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ABSTRACT OF THE THESIS 

 

 

A Third Order Modulator and Digital Filter for Neural Signals 

by 

Grant Taylor Williams 

Master of Science in Electrical Engineering 

Washington University in St. Louis, 2009 

Research Advisor:  Professor Robert E. Morley, Jr. 

 

 

A third order delta-sigma modulator and associated low-pass digital filter is designed for 

an analog to digital converter (ADC) for sensing bioelectric phenomena. The third 

order noise shaping reduces the quantization noise in the baseband and the digital low-

pass filter greatly attenuates the out of band quantization noise, increasing the effective 

number of bits. As part of a neural signal acquisition system designed by The 

BrainScope Company to capture Electro-Encephalogram (EEG) and Automated 

Brainstem Response (ABR) signals, this paper describes the design of a third order 

Delta-Sigma modulator which meets or exceeds the low noise specifications mandated 

by previous BrainScope products. The third order cascaded delta-sigma modulator 

attains a resolution of 12.3 bits in a signal bandwidth of 3kHz and 14.9 bits in a signal 

bandwidth of 100Hz, operating from a +/- 1.76V reference with a 250kHz clock. 
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Chapter 1 

 

Introduction 

 

In processor design Moore’s law states the number of transistors on a chip will double 

every 18 months; in quantifying performance, Intel’s new standard of measurement is 

the performance per watt; in efficiency, it is furthering research into parallel 

architectures: one common fundamental trend in providing engineering solutions is 

making products smaller, cheaper, faster, and easier to use. In the field of bioelectric 

signal processing, the drive to incorporate similar qualities is very strong (Harrison and 

Charles 2003). 

 

1.1 Basics of Bioelectric Signal Acquisition 

 

Electric potentials have been known to exist in the living brain since the 1880s, but it 

wasn’t until 1929 when a report by Berger indicated that fluctuating potentials could be 

detected from the scalp in a noninvasive manner (Kreezer 1938). Berger called this 

method of signal acquisition the electro-encephalogram (EEG).  At the time, the best 

method of signal acquisition was to use a rudimentary type of electrode, such as a 

needle or silver coil sponge, then amplify the signal with tube amplifiers (Siegel 2002) 

and display the results with an ink-writing oscillograph (Kreezer 1938). Figure 1.1 below 

presents the apparatus required to record the EEG and Figure 1.2 presents a list of 

different types of electrodes. 
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Figure 1.1  EEG Recording Apparatus, Circa 1930s (Kreezer 1938) 

  

 
Figure 1.2  Common 1930s Electrodes for EEG Signal Acquisition (Kreezer 1938) 

The chief phenomena of the EEG signals are presented in Figure 1.3 below. Alpha 

rhythms have a narrow bandwidth around 10Hz and beta rhythms have a narrow 

bandwidth around 25Hz. The alpha rhythm bandwidth is why we model the EEG as a 

10Hz sine wave (Kreezer 1938).  
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Figure 1.3  Measurable EEG Rhythms (Kreezer 1938)  

 

Although researchers still use the silver-silver chloride electrode for signal acquisition, 

the later stages of signal processing that have changed drastically. The most significant 

change to the aforementioned acquisition chain is the ability to digitize the analog signal. 

Previous systems relied on analog readouts, but with current research relying so heavily 

on computers, analog to digital conversion is an important part of the acquisition chain. 

According to Harrison and Charles, there is a need among scientists and clinicians for 

low-noise biosignal electronics (Harrison and Charles 2003). They claim that with the 

advent of fully implantable multi-electrode arrays, there is an established need for fully 

integrated signal processing circuits (Harrison and Charles 2003). A general search of 

common IEEE publications such as Solid-State circuits or Transactions on Biomedical 

Engineering returns hundreds of low-noise neural recording Very Large Scale 

Integration (VLSI) designs. Figure 1.4 below presents a modern neural signal acquisition 

system. Step 1 is the acquisition of neural signals via the electrode.  Step 2 is the 

chopper amplification method discussed in Chapter 2 to minimize the deleterious 

effects of 1/f noise, which cannot be removed entirely. Step 3 and step 4 are the analog 

to digital converter and digital filter/decimation stages. 
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Figure 1.4  Modern Neural Signal Acquisition System 

 

In EEG acquisition, the typical recorded signal amplitude is between 1µV and 5µV in 

the frequency band of interest between 0.5Hz and 100Hz (Harrison and Charles 2003; 

Kreezer 1938). At these low frequencies, CMOS amplifiers inherently produce flicker or 

(1/f) noise that swamps out the signal (Hanasusanto 2007). At high frequencies the 

flicker noise falls off rapidly into the white Gaussian noise floor.  

 

In the summer of 2008, we performed a feasibility study to determine the plausibility of 

building an integrated circuit (IC) version of a previously designed discrete component 

EEG and ABR signal acquisition system (BrainScope 2008).  The focus was to alleviate 

the problems caused by flicker noise using a chopper amplifier that modulates the low 

frequency signals out of the low frequency – high 1/f noise level band into a higher 

frequency band where signal amplification occurs. The final product of the summer 

feasibility study was a computer simulation of the entire process chain – from EEG 

signal simulation through chopper amplification, to Analog to Digital Conversion and 

digital filtering. 

