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mobile unit as a message, and adapting traditional message passing algorithms to mobility. Our first
algorithm is based on tracking and can be efficient when the path of the mobile node exhibits
considerable locality. While it uses the Dijkstra-Scholten algorithm for diffusing computations as a point
of departure, the final algorithm adds a number of mechanisms. Our second example is a search
algorithm based on transforming the classic Chandy-Lamport snapshot algorithm. The algorithm
generalizes to multicasting to a set of rapidly moving mobiles. Both our algorithms are based on the
assumption that messages and mobiles travel through the same FIFO channels. We show how to enforce
this assumption by modifying existing handover protocols.


https://openscholarship.wustl.edu/cse_research/459?utm_source=openscholarship.wustl.edu%2Fcse_research%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/459?utm_source=openscholarship.wustl.edu%2Fcse_research%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages

£ Washington

WASHINGTON » UNIVERSITY « IN+ ST+ LOUIS

School of Engineering & Applied Science

Search and Tracking Algorithms
for Rapidly Moving Mobiles

Amy L. Murphy
Gruia-Catalin Roman
George Varghese

WUCS-98-1

June 1, 1998

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899






Search and Tracking Algorithms for Rapidly Moving Mobiles

Amy L. Murphy, Gruia-Catalin Roman, George Varghese
{alm, roman, varghese}@cs. wustl.edu
‘Washington University, Department of Computer Science
Campus Box 1045, Bryan 503/ One Brookings Dr.
St. Louis, MO 63130

June 1, 1998

Abstract

With the advent of wireless technology and laptops, mobility is an important area of research. A
fundamental problem in this area is the delivery of messages t0 a moving mobile. Current solutions, work
correctly only for slowly moving nodes that stay in one location long enough for tracking to stabilize.
In this paper we consider the problem of message delivery to rapidly moving mobile units. With these
algorithms, we introduce a new method for designing algorithms based on the paradigm of considering a
mobile unit as a message, and adapting traditional message passing algorithms to mobility.

Our first algorithm is based on tracking and can be efficient when the path of the mobile node exhibits
considerable locality. While it uses the Dijkstra-Scholten algorithm for diffusing computations as a point
of departure, the final algorithm adds a number of mechanisms. Qur second example is a search algorithm
based on transforming the classic Chandy-Lamport snapshot algorithm. The algorithm generalizes to
multicasting to a set of rapidly moving mobiles.

Both our algorithms are based on the assumption that messages and mobiles travel through the same
FIFO channels. We show how to enforce this assumption by modifying existing handover protocols.






1 Introduction

Mobile computing is rapidly changing from being the exception to being the norm. Laptop computers
are nearly everywhere people are, especially when people are traveling. Not only do people need to work
in a disconnected mode of operation, they also need the advantages that come with remaining connected
to the wired infrastructure without the bounds of a wire, and without concerning themselves with massive

reconfiguration each time they move to a new area.

To some degree, cellular telephones already provide such services, and their success has led to the adoption
of a similar model for mobile computing. Figure la shows a typical cellular telephone model with a single
mobile support center (MSC) in each cell. The MSC is responsible for communication with the mobiles
within its region and serves as a manager for handover requests when a mobile moves between MSCs. Figure
1b shows how the cellular telephone model is transformed into a graph of nodes and channels. For the
purposes of this paper, we will assume that when a mobile unit moves between two MSCs, it is modeled as

being on a channel and therefore disconnected from the network.

{(a) Cellular system (b) Graph model

Figure 1: (a) Cellular system with one MSC per cell. All MSCs are assumed to be connected by a wired network. {b) Abstract
model of a cellular system, as a graph of nodes and channels. Solid line indicates a spanning tree. A mobile unit moving across the
border between two cells may miss a simple broadcast alang a spanning tree if the handover occurs between the broadcast at MSCy

and the broadcast at MSC;.

One of the central problems in mobility is delivering a message to a mobile unit as it moves. Most
applications in the Internet today rely on sending messages to particular locations. For example, e-mail
assumes that the sender knows a particular address for the recipient. In a fixed network, routing protocols
such as link state routing [12] work over a fixed topology collecting information about the direction of each
host. When a message arrives, the router performs a table lookup to decide which port, or direction, to send
the message. Although all routing protocols allow for topology changes, either due to link failures or policy

changes, the length of time to propagate such changes is not adequate to support mobility.

One model of mobility currently being implemented fits on top of the fixed network, effectively providing
specific points of connection for the mobiles. In Mobile IP [10], every mobile is associated with a fixed home

agent. This agent provides a forwarding service for the mobile. When the mobile moves to a new location, it



contacts its home agent with new contact information. Messages for the mobile are sent to the fixed address
of the home agent. When a data message arrives, it is encapsulated by the new location of the mobile, and
gent back on the network. Because the outer address is now the foreign location of the mobile, the fixed

network successfully routes the message o the mobile, where it is decapsulated and processed.

In cellular telephones, a system similar to Mobile IP is employed when users roam cutside their home
region {13]. When the telephone is activated, the user registers with the home, indicating essentially a new
area code to redirect calls to. The registration process occurs infrequently because the most common case is
for the user to move within a single region. Within that region, another approach must be taken to locate
the mobile each time a call arrives, and handovers are used to maintain connectivity when a user crosses a

cell boundary during a session.

The Mobile IP and cellular telephone solutions work well with slowly changing systems where the mobile
unit moves infrequently and the registration process has time to converge. This is especially true because
mobiles are carried by people who move using mechanical devices (e.g., cars, planes) that are much slower

than message transmission speeds.

