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Abstract

With recent advances in wireless communication technology, mobile computing is an increasingly important area
of research. A mobile system is one where independently executing components may migrate through some space
during the course of the computation, and where the pattern of connectivity among the components changes as
they move in and out of proximity, Mobile UNITY is a notation and proof logic for specifying and reasoning about
mobile systems. In this paper it is argued that Mobile UNITY contributes to the modular development of system
specifications because of the declarative fashion in which coordination among components is specified. The packet
forwarding mechanism at the core of the Mobile IP protocol for routing to mobile hosts is taken as an example. A
Mobile UNITY model of packet forwarding and the mobile system in which it must operate is developed. Proofs
of correctness properties, including ireportant real-time properties, are outlined and the role of formal verification
in the development of protocols like Mobile IP is discussed.

1 Introduction

Mobile computing represents a major point of departure from the traditional distributed computing paradigm. The
potentially very large number of independent program units, decoupled computing style, frequent disconnections,
continuous position changes, and location-dependent nature of the behavior and communication patterns present
designers with unprecedented challenges in the areas of modularity and dependability.

Mobile UNITY [11] provides a notation for mobile system components, a coordination language for expressing
interactions among the components, and an associated proof logic. Once expressed in our notation, a system can be
subjected to rigorous formal verification against a set of requirements expressed as temporal properties of executions.
Mobile UNITY is based on the UNITY model of Chandy and Misra [4], with extensions to both the notation and logic
to accommodate specification of and reasoning about mobile programs. Mobile UNITY is designed to accommodate
mobile applications and services that exhibit dynamic reconfiguration.

Perhaps the most basic service that can be provided in the mobile setting is simple packet routing. The Mobile
IP protocol [15] is designed to deliver this service to mobile hosts that change the point at which they are attached
to the Internet. In this paper we give a formal description of Mobile IP at a level of abstraction that exhibits more
detail than our previous work [10]. This allows for specification and verification of several real-time properties upon
which the protocol relies for correct behavior.

Because the protocol serves as a bridge from a location-dependent model of the world to a location-independent
one, it must be expressed and reasoned about using location-dependent abstractions for communication. For instance,
a message sent by a mobile host while it is at one attachment point will have a different effect from one sent at another,
simply because the host is physically connected to a different set of real machines. The basic state transitions allowed
by the model must reflect this reality, and a proof of correctness must make assumptions about the manner in which
components move, because not all patterns of movement will allow for successful delivery of messages by the protocol.
The Mobile UNITY model is well suited to this task.

In Section 2, we give a high-level overview of Mobile IP, including the assumptions about the environment in
which the protocol is designed to operate. In Section 3 we present a Mobile UNITY model of the protocol. The
construction of such a model serves two purposes. First, it illustrates the concepts and notation of Mobile UNITY
on a well-known problem in mobile computing. Second, it formalizes and highlights the assumptions made by the
protocol about patterns of movement and timing constraints among the components. In Section 4 we examine issues
involved in formal verification of correctness of the protocol. Important issues here are what properties constitute
correctness and how the proofs of such properties make assumptions about patterns of movement, message delivery,
and timing constraints. Conclusions and related work are presented in Section 5.



2 Mobile IP

Mobile IP is intended to provide mobile hosts with Internet connectivity when they are away from their home networks.
It allows such nodes to use the same Internet address regardless of their point of attachment to the network, so that
higher layer protocols and applications can continue operation without interruption. Mobile IP presumes the existence
of a fixed infrastructure, namely, the current Internet. Because most Internet routers are unaware of mobility, The
philosophy behind the protocol is to reduce routing of packets directed at mobile hosts to well-understood methods
of routing between fixed nodes.

The abstraction provided by the protocol is the same as for standard IP — each node is given a fixed home address
to which packets can be sent. One of the goals is to keep the bulk of the Internet routing fabric completely unaware of
mobility, to provide backwards compatibility with the existing network and facilitate gradual deployment. The sender
of the packet is similarly unaffected by mobility; such a transmission locks like an ordinary packet. The protocol
describes the collaboration that must take place between the mobility agents and the mobile node to successfully
deliver a packet to the mobile host.

A high-level picture of the Mobile IP protocol is shown in Fig. 1. In what follows, we use the term “subnet” to
refer to a group of nodes that are connected without traversing an IP router, and the term “network” to refer to the
entire Internet routing fabric. In what is expected to be the most common mode of operation, a mobile node (MN)
will contact a foreign agent (FA) upon arriving at a foreign subnet. This foreign agent will forward a registration
request message to the mobile node’s home agent (HA) to inform the home agent of the mobile node’s new location.
The registration message must contain a care-of address (COA), which in this case is the foreign agent’s own address.
The home agent then responds with a registration reply message confirming the registration. If packets arrive on
the home network from some correspondent node (CN), they are intercepted by the home agent, which encapsulates
them inside packets addressed to the foreign agent, and forwards them along. The foreign agent, upon receipt of an
encapsulated packet, looks inside for the home address of any mobile nodes that are currently registered with it. If
it finds one, the foreign agent decapsulates the packet and delivers it to the link-layer address of the mobile node. In

Figure 1: A high-level picture of the Mobile IP protocol.

order to intercept packets, the home agent must be located on the same subnet as the mobile node’s home address. In
order to contact a foreign agent, a mobile node must appear on the same subnet as the foreign agent. The mechanism
used to discover a foreign agent is called an agent advertisement message, which is broadcast to all nodes on the local
subnet. These advertisements are not propagated by IP routers and are therefore confined to the subnet on which
they originate. Thus, the mobile node and foreign agent must be able to communicate at the data link layer.

Once a registration has been processed, it is only valid for a limited lifetime. Therefore, a mobile node must
transmit periodic re-registrations in order to continue receiving service at its current location. These re-registrations
must be sent in a timely manner o avoid interruptions in service.

The next section develops a detailed Mobile UNITY model of Mobile IP. Disconnection and reconnection of the
mobile nodes, as well as transmission of registration messages and packet forwarding, are all captured by the model.
Real-time properties, such as the expiration of registrations, are also captured by the addition of timers to some
components, Many details are not captured, however. For example, link-layer addresses are not a part of the model,
and so abstractions for communication are developed that use only network-layer IP addresses. Also, alternative modes
of Mobile IP operation, such as the use of co-located care-of addresses where the mobile node performs decapsulation
instead of the foreign agent, are not modeled for the sake of simplicity.



3 Model

This section presents a Mobile UNITY system that models Mobile IP at a more detailed level than our previous
work [10]. It consists of a set of programs of type mobile-node, parameterized by subnet and node number; a set
of home-agent and foreign-agent programs, parameterized by subnet number; and a netwerk program that models
standard IP routing. These components are illustrated in Fig. 2. There is assumed to be one location A, for each subnet
s, corresponding to the gray circles in Fig. 2. We assume that if a mobile node is at a location X,, it may communicate
with the mobility agents at the same location without resorting to IP routing. In reality, this might represent a
region or set of locations which are in range of a transmitter or where the mobile node may be “plugged in” to a wired
network. In the model given below, the components will communicate using a novel construct called fransient sharing.

Figure 2: Mobile IP system components.

That is, when a mobile node is at a given location A;, it may communicate with the other components at that location
by writing to a variable which is shared only for the duration of co-location. This is illustrated in Fig. 2 with the
overlapping diamonds. Each such variable ig assumed to hold one IP packet and is given the name ether in each
component, although this is not intended to suggest any specific communication medium.

