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Abstract 
 

 
CHARACTERIZATION OF SCANNABLE LEAKY WAVE ANTENNAS USING AN 

EXTENDED METAMATERIAL FRAMEWORK 

by 

Garrett Gilchrist 

Master of Science in Electrical Engineering 

Washington University in St. Louis, 2010 

Research Advisor: Professor Barry Spielman 

 

In the past decade, metamaterials have shown new and exciting ways to treat 

electromagnetic problems, which have gained popularity within the antenna and 

microwave circuit fields. A composite right left handed (CRLH) transmission line 

approach for characterizing the TE10 dominate mode rectangular waveguide scannable 

leaky wave antenna will be treated. This is explained by transmission line theory using 

the lumped element inductor/capacitor (LC) model. The treatment will develop the ideal 

lossless CRLH transmission line and show how it can be successfully applied to treat the 

scannable leaky wave antenna (LWA).  
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1.0  Introduction  
 

The first work performed with the slotted waveguide dates back to 1943 when  

W. H. Watson introduced the slotted waveguide array [1]. Since then various people have 

worked with the slotted waveguide. In 1957 Arthur A. Oliner characterized the 

impedance properties of the narrow radiating slot [2, 3]. In 1963 John F. Ramsay and 

Boris V. Popovich studied the series inclined slot [4]. Several groups did mutual coupling 

work throughout the 1960’s and 1970’s and in the 1981 Robert S. Elliot published an 

antenna book talking extensively about longitudinal slotted waveguide antennas [5].  

The first work theorizing metamaterials started in 1967 – 1968 when Victor 

Veselago speculated “What if a material exhibited negative permittivity and 

permeability?” [6]. Nothing came about this thought until 1998 when John Pendry at 

Imperial College London found a way to create the effects of negative permittivity and 

permeability [7]. Then David Smith at University of California, San Diego (UCSD) in 

2000 combine these effects to create a metamaterial that exhibits both negative 

permittivity (ε) and negative permeability (μ) [8]. In June 2002 three groups introduced a 

different, more practical approach using transmission line theory: George Eleftheriades, 

O. Siddiqui and Ashwin Iyer [9], Arthur A. Oliner [10] and Christophe Caloz and Tatsuo 

Itoh. The last group Christophe Caloz and Tatsuo Itoh wrote a book and many peer 

reviewed journal papers that spurred this research [11, 12, 13, 14, 15, 16, and 17].  

The slotted waveguide has been investigated for many years. It has been 

implemented in several configurations: off set longitudinal slots, alternating slots on 

either side of the centerline of the waveguide Figure 1 [5], 2-D planar array Figure 2 [5], 

and it has also been in a collinear alternating tilted configuration down the centerline of 
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the waveguide Figure 3 [4]. The latter configuration is the subject of the research 

described here. With the collinear alternating tilted configuration the slots present a series 

impedance along the length of the structure and with the series impedance a unique 

situation arises. The slot, using transmission line theory creates a negative 

reactance ( )χj−  where ( χ > 0), which is capacitive. This capacitive value fills a missing 

piece of the puzzle when modeling the slotted waveguide couched in a metamaterial 

perspective. The broadside radiation coupled with steering the main beam to the right and 

left of broadside has caused trouble in the past [18].  Previously, steering the beam 

through broadside, the main beam would null out or shrink. Also, steering to right and 

left of broadside had to be done with higher order modes. In this research, the scannable 

leaky wave antenna (LWA) under investigation is the slotted rectangular waveguide. This 

antenna allows the main radiation beam to be steered to a desired angle by changing the 

frequency. A transmission line model, metamaterial-inspired, will be utilized to 

theoretically predict how the main beam angle varies with frequency. A full wave 

simulation was performed for the 3-D model then a prototype antenna was measured in 

an anechoic chamber. Using this combination of approaches it was shown that the 

scannable leaky wave antenna can radiate at broadside, perpendicular, to the array and 

that the main radiation beam can be successfully steered to both the left and right of 

broadside in the dominate mode (TE10). The pervious work by Caloz and Itoh [12] 

accomplished this for a TEM, less dispersive structure. This work demonstrated that the 

metamaterial framework is able to successfully treat a highly dispersive scannable 

structure and overcome broadside radiation limitations.   
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Figure 1: Longitudinal Slotted Rectangular Waveguide, Top View 

