Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-98-07

1998-01-01

A Simplified Reservation and State Setup Protocol

Hari Adiseshu, Guru Parulkar, and Subhash Suri

The last few years have seen the development of a model for Integrated Services Internet, which
extends the traditional Internet by adding multiple service classes in addition to the traditional
best effort service class, and a signaling protocol called RSVP for applications to reserve
resources. While this framework has been standardized in the IETF WGs and the RSVP protocol
has been defined, there has been no movement towards a commercial implementation of this
framework, principally due to its perceived complexity and lack of scalability. This paper
analyzes RSVP, discusses some of the its bottlenecks and shows how they can... Read
complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Adiseshu, Hari; Parulkar, Guru; and Suri, Subhash, "A Simplified Reservation and State Setup Protocol"
Report Number: WUCS-98-07 (1998). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/462

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/462?utm_source=openscholarship.wustl.edu%2Fcse_research%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/462

A Simplified Reservation and State Setup Protocol

Hari Adiseshu, Guru Parulkar, and Subhash Suri

Complete Abstract:

The last few years have seen the development of a model for Integrated Services Internet, which extends
the traditional Internet by adding multiple service classes in addition to the traditional best effort service
class, and a signaling protocol called RSVP for applications to reserve resources. While this framework
has been standardized in the IETF WGs and the RSVP protocol has been defined, there has been no
movement towards a commercial implementation of this framework, principally due to its perceived
complexity and lack of scalability. This paper analyzes RSVP, discusses some of the its bottlenecks and
shows how they can be eliminated to create a trimmer signaling protocol with enhanced functionality and
scalability. We have created such a trimmed down version called SSP (State Setup Protocol). Some of the
key improvements that we focus on are - single pass operation, elimination of receiver heterogeneity,
single unified style of reservation, generalized filter specification, integrated label switching and third
party signaling setup.

https://openscholarship.wustl.edu/cse_research/462?utm_source=openscholarship.wustl.edu%2Fcse_research%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/462?utm_source=openscholarship.wustl.edu%2Fcse_research%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages

A Simplified Reservation and State Setup
Protocol

Hari Adiseshu, Guru Parulkar and
Subhash Suri

WUCS-98-07

February 1998

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130

A Simplified Reservation and State Setup Protocol

Hari Adiseshu

Guru Parulkar

Subhash Suri
Department of Computer Science

Washington University in St. Louis
St. Louis, MO 63130

Abstract

The last few years have seen the development of a model for Integrated Services
Internet, which extends the traditional Internet by adding multiple service classes in
addition to the traditional best effort service class, and a signaling protocol called RsvP
for applications to reserve resources. While this framework has been standardized in
the IETF waGs and the RSVP protocol has been defined, there has been no movement
towards a commercial implementation of this framework, principally due to its per-
ceived complexity and lack of scalability. This paper analyzes RSVP, discusses some of
its bottlenecks and shows how they can be eliminated to create a trimmer signaling
protocol with enhanced functionality and scalability. We have created such a trimmed
down version called ssp (State Setup Protocol). Some of the key improvements that
we focus on are - single pass operation, elimination of receiver heterogeneity, single
unified style of reservation, generalized flter specification, integrated label switching
and third party signaling setup.

1 Introduction

The dramatic growth and popularity of the Internet over the last few years has underscored
the need to enhance its service capabilities. The development of multimedia applications
and the need to provide paying customers with assured service qualities have motivated the
requirement to develop classes of services with service guarantees and to provide a way for
applications to signal their desived service level. These needs gave rise to the Integrated
Services Internet framework [BS94]. According to this framework the basic best effort ser-
vice class would be augmented by two additional classes of service, the Guaranteed service

[SSGY7] and the Controlled Load service class [Wro97].