IP packets in the Mobile IP protocol will be specified as type messege, which is defined to be a 4-tuple of (source,
dest, type, data). For a given message msg, these fields will be referenced as msg.source, msg.dest, msg.type, and
masg.data. The first two fields are the IP source and destination addresses. Each address is assumed to be of the form
(subnet, node). Again, we will reference the fields of an address with the notation address.subnet or address.node.
Here we assume that all addresses are of the same class rather than attempt to model addresses of several classes or
classless addresses as in [7]. This makes for a simpler specification of the fixed IP routing network, which is not our
focus here. We assume that messages with destination address set to (-1, -1) are subnet-directed broadcasts. These
will be used for agent advertisement messages.

Each type of component (network, mobile-node, home-agent, and foreign-agent) will be modeled as one Mobile
UNITY program. Each program comprises a declare, always, initially, and assign gection. The declare section
contains a set of variables that will be used by the program. Each is given a name and a type. The always section
contains constant definitions that may be used for convenience in the remainder of the program or in proofs. The
initizlly section contains a set of state predicates which must be true of the program before execution begins. Finally,
the assign section contains a set of assignment statements. In each section, the symbol ‘]’ is used to separate the
individual elements (declarations, definitions, predicates, or statements).

Each assignment statement is of the form & := & if p, where & is a list of program variables and &€ is a list of
expressions, and p is a state predicate called the guard. When a statement is selected, if the guard is satisfied, the
right-hand side expressions are evaluated in the current state and the resulting values are stored in the left-hand side
variables. The standard UNITY execution model is a nondeterministic, fair interleaved selection of all statements
from the assign section. The Mobile UNITY execution model is slightly different and three new kinds of statements



are added: the resctive statement, the fransaction statement, and the inhibition statement. Each will be described at
the point it is used in the programs below.

The program network is shown in Fig. 3. Conceptually, this program models the Internet routing fabric as well as
the “edge routers” or “gateways” that appear on each subnet. It iHlustrates the strategy used to model communication
between components of the system with its handling of the local variable ether. This is an array of message values,
where each ether[i] denotes the message currently appearing at the gateway interface of subnet i. The Interactions
section, defined later, will declare the sharing relationships between the efher variables of the mobile nodes and the
elements of the array network.ether. In all that follows, we assume that there are Nsubnets subnets which the network
mus$ service.

program network at A

declare
in, out : array[Nsubnets] of queue of message

| ether : array| Nsubnets] of message
assign
{[%:0< 1< Nsubnets
{Transfer messages from link to input queue.}
[inlil, ether[i] := in[i] o ether(i], L
reacts-to etherfi] # L
A ether(i].dest.subnet > 0 A ether[i]. dest.subnet # ¢

{Transmit outgoing packets in each subnet.}
[{ ether[i], out[i] := head(out[i]), tail(out[i]) if out[i] # € A ether[i] = L ;
ether[i] == L)

{Sometimes drop messages.}
Jout[s] := tail{out[i]) if out[i] # e

{[4,7: 0< 1< Nsubnets A 0 < j < Nsubnels ::
{Route packets internally.}
[ out(s], in[é] == out[j] & head(in[i]), tatl(in[i]) if inli] # € A head(in[i]).subnet = j

end
Figure 3: The program nefwork, which performs simple routing of messages based on destinations.

The program network consists of two sets of quantified assignment statements®. The first set is quantified in one
dimension over the subnets. The first statement of this set receives messages from ether[i] and places them on an
input queue for the subnet i. Note that this statement is reactive, meaning that it executes immediately whenever the
predicate following reacts-to is true. This construct is unique to Mobile UNITY; its precise definition and semantics
may be found in [11]. Operationally, this statement can be thought of as an interrupt triggered by the presence of a
valid packet on ether[f]. It executes exactly once because in doing so, it falsifies the trigger condition following reacts-
to. In general, there may be many reactive statements, and each is allowed to execute until quiescence after each
non-reactive statement. This particular reaction appends the packet on ether[i] to the end of the queue in[i] using the
notation in[i] e ether[i]. With the use of the guard ether[i].dest.subnet # i, the statement accepts any message whose
destination subnet is different from the one on which it appears, and the additional guard ether[i].dest.subnet > 0
ensures that only unicast messages are consumed. Because it is a reactive statement, any such message appearing on
ether(i] will immediately be appended to the input queue, and deleted from ether[i]. This abstracts away from several
details of this first hop made by a packet, including the decision to send a packet to the gateway, the discovery of
the address of the gateway by the sender of a message, and the resolution of such an address to a hardware address.
However, we deliberately ignore these details in order to focus attention on issues related to mobility.

The second statement transmits an already-routed message to the appropriate ether(i]. This statement is a

1The three-part notation {op quantified_variables : range :: expression) used throughout the text is defined as follows: The variables
from gquantified_variables take on all possible values permitted by range. If range is missing, the first colon is omitted and the domain of
the variables is restricted by context. Each such instantiation of the variables is substituted in ezpression producing a multiset of values
to which op is applied, yielding the value of the three-part expression. If no instantiation of the variables satisfies range, the value of the
three-part expression is the identity element for op, e.g., irue when op is ¥ or the null element if op is ).



transaction consisting of two parts. Transactions were also introduced with Mobile UNITY, and their precise semantics
may be found in [11]. Operationally, each part of the transaction executes in sequence, and reactive statements are
given a chance fo execute after each part. The first part of this particular transaction writes a value to ether[i], and
the second sets the variable ether([i] to L, a special value representing the condition that no message is currently being
transmitted on the medium connected to the gateway. This models the fact that messages are present on the medium
for only a short period of time, after which it returns to a quiescent state. The reactive statements that consume
messages are given a chance to run between the two parts of the transaction. However, even if a packet appears on
the medium that is not consumed by anyone, it will be discarded by the second part of the transaction.

The next statement models the dropping of packets in transit, which may happen for any number of reasons such
as congestion or network outage. IP offers no guarantee that any particular message will eventually be delivered. The
final statement models the routing performed internal to the network. Note that there is no upper bound on the
time it takes fo eventually deliver a message; message delivery is modeled by nondeterministic, fair interlesving of the
atomic actions present in the program. These assumptions will present several interesting challenges to the verification
of properties of the system as a whole.

The program mobile-node is shown below, parameterized by subnet and node number. It is at this point that we
need to be concerned with message contents, not just the source and destination addresses. The fype field of a message
can be any of Regulor, Advertisement, Request, Reply, or Fncapsulated. The final field, dota, will have a different
interpretation for each message type. For a message of type Regular, it will be an opaque value. For a message of
type Advertisement, it will be a pair of boolean values (homeflag, foreignflag) indicating whether the advertisement
is for a home agent or a foreign agent. If it is a home agent advertisement, the homeflag will be set to true (we will
sometimes use the keyword home in place of #rue), and if it is a foreign agent advertisement, the foreignflag will be
set t0 true (we will sometimes use the keyword foreign in place of frue). For a message of type Request, data will be
a triple (home, foreign, ID), where home represents the home address (s, n) of the mobile node making the request,
foreign represents the care-of address under which the mobile node is requesting to be registered, and ID represents
2 unique identifier assigned to the request that will be used for matching replies to requests. Each address is again a
(subnet, node) pair. For a type Reply the deta field will be a response of the form (home, statusflag, ID), where home
is the home address of the mobile node that initiated the request, statusflag is Ok or Denied, and ID is the identifier
from an earlier request. For a message of type Encapsulated, the dete field will be another message.