 

In an effort to provide BrainScope with a suitable Analog to Digital Converter (ADC) 

tailored specifically to the needs of EEG and ABR signal acquisition, I present a 3rd 

order modulator operating at 250kHz that can be placed behind a chopper amplifier in a 

neural signal acquisition system and deliver 12.3 bits in a signal bandwidth of 3kHz and 

14.9 bits in a signal bandwidth of 100Hz. 
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1.2 Organization of This Thesis 

 

This thesis is organized as follows. In Chapter 2, we discuss the theoretical calculations 

that determine the noise performance in a signal acquisition system and how they 

impact the specifications of the analog to digital converter. In Chapter 3, with the ADC 

performance specified, system simulation results are presented and the key tradeoff of 

modulator order and sampling rate is investigated. Chapter 4 presents two different 

hardware implementations and the corresponding measured results. In Chapter 5, an 

FPGA based digital filter and decimator is presented. Finally, in Chapter 6, the results of 

the design are summarized and the possibility of future work is presented. 
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Chapter 2 

  

Theoretical Calculations 

 

This chapter presents the background information that serves as the foundation for the 

bulk of the research. We first review the feasibility study of a neural signal acquisition 

system simulated during the summer of 2008. Some stages of the acquisition system are 

discussed in detail as they relate to the research either because the stage is a source of 

noise or because the stage establishes the noise level in the system.  This chapter is 

significant because the analog to digital converter which we designed and is discussed in 

later chapters, is fully specified by the signal and noise in the preceding stages of the 

neural signal acquisition system. 

 

2.1 Background 

 

During the summer of 2008, Dr. Morley, Dr. Engel, and I were contracted by 

BrainScope®, Inc. to explore the feasibility of a multi-channel ASIC (Application 

Specific Integrated Circuit) intended to amplify, filter, and digitize both EEG and ABR 

signals.  This section is the result of several months of work in the areas of analysis, 

modeling, and high-level simulation. The following paragraphs will summarize the 

specific results of the study which set the foundation for the oversampled ADC.   

 

Due to Dr. Engel’s extensive experience with the AMIS C5N process, CMOS 

technology was chosen over bipolar technology. CMOS technologies allow dense digital 
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circuits to be integrated on the same die as the desired analog circuitry. It is much less 

expensive to fabricate CMOS circuits. Moreover, high resolution analog-to-digital 

conversion is best achieved using CMOS. Unfortunately, relative to bipolar devices, 

MOS devices exhibit excessive 1/f noise characteristics (Gosselin, et al. 2004).  This is 

unfortunate given the low-frequency signal bandwidth of the proposed design. As I will 

demonstrate, by using appropriate circuit techniques, any inherent limitations resulting 

from the choice of a CMOS technology can be effectively overcome. 

 

The following specifications for the ASIC, in Table 2.1, were mandated by 

BrainScope®. Bandwidth, signal level, and Signal to Noise Ratio (SNR) are presented. 

 
Table 2.1  ASIC Specifications from BrainScope 

Signal Type Bandwidth (Hz) Signal Level SNR (dB) 

EEG 0.5 Hz – 50 Hz 10 µVp-p 20 dB 

ABR 100 Hz – 3 kHz 1 µVp-p 0 dB 

 

2.2 Signal Modeling 

 

Two models for the EEG signal were used throughout this work. The simple signal is a 

10 Hz sine wave, with peak amplitude of 5 µV, representing the minimal signal level. A 

more realistic signal is generated by passing white noise through a 7th-order ARMA 

(Auto-Regressive Moving Average) filter (Janeczko and Lopes 2000). The output 

waveform is then low-pass filtered and used to simulate alpha rhythms. A typical EEG 

waveform (time-domain) is illustrated in Figure 2.1. The associated frequency-domain 

spectrum is presented in Figure 2.2. Note the dominant spectral peak at approximately 

10 Hz. This peak is the motivation for the simple model. 
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Figure 2.1  Representative alpha rhythm EEG signal used in simulation 

 

 

  

 
Figure 2.2  Spectrum of EEG signal presented in Figure 2.1 

 

The realistic ABR signal was modeled using Bessel functions (Nunez 1973) as illustrated 

in Figure 2.3, below.   
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Figure 2.3  Realistic ABR signal used in simulations 

2.3 Chopper Amplifier 

 

As explained earlier, the very poor 1/f noise characteristics of the FETs in a CMOS 

process influence the design of the pre-amplifier to limit the noise delivered to the 

ADC. The technique most effective in suppressing low-frequency noise for this 

application is chopper stabilization (CHS) (Temes and Enz 1996).  The chopper 

stabilization technique applies modulation to translate the signal to a higher frequency 

where there is less 1/f amplifier noise and then demodulate it back to baseband after 

amplification.  For simplicity, the modulation is performed using a square-wave carrier. 

After chopping/modulating, the signal is translated to odd harmonic frequencies of the 

chopping/modulating signal.  After amplification, the signal is demodulated using the 

same square-wave carrier that was used for the initial modulation.  While the input 

signal is modulated, amplified, and then demodulated, the input-referred CMOS 

amplifier noise and offset voltages are modulated only once, limiting the total noise at 

the output of the amplifier and the input of the ADC. Figure 2.4 below presents a 15Hz 

sine wave after a chopping by a 16kHz square wave. The signal is transposed from 

15Hz to 16kHz +/- 15Hz where the 1/f noise is much smaller. 
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Figure 2.4  A 15Hz Sinusoid, Chopped by a 16kHz Square Wave 

 

The purpose of this thesis is to develop a continuous time modulator with low pass 

digital filter that meets or exceeds the specifications of the current BrainScope design. 