In order for end users to specify their service requirements a signaling protocol called
RSVP was developed [HJ97]. While this paper assumes no background on RSVP some of the
points made in this paper are better understood by reading an RSVP overview paper [SZ93]

or tutorial [RSV97]. Essentially a reservation protocol like RSVP serves to install a mapping
between a filler and a gspec in a network. A filter describes a particular set of packets
while the qgspec describes the service to be accorded to that set of packets. While this
task is seemingly simple, the current specification of RSVP has rendered it complex and
difficult to implement. The aim of this paper is to point out various aspects in which RSVP
can be improved. These improvements serve to both reduce the latency and processing
requirements of RSVP as well as to enhance its functionality. Each of the following sections
describes an optimization to RSVP. In Section 2 we describe the two passes of RSVP and show
how to eliminate either of the two passes thereby cutting down on latency and increasing
the signaling processing capacity. The rest of the paper assumes a single pass receiver
oriented version of RSVP. In Section 3 we describe ambiguities present in RSVP protocol
processing which can be removed by eliminating heterogeneous reservations for the same
session. Section 4 introduces the concept of terminating addresses which can be used to
set up reservations across a subset of a path. We introduce generalized filters in Section 5
and show how they can be used for state aggregation and for creating QoS pipes. We also
describe an efficient and optimal algorithm for detecting conflicts across generalized filters.
Section 7 shows how to integrate RSVP and label switching and the advantages of integration
even in the absence of a label switched network. Finally we describe our implementation of a
reservation protocol called sSP (State Setup Protocol) which implements these optimizations
and compare it with current work in reservation protocols.

2 Eliminate One Pass

RSVP is a two pass protocol. The first pass consists of PATH messages sent from the sender
to the receiver (multiple receivers in case of multicast sessions) followed by RESV reservation
messages sent back from the receiver to the sender. PATH messages are addressed by the
sender to the receivers and are promiscously picked up by intermediate RSVP-aware routers.
PATH messages serve three purposes:

i) Set up state for reverse path forwarding of RESV messages.

it} Set up state for forwarding RESV message through non-RSVP clouds. Note that RSVP
is designed for operation in both RSVP-aware and non-RSVP-aware environments.

#i¢) Propagate hop by hop network parameters called adspec to the receiver.

RESV messages flow back from the receivers to the senders. Unlike PATH messages they
flow hop by hop towards the sender. Each hop forwards the RSVP message to the next hop
towards the sender based on the state established by the PATH messages. RESV messages
serve the following purposes:

a) Convey the necessary reservation to the sender and to each intermediate RSVP-aware
router.

b) Allow merging to prevent implosion at sender.

2

¢) Allow different reservation styles.

These two phases are illustrated for multicast reservations in Figure 1.

BSYP Oren s Mudedens Gronp M

Sender A

- _ PATH Message sent to
a multicast group M

RESY messages
from O anned ¥
merged
rogier Rt

Figure 1: RSVP Operation

We first ask if both phases are necessary, i.e., if we can work only with PATH messages
or only with RESV messages. The answer with some caveats which we explain, appears to
be yes.

First consider the case when there are only PATH messages and no RESV messages. We
now need to provide the functionality enumerated above in RESV messages. Clearly with
only PATH messages we have a sender initiated reservation scheme, so a) is reversed- the
reservation messages are now used to send reservations from the sender to the receiver rather
than the other way around.

Clearly b) is not an issue since the PATH messages are fanning out from the sender to the
many receivers rather than the other way around.

As for ¢), RSVP allows three different styles of reservations - fixed filter (FF). shared
explicit (SE) and wildcard filter {WF) styles [HJ97] which we discuss in Section 6. Again,
it is possible for senders to mark their PATH messages with one of the three styles and for
intervening routers to set up the appropriate kind of reservation. So for example, if all the
senders were to mark their reservations as being WF then each receiver would see only a
composite reservation.

As can be seen, it is fairly straightforward to merge the functionality of RESV messages
into PATH messages provided we move from a receiver initiated model of reservation to a
sender initiated model.

Let us consider the other alternative to creating a single pass reservation protocol, namely
eliminating PATH messages.