On any subnet s we assume that the home agent has address (s, HA) and the foreign agent has address (s, FA).
Thus, the mobility agents for each subnet appear at well-known addresses. In an implementation of the protocol,
the true home agent address would be known to the mobile host and transmitted with its registration request, or
discovered when needed using multicast techniques. Also, the foreign agent would make its address known when it
broadcasts advertisements. The well-known addresses are used to simplify the presentation and keep the message
format simple.

The first statement of mobile-node models movement of the node from one location to another. We assume the
existence of an external function Move which returns the next location of the node. The other components with which
the mobile node may communicate will be dictated by its current location, as specified in the Interactions section
given later.

The modeling of unicast message reception with the first reactive statement is very similar to the way this was
accomplished in program network, except that the mobile-node must match the destination address to its own address.
There is some additional complexity, however, in the way a mobile node receives broadcast messages. The mobile node
is the only program that must do so, since it must receive agent advertisement messages as specified by Mobile IP,
We ignore all other forms of broadcast messages for simplicity, and do not model the forwarding of broadcast packets
to mobile nodes, which is allowed by the Mobile IP specification. The agent advertisement messages are indicated by
a destination address of (-1, -1), and every mobile node present at a location A, must receive such an advertisement.
Therefore, the message cannot be consumed as in the case of a unicast packet, where such consumption models the
fact that the unicast IP address of a host was resolved through the use of mechanisms such as ARP [16] o a unicast
hardware address which is ignored by all recipients except the intended one. Because a broadcast message must be
added to the input queue only once, the boolean gotflag is needed to ensure that the statement modeling such reception
is idempotent without actually overwriting the value of ether, which must be seen and reacted to by other mobile
nodes that may be listening on the same subnet. When the message is removed from efher by the component which
sent the message in the fizst place, gotflag is reset by the third reactive statement,.

Once messages have been added to the input queue, they are processed one at a time in the order received. The
predicates in the always section are very important to this task. For each predicate, there is a corresponding statement



designed to handle messages that match the predicate and to take appropriate action. For instance, the predicate
IsForeignAd is true whenever the first message in the input queue is a foreign advertisement and the mobile node is
not currently registered with the foreign agent that sent the message. Because there is only one foreign agent on each
subnet, receipt of such a message indicates that the mobile node has moved to a new subnet and should generate a new
registration request. The statement that processes the advertisement generates such a request, placing it in ¢ransbuffer
and recording the time at which it did so. The next statement processes messages satisfying IsHomeAd, and generates
a similar de-registration request, which is also placed in trensbuffer. The transmit statement then transmits this value
repeatedly, until an OkReply is processed, which sets the boolean flag confirmed to true. This statement increments
transcount with each transmission, and the guard on the transmit statement ensures that a certain minimum time has
elapsed since the last transmission, modeling the exponential delay increments called for by the specification.

The statement labeled reregister is enabled whenever the local clock indicates that almost Lifetime seconds (specifi-
cally, Lifetime — D seconds) have elapsed since the registration message was first generated. This statement generates
a new request ID and sets the confirmed flag to false, which re-enables transmission of the request message. The con-
stant D reflects assumptions about variabilities in the propagation delay suffered by different request messages as they
are routed through the program network. These assumptions are not explicitly represented in the text of the system
for the sake of simplicity. However, a validation proof could explicitly assume such properties, and indeed this may
be necesgary to prove certain correctness conditions. The next section will return to this issue in more detail.

The next two statements model the sending and receiving of messages from higher layers in the protocol stack.
The reception of such a message is simply modeled by discarding it, and the transmission of messages assumes the
existence of the functions NewDest and NewData, which return the next destination and contents to be transmitted.

The last three statements are intimately involved in the specification of timing constraints discussed earlier. The
first, timer, simply increments the locally declared integer clock by one. In this system, we assume that elock represents
a free-running count, of elapsed seconds. In the Interactions section, this clock will be linked to the clocks of other
components to express the fact that all clocks run at about the same rate. When considered in isolation, however, all
timing constraints of the mobile-node can be expressed in terms of this local clock. For example, the guards on some
statements prohibit their execution until the clock has reached a certain minimum value. This expresses a lower bound
on the time at which the action may execute. The inhibit clauses at the end of the program, in contrast, express
upper bounds on the time at which actions may execute. By inhibiting the timer statement under those conditions
in which these constraints would be violated, the inhibitions force the execution of those statements that falsify the
inhibiting condition. Of course, a separate proof that the timer eventually makes progress is required for complete
correctness. This corresponds to the notion of non-Zenoness in [1].

Once the mobile-node program is understood, the remaining programs for the home-agent and foreign-agent follow
in a straightforward manner from the Mobile IP specification [15]. The code for the program home-agent is shown
below.

Note that the home agent reacts to any message whose destination is in its InterestSet, because it must encapsulate
packets for the mobile nodes that are away from home. The InterestSet models mechanisms such as proxy ARP [17]
and gratuitous ARP [21] for mapping these packets to the hardware address of the home agent.

The home agent must also process request messages from mobile nodes that are away from home. The next
statement accomplishes this and, like most of the remaining statements, in addition to consuming a message from
the input queue it also transmits a message on the ether. As with the programs nefwork and mobile-node, each
transmission is the first part of a two-part transaction, the second phase of which clears the value written. In this case
the home agent consumes a request message and transmits a response, setting the forwarding address in the array
home_forward and recording the time at which the request was processed in home_rtime. In each array there is one
element for each mobile node served by the home agent, the number of which we assume is Nnodes. In addition to
setting up the forwarding address and sending a reply, the mobile node’s home address is added to fnieresiSet so that
packets intended for the mobile node can be intercepted by the home agent.

The next statement is responsible for de-registering the mobile nodes that arrive home. Upon receiving a de-
registration request, the home agent deletes the appropriate home_forward address, removes the mobile node’s address
from its InterestSel, and sends a reply confirming the de-registration. The statement labeled advertise is executed
periodically, sending out a broadcast packet on ether. This advertisement is received by all mobile nodes that are
currently at home, letting them know that they should send a de-registration request if they have not already done
S0.

The statement labeled timeout-fwd is responsible for deleting a mobility binding when Lifetime seconds have
elapsed since the registration was received. The guard on this statement ensures that it will not execute before the



lifetime has expired. Note that unlike the mobile-node program, there are no inhibit statements representing deadlines
by which actions must occur. Thus, the timeout-fwd action may not execute until long after the lifetime has expired,
but fairness constraints require that it will execute eventually. Like the mobile-node program, the home-agent has a
timer statement responsible for incrementing the local clock which will be linked to other clocks in the system by the
Interactions section.

The code for the foreign-agent is shown below. Of all the programs, its message reception takes on the simplest
form, because it may only receive unicast packets directed at its own address.

The foreign agent receives registration requests from mobile nodes, and forwards them on to the appropriate home
agent. Each foreign agent contains state large enough to handle registrations from up to Nwisitors mobile nodes. The
statement process-reguest removes a request message from the input queue and forwards a request to the appropriate
home agent. Also, it allocates a new location 7 in the wisitor_assign array to track which mobile node sent the
request (old locations are re-used in the case of a re-registration). The element wvisitor_statefi] is set to Pending, and
visitor_rtime[t] records the local time at which the request was processed. If all locations in visitor-assign are full of
registrations from other mobile nodes, the agent immediately transmits a Denied response. QOtherwise, the foreign
agent waits for a reply from the home agent, which it then forwards to the mobile node, deleting its record of the
registration if the home agent denied the request, and resetting the visitor_rtime{i] value if the request was successful.
This value is later used to allow the registration to expire, which is carried out by the statement labeled timeout-visit(,
t, n). As was the case with the home agent, the foreign agent must periodically advertise itself on the local network
and maintain a local clock.

