AA’ loop, varies in length wildly among TNFSF members from 6 residues (TNFα) to 22 (TRAIL). Among TNFSF member, RANKL is most closely related to TRAIL, sharing 25% sequence identity between murine and 27% between human cytokines (aligned using ClustalW (41)). The structures of human RANKL (3URF) and human TRAIL (1DG6) align with a Cα root mean square difference (RMSD) of 1.31Å, indicating substantial overall structural homology (alignments performed using PDBRefold (42)). Indeed, TRAIL likely is also capable of binding OPG, though at low affinity (43, 44), and clusters phylogenetically with RANKL as a distinct family among the TNFSF (45).

Tumor Necrosis Factor Receptor Superfamily
The extracellular portion of TNF receptors consists of modular cysteine-rich domains (CRDs) with varying numbers of intramolecular disulfide bonds \((46)\). These receptors are primarily type I transmembrane proteins and take on an elongated, rod-like shape of between one and four CRDs. Although less well structurally studied than the TNF ligands, most TNF receptors are thought to be monomeric in nature. A notable exception is the observation of a TNFR1 dimer when crystallized alone, either in a head-to-head or head-to-tail orientation \((47)\). How relevant this TNFR1 dimer is to the control of receptor signaling remains to be established.

RANK and OPG both contain four extracellular CRDs, and despite having only 34% sequence similarity, individual superposition of the CRDs yields Ca RMSDs between 0.9 and 1.5Å \((34)\). Though they occupy a similar overall binding groove, we were able to identify several key differences in the individual residues used to make contact with RANKL. Specifically, OPG makes more extensive contacts to the DE loop and also possesses a key binding determinant at residue, F96. This residue participates in pi-stacking interactions with portions of the RANKL CD loop, which undergo a significant rearrangement in this area to accommodate OPG. Indeed, the corresponding residue F117 in humans is mutated in several reported cases of juvenile idiopathic hyperphosphatasia (Table 1.1). Conversely, the interaction with RANK requires no substantial rearrangements of RANKL and the receptor appears to be shifted slightly away from the RANKL DE-loop side of the interface.

Additionally, a key difference between RANK and OPG lies in their C-terminal regions. Following its CRDs, RANK contains a transmembrane region and a long cytoplasmic motif with TNF receptor-associated factor (TRAF) recruitment motifs \((48, 49)\). Its signaling is described below. OPG, however, is secreted and capable of forming a homo-dimer through its C-terminal region, especially the death-like domains and the penultimate C400 residue \((50)\). OPG also
contains a heparin-binding basic region, which has been implicated in the sub-cellular localization of RANKL in osteoblastic cells (51). Interestingly, several patients with juvenile Paget’s diseases have mutations disrupting both the death-like domain and the heparin binding domains (31, 52-54). However, these patients are also missing the crucial regions for OPG dimerization. It remains to be seen which role of OPG (as a highly avid decoy receptor or as regulator of RANKL trafficking) are functionally significant in light of these mutations.

Binding of RANKL to RANK or OPG

We previously determined the single-site binding affinities of RANKL for both RANK and OPG (34) using surface plasmon resonance (SPR). In these experiments, the monomeric fragments of each receptors containing the cytokine-binding CRDs was used as the analyte, thus allowing us to measure the kinetics of how RANK or OPG bind to an individual cleft within the trimer. From these experiments, we observed that RANKL binds to RANK with approximately 2uM affinity. This is reflected in a relatively slow on-rate and fast off-rate (see Table 1.2). Conversely, the single-site affinity of OPG for RANKL is almost 500-fold higher at approximately 5nM. For OPG, association and dissociation rates are 30-fold faster and 20-fold slower, respectively. These values are consistent with the function of OPG as a decoy receptor. Measuring single-site affinities of OPG for RANKL necessitated using only the ligand-binding, CRDs of OPG rather than the full-length molecule which is known to form a homodimer. From our data, we cannot determine whether one full-length OPG homodimer is capable of binding to grooves on two separate RANKL trimers, or whether each arm of the full-length OPG dimer binds to two distinct grooves within one RANKL homotrimer.
The values that we measured for these interactions varied from previously reported ones (35, 36). It is important to note that our experiments address single-site binding, rather than the apparently much higher affinities reported using trimeric ligand as analyte (a reflection of the effects of avidity and measurements of an apparent Kd). Indeed, the issue of measuring single-site affinities versus apparent affinities of oligomeric interactions plagues the TNFSF literature. Table 1.2 outlines the reported binding affinities of RANKL for RANK and OPG, as well as the affinity of TRAIL for OPG. Within the RANK/RANKL interaction alone, the affinities vary from 2.0 uM to 68 pM. This nearly 30,000-fold difference in affinity could be explained by experimental design alone, as the extraordinarily high affinity measurement reflects SPR-determination by immobilizing monomeric ligand and flowing over trimeric ligand as the analyte. Variation in other measurements could be due to different purification systems yielding glycosylated or non-glycosylated versions, or due to differences between murine and human variants. Ultimately, single-site affinity measurements by SPR are substantially more quantitative and therefore all binding data presented in this dissertation will reflect this type of analysis.

Signaling downstream of RANKL binding to RANK

Despite its long cytoplasmic tail, RANK receptor possesses no intrinsic enzymatic activity and instead recruits signaling adaptors via conserved motifs, including TNF-receptor associated factors (TRAFs). Indeed, recruitment (48) and subsequent ubiquitin ligase activity (55) of TRAF6 is required for osteoclast differentiation. Following activation of TRAF6, TAB2 and TAK1 are recruited (56, 57) which allows for the ubiquitination and activation of IKKg or NEMO (58). Eventually, active IKK complex phosphorylates the NF-κB repressor IκBa,
leading to its proteasomal degradation and allowing NF-κB to translocate to the nucleus (59) where it regulates the expression of several osteoclast-specific genes. Additionally, during differentiation RANK signaling via TRAF6 can activate the MAP kinases p38, JNK, and ERK (60). Together, these kinases activate the transcription factors c-fos and c-Jun, which can act in concert to promote the upregulation of several crucial genes, including NFATc1 (61). The crucial step of NFATc1 activation (62) by RANK signaling occurs in conjunction with co-stimulatory ITAM signals (63) acting via PLCγ2 and calcium signaling (64). In addition to TRAF-binding motifs, other regions of the RANK cytoplasmic motif have been implicated in its signaling. Several groups have pointed to a crucial “IVVY” motif as being important for osteoclastogenic signals (65, 66), perhaps through the recruitment of PLCγ2 and the scaffold protein Gab2 (67).

RANK signaling not only induces differentiation of macrophages into osteoclasts, it can also activate the mature cell to resorb bone (68). In mature cells, this occurs via organization of the cytoskeleton to form actin rings (69). The binding of TRAF6, but not other TRAFs, is essential for proper cytoskeletal organization (70). Indeed, mice lacking a molecule that serves to negatively regulate the association of TRAF6 and RANK exhibit not only enhanced osteoclastogenesis, but also enhanced activation of the cytoskeleton in response to RANKL treatment (71). RANKL mediated actin ring formation is also dependent upon Src kinase activity (72, 73) and the ability to induce Src-mediated formation of a cytoskeletal organizing RANK/Src/avB3 complex (74).

Initiating Signal Transduction
Although the signaling cascades described above have been extensively characterized, the precise mechanism that transforms extracellular ligand binding into intracellular, receptor-initiated signaling cascades remains a fascinating question. For G-protein coupled receptors (GPCRs), ligand binding is thought to induce a conformational change that recruits heterotrimeric G-proteins and promotes the exchange of GDP for GTP, thus initiating signaling (75). The classic example of oligomeric ligand causing receptor activation is in the epidermal growth factor receptor (EGFR). At resting state, monomeric and dimeric receptor species are in equilibrium but ligation by dimeric EGF stabilizes the oligomer, promoting its intrinsic kinase activity and inducing autophosphorylation/activation (76). No known TNF receptor contains intrinsic enzymatic activity or directly recruits an intracellular enzyme. It has been largely assumed that ligand-induced trimerization of individual monomer receptor chains is the initiating event for signal transduction. For some TNF receptor members, it has been proposed that multimers of receptor are pre-formed in the absence of ligand (77-80), and that ligand binding allows for a conformational change that brings the intracellular adapter-recruitment motifs into proximity (81). Although there exists a crystal structure of TNFR1 in a dimeric state with extensive contacts form at the proposed “pre-ligand association domain” (47), the crystal structures of several TRAFs alone or bound to the receptor pepties site show formation of a trimeric species (82). Therefore, the exact oligomeric nature of receptor required for the initiating of downstream signaling remains to be fully elucidated. More recently, higher order clustering has been proposed for several TNFRs (83-85).

Several studies have attempted to address the issue of receptor oligomerization necessary for RANK signal initiation. In one study, a chimeric protein consisting of RANK cytoplasmic domain fused to the erythropoietin extracellular portion was transfected into the immortalized
macrohpage cell line RAW264.7 (86). Agonist antibody ligation purportedly results in dimeric clustering of receptor, and in this context the authors observed decreased osteoclast formation and function. However, a separate group reported that the overexpression of differentially tagged RANK receptor could lead to its ligand-independent clustering and activation (87). This group identified the same IVVY cytoplasmic motif described above as recruiting Gab2 and PLCg as being responsible for pre-ligand receptor association. However, careful titration of RANK in a subsequent overexpression study (88) failed to reproduce ligand-independent receptor clustering and signal transduction, highlighting the need for tools to address this fundamental issue using unmanipulated, primary cells.

Single-chain TNFSF

The ligands of the TNFSF fold in such a way that the N- and C-termini of neighboring monomers are immediately adjacent. This fact has been used by several groups to create versions of TNFa (89) or TRAIL (90, 91) that contain each monomer covalently linked by short, flexible amino acid stretches. These constructs have been termed “single-chain” because the trimeric ligand is synthesized as one, single polypeptide chain. Additionally, Boschert et al (92) demonstrated that in principle it is possible to individually mutate the receptor recruitment sites within single-chain TNF. Although they used these constructs to probe the differences in TNFR1-Fas or TNFR2-Fas chimeric receptor overexpressing cell lines, it is easy to conceive a scenario where these proteins could be used to address issues of receptor multimerization in unmanipulated cells using TNFR1 or TNFR2 selective variants.
1.2 Rationale for the thesis

We reasoned that construction of a single-chain RANKL (scRANKL) would allow us to probe the receptor oligomeric state of RANK necessary and sufficient for downstream signaling in osteoclast precursors. To this end, we constructed and optimized the expression of scRANKL. We utilized our previously described co-crystal structures to generate mutations in RANKL incapable of recruiting RANK receptor and introduced this mutation into scRANKL.

Additionally, we reasoned that we could identify a version of scRANKL capable of binding RANK receptor yet incapable of generating osteoclastogenic signals thus providing a novel mechanism for inhibition. Not surprisingly, scRANKL variants incapable of binding receptor at one or two sites were unable to compete with the avidity afforded to trimeric, WT-RANKL. An additional aim of this work was to identify mutations in RANKL that increased the affinity for RANK. Upon insertion into the intact receptor recruitment sites, we were able to generate a highly effective RANKL inhibitor. We tested this ability of this protein to antagonize RANKL-mediated osteoclast formation both in vitro and in vivo.

From our attempts to identify high affinity RANKL, we generated a panel of mutants with a wide range of affinities for RANK. We observed that there was not a simple linear relationship between receptor binding and osteoclastogenic capacity. Rather, supraphysiologic binding mediated by extremely long off-rates is not equally capable of agonist activity as variants with only modest increases in affinity. This biphasic effect suggests a mechanism for receptor activation that relies on the ability not only to associate, but also to dissociate from receptor, as being crucial for activation.
Table 1.1 RANK, OPG, and RANKL mutations at the ligand/receptor interface

<table>
<thead>
<tr>
<th>Mutation (Human)</th>
<th>Residue (Murine)</th>
<th>Location in structure</th>
<th>Structural predictions</th>
<th>Disease Association</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C44R</td>
<td>C23</td>
<td>CRD1</td>
<td>Disulfide bond to C62 disrupted -> improper folding</td>
<td>Idiopathic hyperphosphatasia (juvenile Paget’s disease)</td>
<td>(54)</td>
</tr>
<tr>
<td>C65R</td>
<td>C44</td>
<td>CRD2 – A1</td>
<td>Disulfide bond to C87 disrupted -> improper folding</td>
<td>Idiopathic hyperphosphatasia (juvenile Paget’s disease)</td>
<td>(31)</td>
</tr>
<tr>
<td>C87Y</td>
<td>C66</td>
<td>CRD2 – B2</td>
<td>Disulfide to C113 disrupted -> improper folding</td>
<td>Idiopathic hyperphosphatasia (juvenile Paget’s disease)</td>
<td>(31)</td>
</tr>
<tr>
<td>F117L</td>
<td>F96L</td>
<td>CRD3 – A1</td>
<td>Loss of crucial hydrophobic and aromatic ring stacking energetics -> decreased affinity for RANKL</td>
<td>Idiopathic hyperphosphatasia (juvenile Paget’s disease)</td>
<td>(31)</td>
</tr>
<tr>
<td>ΔD182 (in frame)</td>
<td>D161</td>
<td>CRD4 – B1</td>
<td>Equivalent RANK residue involved in intramolecular salt bridge to conserved T174, loss of salt bridge could lead to protein instability. Alternatively, this may displace nearby C195 needed for disulfide bond to C175</td>
<td>Idiopathic hyperphosphatasia (juvenile Paget’s disease)</td>
<td>(93)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RANK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G53R</td>
<td>G24</td>
<td>CRD1 – B2</td>
<td>Needed to make a tight turn. Probably disrupts folding of CRD1</td>
<td>ARO (Compound heterozygote with C175R)</td>
<td>(94)</td>
</tr>
<tr>
<td>R129C</td>
<td>R100</td>
<td>CRD3 A>B X2</td>
<td>Salt bridge to RANKL<sup>225</sup>, hydrogen bonds to RANKL<sup>366, 568</sup> disrupted interactions -> decreased affinity</td>
<td>ARO (Compound heterozygote with C175R)</td>
<td>(94)</td>
</tr>
<tr>
<td>A134V</td>
<td>A105</td>
<td>CRD3 – B1</td>
<td>Adjacent to C104, may disrupt disulfide bond to C151</td>
<td>ARO</td>
<td>(94)</td>
</tr>
<tr>
<td>D148V</td>
<td>D119</td>
<td>CRD3 – B1</td>
<td>Intramolecular salt bridge to mainchain T102 and His90, may be important for folding or stability</td>
<td>ARO</td>
<td>(94)</td>
</tr>
<tr>
<td>R170G</td>
<td>K141</td>
<td>CRD4 A>B X2</td>
<td>Forms intramolecular salt bridge to D162 which may be important for folding or stability</td>
<td>ARO</td>
<td>(94)</td>
</tr>
<tr>
<td>C175R</td>
<td>C146</td>
<td>CRD4 – B1</td>
<td>Disulfide to C195 disrupted -> improper folding</td>
<td>ARO (Compound heterozygote with R129C)</td>
<td>(94)</td>
</tr>
</tbody>
</table>

RANKL					
Δ145-177	146-176	A strand into AA’ loop	Important contacts to RANK, likely impact binding. Not heavily contacted by OPG.	ARO	(96)
M199K	M198	A’’-B’ loop	No contacts to RANK or OPG, no inter-monomer RANKL contacts. Core residue that may be important for monomer folding.	ARO	(96)
Frameshift at V277	V276	F strand	Missing F, G, and H strands likely critical for proper folding or trimer assembly	ARO	(96)
*Indicates isothermal calorimetry (ITC) experiment with TNFSF member injected into a stirred cell of TNFRSF member. All other experiments were performed using surface plasmon resonance (SPR).