Regarding i) there are two possibilities for forwarding RESV messages back to the sender.
One is reverse path forwarding in which the RESV message takes the path taken by packets
from the receiver to the sender. In general this might not correspond to the default path
from the sender to the receiver. However this is not an issue if the intermediate hops do flow

based forwarding, i.e., forward packets based on the per flow state installed by RSVP rather
than the default forwarding state. So in case the default path is via one interface and the
flow state points to another interface there is no problem as long as the flow state is given
priority over the default state.

In case it is desired that the RESV messages always traverse the default path from the
sender to the receiver it is necessary for the sender to send data initially before the receiver
sends a RESV message. The initial data will serve as a pseudo PATH message by installing
state in intermediate hops regarding the path to the sender. For example, this approach is
taken by IFMP [ea96b].

With the establishment of a Quality of Service (QoS) Routing w¢ in the IETF [Q0S97]
and a framework for QoS routing [R597] the Internet is likely to see QoS based flow routing
shortly. The two pass scheme does not fit well with QoS routing since in the two pass scheme
the route is determined by PATH messages while the actual reservation which should really
determine the path is carried in the RESV message. No such problems exist for a single pass
reservation protocol.

As for ii) PATH messages contain a field {RSVP_HOP)} which is filled by each RSVP-aware
hop with its outgoing 1P address. In case the PATH message traverses a non-RSVP-aware
cloud the RSVP_HOP field contains the 1P address of the last RsVP-aware hop. When an
RSVP-aware router receives a RESV message setting up a reservation for a flow, it looks
up the corresponding PATH message for that flow and forwards the RESV message to the
IP address given in the RSVP_HOP field of the PATH message. This ensures that the RESV
message can traverse non-Rs$VP-aware clouds.

Without PATH messages how can a router know the next hop RSVP-aware router 7 We
assume that in the single pass version of the protocol RsvP-aware hosts and routers run an
adjacency protocol which detects if their immediate neighbors are R$vP-aware or not. In
case a router detects that the next hop router is non-rR$vVP-aware and it needs to forward
a RESV message towards this router then it simply addresses the RESV message directly to
the sender. The RESV message tunnels through the non-R$VP-aware cloud and is picked up
by the first RSVP-aware router on the other side of the cloud which resumes the hop by hop
forwarding. Note that this is exactly the same scheme that PATH messages use to propagate
through non-RSvP-aware clouds. This illustrated in Figure 2.

We see that iii) is not part of a signaling protocol. It belongs to a separate resource
discovery protocol, not resource reservation protocol. It leads to unnecessary computation
and propagation of values which are needed only once. In case it is really necessary the
values can always be propagated to the sender by being tagged to RESV messages rather
than by being tagged to PATH messages.

We now see that both passes of RSVP are not really needed for the functioning of a
reservation protocol. The choice as to which pass to retain depends on which direction
reservations are more likely to be made—— from the sender or from the receiver. We [eel
that with the current Internet there are considerable advantages to sticking with a receiver
initiated reservation protocol and hence propose a single pass receiver oriented version of
RSVP by eliminating PATH messages from RSVP. The remaining sections assume such a
single pass protocol.

RESV message sent from A to H. The address to which it is sent
is shown at each hop.

non-RSVP aware cloud

F promiscously picks up
RESY message and addresses
itto G

B sces that the next hop router (C} s not RSVP aware
and so addresses the RESV message to source H

Figure 2: Operation of single pass receiver oriented version of RSVP across non-RSVP-aware
clouds. Hop by hop forwarding of RESV messages in such an environment is shown.

2.1 Single Pass Receiver Initiated Reservations and Multicast Flows

Note that in the current Mbone multicast trees are set up using DVMRP which uses reverse
path forwarding. Hence the tree setup by the single pass version of RSVP will coincide with
the default tree setup by DVMRP. The use of R§SVP with other multicast routing protocols
has not yet been studied. Here again with QoS aware routing protocols a single phase setup
protocol is at an advantage compared to RSVP. In the current RSVP, RESV messages are forced
to be routed along the same path as the PATH message. However the actual reservation is
carried in the RESV message while the QoS routing protocols are used to route only the
PATH messages as described earlier. This raises serious doubts about the suitability of the
current RSVP design for future QoS routing protocols. On the other hand these protocols fit
in neatly with a single phase receiver oriented setup protocol.