The complete system modeling Mobile IP is shown in Fig. 11. It consists of the program definitions, omitted
here to avold repetition, the Components section which declares instances of the programs along with their initial
positions, and the Interactions section which defines how the components share state and expresses the constraints
that the local clocks of each component must run at approximately the same rate.

The wvaricus programs communicate by sharing their ether variables. The interactions given in Fig. 11 specify
that the home agents and foreign agents are connected to the network at all times, while the mobile nodes are only
connecied to the network when they are co-located with some subnet and are then only connected to that subnet’s
ether. Because this sharing is transitive, a mobile node is also connected to that subnet’s foreign agent and home
agent. Transient sharing is defined in ferms of reactive statements and the introduction of auxiliary system variables:

Az~ Bywhenp=
By, Bys g Aag, = Az, Az, Ag
reacts-to 4.z # Ay A p
Azp, = Az
reacts-to —p
Az, Azy,, B.yy = By, By, B.y
reacts-to B.y £ By, . A D
Biyy =By
reacts-to —p

Here auxiliary variables 4.z5 , and B.y, . are introduced which track the last state of each variable, and reactive

statements immediately propagate changes if any difference between the previous and next states occurs. If the com-

ponents are connected (p is true), then changes are propagated to the remote variable as well as the local history

variable. If the components are disconnected (p is false), then changes are propagated only to the local history variable.
Clock synchronization is expressed with the synch construct, which is defined as:

A.clock synch B.clock
when r
within D =
A.clockg, B.clock, := A.clock, B.clock reacts-to r
inhibit A.timer when A.clock - A.clockg > D - (B.clock - B.clocky,)
inhibit B.timer when B.clock - B.clock, > D - {A.elock - A.clockp)

The predicate in the when portion defines a condition that demands the clocks proceed with bounded drift from
that point forward. This does not constrain the actual values of the clocks but only the rate at which they advance.



The within value specifies the drift ratio: in this case, neither clock of any pair will advance more than one per-
cent more than the other. The when predicates given above constrain the clocks of two components whenever one
component of a pair sends a message of any type to the other (dashes are used to represent don’t-care conditions).
This may seem to be action-at-a-distance, because it affects both parties as soon as the packet is transmitted, before
any information could propagate to the receiver. However, it is simply an expression of the constraint that the two
clocks run at about the same rate, a perfectly reasonable and implementable assumption without communication,
assuming of course that the two components are not moving so quickly that relativistic effects play a role. Even
though much stronger guarantees could have been expressed, such as bounded drift from any point in system execu-
tion, the constraints represented here are sufficient to express the guarantees relied on by the protocol. For instance,
the mobile node only requires that its local clock and that of its home agent run at approximately the same rate after
it has sent a request. Note that no timing constraints are expressed for the program nefwork or for the time spent
by a message in the input queues of components, although they could be added using techniques already introduced.
Assumptions about these processing times will be important to the correct functioning of the protocol, and the next
section examines how these assumptions can be expressed during the verification process.

The program as given models many aspects of the Mobile IP protocol, but abstracts away from many others.
Authentication, link-layer identifiers, and other modes of operation (e.g., co-located care-of addresses from [15]) are all
aspects that are not directly modeled by the system. However, the modeling of location-dependent interaction among
components clearly captures many interesting aspects of the various dependencies among components and assumptions
made by the protocol designers.

4 Verification Strategy

It would be naive to claim that a proof of a particular set of formal properties of the above system would demonstrate
the correctness of the Mobile IP specification or any particular implementation of it. This is true for several reasons.
First, there is no precise and accepted definition of correctness for the protocol, because it makes no guarantees that
a message will ever be delivered to a mobile node. In fact, depending on the pattern of movement undertaken by
a mobile node, it may never receive forwarded packets. Second, there are simply too many details that have been
abstracted out of the above system. Any errors or oversights in the draft specification of Mobile IP or implementations
of it, are likely to be subtle feature interactions between this protocol and any of the myriad of other Internet protocols,
all of which are outside the scope of this paper.

However, attempts at proofs can still serve useful purposes. First, they can help to clarify informal notions of
correctness that make up expectations about the way the protocol should behave under most conditions. Second, they
can help to identify under what conditions and assumptions the protocol is expected to behave properly. This paper
outlines one possible approach to this task. In addition to clarifying expectations and assumptions specific to Mobile
1P, the verification exercise will also illustrate the proof techniques available in Mobile UNITY.

We begin by presenting formal correctness criteria for Mobile IP that are justified informally. Then, the assumptions
underlying the protocol are formalized with conditional properties, a standard UNITY mechanism for handling such
assumptions in proofs. Proof outlines illugtrate the basic steps required to carry out a proof in Mobile GNITY.

4.1 Correctness

Like non-mobile Internet routing protocols, Mobile IP offers no strong guarantee of message delivery. Because it relies
on an existing, lossy infrastructure, any message may be lost in transit. Also, given a mobile node that is moving
from subnet to subnet sufliciently quickly, registration messages will be out of date by the time they reach the home
agent, and no forwarded messages will ever reach the mobile node. Any correctness properties must take these issues
into account.

Informally, we might require that if a mobile node stays at one location for “long enough,” it will eventually have
an up-to-date registration a$ its home agent and packets will eventually be forwarded to it. Formally, this might be
represented with the property REGISTER, defined as

REGISTER(s, t, n) &
mobile-node(s, n).A = A —
home-agent(s).home_forward[n] = (£, FA) V mobile-node(s, n).A #£ A

REGISTER(s, t, n) asserts that if a mobile node is at a given subnet, then eventually its registration is up to



date or it has moved to a different subnet. This uses the UNITY relation — (read leads-to), described in [4], which
expresses progress by requiring thas if, at any point during execution, the predicate on the left-hand side is satisfied,
then there is some later state where the predicate on the right-hand side is satisfied. In this definition and in what
follows, the free variables g, ¢, and n are implicitly quantified over the appropriate ranges, with the restriction that
8 # L.

In addition to requiring that a registration eventually takes place, we might also desire that such a registration
persist for as long as the mobile node is continuously present at the foreign network, as expressed by PERSIST:

PERSIST(s, t, n) 2
mobile-node (s, n).A = A
A home-agent(s).home_forward{n] = (t, FA} co
home-agent(s).home_forward[n]) = (¢, FA) V mobile-node(s, n).A # M

PERSIST(s, £, n) asserts that as long as the mobile node remains at its foreign location, the registration is kept
up-to-date. This is specified with the UNITY relation co, described in [14], which constrains any state transition
that takes place in a state satisfying the left-hand side to produce a state satisfying the right-hand side. PERSIST
should be maintained by the periodic re-registration performed by the mobile node when it detects that its current
registration is about to expire.