Table 1.2. Reported murine or human RANK/RANKL, OPG/RANKL or OPG/TRAIL binding affinities.

<table>
<thead>
<tr>
<th>Immobilized</th>
<th>Analyte</th>
<th>ka (1/Ms)</th>
<th>kd (1/s)</th>
<th>KD (M)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>mRANKL</td>
<td>mRANK (CRDs)</td>
<td>4.7×10^4</td>
<td>1.1×10^1</td>
<td>2.6×10^6</td>
<td>(34)</td>
</tr>
<tr>
<td>mRANK</td>
<td>mRANKL</td>
<td>NR</td>
<td>NR</td>
<td>6.8×10^{-11}</td>
<td>(35)</td>
</tr>
<tr>
<td>mRANK*</td>
<td>mRANKL*</td>
<td>NR</td>
<td>NR</td>
<td>2.3×10^{-7}</td>
<td>(36)</td>
</tr>
<tr>
<td>hRANK</td>
<td>hRANKL</td>
<td>NR</td>
<td>NR</td>
<td>2.1×10^{-9}</td>
<td>(97)</td>
</tr>
<tr>
<td>hRANK</td>
<td>hRANKL</td>
<td>NR</td>
<td>NR</td>
<td>1.1×10^{-10}</td>
<td>(98)</td>
</tr>
<tr>
<td>RANK-Fc</td>
<td>RANKL</td>
<td>4.9×10^{-7}</td>
<td>3.3×10^{-4}</td>
<td>6.7×10^{-10}</td>
<td>(99)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Immobilized</th>
<th>Analyte</th>
<th>ka (1/Ms)</th>
<th>kd (1/s)</th>
<th>KD (M)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>mRANKL</td>
<td>mOPG (CRDs)</td>
<td>1.4×10^6</td>
<td>1.1×10^{-1}</td>
<td>5.1×10^{-9}</td>
<td>(34)</td>
</tr>
<tr>
<td>hRANKL</td>
<td>hOPG (CRDs)</td>
<td>6.5×10^6</td>
<td>4.2×10^{-3}</td>
<td>6.5×10^{-10}</td>
<td>(38)</td>
</tr>
<tr>
<td>hOPG-Fc</td>
<td>hRANKL</td>
<td>7.6×10^{-7}</td>
<td>1.3×10^{-3}</td>
<td>1.7×10^{-9}</td>
<td>(50)</td>
</tr>
<tr>
<td>hRANKL</td>
<td>hOPG (FL)</td>
<td>3.0×10^3</td>
<td>2.0×10^{-3}</td>
<td>1.0×10^{-8}</td>
<td>(50)</td>
</tr>
<tr>
<td>hRANKL</td>
<td>hOPG (CRDs)</td>
<td>1.6×10^{-4}</td>
<td>5.0×10^{-3}</td>
<td>3.0×10^{-6}</td>
<td>(50)</td>
</tr>
<tr>
<td>hOPG-Fc</td>
<td>hRANKL</td>
<td>NR</td>
<td>NR</td>
<td>6.7×10^{-9}</td>
<td>(100)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Immobilized</th>
<th>Analyte</th>
<th>ka (1/Ms)</th>
<th>kd (1/s)</th>
<th>KD (M)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>hOPG-Fc</td>
<td>hTRAIL</td>
<td>NR</td>
<td>NR</td>
<td>4.5×10^{-8}</td>
<td>(101)</td>
</tr>
<tr>
<td>hOPG-Fc</td>
<td>hTRAIL</td>
<td>NR</td>
<td>NR</td>
<td>4.0×10^{-7}</td>
<td>(43)</td>
</tr>
<tr>
<td>hOPG-Fc</td>
<td>hTRAIL</td>
<td>NR</td>
<td>NR</td>
<td>1.0×10^{-9}</td>
<td>(102)</td>
</tr>
<tr>
<td>hOPG-Fc</td>
<td>hTRAIL</td>
<td>6.6×10^{-4}</td>
<td>2.0×10^{-4}</td>
<td>3.0×10^{-7}</td>
<td>(44)</td>
</tr>
</tbody>
</table>
1.4 References

19. L. Pederson, M. Ruan, J. J. Westendorf, S. Khosla, M. J. Oursler, Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-

36. H. M. Ta et al., Structure-based development of a receptor activator of nuclear factor-kappaB ligand (RANKL) inhibitor peptide and molecular basis for osteopetrosis, *Proceedings of the*

45. Y. Collette, A. Gilles, P. Pontarotti, D. Olive, A co-evolution perspective of the TNFSF and

51. S. Aoki et al., Function of OPG as a traffic regulator for RANKL is crucial for controlled osteoclastogenesis, *J Bone Miner Res* 25, 1907–1921 (2010).

70. A. P. Armstrong et al., A RANK/TRAF6-dependent signal transduction pathway is essential

Chapter 2

Manipulation of Receptor Oligomerization as a Novel Strategy for TNF Superfamily Inhibition

Portions of this chapter are adapted from the manuscript submitted to Science for consideration, November, 2013.

Julia T. Warren, Christopher A. Nelson, Corinne E. Decker, Daved H. Fremont, Steven L. Teitelbaum
2.1 Abstract

Receptor activator of NF-κB ligand (RANKL) is the key cytokine regulating osteoclast formation and is therefore a therapeutic target for treatment of disorders such as osteoporosis and skeletal metastasis. The molecular details initiating osteoclastogenesis and thus bone resorption, particularly the state of RANKL receptor (RANK) oligomerization, are unclear. We describe a novel RANKL construct, with all three monomers covalently linked as a single polypeptide chain, which enables delineation of the receptor oligomeric state necessary and sufficient to form bone resorptive cells. We find RANKL-induced trimeric clustering of its receptor, RANK, to be a prerequisite for optimal osteoclast formation, although dimeric clustering is also capable of less efficiently generating the cell. We used this information to modify the affinity of individual single-chain RANKL monomers for RANK as well as for the decoy receptor, osteoprotegerin (OPG). This approach yielded an effective inhibitor of osteoclastogenesis, in vitro and in vivo, thus providing a novel strategy for anti-resorptive therapy. As RANKL is a member of the tumor necrosis factor superfamily (TNFSF), our observations may also inform the design of inhibitors for other TNFSF members.
2.2 Introduction

The TNFSF and its associated receptors represent a protein family with wide-ranging roles in physiology and homeostasis (1). Excess activation of TNF superfamily (TNFSF) receptors induces a myriad of pathological conditions such as psoriasis, inflammatory joint disease and osteoporosis (2, 3). While biological agents such as humanized monoclonal antibodies and decoy receptors have positively impacted the course of these diseases, each has limitations including acquired resistance, predisposition to infectious diseases and malignancy as well as marked suppression of skeletal remodeling (4). The TNFSF member RANKL is the key cytokine regulating osteoclast formation and function (5, 6) and excess activation of its receptor, RANK, promotes pathological bone loss (7). RANKL exists as a homotrimer in solution (8) with each of the three interfaces separating the monomers containing a binding groove that can accept a single copy of RANK or the anti-osteoclastogenic decoy receptor, OPG (9-11).

Despite the trimeric nature of the cytokine, the assumption that osteoclastic signaling is initiated by clustering of three RANK monomers is controversial. This largely reflects the fact that previous studies have relied on the overexpression of RANK or of various RANK/extracellular receptor chimeras. Enforced dimerization of RANK by overexpression of a RANK cytoplasmic domain fused to the extracellular portion of the Epo receptor and ligation of this chimera with anti-Epo antibody led to decreased osteoclast formation (12). However, this study, and a subsequent publication using a RANK overexpression system (13), show that even in the absence of RANKL, TRAP-positive osteoclasts can be observed. The relevance of this ligand-independent RANK functionality is uncertain, as mice and humans lacking functional RANKL fail to form osteoclasts (5, 6, 14). Additionally, the careful selection of stable cell lines expressing similar levels of RANK as found in osteoclast precursors did not lead to ligand-
independent signaling (1, 15). Together, these studies highlight the need for tools to examine these fundamental questions in the context of primary, unmanipulated cells.

Indeed, the receptor oligomeric state necessary and sufficient for signaling has been an area of interest more broadly within the TNF superfamily. For some TNF receptor members, it has been proposed that multimers of receptor are pre-formed in the absence of ligand (2, 3, 16-19), and that ligand binding allows for a conformational change that brings the intracellular adapter-recruitment motifs into proximity (4, 20). Similar to RANK overexpression, ligand-independent TNFR1-mediated apoptosis actually prevents generation of cells overexpressing this receptor (5, 6, 21). Although there exists a crystal structure of TNFR1 in a dimeric state with extensive contacts formed at the proposed “pre-ligand association domain” (7, 22), the crystal structures of several TRAFs alone or bound to receptor fragments show formation of a trimeric species (8, 23). Therefore, the exact oligomeric nature of receptor required for the initiating of downstream signaling remains to be fully elucidated.

Recently, several groups have described the use of "single-chain" protein variants within the TNFSF containing each monomer covalently linked by short, flexible amino acid stretches (9-11, 24-26). This is possible because the ligands of the TNFSF fold such that the N- and C-termini of neighboring monomers are in close physical proximity. Indeed, a single-chain version of TNFα with individually mutated receptor recruitment sites was generated and used to show that TNFR1 needs only one available recruitment site to promote cell death of a TNFR1 extracellular / Fas intracellular chimeric receptor (12, 27). Though the authors propose a mechanism whereby pre-associated TNFR1 dimers become signaling competent via the binding of two separate TNF homotrimers to each TNFR1 dimer, their surprising finding may be confounded by the chimeric and overexpressed nature of the receptor.
In the present study, we created a single-chain version of RANKL (scRANKL) by covalently linking each monomer with flexible glycine-serine repeats. We designed mutations to prevent RANK receptor recruitment and introduced them individually into each scRANKL monomer, generating versions capable of recruiting only two or one RANK monomer to each scRANKL. Our examination of these scRANKL variants using primary, bone marrow macrophages with endogenous levels of RANK receptor allow us to comment on the receptor oligomeric state necessary and sufficient for downstream signaling and osteoclast formation. Additionally, we used a non-biased, forward genetic approach to delineate RANKL variants with high affinity for RANK and decreased binding to the decoy receptor osteoprotegerin (OPG). Insertion of these novel RANKL mutants into the intact receptor recruitment sites of single- or double-block scRANKL generated an effective inhibitor of WT RANKL-mediated osteoclast formation and function. This combined strategy of single-chain trimers with high affinity intact sites may be broadly applicable to other TNF receptor signaling systems.
2.3 Materials and Methods:

Construction of single-chain RANKL vector: Initially, scRANKL was cloned into the pGEX vector (GE-Healthcare) by PCR amplification of mouse RANKL monomer (residues 162–316 of NCBI Reference Sequence NP_035743) using primer pairs that yielded the following restriction sites: 5’ Smal-RANKL-3’BspEI, 5’BspEI-RANKL-3’BamHI, 5’BamHI-RANKL-3’NotI. The primers were designed such that the three monomers are separated by a linker sequence ([Gly-Gly-Ser-Gly] x 3). Each insert was double-digested with the appropriate restriction enzymes (Fermentas) and ligated into the pGEX vector between the Smal and NotI sites. The entire scRANKL gene was subcloned into a mammalian protein expression vector (pFM (13, 28), gift of Dr. Filipo Mancia) downstream of the signal peptide from pHLsec (MGILPSPGMPALLSLVSLLSVMGCVCA) (5, 6, 14, 29). To aid protein recovery a TEV protease cleavage site and 6-histidine tag were added at the c-terminus (SSGRENLYFQGHHHHHHH). In brief, the construct encodes: a signal-peptide, RANKL (aa 162-316) linker- RANKL (aa 162-316) linker - RANKL (aa 162-316) - TEV cleavage site - 6xHis. Expression is driven by the CMV promoter. Transfection efficiency is monitored as red fluorescent protein production, which initiates downstream of scRANKL at an internal ribosomal entry site.

Production of mammalian RANKL protein: Suspension adapted 293-Freestyle cells (Life Technologies) were maintained in serum-free Freestyle 293 expression medium (Life Technologies) according to the manufacturer’s protocol. For transfection of RANKL variants, DNA was prepared using an endotoxin-free maxiprep kit (Qiagen). Cells were seeded at a density of 0.5x10^6/mL in 200mL volume 24 hours prior to transfection. On the day of transfection, DNA and polyethylenimine (29)were mixed at a ratio of 1:3 (WT RANKL or triple-
chain variants, 200ug:600ug) or 1:2 (single-chain RANKL variants, 200ug:400ug) in opti-mem(Life Technologies), incubated for 15 minutes at room temperature, and added directly to cells. Supernatant was harvested four and seven days after transfection, 0.22uM filtered and equilibrated by the addition of 1/10 volume 10X phosphate buffered saline (Gibco) and 10mM imidazole. The protein was captured on Ni-NTA Superflow resin (Qiagen) and washed using 10mM imidazole in PBS. Protein was eluted in steps from 25-500mM imidazole. Fractions containing purified protein were identified on coomassie stained SDS-PAGE. Positive fractions were pooled and concentrated using a disposable YM30 centicon (Millipore). All proteins were sterile filtered for use in cell culture.