3 Eliminating Heterogeneous Reservations for the Same
Session

For a unicast session the QoS is chosen by a single receiver. For multicast sessions each
receiver is free to choose a different QoS. Reservations originating from different receivers
are merged as the RESV messages propagate towards the sender. The RSVP protocol has as
an explicit goal the aim of providing resource reservations for heterogeneous receivers. While
this is a laudable goal the current implementation of this goal in the form of allowing receivers
to specify arbitrary reservations in RESV messages can severely impact the scalability of the
protocol and the performance of best effort receivers. There are two serious objections to
heterogeneous reservations.

o Heterogeneous reservations cause extra RESV messages destroying scalability of the
RESV merge protocol.

[

The scalability of the RESV merge procedure is based on the fact that new reservations
are merged into existing reservations thereby preventing an all new reservation from
propagating all the way to the sender from each receiver.

However, consider the simple case of a sender and multiple receivers. If each succeeding
receiver initiates a RESY message with an incremental increase in the BW then each new
RESV message would have to be propagated all the way to the sender. If the receivers
number in the millions this is clearly an impractical proposition. So heterogeneous
reservations requirements can cause new RESV messages to propagate all the way to
the sender instead of flowing to the nearest point on the current multicast tree.

» Heferogeneous reservations cannot deliver layered encoding.

Why should it be necessary for receivers to ask for differing reservations or differing
rates? This makes sense only if the sender is using a form of layered or hierarchical
encoding which delivers different layers of information for differing bandwidth (BwW)
capacities of different receivers. However, in the current scheme the trimming of BwW
for heterogeneous rate specifications occurs at the merge points and is done within the
packet scheduling software of the router which does not have any knowledge of the
information content of the packets. In such a case it makes more sense for the sender
to initiate distinct flows each carrying a different layer of encoding and for the receiver
to request a reservation only for those layers which satisfy its BW requirements. This
is sometimes referred to as MMGs {multiple multicast groups). However, with MMGs
each MMG has a distinct BW requirement and a receiver should ask for precisely that
BW which is necessary for the set of MMGs which it intends to receive. There is
no heterogeneity in resource reservations with MMGs. So clearly heterogeneous rate
specifications do not deliver any benefits to receivers.

The simplest way to ensure BW and service class homogeneity within a given session
would be for the sender to reject 2 non-conformant reservation request with an ap-
propriate error code. Once this percolates down to to offending receiver, the routers
along the path know the right value of the reservation so that they can deny future
non-conformant reservations.

4 Separation of Terminating Address from Filter Spec-
ification

Define a terminating address as the address of an endpoint which terminates RSVP messages.
In the current RSVP only the IP source and destination addresses specified in the filter carried
In RSVP messages act as terminating addresses. Consider the topology shown in Figure 3.
Networks A and B are separated by a cloud. Network A contains host A.l and border
gateway A.2. Net B contains host B.1 and border gateway B.2. With RSVP it is not possible
to setup a reserved pipe between the two horder routers for a flow from A.l to B.I - rsvp
can only setup an end to end pipe from A.1 to B.1.

wwmww esiced QoS path between
A.2 and B.2 for traffic between
AJdandB.1

A rmmmmenee” B2 B

Figure 3: RSVP not able to set up a reservation along a subset of the path

If we decouple terminating addresses from filter specification then we have a powerful tool
for allowing third party reservations and for setting up reserved QoS pipes between sites in
conjunction with generalized filters discussed in Section 5. This can be easily done by adding
the terminating address explicitly in reservation messages. In the single pass receiver oriented
setup protocol a reservation initiating entity would send a reservation message containing
a <filter, QoS> mapping together with a terminating address. The reservation message
would be propagated hop by hop to the terminating address. Thus the reservation would
be setup between the initiating entity and the terminating address. In the example that
we discussed earlier, if we wish to setup a reservation between A.2 and B.2 then B.2 would
transmit a reservation request with the terminating address set to A.2 thereby ensuring that
the reservation propagates from B.2 to A.2. This is shown in Figure 4. Of course, for duplex
reservations A.2 would have to issue a similar reservation with terminating address B.2.