The constraint that packets are forwarded could be expressed with the property DELIVERY , defined as

DELIVERY (s, t, n) 2
mobile-node(s, n).A = XA
A home-agent(s).home_forward[n] = (¢, FA)
A head(network.out[s]) = (X, (s, n}, ¥, Z) —
head(mobile-node(s, n).in) = (X, (s, n), ¥, Z)
Vv mobile-node(s, n).A F# A

DELIVERY (s, £, n) asserts that if a home agent’s registration is up to date, any packet that arrives for the mo-
bile node at its home address will eventually arrive at the mobile node, unless the mobile node moves away while the
packet is in transit. Here the dummy variables X, ¥, and Z are assumed o be universally quantified, and so this
property implies delivery of a message with any source, type, and contents to the mobile node named in its destination.
Again, the notation heed(q) is used to denote the first element of queue g¢.

Although these properties seem to formalize very well our infomal notions of correctness for Mobile IP, none of
thege properties are true of the system mobile-ip, because they ignore the possibility of message loss in the network.
For example, executions of the system are possible in which every registration request sent to the home agent is
dropped by the network, and so REGISTER is not provable from the text of the system. Also, even if the network
does not drop a packet, it may delay it for arbitrary pericds of time and cause registrations to expire prematurely,
falsifying PERSIST. However, the properties can be proven under some assumptions about the performance of the
network that we choose to express with conditional properties, a standard technique from UNITY for reasoning about
conditions that are not modeled directly by the program but that should be true of the environment in which the
prograni rumns.

For instance, it might be appropriate to assume that the network may not drop every packet, or that one of a
set of retransmitied registrations eventually gets through to the home agent, within some reasonable period of time.
This might suffice to prove REGISTER and PERSIST. To prove DELIVERY , however, we are interested in the
correct delivery of every packet, and so we must assume that the network does not drop any packets. The property
NONDROP states that a packet appears at the correct destination within a bounded period of time, according to the
local clock of the destination component.

NONDROP(s, t, n) &
last(network.ins]) = (X, (4, n), ¥, Z) A DEST(t, n).clock = k —
head(network.out[t]) = (X, (¢, n), Y, Z)
A DEST(t, n).clock < k + bound
The notation last(network.in{s]) is used to denote the message at the end of input queue s. Here DEST(f, n)
stands for home-agent(t) if n 18 HA, foreign-agent(t) if n is FA, and mobile-node(t, n) otherwise. Thus, the property
states that a packet given to the network is delivered to its destination within bound seconds. Proof of REGISTER
does not require & finite bound (eventual reliable delivery suffices), but such a bound is necessary to prove PERSIST.



This is because a registration at home may expire before a new one is sent, if the network is allowed to delay packets
arbitrarily.

We must also agsume that once a registration request packet is delivered to the head of the correct network output
queue, it must be processed by the home agent within a bounded amount of time. This embodies assumptions made
about the speed with which the home agent can process messages. For instance, PERSIST may be violated if a
registration request message sits unprocessed for an unbounded period of time in the home agent’s input queue. Such
a property could be written as

PROCESS(s, t, n) &
head(network.out[s]) = ((¢, FA), (s, HA), Request, ((s, n), (¢, FA)))
A home-agent(s).clock = k —
home-agent(s).home_rtime(n] > k
A home-agent(s).home. forward[n] = (£, FA)
A home-agent(s).elock < k + bound

PROCESS((s, t, n) asserts that once a registration request message has arrived at a subnet, it is processed by the
home agent for that subnet within a bounded period of time. For simplicity, we assume this bound is the same as the
bound on transmission time in the network given by NONDROP. For complete correctness, similar bounds on the
processing time at foreign agents and the number of mobile nodes present at each foreign agent should also be given.
This is because an arbitrary delay at the foreign agent, or overcrowding of the foreign agent, can prevent registration
from taking place in a timely fashion. We omit them for the sake of clarity; for the purposes of this presentation,
assume they are contained within the property PROCESS.

With these definitions, we can express the formal correctness property for the protocol as a UNIT Y-style conditional
property in hypothesis-conclusion form:

NONDROP(t, s, HA) AN NONDROP(s, t, FA) A PROCESS(s, t, n)
REGISTER(s, t, n) A PERSIST(s, t, n) A DELIVERY (s, t, n)

This formula, which we take to be the correctness specification of system mobile-ip for the sake of this paper, can be
read as, “given the network does not drop packets sent between a home agent on subnet s and a foreign agent on
subnet ¢, and given that the home agent processes messages in a timely manner, the properties REGISTER(s, t, n),
PERSIST (s, t, n), and DELIVERY (s, t, n) can be proven from the text of the system.”

4.2 Proof Outline

Consider the property REGISTER(s, £, n). It states that a mobile home on a foreign subnet will eventually have an
up-to-date registration at its home agent, unless it moves away first. This can be proven in a number of steps, using
the transitive property of leads-to at each step. The first step is to prove that the mobile node eventually gets an
advertisement message from the foreign agent. Operationally, this is accomplished in one step by the transaction in
the program foreign-agent(t) that broadcasts advertisements. Formally, the property can be stated using the ensures
operator, where s, ¢, and n are quantified over the appropriate domains, and g £

mobile-node(s, n).A = A
ensures
mobile-node{s, n).) o A
V (IsPoreignAd{last(mobile-node(s, n).in))
A last(mobile-node(s, n).in).source = (&, FA))

Here IsForeignAd() is as defined inside mobile-node(s, n), but may take any message in the system as its argu-
ment. The expression p ensures g states that if the program is in a state satisfying p, it remains in that state unless g
is established, and, in addition, it does not remain forever in a state satisfying p but not g¢. According to [13], ensures
can be defined with the more primitive operators co and transient:

P ensures g = (pA-gecopVq)
A transient (p A —gq)
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where p co g asserts that whenever the system is in a state satisfying p, its next state must satisfy g. Formally, this
can be expressed with & Hoare triple [8] quantified over all state transitions of the system:

peogs (VseN:{p}s*{g}) Ap=q

This is similar to the definition in [14], but in our case, the state transitions are defined as transformations s* of
each non-reactive statement s. Here the set A denotes all non-reactive statements of the system from all instantiated
components, including multi-part fransactions. The transformation into s* will account for the reactive statements
that are allowed to execute as a side-effect of s, and the possible inhibition of statement s.

We take as our basic notion of progress the transient operator defined in [13], again taking our quantification over
all transformed non-reactive statements in the system:

transient p2 (ds € N = {p}s*{-p}}.

Informally, transient p asserts that whenever the system is in a state satisfying p, it will eventually execute some
statement that falsifies p.

We will present the proof of this property in its entirety in order to illustrate the basic Mobile UNITY proof logic,
but in later proofs we will omit the low-level details for the sake of brevity. Proof of the above ensures must proceed
in two parts. First, the safety part may be re-written as

mobile-node(s, n).A = Ay
A =(IsForeignAd(last(mobile-node(s, n).in))
A last(mobile-node(s, n).in).source = (¢, FA))
co
mobile-node(s, n).A = &
V mobile-node(s, n).\ # A
V (IsForeignAd(last(mobile-node(s, n).in))
A last{mobile-node(s, n).in).source = (&, FA))

This asserts that if a mobile node is away from home and has not received an agent advertisement, in the very
next state of the system, the mobile node must either (1) remain at the same location, or (2) move to a new location,
or (3) receive an agent advertisement.

Because

.. ) . mobile-node(s, n}.A = A V mobile-node(s, n). A # M\ ) .
is identically true, it is easy to see that no statement violates this properly. ‘However, we are still obligated to show

that the reactive program R terminates in every case. The reactive program consists of all of the reactive statements
from the text of the system, as well as those that result from the transient sharing relationships that are defined in
terms of reactive statements. Clearly, no reactive statement modifies the position of the mobile node. Termination of
the reactive program can be determined because each statement disables itself, and although some are re-enabled and
may fire twice, none may fire three times. To see this it may be helpful to look back at the definition of transiently
shared variables. The reactive statements that propagste updates to shared variables are triggered only when the
variable holds a new value, a condition that may cccur only at the start of the reactive program when a component
writes a value to the shared ether, or during it when the destination component consumes the message and sets the
ether to L.