In Figure 2.5, the input-referred noise characteristics (red solid line) of the Linear 

Technologies’ LTC1127 instrumentation amplifier used in current BrainScope® designs 

are compared with those of a pre-amplifier that one is able to design using the AMIS 

C5N process (blue dotted line) without the use of chopper stabilization.   
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Figure 2.5  1/f noise comparison of current BrainScope design and AMIS C5N CMOS process 

without chopping 

 

The 1/f noise of a preamplifier in the C5N process is very large, outlined as the 

difference between blue and red in the ‘A’ region.  One can easily see that the integrated 

noise (area under the curve) for the C5N preamplifier is much larger than that of the 

LTC1127.  What chopper stabilization effectively does is allow one to replace the total 

integrated 1/f noise in the baseband (0.5 Hz – 100 Hz) with the total integrated 1/f 

noise in a narrow band near the chopper frequency of 16kHz. The 1/f noise in region 

‘B’ is much less than in region ‘A’.   

 

The noise performance (total integrated noise, input-referred) in EEG mode 

(bandwidth of 0.5 Hz to 100 Hz) is summarized in Table 2.2 while the noise 

performance in ABR (bandwidth of 100 Hz to 3kHz) is summarized in Table 2.3 (Engel 

2008). 
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Table 2.2  Summary of Noise Performance for EEG signals 

 LTC 
Our design without 

CHS 

Our design with 

CHS 

1/f 184 nV 7.3 µV 0.251 µV 

Thermal 200 nV 0.149 µV 0.149 µV 

Total 272 nV 7.3 µV 0.291 µV 

 

 
Table 2.3  Summary of Noise Performance for ABR signals 

 LTC 
Our design without 

CHS 

Our design with 

CHS 

1/f 148 nV 7.3 µV 1.4 µV 

Thermal 1.1 µV 0.814 µV 0.814 µV 

Total 1.1 µV 7.3 µV 1.7 µV 

 

 

The goal is to ensure at least a 20 dB signal-to-noise ratio for the lowest amplitude EEG 

signals (5µV) at the output of the amplifier and input to the ADC.  Using the simple 

model for the EEG signal (a 10 Hz sine wave), this amplitude corresponds to an RMS 

level of 3.5 µV.  Given the above noise characteristics (291µV) and the 20dB SNR 

specification, 3.5µV results in 22dB of SNR. For ABR signals, where the RMS value is 

as small as 350 nV, the “one-shot” SNR is actually negative (-14 dB). The negative SNR 

is acceptable, since ABR signal recognition is accomplished through the averaging of 

hundreds to thousands of frames, improving the SNR to near 0 dB (Engel 2008). 

Averaging improves the SNR because ABR is a repetitive signal buried in uncorrelated 

noise. Averaging the uncorrelated noise reduces it relative to the correlated ABR signal. 

 

The predicted noise performance of the proposed design is based on some assumptions 

but going into them is not within the scope of this thesis (Engel 2008). Appendix A 
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presents the detailed account of the assumptions. The results above in Tables 2.2 and 

2.3 represent worst-case values and somewhat better performance is possible. 

 

2.4 Delta-Sigma Modulator 

 

The most appropriate type of ADC for use in applications requiring low output sample 

rates but very high resolution are delta-sigma over-sampling converters.  This style of 

converter trades off accuracy in time for accuracy in amplitude and makes use of noise 

shaping (Allen and Holberg 2003).  The guiding design equation for delta-sigma 

converters is 

 

ܴܦ ൌ ටଷைௌோమಽశభ

ଶమಽ ሺ2ܮ  1ሻ (2.1) 

where DR is the achievable dynamic range of the ADC, OSR is the oversampling ratio, 

and L is the order of the modulator.  Once the achievable dynamic range is computed, 

then the effective number of bits (ENOB) for resolution purposes may be calculated 

using 

 

ܤܱܰܧ ൌ
୪୭ቀವೃ

√య
ቁ

୪୭ሺଶሻ  0.5  (2.2) 

 

 

We investigated and simulated modulators of different order and decided the 3rd order 

modulator operating at a sampling frequency of 256 kHz would satisfy the requirements 

mandated by BrainScope. Little additional area is required to implement a 3rd order 

modulator and the sampling frequency required is not as high as when a 2nd order 

modulator is used.  The third integrator is generally much smaller than the integrators 

needed to realize the 2nd order modulator (Engel 2008).  
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For ABR signals where the bandwidth of interest is 3 kHz, the Nyquist sampling rate is 

6 kHz.  If the modulator operates at 256 kHz, the OSR is 43.  For a 3rd order 

modulator, from (2.1) the resulting DR is 95 decibels and from (2.2) the ENOB is 15.4 

bits. For EEG signals (where the bandwidth of interest is 100 Hz) the ENOB is 32.5 

bits; however, the performance in reality will be determined by the analog characteristics 

(noise, finite gain, finite bandwidth) of amplifiers used in the modulator. Even for EEG 

signals, the achievable ENOB is likely to be on the order of 15 or 16 bits (Engel 2008).  

 

For EEG signals, it is predicted that the total integrated input-referred noise is roughly 

300 nV.  After applying an effective gain of 175 the noise level at the input to the 

modulator is 50 µV. For ABR signals, the predicted total integrated input-referred noise 

is 1.7 µV. After the effective gain of 175, the noise level at the input to the modulator is 

300 µV. Table 2.4 below summarizes the noise level present at the input to the ADC. 