Chemical cross-linking: Purified WT-RANKL (500ng) was incubated with varying concentrations (0-500uM) of the chemical cross-linker bis-(sulfosuccinimidyl)-suberate (BS₃, Pierce) in PBS at room temperature for 30 minutes, at which time the reaction was stopped by the addition of 10mM Tris-HCl, pH=7.0. Samples were boiled in reducing conditions and loaded onto SDS-PAGE gels (10%) alongside 500ng of scRANKL protein. Bands were stained using the coomassie derivative Imperial protein stain (Pierce) and visualized using the Odyssey scanner (Licor).

Multi-angle light scattering (MALS): Purified RANKL proteins were applied to a Wyatt WTC-030S5 size exclusion column mounted on a Waters HPLC system attached to a multi-angle light scattering device. The light detectors, a Dawn HELEOS-II 18-angle light scattering detector, and an Optilab rEX refractive index, were previously calibrated against monomeric bovine serum album. MALS was monitored during the experiments and the resulting data analyzed using associated software. For each experiment, 250 ug of sample was applied at 1
mg/ml in running buffer (25mM HEPES pH 7.4, 150 mM NaCL, 0.01% sodium azide) at 20°C and a flow rate of 0.5 ml per minute.

Identification of RANKL mutants which do not bind RANK. RANKL residues forming salt bridges or hydrogen bonds with RANK were targeted for site directed mutagenesis using the program PISA and the RANK/RANKL co-crystal structure (9). Loops at the RANK/RANKL interface were disrupted by amino acid insertion. Mutations were introduced into the expression construct, pGEX- GST-RANKL, by PCR using Phusion polymerase (NEB). After verification by nucleic acid sequencing, the mutant RANKL-encoding constructs were transformed into *E. coli* strain BL21-CodonPlus (DE3)-RIL competent cells (Agilent Technologies) for protein production. Correctly-folded soluble protein was purified from cell lysate on glutathione sepharose (8).

Bio-layer interferometry (BLI): All BLI experiments were performed on an Octet RED system (ForteBio). GST-RANKL proteins were biotinylated using NHS-PEG4-biotin (Pierce) according to manufacturer’s protocol, and excess biotin was removed by desalting over Zeba Spin Columns (7KD molecular weight cutoff, Pierce). Biotinylated proteins were adsorbed onto super-streptavidin sensor pins (ForteBio). Binding of RANK-Fc or OPG-Fc was measured in HBS-EP containing 1% BSA. Due to the dimeric nature of Fc-tagged receptors, only apparent Kd values were observed.

Surface Plasmon Resonance (SPR): All SPR experiments were performed on a Biacore T-100 (GE Healthcare) using CM5 sensor chips and HBS-EP buffer. To confirm receptor recruitment using scRANKL variants, 4,000 RU of WT-scRANKL or variant scRANKL were coupled to individual lanes, leaving one reference flow cell uncoupled. Monomeric RANK (20uM) was flowed over until saturation. Total RUs bound at equilibrium were calculated using
BIAEvaluation software. Experiments to determine kinetic affinity constants of RANKL variants for RANK or OPG were performed and analyzed as previously described (9).

Generation of osteoclasts from primary bone marrow macrophages: Long bones of eight week-old mice were flushed and the marrow subjected to red blood cell lysis. The remainder of the whole marrow was cultured on petri dishes maintained at 37°C with 6% CO2 in alpha-mem containing 10% inactivated fetal bovine serum, 100 U/ml penicillin, 100 μg/ml streptomycin, (α-10 medium) supplemented with 1:10 CMG (conditioned medium supernatant containing recombinant M-CSF) (30). Osteoclasts were differentiated in α-10 medium with 1:50 CMG and the relevant RANKL variant.

Detection of osteoclast formation: Cells were fixed in 4% paraformaldehyde in PBS for 15 minutes and stained for the tartrate resistant acid phosphatase (TRAP) using a kit (Sigma). Additionally, osteoclasts were quantified by a solution assay of TRAP enzyme levels. Cells were fixed and lysed in 90mM citrate buffer pH=5.2, 80mM sodium tartrate, 0.1% Triton-X 100 for 10 minutes at room temperature. Colorimetric nitrophenylphosphate (substrate of TRAP enzyme) was added and visualized after 15 minutes by the addition of sodium hydroxide. Data was acquired using the 405nM absorbance filter on a Bio-rad plate reader. Because of the limited range of the TRAP solution assay, a more quantitative assessment of TRAP activity was performed using the fluorescent phosphatase substrate ELF-97 (Molecular Probes). Fixed cells were incubated with 100uM ELF-97 in 90mM citrate buffer pH 4.8, 80mM sodium tartrate for 15 minutes at room temperature. The reaction was stopped by the addition of sodium hydroxide and fluorescence was visualized using the 345/530 excitation/emission filter on a Spectramax M2 plate reader.
Quantitative real-time PCR: To quantitate mRNA markers of osteoclast formation, RNA was isolated from cultured cells according to the manufacturer’s protocol (Qiagen RNeasy miniprep kit). Equal amounts of RNA were used to perform reverse transcription (Bio-rad iScript) and quantitative real-time PCR was performed using Eva Sso fast qPCR Sybr green kit (Bio-rad) using a 7500 fast machine (ABI). Data was analyzed according to the delta-delta Ct method and normalized to a control containing no RANKL addition (labeled BMM). Primers used were as follows: CatK (Forward: 5’-ATGTGGGTGTTCAAGTTTCTGC-3’, Reverse: 5’-CCACAAGATTCTGGGGACTC-3’), NFATc1 (Forward: 5’-CCCGTCACATTCTGGTCCAT-3’, Reverse: 5’-CAAGTAACCGTGAGCTGCACAA-3’), TRAP (Forward: 5’-CAGCTCCCTAGAAGATGGATTACAT-3’, Reverse: 5’GTCAGGAGTGGGAGCCATATG), beta3 (Forward: 5’-TTTCACACGAGAGGAGCCATTC-3’, Reverse: 5’-GGAGAAAGACAGGTCCATCAAGT-3’).

Western blot: Cells were washed three times in ice-cold PBS and lysed with RIPA buffer (Millipore) supplemented with protease and phosphatase inhibitor cocktail (Pierce). After 10 minutes of incubation on ice, cell lysates were cleared of debris by pelleting for 15 minutes at 21,000g. 40-50ug of protein were loaded onto SDS-PAGE gels (10%), transferred onto PVDF membrane, and incubated with primary antibody overnight. After extensive washing and incubation with near-infrared labeled secondary antibody, membranes were visualized using the Odyssey scanner (Licor). Primary antibodies to detect phosphorylated or total NF-kB or p38 were from Cell Signaling, antibody directed against actin was from Sigma, and fluorescently labeled secondary antibodies were from Rockland.

Yeast surface display of RANKL and staining with receptor: WT-SM RANKL was cloned into the pYD1 yeast display vector (Life Technologies) using 5’ NheI and 3’ XhoI
restriction sites, yielding the yeast mating protein Aga2p fused to the RANKL N-terminus and having at the C-terminus a V5-epitope tag. The pYD1-RANKL construct was transformed into EBY100 yeast as described and colonies selected in tryptophan-deficient, glucose-based media at 30°C. Display of RANKL protein was induced by inoculating into galactose-based selective media and incubating at 30°C with shaking for 24-48 hours. Surface expression of RANKL was detecting using an anti-V5- FITC antibody (Invitrogen). After incubation with RANK-Fc or OPG-Fc for 10 minutes at room temperature and washing with ice-cold PBS, receptor binding was detecting using an anti-human Fc-APC antibody (Molecular Probes). All experiments were performed using LSR II or Canto II flow cytometers (BD Biosciences) and analyzed using the FlowJo software package (Tree Star, Inc.). Alternatively, RANK-6xHis or OPG-6xHis were detected using APC-labeled anti-6xHis antibody (MBL International).

Generation of RANKL library and selection: Primers annealing immediately 5’ or 3’ to RANKL in the pYD1 vector were designed and used in error-prone PCR amplification (Gene Morph II, Agilent). A lower and higher mutation rate was accomplished by manipulating the amount of starting template and the number of amplification cycles. The resulting product was further amplified using the high fidelity Phusion polymerase (Finnzymes). Simultaneously, pYD1 vector backbone was amplified using primers that extended outward from the regions surrounding RANKL-V5, leaving 24 base pairs of overlap between the vector backbone and the amplified, mutant RANKL-V5 insert. These purified PCR products were transformed into EBY100 cells according to established protocols (31), yielding a library of approximately 1x10⁶ transformants. Selections were made using magnetic assisted cell sorting (MACS, Miltenyi). Roughly 1x10⁷ cells were induced from either the low or high mutation rate libraries, and both were first sorted for the expression of the V5 C-terminal tag indicating proper folding and full-
length protein. This was performed by incubating cells with FITC-labeled anti-V5 antibody and selecting cells using anti-FITC microbeads for cell separation. After growth of the selected clones, cells were again induced to display RANKL protein, incubated with OPG-Fc, washed, and clones that did not bind OPG were collected as the flow-through on a Protein A magnetic bead column. These cells were then labeled with RANK-Fc, and this time those clones that retained binding to the Protein A column were collected. After sorting, cells were expanded in selective media and this strategy repeated two additional times yielding clones termed “LM3S” and “HM3S”. Roughly 200 individual colonies were isolated from the libraries and stained with OPG-Fc. Those clones with little to no detectable staining were then assessed for their ability to bind RANK-Fc. DNA was extracted from the top scoring clones of interest using a yeast miniprep kit (Zymoprep) and transformed into DH5alpha E. coli chemically competent cells (Invitrogen) for sequencing. Individual point mutations were then added to RANKL using site-directed mutagenesis, and subsequent combinations were cloned in a similar fashion. A second round of error-prone PCR utilized the identical primers and protocol as above, but starting template of either F164Y/Q236H/F269Y or K194N/Q236H/F269Y triple mutants. Clones were selected over three rounds of sorting using three sequentially lower amounts of monomeric RANK-6xHis and anti-6xHis microbeads. Finally, the resulting library was incubated with RANK-6xHis at room temperature for 10 minutes and then tested for the ability to outcompete the presence of unlabeled OPG at room temperature for 5 minutes. Residual RANK binding was detecting using APC-labeled anti-6xHis antibody. In the course of sorting, K194E was identified and used to replace K194N, which introduced a potential N-linked glycosylation site at the interface with RANK or OPG.
Intraperitoneal RANKL Injection: Balb/c 8-week old female mice were purchased from NIH Frederickson, housed in the animal facility at Washington University School of Medicine and maintained according to the guidelines set by the Association for Assessment and Accreditation of Laboratory Animal Care. All animal studies were approved by the Animal Studies Committee of Washington University School of Medicine. PBS, WT-SM RANKL (0.5mg/kg), or WT-SM RANKL + single-block, RANK$^{\text{high}}$ scRANKL (0.5mg/kg) were injected intraperitoneally at 0, 24, and 48 hours as described (32). Mice were sacrificed 1.5 hours after the third injection and serum was collected by cardiac puncture. CTx ELISA was performed according to the manufacturer’s protocol (Immunodiagnostics Systems).
2.4 Results

To assess the oligomeric state of receptor clustering required for efficient initiation of signal transduction, we covalently linked three RANKL monomers by two short glycine-rich linkers (Figure 2.1). This single-chain version of trimeric RANKL (scRANKL) permits individual modification of RANK and OPG affinity at each of the three binding sites. Two additional surface “solubility” mutations (C220S/E246I “WT-SM RANKL”), which do not impact RANK binding, were introduced to improve protein expression (Figure 2.2). Whereas chemical cross-linking of wild-type homotrimeric RANKL (WT RANKL) is necessary to observe the trimer in a denaturing gel, scRANKL has a molecular weight consistent with three covalently-linked RANKL monomers (Figure 2.3A). Because the predominant scRANKL species migrates on the gel at a position slightly below chemically cross-linked trimeric RANKL, we calculated molecular weights using multi-angle light scattering (Figure 2.3B). Importantly, scRANKL induces bone marrow macrophage (BMM)-derived osteoclastogenesis as effectively as WT (Figure 2.3C).

To manipulate the number of individual RANK receptors recruited to scRANKL, we sought to identify mutations in RANKL incapable of binding RANK. To this end, we took advantage of the RANKL/RANK co-crystal structure detailing the key loops of the cytokine contacting its receptor. We inserted short sequences into each RANKL loop as well as designing individual, salt bridge-disrupting, point mutations and quantitated apparent affinities for Fc-tagged versions of the RANK or OPG cysteine-rich domain cytokine binding fragments (Figure 2.4A). One mutant of interest, with three amino acids (GGS) inserted into the CD-loop (CDins RANKL), fails to bind recombinant RANK-Fc despite proper folding established by its binding of OPG-Fc in a dose dependent manner (Figure 2.4A,B). Indeed, all mutants with no detectable
binding to RANK-Fc contained mutations in this RANKL loop. Interestingly, this same loop is
the target for Denosumab, a humanized monoclonal antibody targeting RANKL and currently
approved for the treatment of osteoporosis.

Although we observe overall an excellent correlation between apparent affinity for
RANK-Fc and capacity to generate osteoclasts as assessed by TRAP stain, TRAP solution assay,
and osteoclastogenic mRNA markers (Figure 2.5A-C), it is noteworthy that several variants with
no apparent biological activity still had detectable binding to RANK-Fc. This is significant, as
attempts to manipulate receptor oligomerization necessitate the complete absence of receptor
recruitment. This property is not readily detected by *in vitro* functional assays or measurements
of affinity using the monomeric fragment of RANK which binds to WT RANKL with relatively
low affinity (1uM). Lastly, to confirm its failure to ligand RANK, we demonstrate that CDins
RANKL is incapable of promoting RANK signaling (Figure 2.5D).

