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ABSTRACT OF THE DISSERTATION 

Neural Processing in the Three Layer Turtle Visual Cortex 

by 

Jeffrey Pobst 

Doctor of Philosophy in Physics 

Washington University in St. Louis, 2015 

Professor Ralf Wessel, Chair 

 

In this thesis we investigate neural processing in turtle visual cortex. To this end, we 

characterize the nature of both spontaneous, ongoing neural activity as well as activity evoked by 

visual stimulation. Data are collected from whole brain eye-attached preparations, recording with 

extracellular and intracellular electrodes. We investigate the activity of action potentials as well 

as the slower local field potential activity.  

To investigate response properties, we explore spatial properties of receptive fields, 

temporal properties of spontaneous and evoked activity, response adaptation, and correlations 

between different types of activity as well as between activity recorded in different regions.  

To study the roles of rhythmic oscillations in the local field potential, we examine 

temporal and spectral properties of oscillations. We look at the distributions of durations of 

oscillatory bursts as well as the distributions of the dominant frequencies within those 

oscillations. We also investigate the variability of these features and produce similar results in a 

model simulation. 

Lastly, we investigate criticality and the statistics of neural activity over a range of scales 

in the turtle visual cortex. We use neuronal avalanches to reveal scale-free cortical dynamics and 

power-law statistics, which have been hypothesized to optimize information processing. 
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Chapter 1: Introduction 

I not only use all the brains that I have, but all that I can borrow. 

-Woodrow Wilson 

1.1 General Introduction 

Our perception of the world is the product of signals sent from our various sensory 

organs to our cortex, which processes these signals to identify salient features useful for us to 

interact with the world. In addition to processing sensory input, the cortex also controls motor 

skills and complex thought processes like speech. Though the human cortex makes up roughly 

80% of the brain and plays a role in nearly all types of sensory processing (Shepherd, 2011), we 

are still far from understanding how most of that processing is actually done. 

The projects covered in this thesis are an effort to bring us closer to understanding 

cortical processing, by revealing neural representations of visual stimuli and the nature of a range 

of activities within the three layer cortex of turtles. 
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1.2 Comparative Neuroscience 

Much of our understanding of the nervous system is built on foundational neural circuit 

research done in lampreys, lobsters, sea slugs, zebra finches, and a wide array of other taxa 

(Hale, 2014). In general, when two species have a traceable evolutionary history stemming from 

a common ancestor, we can expect to find similarities that are greater than chance (Northcutt, 

1981). Time and time again, we have discovered mechanisms, neural representations, structures, 

and patterns of activity in nonhuman animals that inform our understanding of mammals and the 

search for homologies in the brain and mind (Carlson, 2012; Hildebrand & Shepherd, 1997; Platt 

& Spelke, 2009). With this in mind, there is much that we can learn about the human brain by 

studying species with a common ancestry. The promise of comparative neuroscience to provide 

insights into understanding the structure, functions, ontogeny, and evolution of nervous systems 

requires research on a broad range of species with deliberate attention given to both the 

differences and similarities between species (Bullock, 1984). 

1.3 Reptiles and Mammals 

1.3.1 Phylogeny 

Though turtles and mammals aren’t immediate neighbors on the phylogenic tree, the 

turtle has promise to be a valuable model preparation because features of its geniculo-cortical 

organization likely emerged early in the evolution of amniotes (Figure 1.1) and therefore should 

closely resemble those of the Triassic cotylosaurs (stem amniotes) from which they and all 

modern mammals evolved (Romer, 1977). 



3 

 

Figure 1.1 Simplified evolutionary filiations of amniotes. Numbers refer to estimated time of 

phyletic divergence in millions of years. Figure taken from (Bar, Lambert de Rouvroit, & 

Goffinet, 2000). Note: Other studies argue for turtles to be grouped with the diapsids (Rieppel, 

2000), but there is still debate regarding the proper phylogeny of turtles (Gilbert & Corfe, 2013) 

While all these animals may seem very different from each other, there are basic features 

of the stem amniote that persist in the evolved animals (though the form, function, and location 

of these features may have changed over time) (Figure 1.2). 
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Figure 1.2 Dendrogram of amniotes with diagrams of transverse hemisections through the 

telencephalon. For each section, the midline is to the left and dorsal is towards the top. The 

labeling is as follows (starting with the black region moving counter clockwise on the 

captorhinomorph: lateral pallium, lateral dorsal pallium, medial dorsal pallium, and medial 

pallium. Modified from (Butler, 1994). 

It is likely that the turtle cortex in particular may have retained many of the features of an 

ancestral form of mammalian cortex (Bar et al., 2000; Diamond & Hall, 1969; Kaas & Reiner, 

1999; Northcutt, 1981; Reiner, 2000; Philip Steven Ulinski, 1983). 

1.3.2 Functional Areas in the Turtle Brain 

Within the turtle telencephalon, several distinct sensory regions can be found. In the 

lateral cortex we find the olfactory cortex, in the dorsal ventricular ridge we find a primary 
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auditory area and secondary visual area, and in the dorsal cortex, we find the primary visual 

cortex, which is the focus of our research (Figure 1.3). This is the area that we will discuss in 

further detail in the next few sections. 

 

Figure 1.3 Photomicrograph and schematic illustration of the turtle telencephalon. The dorsal 

cortex contains the primary visual cortex, which is the focus of our studies. Taken from (Reiner, 

2000). 

1.3.3 Layered Cortical Structure 

The cortices of reptiles and mammals are both arranged into layers with neurons forming 

local circuits both within as well as across layers. Among the reptiles, the radial organization of 

the turtle cortex is the most rudimentary (Bar & Goffinet, 2000). Turtles (along with fish and 

amphibians) have a three layer cortex (Figure 1.4) whereas the mammals have developed a six 

layer neocortex (though the three-layer cortex persists in mammalian hippocampus and olfactory 

cortex).  
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Figure 1.4 The turtle brain and cortex at multiple scales. (Top) Turtle brain shown indicating the 

cerebellum (CB), optic tectum (OT), dorsal cortex (DC) shaded grey, and the olfactory bulbs 

(OB). (Bottom Left) A blown up view of the cortex including the lateral cortex (LC), pallial 

thickening (PT), dorsal cortex subdivisions (D1 and D2), medial cortex (MC), and a darkened 

line extending from the pallial thickening into the dorsal cortex indicating the pyramidal cell 

layer. (Bottom Right) A blown up view of a section of dorsal cortex showing a pyramidal cell 

(p) and inhibitory cells (i) in the molecular layer (M), pyramidal cell layer (P), and subcellular 

layer (S). Figure taken from (Blanton, Shen, & Kriegstein, 1987). 

Though we are far from understanding precisely how the 6 layer cortex evolved, it is 

thought that mutations affecting the expression of the protein reelin, play a key role in cortical 

lamination and laminar differentiation (Bar & Goffinet, 2000; Bar et al., 2000). Additionally, one 
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study suggests that cells serving in different functional roles (input and output) in the turtle 

pyramidal cell are correspond both in function and in gene expression to the pyramidal cells in 

different layers of the neocortex (Figure 1.5) (Dugas-Ford, Rowell, & Ragsdale, 2012). 

 

Figure 1.5 Structural diversity in the organization of conserved input and output cell types in 

amniote telencephalon. Organization of input cells (green) and output cells (red) in the neocortex 

(Upper Left), turtle dorsal cortec (Upper Center), and dorsal ventricular ridge (Upper Right). 

(Bottom) The dorsal thalamus (dTh) and brainstem (Bst) are shown as a source of input and 

target for output, respectively. Figure taken from (Dugas-Ford et al., 2012). 