However, if the mobile moves rapidly through different cells, the information at the home agent will reflect
an old location, and messages sent to that location will be dropped. Clearly, a forwarding mechanism can be
added to the foreign locations, having them send these otherwise lost messages to the mobile’s next location.
However, with rapid movement, the messages can keep chasing the mobile without delivery, following the trail
of forwarding pointers. At the same time, the amount of forwarding information can increase dramatically.
Although such rapid movement may seem unlikely, one of the trends in mobility is to reduce the size of the
cell {e.g., nanocells) to increase the frequency reuse. As cell sizes decrease, the time that it takes to traverse

a cell similarly decreases.

Another possible application that is characterized by rapid mobile movement is mobile code where it is not
a physical component that moves, but rather a program moving along the fixed network doing computation
at various network nodes. Rather than connecting to a foreign agent through a wireless mechanism, these
mobile code agents actually execute at a foreign host. They have the ability to move rapidly from one host
to another and may not register each new location with a home. Therefore, delivering a message to a mobile
code agent becomes an interesting application area in which rapid movement is not only feasible, but is the

commaon case.

Thus while rapid mobile movement may not be common today, it is likely to be a problem of practical
interest in the future. Besides the potential practical impact, we believe that the following question is a
fundamental one in the field of asynchronous network protocols: Can we devise efficient protocols that can
guarantee delivery to @ node (or set of nodes) that can move at arbitrary speeds across o fized network?
Clearly, trivial solutions exist that broadcast the message to all nodes and store the message at all nodes

until the mobile arrives. By contrast, more efficient solutions should limit the broadcast range and/or the



storage required.

Mobile-as-Message Paradigm and Paper Outline: In this paper, we propose adapting existing dis-
tributed algorithms to perform guaranteed message delivery in a mobile system with rapidly moving mobile
units. In brief, our strategy is to take existing distributed algorithms that use message passing, substitute

mobile units for messages, and find useful applications for the resulting algorithms.

We present two algorithms that follow this paradigm, each of which is applicable to the problem of
message delivery. Because both of our algorithms rely on channels being with respect to both mobile units
and mesgages, we first provide a simple mechanism to guarantee FIFQO channel behavior in Section 2. Using
this mechanism, our first algorithm tracks the current location of the mobile, and uses the tracking trail for
efficient delivery. The algorithm starts with the main idea of the termination detection algorithm proposed
by Dijkstra and Scholten [5], and adds considerable modifications. It is described in Section 3. Our second
result adapts the snapshot algorithm by Chandy and Lamport [4] to search for a mobile unit. This is
described in Section 4 together with an extension to multicasting to a set of mobiles. Section 5 describes

related work while Section 6 states our conclusions and some future directions.

2 Enforcing the FIFO assumption

Before presenting our algorithms, we preemptively dispel one potential objection to the use of FIFQ
channels. Specifically, we model both the mobile units and the messages as traveling on the same channel.
Although this is the case for mobile code units, with physically moving mobile units such as laptop comput-
ers, this assumption appears to be errant nonsense because mobile units move slowly through space while
messages move rather quickly on a wire between MSCs. However, because many distributed algorithms
use FIFO channels and our objective is to apply these algorithms to the mobile environment, the lack of
FIFO channels in the mobile environment makes this difficult. Although flush primitives [2] can be used
to make traditional non-FIFQ channels FIFQ, the separate channels used for mobiles and messages makes
Ahuja’s flush primitives inapplicable to mobility. To further understand this problem, we must explore a
more detailed model of reality, and see exactly how the FII'O agsumption can be broken. We then propose

a simple fix and show why the resulting channe! is indeed FIFO.

One of the American standards for analog cellular communication is AMPS [13]. In AMPS, cellular
telephones tune o only one frequency at a time. When the signal from one mobile unit begins to degrade,
MS3C,, communicating with it on frequency fi, sends a message to all bordering cells requesting the signal
strength of messages on f;. After the responses are collected, MSC; selects the strongest signal as coming
from the cell the mobile unit is moving into, MSC;. At this point, a handover begins. Figure 2a shows
the control messages exchanged among the two MSCs and the mobile unit. First, MSC; sends a frequency
request to MSCy. MSC, responds with an available frequency f. Next, MSC; sends a switch message to

the mobile unit with the new frequency. The mobile unit changes t0 the new frequency and sends a hello to



MSCa. Finally, MSC, sends a handover-complete message to MSC;.
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Figure 2: AMPS handover protocol {a). If messages are processed immediately upon receipt, it is possible (b) for the mobile to
move faster than the message along the channel , or {¢) for the message to move faster than the mobile, thus breaking the FIFO

channel property. By delaying the message processing until after the handover-complete, both situations are avoided.

By using the AMPS approach, we know when a mobile unit is moving between cells, and which cells it
is moving between. We also note that the mobile unit is not involved in the handover until the last moment
when it changes the frequency it is tuned to. Although this is slightly different with digital technologies and

soft handovers, we will leave that discussion for another paper.