 

 

Figure 2: 2-D Longitudinal Slotted Planar Array, Top View 

 

 

Figure 3: Tilted Slot Rectangular Waveguide, Top View 

2.0 Waveguide Impedance/Admittance Derivation 

The metamaterial inspired transmission line modeling has four components: two 

capacitive elements and two inductive elements, this is explained later in the thesis. The 

waveguide contributes three of the four elements in the transmission line modeling, two 

inductive and one capacitive; the other capacitive element is from the slot. It is shown 

below how waveguide portion is derived. From two of Maxwell’s Equations, 

( HjE ωμ−=×∇ ) and ( EjH ωε=×∇ ) you can get the following for the loss-free region 

within the waveguide, ( )ω  is angular frequency [19, 20]. 
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Figure 4: Waveguide Coordinate System 
 
The above equations can be solved for four transverse equations in terms of ( zE ) and 

( zH ) [21]. 
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222 β−= kkc , 
λ
π2=k , 

gλ
πβ 2= , roεεε = , ro μμμ = , and fπω 2=  

 

(kc) is the cutoff wavenumber, (k) is the free space wavenumber, (β) is the propagation 

constant, (ε) is the permittivity with (εo) being permittivity of free space and (εr) being the 

relative permittivity, (μ) is the permeability with (μo) being the permeability of free space 

and (μr) being the relative permeability, and (ω) is the angular frequency with ( f) being 

the frequency of interest.  

In the longitudinal direction of propagation for the TE-mode (Ez = 0) and (Hz ≠ 0). With 

this, the above equations reduce to the following.    
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Now dividing the E-field by the H-field for the characteristic wave impedance of the TE-

mode (Zo
TE): 
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With this said the transmission line analogy for a waveguide can be shown using 

rectangular coordinate field equations.  

 

 

 

 

 

 

 

 



7 

x
yz Ej

z
H

y
H ωε=

∂
∂

−
∂

∂
   (a) 

                                                  y
zx Ej

x
H

z
H ωε=

∂
∂

−
∂

∂
−   (b)  

                                                   z
xy Ej

y
H

x
H

ωε=
∂

∂
−

∂
∂

  (c)                               (5) 

x
yz Hj

z
E

y
E ωμ−=

∂
∂

−
∂

∂
  (d) 

y
zx Hj

x
E

z
E ωμ−=

∂
∂

−
∂

∂
  (e) 

z
xy Hj

y
E

x
E

ωμ−=
∂

∂
−

∂
∂

  (f) 

 

From (5) we are interested in (5a) and (5d). Since ( 0=zE ) and ( 0=Hcurlxy ) it is 

possible to define a magnetic scalar potential (U): 
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The quantity ⎟
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⎠
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ωμ  has voltage dimensions and (U) has current dimensions. 

The waveguide series impedance [20]: 
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There is a useful relationship between the constitutive parameters ( )εμ  and per unit 

length parameters ( )LC ′′  [22]: 

                                                    ( ) ( )εμ=′′LC                                                       (8) 

2.1 TE Mode Equivalent Circuit Model  

Below is a TE mode equivalent circuit flow chart of how a section of waveguide is 

represented with a complex series impedance and shunt admittance per unit length. The 

sinusoidal wave indicates the direction of propagation in the waveguide. The ( )Z ′ , ( )Y ′ , 

( )C ′ , and ( )L′  are per unit length values.  