1.3.4 Cell Types 

Most neurons in the mammalian cortex can be sorted as either spiny (because their 

dendrites have little appendages called spines) or smooth cells (which don’t have those 

appendages) (Shepherd, 2004). The turtle cortex also has both spiny and smooth cells (Figure 

1.6), but they are arranged more simply in the turtle’s three layer paleo cortex, with the spiny 
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pyramidal cells all lying in layer 2 (the pyramidal cell layer) and the smooth interneurons lying 

in layers 1 and 3. 

 

Figure 1.6 Spiny and smooth cells in turtle cortex. Spiny pyramidal cells (p) and smooth 

inhibitory stellate cells in the subcellular (𝑖1) and molecular (𝑖2) layers. Figure taken from (Shen 

& Kriegstein, 1986). 

The dendritic arbors of turtle pyramidal cells are quite different from mammalian 

pyramidal cells. Whereas neocortical pyramidal cells often have one main apical dendritic 

branch extending from the soma with further oblique branches distal from the soma, most 

dendrites from turtle pyramidal cells are individual branches that extend all the way from the 

soma as seen in Figure 1.7 (Larkum, Watanabe, Lasser-Ross, Rhodes, & Ross, 2008). 
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Figure 1.7 Pyramidal cells from turtle and rat. Outlines of pyramidal cells from turtle (Left) and 

rat layer 5 (Right) determined from biocytin fills. Modified from (Larkum et al., 2008). 

1.4 Anatomy and Physiology of the Turtle Dorsal Cortex 

Primary visual cortex receives sensory input directly from LGN axons making en passant 

synapses with pyramidal cells (Heller & Ulinski, 1987). There are also immense cortico-cortical 

connections providing both excitatory connections from other pyramidal cells (Cosans & 

Ulinski, 1990; Larson-Prior, Ulinski, & Slater, 1991) as well as inhibitory connections from 

GABAergic interneurons (Colombe, Sylvester, Block, & Ulinski, 2004). Individual pyramidal 

cells receive input from LGN cells covering a region of the visual field thought to represent 

azimuth lines (Mulligan & Ulinski, 1990). 
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1.4.1 Thalamic Input 

The LGN (lateral geniculate nucleus) sends sensory signals into the turtle dorsal cortex 

through the lateral forebrain bundle (Figure 1.8) (Mulligan & Ulinski, 1990). 

 

Figure 1.8 Drawing of the turtle whole-brain preparation showing the lateral forebrain bundle. 

This drawing shows the cortex (CTX), dorsal ventricular ridge (DVR), and lateral forebrain 

bundle after cuts have been made to the cortex and the cortex has been unfolded. Figure taken 

from (Mulligan & Ulinski, 1990). 

After passing through the lateral forebrain bundle, the geniculate axons spread rostro-

caudally, but generally extend radially towards the medial cortex as (Figure 1.9) (Mulligan & 

Ulinski, 1990). 



11 

 

Figure 1.9 Geniculate axons in the dorsal cortex. (A-C) examples of the distribution of 

geniculocortical axons labeled by horseradish peroxidase injected in the lateral forebrain bundle. 

(D) The position of the visual cortex (D2). DM, dorsomedial; R, rostral; C, caudal; VL, 

ventrolateral. Figure taken from (Mulligan & Ulinski, 1990) 

The geniculocortical axons pass beneath the DVR, pass through the pyramidal cell layer 

of the dorsal cortex and make en passant synapsis on the apical dendrites of the pyramidal cells 

(Figure 1.10) as well as forming synapses with interneurons.. 
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Figure 1.10 Schematic of turtle cortex with thalamic input and a sample pyramidal cell. Circles 

indicate pyramidal cell bodies. Axons to and from the LGN are shown in red, passing by the 

dorsal ventricular ridge. The dendritic tree is drawn for one pyramidal cell. 

1.4.2 Cortico-Cortical Feedforward and Feedback Circuits 

Most of the input to turtle pyramidal cells actually comes from other cells within the 

cortex. These connections are made in both feedforward and feedback circuitry (Figure 1.11). In 

the feedforward circuit, pyramidal cells receive excitatory input from other pyramidal cells and 

inhibitory input from subpial and stellate cells, all of which directly receive excitation from 

geniculate afferents. One factor that helps us appreciate the extent of the feedforward circuit is 

that the superficial layer-1 interneurons actually receive a higher density of afferent input than 

the pyramidal cells do (L. M. Smith, Ebner, & Colonnier, 1980). 

In the feedback circuit, pyramidal cells receive inhibitory input from subpial, stellate, and 

horizontal cells after those cells have been excited by pyramidal cells. 
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Figure 1.11 Turtle cortico-cortical feedforward and feedback circuits. The structure of 

anatomically feedforward (A) and feedback (B) circuits in the turtle cortex. Each box represents 

a population of cells. The figure shows geniculate afferents (GA), pyramidal cells (PYR), subpial 

cells (SP), stellate cells (ST), and horizontal cells (H). Connections ending with arrow heads are 

excitatory, and connections ending with circles are inhibitory. Figure taken from (W. Wang, 

Campaigne, Ghosh, & Ulinski, 2005). 

1.5 Similarity to Mammalian Olfactory Cortex 

It is thought that identifying the structural and functional similarities between reptilian 

dorsal cortex and mammalian olfactory cortex (which has persisted through evolution as a three 

layer cortex) could help reveal common organizational and computational principals and by 
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extension, some of the most primordial computations carried out in cortical networks (Fournier, 

Müller, & Laurent, 2014).  

Mammalian olfactory cortex resembles turtle cortex in ways beyond its basic three layer 

structure. For instance, the olfactory cortex also makes local feedforward circuits with apical 

layer 1 inhibitory interneurons and feedback circuits with basal inhibitory interneurons (Fig12) 

(L B Haberly & Bower, 1984; Lewis B Haberly, 1985; Satou, Mori, Tazawa, & Takagi, 1983). 

Just as the turtle cortex pyramidal cells receive their sensory input through en passant synapses 

to the apical dendrites from the LGN, the olfactory cortex pyramidal cells receive their sensory 

input through en passant synapses to the apical dendrites from the lateral olfactory tract (LOT) 

(Figure 1.12) (Lewis B Haberly & Presto, 1986), and the superficial layer-1 interneurons in 

olfactory cortex also receive a higher density of afferent input than do the pyramidal cells 

(Stokes & Isaacson, 2010) 
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Figure 1.12 Inhibitory feedforward and feedback in olfactory cortex. Axons from the lateral 

olfactory tract (LOT), synapse onto both feedforward (FF) interneurons and ontho pyramidal 

cells (P). Feedback (FB) interneurons are excited by pyramidal cells, which the then inhibit. 

Figure taken from (Lewis B Haberly, 1985). 