The proof of the second part of the ensures is the demonstration of a particular statement that satisfies the
right-hand side. This statement is, of course, the one in foreign-agent(t) that broadcasts an agent advertisement to
the shared ether. Recall the central proof axioms from [11):

pAi(s) = ¢, {pA—i(s)}s™{g} "
{p}s*{q}

{r}s{H}, H = (FP(R)Ag)in R )

{r}s®{g} (2

These require the demonstration of a property H that is established by the non-reactive statement—in this case the
broadcast of the agent advertisement—and that leads to termination of the reactive program in a state satisfying the
posicondition. The advertisement statement is never inhibited. Using the following definition
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Advert(s, n, t, msg) = mobile-node(s, n).IsForeignAd(msg)
A ) = (¢, FA
we can take H to be mag.source = ( )
H = Advert(s, n, t, foreign-agent(t).ether)

A foreign-agent(t).ether # foreign-agent(t).ether ,o1york otheriy

A network.ether(t] = network.ether(t] nopite-node(s, n).ether = L

A mobile-node(s, n).ether = L

A mobile-node(s, n).gotflag = false
Recall that transient sharing introduces history variables recording the last value transmitted in either direction.

For example, the variable
foreign-agent(t).ether ,opork, etherie) DOlAS the last value transmitted from the foreign agent to the network. The proof
of {r}s{H} actually requires other invariants, omitted here, that state that all ether values are equal to L at the end
of every transaction.

The proof of the — part can be proven with the aid of three ensures statements, corresponding to (1) the transfer
of the message from the foreign agent to the network, (2) the transfer of the message from the network to the mobile
node, and (3) the placement of the message on the mobile node’s input queue. These are simply

Advert(s, n, t, foreign-agent(t).ether)
A foreign-agent(t).ether 3 foreign-agent(t).ether network.ether((]
A network.ether(t] = network.ether(t] . pie node(s, n).ether = L
A mobile-node(s, n).ether = 1
A mobile-node(s, n).gotflag = false
ensures

Advert(s, n, t, network.ether[t])

A network'Ether[t] mobile-ncde(s, n).ether — L

A mobile-node(s, n).ether = L

A mobile-node(s, n).gotflag = false

which asserts that a message broadcast by the foreign agent is transferred to the local subnet’s ether; and

Advert(s, n, {, network.ether[t])
A network. ether[t] mobile-node{s, n).ether — 1
A mobile-node(s, n).ether = L
A mobile-node(s, n).gotflag = false
ensures
Advert(s, n, t, mobile-node(s, n).ether))
A mobile-node(s, n).gotflag = false

which asserts that such a message is transferred to the mobile node’s ether; and finally,

Advert(s, n, t, mobile-node(s, n).ether))

A mobile-node(s, n).gotflag = false

ensures

Advert(s, n, t, last(mobile-node(s, n).in))

which asserts that a message on the mobile node’s ether is appended to its input queue. The proof of the safety
part of each ensures property relies on other safety properties, such as the fact that no other message is broadcast,
which can be proven from the text of the reactive program.

The fixed point predicate, FP, can be calculated from standard techniques based on the assignment statements
and guards of the reactive program, where a statement of the form £ := & if p translates into a predicate of the form
-pV ¥ = €. The relevant portion (several conjuncts are omitted) is:

12



FP(R) =
(foreign-agent(t).ether = foreign-agent(t).ether nopyors. etner(s)
V foreign-agent(t).ether = foreign-agent(t).ether ,opuort others] =
network.ether[t] = network.ether[t] foreign-agent(s). ether
A (network.ether[t] = network.ether(t] ,obienode(s, n).ether
V network.ether(t] = network.ether([t] ,opite-node(s, n).ether =
mobile-node(s, n).ether = mobile-node(s, n).ether ,eort. etner]s))
A (mobile-node(s, n).ether = L
V mobile-node(s, n).ether.dest # Beast V mobile-node(s, n).gotflag
V last(mobile-node(s, n).in) = mobile-node(s, n}.ether)

It can be seen from the collection of reactive statements that each conjunct is established in one step by execution of
the corresponding statement, and that eventually, the entire predicate FP(R) A Advert(s, n, £, last(mobile-node(s,
n).in}) will be established.

The remaining steps in the proof of REGISTER have similar proofs at their core, but we will omit them here. It
remains to be shown that the advertisement is eventually processed by the mobile node, which is a straightforward
application of induction on the distance of the message from the head of the input queue. Then, the registration
request that is produced must be propagated to the foreign agent. The required proof is very much like the above,
except that communication proceeds in the reverse direction. The foreign agent must then process the message and
forward the request. This involves another induction on the distance of the request from the head of the queue, as well
as the assumption that the foreign agent has space available to hold the registration. Then, the request message must
propagate through the network to the home agent. This proof will rely on the assumption NONDR(OP, which states
that any message sent will not be dropped. Finally, the message is processed by the home agent, requiring another
inductive argument, and the proof of REGISTER is complete.

Proof of the next property, PERSIST, will rely on the real-time restrictions that have been placed on the system.
It will also require the use of bounds on communication time embodied in NONDROP, and bounds on processing
time embodied in PROCESS. It will also require assumptions about the processing speed of foreign agents

Finally, the proof of DELIVERY will be very similar to REGISTER, except that now an actual message must be
propagated instead of a registration request. Communication from the home agent to the network, from the network
to the foreign agent, and the foreign agent to the mobile node will all look very similar to the above ensures proof.

These proofs may seem overly complicated, but many of the lower level details, such as the propagation of messages
from one component to another, could be captured in lemmas that hide this complexity from higher level reasoning,.
Our presentation above was at a low level in order to demonstrate the fundamental proof axioms of Mobile UNITY.,

5 Conclusions

This paper has demonstrated Mobile UNITY in the context of Mobile IP, a real protocol for routing packets to mobile
hosts that are transiently connected to different attachment points on the Internet. This served to illustrate how
Mobile UNITY may be used to create abstractions for communication in such protocols, and as an illustration for the
Mobile UNITY proof logic, which was not exercised to the same degree in [11].

While formal models capable of expressing reconfiguration have been explored from the algebraic perspective [12]
and from a denotational perspective [5, 2], very few state-based models can naturally express reconfiguration of
components. Also, while algebraic models such as the w-calculus may be adequate for expressing reconfiguration, it
is not so clear how to handle the issue of disconnection. Recent work has recognized the importance of introducing
location and failures as concepts in mobile process algebras 3, 18, 6], but these do not directly address disconnection
of components that continue to function correctly but independently.

In addition te directly modeling reconfiguration and disconnection, Mobile UNITY attempts to address design
issues raised by mobile computing. These issues stem from both the characteristics of the wireless connection and
the nature of applications and services that will be demanded by users of the new technologies. These services
are characterized by more dynamic binding and weaker consistency than traditional distributed applications. For
example, the components needed to carry out a service are often determined by their runtime location, as in the
location-dependent services provided by a mobile web browser [24]. Other work has pointed out the importance of
context other than location [20], such as the presence or absence of other components. The reactive statement can be
viewed as an attempt to capture implicit side-effects of non-reactive statements, and to take into account the global
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context in which such a statement is executed, without modifying the text of such a statement directly.