Because we are concerned with keeping the channels FIFQ with respect to the mobile unit and the data
messages (henceforth referred to as announcements to maintain the distinction between data and control
messages), we identify the two cases in which the channels are no longer FIFO. Figure 2b shows how
an announcement is put into the channel prior the the mobile leaving, however the mobile arrives at the
destination before the announcement. This is possible because the actual handover for the mobile is simply a
series of messages and is not related to physical movement. The situation is as follows: a handover has already
begun to transfer a mobile, m, from MSC; to MSCs. Before the new frequency arrives, a new announcement
arrives. The announcement is immediately put onto the channel from MSC; to MSC;. The new freguency
arrives and the switch message is sent to m, effectively putting the mobile onto the channel following the
announcement. The messages to complete the handover move over the wireless channel and need not interact
with the announcement, therefore it is possible for the mobile to arrive at MSC; before the announcement.
Therefore, the mobile appears to have traveled across the channel faster than the announcement. In this case,
we have effectively given the mobile multiple copies of the same announcement: once at MSC; and again

at MSC,. Although such duplicate delivery may not be a problem for the mobile to deal with (by keeping



announcement identities), it is better to limit the power consumption of the mobile necessary to receive an
announcement. Also, because we are separating the FIFO nature of the channel from the algorithm, we

should not make any assumptions about the ability of an algorithm to handle this type of behavior.

Another more serious situation is that of the announcement overtaking a mobile, shown in Figure 2c.
In this case, an announcement arrives at MSC, after the switch message has been given to the mobile and
the mobile is already in the channel. At this point, the announcement is put into the channel, following the
mobile. Unlike before, we assume that the announcement travels faster than the remainder of the messages
of the handover, allowing the announcement to arrive at MSC, before the mobile. If we assume delivery as

before, the mobile may not receive any copies of the announcement,.

These problems arise because instead of having one channel on which both announcements and mobile
units travel, we have, in effect, two channels which are not synchronized. We have also defined a mobile to

be on the link after the swifch message is sent and until the hello is received by the next MSC.

Qur task is to use the details of the handover protocol and the arrival of the announcement to make the
channel FIFQO without regard for the underlying algorithm that depends on the FIFO channels. Intuitively,
we accomplish this by treating any mobile unit that is involved in a handover as being on a channel and
inaccessible during the handover. Because the sender initiates the handover, we modify its behavior by
adding the mobile that is leaving to a handover set. Whenever an announcement arrives for 2 mobile in this
set, its arrival is delayed until the mobile has left the MSC. As soon as the handover-complete is received,
this delayed announcement can be processed and the mobile removed from the handover set. Nothing needs

to change at the receiver.
In order to show that this provides us with FIFQO channel behavior, we look at four conditions:
1. announcements arrive in FIFO order with respect to one another.
2. mobiles arrive in FIFQO order with respect to one another.
3. announcements sent after mobiles arrive after mobiles.
4. mobiles sent after announcements arrive after announcements.

The first condition is trivial because we assume a reliable data link layer that ensures the ordering of
messages on a single link. The second condition cannot be maintained because even though two mobile units,
my and mgz, are sent swifch messages one after the other, the mobile units may send hello messages that
arrive at the receiver in the reverse order. Therefore, we cannot guarantee FIFO behavior among mobiles,

but this is not necessary for our message delivery algorithms.

The third condition is the most imporiant. All announcements that are sent before the mobile unit is sent
on the channel must arrive before the mobile unit because there is at least one message (the frequency-request

message) that must follow the announcement down the channel, effectively flushing it out. During the period



when a mobile is involved in the snapshot (after the frequency-request and before the handover-complete) all
announcements received will be delayed. It follows that none will be on the channel until after the mobile
has arrived at the destination, and therefore cannot arrive at the destination until after the mobile. For the
final condition, we note that the handover requires at least one message to be sent (frequency-request) along
the same channel as the announcement. Therefore, any announcements in the channel before a handover is
initiated will be delivered before the handover completes since they will be flushed out of the channel by the
frequency-request.

By delaying the processing of an announcement while a mobile is in transit, we have effectively reduced
the handover process to an atomic operation and forced the channels to be FIFQO without any delay on the
movement of mobiles and only minor delays in the processing of announcements. Notice that we only delay
announcements addressed to the mobile (either unicast or multicast) and not all messages. For the rest of

the paper, we assume that that mobile nodes and announcements are FIFQ with respect to each other.

3 Announcement Delivery through Tracking

For our first algorithm, we consider the case where a mobile’s movement exhibits considerable locality
and searching the entire network area is not necessary. Consider the situation of a cablé repairman who
travels from her office to a particular region. She stays within that region through the day; although the
region is not known in advance, it is likely that it is highly localized (i.e. most repairs will be in a single
suburb). Therefore, we would like to limit the number of MSCs involved in the delivery to those in that small
region. To accomplish this, we turn to a tracking solution inspired by the termination detection algorithm

for diffusing computations proposed by Dijkstra and Scholten [5].

Figure 3 shows a general diffusing computation which starts from a single root node and forms a tree as
messages are passed. A parent node keeps a count of the number of children it has, and the child keeps a
pointer back to the parent. When a child goes idle, and it has no more children, it reports this to the parent
and removes itself from the tree. When all children have been removed and the root is idle, the algorithm

has terminated.