Next, we generated single-block and double-block scRANKL by inserting CDins into one
or two monomers, respectively (Figure 2.6A). To demonstrate that we had selectively
manipulated the number of receptors bound to the single chain protein, we coupled equal
amounts of WT, single-block or double-block scRANKL, to individual lanes of a surface
plasmon resonance (SPR) chip. After flowing monomeric RANK, as an analyte, we measured
the degree of receptor binding at saturation. As expected, each monomer block results in the loss
of approximately one-third of the receptor binding (Figure 2.6B).

To test the hypothesis that recruitment of three RANK receptors is necessary to initiate
osteoclastogenesis, we added the scRANKL variants to cultures of BMMs. Whereas WT-
scRANKL increases osteoclast number in a saturable, dose-dependent manner, triple-block
scRANKL, containing CDins mutation in all three monomers, fails to generate any osteoclasts
Double-block scRANKL also yields no osteoclasts, establishing that more than one RANK monomer is required. Surprisingly, however, single-block scRANKL is capable of generating osteoclasts although less effectively than WT. This phenomenon is dose-dependent and saturable, maximizing at approximately 85% of control (Figure 2.6D). Mirroring osteoclastogenesis, single-block, but not double- or triple-block, scRANKL phosphorylates the effector molecules NF-kB and p38 (Figure 2.6E). To confirm that this unexpected observation was not due to higher order clustering by aggregated protein, we further purified single-block scRANKL to more stringent molecular weight homogeneity. We still observe osteoclast formation, albeit at lower levels (not shown). Therefore, recruitment of two RANK receptors is sufficient and necessary to initiate osteoclast-forming signals, although it is less efficient than recruitment of three receptors.

The capacity of double-block scRANKL to bind RANK, yet not produce osteoclasts, suggests it may function as a competitive antagonist of WT-RANKL. To test this possibility, we induced osteoclast formation using WT RANKL and added increasing amounts of single- or double-block scRANKL, or OPG, a known inhibitor of osteoclastogenesis. While OPG dose-dependently inhibits osteoclast formation, neither version of scRANKL was able to antagonize this process (Figure 2.7). This lack of inhibitory effectiveness likely reflects failure of the one or two intact binding site(s) to overcome the avidity afforded by the three sites of WT RANKL. We reasoned that we might generate effective inhibitors by compensating for the reduced avidity of single- or double-block scRANKL through increasing the affinity for RANK at the intact site(s).

This required identifying presently unknown RANKL mutations which increase RANK affinity. To this end, we performed two generations of in vitro evolution through yeast surface display (YSD) (33). The first generation involved creating a library of RANKL mutants using
error-prone PCR and sorting for clones that retain binding to RANK-Fc. Notably, OPG, the principal biological inhibitor of RANK-induced osteoclastogenesis (34-36), exerts its effects by competing for RANKL. Because both RANK and OPG bind the same groove, it is possible that increasing the affinity of RANKL for RANK would simultaneously increase binding to the decoy receptor. To obviate this possibility, we simultaneously sorted the library for clones recognizing RANK with high affinity and with decreased capacity to bind OPG-Fc and identified five clones of interest (Figure 2.8A). Reversion mutagenesis yielded RANKL individual point mutations (K194E, Q236H, F269Y) which, when expressed in combination (KQF), substantially increase RANK-Fc and decrease OPG-Fc binding (Figure 2.8B-D).

The goal of the second generation of evolution was to select RANKL variants with long RANK kinetic half-lives while still not recognizing OPG. We again constructed a RANKL mutant library using error-prone PCR, this time using high affinity KQF RANKL as a starting template. Due to the rapid off-rate, monomeric RANK does not stain yeast-displayed WT-RANKL, despite their established interaction. We therefore sorted the second library using sequentially limiting amounts of monomeric RANK. Staining at each stage of sorting demonstrated the emergence of a population now capable of binding monomeric RANK (Figure 9A).

Next, we selected RANKL variants which continue to bind limiting amounts of RANK after five minutes at room temperature, in the presence of unlabeled OPG (Figure 2.9B). Together, these strategies yielded an additional RANKL point mutant (H270Y) that further increases RANK recognition without detectable binding to OPG (Figure 2.9C,D). We then determined the affinities and kinetic parameters of an intermediate and a high RANK binding variant by SPR. Interestingly, although the two solubility mutations, introduced for production
of scRANKL, have no effect on RANK recognition, they induce an approximately ten-fold decrease in OPG binding (Figure 2.10). Another point mutant, Q236H, yields a further 100-fold decrease in OPG and a roughly 15-fold increase in RANK binding as compared to WT RANKL (Figure 2.11A,B). Finally, KQFH recognizes RANK with approximately 500-fold greater affinity than does WT RANKL while failing to meaningfully bind OPG (Figure 2.11C). These alterations in affinity largely reflect a prolonged half-life, changing from relatively rapid dissociation time (WT-SM RANKL t$_{1/2}$=3 seconds) to a value more than 200-times longer (KQFH-SM RANKL t$_{1/2}$=675 seconds).

We next used our mutational analysis to generate scRANKL constructs in which RANK and OPG recognition is blocked by a combination of CDins and Q236H as confirmed by yeast surface display (Figure 12A) and failure to form osteoclasts or induce signaling (Figure 2.12B,C). To enhance RANK binding at the intact site(s), we used either intermediate (Q236H) or high affinity (KQFH) mutations, neither of which meaningfully recognize OPG, and generated all possible version of single- or double-block scRANKL. All versions of double-block scRANKL remain incapable of generating osteoclasts (Figure 2.13A). Furthermore, the decreased osteoclast formation and associated signals induced by single-block scRANKL variants reflect an inverse relationship with RANK affinity of the intact binding sites (Figure 2.13B-D). Because the RANK$^{\text{med}}$ and RANK$^{\text{high}}$ differ primarily in RANK off-rate (Figure 2.11), our data suggest that the ability to dissociate from the receptor is crucial for initiating signal transduction in the face of sub-optimal receptor clustering.

In contrast to the failure of single or double-block scRANKL containing unaltered residual monomer(s) to blunt RANK signaling and osteoclast formation, double-block, RANK$^{\text{high}}$ scRANKL effectively inhibits with an IC$_{50}$ approximating 10 nM (Figure 2.13E).
When two sites are available to bind RANK with high affinity (single-block, RANK$^{\text{high}}$), the potency increases to an IC$_{50}$ of 0.2 nM. Lastly, we sought to test the effectiveness of single-block, RANK$^{\text{high}}$ scRANKL at blocking WT-RANKL induced osteoclastic bone resorption in vivo. Intraperitoneal injection of WT-SM RANKL into 8-week old BALB/c mice increases osteoclast function as determined by the serum marker CTx (Figure 2.13F). Suggesting therapeutic relevance of our observations, this increase in bone resorption is completely abrogated by an equal amount of single-block, RANK$^{\text{high}}$.
2.5 Discussion

The oligomeric state of cytokines often leads to the assumption of an identical oligomeric receptor clustering as the driving force for initiating signal transduction. Our use of scRANKL with individually mutated receptor binding sites has allowed us to examine this assumption in unmanipulated primary cells. Despite the trimeric nature of RANKL cytokine, the recruitment of only two RANK receptors is sufficient to generate osteoclasts. The decreased osteoclastogenic capacity of single-block scRANKL indicates that this state of receptor clustering is, however, sub-optimal. This data mirrors the observations made using an Epo/RANK chimeric receptor clustered by agonistic antibody treatment (12). It is also reminiscent of an observed drop in the EC$_{50}$ using single-chain TNF that blocks recruitment of one TNFR2/Fas chimeric receptor (27). Although our observations are strengthened by the use of primary, unmanipulated cells that avoid the confounding factors of receptor overexpression, we cannot eliminate the possibility that the flexibility within our scRANKL linkers may allow for higher order multimerization of ligand and thus recruitment of additional RANK receptors in the context of single-block scRANKL. Regardless, our data using double-block scRANKL, which is incapable of generating osteoclasts and inducing signals, stands in contrast to the observation that single-chain TNF blocking recruitment of two TNFR1/Fas chimeric receptors is equally capable of inducing cell death as WT TNF. There are several possibilities for this difference, including the absence of overexpression in our system, the lack of compelling evidence for RANK pre-ligand association, or the recruitment of different intracellular signaling components.

Interestingly, an increase in affinity at the two receptor recruitment sites in single-block scRANKL generates fewer osteoclasts. As the primary difference in kinetics between WT-
RANKL and our high affinity variants lies in the off-rate, it appears that the ability of single-block scRANKL to generate osteoclasts may be facilitated by the rapid off rate at the two receptor binding sites. This may allow for the recruitment of additional RANK receptor, ultimately leading to higher order clustering which has been implicated for other TNF receptor family members (37-42). Our data demonstrating that increasing the time required for single-block scRANKL variants to dissociate diminishes osteoclastogenesis supports this model.

Lastly, our observations establish that single-chain RANKL, in combination with blocked or high affinity RANK binding sites, allows arrest of RANK signaling, thus generating an effective inhibitor of RANKL-mediated osteoclast formation and function. Indeed, single-block, RANKhigh scRANKL inhibits osteoclast formation \textit{in vitro} with an IC\textsubscript{50} value of 0.2 nM, which is almost 10-fold lower than the reported IC\textsubscript{50} value for Denosumab (IC\textsubscript{50} = 1.64 nM), the anti-human RANKL antibody approved for the treatment of osteoporosis (43). RANKL, a member of the TNF superfamily (TNFSF), binds to multiple receptors (RANK and OPG) with different biological effects. Within the TNFSF, there are several examples of cytokines demonstrating receptor promiscuity (44). For example, TNF\alpha, which recognizes TNFR1 and TNFR2, is central to the pathogenesis of disabling disorders such as rheumatoid arthritis and psoriasis (2). In fact, treatment of these diseases has been greatly facilitated by global TNF\alpha blockade using humanized antibodies or soluble receptor (45). As effective as these drugs are, they carry major complications such as predisposition to malignancy and serious infections, including tuberculosis (46, 47). Current evidence indicates that the positive effects of anti-TNF\alpha therapy reflects suppressed activation of TNFR1, while negative consequences are due to inhibition of the pro-immune properties of TNFR2 (48). TNF and RANKL interact with their receptors in a homologous fashion (49). Our data demonstrate that the strategy of combining high affinity and
blocking mutations into a single-chain can be used to construct an effective inhibitor that is receptor selective. This suggests a potential mechanism for blocking TNFR1 while sparing TNFR2, thereby reducing systemic complications. Indeed, this strategy may be broadly applicable to all members of the pathologically important TNF superfamily.
2.6 References

37. F. Henkler *et al.*, The extracellular domains of FasL and Fas are sufficient for the formation of supramolecular FasL-Fas clusters of high stability, *J. Cell Biol.* **168**, 1087–1098 (2005).

Acknowledgements: We thank Dr. S. Kyle Austen and Dr. Michelle Sabo for experimental advice, as well as Jean Chappel for technical assistance. This work was supported by the National Institutes of Health Grant Numbers AR032788 (to S.L.T. and D.H.F.) and F30 AG039896 (to J.T.W.).
2.7 Figure Legends

Figure 2.1. Construction and validation of single-chain RANKL. WT-RANKL is depicted as three individual polypeptides (monomers), whereas WT single-chain RANKL (scRANKL) exists as a single polypeptide with [GGSG]x3 amino acid linkers.

Figure 2.2. Effect of solubility mutations on RANKL function. Kinetic affinities for RANK of WT-RANKL or WT RANKL containing two solubility mutations (C220S/E246I, “WT-SM RANKL”) were determined using surface plasmon resonance (SPR).

Figure 2.3. Characterization of scRANKL. (A) Coomassie-stained SDS-PAGE gel of WT RANKL and scRANKL (500ng each) chemically cross-linked by increasing concentrations of BS3. (B) Multi-angle light scattering (MALS) of non-covalently linked RANKL or single-chain RANKL. Precise molecular weights of homotrimerically assembled RANKL (left) or single-chain RANKL (right) determined using MALS. The differences in calculated and measured molecular weights reflect the presence of significant glycosylation on these mammalian cell-produced, secreted proteins. (C) Osteoclasts were generated from BMMs in the presence of recombinant WT RANKL or scRANKL and TRAP stained.

Figure 2.4. Design of RANKL mutants that prevent binding to RANK. (A) Binding of RANKL variants to RANK-Fc or OPG-Fc as assessed by BLI. Due to the dimeric nature of the analyte, K_D values represent approximate affinity constants. (B) Representative BLI curves showing binding of WT-SM RANKL, CDins RANKL, or GST control to RANK-Fc or OPG-Fc.

Figure 2.5. Functional characterization of RANKL mutants with varying degrees of RANK binding. Osteoclastogenic capacity of recombinant RANKL variants in vitro assessed by (A) TRAP stain, (B) TRAP-solution assay and (C) osteoclastogenic marker mRNAs. (D) Signal transduction of WT-SM RANKL and CDins RANKL assessed by IκB phosphorylation.
Figure 2.6. Degree of RANK monomer recruitment necessary and sufficient for osteoclastogenesis. (A) Individual monomer(s) of single- or double-block scRANKL are mutated to inhibit binding to RANK. Thus, single-blocked scRANKL contains two intact receptor recruitment sites and double-blocked, one. (B) Triplicate curves showing equal amounts of scRANKL variants coupled to an SPR chip with RANK as analyte. The average number of RU for each binding curve at saturation is displayed. (C) Osteoclastogenesis induced by scRANKL variants assessed by TRAP activity. (D) EC_{50} values of osteoclast generation and percent maximum osteoclastogenesis relative to WT-scRANKL. (E) RANK-mediated signaling induced by WT- and various sc-RANKL constructs (500ng/ml).

Figure 2.7. Ability of single- or double-block scRANKL to inhibit osteoclastogenesis. (A) BMMs were cultured with WT-SM RANKL (200ng/mL) and increasing amounts of single- or double-block scRANKL. Four days later osteoclastogenesis was assessed by TRAP activity. The addition of OPG monomeric fragment (4ug/mL) was used as positive control for inhibition of osteoclastogenesis. (B) Representative TRAP stains of the highest scRANKL concentrations from part (A).