In addition to having these similar circuitries, the mammalian olfactory cortex also 

exhibits similar morphology. Whereas the dendritic tree of neocortical pyramidal cells tend to 

have a single main apical dendrititic branch extending from the soma, the pyramidal cells of 

olfactory cortex have many apical dendritic branches extending from the soma (Figure 1.13) just 

as we see in turtle cortex. It’s also been shown that, like turtle pyramidal cells, olfactory cortex 

pyramidal cells are spiny (Johnson, Illig, Behan, & Haberly, 2000). 
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Figure 1.13 Pyramidal cells from olfactory cortex. Photomicrograph of two pyramidal cells in 

rat olfactory cortex. Arrowheads indicate axons. Figure taken from (Johnson et al., 2000) 

1.6 Practical Advantages of Turtle 

The turtle offers practical advantages for conducting experiments. Turtles are remarkably 

resistant to the effects of anoxia (Belkin, 1963; Clark & Miller, 1973). Consequently, unlike the 

mammalian brain, the turtle brain can be completely removed from the body and its circulatory 

and respiratory systems can remain active in a bath of oxygenated artificial cerebral spinal fluid 

for several hours. This allows us three great advantages: 1) complete control of the bathing 

medium (ACSF), 2) isolation from the noise and vibration associated with the heartbeat and 

respiration, and 3) control of and access to the cortical tissue (Hounsgaard & Nicholson, 1990). 
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1.7 Motivating Questions for the Turtle Cortical System 

As we seek to better understand the structural and functional patterns that give rise to 

vision, olfaction, speech, memory, motor control and countless other fundamental functions the 

cortex participates in, we look for insights from many lines of research. We already know that 

the turtle cortex shares many features with mammalian hippocampus and olfactory cortex. 

To gain further clues of the mechanisms underlying cortical processing, in Chapter 2 we 

will investigate the properties of local field potential and action potential activity in response to 

visual stimulation with complex movies, diffuse flashes, and stimuli involving simple motion, 

and we will discuss the extent to which these signal are specific to certain stimuli and how these 

signals vary throughout the visual cortex. In Chapter 3 we will focus on the nature of local field 

potential oscillations that occur spontaneously in visual cortex as well as in response to visual 

stimulation, with attention to the frequency profiles and the temporal properties of oscillations, 

as well as reproducing the experimental results with a model simulation. In chapter 4 we will 

study self-organized criticality in the turtle cortex by looking at activity across a range of scales 

along with a model simulation. Finally, in Chapter 6 we will discuss a myriad of additional 

results, observations, and questions that may lead to further insights into the workings of the 

cortex. 
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Chapter 2: Visual Response Properties 

As we seek to understand cortical processing, we expect to gain important insights from 

the turtle dorsal cortex, which is known to share many features with the mammalian 

hippocampus and olfactory cortex and thought to share many geniculo-cortical features that were 

common to the stem amniotes from which mammals evolved. To this end, we have used data 

from extracellular recordings from microelectrode arrays, to study the temporal and spatial 

properties of responses to stimuli as seen in both the local field potential and in the activity of 

action potentials. We find large receptive fields, responsiveness to a broad range of stimuli, 

correlation between different areas in the cortex, response variability, adaptation to both ongoing 

and visually evoked activity, a range of response latencies, and stimulus specific responses. 

2.1 Introduction 

2.1.1 Evolution and the Ancestral Visual Cortex 

It is difficult to understand the mammalian cortico-thalamic system without also 

understanding its evolutionary origins. The brains of reptiles are simpler than their mammalian 

counterpart (Butler & Hodos, 2005). Turtles are of particular interest for comparative studies 

because they probably bear the strongest resemblance to the Triassic cotylosaurs (stem amniotes) 

from which they and all modern mammals evolved (Romer, 1977).  
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2.1.2 Previous Work on Turtle Cortex 

Though we haven’t yet seen the multitude of studies on turtles as we’ve seen with other 

preparations such as rat, mouse, and cat, the turtle preparation is becoming more appreciated for 

allowing the experimenter to study cortical processing from the subcellular level to the level of 

neuronal networks simultaneously, as well as being tolerant enough to a wide range of flexible 

modifications to meet the needs of a range of experiments with different technical demands 

(Hounsgaard & Nicholson, 1990). 

The turtle dorsal cortex is a convergent zone for the visual, auditory, somatic, and other 

sensory systems (V. I. Gusel’nikov, Morenkov, & Pivovarov, 1972), but has mostly been 

investigated with respect to visual processing. There have been a handful of studies on the turtle 

visual cortex. Some have looked at spikes in response to diffuse flashes (V. I. Gusel’nikov et al., 

1972; Kriegstein, 1987; Mancilla, Fowler, & Ulinski, 1998), the size and organization of the 

receptive field of spiking cells (P. Z. Mazurskaya, 1972), spiking responses to moving black dots 

(V. Gusel’nikov & Pivovarov, 1977), and even voltage sensitive dye studies (J C Prechtl, Cohen, 

Pesaran, Mitra, & Kleinfeld, 1997), but there have only been a few studies in turtle focusing on 

the local field potential (Bass, Andry, & Northcutt, 1983; Luo, Lu, Lu, Yang, & Gao, 2010; J C 

Prechtl, Bullock, & Kleinfeld, 2000; J C Prechtl, 1994; J. C. Prechtl & Bullock, 1994). Here, we 

have used the local field potential as our primary signal for probing receptive fields and other 

response properties. 

2.1.3 Thalamic Response Properties 

We’re ultimately interested in how the cortex processes visual information. The clues we 

have at our disposal to work on this problem are the recordings or cortical neural activity. 
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Knowing that the activity we see in the cortex is the product of both cortico-cortical dynamics 

and external sensory input , it would seem that we have a better chance of understanding the 

circuitry and processing the cortex if we also know what is done (and what isn’t done) outside of 

the cortex. 

For instance we know that the size of receptive fields in LGN (lateral geniculate nucleus, 

the main source of sensory input to the cortex) cells is restricted to 30 degrees (Boiko, 1980) and 

that there are thalamic axons connecting to the cortex with receptive fields as small as 2-5 

degrees (P. Z. Mazurskaya, 1972). Therefore, if we find considerably larger receptive fields in 

the cortex, we can infer that they arise from cortico-cortical connections or the convergence of 

afferents from many LGN cells. 

We also know that sensitivity to the direction of motion of moving stimuli has been 

reported in only 9% of units in turtle thalamus, and the significance of these results is 

questionable (Boiko, 1980). Whether or not direction sensitivity exists in the thalamus affects 

how we think about its occurrence in the cortex. 

2.1.4 Intracortical Connectivity 

While it is important to understand the thalamic inputs to the cortex, a majority of the 

inputs to cortical neurons actually come from other cells within the cortex. In fact, only ~10% of 

the inputs to cortical cells come from the thalamus, with the rest coming from within the cortex 

(Douglas & Martin, 2004).  

The extent to which the receptive field of individual cells in the visual cortex depends on 

the connectivity with other cortical cells has been demonstrated by comparing the normal 



24 

receptive field of a cortical cell to its receptive after applying pharmacological blockers to 

different areas of the cortex (P. Z. Mazurskaya, 1972). That study found that after applying 

blockers to other areas of the cortex, there would be gaps in the large receptive field that 

previously weren’t present. This suggest that, for that cell, its responsiveness to certain regions 

of the visual field depended on receiving signals from the blocked region of the cortex. 

2.2 Methods 

2.2.1 Ex Vivo Eye-Attached Whole Brain Preparation 

All procedures were approved by Washington University’s Animal Care and Use 

Committees and conform to the guidelines of the National Institutes of Health on the Care and 

Use of Laboratory Animals. Adult red-eared turtles (Trachemys scripta elegans, 150 – 200 g 

weight, 12-15 cm carapace length) were studied. Rapid decapitation was performed following 

anesthetization with Propofol (10mg/kg) (Ziolo & Bertelsen, 2009). We then removed the brain 

with the right eye attached and proceeded to hemisect the eye.  

To access the ventricular surface of the left visual cortex, we cut off ~1mm of the left 

olfactory bulb, which provided a hole to start a rostral-caudal cut through the medial cortex. This 

cut continued from the olfactory bulb into the natural separation of the medial cortex from the 

septum (about 1/3 of the cortex) and continued further along the same line for ~1-2 mm into the 

caudal cortex. Finally, two cuts were made from the medial cortex edge towards the dorsal 

cortex. These two cuts were started at roughly 1/3 and 2/3 the rostral-caudal length of the cortex 

and were made as short as possible while still allowing the cortex to be unfolded and pinned flat. 