 

Figure 5: Physical Waveguide to Block Diagram 
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Figure 6: Waveguide Per Unit Length Circuit Model 

3.0 Antennas 

3.1 Slot Self Impedance 
Impedance (Z) is defined as the ratio between phasor voltage (V) and phasor current (I).   

                                             
I
VZ =                                      (11) 

 

The same is true for the terminal impedance of a half wave dipole [23]. 
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According to John D. Kraus [23] § 10.3 there is a good derivation using the Sine and 

Cosine Integrals where the dipole impedance becomes complex with a real and imaginary 

(inductive) part: 

 

                                          jXRZ +=                              (13) 

with  

                                       )2(30 πCinR =                          (14) 

                                      )2(30 πSiX =                             (15) 

 

where Ci(x) = Cosine Integral, n = odd number multiple, and Si(x) = Sine Integral.  The 

cosine and sine integrals are defined mathematically as [23]: 

 

                          ( ) ( )
∫∞=

x
dv

v
vxCi cos                (16) 

                          ( ) ( )dv
v

vxSi
x

∫=
0

sin                 (17) 

 

The above impedance value is for non-resonant antennas. Resonant antennas just have a 

real (R) part. Then, H.G Booker used Babinet’s Principle (optics) in electromagnetics to 

relate the known impedance of a dipole antenna to calculate the impedance of a 

complementary slot [24]:   

                              
4

2η=sd ZZ                          (18) 
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where 

Zd = Dipole Impedance 

Zs = Slot Impedance 

==
o
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Using the dipole impedance from above: 
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=
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4
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Now the impedance is complex with a real and imaginary (capacitive) part. 

3.2 Slot Equivalent Circuit Model 

Below is a slot equivalent circuit flow chart of how the tilted slot in the waveguide is 

represented with a complex series impedance per unit length. The ( )Z ′ , ( )R′ , and ( )C ′  are 

per unit length values. The ( )R′  in Figure 8 captures the radiation behavior of the slot. 

 

 

 

Figure 7: Physical Slot to Block Diagram 
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Figure 8: Slot Per Unit Length Circuit Model 

3.3 Mutual Impedance 

When dealing with more than one radiator, mutual impedance has to be taken into 

account.   

                                                   
j

i
ij I

V
Z =                                                     (22) 

This means the total impedance (ZTi) of one radiator is dependant on the other radiators.  

In Figure 9 there is a linear array of three slots and using the (NxN) matrix, (23), for a 

three port network the total impedance of each slot can be found.    

 

1 2 31 2 3

 

Figure 9: Three Slot Linear Array 

 

per slot

R′ Cj ′ω
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Distributing the current using matrix algebra for the first slot in the array, the voltage will 

be: 

 

 

Now divide both sides by the current of the first slot (I1) to get the total impedance of the 

slot. 

 

                                                                                                                   (24) 

Without including the mutual impedance from the other slots will result in, an incorrect 

total slot impedance. Doing this for the rest of the slots will result in the following 

equations.  
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The LWA used in this thesis has ten slots down the center of the waveguide with a tilt. 

This may be referred to as coplanar skewed slots.  In a center line configuration of series 

slots, the angle (±θ), in Figure 10, from horizontal has to be greater than (0 degrees) in 

order to interrupt the longitudinal current flow in the top broadwall of the waveguide to 
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cause radiation [4]. Without the tilt in this configuration the antenna will not radiate. In 

the research done in this thesis, the greater the tilt from horizontal the larger gain you will 

get with the antenna. Figure 11 shows mutual impedance between two coplanar dipoles 

separated by (1.0λ) with lambda being wavelength. The dipoles are rotated about the 

center, Figure 10, when (psi = 0) both slots are vertical and when (psi =180) both slots 

are horizontal. The dashed lines in Figure 10 show the vertex of the angle between the 

dipoles. Figure 11 shows the reactance is more sensitive to the angle between the dipole 

and the greatest mutual impedance occurs when there is no angle between the dipoles  

(psi = 0).  The plot was duplicated from [25, 26]. 

 

  

Figure 10: Coplanar Skewed Dipoles 
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Figure 11: Mutual Impedance between Coplanar Skewed Dipoles 

 

4.0 Metamaterials 

Metamaterials is a relatively new area of research in electromagnetics/antennas.  