Desired QoS path between
A.2 and B.2 for traffic between
Al and B.1

Reservation message sent from B.2 with
terniinating address = A2

: : __n_petB
N e

e B2 B.lI

net A
JAN

Figure 4: Setting up reservations along a subset of the path using terminating addresses

5 (Generalized Filters

In RSVP, filters are expected to be well specified, i.e. the fields are supposed to be well defined.
The current standard defines a 5 tuple consisting of 1P source and destination addresses, 1P
protocol type and upper level protocol ports as shown in Figure 5. Currently the upper level
protocols are restricted to TCP and UDP. Recently its been proposed [Boy97] to enhance
filter specification to allow CIDR style IP source and destination addresses. However, this

proposal does not allow for wildcarding of all the fields in the filter specification, specifically,
the protocol type and the upper level source and destination ports are not wildcarded. We
instead propose the generalized filter shown in Figure 5. As can be seen the generalized
filter consists of a value part and a mask part. The mask part acts as a bitmask specifying
which bits of the value part are significant. There are a number of advantages of such
generalized filters. First, we can aggregate state since a single generalized filter can replace
many individual per flow reservations. Second, we can use generalized filters for network
management and capacity allocation by setting up QoS pipes and Virtual Private Networks
(VPNs) between different sites. Third, it allows reservations to be used without end system
participation. Forth, it allows for a single flexible style of reservation to replace the three
different styles of reservation in RSVP as discussed in Section 6.

Cogrventionat Filter

ey PG IP ponte Spovt Ppes

Chmeraifrod e
Vadne © Mask

\ R

P Sre 8 @I grese Spert | Dpart

e 0 datd

Figure 5: Generalized Filters

5.1 Generalized Filters and Conflict Resolution - a Geometric Per-
spective

While generalized filters provide a scaling mechanism for aggregating state information re-
garding a large number of flows they can also lead to ambiguities in packet classification.
This occurs because with generalized filters it is is a possible that a packet might get mapped
to multiple filters each with a different QoS leading to a conflict in packet classification.

To illustrate this problem consider the case of simple two tuple filters consisting of source
and destination 1Pv4 address prefixes. The two fields can either be fully specified or wild-
carded, or can be partially wildcarded in standard prefix format. Let z.* denote the prefix
corresponding to network x and let y.* denote the prefix of network y. Consider the two
filters < (z.*,%), QoS >, and < (,y.*),QoS2 >. The first filter assigns all packets from
source network z a QoS equal to QoS1 while the second filter assigns all packets destined to
network y a QoS equal to QoS2. In case the router receives a packet sourced from net 2 and
destined to net y we have a conflict since the packet matches both filters. In case of conflict
which filter should be selected ?

Some of the possibilities are:

a) Assign the first match in the filter database. So for example, if < (z.#,%), QoS1 >
is the first match for the incoming packet then the packet gets QoSl. On the other

8

hand, if < (%,y.%), Q052 > is matched first then the packet gets QoS2. This approach
is commonly taken to resolve conflicts in firewalls where incoming packets are matched
against filters specified in access control lists and the first access control list the packet
matches determines if the packet crosses the firewall or is dropped.

b) Assign priorities to different filters so that in case of multiple matches the highest
priority filter is returned. However, this scheme turns out to be identical to scheme a)
if we sort the filters in the order of priority.

¢) Rather than assigning priorities to filters, assign priorities to fields so that in case
of multiple matches the filter with the most specific matching field with the highest
priority is selected. For example, if the source address is given higher priority on
matches than the destination address, then for packets going from network z to network
y the filter < (z.%,%), QoS1 > is a better match than < (%, y.%), @oS2 > since matching
the source field is more important that matching the destination field and the source
field is a better match with the first filter (z.%) than with the second filter (*).