 

 

Table 2.4  Predicted Noise Level at the Input of Analog to Digital Converter 

Fs (kHz) Noise BW 

(Hz) 

Total Integrated Noise (VRMS) ENOB 

(Bits) 

256 kHz 3 kHz 300 µV 11.23 

256 kHz 100 Hz 50 µV 13.8 
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One way of implementing higher-order modulators is to cascade multiple lower-order 

stages in such a way that each stage processes the quantization noise of the previous 

stage (Allen and Holberg 2003). In cascade modulators, outputs of the individual stages 

go to digital error cancellation circuitry where the quantization noise of previous stages 

is attenuated and the quantization noise of the remaining stage is high pass filtered. We 

selected a second-order stage followed by a first-order stage because it is less sensitive 

to circuit imperfections than most other cascade structures (Wooley and Rabii 1997). 
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Chapter 3 

  

System Simulation 

 

This chapter presents the background information that serves as the foundation for the 

bulk of the research. We first review the feasibility study of a neural signal acquisition 

system simulated during the summer of 2008. Some stages of the acquisition system are 

discussed in detail as they relate to the research either because the stage is a source of 

noise or because the stage establishes the noise level in the system.  This chapter is 

significant because the analog to digital converter which we designed and is discussed in 

later chapters, is fully specified by the signal and noise in the preceding stages of the 

neural signal acquisition system. 

 

3.1 Mathematical Analysis of Proposed 
Architecture 

 

Once the analysis had determined the use of an oversampled ADC, we decided to begin 

with a design by Rabii and Wooley that maintained large full-scale input range while 

avoiding signal clipping at internal nodes. The Rabii and Wooley publication also 

presented a method for CMOS implementation which would be useful for future 

extensions of this research project (Wooley and Rabii 1997). Figure 3.1 below shows the 

signal flow diagram of the system.  
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Figure 3.1  Rabii and Wooley Sigma Delta Modulator Architecture (Wooley and Rabii 1997) 

 

We performed an analysis of the 1997 Rabii and Wooley architecture and determined 

that in order to solve for the third order transfer function, a transformation to a similar 

architecture presented in a 1994 paper by Williams and Wooley was necessary. Below, 

Figure 3.2 shows the 2-1 architecture from the 1994 publication.  

 

Notice how the signal flow diagram from 1994 is nearly identical to the 1997 diagram. 

According to Williams and Wooley, an equivalent transformation is featured in Figure 

3.3 below. 
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Figure 3.2  Williams and Wooley, 1994 2-1 Architecture Implementation [Woo:94] 

 

  

 
Figure 3.3  Williams and Wooley, 1994 2-1 Architecture [Woo:94] 

 

Using the following equations, featured in Equation 3.1 below, the appropriate 

transformation can be made to arrive at the transfer function in Equation 3.2. 
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The transfer function features the most important characteristic of the 2-1 architecture: 

the ability to cancel out the first stage error term by appropriately selecting ‘a’ and 

combining the error cancelation filters H1 and H2 presented in Equation 3.3 below. 

 

 

 

(3.3) 

 

 

According to the 1997 Rabii and Wooley publication, the H1 transfer function is simply 

a delay, suggesting that ‘a’ = 0. G1 and G2 are 0.5973 and 1.08, respectively, and beta is 

0.25.   
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3.2 Matlab Analysis of Transfer Function 

 

The transfer function derived in the previous section is plotted in Figure 3.4 below.  

The blue trace is filtered 2nd order response, the green trace is the filtered 1st order 

response, and the red trace is the resulting third order response, generated by the 

subtraction of the 1st order from the 2nd order. 

 

 
Figure 3.4  Matlab Transfer Function of  1997 Rabii and Wooley ADC – Blue is filtered 2nd order, 

green is filtered 1st order, red is resulting 3rd order 

 

 

 

3.3 LabVIEW Simulation 

 

With the mathematical foundation in place, the simulation focus shifted to LabVIEW.  

Figure 3.5 below shows the virtual instrument (VI) that implements the third order 

modulator of Figure 3.1 above. This VI is referred to as an ideal VI because it does not 
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account for analog noise and instead presents the results of shaping quantization noise 

only. Later, this VI will be modified to accept analog noise for more accurate 

simulations. 

 

 

 
Figure 3.5  Rabii and Wooley Virtual Instrument programmed in LabVIEW 

 

In order to evaluate the results of the system, a test VI, shown in Figure 3.6 below, was 

created which passes in the simple EEG signal as an input, varies the phase of the 

sinusoid (such that the finite state machine does not put out the same results each time) 

and displays the results. 
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Figure 3.6, Rabii and Wooley Test Virtual Instrument 

 

The virtual instrument provides a general idea of the shaping of quantization noise, 

shown in Figures 3.7 and 3.8 below with the power spectrum and integrated noise of 

the 2nd and 3rd order outputs. The frequency axis is set to the maximum bandwidth of 

interest, 3kHz. The important feature to notice is that the 3rd order performance is 

superior to the 2nd order performance, as in Figure 3.4. 
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Figure 3.7  LabVIEW's Ideal Wooley ADC, Power Spectrum, Signal (100Hz Tone) and Shaped 

Noise 2nd Order Output in Blue, 3rd Order Output in Red 

  

 
Figure 3.8  LabVIEW Ideal Wooley ADC, Integrated Noise, 2nd Order Blue, 3rd Order Red 

 

Table 3.1 below summarizes the results for the ideal (quantization noise only) 2nd and 

3rd order designs. 
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Table 3.1  Rabii and Wooley Ideal LabVIEW Results (Quantization Noise Only) 

Order VNoiseRMS NumBitsFS NoiseBW OSR 

3rd 20.08u 13.8 3kHz 42.6 

2nd 145.2u 10.9 3kHz 42.6 

 

 

3.4 Multisim Simulation 

 

Having demonstrated acceptable performance with the discrete time LabVIEW 

simulations, we turned to circuit level simulation of the modulator. NI Multisim is an 

electronic schematic capture and simulation program which implements the traditional 

SPICE circuit simulation software designed at Berkeley (Multisim 2009).  