Figure 12 shows an ideal lossless cell from a multi-cell metamaterial transmission line 

model.  This model has series impedance (Z) and shunt admittance (Y) per unit cell.  

Using the model inspired by a metamaterial modeling approach applied to the LWA, it 

can be shown the main beam radiation is accurately predicted.  
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Figure 12: Ideal Metamaterial Transmission Line Model 

4.1 LC Parameter Extraction 

The LC parameter extraction is an approach to evaluate the series/shunt inductances (L) 

and capacitances (C) for the transmission line model. This approach allows a design to be 

predicted without creating the entire structure. The idea is to the predict radiation angle of 

the main beam of the radiating structure by extracting the capacitances and inductances 

of one cell of the structure. This approach stems from work published by Caloz, Atsushi, 

and Itoh who used it to extract the right handed capacitance (CR), right handed inductance 

(LR), left handed capacitance (CL), and left handed inductance (LL) for a transverse 

electromagnetic (TEM) structure [11]. The structure they used was a microstrip antenna 

which is a transverse electromagnetic (TEM) mode, two conductor, ground plane and top 

structure separated by a dielectric [11]. A similar approach is used in this research to treat 

a more dispersive transmission structure.  
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The LC Parameter Extraction approach:  

• Have the initial design and run physical components of the cell model in a full 

wave simulator to evaluate the scattering parameters (S-parameters).  

• Convert the S-parameters to impedance parameters (Z-parameters) or admittance 

parameters (Y-parameters).  

• Solve for each of the right/left handed L’s and C’s. 

• Use the right/left handed L’s and C’s to determine the phase constant (β). 

• Place (β) in the main beam angle equation.  

The approach was employed in this research to extract the L’s and C’s for the LWA. The 

LWA, tilted slot rectangular waveguide, under investigation is a dispersive radiating 

structure. In order to get the impedance parameters first the design has to be broken into 

the components of the cell and predicted separately, the waveguide section is predicted 

separate from the slot and vice versa. Figure 13 is the half wavelength waveguide section 

that was run in the full wave simulator to get the S-parameters for the waveguide portion 

of the model. Figure 14 is the half wavelength dipole that was evaluated in the full wave 

simulator to get the impedance values for the slot portion of the model.  

 

Figure 13: Half Wavelength Waveguide Section CAD Model 

2
oλ
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Figure 14: Half Wavelength Dipole CAD Model 

 
The half wavelength waveguide prediction gave the S-parameters:  
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The S-parameters are then converted in to Z- parameters using standard conversion 

equations [21]: 
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(Z0) is the characteristic impedance of the waveguide. The Z-matrix is symmetric and due 

to reciprocity ( )2112 ZZ = . Solving for the waveguide portion:  

 

2
oλ
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Figure 15: Waveguide Cell Circuit Equivalent Model 

 
                                                             S

WG
S
WG LjZ ω=                                            (27) 

                                                        P
WG

cP
WG

P
WG Lj

k
CjY

ω
ω

2

+=                                 (28) 

The half wavelength dipole’s prediction gave the impedance value which is converted to 

a slot impedance value by using the Babinet-Booker Principle mentioned above. The slot 

impedance has a real component in it however; the real part can be neglected for the 

phase calculation (β).   

 

 

Figure 16: Slot Cell Circuit Equivalent Model 
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The Z- parameters for the waveguide are: 
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Figure 17: T-Network 

 
The negative sign for ( )WGZ12  and ( )WGZ 21  in (30) conforms to the convention of having the 

current coming into either side of two port network as shown in Figure 18 [27].  

 

 

Figure 18: Block Diagram of a Two-Port Network 
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The Z-parameter for the slot is: 

 

                                            S
Slot

Slot
Slot ZZZ == 11                                      (31) 

 

Each of the inductances and capacitances in (27, 28, and 29) are: 
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In order to solve for the parallel capacitance and inductance see Figure 15, the partial 

derivative of ( )P
WGY   is taken with respect to angular frequency ( )ω : 
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This is done to create a second equation in order to solve for each variable. Once the 

partial derivative is taken, it is set equal to zero and solved, for either the capacitance or 

inductance. The right/left hand L’s and C’s for the metamaterials model are shown 

below. 