Figure 2.8. Reversion mutagenesis of YSD RANKL clones. Binding to RANK-Fc (blue) or OPG-Fc (red) is expressed relative to WT-SM RANKL. (A) Top scoring clones from low (LM3S) or high (HM3S) mutation rate libraries with (B) individual point mutations of these clones. (C) A second mutation was added to the most effective individual point mutant (Q236H). (D) A third mutation was added to closely approximate the ideal phenotype.

Figure 2.9. Yeast-surface display generation of high affinity RANKL mutants. (A) Flow cytometry-based histogram showing staining with 1uM RANK at each phase of library sorting. To select for clones with increased RANK binding, the three rounds of sorting were
initiated (Sort#1) with a concentration of RANKL 10-fold greater than the K_D of RANK and was terminated (Sort#3) with a concentration 10-fold less. (C) Kinetic and equilibrium affinities of WT-SM RANKL, SM RANKLQ236H, and SM RANKLKQFH were determined using SPR. RANKL variants were coupled to a sensor chip and RANK or OPG monomeric fragments served as analyte. (B) Schematic representing competitive OPG YSD screen. In the context of wild-type RANKL (left side), RANK (purple) fused to 6-His is readily displaced by OPG (yellow) due to its higher affinity. Alternatively, in the context of an increased affinity RANKL clone that has lost the capacity to bind decoy receptor, OPG is incapable of displacing RANK (right side). Additionally, only those clones that have an increased half-life will have sustained binding after room temperature washing. (C) Individual point-mutated RANKL clones retaining high RANK binding, detected by an anti-6His mAb, after 5 minutes of OPG competition. (B, C) Data are expressed as percent RANKL bound to RANK with time, relative to that bound in the absence of OPG. Additionally, binding of RANK (APC) is normalized to the level of RANKL yeast surface induction (FITC) expressed as the median fluorescence intensity (MFI) ratio (APC/FITC). (D) RANKL point mutants generated by YSD K_D values are estimated using titrating amounts of RANK binding to yeast surface-displayed RANKL and fitting median fluorescence intensity values to a one-site binding model. ND = not enough data points to fit K_D values, despite low levels of detectable staining at the highest concentrations.

Figure 2.10. Effect of RANKL solubility mutations on OPG binding. Kinetic affinities of WT-RANKL or WT-SM RANKL were determined by SPR.
Figure 2.11. Kinetic parameters of RANKL high affinity variants. Kinetic and equilibrium affinities of WT-SM RANKL (A), Q236H-SM RANKL (B), and KQFH-SM RANKL (C) were determined using SPR. RANKL variants were coupled to a sensor chip and RANK or OPG monomeric fragments served as analyte.

Figure 2.12. Combined mutations of RANKL and OPG which block RANK binding. (A) Titration curves of RANKL\textsuperscript{CD\text{ins}} and RANKL\textsuperscript{CD\text{ins}/Q236H} binding to RANK or OPG assessed by flow cytometry of RANKL-displaying yeast cells. Binding of RANK or OPG (APC) is normalized to the level of RANKL yeast surface induction (FITC) expressed as the median fluorescence intensity (MFI) ratio (APC/FITC). (B) Capacity of RANKL\textsuperscript{CD\text{ins}} and RANKL\textsuperscript{CD\text{ins}/Q236H} to generate osteoclasts in vitro. (C) Phosphorylation of IkB by RANKL\textsuperscript{CD\text{ins}} and RANKL\textsuperscript{CD\text{ins}/Q236H} (500ng/mL).

Figure 2.13. Development of a competitive antagonist scRANKL. (A) Induction of osteoclastogenesis, in vitro, by double-block scRANKL variants compared to WT scRANKL. (B) Induction of osteoclastogenesis by double-block, RANKhigh or single-block scRANKL variants with WT, medium or high RANK affinity at the intact binding sites quantitated by a fluorescent TRAP activity assay. (C) EC\textsubscript{50} of osteoclast generation and percent maximum number of osteoclasts relative to WT-scRANKL. (D) Capacity of increasing amounts of single-block, RANKhigh (orange squares) or double-block, RANKhigh (orange triangles) scRANKL to inhibit WT-SM RANKL-induced osteoclastogenesis. WT-SM only (open diamond) serves as a positive control for osteoclast formation. (E) Mice were injected with WT-SM RANKL +/- 0.5mg/kg single-block, RANKhigh scRANKL. Two days later serum CTx was measured.
Figure 2.1

WT RANKL

WT Single-chain RANKL

GGSG x 3 GGSG x 3
Figure 2.2

ka (1/Ms) = 2.04 ± 0.09 \times 10^5
kd (1/s) = 2.52 ± 0.43 \times 10^{-1}
K_{D\text{-kinetic}} (M) = 1.23 ± 0.17 \times 10^{-6}

ka (1/Ms) = 1.51 ± 0.38 \times 10^5
kd (1/s) = 2.08 ± 0.09 \times 10^{-1}
K_{D\text{-kinetic}} (M) = 1.40 ± 0.31 \times 10^{-6}
Figure 2.3

A

BS3 (uM):

WT RANKL

0 25 50 250 500 1000

SCRANKL

Trimer →

Dimer →

Monomer →

B

RANKL

Single-chain RANKL

UV Absorbance (mAU)

MW_{calc, nonglycan} = 59.7 kDa
MW_{MALS} = 70.6 kDa

MW_{calc, nonglycan} = 55.0 kDa
MW_{MALS} = 73.3 kDa

C

WT RANKL

WT Single-chain RANKL
A

<table>
<thead>
<tr>
<th></th>
<th>K_d (RANK-Fc)*</th>
<th>K_d (OPG-Fc)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>5.24E-10</td>
<td>1.96E-11</td>
</tr>
<tr>
<td>Mut1</td>
<td>6.79E-09</td>
<td>4.53E-10</td>
</tr>
<tr>
<td>Mut2</td>
<td>7.31E-09</td>
<td>7.05E-10</td>
</tr>
<tr>
<td>Mut3</td>
<td>1.32E-08</td>
<td>8.77E-10</td>
</tr>
<tr>
<td>Mut4</td>
<td>1.05E-08</td>
<td>3.89E-10</td>
</tr>
<tr>
<td>Mut5</td>
<td>1.22E-08</td>
<td>1.48E-10</td>
</tr>
<tr>
<td>Mut6</td>
<td>2.17E-08</td>
<td>9.40E-10</td>
</tr>
<tr>
<td>Mut7</td>
<td>1.36E-08</td>
<td>3.84E-10</td>
</tr>
<tr>
<td>Mut8</td>
<td>1.43E-08</td>
<td>1.85E-11</td>
</tr>
<tr>
<td>Mut9</td>
<td>1.35E-08</td>
<td>1.09E-09</td>
</tr>
<tr>
<td>Mut10</td>
<td>2.34E-09</td>
<td>5.30E-10</td>
</tr>
<tr>
<td>Mut11</td>
<td>1.12E-08</td>
<td>1.61E-10</td>
</tr>
<tr>
<td>Mut12</td>
<td>9.16E-09</td>
<td>2.40E-12</td>
</tr>
<tr>
<td>Mut13</td>
<td>6.59E-09</td>
<td>1.48E-09</td>
</tr>
<tr>
<td>Mut14</td>
<td>2.07E-08</td>
<td>4.73E-11</td>
</tr>
<tr>
<td>Mut15</td>
<td>1.53E-08</td>
<td>9.35E-12</td>
</tr>
<tr>
<td>Mut16</td>
<td>CD-1 FrggSHSET</td>
<td>Not Detectable</td>
</tr>
<tr>
<td></td>
<td>6.10E-11</td>
<td></td>
</tr>
<tr>
<td>Mut17</td>
<td>CD-2 FrggSHSET</td>
<td>Not Detectable</td>
</tr>
<tr>
<td></td>
<td>3.56E-12</td>
<td></td>
</tr>
<tr>
<td>Mut21</td>
<td>1.14E-08</td>
<td>1.02E-11</td>
</tr>
<tr>
<td>Mut22</td>
<td>AA-1/CD-1</td>
<td>Not Detectable</td>
</tr>
<tr>
<td></td>
<td>1.07E-09</td>
<td></td>
</tr>
<tr>
<td>Mut23</td>
<td>AA-1/CD-2</td>
<td>Not Detectable</td>
</tr>
<tr>
<td></td>
<td>2.20E-09</td>
<td></td>
</tr>
<tr>
<td>Mut24</td>
<td>AA-2/CD-1</td>
<td>Not Detectable</td>
</tr>
<tr>
<td></td>
<td>9.78E-10</td>
<td></td>
</tr>
<tr>
<td>Mut25</td>
<td>AA-2/CD-2</td>
<td>Not Detectable</td>
</tr>
<tr>
<td></td>
<td>1.39E-09</td>
<td></td>
</tr>
<tr>
<td>Mut28</td>
<td>R222A/E268A</td>
<td>1.85E-08</td>
</tr>
<tr>
<td></td>
<td>1.48E-09</td>
<td></td>
</tr>
</tbody>
</table>

CDins RANKL: ggs inserted after R222 (Mut16)

B

Figure 2.4

<table>
<thead>
<tr>
<th>RANK-Fc</th>
<th>WT-SM RANKL</th>
<th>CDins RANKL</th>
<th>GST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPG-Fc			

63
Figure 2.5
Figure 2.6

A. Single-block scRANKL and Double-block scRANKL.

B. Graph showing response (RU) over time (sec) for WT-scRANKL, Single-block scRANKL, and Double-block scRANKL with average RU:
- WT-scRANKL: 1827
- Single-block scRANKL: 1250
- Double-block scRANKL: 604

C. Graph showing TRAP activity against log(scRANKL, ng/mL) for WT scRANKL, Single-block, Double-block, and Triple-block.

D. Table showing EC50 and % of WT Max for different conditions:

<table>
<thead>
<tr>
<th>Condition</th>
<th>EC50 (ng/mL)</th>
<th>% of WT Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT scRANKL</td>
<td>13.3 ± 8.3</td>
<td>100%</td>
</tr>
<tr>
<td>Single-block</td>
<td>240.4 ± 145.9</td>
<td>84.5 ± 0.6%</td>
</tr>
<tr>
<td>Double-block</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Triple-block</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

E. Western blot analysis showing time (min) 0, 5, and 15 for phospho-IkB, total IkB, Actin, phospho-p38, and total p38 for WT scRANKL, Single-block, Double-block, and Triple-block.
Figure 2.7

A

![Absorbance (AU) vs. [OPG or scRANKL, nM]]

- Single-block scRANKL
- Double-block scRANKL
- OPG

B

- WT-SM RANKL
- WT-SM RANKL + OPG

- WT-SM RANKL + Single-block scRANKL
- WT-SM RANKL + Double-block scRANKL
Figure 2.8
Figure 2.9

A

WT RANKL

Unsorted KQF Library

Sort #1 10μM RANK

Sort #2 1μM RANK

Sort #3 0.1μM RANK

% of Max

RANK

B

RANK-6His

RANKL

Unlabeled OPG displaces RANK

Yeast

C

Inf Ratio (AU/cm²)

Time (sec)

D

<table>
<thead>
<tr>
<th>Residue no.</th>
<th>194</th>
<th>236</th>
<th>269</th>
<th>270</th>
<th>RANK</th>
<th>OPG</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT RANKL</td>
<td>K</td>
<td>Q</td>
<td>F</td>
<td>H</td>
<td>ND</td>
<td>32.8</td>
</tr>
<tr>
<td>K194E</td>
<td>E</td>
<td>ND</td>
<td></td>
<td></td>
<td>ND</td>
<td>71.7</td>
</tr>
<tr>
<td>Q236H</td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td>346.5</td>
<td>ND</td>
</tr>
<tr>
<td>F269Y</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td>ND</td>
<td>33.3</td>
</tr>
<tr>
<td>H270Y</td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
<td>464.7</td>
<td>275.9</td>
</tr>
<tr>
<td>K/Q</td>
<td>E</td>
<td>H</td>
<td></td>
<td></td>
<td>69.7</td>
<td>ND</td>
</tr>
<tr>
<td>K/Q/F</td>
<td>E</td>
<td>H</td>
<td>Y</td>
<td></td>
<td>23.6</td>
<td>ND</td>
</tr>
<tr>
<td>K/Q/F/H</td>
<td>E</td>
<td>H</td>
<td>Y</td>
<td>Y</td>
<td>1.4</td>
<td>ND</td>
</tr>
</tbody>
</table>
Figure 2.10

ka (1/Ms) = 3.90 ± 0.79 x 10^5
kd (1/s) = 8.52 ± 0.37 x 10^-3
K_{D-kinetic} (M) = 4.75 ± 0.93 x 10^{-9}

ka (1/Ms) = 4.14 ± 0.68 x 10^5
kd (1/s) = 4.57 ± 0.60 x 10^{-2}
K_{D-kinetic} (M) = 3.05 ± 0.30 x 10^{-8}
Figure 2.11

A. RANK / WT-SM RANKL

- $k_a \ (1/\text{Ms}) = 1.51 \pm 0.38 \times 10^4$
- $k_d \ (1/s) = 2.08 \pm 0.09 \times 10^{-1}$
- $K_{D} \ (\text{M}) = 1.40 \pm 0.31 \times 10^{-6}$

B. RANK / Q236H-RANKL

- $k_a \ (1/\text{Ms}) = 3.00 \pm 0.70 \times 10^5$
- $k_d \ (1/s) = 2.32 \pm 0.11 \times 10^{-2}$
- $K_{D} \ (\text{M}) = 8.13 \pm 2.58 \times 10^{-8}$

C. RANK / KQFH-RANKL

- $k_a \ (1/\text{Ms}) = 3.07 \pm 0.24 \times 10^5$
- $k_d \ (1/s) = 1.03 \pm 0.03 \times 10^{-3}$
- $K_{D} \ (\text{M}) = 3.37 \pm 0.36 \times 10^{-9}$

OPG / WT-SM RANKL

- $k_a \ (1/\text{Ms}) = 4.14 \pm 0.68 \times 10^4$
- $k_d \ (1/s) = 4.57 \pm 0.60 \times 10^{-2}$
- $K_{D} \ (\text{M}) = 3.05 \pm 0.30 \times 10^{-6}$

OPG / Q236H-RANKL

- $k_a \ (1/\text{Ms}) = 8.71 \pm 1.58 \times 10^4$
- $k_d \ (1/s) = 9.44 \pm 0.90 \times 10^{-2}$
- $K_{D} \ (\text{M}) = 1.10 \pm 0.10 \times 10^{-4}$

OPG / KQFH-RANKL

- $k_a \ (1/\text{Ms})$ and $k_d \ (1/s)$ not shown
- $K_{D} \ (\text{M})$ not shown
Figure 2.12

A

B

WT-SM RANKL

CDins RANKL

CDins/Q236H RANKL

C

<table>
<thead>
<tr>
<th>Time (min):</th>
<th>WT-RANKL</th>
<th>CDins</th>
<th>CDins/Q236H</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 2.13

(A) TRAP Activity vs. log[scRANKL, ng/mL] for different conditions: WT scRANKL, Double-block, Double-block, RANKmed, Double-block, RANKhigh, and Triple-block.