 

The Multisim schematic for the 3rd order modulator is presented in Figure 3.9 below. 

For Multisim simulations the input is a sine wave passed into a cascaded 2nd order and 

1st order integrator op-amp represented by part U4, a comparator represented by parts 

U1 and U2, and a digital flip-flop to sample and hold the output, represented by parts 

U5 and U7. 
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Figure 3.9  Multisim Circuit Schematic for Wooley Delta-Sigma Modulator 

 

Saving the output from terminal 1Q of both flip-flops, we used the LabVIEW 

environment to implement the digital error cancellation filter to generate the 3rd order 

signal. The exact same virtual instrument used to implement the digital filter for the 

ideal Rabii and Wooley architecture was used with the Multisim signals.  

 

Figures 3.10 and 3.11, below, show the power spectrum and integrated noise for 2nd 

and 3rd order Multisim associated with the Multisim simulation. The results are 

presented in Table 3.2, following the figures. 
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Figure 3.10  Power Spectrum for Multisim Circuit Schematic Modeled After 1997 Rabii and 

Wooley, 2nd Order in Blue, 3rd Order in Red 

 
Figure 3.11  Integrated Noise for Multisim Circuit Schematic Modeled After 1997 Rabii and 

Wooley, 2nd Order in Blue, 3rd Order in Red 

 
Table 3.2  Multisim 3rd Order Noise Shaping Simulated Results 

Order VNoiseRMS NumBitsFS NoiseBW OSR 

3rd 111 µV 13.9 3kHz 42.6 

3rd 0.170 µV 23.3 100Hz 1250 
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3.5 System Simulation Summary and Results 

 

Presented below in Table 3.3 are the BrainScope requirements and the results of the 

simulations, indicating that the 2-1 architecture simulated by LabVIEW and Multisim is 

in fact acceptable in terms of ENOB. Differences in integrated noise are due to 

different reference voltages. The ENOB is always calculated as full scale ENOB. 

 

Table 3.3   The Performance Requirements Mandated by BrainScope and Results (Fs = 256kHz) 

Fs 

256kHz 

Source Noise BW 

(Hz) 

Total Integrated Noise (VRMS) ENOB

 BrainScope 

Specification 

3 kHz 300 µV 11.23

 BrainScope 

Specification 

100 Hz 50 µV 13.8

 LabVIEW Sim 3kHz 20.08 µV 13.8

 Multisim 

Simulation 

3kHz 111 µV 13.9

 Multisim 

Simulation 

100Hz 0.170 µV 23.3
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Chapter 4 

  

Circuit Design, Fabrication, and Testing 

 

The previous chapter indicated that the circuit simulation of Rabii and Wooley 2-1 

architecture compared well with the mandated BrainScope performance. We then 

developed a hardware based implementation. This chapter presents how we built a 

printed circuit board and measured the performance. 

 

4.1 Bread Board 2nd Order Modulator 

 

Figure 4.1, below, presents the first breadboard implementation we built. Despite being 

on a solderless experiment board featuring an onboard clock, mid-rail generator, and 

strategies that are easily implemented and offer somewhat lower performance than PCB 

implementation. The design is a good starting block for early comparisons to the 

Multisim simulations. Later in this chapter, we will detail how an improved 

implementation reduced the noise. 
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Figure Figure 4.1  Solderless Bread Board Implementation of the Multisim Schematic in Figure 

3.9 

 

 

Due to the nature of the setup, using the NI Elvis as a breadboard interface prevented 

the capture of both flip flop outputs because there was only one available channel with 

which the computer could capture data. The following results are presented for the 2nd 

order performance only. However, since this was the first time we could measure the 

analog noise, later we will present a method which predicts the 3rd order bread board 

performance using the analog noise as a parameter. Below, Figures 4.2 and 4.3 present 

the measured integrated noise and power spectrum for the breadboard modulator 

operating at 250kHz. Table 4.1, after the figures, presents the results.  
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Figure 4.2  Measured Integrated Noise from Breadboard Modulator Operating at 250kHz 

 

 
Figure 4.3  Measured Power Spectrum (with 60Hz and Harmonics) from Breadboard Modulator 

Operating at 250kHz 

Table 4.1  Measured Results from Breadboard Modulator Operating at 250kHz 

Order Fs (Hz) Noise BW (Hz) Total Integrated 

Noise (Volts) 

ENOB

2 250 kHz 3 kHz 800 µV 10.8 Bits

2 250 kHz 100 Hz 30 µV 15.6 Bits

 

Compared to 10.9 bits performance that the ideal LabVIEW VI simulation predicted, 

the 2nd order measured performance of 10.8 bits is close. The following measurement 

is from the same modulator operating at 500kHz. Figures 4.4 and 4.5 below present the 

integrated noise and power spectrum, followed by Table 4.2 with results.  
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Figure 4.4   Measured Integrated Noise from Breadboard Modulator Operating at 500kHz 

 

  

 
Figure 4.5  Measured Power Spectrum (with 60Hz and Harmonics) from Breadboard Modulator 

Operating at 500kHz 

 
 

Table 4.2  Measured Results from Breadboard Modulator Operating at 500kHz 

Order Fs (Hz) Noise BW (Hz) Total Integrated Noise 

(Volts) 

ENOB

2 500 kHz 3 kHz 300 µV 12.6 Bits

2 500 kHz 100 Hz 35 µV * 15.3 Bits

 

* The reason the ENOB did not change when the OSR doubled is because of the flat 

noise floor in that bandwidth of interest. The purpose of oversampling at 500kHz was 
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to confirm this result which implies the dynamic range is White Noise Limited – there is 

no shaping. 