Series Impedance: 

                                               Slot
S
SlotL Zj

CC
112

1
ω

==                                     (37) 

 

                                               ( )WGWGS
WGR ZZ

j
LL 1211

2 −==
ω

                            (38) 

 

The “2” in the denominator of (37) and the numerator of (38) results from representing 

these elements as a T-network that combines properly with elements adjacent in the 

metamaterials transmission line model Figure 19. 

 

 

Figure 19: T-Network Model 
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Shunt Admittance: 
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The LC extracted parameters are: LL = 6.683 nH, CL = 0.149 pF, LR = -12.886 μH, and 

CR = -0.349 pF. These four variables LL, CL, LR, and CR, are used to calculate the phase 

constant (β) with the following equation [11]: 

 

                             ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

LL
RR CL

CL
p ω
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( )p is the physical cell size. Once (β) is known for each of the different frequencies, it 

can be substituted in the following equation to determine the main beam angle (θMB) for 

an alternating titled slot LWA [5, 11]. 

 

                                   ⎟
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dkMB 2
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(42) is the ( )ψpsi  variable from array theory, which is used in many variations of the 

array factor (AF) equation [28, 29]. 
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where 

                                      ddko βθψ −= )cos(                                        (44) 

 

For the tilted slot rectangular waveguide array case it is [28]:  

                                 ππβθ mddko 2)cos( =+− ;   ( )...3,2,1,0=m    (45) 

Here ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

o
ok

λ
π2 , d is the inter-element slot spacing, β is given by (41), and θ is solved 

for, ( )MBθθ =  for (42) and (45). The addition of ( )π  accounts for the possible (180o) 

phase change due to the tilt of the slot [4, 28]. The calculation from (42) is only accurate 

if there is negligible mutual coupling between the slots in the array [4, 29]. Using the 

dispersive tilted slot rectangular waveguide this is not the case as the LC parameter 

extraction predicted results will show.  

5.0 Antenna Model 

The full wave simulator used to predict the main beam angle (θMB) for the LWA is (In-

situ Large ANtenna Aperture & Array Simulations) (Code for the Analysis of Radiators 

on LOssy Surfaces) (ILANS CARLOS). CARLOS implements the method of moments 

(MoM) analysis technique. This analysis will give the solution for a fully arbitrary three 

dimensional (3-D) complex radiator.  The solutions are obtained for perfectly conducting 

bodies (PEC) as well as partially penetrable ones. The electromagnetic solution is based 
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on the electric field integral equation (EFIE). CARLOS uses planar triangular patch 

representation for all of the surfaces and boundaries of the radiator [30]. 

CARLOS was applied to the 3-D computer aided design (CAD) model of the desired 

structure. Figure 20 – Figure 22 show different views of the 3-D model used in the full 

wave simulation. Figure 20 shows a 3-D view of the leaky wave antenna model. Figure 

21 shows the 3-D view with the ends removed to reveal the waveguide wall thickness 

which is (0.254 cm) thick. Figure 22 looking top down on the model shows the (10 slots) 

in the antenna, there is (0.51λg) enter element spacing, the slot length is (0.5λ0), and the 

slot width is (0.159 cm).  