In the mobile model, we model a mobile unit as a message. For every mobile, we establish a home node
and construct a separate tree rooted at the home node that reflects its movement. A node can remove itself
from the tree when the mobile is not present and it has no children. A delivery algorithm that guarantees
delivery can then be added on top of this tree by sending announcements first to the home and disseminating
them through the tree. However, we note that this still uses too many nodes. The only nodes and channels
that must be involved in the delivery are those on the path from the rcot to the mobile unit. We refer to this
as the backbone (see Figure 3b). Therefore, we modify the graph growth algorithm to yield the backbone,
and generate explicit delete messages to remove all nodes not on the backbone. We refer to non-backbone

nodes as being part of a tail. There can be multiple tails, but only one backbone.
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Figure 3: By adapting diffusing computations to mobility, we construct a graph reflecting the movement of the mobile. In order to
deliver an announcement, the only part of the graph we need is the path from the root to the mobile, the backbone. Therefore we

adapt the Bijkstra-Scholten algorithm to maintain only this graph segment and delete all the others.
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Figure 4: The backbone changes as the mobile moves to (a) a node not in the backbone, (b} a node higher in the backbone, and

(c) a tail node. (d} shows the state after all channels have cleared.



To understand the overall approach, we will look at how the graph changes as the mobile unit moves.
First, however, it is useful to note that because of the definition of the backbone, the mobile unit will always
be located at the last node in the backbone or on a channel leading away from the last node of the backbone.
The mobile cannot be on a tail. In Figure 4a, the mobile unit moves from the last backbone MSC, C, to an
MSC not in the graph, D. In this case, the backbone extends to include D by both the child pointer of C
pointing to D and the parent pointer of D pointing to C. Child and parent pointers will be used primarily

in the announcement delivery portion of the algorithm.

In Figure 4b, the mobile moves to a node already in the backbone, B. Because of B’s position, we do not
want to change any of the parent pointers. But we do wish to cause the deletion of the $ail formed by MSCs
C and D. Therefore a delete message is sent to C. When C receives the delete from its parent, it will delete
its parent pointer, send the delete to its child, D, and nullify its child pointer. If at this point, however, the
mobile moves from B onto D (See Figure 4c), D still has a parent pointer (C) and we cannot distinguish this

case from the previous case (where B also had a parent pointer).

In the previous case we did not change the parent pointer, but in this case, we wish to have D’s parent
pointer set to B so that the backbone is maintained. To distinguish these two cases, we require the mobile
unit to carry a copy of the identifiers of the nodes in the backbone. In the first case where the mobile arrives
at B, B is in the list of backbone nodes maintained by the mobile, so B keeps its parent pointer unchanged,
but prunes the backbone list to remove C and D. However, when the mobile arrives at D, only A and B are

in the backbone list, therefore the parent pointer of D is changed to point to B.

But, what happens to the delete message heading for D from C? Because C is no longer D’s parent, the
delete is simply dropped and the backbone is not affected. Keeping the backbone list is similar to routing
protocols passing complete paths to destination in BGP [11] to avoid loops. It has been argued that keeping
such information in the packet greatly increases its size. However, in our case, the information is being kept

by the mobile unit and we assume there is sufficient storage on such a device for this additional information.

The delivery algorithm is then superimposed on top of the generated graph. It is not sufficient to send
the announcement down the spanning tree created by the backbone because the mobile is free to move from
a region below the anncuncement to one above it. Therefore, to guarantee delivery, as the announcement
propagates down the backbone, a copy is stored at each backbone node until delivery is complete. We refer
to the portion of the backbone with an announcement as the covered backbone, see Figure 3b. Delivery can
occur by the mobile unit moving to a location in the covered backbone, or the announcement catching up
with the mobile at an MSC. In either case, an ack is generated and sent up via the parent pointers toward
the root. If the announcement is delivered by the mobile moving on to the covered backbone, a delete is
generated toward the child and an ack is generated toward the parent. Therefore any extra copies of the

announcement on the newly created tail will be deleted with the nodes.



3.1 Details

The code for the tracking algorithm is shown in Figure 5. As before, we model arbitrary movement of the
mobile by an action that allows a mobile at a node to move non-deterministically to any outgoing channel.
It is important to realize that, in this model, the tree formed by the movement is superimposed onto the
graph of nodes. The existence of a channel does not mean the channel already exists as part of the movement

path, but rather simply that it is possible for a mobile to move from one cell to another.

MOBILEARRIVES shows the bulk of the processing and relates closely to Figure 4. When the mobile
unit arrives at a node, we must decide how the backbone changes. If the mobile is doubling back onto the
backbone, we leave the parent pointers alone and simply change the path carried by the mobile to reflect
the shorter backbone (as in Figure 4b). If the node is not in the backbone (Figure 4a} or is part of a tail
(Figure 4c), then the parent pointers must change to add this node to the backbone, and the node must be
appended to the backbone list carried by the mobile. In any case, the children of this node are no longer

necessary for announcement, delivery, so a delete message is sent to the child and the child pointer is cleared.

If the announcement is at the node and the mobile has not already seen it, delivery occurs and the
mobile records the message identifier to prevent future redelivery. Because delivery is complete, we send
an ack message toward the root to clear the announcement copies. The node then deletes its copy of the

announcement.

An announcement can arrive at a node either from its parent or from another node that is part of a tail.
If the announcement arrives from a node other than the parent, it should be discarded. If a delete from a
node other than the parent is processed, it could propagate through the network endlessly. However, when
an announcement arrives from the parent it is always processed. If the mobile is present, the announcement
is delivered and the ack propagation started. If the mobile is not present, the node stores a copy of the
announcement in case the mobile arrives at a later time and immediately sends the announcement to itg

child.