 

As expected, the effective number of bits increased with a doubling of the oversampling 

ratio. According to BrainScope, only 11.23 bit performance is required for a noise 

bandwidth of 3kHz, so for now, a possible solution is to take the 2nd order output 

when the modulator operates at 500kHz. However, the system is not fully characterized. 

The 3rd order output must be compared to the 2nd order output in order to determine 

the proper hardware based implementation. 

4.2 Bread Board 3nd Order Modulator 

Since the 3rd order performance could not even be measured with the breadboard 

configuration and NI Elvis, the above second order performance measurements were 

obtained without any concern to 3rd order performance, meaning the 3rd order op-amp 

terminals were grounded on the first breadboard. We implemented strategies to simulate 

the performance of the 3rd order portion to help determine whether the modulator 

should operate at 250kHz or 500kHz. By measuring the analog noise associated with 

the 2nd order measurements, we were able to modify the ideal Wooley LabVIEW 

virtual instrument simulation, which originally had no analog noise and only measured 

quantization noise, to accept an input referred analog noise parameter and predict the 

performance of 3rd order noise shaping.  The logic is that if I can input a level of noise 

that causes the simulated 2nd order output to perform identically to the measured 2nd 

order performance, then the simulated 3rd order performance would theoretically 

match the measured 3rd order performance.  

 

As a reminder and reference of performance, the 2nd order breadboard results are 

presented again below in Table 4.3. Note that these measured results as they will be 

compared and shown to be the same as the results from the modified LabVIEW 

simulation which includes analog input noise. 
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Table 4.3  Measured Performance of 2nd Order Breadboard Rabii and Wooley ADC 

Order Fs (Hz) Noise BW (Hz) Total Integrated 

Noise (Volts) 

ENOB

2 250 kHz 3 kHz 800 µV 10.8 Bits

2 500 kHz 3 kHz 300 µV 12.6 Bits

2 250 kHz 100 Hz 30 µV 15.6 Bits

2 500 kHz 100 Hz 35 µV 15.3 Bits

 

 

Table 4.4 below presents the results from the LabVIEW simulation with analog input 

noise included. As a reminder, the 2nd order performance has been established by the 

breadboard results and should be confirmed in the simulation below. The 2nd order 

results compare well with the breadboard results, indicating that with the same analog 

noise, the simulated 3rd order performance results are likely to be accurate predictors of 

measured results. 

 
Table 4.4  A Comparison of the 2nd and 3rd Order Performance from LabVIEW Simulation 

Order Fs (kHz) Noise BW 

(Hz) 

Total Integrated 

Noise (Volts) 

ENOB 

(Bits) 

Optimum 

Choice 

2 250 kHz 3 kHz 800 µV 10.9 

3 250 kHz 3 kHz 800 µV 13.1 *

2 250 kHz 100 Hz 30 µV 15.6 

3 250 kHz 100 Hz 30 µV 15.6 *

2 500 kHz 3 kHz 240 µV 12.5 

3 500 kHz 3 kHz 240 µV 12.8 

2 500 kHz 100 Hz 35 µV 15.4 

3 500 kHz 100 Hz 35 µV 15.4 
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The results from the breadboard measurements indicate what is necessary to meet the 

specifications. At 250 kHz, the 2nd order breadboard results indicate extra bits for EEG 

but not enough bits for ABR, so we decided that the ADC should have 3rd order noise 

shaping. With 3rd order shaping, there is no considerable improvement in ENOB when 

sampling at 500 kHz due to a white noise limitation, so we decided that the sampling 

frequency should be 250 kHz. 

4.3 Bread Board Optimization Strategies 

 

The breadboard design we implemented was similar to the Multisim circuit seen earlier 

in this thesis. However, we improved the hardware based solution in the following 

ways. First, we replaced the slow (1.3MHz Gain Bandwidth Product), noisy 

(40nV/Hz1/2) LM324with a faster (4MHz Gain Bandwidth Product), less noisy 

(15nV/Hz1/2) JFET input LF347 op-amp. Second, we replaced the slow LM339 

comparator with a high speed TLC3702 comparator. Finally, the digital flip flops were 

removed and implemented in an FPGA with a ‘return to zero’ scheme that delivers 

uniform charge packets to the integrator to improve linearity. 

 

Figure 4.6 below shows the circuit schematic, modified to reflect the changes above. 

The output of the two comparators feed into an FPGA for digital processing, and the 

output of the FPGA feeds back into the circuit via Q1X/Q1Y/!Q2X/!Q2Y – signals 

used to implement the return to zero procedure.  Also below is Figure 4.7, an 

oscilloscope screen capture of a sequence of uniform charge packets, confirming the 

return to zero method. 
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Figure 4.6  Modified Circuit Schematic, Showing the Return to Zero Architecture 
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Figure Figure 4.8  Rabii and Wooley ADC Configuration Featuring: Breadboard, FPGA, 

National Instruments High Speed Digital I/O Card from Right to Left 

 

 

4.4 Printed Circuit Board Implementation 

 