 

 

 

Figure 20: Angled View of the 10 Slot LWA 
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Figure 21: Cross Section of the LWA Looking Down the Waveguide 

 

 

Figure 22: Top Down View of the LWA 

 

After the structure is designed in the CAD environment it must be sub-divided into 

surface facets. This means the structure is broken into small triangular segments in order 

to calculate the currents on the surface. Once the interactions between each of the facets 

are known the currents are determined and the ( )fieldE −
r

 and ( )fieldH −
r

 for the 

problem can be solved.  Figure 23 and Figure 24 shows the faceted model used in the 

simulation. Notice the grid is finer around each of the slots; this is to capture the detail of 

the slot. For example there are ten facets at each end of each slot to reveal the rounded 

slot ends.  Figure 23 shows the facetized model with (104661 unknowns) and the grid 

density is (λ/20). Figure 24 shows a close-up view of a slot and the grid density. The blue 

outline helps identify the slot edges in the grid.  
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Figure 23: Angled View of the Faceted 3-D Model 

 

 

 

Figure 24: Close Up View of a Faceted Slot 
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Figure 25 shows the excitation of the LWA. This figure shows the TE10 mode in the 

waveguide and also shows the slots being excited. The subscripts in (TEmn) are the 

number of half cycles of the propagating mode. The (m) is the number of half cycles in 

the x-direction and (n) is the number of half cycles in the y-direction. To show the range 

of excitation the dark blue shows no excitation and the red is peak excitation.   

 

      

Figure 25: Angled Waveguide View 

Figure 26 is a cross section looking down the LWA. Here the color presentation shows 

TE10 mode clearly dies off at the sidewalls and peaks in the middle. This view also shows 

the closed region of the model, the dark blue perimeter. At the top of the TE10 mode are 

the excited slot walls.  
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Figure 26: Excited Waveguide Cross Section 

6.0 Physical Antenna 

The parameters below give the physical dimension of the antenna depicted in Figure 27: 

WR-90 X-Band rectangular copper waveguide (0.254 x 0.127) meters 

Antenna Length = 0.229 meters 

Element Spacing = 0.019 meters 

Slot Length = 0.015 meters 

Slot Width = 0.002 meters 

Number of Slots = 10 

Tilt = ±170 

 

Figure 27: X-Band Leaky Wave Antenna 
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In Figure 28 the antenna has attachments at both ends. The gray box on the left end of the 

LWA is the probe feed excitation for the antenna. There is a probe located at the bottom 

of the small gray box and launches the wave in the guide. The antenna was excited with a 

TE10 mode this is the fundamental mode for the waveguide. The copper section between 

the excitation and the antenna is a spacer to position the excitation in the anechoic 

chamber on the pole. At the other end of the antenna is a blue rectangular box which is 

the load, this is a match load for the X-Band (TE10) mode and does not allow any 

reflections in the antenna.  

 

 

Figure 28: Leaky Wave Antenna with Excitation and Matched Load 

 
Figure 29 is the antenna mounted in the anechoic chamber on the positioner pole. The 

positioner moves in both theta and phi directions. The blueish box with the circular disk 

allows the phi-direction movement. The box itself is seen in the measurements for the 

different frequencies, this will be discussed later.     
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Figure 29: Leaky Wave Antenna Mounted on the Positioner Pole 

6.1 Test Setup 

The measurements of the antenna were taken in an anechoic chamber. Figure 30 is a 

block diagram of the test setup. The transmitter (TX) is a Scientific Atlanta Standard 

Gain Horn Model 12 - 8.20, Frequency Range (8.2 - 12.4 GHz) and the receiver (RX) is 

the leaky wave antenna. The measurement system controller is a desktop PC which 

collects the measurement data. The network analyzer is an Agilent Technologies E8363B 

10MHz - 40GHz, PNA Series Network Analyzer.  
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Figure 30: Test Setup Block Diagram 

 
The objects in Figure 31 are the network analyzer on the left, the Measurement System 

Controller monitor in the middle, and the Positioner Control on the right.     