However, these types of implicit conflict resolution schemes while simple to implement.
suffer from some serious drawbacks. For example, in case a}, depending on whether <
(z.#, %), QoS1 > is listed first or < (*,y.x), Q052 > is listed first packets from net z to net
y will be classified as having QoS1 or QoS2. Thus this scheme imposes an arbitrariness on
the conflict resolution.

Similarly with c) there is no way we can assign QoS52 to packets from net z to net y with
the filters described above. This scheme substitutes arbitrariness with inflexibility in filter
matching..

At this point we make a crucial observation. We note that if we introduce the filter
< (., y.%), QoSz > where QoSz is the QoS level we wish to assign to packets from net 2 to
net y and if we resolve filters based on most specific match on all fields, then we eliminate
the conflict with respect to packets from net = to net y. This is because now these packets
will match < (z.%,y.%),QoSz > rather than < (z.%,%),QoS1 > or < (#,y.%), @052 >. In
short, we have resolved the filter conflict by the addition of a new filter which explicitly tells
us the QoS to assign in the region of conflict.

The question arises whether given a set of filters it is possible to resolve conflicts by the
addition of new filters in a simple, computationally efficient way. We believe the answer is
yes. Our solution is motivated and better understood by a geometric transformation of the
filter matching problem.

To obtain this geometric transform we note that we can graphically view the two tuple
filter described earlier as a region of a discrete 2 dimensional space bounded by 0 and 2% on
either axis.

Incoming packets correspond to points in this space. The problem of matching packets
to filters is transformed into the geometric problem of matching points to regions within this
discrete 2D space.

To illustrate this mapping between filters and geometric spaces let us consider sorme
simple 2-tuple filters as shown in Figure 6. A fully specified filter is a point, shown in figure

9

32
.
2 Filter = X1, Y1
£ .13’ Ar Filter=X2.*, Y2
el -
: T oe— Filter = X3, Y3.%
=
Yo ™ Filter = X4.%, Y4.*
0 TP Src Address 732
X — 5 -

Figure 6: Geometric representation of two tuple Filters. The two fields are the IPv4 source
and destination addresses

as filter A with 1P source address X1, and IP destination address Y1. A filter well specified
in one field and wildcarded in another field is a line. As shown in the example, filters B and
C fall into this category. For B the IP source address is partially wildcarded (X2.*) while the
IP destination address is fully specified (Y2). A filter wildcarded in both fields is a rectangle
like filter D in which both the source and destination 1P addresses are partially wildcarded.

Two filters can overlap with each other in two different ways. One is a full overlap in
which every point of one filters is contained in the other. As shown in Figure 7 filter C is
completely contained in filter D. We refer to C as the inner filter and D as the outer filter.

The other type of overlap is a partial overlap also shown in Figure 7 with filters A and
B. Note that in case of partial overlap neither filter is fully contained within the other.

32
27 Partial overlap between
g ["] Aand B
[3| | |
- -
é > Full fap b
Y | Full overiap between
& {:::] T CavdD
nl €
0 IPScc Address 32
X 2

Figure 7: Overlapping Filters - Partial and Full Overlap

We note that twe fillers conflict if and only if they have a partial overlap. In case of full
overlap a point which falls within the inner filter is matched to the inner filter rather than
the outer filter since the inner filter is more tightly specified in all dimensions. In case of
partial overlap we have a conflicting region which is the area which is common to both filters.
A point within this area cannot be unambiguously matched to either filter since neither is
better specified than the other in both axes.

Comnsider Figure 8 which shows two filters A and B partially overlapping. Note that if an
incoming packet maps to region al or bl there is no conflict as to which filter it corresponds
to, but if the packet maps to region a2 which is the region of overlap then we cannot resolve

if the packet belongs to filter A or B.

We make two important observations at this time.