This length was usually ~2 mm. 
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After making the cuts in the cortex, it was placed in the recording chamber on either a 

Sylgard or agar surface, and insect pins were used to pin the cortex flat. Our electrodes were then 

placed in the flattened cortex.  

The eye and brain were continuously perfused with artificial cerebrospinal fluid (in mM; 

85 NaCl, 2 KCl, 2 MgCl2, 45 Na HCO3, 20 D glucose, and 3 CaCl2 bubbled with 95% O2 and 

5% CO2), adjusted to pH 7.4 at room temperature. To perfuse the eye without obstructing the 

image we project onto the retina, a small wick was made from a Kimwipe. The wick connected 

an ACSF feed located ~1 cm above and to the side of the eye to the inside edge of the 

hemisected eye. If any brain tissue were large enough to extend above the surface of the ACSF 

(e.g., the right cortex or the optic tecta), it would be cover with a small piece of Kimwipe so that 

it would also stay in contact with ACSF. Recordings began 2-3 hours after anesthetization. 

2.2.2 Data Acquisition 

Microelectrode Array Recordings 

Data were collected at a 30 kHz sampling rate using the Cerebus data acquisition system 

by Blackrock Microsystems. Two different styles of microelectrode arrays were used for our 

recordings. For some recordings, we used a 96-channel Utah array (10x10 square grid, 400 µm 

inter-electrode spacing, 500 µm electrode length, no corner electrodes, Blackrock 

Microsystems). For others, we used an array of shank electrodes (4x4 array of shank electrodes 

with 8 recording sites on each electrode, 300 µm and 400 µm x and y distance between shanks 

and 100 µm between recording sites along a shank, Neuronexus). We attached either array to a 

post fastened to a micromanipulator (Sutter, MP-285). The Utah array was inserted the array to a 

depth of 250-500 µm starting from the ventricular side of the unfolded cortex such that the plane 
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of electrodes was parallel to the dorsal surface of cortex. The array of shank electrodes was 

inserted deep enough to span the entire depth of the cortex.  

We recorded wideband (0.7 Hz – 15 kHz) extracellular voltages relative to a silver 

chloride pellet electrode in the tissue bath. 

Single Electrode and Tetrode Recordings 

For our experiments using single electrodes we used tungsten electrodes (500 kOhm part 

# WE30030.5H5 from MicroProbes and 1000 kOhm catalog # 573520 from AM Systems). For 

some experiments, we also used homemade tetrodes with resistances between 250 kOhms and 

350 kOhms. These were made by twisting four 12.7 micron nickel chromium wires together, 

applying heat with a heat gun (Weller 6966C) and cutting the twisted wires at an angle to expose 

the ends for recording (Saha, Leong, Katta, & Raman, 2013). Recordings were taken in reference 

to a silver chloride ground wire sitting in the bath. 

The signals from these electrodes were recorded with an AM Systems Model 1800 

amplifier connected to a National Instruments PCI-6024E 12-bit DAQ board through a National 

Instruments BNC-2090. The data were collected at 20 kHz using Labview. 
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Figure 2.1 Experimental setup and raw data. (A) Our experimental set up for experiments done 

with a monitor and mirror. The visual stimuli are presented on a monitor. The image reflects off 

a mirror and through a lens to form a picture on the retina of the turtle’s hemisected eye. The 

multielectrode array is placed in the unfolded cortex. (B) A side view of the cortex showing 

LGN axons passing through and then below the cellular layer of the cortex. The dentrites of one 

pyramidal cell are included to show the spatial extent of the dentritic arbors. In red are the 

electrodes from the MEA. (C) Six simultaneous raw extracellular voltage recordings from 

nearby electrodes recording responses to visual stimulation. 

2.2.3 Visual Stimulation 

For the included studies, three methods of visual stimulation were used. 
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LED Stimulation 

For LED stimulation, a red LED was connected to the output of a National Instruments 

BNC-2090 terminal block connected to a National Instruments PCI-6024E DAQ board. This 

output was controlled with a custom LabView program on a computer running Windows 7. The 

mean light intensity at the retina was 60 𝑚𝑊/𝑚2. 

Monitor/Mirror Stimulation 

For monitor/mirror stimulation, a 19” LCD monitor (Samsung model Syncmaster T190, 

1440x900 pixels, contrast ratio = 20000:1, response time = 2 ms) displayed the stimuli. This 

image was reflected off a mirror located across room above the tissue, and focused on the retina 

with a lens placed above the tissue. The mean light intensity at the retina from the monitor 

was 20 𝑚𝑊/𝑚2. 

Projector Stimulation 

For projector stimulation, a small projector was placed above the retina and focused with 

a system of lenses (Aaxa Technologies, P4X Pico Projector, 1440x900 pixels). The mean light 

intensity at the retina from the projector was 1 𝑊/𝑚2 

Both monitor/mirror and projector stimulation was provided using software written in 

python on a computer running Ubuntu 10.4. Visual stimuli included black dots moving on a 

white screen (Figure 2.2), naturalistic video, and red LED flashes. 
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Figure 2.2 Turtle brain with electrode and stimulus. The dark spot in the hemisected eye is a 

black moving dot presented by the projector. An electrode is shown in the cortex near the DVR. 

For the sake of illustrating more clearly, this image is a composite of a well-lit picture and a 

snapshot from a video. During normal recordings the additional light needed to take the picture 

and the camera were not used. 

2.2.4 Filtering for Local Field Potentials 

To study LFPs, it is useful to filter out other frequencies. For our LFP analysis, we used 

the PyWavelets package to perform wavelet filtering (Wiltschko, Gage, & Berke, 2008). We 

used Daubechies wavelets with minimum level of 9 and a maximum level of 11. For our 30 kHz 

data, this corresponds to a pass band of ~7 Hz - 59 Hz. 
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2.2.5 Defining an LFP Event 

There are many ways one can quantify the size of an LFP response. One method we use 

throughout this paper is to look for threshold crossings of the extracellular signal after filtering it 

(as described above) to the frequencies we’re interested in. As a threshold for LFP events we 

used 3 standard deviations of the filtered signal. Therefore, when we refer to LFP event count, 

we are simply referring to a number of threshold crossings. 

2.2.6 Determining Visually Responsive Electrodes 

When recording from the 96 electrodes of the MEA, only a subset of electrodes would 

actually have a strong visual response. In order to get clean results it was necessary to do our 

analysis on only that subset of electrodes.  

To consistently and systematically determine which electrodes to include, we created an 

algorithm to test for visual responsiveness. Roughly speaking, an electrode was considered 

visually responsive if the typical level of activity following visual stimulation was sufficiently 

greater that spontaneous ongoing level activity. Specifically, to accomplish this, we first chose 

some quantifiable measure of activity. Usually, this was the number of LFP events as defined 

above.  

We then established the spontaneous ongoing level of activity, 𝑎𝑜𝑛𝑔𝑜𝑖𝑛𝑔, by taking the 

average activity from 4 s windows immediately preceding the presentation of 12 stimuli. 