 Figure 32 is looking into the anechoic chamber from the transmitting horn antenna 

position. The positioner in the chamber spins on an imaginary axis from the floor to the 

ceiling allowing the theta angles in the measurements. The measurements taken in this 

research hold the phi positioner constant while the theta positioner varies. Figure 33 is 

looking at the transmitting antenna from the positioner.  
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Figure 31: Test Setup, Controller and Network Analyzer Hardware 

 

 

Figure 32: Transmitter View of the Anechoic Chamber 
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Figure 33: Receiver View of the Anechoic Chamber 

6.2 Full Wave Simulation and Measured Results 

The following radiation gain patterns are the full wave simulator (predicted) data using 

CARLOS and the measured data from the test setup mentioned above. The patterns are 

far field conic cuts with a constant phi of (270 degrees) and a varying theta 

 (0 – 360 degrees). The plots are normalized to peak gain. Figure 34 is the coordinate 

system used for the data. 
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Figure 34: Predicted/Measured Coordinate System 

6.3 Backlobes  

The leaky wave antenna’s predicted and measured data shown below are not predicted or 

measured with an infinite ground plane. With this said, the finite length of the broadwall, 

where the slots are, of the antenna (2.54 cm) has some effects that would not be there if it 

were possible to have an infinite ground plane behind the antenna during data collection. 

The effects are backlobes. The currents that are induced on the broadwall during radiation 

travel along the surface. When those currents reach the edge of the surface they will 

radiate and diffract around the edge of the surface and radiate in a different direction. 

With this diffraction you will get backlobes. The diffraction can be explained by 

Geometric Theory of Diffraction (GTD) [29, 31]. Figure 35 shows the edge diffraction 

from a finite surface mounted on the end of a truncated rectangular waveguide [31].   
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Figure 35: E- and H-plane Diffraction by a Rectangular Waveguide. Figure Copied From [31 pg. 808]) 

6.3.1 8.3 GHz Data 

The data taken for (8.3 GHz) is in good agreement for the predicted and measured results, 

the main beam peak points to (190) for the predicted and (18.880) for the measured. The 

figures below are the far patterns, Figure 36 is the predicted pattern and Figure 37 is the 

measured pattern. Figure 38 is the predicted and measured combined patterns. 

                    

                                  Figure 36                                                                     Figure 37 

These are the (8.3 GHz) predicted data Figure 36 and measured data Figure 37 

normalized gain plots, with a constant azimuth (270o) and varying elevation.  



37 

 

Figure 38:  (8.3 GHz) Combined Normalized Gain Plot, With a Constant Azimuth (270o) and Varying Elevation 

6.3.2 9.3 GHz Data 

The data taken for (9.3 GHz) is in good agreement for the predicted and measured results, 

the main beam peak points to (70) for the predicted and (8.250) for the measured. The 

figures below are the far patterns, Figure 39 is the predicted pattern and Figure 40 is the 

measured pattern. Figure 41 is the predicted and measured combined patterns. 
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                              Figure 39                                                                      Figure 40 

These are the (9.3 GHz) predicted data Figure 39 and measured data Figure 40 

normalized gain plots, with a constant azimuth (270o) and varying elevation.  

 

Figure 41:  (9.3 GHz) Combined Normalized Gain Plot, With a Constant Azimuth (270o) and Varying Elevation 
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6.3.3 10.3 GHz Data 

The data taken for (10.3 GHz) is in good agreement for the predicted and measured 

results, the main beam peak points to (359.00) for the predicted and (360.00) for the 

measured. The figures below are the far patterns, Figure 42 is the predicted pattern and 

Figure 43 is the measured pattern. Figure 44 is the predicted and measured combined 

patterns. Notice the backlobe pointing at (1800) for the predicted data and see that it is not 

there for the measured data. This is due to mounting the antenna in front of the phi 

rotator, Figure 29, and the backlobe diffracting around the rotator and splitting into two 

backlobes at (~1550) and (~2050).   

 

                                     Figure 42                                                                   Figure 43 

These are the (10.3 GHz) predicted data Figure 42 and measured data Figure 43 

normalized gain plots, with a constant azimuth (270o) and varying elevation.  
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Figure 44:  (10.3 GHz) Combined Normalized Gain Plot, With a Constant Azimuth (270o) and Varying Elevation 

6.3.4 11.3 GHz Data 

The data taken for (11.3 GHz) is in good agreement for the predicted and measured 

results, the main beam peak points to (353.00) for the predicted and (354.00) for the 

measured. The figures below are the far patterns, Figure 45 is the predicted pattern and 

Figure 46 is the measured pattern. Figure 47 is the predicted and measured combined 

patterns. 
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                                   Figure 45                                                                      Figure 46 

These are the (11.3 GHz) predicted data Figure 45 and measured data Figure 46 

normalized gain plots, with a constant azimuth (270o) and varying elevation.    