ACKARRIVES enables the cleanup of the announcements by propagating acks toward the root via the
parent pointers. The purpose of the delete messages is to remove the tail segments of the graph. Recall that
a tail is created by a backbone node sending a delete to its child. Therefore, a delete should only arrive
from a parent node. If we were to accept a delete from a non-parent node, as in the delete from C to D in
Figure 4c, we could destroy the backbone. However if the delete arrives from the parent, we are assured that
the node no longer resides on the backbone and should be deleted. Therefore, the arrival of a delete from a
parent triggers the deletion of the stored announcement, the propagation of the delete to the child, and the

clearing of both child and parent pointers.



State
AnnouncementAt 4 boolean, true if announcernent stored at A; initially false everywhere

MobileAt 4 boolean, true if mobile unit at A; initially false except at root
Parent(A) the parent of node A is node B; initially NULL
Child{A} the child of node A is node B; initially NULL
started boolean, true if delivery has started; initially false
Actions
ANNGUNCEMENTARRIVES 4 (B) ;arrival at A from B MOBILEARRIVES 4(B) ;arrival af A from B
Effect: Effect:
if Parent{A)=B if A in mobile’s list of nodes
if MobileAt 4 A keeps old parent
if sequence number in mobile less than mobile’s list of nodes is truncated
sequence number of thig ann. after A to the end
deliver announcement else
mobile records sequence number Parent(A):=B
send ack to B A added to mobile’s list of nodes
else A sends delete to Child(A)
AnnouncementAt 4 :=TRUE ;save Gnm. Child{A):=NyLL
send announcement to Child(A} if AnnouncementAt,

if sequence number in mobile less than
sequence number of this ann.
deliver announcement
mobile records sequence number
Send ack to Parent{A}
AnnouncementAt 4 :=FALSE ;delete ann

ACKARRIVES4(B) ;arrival ai A from B

Effect: MOBILELEAVES 4 (B) ;leaves from A to B
if AnnouncementAt 4 Preconditions:
AnnouncementAt 4 :=FALSE ;delete ann. MobileAt 4 and channel (A,B) exists
send ack to Parent(A) Effect:
MobileAt 4:==FALSE
Child(A):=B
DELETEARRIVES4(B) ;arrival ot 4 from B
Effect: ANNOUNCEMENTSTART ;root sends ennouncement
if Parent(A)=B Preconditions:
if AnnouncementAf 4 started = FALSE
AnnouncementAt o :=FALSE ;delete onnouncement  Effect:
send delete to Child{A) started:=TRUE
Parent(A):=NULL if MobileAt oot =TRUE
deliver announcement

Child{A):=NULL
else

AnnocuncementAt,yoes :=TRUE

root sends announcement to Child{root)

Figure 5: Tracking algorithm obtained using some initial ideas from termination detection
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3.2 Correctness

The first node in the backbone is either the node on which the mobile is currently residing (if it is at a
node) or the node it just left from (if it is in a channel). The remaining nodes are found by tracing parent
pointers from the first node until we reach the root. We use the term predelivery to denote the execution
interval during which delivery has been started but not accomplished. We present a proof sketch; a complete

formal proof is more complex and has many more invariants. The following major invariants are useful:
I1: The backbone is well defined (i.e., it is acyclic and terminates at the root).

12: During predelivery, there is exacily one announcement (that we call the bellwether)! on a link in the
network. This link is either between two nodes on the backbone, or follows the mobile unit on the same link.

(Intuitively, this is the leading edge of the announcement moving towards the mobile.)

I3: During predelivery, the backbone is divided into two sections. The nodes above the bellwether and
the part of the link above the bellwether are called the covered backbone. The part of the link below and
the nodes below form the rest of the backbone. During predelivery, nodes in the covered backbone have a

copy of the announcement, and no other nodes in the graph have a copy.

I4: If A and B are backbone nodes and A is the parent of B, there is no delete message in transit from
A to B. For all nodes A and B, if A is the parent of B, then either A records B as its child or there is a
delete in transit from A to B.

I5: In predelivery, there are no acks in the system.

16: After delivery, if a backbone node A has a copy of the announcement, then there must be an acyclic

path from an ack to A by following child pointers in which each node has a copy of the announcement.

Eventual Announcement Delivery: We present a proof sketch that delivery must eventually cceur.
During predelivery, we know know that in any state, there is a bellwether announcement copy on the link
from say X to Y, and a set of say n nodes in the covered backbone. We know that the bellwether must
eventually arrive at node ¥ by link liveness.? We claim that after bellwether arrival either the announcement
is delivered or the length of the covered backbone increases to n + 1. Clearly the length of the covered
backbone cannot increase beyond the number of nodes in the graph (because the backbone is acyclic); thus

delivery must eventually occur.

So how do we prove that after bellwether delivery, either the announcement is delivered, or the length
of the covered backbone increases? Essentially, this follows because when the bellwether reaches Y, ¥ must
become part of the backbone (thereby increasing the length of the covered backbone) unless the mobile
has moved to some node say Z in the backbone above the bellwether (but in this case, delivery must have

occurred, because by the invariants Z has a copy of the announcement).

I\Webster’s dictionary defines the bellwether as the leading sheep of a flock.
*We must assume that a mobile eventually arrives at the next MSC or delivery can be indefinitely postponed.