10

Partial overlap between
A and I in region a2,

[3
[

[1e]

p " Packets in this region in
8 conflict
3 o] s
g S A Yackets jn this region beloang
< a2 k1|83 to B
7
Y& al |
=] =1 Packets in this region
A belongo A

=]

IP Src Address 232

X m—_—

Figure 8: Conflicts caused by partial overlap

o If each field of the filter is a prefix, conflicts can only be of the categories shown
in Figure 9A. In particular it is not possible to have conflicts of the type shown in
Figure 9B. These types of conflicts are only possible in case the fields are arbitrary
ranges rather than prefixes.

¢ By the addition of a new filter which covers the conflicting region we can eliminate
conflict between two conflicting filters. For example, in Figure 8, if we add a new filter
covering the region al then we resolve the conflict between filters A and B. figure 6.

n Regions of conflict -
2] 2
oA 3__ ==
= 5
. 2
3 L1 2 ' |
vE Ve
0 IPSrcAddress 32 0 IPSrcAddress 32
X—_— - b -
Figure A- Overlaps possible Figure B- Overlaps not
with generalized filters possible with gencralized filters

Figure 9: Types of conflicts possible and not possible with generalized prefix wildcarded
filters

Based on this geometric view of filter conflict detection, in Appendix A we describe
a simple algorithm which when given a new filter checks to see if it conflicts with any of
the existing filters and if so, returns the region of conflict. We first present the algorithm
for the simple 2 tuple filter conflict detection problem and show how it can be extended to
n tuple filters. We believe this conflict detection scheme is optimal in the sense that it is
not possible to detect and resolve all the possible conflicts generated by the addition of a
new filter in fewer steps. With this algorithm each time a router receives a reservation with
a generalized filter it can quickly check to see if the new filter conflicts with any existing
filter or not. The simplest way of handling conflicts would be to send back an error message
containing the region of conflict. Note that if the router now receives the original filter and
a new filter corresponding to the region of conflict the conflict is effectively removed. Of

11

course we assume that only authorized users like network managers or administrators will
be allowed to initiate reservations with wildcarded generalized filters while end users will be
restricted to fully specified filters.

6 Eliminating Different Styles of Reservations

Currently when a receiver uses RSVP to make a multicast reservation the receiver needs
to specify not only the class of service and its associated parameters (QoS), but also a
style of reservation which determines which set of senders are associated with the specified
reservation. As mentioned earlier RSVP supports three styles of reservations:

o Wildeard Filter(WF) in which the QoS specified is used for all senders.

o Shared Explicit(SE) in which the QoS specified is used for the explicitly enumerated
set of senders and

o Fized Filter(FF) in which each sender is associated with a separate reservation. This
is the only style for unicast reservations.

These different styles of reservation lead to a lot of implementation complexity in RSVP
and also pose problems in merging heterogeneous resource requests. How does one merge
WF filters with SE or FF 7 How does one merge two different SE filters 7 These questions are
not answered by the current RSVP design - they simply cause an error message to flow back
towards the receivers.

We propose instead a single flexible style of reservation to replace the above three. This is
done using the generalized filters described earlier. Basically by masking the source address
in the generalized filter to the desired extent we can recreate RSVP’s styles of reservation.
If the source address field in the filter is fully wildcarded, for example, we would get a
reservation corresponding to the wildcard style of reservation. If the source is fully specified
we would get a reservation corresponding to the fixed filter reservation. And if the source is
partially wildcarded we would get an SE style reservation. For example, if the source address
in the generalized filter is wildcarded to correspond to a network then a reservation is made
for all sources from that network,

7 Label Switching

Tag switching [ea86d] [ea96a] or ARIS [Wou97] or Label switching [Vis97] schemes have
recently generated a great deal of interest. This concept was first proposed as threaded
indices [CV95]. Label switching allows use to replace variable length prefix lookups with
fixed size label lookups. This is also used in Cell switching or 1P switching to map 1P flows to
ATM VCs [ea96c]. However, Ipsilon’s solution does not currently permit QoS specification for
a flow. Thus in an IP switched network we would have to run IFMP to map 1P flows to ATM

12

F4

	A Simplified Reservation and State Setup Protocol
	Recommended Citation
	A Simplified Reservation and State Setup Protocol

	tmp.1439928365.pdf.QhJud