 

Figure 47: (11.3 GHz) Combined Normalized Gain Plot, With a Constant Azimuth (270o) and Varying Elevation 
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6.3.5 12.3 GHz Data 

The data taken for (12.3 GHz) is in good agreement for the predicted and measured 

results, the main beam peak points to (348.00) for the predicted and (348.370) for the 

measured. The figures below are the far patterns, Figure 48 is the predicted pattern and 

Figure 49 is the measured pattern. Figure 50 is the predicted and measured combined 

patterns. 

 

                                    Figure 48                                                                   Figure 49 

These are the (12.3 GHz) predicted data Figure 48 and measured data Figure 49 

normalized gain plots, with a constant azimuth (270o) and varying elevation  
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Figure 50: (12.3 GHz) Combined Normalized Gain Plot, With a Constant Azimuth (270o) and Varying Elevation 

6.3.6 LC Parameter Extraction Prediction Results 

The main beam angle (θMB) predictions are in Table 1. The polar plot in Figure 51 shows 

(900) at broadside, endfire to the right of broadside, and backfire to the left of broadside. 

The LWA’s fundamental frequency (f0) is (10.3 GHz) and the table below shows it is not 

at broadside.  None of the predictions in Table 1 below or on the polar plot in Figure 51 

show the correct predicted main beam angle. If the predictions were correct, then the 

frequencies (8.3 GHz and 9.3 GHz) would be to the left of broadside, backfire, and the 

frequencies (11.3 GHz and 12.3 GHz) would be to the right of broadside, endfire. The 

suspected reason for the incorrect predictions is the lack of mutual coupling in the 

prediction equations. Another possible explanation for the LC parameter extraction 
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predictions being incorrect is the application of the Babinet-Booker Principle in 

determining the slot impedance.     

 

Frequency 8.3 GHz 9.3 GHz 10.3 GHz 11.3 GHz 12.3 GHz 

Angle (degree) 86.964 81.088 76.292 72.275 68.844 

 

Table 1: LC Parameter Extraction Main Beam Predictions 

 

 

Figure 51: LC Parameter Predictions on a Polar Plot 

7.0 Conclusion  

In this research there are three different approaches in determining the main beam 

angle ( )MBθ . The first approach used the metamaterial LC parameter extraction developed 

by C. Caloz and T. Itoh. The second approach was a full wave 3-D simulation using 

CARLOS and the third was a prototype that was measured. The LC parameter extraction 

did not work in this case due to the mutual coupling that takes place with tilted slot leaky 
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wave antenna, or possibly due to the Babinet-Booker Principal as mentioned previously. 

If the LC parameter extraction approach would have worked it would have let the 

designer design a portion of the radiating structure by using the parameters extracted 

from the single unit cell: CL, LL, CR, and LL. The full wave simulator approach and 

prototype antenna did have good agreement. The results show that tilted slot leaky wave 

antenna can radiate at broadside and move through both the right and left of broadside at 

the dominate mode (TE10) by scanning the frequency.  The radiation patterns show a 

relative narrow beam and the measured data shows the physical interaction between the 

antenna and the mounting pole, unlike the ideal conditions in the full wave simulator.      

8.0 Future Work 

There remains an opportunity for continued work on this problem. The mutual coupling 

needs to be accounted for in calculating the main beam pointing angle ( )MBθ . This would 

give greater insight in the type of radiating element that may be used on a given antenna 

by showing how the elements interact with each other. This would also allow a wider 

range of radiating structures to use (42) in determining main beam radiation angles. Other 

future work is determining if the Babinet-Booker Principle was applied correctly.   
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