(B) TRAP Activity for WT scRANKL, Single-block, Single-block, RANKmed, Single-block, RANKhigh, and Double-block, RANKhigh.

(C) Table showing EC50 (ng/mL) and % of WT Max for different conditions:

<table>
<thead>
<tr>
<th>Condition</th>
<th>EC50 (ng/mL)</th>
<th>% of WT Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT scRANKL</td>
<td>13.3 ± 8.3</td>
<td>100%</td>
</tr>
<tr>
<td>Single-block</td>
<td>240.4 ± 145.9</td>
<td>84.5 ± 0.6%</td>
</tr>
<tr>
<td>Single-block, RANKmed</td>
<td>91.3 ± 41.6</td>
<td>63.7 ± 13.9%</td>
</tr>
<tr>
<td>Single-block, RANKhigh</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Double-block, RANKhigh</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(D) Time (min): 0, 5, 15 for phosphorylated and total IκB, actin, phosphorylated and total p38.

(E) TRAP Activity vs. log[scRANKL, ng/mL] for WT RANKL, WT RANKL + Double-block, RANKhigh, and WT RANKL + Single-block, RANKhigh.

(F) Serum CTX (ng/mL) for PBS, WT RANKL, and WT RANKL + Single-block, RANKhigh.
Chapter 3

Optimized RANKL/RANK Binding Kinetics Exert a Biphasic Effect on

Osteoclast Formation and Function

Julia T. Warren, Corinne E. Decker, Wei Zou, Nidhi Rohatgi, Steven L. Teitelbaum,

3.1 Abstract

The interaction between Receptor Activator of NF-κB Ligand (RANKL) and its receptor RANK is essential for the differentiation and bone resorbing capacity of the osteoclast. Osteoprotegerin (OPG), a soluble homodimer, acts as a decoy receptor for RANKL and thus inhibits osteoclastogenesis. An imbalance in the RANKL/RANK/OPG axis, with decreased OPG and/or increased RANKL, is associated with diseases that favor bone loss, including osteoporosis. Recently, we established a yeast surface display system and screened libraries of randomly mutated RANKL proteins to identify mutations that abolish binding to OPG while preserving recognition of RANK. These efforts yielded several RANKL variants possessing substantially higher affinity for RANK compared to their wild-type (WT) counterpart. Using recombinant RANKL mutant proteins, we find those with increased affinity for RANK produce more robust signaling in osteoclast lineage cells and have greater osteoclastogenic potential. Our results are the first to document gain of function RANKL mutations. They indicate that the physiological RANKL/RANK interaction is not optimized for maximal signaling and function, perhaps reflecting the need to maintain receptor specificity within the tumor necrosis factor superfamily (TNFSF). Instead, we find, a biphasic relationship exists between RANKL/RANK affinity and osteoclastogenic capacity. In our panel of RANKL variants, this relationship is driven entirely by manipulation of the kinetic off-rate. Our structure-based and yeast surface display-derived insights into manipulating this critical signaling axis may aid in the design of novel anti-resorptive therapies as well as provide a paradigm for design of other receptor-specific TNF superfamily ligand variants.
3.2 Introduction

The tumor necrosis factor superfamily (TNFSF) is composed of 19 different type II transmembrane ligands whose involvement in homeostasis and disease is wide-ranging (1). Many of these cytokines target or are produced by cells of the immune system, and participate in development and function of hematopoietic lineage cells (2-9). TNFSF cytokines act by binding to and inducing signals downstream of TNF-receptor superfamily (TNFRSF) members (10, 11). Additionally, there are several examples within TNFRSF of decoy receptors whose binding can modulate the activity of these cytokines (12). Due to their diverse roles in human disease, there are currently several therapies aimed at targeting these receptor/ligand pairs (13, 14).

The control of skeletal mass is regulated in part by the bone resorptive osteoclast, whose differentiation and function rely on the TNFSF cytokine receptor activator of NF-kB ligand (RANKL) (15). By interacting with its receptor RANK, RANKL induces signaling to NF-kB, MAP kinases, and NFATc1 among others (16, 17). These crucial signaling events are blocked by osteoprotegerin (OPG), a secreted decoy receptor that binds RANKL and prevents its interaction with RANK (18, 19). RANKL-mediated signaling promoting osteoclast formation and function, in excess of the bone anabolic osteoblast, is associated with many diseases including osteoporosis, inflammatory osteolysis, and skeletal metastasis (20). Therefore, understanding the molecular events initiating signal transduction remains key to the development of future therapeutics targeting this signaling axis.

Most TNFSF members exist as homotrimers in solution (21), and it is largely assumed that the trimeric clustering of receptors is the primary initiating event for signal induction. We have recently developed a novel inhibitor of RANKL-induced osteoclast formation and function relying on the manipulation of receptor oligomerization (see Chapter 2). In the process of
engineering a single-chain RANKL capable of antagonizing RANK signaling, we generated a panel of increased affinity RANKL mutants that allowed our construct to out-compete wild-type (WT) RANKL binding. In the present exercise, we sought to understand the relationship between binding affinity and biological function downstream of receptor ligation. We utilized our panel of RANKL mutants with RANK affinities increased by 15- to 500-fold. Increased RANKL affinity for RANK displays a biphasic effect on osteoclastogenesis in vitro, reaching optimal activity at approximately 15-fold higher affinity than WT. These findings provide insights into the relationship between affinity and agonist function, raising the possibility that variants with even higher affinities may display antagonistic properties relevant for the design of future TNFSF-based therapies.
3.3 Materials and Methods:

Production of mammalian RANKL protein: Constructs used for transient transfection of RANKL (see Chapter 2) or OPG (22) were previously described. For mammalian protein production, suspension adapted 293-Freestyle cells (Life Technologies) were maintained in serum-free Freestyle 293 expression medium (Life Technologies) according to the manufacturer’s protocol. Cells were seeded at a density of 0.5x10^6/mL and transfected the next day using the cationic lipid polyethylenimine (23). Supernatant was harvested four and seven days after transfection, 0.22uM filtered and equilibrated by the addition of 1/10 volume 10X phosphate buffered saline (Gibco) and 10mM imidazole. The protein was captured on Ni-NTA Superflow resin (Qiagen) and washed using 10mM imidazole in PBS. Protein was eluted in steps from 25-500mM imidazole. Fractions containing purified protein were identified on coomassie stained SDS-PAGE. Positive fractions were pooled and concentrated using a disposable YM30 centricron (Millipore). All proteins were sterile filtered for use in cell culture.

Surface Plasmon Resonance (SPR): All SPR experiments were performed on a Biacore T-100 (GE Healthcare) using CM5 sensor chips and HBS-EP buffer. To confirm receptor recruitment using scRANKL variants, 4,000 RU of WT-scRANKL or variant scRANKL were coupled to individual lanes, leaving one reference flow cell uncoupled. Experiments to determine kinetic affinity constants of RANKL variants for RANK or OPG were performed and analyzed as previously described (22).

Generation of osteoclasts from primary bone marrow macrophages: Long bones of eight week-old mice were flushed and the marrow subjected to red blood cell lysis. The remainder of the whole marrow was cultured on petri dishes maintained at 37°C with 6% CO2 in alpha-mem containing 10% inactivated fetal bovine serum, 100 U/ml penicillin, 100 μg/ml streptomycin, (α-
10 medium) supplemented with 1:10 CMG (conditioned medium supernatant containing recombinant M-CSF) (24). Osteoclasts were differentiated in α-10 medium with 1:50 CMG and the relevant RANKL variant. Alternatively, osteoclasts were differentiated in the presence of 100ng/mL of mutant RANKL with varying concentrations of monomeric OPG.

Detection of osteoclast formation: Cells were fixed in 4% paraformaldehyde in PBS for 15 minutes and stained for the tartrate resistant acid phosphatase (TRAP) using a kit (Sigma). Quantitative assessment of TRAP activity was performed using the fluorescent phosphatase substrate ELF-97 (Molecular Probes). Fixed cells were incubated with 100uM ELF-97 in 90mM citrate buffer pH=4.8, 80mM sodium tartrate for 15 minutes at room temperature. The reaction was stopped by the addition of sodium hydroxide and fluorescence was visualized using the 345/530 excitation/emission filter on a Spectramax M2 plate reader.

Quantitative real-time PCR: To quantitate mRNA markers of osteoclast formation, RNA was isolated from cultured cells according to the manufacturer’s protocol (Qiagen RNeasy miniprep kit). Equal amounts of RNA were used to perform reverse transcription (Bio-rad iScript) and quantitative real-time PCR was performed using Eva Sso fast qPCR Sybr green kit (Bio-rad) using a 7500 fast machine (ABI). Data was analyzed according to the delta-delta Ct method and normalized to a control containing no RANKL addition (labeled BMM). Primers used were as follows: CatK (Forward: 5’-ATGTGGGTGTTCAAGTTTCTGC-3’, Reverse: 5’-CCACAAGATTCTGGGACTC-3’), NFATc1 (Forward: 5’-CCCGTCACATTCTGGTCCAT-3’, Reverse: 5’-CAAGTAACCGTGATGCTGCACA-3’), TRAP (Forward: 5’-CAGCTCCCTAGAAGATGGATTCAT-3’, Reverse: 5’GTCAGGAGTGGGAGCCATATG), beta3 (Forward: 5’-TTCGACTACGGCCAGATGATT-3’, Reverse: 5’-GGAGAAAGACAGGTCCATCAAGT-3’).
Detection of Collagen Fragments from Culture Supernatant: Pre-osteoclasts were generated from primary bone marrow macrophages in the presence of wild-type RANKL and lifted with trypsin/EDTA. Equal numbers of pre-osteoclasts were plated on bovine bone slices in the presence of RANKL variants at 100ng/mL or doses for two additional days. The release of collagen peptides into the culture supernatant was detected by ELISA according to the manufacturer's protocol (IDS).
3.4 Results

Osteoclast formation in vitro driven by RANKL mutants: In Chapter 2 of this thesis, we reported the affinity maturation of RANKL for its signaling receptor RANK using yeast surface display. We estimated the affinities of several RANKL mutants using titration curves generated on the surface of RANKL-displaying yeast cells, showing a range from 15- to 500-fold increase relative to wild-type. Of note, these variants were identified on a background of two mutations that allowed for the increased production of our proteins of interest without affecting the affinity for RANK. These two mutations (C220S and I246E) were termed “solubility mutants,” hence RANKL containing only these two mutations will be referred to as solubility-mutant WT RANKL (WT-SM). Importantly, both WT RANKL and WT-SM RANKL are equally capable of forming osteoclasts *in vitro* (Supplemental Figure 3.S1A).

First, we confirmed the affinities for RANK and OPG of each RANKL variant using surface plasmon resonance (Table 1). As described above (see Chapter 2, Figure 2.11), the single point mutant Q236H increased the affinity for RANK by approximately 15-fold while a quadruple mutation (K194E/Q236H/F269Y/H270 or “KQFH”) increased the affinity by roughly 500-fold. Here we show that K194E alone also increases the affinity for RANK, though less than 2-fold (Table 1). The combination of K194E/Q236H (“KQ”) increases binding to the receptor by 20-fold, and K194E/Q236H/F269Y (“KQF”) by 50-fold. Thus, we have established a panel of RANKL variants ranging from a slight increase in affinity up to a 500-fold increase in binding to RANK. We also confirmed that all proteins containing the Q236H mutation have dramatically reduced binding to OPG. Interestingly, the single point mutant K194E decreases binding to OPG by approximately 4-fold.
Next, we sought to determine the osteoclastogenic capacity of our RANKL variants with increased affinity for RANK. To this end, we cultured bone marrow macrophages with M-CSF and increasing concentrations of RANKL, then stained for mature cells (Figure 3.1A). Osteoclastogenesis was quantitated using a TRAP activity assay to fit EC₅₀ values of each RANKL variant. (Figure 3.1B,C). A single point mutation added to WT-SM, K194E-SM, is approximately twice as efficient at generating mature osteoclasts. Q236H-SM possessing a 15-fold increase in affinity for RANK, displayed the most robust increase in activity (compare average WT-SM EC50 = 9.78ng/mL versus Q236H-SM EC50 = 1.46 ng/mL). Interestingly, further increases in affinity up to 50-fold higher than WT RANKL did not more efficiently promote osteoclastogenic potency. Moreover, KQFH-SM RANKL, with a 500-fold increase in affinity for RANK, does not generate osteoclasts as efficiently as Q236H-SM, though is still outperforms WT-SM RANKL. In agreement with osteoclast formation as assessed by TRAP stain and TRAP activity, osteoclastogenic markers induced by RANKL variants show a similar affinity-dependent biphasic effect (Figure 3.1D,E). Hence, RANKL/RANK affinity exerts a biphasic effect of RANKL affinity for RANK on osteoclast formation in vitro, such that extremely high binding is not as optimal as an intermediate increase.