Similarly, the amount of visually evoked activity, 𝑎𝑒𝑣𝑜𝑘𝑒𝑑, was the average of the 4 s windows 

immediately following the onset of the 12 presented visual stimuli. We then calculate the 

decrease in activity (how much lower is the ongoing activity level than the evoked activity level) 
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as 𝑑 =
𝑎𝑒𝑣𝑜𝑘𝑒𝑑−𝑎𝑜𝑛𝑔𝑜𝑖𝑛𝑔

𝑎𝑒𝑣𝑜𝑘𝑒𝑑
. Finally, we classify an electrode as visually responsive if the decrease in 

activity is greater than 0.75 (Figure 2.3). 

 

Figure 2.3 Visual responsiveness across the electrode array for Turtle 31. Each square represents 

an electrode. The background color for each square indicates the visual responsiveness with 

black being 0 and white being 1. The electrodes labeled in red have a visual responsiveness 

above the 0.75 threshold to be included in analyses, and the electrodes labeled in blue had 

subthreshold responsiveness. 

2.2.7 Filtering for and Detecting Spikes 

Filtering for spikes used the same wavelet filtering technique that was used for LFP, but 

with different parameters (Table 2.1). 
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Table 2.1 Filter and Threshold Settings for Spike Detection 

Analysis Min 

level 

Max 

Frequency 

(Hz) 

Max 

level 

Min 

Frequency 

(Hz) 

Threshold 

Spike Latencies (Fig. 2.6) 3 3,750 7 117 -10 STD 

T75 RF similarity (Fig. 2.17) 4 1,875 7 117 -100 𝜇𝑉 

T7 Rastergrams (Fig. 2.16) 3 3,750 7 117 -60 𝜇𝑉 

 

2.3 Temporal properties 

2.3.1 Typical Durations of LFP Oscillations 

LFP activity often presents as a transient oscillation (Figure 2.4). These oscillations are 

seen in both spontaneous and visually evoked activity. While at times these oscillations can be 

clearly dominated by one or two frequencies, at other times, the transient increases in LFP 

activity are made up of fluctuations covering a broad range of frequencies. Though the 

distributions of the durations of LFP oscillations can vary from electrode to electrode, peaks in 

these distributions are often found near 1 sec (see Chapter 3 for further details). 
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Figure 2.4 Temporal properties of visually evoked LFPs. (A) Individual LFP responses (thin, 

transparent traces, 60 trials per LED intensity, turtle 29, electrode 66) to 50 ms LED flashes of 

three different intensities with the average responses shown in bold. (B) Rastergram of LFP 

events after a 1 sec LED flash (turtle 2, electrode 65). (C) The peristimulus time histogram 

corresponding to the rastergram in (B). 

2.3.2 Persistent Activity 

When looking at visually evoked LFP activity, we typically see responses that last 500 - 

2000 ms. In addition to this typical response, in many instances, we also see a second (or even 

third) period of activity after periods of relative inactivity. Often a period of increased activity 

occurs ~1 second after stimulus offset. We also see a reliably reproducible wave of activity up to 

15 s after the presentation of a stimulus (Figure 2.5). 
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Figure 2.5 Turtle 2 peristimulus time histograms. PSTHs for several electrodes arranged as they 

were in the cortex showing LFP event in response to a brief LED flash (bin size = 50 ms, number 

of trials = 90). 

 

2.3.3 Responses to Diffuse Flashes 

Red LEDs were used to provide precisely timed diffuse stimulation of the entire retina. 

Responses to LED flashes were clearly dependent on flash intensity. One striking feature of the 

responses to LED flashes is that the evoked oscillations are phase coherent across trials revealing 

low frequency oscillations in the average response (Figure 2.4). It should be noted that most 

turtles did not have such a clearly dominant frequency in the average LED response 

(Supplementary Information 8, and that even when a turtle has this feature for some electrodes, it 

won’t show up on all visually responsive electrodes (Figure 2.14). 
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When comparing responses to different intensities, we consistently found that, while all 

intensities had the same latency to response onset and were otherwise similar in their early 

response characteristics, the further into the response time course you go, the more distinct the 

responses to the different intensities are from one another. The clearest aspect of this is the 

overall duration of the responses. Higher LED intensities led to longer response durations. 

2.3.4 Latency of Response 

Many of our results involve relating the activity recorded in the cortex with stimuli 

presented to the retina. One important aspect of this relationship is how much delay there is 

between the presentation of the stimuli and the response caused by signal propagation time in the 

pathway leading to the cortical response. The is an interesting question in its own right, but also 

an important piece of information when it comes to interpreting the responses to stimuli that 

can’t be characterized as occurring at only one instance in time. 

We investigated the latency between stimulus presentation and an evoked response. 

When looking at the receptive fields determined by responses to moving dot stimuli, we tend to 

see the maximal convergence of the receptive field when applying a delay between response and 

stimulus of ~250-350 ms. That is to say that if we for each neural event detected, we attributed 

the region of visual field in which the dot was 250-350 ms prior, we saw the most overlap of the 

contributions to the visual field from dots moving at different angles (Supplementary 

Information 1). This is true for both spiking responses and LFP responses. As such, for all 

figures showing the receptive field as probed by moving dots, a 300 ms delay has been applied. 

In addition to looking for the delay that provided the most convergence of the receptive 

field, we also looked at the latency to the first spike in response to stimuli with a precise ON time 
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covering the entire visual field. Though others have reported first spike latencies in visual cortex 

between 80 ms and 200 ms (P. Mazurskaya, 1973) and even as short as 25 – 150 ms (Bass et al., 

1983), and latency to LFP response onset of 86 ± 4 ms (J. C. Prechtl & Bullock, 1994), we 

found, when looking at responses to a full screen flash or to the change from a blank screen to 

the start of a complex movie, a typical latency to first spike is around 200-500 ms (Figure 2.6). 

These results lend further support to the 300 ms delay we used for the moving dot receptive 

fields.  
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Figure 2.6 First spike latencies. (Top) The timing of the first spikes following either the onset of 

a red LED flash (turtles 2 -32) or the transition from a blank screen to the beginning of a 

complex movie (turtles 48-86). (Bottom) Summary histogram of all data. 
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2.4 Spatiotemporal properties 

To probe the LFP receptive field we used black dots moving across a white background 

(8 degrees diameter dot moving at 40 deg/sec). Dots were tested with a range of angles of 

motion, and for each angle, dots were tested moving across several straight paths spanning the 

visual field.  

2.4.1 Receptive Field Size 

The receptive fields of both the LFP and individual cells in the visual cortex at times 

seem to span large areas of the visual field. It is common to see receptive fields that cover over 

half of the visual field. Our method of visualizing this is demonstrated in Figure 2.7 with further 

examples in Figure 2.8. 
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Figure 2.7 The LFP receptive field probed 

with moving dots. Each grey square 

represents the visual field. The paths that 

black dots moved along are represented by 

light grey lines. Dots indicate the location 

of a moving dot 300 ms before an LFP 

event was recorded. Dots are color coded 

according to the direction in which the dot 

was moving. To assist in visualizing trial-

to-trial variability, the dots are plotted 

somewhat offset from the actual path 

traveled (a different amount for each trial). 

The solid lines show the average LFP 

event count for each path (averaged over 

multiple trials) with the standard deviation 

shown as the filled region around the 

average line. The top plot shows only the 

data for presentations of a dot moving 90 

degrees or 270 degrees (with respect to the 

turtle’s visual streak). The following three 

figures show the other three pairs of angles 

on their own, and the bottom figure shows 

all eight angles together. 
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Figure 2.8 Six examples of LFP receptive fields probed with moving dots. Responses to black 

dots moving on a white screen from the LFP of single electrodes from 5 different turtles (the two 

center figures are different electrodes from the same turtle). 