Weak consistency protocols for filesystems and databases [19, 22, 23] are motivated by the low bandwidth and
frequent disconnections typical of a wireless network with mobile nodes. These systems trade consistency for availability
under the assumption that in some cases, dealing with the consequences of inconsistencies is cheaper than denying
access to a resource. The transient sharing abstraction was motivated in part by these types of systems.

The abstraction of communication in this environment with transiently shared variables provided very strong
atomicity guarantees on the way in which they are accessed. This may seem at first to be unrealistic, but it is
perfectly reasonable to expect this kind of atomicity from lower-level carrier sense and retransmit algorithms such
as that provided by ethernef. Such a protocol in fact guarantees atomic access to the shared medium in a very
similar way fo that modeled here. Message loss, rather than being modeled as a separate action that sometimes fires,
could be accommodated in the when predicate with additional conjuncts representing interference or other forms of
communication outage.

The treatment of real-time properties was also interesting for its lack of reliance on global clocks and the expression
of only the minimum synchronization constraints needed among the components, rather than requiring all clocks to
be tightly synchronized. This leaves open the possibility that different clocks may run at widely different rates unless
synchrony is required. This reflects the fact that global time does not really exist in distributed systems, but is only
an artifact of a particular frame of reference.

The example proof illustrated the logic underlying by Mobile UNITY. It provides a formal basis for specifying
properties of a system and proving them correct. Implicit communication, e.g., transient variable sharing, is handled
within a reactive program that conditionally propagates new information when state changes occur. Proof of a Hoare
triple in the system must take into account the effects of the reactive program and prove that it terminates. The
example showed how this can be accomplished with ordinary fechniques from standard UNITY.

‘The choice of this example shows how Mobile UNITY might be used to reason about message routing protocols.
While the current example assumes a fixed infrastructure (the Internet) which serves as a backbone, the communication
abstractions developed do not depend on such an infrastructure. The ether variables just as easily could have been
shared directly between components, such as two mobile nodes. This would allow the expression and verification of
protocols for ad-hoc routing [9], where every mobile node is also a potential message router and no fixed infrastructure
is assumed. Such a study was not attempted here because such algorithms are very new and are not widely known.
Also, a much more careful examination of assumptions about patterns of movement would have been necessary, as
these assumptions affect protocol correctness and performance to a much greater degree.
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program mobile-node(s, n) at A
declare
care-gf : address
| in : queue of message
[ ether : message
[ clock, begintime, lasttime, transcount : natural
| transbuffer : message
| confirmed, gotflag : boolean
always
Hdata = head(in).data
| Beast = (-1,-1)
| IsRegular(msg) = msg.type = Regular
| IsForeignAd(msg) =
msg.type = Advertisement A msg.data.foreignflag
N msg.source.subnet # s A msg.source F# care-of
| IsHomeAd(msg) =
msg.type = Advertisement A msg.data.homeflag
A msg.source = (s, HA) A (s, HA) # care-of
| IsDeniedReply(msg) =
masg.type = Reply A msg.data.flag = Denied
A confirmed = false A msg.date. JD = transbuffer.data. ID
| IsOkReply(msg) =
msg.type = Reply A msg.data.flag = Ok
A confirmed = false A mag.data.ID = transbuffer.data. ID
[ IsGarbage(msg) =
- IsRegular(msg) A - IsForeigndd(masg) A — IsHomeAd(msg)
A = IsDeniedReply(msg) A — IsOkReply(msg)
initially
in =€ A = A; || confirmed = true [|lasttime = 0 [ care-of = (s, HA)
assign
{Move to a new location}
A = Move()\)

{Transfer appropriate messages from link o input queue}
[ in, ether := in & ether, L reacts-to ether 3 1 A ether.dest = (s, n)

{For broadcast, message is not consumed — need gotflag for idempotency}
[ in, gotflag := in e ether, true reacts-to ether % L A ether.dest == Beast A — goiflag
| gotflag := false reacts-to ether = .

Figure 4: The first part of program mobile-node, which sends and receives messages.
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{Generate away-from-home registration requests for later transmission}
[ in, care-of , transbuffer, confirmed, begintime, transcount :=
tail (in),
head(in).source,
((s, n), head(in).source, Request, ((s, n), head(in}.source, NewID)),
false,
clock,
0
if in # € A IsForeignAd{head(in))
{Generate at-home de-registration requests for later transmission}
[l in, care-of , transbuffer, confirmed, begintime, transcount :=
tadl{in),
(s, HA),
({s, n), (s, HA), Request, ((s, n), (s, HA), NewlD)),
false,
clock,
0
if in # e A IsHomeAd(head(in))

{Transmit the buffer until we receive a reply}
| transmit :
( ether, lasttime, transcount := transbuffer, clock, transcount + 1
if confirmed = false A ether = L A (clock - lasttime) > 2transcount
A (clock - begintime) < Lifetime;
ether == 1)
{Process denied Reply messages}
| in, care-of := tail(in), L
if in # € A IsDeniedReply(head (in))
{Process ok Reply messages}
[ in, confirmed := tail(in), true
if in # € A IsOkReply(head(in))
{Enable re-registration when not at home and Lifetime is about to expire}
| reregister :
confirmed, begintime, transcount, transbuffer.data.ID := false, clock, 0, NewID
if care-of # (s, HA) A (clock - begintime) > (Lifetime - D)
{Consume application messages}
[ in := tail(in) if in # e A IsRegular(head(in))
{Transmit application messages}
[ { ether := ({s, n), NewDest, Regular, NewData) if ether = L ;
ether := L}
{Consume garbage messages}
[ in := tadl(in) if in # e A IsGarbage(head(in))
{Occasionally increment the clock}
[| timer :: clock = clock + 1
{Force re-registration when Lifetime is very close to expiring}
[ inhibit timer when care-of # (s, HA) A (clock - begintime) > (Lifetime - D/2)
{Force re-transmission within a reasonable delay}
| inhibit timer when confirmed = false A (clock - lasttime) > 2transcount 4 1

end

Figure 5: The program mobile-node (continued).

17



program home-agent(s) at A
declare
in : queue of message
| ether : message
| InterestSet : set of address
| home_forward : array[Nnodes] of address
| home_rtime : array[Nnodes] of integer
| clock : integer
always
Hdata= head(in).dato
| Addr = head(in).dest
| Beast = (-1,-1)
[ NoNode = (0, -1)
| IsLocalRequest(i, msg) =
msg.type = Request A msg.source = (s, 1)
A msg.dest = (s, HA)
| IsRemoteRequest(i, msg) =
msg.type = Request A msg.data.home = (s, i)
A msg.data.foreign.subnet # s
[ IsMessage(i, msg) =
msg.dest = (s, 1) A home_forward[i] # NoNode
| IsGarbage(i, msg) =
- IsLocalRequest(i, msg) A — IsRemoteRequest(i, msg)
A - TsMessage(i, msg)
initially
InterestSet = {(s, HA)} A (V¥ i : 0 < i < Nnodes :: home_forward[i] =
NoNode )
assign
{Transfer appropriate messages from link to input queue}
[ in, ether := in e ether, L
reacts-to ether # L A ether.dest € InierestSet

Figure 6: The first part of program home-agent, which processes registration requests on behalf of mobile nodes.
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| (0i:0<1< Nnodes =