11



Tail Deletion and Garbage Collection: Invariant 14 ensures that any tail has a delete message in
transit to the node at the head of the tail (where the head of the tail is defined as the node whose parent
no longer points to it as a child). Thus all tails will either be deleted or the nodes in the tail will be added
back to the backbone by mobile movement. Thus nodes that the mobile once visited but are no longer part

of the backbone will eventually clean up their parent pointers,

It is also important to show that after delivery, all announcement copies are either deleted by a node
receiving a delete message or by an ack. Because acks follow parent pointers toward the root, the only way
for the ack not to reach one of these nodes is for the ack to stop propagating toward an announcement copy.
The only way for an ack to stop propagating is for it to reach a node without an announcement copy or for
the mobile’s arrival to change the backbone and destroy the acks. In the case of the mobile arriving on the
backbone, a new ack is generated up the backbone, taking the place of the original ack farther down in the
old backbone. The former case can occur if the ack arrives from a tail node. By using Invariant I8, however,
we argue that there is always an ack en route to each announcement copy in the backbone even if an extra
ack arrives from a tail. Because of the tail deletion property, announcements on tail nodes will eventually

be deleted.

Generalizations: A simple extension of this algorithm is to allow for multiple concurrent announcement
deliveries as in sliding window protocols. These announcements and all associated acks would have to be
marked by sequence numbers so that they do not interfere, but the delivery mechanism uses the same graph.
Therefore the rules governing the expansion and shrinking of the graph are not affected but the proofs of

garbage collection and ack delivery are more delicate.

4 Message Delivery through Search

In a search approach, the general ides is to send the announcement to all nodes, and have one of these
nodes actually deliver the announcement. A simple scheme to disseminate the announcement might be to
construct a spanning tree over the nodes and pass the announcement along these links. For example, in
Figure 1b, an announcement can be initiated at MSC: and sent in both directions along the spanning tree

shown in bold.

If the mobile unit does not move during the announcement dissemination, it will receive the announce-
ment. However, if it crosses the border between MSC, and MSCs after the broadcast at MSCy but before the
broadcast at MSC;, it will not receive the announcement even though it was in the system for the duration
of the broadcast and not moving particularly fast. On the other hand, in a snapshot the location of every
message and the state of every processor is recorded. If a snapshot behaved in a manner similar to the naive
broadcast just described, instead of recording all messages in the system, it could fail to record a message

on a channel.
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We know, however, that it is possible to construct a distributed snapshot such that all messages are
recorded. For this paper, we use the Chandy-Lamport [4] algorithm; however, many other snapshot algo-
rithms (including non-FIFO algorithms) can be used as well. When running this snapshot in a system with
a uniquely identified mobile unit, there is never more than one copy of this mobile in the system at a given
time. Thus any system state (and hence any consistent snapshot state) will record the mobile exactly once.
Intuitively, the point at which a snapshot records the mobile must involve some contact between the snapshot
control message and the mobile. By modifying the snapshot marker messages to piggyback the announce-
ment, we obtain ezactly once delivery. In [9], this search algorithm is presented and its properties reasoned
about directly from the program text. In this paper, however, we directly explore the relationship between
the Chandy-Lamport algorithm and the resulting message delivery algorithm. Qur new proof provides a

simpler explanation and proof using a reduction to a snapshot and its properties.

In the Chandy-Lamport algorithm, a process begins its local snapshot when it receives the first marker.
When this occurs, the marker is sent on all other outgoing channels and the state of the processor is recorded.
If there are any messages at the node, they are recorded as part of the processor state (Figure 6a). If the
node has already started its local snapshot when a message arrives along a channel (that the node has not
seen the marker on}, the message is recorded as being on the channel (Figure 6b). Recording continues until

a marker is received on all incident links.

We translate these actions to the mobile environment. The announcement corresponds to the marker,
and the mobile node corresponds to a message in the Chandy-Lamport algorithm. When an MSC receives
the announcement for the first time, it sends copies on all outgoing channels and attempts delivery to any

mobile unit present. If the mobile unit is at the MSC, it will receive the announcement (Figure 6c¢).

Just a8 a node continues recording until it has received the marker on all links, the delivery algorithm will
keep a copy of the announcement until it receives a copy of the announcement from all neighbors. Intuitively,
this is what prevents the mobile from hopping from node to node (like the Artful Dodger) eluding the
amnouncement. Thus if the moebile arrives prior to the announcement on a channel, the MSC delivers the

data as soon as the handover is complete (Figure 6d) because it has a stored local copy.

Note that each node keeps a copy of the announcement for only a small local propagation delay (ie.,
the time to send and receive a message to all neighbors). This is more efficient than another proposal [1]
which broadcasts the announcement to all nodes. Each node then stores the announcement until it either
delivers the announcement or receives notice that another node has delivered it. Such a scheme requires
storing copies of an announcement for ¢ network propegation delay, and requires at least two phases (phase
1 for broadcasting the announcement, and phase 2 for the node that accomplishes delivery o send delivery

notification to all other nodes and clean up the distributed announcement copies).
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Globa! Snapshot Mobile Delivery
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* @ mobile unit
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(b) message to be recorded | (d) mobile to be delivered to has no announcement

on channel upon arrival

Figure 6: Translation of concepts from global snapshots into mobile delivery. The curved arrow shows the processing of an element
from a channel while the text describes the action triggerad by such movement.

4.1 Details

For simplicity, the code considers only a single announcement being delivered and a single mobile unit in

the gystem.

In order to determine whether or not to deliver the data to a mobile when it arrives from channel e,
we must know if the announcement has arrived from ¢. Therefore, we define a flag, flushed, that indicates
whether the data has been received via ¢. Initially, we set all flushed flags to false. To start the algorithm, we
give an announcement to a single node, causing it to start its local snapshot and send the announcement on
all outgoing channels. Because we are artificially placing the announcement at the node, we do not change

the state of any of the flushed variables.