Resistance of RANKL mutants to exogenously added OPG. During the development of a single-chain RANKL inhibitor possessing altered RANK affinities, we sought to simultaneously decrease the capacity of the RANKL variants to bind the decoy receptor OPG. To that end, the mutations we OPG affinities of mutations we identified substantially decreased as assessed by yeast surface display and confirmed by SPR (Table 1). We next sought to determine if these mutants are more resistant to the addition of exogenous OPG in osteoclastogenic conditions in vitro. Interestingly, the solubility mutations which did not affect binding to RANK, exhibit a
roughly 10-fold decrease in OPG affinity (Supplemental Figure 3.S1B). In TRAP activity assays for osteoclast formation, we observed a functional consequence of this affinity change results in a 6-fold greater resistance to the addition of monomeric, cytokine-binding OPG fragment. Specifically, the OPG IC$_{50}$ inhibiting WT RANKL-induced osteoclastogenesis is 141.6ng/mL, while the OPG IC$_{50}$ inhibiting WT-SM RANKL is 824.3ng/mL. Representative TRAP stained images of bone marrow macrophages cultured in the presence of increasing amounts of OPG with a constant amount of each RANKL variant demonstrate that all mutations incorporating Q236H are completely resistant to the effects of OPG (Figure 3.2). RANKL K194E-induced osteoclastogenesis was inhibited slightly at the highest doses of the decoy receptor, though not sufficient to permit the assessment of an IC$_{50}$ value given the range of OPG concentrations used. Therefore, despite the similar binding footprints of OPG and RANK on the cytokine RANKL, it is possible to impose opposite effects on cellular function using receptor selective mutations.

Altered signaling to key osteoclastogenic mediators is enhanced by high affinity RANKL variants. To determine whether the osteoclastogenic effects of progressively increasing RANKL affinity for RANK reflects altered signaling, we stimulated bone marrow macrophages with RANKL variants. We then assessed the phosphorylation of two crucial signaling events in osteoclast differentiation, namely phosphorylation of NF-kB and the MAP kinase, p38 (Figure 3.3A,B; Supplemental Figure 3.S1C). The signaling induced by Q236H-SM and KQFH-SM RANKL is more robust than that of WT-SM RANKL, and maximizes earlier. As with osteoclast formation, KQFH-SM RANKL is not as potent as Q236H-SM RANKL at phosphorylating these key osteoclastogenic molecules. Thus, like osteoclastogenesis, per se, the RANKL/RANK interaction optimizes signal transduction at intermediate, rather than extremely high, affinities.
Enhanced osteoclast function in vitro with increased RANKL affinity variants. RANKL not only promotes osteoclast formation, but also stimulates the resorption of bone by the mature cell. To determine if osteoclast function is also dictated by RANK/RANKL affinity, we cultured bone marrow macrophages on plastic in equal amounts of WT-RANKL for four days to generate pre-osteoclasts. We then lifted and plated an equal number of cells on bovine bone slices in low- or high-dose RANKL variants. After 24 hours, we assessed collagen fragment release into the media (Figure 3.4; Supplemental Figure 3.S1D). Despite normalized osteoclast numbers, Q236H-SM RANKL activates mature cells to resorb bone more than WT-SM RANKL, indicating that this variant not only enhances differentiation but also functional activity.
3.5 Discussion

From the discovery of lymphotoxin-beta and the TNF/TNFR1/TNFR2 ligand/receptor pairs almost thirty years ago, the role of TNFSF members in human disease has continued to grow. The expanding role of this protein family has also led to an increased interest in targeting cytokine or receptor to modulate autoimmunity, anti-tumoral activity, and bone mass. Current FDA-approved drugs comprise antibodies or receptor-Fc fragments that act by functionally removing the cytokine from the system (13). However, several TNFSF members bind more than one receptor (1), and there are circumstances in which the specific targeting of the actions of an individual receptor would be desirable. These and other aspects of this complex protein family may contribute in part to the disparities sometimes observed between pre-clinical and clinical trials focused at neutralizing cytokine.

A striking example is TNF-alpha, whose initial blockade in the pre-clinical multiple sclerosis model, experimental autoimmune encephalitis, was protective (25). However, some patients with multiple sclerosis treated with Lenercept (soluble-TNFR IgG-fusion protein) experienced an increased number of disease exacerbations with more severe neurological deficits (26). Additionally, pre-clinical studies using various models of sepsis yielded dramatically different results following TNF cytokine neutralization (27) depending in part on the model utilized. Indeed, clinical trials based on the endotoxin murine model of sepsis suggested that TNF blockade may be beneficial for survival, though the human experience did not propagate these results (28). Indeed, a protective effect of TNFR2 and detrimental effect of TNFR1 signaling has been implicated not only in septic shock (29, 30), but also in LPS-, RANKL-, or TNFα-mediated bone resorption (31-33). Thus, recent efforts using antibodies specifically
targeting TNFR1 may help provide impetus for the design of future therapeutics aimed at receptor specific targeting (34).

An alternative to antibody-mediated modulation of these signaling pathways is the development of receptor-selective cytokine mutants. Our present study elucidates the in vitro functional outcomes of modulating RANKL affinity for its signaling receptor RANK and its decoy receptor OPG. We show that initially, moderate increases in affinity for RANK lead to a substantial increase in function as measured by osteoclast formation, signaling, and bone resorption in vitro. However, further increases to very high affinity RANKL mutants produce less efficient downstream actions. To our knowledge, this is the first evidence that RANK signaling can be optimized by increasing affinity. However, there is not a linear relationship between affinity and functional outcome. This observation is, however, consistent with previous studies exploring the relationship between T-cell receptor (TCR): peptide-MHC affinity and biological events (35-37). Additionally, there is some evidence that there may be a non-linear relationship between TNF receptor binding and functional outcome (38), though the reported affinities do not represent single-site binding events, making interpretation of this data difficult.

Our results suggest that the use of forward-genetic approaches to identify novel mutations within the TNFSF can allow for the generation of receptor-selective, highly efficient agonists. The supposition that selective inhibition and/or activation of TNF receptors may be beneficial is supposed by the effect of TNFR2 agonism on the complications of experimental type I diabetes (39, 40). A scenario in which signal-transduction optimized, TNFR2 agonist that does not bind to and alter the TNFR1 pathway could provide a novel avenue for the treatment this or other autoimmune and cardiovascular diseases. This strategy could be applicable to several other TNFSF ligand/receptor pairs. Because of the non-linear relationship between RANKL/RANK
affinity and function, the development of receptor agonists within the protein family through non-biased, forward genetic approaches may necessitate the use of functional screens rather than affinity-based screens (41).
3.6 References

36. M. Irving *et al.*, Interplay between T cell receptor binding kinetics and the level of cognate

3.7 Figure Legends

Table 3.1. Kinetic affinity parameters of RANKL mutants binding to monomeric RANK or OPG were determined using SPR. *Previously reported (see Chapter 2). Values represent the averages of three independent experiments.

Figure 3.1. Osteoclastogenic potential of RANKL variants. (A) The capacity of mutant RANKL proteins to generate osteoclasts from bone marrow macrophages was assessed by TRAP stain using increasing amounts of purified RANKL protein. (B) Titration curves of osteoclastogenesis were fit using a four-parameter dose-response curve. (C) EC$_{50}$ values calculated from the curve fits in (B). Assessment of osteoclastogenic markers by real-time detection of NFATc1 (D) or β3 integrin (E) mRNA levels.

Figure 3.2. Ability of monomeric OPG to inhibit RANKL-induced osteoclast formation. Varying amounts of monomeric OPG were added to cultures containing 100ng/mL of each RANKL variants and osteoclasts were stained for TRAP.

Figure 3.3. Signaling downstream of RANKL variants. (A) Bone marrow macrophages were serum starved and stimulated with 100ng/mL WT-SM, Q236H-SM, or KQFH-SM RANKL. The phosphorylation of NF-kB and p38 were assessed by western blot. (B) Densitometry of western blots depicted in (A).

Figure 3.4. Activation of mature osteoclasts by RANKL variants. After several days in culture with WT RANKL, osteoclasts were plated in equal numbers on bovine bone slices and stimulated with WT-SM, Q236H-SM, or KQFH-SM. The release of collagen fragments (CTx) was measured after 24 hours.

Supplemental Figure 3.S1. Comparison of WT RANKL and WT-SM RANKL. Differences and similarities between the ability of WT RANKL and WT-SM RANKL to induce
osteoclastogenesis (A), resist the inhibitory activity of OPG (B), initiate RANK signaling (C) and resorb bone \textit{in vitro} (D).
Table 3.1 Kinetic affinity parameters of RANKL variants binding to monomeric RANK and OPG

<table>
<thead>
<tr>
<th>RANKL:</th>
<th>194</th>
<th>236</th>
<th>269</th>
<th>270</th>
<th>RANK</th>
<th>OPG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K_o (uM)</td>
<td>k_{on} (M⁻¹s⁻¹)</td>
</tr>
<tr>
<td>WT-SM*</td>
<td>K</td>
<td>Q</td>
<td>F</td>
<td>H</td>
<td>1.403</td>
<td>1.51×10^5</td>
</tr>
<tr>
<td>K194E-SM</td>
<td>E</td>
<td>Q</td>
<td>F</td>
<td>H</td>
<td>0.899</td>
<td>1.13×10^5</td>
</tr>
<tr>
<td>Q236H-SM*</td>
<td>K</td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>0.081</td>
<td>3.00×10^5</td>
</tr>
<tr>
<td>KQ-SM</td>
<td>E</td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>0.067</td>
<td>1.74×10^5</td>
</tr>
<tr>
<td>KQF-SM</td>
<td>E</td>
<td>H</td>
<td>Y</td>
<td>H</td>
<td>0.029</td>
<td>1.67×10^5</td>
</tr>
<tr>
<td>KQFH-SM*</td>
<td>E</td>
<td>H</td>
<td>Y</td>
<td>Y</td>
<td>0.003</td>
<td>3.07×10^5</td>
</tr>
</tbody>
</table>
Figure 3.2

<table>
<thead>
<tr>
<th>OPG (µg/ml)</th>
<th>0.00</th>
<th>0.03</th>
<th>0.06</th>
<th>0.13</th>
<th>0.25</th>
<th>0.50</th>
<th>1.00</th>
<th>2.00</th>
<th>4.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT - SM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K194E - SM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q236H - SM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KQ - SM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KQF - SM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KQFH - SM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 3.3
Figure 3.4
Chapter 4

Conclusions and Future Directions
4.1 Conclusions

Generation of single-chain RANKL: The primary aim of this thesis was to provide evidence for the receptor oligomeric state of RANK receptor necessary and sufficient to induce pro-osteoclastogenic signals. A secondary goal was to use this information to develop a novel strategy for RANK inhibition, which may be broadly applicable to TNF receptor superfamily inhibition. Despite the assumption that trimeric TNFSF ligands act by clustering three receptors to initiate signal transduction, evidence suggesting the importance of ligand-independent receptor association (1-3), the formation of signaling-competent receptor dimers (4), or higher-order clustering (5-8) has challenged this simple model. Within RANK signaling, reports have suggested both ligand-independent receptor association (9) and signaling through dimeric receptors (10), though these studies are accompanied by the major caveats inherent with receptor overexpression or the use of artificial chimeric constructs.

To circumvent the need for overexpressed or chimeric receptor, we approached the question of receptor recruitment using manipulation of the cytokine itself. Because the N- and C-termini of RANKL are located in close physical proximity (11), we were able to covalently link each monomer together using glycine/serine repeats. We demonstrated that this single-chain version of RANKL (scRANKL) was equally capable of generating osteoclasts and had the predicted molecular weight of a trimer without evidence of monomeric species on reducing gel.

Probing the signaling-competent receptor oligomeric state of RANK: With this tool in hand, we generated single- and double-blocked versions of scRANKL capable of only recruiting two or one RANK receptors, respectively. To this end, we identified mutations in RANKL that prevent RANK binding. Initial studies using monomeric RANK to assess decreased binding indicated that the RANKL variant R222Q may be an appropriate mutation to use for this purpose. However, binding studies using an Fc-tagged version of RANK increased the sensitivity of the assay, allowing us to elucidate that, although the affinity of R222Q was substantially lower than WT RANKL, its binding to RANK was not
absent. Therefore, we used the co-crystal structure of RANK/RANKL to design loop insertion mutants in the hopes that these variants would prevent receptor recruitment. Most promising was the CD loop of RANKL, which contains an i+3 beta turn making it possible that amino acids inserted proximal to this ordered structural region would yield a RANK null-binding version. Indeed, all mutations with no detectable binding to RANK-Fc contained various insertions in the CD-loop. Interestingly, the analogous loop in human RANKL (termed the DE loop) is the target of the RANKL-neutralizing therapeutic monoclonal antibody Denosumab (12). These findings have important implications for the general applicability of this single-chain approach to studying receptor oligomerization, as steric hinderance of receptor docking to generate a complete null-binder rather than to rely on individual point mutations.

Having identified a RANK receptor blocking mutant, we generated single- and double-block scRANKL and assessed osteoclastogenesis. Formation of mature cells by each scRANKL variant demonstrate that single-block, with two available receptor recruitment sites, is capable of generating osteoclasts while double-block is not. This suggests that the occupancy of RANKL by three RANK receptors is not absolutely required to induce osteoclastogenic signals, while recruitment of at least two receptors is necessary. The number of osteoclasts generated by single-block scRANKL was never as high as that generated by WT scRANKL, and the EC$_{50}$ value of single-block was increased 20-fold indicating that this state of receptor oligomerization is sub-optimal. Because we had generated a version of scRANKL capable of binding receptor yet unable to induce osteoclastogenic signals, we asked if this protein could act as an inhibitor of WT RANKL-induced osteoclastogenesis. Its inability to do so likely reflects the loss of avidity relative to WT RANKL, prompting us to utilize yeast surface display to identify RANKL mutants with increased affinity for RANK. We demonstrated that the use of progressively decreasing amounts of monomeric RANK in combination with OPG competition could facilitate the isolation of variants with a range of affinities for RANK, including one RANKL mutation with a 500-fold increase in affinity driven largely by prolonged off-rate. Importantly, these mutations do not meaningfully recognize the decoy receptor OPG.
The inclusion of medium- or high-affinity variants into the intact binding sites in scRANKL allowed us to observe that single-block RANKL with an increase in affinity at these two receptor recruitment sites generates fewer osteoclasts. Indeed, the ability of single-block scRANKL to generate osteoclasts may be facilitated by the rapid off rate at the two receptor binding sites. This may allow for the recruitment of additional RANK receptor, ultimately leading to higher order clustering. Our observation that increasing the time required for single-block scRANKL variants to dissociate diminishes osteoclastogenesis supports this model. Finally, single-block RANKL with high affinity at the intact sites is an effective inhibitor of RANKL-mediated osteoclast formation.