When we consider this in light of the small RFs in the LGN (P. Z. Mazurskaya, 1972), 

we come up with a few possible explanations. It could be that an individual cortical cell has a 

large RF because it receives input from many LGN cells whose RFs collectively span a large 

area of the visual field, but these seems unlikely given the proposed projections from LGN to 

cortex (Mulligan & Ulinski, 1990). Therefore, what seems more likely is that the large cortical 

RFs may be the result of individual cortical cells receiving input from many other cortical cells 

that each receive LGN input representing only a small portion of the visual field.  
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2.4.2 Direction Sensitivity 

We found no examples of a cell or LFP being visually responsive to dots moving in only 

one direction. 

By looking at the average LFP event counts for opposite angles in Figures 2.7 and 2.8, 

we can get a sense of whether a recording site shows sensitivity to one direction compared to the 

opposite direction. Overwhelmingly, we find that the average response curves to opposite 

directions are nearly mirror images of each other. This indicates that there is no opposite angle 

direction sensitivity in the LFP response (when quantifying the LFP response as the number of 

threshold crossing of the LFP). 

2.5 Adaptation 

The effects of adaptation in turtle visual cortex are clear, long lasting, and ubiquitous. 

Some studies described recovery times in visual cortex ranging from 0.5 min to 3 min (V. I. 

Gusel’nikov et al., 1972). Others showed nearly complete recovery in 16 sec (Luo et al., 2010). 

An adapted response in the visual cortex can be the result of two different sources: the 

cortex may be adapting in such a way that it has a diminished response (relative to the unadapted 

state) to the same cortical input; or adaptation has taken place at an earlier stage in the visual 

pathway and the cortex is responding in a consistent way as before adaptation, but to a 

diminished cortical input. It is almost certainly the case that both of these effects contribute to 

the adaptation observed in the cortex. 
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2.5.1 Visual-Visual Adaptation 

To test the effect of one stimulus on another we used moving dots, radially moving bars, 

and full field flashes. In the clearest demonstration of adaptation, when we presented a series of 

brief LED flashes to the retina, we reliably recorded a strong LFP response to the first flash, and 

either no response or a greatly diminished response to the subsequent flashes (Figure 2.9A). The 

extent to which the subsequent responses were diminished depended on the time in between 

flashes. Consistent with Luo 2010, this dependence was not all-or-none (Luo et al., 2010); in 

between the short inter-flash-intervals that completely abolished subsequent responses and the 

long inter-flash-intervals that seemed not to affect subsequent responses, there were intermediate 

inter-flash-intervals that resulted in somewhat diminished subsequent responses.  
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Figure 2.9: Adaptation to evoked and ongoing activity. (A) LFP responses to four repeated 

presentations of a series of four brief full field flashes (flash timing indicated by blue vertical 

bars). LFP threshold crossings are indicated by red rasters. (B) The responses to dots moving 

along 48 paths across (data coming from 3 turtles). For each path the response strengths when 

the path was an early stimulus in the series of stimuli (i.e., either the first or second path to be 

traveled) is compared against the response strengths when the same path was traveled later in the 

series of stimuli (i.e., either the fourth or fifth path to be traveled in the series of stimuli). Each 

point plotted is the average of 7-30 trials. The average decrease in response strength d is shown 

for both subplots. (C) The p-value is calculated for the hypothesis that the response when a path 

is presented first will be larger than when a path is presented after other stimuli (vs the null 

hypothesis that either response is equally likely to be the larger response). (D) Response 

strengths with and without preceding spontaneous activity. We show visual responses from 

several different stimuli. Red dots indicate individual responses to visual stimuli that were 

preceded by a strong burst of spontaneous activity within 5 s before the stimulus. For each of 

those recordings, the average response of the 2-4 trials of the same stimulus nearest in time to the 

recording that was preceded by a burst is shown in blue with error bars showing the standard 

deviation. These 2-4 reference recordings were selected from recordings that were not preceded 

by a spontaneous burst of activity. Each recording preceded by a spontaneous burst together with 

the 2-4 reference recordings are collectively referred to as a recording set. 
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We further demonstrated the effects of adaptation with more complex stimuli containing 

more spatial and temporal structure. To compare the effects of the order of presentation of 

stimuli for multiple stimuli, we used dots moving along different paths through the visual field. 

For 8 different angles, we moved dots across 5 paths in the visual field in an ordered sequence. 

For opposite angles, the paths overlapped but were in reversed order such that the path that was 

presented first at an angle of 0 degrees was presented last at 180 degrees. This allowed us to 

compare the response to presentation order while controlling for the area of the visual field being 

stimulated. 

To quantify the effects of adaptation due to stimulus presentation order, we defined the 

decrease in response d as simply the average of the decreases for individual paths, where the 

decrease for an individual path was 1 −
𝑟𝑙𝑎𝑡𝑒

𝑟𝑒𝑎𝑟𝑙𝑦
 where 𝑟𝑙𝑎𝑡𝑒 is the strength of the response when 

the path was presented late in the series (either the fifth or fourth path to be presented), and 

𝑟𝑒𝑎𝑟𝑙𝑦 is the strength of the response when the path was presented early in the series (either first 

or second 1). 

When we look at the response amplitude when a path was presented first compared to the 

same path being presented fifth (or second compared to fourth), we clearly see adaptation of 

responses to stimulation of one area of the visual field caused by previous stimulation of other 

areas of the visual field (Figure 2.9B).  

On average, when a path was the fifth path to be traveled, the evoked response was 76% 

smaller than when it was the first path traveled. Similarly, when a path was the fourth path 

traveled, the evoked response was 81% smaller than when it was the second path traveled. The 

fact that the decrease in response strength was larger and more reliable for the second-fourth 
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pairs than it was for the first-fifth pairs is most likely due to complications near the edge of the 

visual field. The first/fifth paths were always on the very edge of the visual field. Consequently, 

the dots moving along those paths were not present on the retina nearly so long as dots moving 

across paths crossing a larger portion of the retina. In general, these outer paths evoked smaller 

responses than more interior paths. As such, these weaker responses may be more confounded by 

noise. 

In a different set of experiments, adaptation to visual stimuli was studied while 

controlling for not only same path in the visual field, but also the direction of motion along that 

path. In contrast to the previous data set, in this data set the order in which the paths were 

traversed was randomized for each trial. Thus, a given path may have been the first path 

presented during one trial, but the fourth path presented during the next. This allowed us to 

separate the responses to a dot moving along any given path into trials for which the path was the 

first path to be presented and trials for which the path was not the first path presented. Using the 

same LFP threshold crossing described earlier, for each path, we calculated two average 

responses: the average first-presented response and the average nonfirst-presented response. For 

this data set, there were 10 seconds between dots moving on each path and either 118 s or 214 s 

between sets of paths for one angle and the next being stimulated. It is after that 118 s or 214 s, 

when we start paths for a new angle that we have a new first path. In Figure 2.9C the average 

response when a path was first is plotted against the average response to that same path when the 

path was not first. Because there were very few trials for any given angle-path combination, the 

results are somewhat scattered. But, when taken as a whole, for the 575 responsive points shown, 

we get a p-value of 1.7 × 10−20 for the claim that the average first path response should be 

greater than nonfirst path responses. 
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Visual stimulation with bars moving across the visual field also showed that the response 

to the bar presented first elicited a much greater response than any of the subsequent bars 

(Supplementary Information 9). 