Having achieved suitable results with the breadboard design, the next step was to move 

to a design that would interface easily with the FPGA and be more compact with lower 

noise. We employed freely available software called PCB Express (PCB 2009) to design 

a printed circuit board 71mm by 41mm. One advantage of the printed circuit board 

over the breadboard is that the design can easily be replicated and extra boards can be 

printed provided by emailing the Gerber file to a factory.  More importantly, we expect 

superior performance due to short PCB traces reducing noise. 
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Figures 4.9 and 4.10 below present the schematic and corresponding layout created 

using the PCB Express software. There are two male hex single inline connectors placed 

to align with two female hex single inline connectors on the FPGA board used to 

provide communication and power between the PCB and FPGA. Also, a BNC 

connector was placed on the modulator PCB to allow connection of the input to the 

modulator. In the layout figure, two layers of the four layer board are designated ground 

and power supply voltage planes. 
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Figure 4.9  Printed Circuit Board Schematic of Rabii and Wooley Continuous Time ADC 
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Figure 4.10  Printed Circuit Board Layout, Corresponding to the Schematic Above 

 

Figure 4.11 below presents the final system configuration including the FPGA board on 

left and the modulator PCB on right, together eliminating the need for a breadboard 

and stand alone power supply. You can see that for the configuration shown below, the 

PCB is designed to connect to the two SIP hex connectors on the FPGA board.  
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Figure 4.11  PCB and FPGA Wooley Modulator 

 

Figures 4.12 and 4.13 below present the integrated noise and power spectrum for the 

printed circuit board for the 2nd order Rabii and Wooley modulator.  Table 4.5 presents 

the measured noise results which indicate that the printed circuit board measures the 

same amount of noise as the breadboard in 3kHz of bandwidth. The breadboard 

measured 300µV and the printed circuit board measured 309µV. 

 

 
Figure 4.12  Measured Integrated Noise for 2nd order PCB Rabii and Wooley Operating at 

500kHz  
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Figure 4.13  Measured Power Spectrum (with 60Hz and harmonics) for 2nd order PCB Rabii and 

Wooley Operating at 500kHz 

 
Table 4.5  Measured Results for 2nd Order PCB Rabii and Wooley Operating at 500kHz 

Order Fs (Hz) Noise BW (Hz) Total Integrated 

Noise (Volts) 

ENOB (Bits)

2 500 kHz 3 kHz 309 µV 11.7 Bits

 

 

 

Below, Figures 4.14 and 4.15 show the integrated noise and power spectrum for a 2nd 

order and error cancelled 3rd order. In this case, the error cancellation was performed 

as a virtual instrument in LabVIEW. For these figures, the modulator operated at 

250kHz. Table 4.6 listing the results follows.  The 3rd order performance is on the 

mark, better than BrainScope’s noise requirement. 
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Figure 4.14  Measured Integrated Noise for PCB Rabii and Wooley ADC 

 

 
Figure 4.15  Measured Power Spectrum (with spurious tones) for PCB Rabii and Wooley ADC 

  
 

Table 4.6  Measured Results for PCB Rabii and Wooley ADC 

Order Fs (Hz) Noise BW (Hz) Total Integrated 

Noise (Volts) 

ENOB (Bits)

2 250 kHz 3 kHz 897 µV 10.1 Bits

3 250 kHz 3 kHz 210 µV 12.2 Bits

2 250 kHz 100 Hz 33 µV 14.9 Bits

3 250 kHz 100 Hz 33 µV 14.9 Bits
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Chapter 5 

  

Digital Filter 

 

In Chapter 4, a hardware based solution was presented demonstrating that both 

breadboard and printed circuit board designs of Rabii and Wooley’s modulator 

performed as well as one another and compared well with the simulated LabVIEW 

ADC. In this chapter, we perform error cancellation in the FPGA. Also, decimation and 

low pass filters are designed and discussed including how to integrate them in the 

FPGA. Finally, results are presented, discussed, and compared to simulations. 

 

5.1 Sample Something 

 

In previous sections, the error cancellation procedure was implemented in LabVIEW as 

a virtual instrument. Below, Equation 5.1 presents how the 2nd order and 1st order 

outputs are combined to create the proper 3rd order output. The correctly combined 

output is H1(z) – H2(z). 

 

 

                                                                                              (5.1) 

 

 

Figures 5.1 and 5.2 below present the integrated noise and power spectrum for the PCB 

Rabii and Wooley ADC with error cancellation on the FPGA. Table 5.1 lists the results. 
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In the 3kHz bandwidth of interest, the noise level is the same as in the previous section 

when H1 and H2 were combined in LabVIEW. However, in the 100Hz bandwidth, the 

performance is not the same, with about a 60µV difference between the two cases. 

Upon closer inspection, the increase in integrated noise around the 60Hz region is 

much larger (15dB) in this measurement compared to previous measurements (6dB). A 

difference of 9dB is 1.5 bits which would make the measured 13.5 bits equal to 15 bits, 

spot on with previous measurements of 14.9 bits. 

 

 

 

 

 

 

Figure 5.1  Measured Integrated Noise for PCB Rabii and Wooley ADC with Error Cancellation 

on FPGA 
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Figure 5.2  Measured Power Spectrum for PCB Rabii and Wooley ADC with Error Cancellation 

on FPGA 

 

 
Table 5.1  Measured Results for PCB Rabii and Wooley ADC with Error Cancellation on FPGA 

Order Fs (Hz) Noise BW (Hz) Total Integrated 

Noise (Volts) 

ENOB (Bits)

3 250 kHz 3 kHz 195 µV 12.3 Bits

3 250 kHz 100 Hz 90 µV 13.5 Bits

 

Due to the constraint of only a few available pins on the FGPA, the error cancelled 

third order output was sent serially to the LabVIEW environment. To facilitate the 

parallel to serial interface in Verilog, a clock operating at 2.5MHz places each shifted bit 

of the output value onto the pin to be captured by LabVIEW. The timing diagram for 

this operation is presented in Figure 5.3 below.  The serialized data consists of Q1, Q2, 

six bits of combined and error cancelled third order output, and two zero values. Six 

bits are enough to represent the finite number of outputs. 
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Figure 5.3  Timing Diagram Showing A Sync Pulse and the Serialized Bit stream 

5.2 Decimation Filter 

 

The decimation and low pass digital filter stage is an important part of the oversampled 

ADC chain. The purpose of this stage is to remove the shaped quantization noise which 

is above the signal bandwidth. The simplest filter for reducing input sampling rate at the 

first stage is the Sinc filter, which corresponds to a moving average or rectangular 

window low pass FIR filter having the length of decimation factor (Tenhuhen et al. 