State
fusheds g boolean, true if announcement traversed the link from A to B; initially false everywhere
AnnouncementAt, boolean, true if announcement stored at A; initially true only where ann. starts
MobileAt, boolean, true if mobile unit at A; initially true only where mobile located
Actions
ANNOUNCEMENTARRIVES4{B) ;arrival at A from B MOBILBARRIVES 4(B) jarrival at A from B
Effect: Effect:
flushedp 4:=TRUE MobiieAt 4:=TRUE
if —AnnouncementAty if -flushed g, 4 and AnnouncementAt,
send announcement on all outgoing chanmnels deliver announcement
AnnouncementAt 4 :=TRUE ;save ann.
if MobileAt,
deliver announcement
MOBILELEAVES 4 (B) ;leaves from A to B CLEaNUP,4 ;A finishes local snepshot
Preconditions: Preconditions:
MobileAt4 and channel (A,B) exists Forall neighbors X, flushed x 4=TRUE
Effect: Effect:
MobileAt 4 :=FALSE AnnouncementAt 4 :=FALSE ;delete ann.
mobile unit moves cnto (4,B) Forall neighbors X, flushed x 4 :=FALSE

Figure 7: Snapshot Delivery Code

In Figure 7, ANNOUNCEMENTARRIVES, we indicate that the anncuncement has arrived by setting the

flushed variable for that channel. If the announcement had already arrived, we do not need to do any further
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processing. If we attempted to deliver the announcement again, we might deliver it twice to the same mobile.
Additionally, if the announcement has already been propagated on all outgoing channels, we do not want to
send it again because this could restart the delivery process unintentionally. Therefore, if the MSC was not
already holding a copy of the announcement, we attempt delivery (as in Figure 6c) and store a copy of the

announcement. We also propagate the announcement on all outgoing channels.

When the mobile unit arrives from a channel, MOBILEARRIVES Figure 7, we must either attempt to deliver
the data or do nothing. If the MSC does not have a copy of the announcement, then trivially it cannot
deliver it. However, if it does have the announcement and the channel has already been flushed, attempted
delivery would be a duplication. Therefore, if the channel has not been flushed and the announcement is

present we deliver the data (as in Figure 6d).

CLEANUP models the local completion of the delivery. Once the announcement has arrived on all
channels, the local snapshot is complete. The node knows that either it already delivered the announcement

or it never will. Therefore, the announcement can be deleted and the channel states reset to not flushed.

4.2 Correctness

To formally argue correctness, we start with an automaton that implements the Chandy-Lamport (CL)
algorithm on a graph on which the mobile node is the only “message” that can travel from node to node. We
then transform CL into our message delivery (MDY} algorithm using the rules above. We then prove that for
any execution of MD there is a corresponding execution of CL with the following correspondence invariants

that can be established inductively.
I1: message arrival in CL corresponds to mobile arrival in MD.
I2: marker arrival in CL corresponds to announcement arrival in MD.
I3: recording the message in CL corresponds to delivering the announcement to the mobile in MD.

I4: being in the state of recording a local snapshot in CL corresponds to having a copy of the an-
nouncement in MD. Completing the local snapshot in CL corresponds to deleting the announcement copy

in MD.

Next, we know that any execution sequence in CL will record the mobile exactly once. If the mobile
is recorded at node X when the marker arrives at node X, then the correspondences show that delivery
occurs at the corresponding point in the execution of MD. Similarly, if the mobile is recorded as being on
incident link L of node X, we know from the correspondence that in the corresponding execution of MD,
the mobile will also arrive on link L and the flushed flag for link L will be false in both automata. From the
correspondence, we know that node X will still have a local copy of the announcement in MD. Thus, from
the code of MD we know that delivery occurs. We also know that it cannot occur again; if so, CL would

record the mobile twice. Finally, since CL eventually completes all of its local snapshots, MD eventually
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deletes all announcement copies.

4.3 Reality Check

In moving from the cellular domain into the mobile domain, we made five assumptions. We show how to

remove or enforce these assumptions.

First, we assumed that the channels are FIFO and that both announcements and mobile units move
along these channels. As shown in Section 2, it is possible to extend the handover protocol to enforce FIFO
channels. Second, we assumed that ail neighboring MSCs are directly connected by a wired channel. For cost
and feasibility purposes, this is often not the case; however we can simply add virtual channels between any
two MSCs (that a mobile can transit between and are yet not directly connected by a wire), and imposing

the same FIFO constraints on these channels.

Third, snapshot delivery assumes that link delivery is reliable. However most of the Internet uses un-
reliable links like Ethernets, frame relay, and ATM. Although the probability of error is low, packets are
indeed dropped. A possible solution is to add acks for announcement messages (as is done, for example, in
the intelligent flooding algorithm used by Link State Routing in OSI [12] and OSPF [8]). Another solution
is only to provide best-effort service. Since lost announcements can lead to deadlock we need to delete an

announcement after a timeout even if it is still expected along a channel.

Fourth, we assumed that all MSCs in the network are involved in each delivery. It is impractical to
assume that all nodes in the Iniernet will participate in a snapshot to locate a single mobile. However it
is not unreasonable to assume that all nodes in a clearly defined region such as a city, campus, or building

would participate. Movement between these regions would be achieved by an additional algorithm.