One important caveat to these experiments is the method used for protein purification and the possibility of ligand heterogeneity. Initial studies using CDins mutant RANKL purified from bacteria demonstrated no detectable binding to RANK-Fc, yet considerable phosphorylation of NF-κB. We found a lack of responsiveness to CDins RANKL-induced signals when using TLR4-KO macrophages, indicating that this phosphorylation was the result of the exquisite sensitivity of macrophages to even minute amounts of LPS carried over during purification. Therefore, we developed a method for producing WT RANKL and scRANKL proteins secreted from mammalian cells into serum-free media. Purification was performed with an attempt to remain LPS-free, necessitating avoidance of a final size exclusion chromatography step. However, when we examined the size exclusion profiles of our scRANKL protein, we observed a small, but significant, higher molecular weight species. This could be explained by two possibilities. First, the solubility mutant version of RANKL contains two predicted glycosylation sites per monomer and migrates as two bands on reducing gel when purified from mammalian cells, but not when purified from bacteria. By two-dimensional gel electrophoresis, the one predicted glycosylation site of murine TNFα was shown to add as much as 10 – 20 kDa of sugar per 17 kDa monomer (13) when secreted from stimulated macrophages. Therefore, given the two available glycosylation sites in RANKL, it seems possible that a substantial, though potentially heterogeneous, amount of carbohydrate may be present on scRANKL.
The second possibility is that, by the use of 12 amino acid long linkers between each scRANKL monomer, scRANKL may unfold and re-fold as two or more associated proteins. One argument against this scenario is the RANKL monomer-trimer molar association constant of $6.5 \times 10^{20} \text{M}^{-2}$, indicating that once a trimer has formed, it is highly unlikely to dissociate from this form (14). Therefore, generation of an integrated oligomeric scRANKL species would necessitate the formation of higher order variants during initial protein translation and folding. The relevance of this possibility is to our findings that single-block scRANKL is capable of generating osteoclasts, which is in opposition to the classic model of trimeric receptor clustering as initiating signal transduction. When we performed size exclusion chromatography to isolate a conservatively monomeric species of scRANKL, we still observed osteoclast formation, albeit at levels lower than unsized protein (not shown). Here, scRANKL would have had to unfold post-purification and refold into a dimeric species to allow for the possibility that the higher molecular weight version of scRANKL is a “domain-swapped” variant. Again, given the molar association constant, this scenario seems highly unlikely though cannot be absolutely excluded at this time. Finally, this potential dimeric species of single-block scRANKL would have to consistently fold in such a way that the 120° receptor binding groove geometry was maintained with proper binding site orientation, as it has been shown that the integrity of this groove is important for receptor recruitment (15). It is this author’s view that our conservative collection of the lowest molecular weight portion of scRANKL during size exclusion chromatography completely removed the glycosylated version of the protein, which may have affected either its binding properties or its solubility in solution throughout the course of in vitro experiments thus explaining the reduced osteoclastogenesis when using sized versus non-sized protein.
4.2 Future directions

Optimization of scRANKL protein: To resolve the issue of observed higher molecular weight species of scRANKL, it may be possible to treat scRANKL proteins with inhibitors of glycosylation during transfection and protein production and test the ability of this non-glycosylated version of single-block scRANKL to present as a mono-dispersed fraction on a size exclusion column and/or generate osteoclasts. It may also be possible that there exists an ideal linker length which prevents any potential folded version of scRANKL other than the monomeric version, yet allows for adequate protein expression levels. Lastly, previous reports of single-chain TNF utilized molecular dynamics simulations to provide guidance for optimizing linker length (4). As flexible loops that are either too short or too long have been suggested to play a role in the domain swapping of certain proteins (16), it may be important to more rigorously determine what version of scRANKL would allow enough flexibility for proper folding without the possibility of generating oligomerized aggregates.

Clinically Relevant Models of RANKL-driven bone loss: Regardless of whether or not this important issue can be resolved, it remains that single-block scRANKL with high affinity at the intact binding sites is an effective inhibitor of RANKL-mediated osteoclast formation both in vitro and in vivo. We utilized a rapid bone loss model based on intraperitoneal injection of WT RANKL (17) which has limited clinical relevance. It would be interesting to test the ability of single-block, RANKhigh scRANKL to protect against ovariectomy-induced bone loss, a model used extensively in our laboratory (18-20). Additionally, RANKL has been implicated in not only the growth of mammary cancer (21-24) but also in the migration (25-27) and osteolysis of metastatic breast cancer (28). Current evidence suggests that the inhibition of RANKL-mediated signaling may be beneficial at treating breast cancer skeletal metastases (29) and it would be interesting to see if our novel scRANKL inhibitor can act in a similar, or perhaps more effective, manner. Indeed, the anti-RANKL monoclonal antibody Denosumab was recently approved for the treatment of breast cancer bone metastases (30). Given that the \textit{in vitro} IC\textsubscript{50} values of
our novel construct are almost 10-fold lower than that of Denosumab (scRANKL inhibitor IC50 = 0.2 nM versus denosumab IC50 = 1.64nM), it may be possible to achieve therapeutic benefit with substantially lower levels of inhibitor. The further evaluation of single-block, RANK^{high} as an inhibitor of RANKL-mediated pathology in vivo will necessitate the determination of pharmacodynamic and pharmacokinetic parameters of this protein. Lastly, as all residues involved in generating the blocking and high affinity mutations in murine RANKL are conserved in human RANKL, it would be interesting to generate the human version of this novel inhibitor and test it in the ovariectomized cynomologous monkey model, an important non-clinical animal model for RANKL inhibition (31, 32).

Inhibition of other TNF receptors using the single-chain approach: RANKL is a member of the TNF superfamily and binds to two different receptors (RANK and OPG) with divergent biological effects. Our approach using a combination of blocking and high affinity mutations for RANK together with absent OPG binding, has allowed us to generate an efficient and selective RANK inhibitor. Several other TNFSF members display receptor promiscuity, including TNFα, which is capable of binding TNFR1 and TNFR2. TNFα is involved in a wide variety of pathologies, included rheumatoid arthritis, sepsis, Crohn’s disease (33). This has led to the development of several TNF antagonists, including an anti-TNF monoclonal antibody (Infliximab, ex) and soluble receptor fragment (Etanercept) (34). These therapies, which result in removal of all cytokine-induced signals, are associated with significant morbidity including increased risk for infectious disease and malignancy (35-37). This has prompted interest in the selective antagonism of TNFR1 over TNFR2 (38-41). Because the binding modes of RANKL with RANK and OPG are very similar to the inferred or reported binding modes of TNFα with TNFR1 and R2 (42-44), it seems likely that a similar approach combining steric blockade of receptor docking with forward genetic screens to identify high affinity mutations for TNFR1 that do not recognize TNFR2 may succeed. It is even possible to begin this yeast surface display undertaking with one of several previously described mutations that differentially affect TNFR1 and TNFR2 binding (45, 46).
One important caveat to any future use of this single-chain strategy is the necessity for any blocking and high affinity mutations to be located on the same side of the binding groove. Regardless of the orientation of folding (right- or left-handed), having these mutations occupy the same side of the cleft contributed by each monomer ensures that each interface can be individually mutated (Figure 4.1). Our yeast surface display efforts identified four point mutations that increased the affinity for RANK while decreasing the affinity for OPG, three of which are on the same side of the interface as the receptor blocking CD-loop (K194E, F269Y, and H270Y). Fortunately, the fourth mutation, which was not on this side, could equally participate in the formation of a blocking or a high affinity interaction with RANK. For human TNFα, a commonly used TNFR1-selective mutation is R32W/S86T. However, this double point-mutant straddles both sides of the binding groove, making it an unattractive candidate to initiate a yeast surface screen. Alternatively, Y87Q dramatically reduces the affinity for both receptors. Therefore, it is intriguing to speculate that S86T/Y87Q may be an ideal TNFR1 receptor blocking mutation that also decreased TNFR2 affinity, while S86T alone might be a useful mutation to begin a search for TNFα variants with selective increased TNFR1 affinity.

Biphasic effect of RANKL/RANK affinity on osteoclast formation and function: Having identified RANKL mutations with a range of affinities for RANK, but decreased binding to OPG, we tested the ability of each variant to form osteoclasts *in vitro*. We find that increasing the affinity for RANK by 15 – 50 fold leads to optimal activation of RANK as assessed by phosphorylation of downstream signals and EC₅₀ values of osteoclast formation. Interestingly, a further increase to 500-fold greater than WT RANKL reverses this trend. Because the differences in affinity between these variants is reflected primarily in an longer off-rate, we can conclude that optimal RANK signaling necessitates not only RANKL association but the ability to dissociate. This phenomenon has been observed in other signaling systems, most notably in T-cell receptor (TCR) signaling (47-49). The observation that T-cell triggering occurs in an optimized peptide:MHC affinity window largely guided by variations in off-rate prompted the postulation of a “serial engagement” model (50). In this scenario, the relatively rapid
dissociation of TCR from peptide:MHC facilitates the sequential and monovalent triggering of many T-cell receptors. As higher order clustering has been implicated for the signal transduction of other TNFSF members (5-8), we posit that RANK signaling is facilitated by the rapid off-rate of WT RANKL, which acts to cluster individual receptors via serial engagement.

High Affinity RANKL Variants: These findings may not only inform our understanding of RANK receptor signaling, they may also serve as the basis for developing novel inhibitors of this pathway. Although the largest increase in affinity for RANK that we identified from yeast surface display was 500-fold, this unbiased form of protein engineering has generated variants with as much as 40,000-fold (51) or even 1 million-fold (52) higher affinities in other contexts. What might the functional consequences be of similarly affinity-matured variations of RANKL? There is precedent for supraphysiologic binding of TCR to peptide:MHC losing agonist effect (47). Additionally, a high-affinity IL-4 variant was converted to an antagonist by substitution of a single amino acid, indicating a decoupling between receptor binding and efficacy (53, 54). The relevance of this finding to TNFα is unclear, as variants have been described with increased affinity leading to disparate effects on *in vitro* function depending on where the mutations clustered on the cytokine (43).

Currently, experiments are underway to determine the effect of optimal receptor signaling on osteoclast function *in vivo* using the intraperitoneal IP RANKL injection model described above. Demonstration of enhanced RANKL mediated signaling *in vivo* may provide rational for treating patients with osteoclast-poor osteopetrosis who have mutations in the gene encoding RANKL (55). Alternatively, it would be interesting to search for mutations in these conserved, high affinity residues of RANKL in single-nucleotide polymorphism studies to determine whether genetic differences in bone mass and risk for osteoporosis may be linked to mutations that increase receptor binding to an optimized level. Lastly, it would be interesting to explore the mechanism by which WT, intermediate affinity, and high affinity RANKL variants lead to different efficacies. Is RANK receptor internalization necessary for downstream
signaling, and is this event optimal with 10- to 50-fold increases in affinity? Are signaling events beyond receptor proximal targets altered in the context of altered binding kinetics? These and other ongoing studies will add to our knowledge of how signals are initiating upon RANKL ligation of its receptor RANK.
4.3 References:

8. F. Henkler et al., The extracellular domains of FasL and Fas are sufficient for the formation of supramolecular FasL-Fas clusters of high stability, *J. Cell Biol.* **168**, 1087–1098 (2005).

Bone Miner Res 20, 2053–2060 (2005).

31. M. S. Ominsky et al., Denosumab, a fully human RANKL antibody, reduced bone turnover markers and increased trabecular and cortical bone mass, density, and strength in ovariectomized cynomolgus monkeys, Bone 49, 162–173 (2011).

32. P. J. Kostenuik et al., Decreased bone remodeling and porosity are associated with improved bone strength in ovariectomized cynomolgus monkeys treated with denosumab, a fully human RANKL antibody, Bone 49, 151–161 (2011).

40. K. A. Zettlitz et al., ATROSAB, a humanized antagonistic anti-tumor necrosis factor receptor one-specific antibody, MAbs 2, 639–647 (2010).

47. D. A. Schmid et al., Evidence for a TCR affinity threshold delimiting maximal CD8 T cell function,

54. G. Aversa et al., An interleukin 4 (IL-4) mutant protein inhibits both IL-4 or IL-13-induced human immunoglobulin G4 (IgG4) and IgE synthesis and B cell proliferation: support for a common component shared by IL-4 and IL-13 receptors, *J. Exp. Med.* **178**, 2213–2218 (1993).

4.4 Figure Legend

Figure 4.1. Receptor interfaces in scRANKL. (A) Each RANKL monomer is labeled “A”, “B”, or “C” and is shown connected by the Gly/Ser linkers (orange lines). The interfaces capable of accepting RANK receptor have been arbitrarily named “X”, “Y”, and “Z”. The RANKL AA’, CD, and GH loops contribute to the side of the interface termed “L”, and the DE and EF loops contribute to the side termed “R”. Depicted are two possible conformations of scRANKL, one that has folded with a right-handed orientation and one with a left-handed orientation. The possible interfaces with corresponding contributions from each monomer are indicated below the diagram. (B) Single-block scRANKL provides one example of how individually mutated receptors can yield identical binding interfaces regardless of the right- or left-handed nature of scRANKL folding. *Note that CDins from the “L” side of an interface combined with either a WT or Q236H (“Q”) contributed from the “R” side comprise a receptor blocking interface, while KFH from the “L” side combined with Q from the R side form a high affinity interface. (C) Single-block, RANKhigh scRANKL interfaces as in (B).
A
Right-handed

Interface X
Interface Y
Interface Z

Interface X = A_LB_R
Interface Y = B_LC_R
Interface Z = C_LA_R

B
Single-block:

Right Handed:
XYZ = Block – WT – WT

Left Handed:
XYZ = Block – WT – WT

C
Single-block, RANK^high:

Right Handed:
XYZ = Block – High – High

Left Handed:
XYZ = Block – High – High

CDins/WT or CDins/Q = Block; KFH/Q = High affinity