2.5.2 Ongoing-Visual Adaptation 

While the preceding figures clearly demonstrate an adapted response to visual stimuli, 

they don’t shed any light on the source of adaptation. It isn’t clear if the adaptation is taking 

place in the cortex, at an earlier stage in the visual pathway, or (most likely) some combination 

of both effects. To better understand adaptation happening within the cortex, we looked at how 

visual responses adapted to spontaneous activity within the cortex (Figure 2.9D). Here we looked 

at repeated trials of a given stimulus and picked out the trials the had a large burst of LFP events 

(defined in methods) within the 5 seconds leading up to the stimulus presentation. We then 

plotted the subsequent visual response (red dots) along with the average response to 4 

presentations of the same stimuli that did not have a large spontaneous burst preceding them 

(blue dots). To avoid having our results confounded by experimental rundown, we selected the 4 

trials that occurred most closely in time to the trial which was preceded by spontaneous activity. 

From this figure, it is clear that spontaneous activity in the cortex can lead to a significant and 

reliable adaptation of subsequent visual responses. 

2.6 Response Variability 

We see large variability in the responses to repeated presentations of stimuli. This 

variability manifests in different ways. At times the strength of the response varies. At other 

times the response may be completely absent. Still at other times, there can be a response that is 
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varies not so much in its strength, but in its temporal or spectral properties (See Chapter 3 for 

variability in spectral properties). 

2.6.1 All or None Response Variability 

Figure 2.10 shows responses to moving dots. There seem to be two different visual 

responses (to dots moving along the 3rd and 4th paths). If we focus on the responses to the 3rd 

path, we see that of the 16 trials, there are only responses in 5 or 6 of them (first of those 

‘responses’ is likely spontaneous activity, since it starts slightly before the stimulus). 

On the other trials, there are no visible LFP oscillations. Two of the nonresponding trials 

might have been affected by adaptation from the bursts of activity preceding the stimulus (see 

Section 2.5 Adaptation), but that still leaves 8 nonresponsive trials. Similarly, the nonresponsive 

trials for the 4th path are likely due to the responses to the 3rd path that occurred just before the 4th 

path.  

Interestingly, this all-or-none response variability was not seen for dots moving in the 

opposite direction along the same paths in a set of recordings taken over the same period of time 

(Supplementary Information 6). 
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Figure 2.10 Response variability. LFP signal (black) with action potentials (red rasters) during 

16 presentations (each row is a separate presentation) of 8 dots moving across the visual field 

following 8 different paths. The 8 colored columns indicate the timing of the 8 dots moving 

across the visual field. 

2.6.2 Variability in Temporal Structure of Response 

In Figure 2.9A we see four presentations of a series of flashes. All four trials elicit a 

strong response, but trial 1’s response is markedly different from the other three. In trial 1 there 

is a large main oscillation that starts shortly after the flash. In contrast, for the other three trials, 

there is a small response right after the flash and then a larger main oscillation starts a bit later. 

We also see variability in the temporal structure of the response in Figure 2.10. Not only 

do responses to both the 3rd and the 4th path have substantial differences in the time to response 

onset (sometimes varying by as much as a second), but they also vary in how that response plays 

out. For some trials (e.g., trials 1-3) we see roughly one large oscillation, and for others (e.g., 

trial 4) it looks more like a series of two smaller bursts. 
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2.6.3 Variability in Response Strength 

Finally, Figure 2.10 also contains examples of response strength variability. If we 

compare the responses to the 3rd path in the 7th and 8th trial, we find markedly different 

amplitudes of response. 

2.6.4 Discussion of Variability 

This has also been seen in cat visual cortex in voltage sensitive dye recordings, in which 

much of the trial-to-trial variability could actually be explained by the ongoing activity in the 

cortex (Arieli, Sterkin, Grinvald, & Aertsen, 1996). That is to say that after subtracting the 

activity of the cortex immediately preceding the response, the variability of the responses were 

greatly reduced. More generally, it has been suggested that sensory responses should be thought 

of as not simply the product of a sensory input and some “default” anatomical connectivity, but 

instead the product of those along with learned expectations and environmental contingencies 

that can change continuously (Fontanini & Katz, 2008). 

2.7 Response Similarity across the Cortex 

When looking at the LFP receptive fields plotted for each electrode across the cortex, it 

appears that the RFs of nearby electrodes are more similar to each other than those of distant 

electrodes (Figure 2.11 and Supplementary Information 5 for an additional example).  
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Figure 2.11 LFP receptive fields across the microelectrode array. The LFP receptive field as 

probed by moving dots is plotted for 14 visually responsive electrodes arranged as they are 

across the MEA (recorded from turtle 7). 

It is important to consider whether these similarities are due to the LFP recording volume 

being large enough that neighboring electrodes are essentially measuring the same signal. In 

other words, when we see similar LFP signals on two electrodes, are we looking at two pictures 

of the same thing taken from slightly different angles, or are we looking at two pictures of 

different things that happen to be similar? 
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While there have been some recent claims that the spatial extent of the LFP can be as 

large as several millimeters (Kajikawa & Schroeder, 2011), it has usually been thought that the 

local field potential represents neural activity within roughly 150-400 µm of the electrode 

(Katzner et al., 2009; Dajun Xing, Yeh, & Shapley, 2009). The fact that we occasionally see 

bursts in narrow frequency bands on one electrode but not on the adjacent electrode is consistent 

with a smaller spatial extent for the LFP (Supplementary Information 7). This suggests that the 

similar receptive fields recorded at different electrodes (spaced 400 µm apart) are not merely 

measurements of the same signal generated by common sources, but are instead measurements of 

activity generated by different sources that happen to produce similar signals.  

2.7.1 Defining Receptive Field Similarity 

Beyond simply noticing that the LFP receptive fields of nearby electrodes seem similar, it 

is useful to quantify that similarity. To do so we calculated the amount of overlap between the 

RFs from pairs of electrodes. Specifically, we binned the dots paths in visual field (bin size = 8 

visual degrees), calculated the normalized average LFP response to stimulation in each of those 

bins, and, for each electrode pair, we calculated the RF overlap (also called similarity) by 

summing the smaller of the two normalized response values (one for each electrode) over all 

bins. 

The normalization of the average LFP response in each bin, was done by dividing the 

average response by the sum of the average responses over all bins (or, in the case of direction 

specific RF similarity, by dividing by the sum of the average responses over only the bins for the 

angle of interest). Consequently, the sum of the normalized responses over all bins was always 

one, the minimum similarity between two electrodes was zero, and the maximum was one. 
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2.7.2 Establishing Significance of Similarity 

To quantify the significance of similarity between two electrodes, we recalculated the 

similarity between the two electrodes after shuffling the binned responses of one of the 

electrodes. This process was done 1,000 times. We then call the original similarity significant if 

it is higher than 95% of the shuffled similarities (Figure 2.12). 

 

Figure 2.12 LFP receptive field similarity. (A) The LFP receptive fields for two electrodes from 

turtle 7 as plotted in Figure 2.7. (B) The similarity between the two receptive fields when the 

responses to dots moving at all angles are considered together, along with when we consider only 

the responses to dots moving at a specific angle. The black distributions are for 1,000 similarities 

calculated using shuffled data. The blue lines and numbers show the similarity of the real data 

for the two receptive fields, and the light grey line shows the similarity below which 95% of the 

shuffled similarities lie. 
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2.7.3 Receptive Field Similarity Results 

For the four turtles that had several electrodes in visually responsive areas, we can look at 

RF similarity versus distance in more detail. To get a better picture of RF similarity, we plotted 

the similarity versus distance for a single electrode paired with all other electrodes. Then we 

made this plot for all visually responsive electrodes, and finally we arranged these plots in the 

same way the corresponding electrodes are arrange on the MEA (Figure 2.13). 