Finally, we assume that the M3Cs are willing to hold the announcement for the duration of their local
snapshot. In a system with bi-directional channels, a local snapshot can be as short as a single round trip
delay between the MSCs. One can argue that it is not the place of the MSCs o be maintaining copies of the
ammouncement when their primary purpose is routing; however, in this case, because no routing information

is being kept about the mobile units, the additional burden is offset.

4.4 Fxtensions

It is trivial to generalize our scheme to multicast an announcement to a set of rapidly moving mobiles,
even if the actual addresses of the nodes in this set are unknown. This allows mobiles to join and leave
the multicast group at will, as in the TP multicast model. Prior work in Mobile IP requires re-registration
on each mobile movement, while the results in [1] require the set of recipients to be known. Intuitively,
multicast follows because the snapshot will record every mobile in the set exactly once. A mobile contains
a list of multicast addresses that it subscribes to, and an announcement carries a multicast address it is

sent to. When a mobile arrives at & MSC, its multicast set is checked against the set of addresses of stored
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announcements; if there is a match, delivery is done. Similarly, when an announcement to address G arrives
at a MSC, it is delivered to all mobile nodes currently being handled by the MSC that subseribe to &. The
algorithm can provide ezactly once (if the announcement is sent reliably between MSCs) or at most once

delivery semantics.

In some systems mobile movement is not rapid, and it is not unusual for two mobile units to remain fixed
while exchanging a series of messages. In this case, we might want to derive a route from one mobile unit
to the other and have all announcements travel this route. One way to discover such a route is to use the
snapshot algorithm, and have the initial control message maintain the route that it takes to get to the mobile
unit. When the unit is located, it responds along this route to the other mobile unit. Now both units have a
fixed route for all communication and we do not require all nodes to be involved in every message delivery.

If at any point this route fails, another can be established by running the snapshot for route discovery again.

5 Previous Work

[3] describes issues (e.g., disconnection, low bandwidth, and low computational power) and techniques
that arise in converting distributed algorithms to the mobility domain while retaining their original properties
(e.g., running a distributed snapshot to get the state of a group of mobile units). However, our work is
fundamentally different because we use the distributed algorithms as a tool to achieve a different result

(namely tracking and search) than that of the original distributed algorithm.

[1] describes a centralized, reliable multicast protocol for mobile networks. This approach requires the
sender to specify all mobiles in the recipient list, and for all nodes in the system to hold a copy of the
announcement until delivery is complete. Although this model makes guarantees even in the presence of
disconnection, in most Internet multicast protocols, such as DVMRP and PIM [7], the participant list is not
known by the senders. This makes such a scheme hard to implement. However, in our snapshot delivery
multicast, recipient lists are not necessary. Further, our algorithm is more efficient because it stores an

announcement for at most a link round trip delay, and all decisions are taken locally.

(6] provides a UNITY-style specification for a tracking algorithm that eventually converges to the shortest
path from home to mobile. The convergence can be slow, and no guarantees are made that delivery will

occur in a system with rapidly moving mobiles.

Similarly, Mabile IP [10] is a practical protocol being developed and tested. It has extensions to work
in a cellular-like setting. However, in the case of rapid movement, the registration mechanism will not be
able to complete and announcements will be dropped. There are also extensions to multicast but these are

subject to the same restrictions.

Most related work relates primarily to the physical movement of mobile components and does not take

into consideration mobile code. Each of our algorithms is directly applicable to the mobile code environment
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with proper network support.

A UNITY-style algorithm and proof of the second message delivery algorithm has been presented in [9).
This is a proof that does not exploit the relation to snapshots at all, and argues directly about message
delivery properties. The I/O antomata proof using reductions presented in this paper is new, and provides a
clearer and simpler intuition of the problem approach. Additionally, the reality check is entirely new to this
paper. Finally, the first tracking algorithm (the major result of this paper) and the FIFO channel extensions

have never been published before.

6 Conclusions

We have presented two simple, practical, and efficient algorithms for message delivery to rapidly moving
mobiles. While solutions like Mobile IP or cellular phone homing (which work only for slow movement) may
be adequate today, it is recognized that message delivery to rapidly moving mobiles is a problem that will
become increasingly important in the future, not only for physical mobility but also for logical mobility, as
exemplified by mobile code. Besides, the problem of delivering a message to a mobile that moves at arbitrary

speeds seems a fundamental problem, worthy of thecretical study.

Our first algorithm has good locality properties when used on a large network and requires only a few
pointers per mobile unit. On the other hand, it assumes a home node and takes longer to garbage collect
announcement copies stored on backbone nodes. Our second algorithm is simple, requires no overhead when
no announcements have to be delivered, rapidly garbage collecis stored announcements, and generalizes to
multicasting. On the other hand, it does send a copy of the announcement on every link in the graph.
Thus it seems more applicable for announcements within a small region of MSCs. Within limited domains,
both algorithms or combinations thereof, appear practical and useful because of their simplicity and their
guarantees of message delivery. A major open problem in to identify an algorithm that does not require

broadcast to all nodes aend provides rapid garbage collection {or to prove that there is no such algorithm).

Besides the specific delivery algorithms, perhaps the most important contribution of this paper is a new
approach for developing algorithms for the mobile environment by treating mobile units as messages. To
make such a model work in practice may require modifying basic mobility mechanisms (e.g., modifying
handover to enforce FIFO behavior) and may require adding farther ideas (as in our tracking algorithm
which uses Dijkstra-Scholten as a point of departure, but has a very different final form). However, the
benefits are considerable: we can leverage off scores of existing results in distributed computing, and gain

valuable insight into algorithm development.
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