1990). According to Wooley and Vleugels, for a modulator of order L, a cascade of 

K=L+1 Sinc filters will provide nearly complete attenuation of the aliased quantization 

noise at 4 times the Nyquist rate (Wooley and Vleugels 2002). Following the Sinc filter 

is a standard low pass Finite Impulse Response (FIR) filter, sometimes half-band in 

nature with even coefficients set to zero making the filter easier to implement digitally. 

Half-band filters have a decimation factor of two. There are two distinct filter stages, 

one for ABR and one for EEG. Presented below are the two proposed methods. Figure 
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5.4 below shows the proposed method for ABR and EEG. The Nyquist rate for ABR 

and EEG are 6kHz and 200Hz, respectively. 

 

 

Figure 5.4 The proposed method of filtering and decimation to the Nyquist rates 

 

With the aforementioned information in hand, a sample filter chain is described and 

simulated in LabVIEW with the results presented below. Figures 5.5 through 5.8 

present different stages of the filtering and decimation process. Figure 5.5 presents the 

power spectrum for an unfiltered signal and a Sinc4 filtered signal. Figure 5.6 presents 

the power spectrum for the decimated signal of Figure 5.5. Figure 5.7 presents the 

power spectrum for the FIR filtered signal and Figure 5.8 presents the decimated 

version. 

 

 

Figure 5.5  Unfiltered Power Spectrum in Red and Sinc4 Filtered Power Spectrum in White 
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Figure 5.6  Unfiltered Power Spectrum in Red and Sinc4 Filtered and Decimated Power Spectrum 

in White 

 

 
Figure 5.7  Unfiltered Power Spectrum in Red and Sinc4 Filtered, Decimated, and FIR Filtered 

Power Spectrum in White 

 
Figure 5.8  Unfiltered Power Spectrum in Red and Sinc4 Filtered, Decimated, FIR Filtered, 

Decimated, Power Spectrum in White 
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Chapter 6 

  

Conclusions 

 

Based on the measured experimental results from the printed circuit board, it was 

presented that the neural signal ADC satisfies the requirements set forth by BrainScope 

to deliver 11.2 bits with about 300 µV of noise in 3kHz and 13.8 bits with about 50 µV 

in 100Hz. The PCB described in Chapter 4 delivers 12.2 bits and 210 µV of noise in 

3kHz and 14.9 bits and 33 µV of noise in 100Hz. 

 

6.1 Areas for Future Investigation 

 

In Chapter 5, we showed that the Sinc4 filter followed by FIR filters attenuated the out 

of band quantization noise and prevented aliasing. Future work can be done to 

implement these architectures in the FPGA.  There is also an opportunity to employ the 

use of an available 32 pin header interface on the FPGA that would alleviate the 

problems caused by having too few digital input/output pins. It is evident that the 

future work will continue to employ strategies to minimize noise and miniaturize the 

printed circuit board presented in this paper. The Rabii and Wooley design can be 

scaled down to sub micron CMOS technology and the Verilog can be retargeted from 

the FPGA to a standard cell ASIC library. 
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It was mentioned at one point that BrainScope has to acquire 8 channels of neural data, 

which would require an expansion of the design in the following areas. First, the PCB 

based modulator was designed to capture a single channel and would need to be 

replicated 7 times to be able to acquire 8 signals. This procedure can easily be done 

using the PCB Express software. A 32 pin header matching the FPGA header would be 

created to interface with the FPGA board instead of the two hex connectors. In 

Verilog, the design would have to change as well, replacing the parallel to serial code 

with code that accounts for 8 incoming signals. Strategies should be investigated about 

how to minimize FPGA resource usage (gate count) while expanding to 8 channels of 

DSP. One strategy is to use half-band FIR filters which would halve the number of 

digital multiplies. Tradeoffs should be compared to determine if one FGPA or many 

FPGAs would be required. 

 

 

 

 

 

 

 

 

 

 



 

 

52 

 

 

Appendix A 

  

MOS Noise Performance 

 

The performance assumes a two-stage core amplifier design (with a bandwidth twice 

that of the chopper i.e. 32 kHz) in which the size of the compensation capacitor 

determines both the power consumption and the thermal noise performance of the 

amplifier.  Increasing the size of the compensation capacitor improves thermal noise 

performance.  Use of a larger compensation capacitor; however, increases both the 

power used and area occupied by the core amplifier.  In Table 2.2, a value of 10 pF was 

assumed for the compensation capacitor (two are needed because the core amplifier is 

fully differential).   Use of a larger value (30 or 40 pF) would help improve overall 

performance in both modes to some extent.  The 1/f noise performance was estimated 

under the assumption that no single FET should occupy an area more than about 300 

µM2.  Once again use of larger devices could be used to lower the 1/f noise. 
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Appendix B 

  

Wooley 3rd Order Modulator Noise 
Analysis  
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