{Remote request processing and reply generation }

( in, ether, home_forward [Hdata.home.node), InterestSet, home_rtime[i] :=
tasl(in),
((s, HA), Hdata.foreign, Reply, (Hdate.home, O, Hdata.ID)),
Hdata. foreign,
InterestSet U { Hdata.dest},
clock
if in # € A ether = L A IsRemoteRequest(i, head(in));

ether == 1 )

{De-register those that arrive home}
0 { in, ether, home_forward[i], InterestSet :=
tasl(in),
((s, HA), head(in).source, Reply, (Hdata.home, Ok, Hdeta.ID)),
NoNode,
InterestSet - {(s, 1)}
if in # € A ether = L A IsLocalRequest(i, head(in}));
ether 1= L)

{Encapsulated routing}
[ ( in, ether := tail(in), ((s, HA), home_forward [{], Bncapsulated, head(in))
if in # € A ether = L A IsMessage(i, head(in));
ether == 1)

{Timeout a forwarding address)
[ timeout-fwd :: home_forward[i), InterestSet :—=
NoNode,
InterestSet - {(s, 1)}
if (clock - home_rtime[i]) > Lifetime

{Consume garbage packets}
[ in = tail(in) if in £ e A (Vi:0< i< Nnodes = IsGarbage(i, head(in)) )

{Transmit periodic advertisements}

| advertise :
( ether := ((s, HA), Beast, Advertisement, (home, false)) if ether = L ;
ether = 1 )

{Occasionally increment the clock}
[ timer :: elock := clock + 1
end

Figure 7: The program home-agent (continued).
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program foreign-agent(s) at A
declare
in : queue of message

[ ether : message

| wisitor_assign : array[Nwisitors) of address

[ visitor_state : array[Nvisitors] of €{Pending, Confirmed}
| visitor_rtime : array[Nvisitors] of integer

| clock : integer

al

Hdata = head(in).data
[ Addr = head(in).dest
| Beast = (-1, -1)
| NoNode = (0, -1)
[ IsNewRequest(i, t, n, msg) =
msg.type = Request A visitor_assign[i] = NoNode
A msg.source = (£, n) At s
A (VY j : visitor_assign[f] # (¢, n) )
(| IsReRequest(i, t, msg) =
msg.type = Request A wisitor_assign[i] = (¢, n)
A msg.source = (£, n)
(| IsBusyRequest(t, n, msg) =
msg.type == Hequest A msg.source = (t, n) At # s
A (VY j : visitor_assign[j] % NoNode )
A (VY j : visitor_assign[j) # (¢, n) )
| IsOkRepiy(i, msg) =
msg.lype = Reply A msg.data.flag = Ok
A visitor_assign[i] = msg.data.home
| IsDeniedReply(i, msg) =
msg.type = Reply A msg.date.flag = Denied
A visitor.assign[i] = msg.data.home
| IsEncepsulated(i, msg) =
msg.type = Encapsulated A visitor_assign[i] = msg.date. dest
| IsGarbage(i, t, n, msg) =
~1IsNewRequest(i, t, n, msg) A ~IsReRequest(i, t, n, mag)
A —IsBusyRequest(t, n, msg) A —=IsOkReply(i, msg)
A —IsDeniedReply(i, msg) A —~IsEncapsulated (i, msg)
initialiy
(4 : 0< i< Nuisitors :: visitor_assign[i] = NoNode }

Figure 8: The first part of program foreign-agent, which receives registration requests from mobile nodes and forwards
them to the appropriate home agent.
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assign
{Transfer appropriate messages from link to input queue}
[| in, ether := in e ether, L reacts-to ether # L A ether.dest = (s, FA)

[ {04 ¢ n:0< i< Nvisitors A0 < ¢ < Nsubnets A0 < n < Nnodes =
{Registration request generation for visitors}
process-request ::
( in, ether, visitor_assign|i), visitor_statel[], visitor_rtimel[i] :=
tail{in},
((s, FA}, (Hdata.home.subnet, HA), Request, Hdata.data),
(¢, n),
Pending,
clock
if in £ e A ether = L
A (IsNewRequest(i, t, n, head(in)) V IsReRequest(i, t, n, head ()
ether 1= 1)

{Deny registration if we're too busy}
0 (in, ether :==
tail(in),
((s, FA), (£, n), Reply, (Hdata.home, Denied, Hdata.ID)),
if in # € A ether = L A IsBusyRequest(t, n, head(in));
ether == 1)

{Ok reply processing}

| {in, ether, visitor_state[i], visitor_rtime[i] :=
tail(in),
((s, FA), visitor_assign[i], Reply, Hdata)
Confirmed,
clock
if in # e A ether = L A IsOkReply(i, head(in)):

ether := L)

{Denied reply processing}
[ (in, ether, visitor_assign{i} :=

tail{in),

((s, FA), visitor_assign[i], Reply, Hdata),

NoNode

if in # € A ether = L. A IsDeniedReply(i, head(in));
ether 1= 1)

{Decapsulation and delivery}
§ ( in, ether := tail(in), Hdata
if in # € A ether = L A IsEncapsulated(i, head(in));
ether := L}

{Time-out visitor slots}
| timeout-visit(i, ¢, n)::
visitor_assign[i] := NoNode if (visitor_rtime[i] - clock) > Lifetime

Figure 9: The program foreign-agent (continued).
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{Consume garbage messages}
[ én:=tail(in) if in # e A (V i, ¢, n: 0 <i < Nuisitors
A0 < ¢t < Nsubnets
A D < n < Nnodes =
IsGarbage(i, t, n, head(in)) )

{Transmit periodic advertisernents}
0 ( ether := ((s, FA), Beast, Advertisement, (false, foreign)) if ether = L ;
ether == L)

{Occasionally increment the clock}
{ timer :: clock 1= clock + 1
end

Figure 10: The program foreign-agent (continued).

System mobile-ip
...Program declarations from above...

Compounents
network
| {[s:0< s < Nsubnets :: home-agent(s) at \; )
{0 ([s:0< s < Nsubnets :: foreign-agent(s) at ), )
[ {0s,n:0<s < Nsubneis A 0 < n < Nnodes :: mobile-node(s, n) at )\, )

Interactions
{Attach the network to the agents (transiently shared variables}}

([s:0< 3 < Nsubnets =
network.ether[s] ~ home-agent(s).ether
[ network.ether(s] ~ foreign-agent(s).ether

)

{Attach the network to the mobile nodes, when co-located}
I (s, t,n:0< 3 < Nsubnets A0 < t < Nsubnets A 0 < n < Nnodes ::
network.ether{s] ~ mobile-node(t, n).ether when mobile-node. A = A,
)

{Specify timing constraints}
 {[s,2, n:0< 5 < Nsubnets A 0 < ¢t < Nsubnets A 0 < n < Nnodes =
home-agent(s).clock synch mobile-node(s, n).clock
when mobile-node(s, n).ether = ((s, n), (s, HA), -, -, -
within 1.01

| home-agent(s).clock synch mobile-node(s, n).clock
when home-agent(s).ether = ((s, HA), (s, n), -, -, =)
within 1.01

[ foreign-ageni(s).clock synch mobile-node(t, n).clock
when mobile-node(t, n).ether = ((¢, n), (s, FA), -, -, =)
within 1.01

| foreign-agent(s).clock synch mobile-node(t, n).clock
when foreign-agent(s).ether = ((s, FA), (¢, n), -, -, -)
within 1.01

end

Figure 11: The complete system mobile-ip.
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