 

Figure 2.13 LFP receptive Field Similarity Versus Distance. (A) 14 plots of RF similarity versus 

electrode distance for 14 electrodes. The electrodes are arranged as they are on the MEA. Each 

point is the similarity of the LFP at that electrode with another visually responsive electrode. (B) 

The average LFP RF similarity at each electrode pair distance for all visually responsive 

electrode pairs for four turtle. *Turtle 5 was included here to show that its trend is consistent 

with the others, but the visual responses for turtle 5 were relatively weak. Therefore, in order to 

have enough visually responsive electrode pairs for turtle 5 we used a lower threshold (0.5) for 

visual responsiveness). 
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Looking at Figure 2.13A, we generally see mostly negative slopes. This indicates that 

receptive fields of nearby electrode pairs tend to be more similar to each other than the receptive 

fields of distant electrode pairs, which is consistent with the qualitative conclusions we came to 

earlier by simply looking at the receptive fields. 

Additionally, it appears that the negative slope can be found more consistently for the 

rostral electrodes than for the caudal electrodes. The caudal electrodes tend to have slopes closer 

to zero. This means that the receptive fields at caudal electrode sites are no more (or only slightly 

more) similar to their neighbors than they are to distant electrodes. This is seen more clearly 

when looking at a larger section of the array and is a consistent result across turtles 

(Supplementary Information 2). It is worth noting that in a majority of cases, even the lower 

levels of similarity are still significantly more similar than shuffled data. 

2.7.4 LED Flash Response Similarity 

In addition to the amplitude of LFP response being similar in nearby electrodes (Figure 

2.5 and Supplementary Information 4), if we look at the average responses to LED flashes across 

the electrode map, we can also see that the more detailed shape and timecourse of the LFP 

responses also seem to be similar in nearby electrodes (Figure 2.14). 
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Figure 2.14 Average LED responses across the electrode array. The average responses to LED 

flashes of three different intensities (High, Med, and Low) shown for 23 electrodes from turtle 

29. Left to right corresponds to caudal to rostral electrode arrangement, and top to bottom 

corresponds to medial to dorsal electrode arrangement. 

2.8 Spike-LFP Correlation 

In general, spikes are much less common in the absence of LFP activity than they are 

during a burst of LFP activity (Figure 2.15). This has been further quantified in Chapter 4 

(section 4.5.3), in which there is a clear positive correlation between the number of action 

potential and the number of LFP peaks in 0.5 s windows. 
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Figure 2.15 Action potentials during an LFP burst. Unfiltered simultaneous recordings from 10 

electrodes from turtle 2. 

In addition to looking at several electrodes with plenty of time preceding and following 

an LFP burst, we can also focus on a single highly responsive electrode and looked at multiple 

trials. Doing so shows that, during an evoked response, while both the LFP and the action 

potentials vary somewhat in their responses to each trial, the strength of their responses correlate 

very well with each other (Figure 2.16). 
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Figure 2.16 Action potential rastergrams with LFP. (Top) Four presentations of a moving dot 

moving across a white screen. Spikes (red) and LFP activity (black) are shown for each of the 

trials with (bottom) the peristimulus time histogram for the spikes shown below (turtle 7, 

electrode 95). 

After recognizing that the two different measures of activity tend to be similar, it makes 

sense to quantify their similarity. We can do this in the same way that we calculated the receptive 

field similarity of the LFP signals from two separate electrodes (Figue 2.17). 

The results of these studies were that, for a majority of the spiking/LFP comparisons, the 

spike data had a smaller RF, a less reliable response trial-to-trial, and the two RFs were 

significantly similar. 
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Figure 2.17 Spike-LFP receptive field similarity. (A) The LFP receptive field and spike 

receptive field for electrode 75 from turtle 7 (as plotted in Figure 2.12). (B) The similarity 

between the two receptive fields when the responses to dots moving at all angles are considered 

together, along with when we consider only the responses to dots moving at a specific angle. The 

black distributions are for 1,000 similarities calculated using shuffled data. The blue lines and 

numbers show the similarity of the real data for the two receptive fields, and the light grey line 

shows the similarity below which 95% of the shuffled similarities lie. 

2.9 Color Sensitivity 

To investigate the effects of color sensitivity, we compared the responses to different 

diffuse, full-field color changes. We found recording sites that respond to one change of colors, 

but not others and other recording sites whose responses seemed independent of color (Figure 

2.18). 
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Figure 2.18 Color sensitivity in visually evoked LFP activity. Responses are shown for two 

turtles, turtle 315 (Left) and turtle 405 (Right). (Top) LFP signal (black) and LFP events (red) 

shown for four trials of going from a white screen to a black screen and then back to white. 

(Bottom) same as the top but with a green screen instead of black. 

2.10 Possible Mapping of the Visual Field to the Visual 

Cortex 

For decades it has been reported that pyramids in turtle visual cortex respond to small 

moving stimuli spanning a very large portion of the visual field. While our results show large 

receptive fields for both single cell recordings and LFP’s for single recording sites, when we 

looked for more detail in the spatial structure of the receptive fields, there is less of a consensus 
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regarding what to expect, and our results weren’t always consistent with the existing predictions. 

Though there is not a clear and well defined retinotopic map to the cortex, there have been a few 

studies that report on projection at two steps leading from the retina to the cortex. 

2.10.1 Naso-temporal Visual Field 

Using retinal ablation and observing orthograde degeneration, Ulinski and Nautiyal 

reported that the nasal retina projects to the contralateral rostral LGN (and the temporal retina 

projects to the contralateral caudal LGN) (P S Ulinski & Nautiyal, 1988). Later, Mulligan and 

Ulinski used HRP stains and found that the rostral LGN projects to the caudal cortex (and the 

caudal LGN projects to the rostral cortex) (Mulligan & Ulinski, 1990). Combining these two 

observations Mulligan and Ulinski predicted that the nasal-temporal axis of visual space is 

represented along the rostro-caudal axis of the visual cortex. This prediction contradicted earlier 

results from Mazurskaya, who observed the opposite polarity in recorded evoked potentials in 

the visual cortex while presenting local visual stimulation to the retina (P. Mazurskaya, 1973). 

Neither Mazurskaya’s results nor Mulligan and Ulinski’s predictions are consistent with 

our findings. We tested this with moving dots that followed straight paths from the top of the 

visual field to the bottom (as well as dots moving in the opposite direction). Eight of these 

vertical paths were spread out at different naso-temporal locations spanning the visual field. Only 

one dot (following one path) would move at a time. After moving these dots along the different 

paths we could look for naso-temporal response specificity at any given recording site in the 

cortex. With the microelectrode array, we could then see if the nasal-temporal response 

specificity changed as we compared data from electrodes in the rostral cortex with those from 

caudal cortex. 
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Our results show that, as you compare the naso-temporal response specificity of different 

recording sites, the strength of response specificity does change, but the pattern of specificity 

was approximately the same for all recording sites, and the variations from site to site did not 

follow any clear trend (e.g., rostral recording sites responding strongly to one area while caudal 

sites respond strongly to a different area) (Figure 2.19). 

 

Figure 2.19 LFP responses to paths at different naso-temporal locations in the visual field. For 

24 electrode we show the average responses (lines) and standard deviations (filled area around 

the lines), in response to dots moving along 8 different vertical paths arranged naso-temporally 

in the visual field. The two colors represent the two opposite angles that traverse the paths. 

2.10.2 Dorso-Ventral Visual Field 

By performing the same experiments with the visual stimuli rotated 90 degrees, we were 

able to investigate response specificity for different elevations in the visual field.  

Ulinski and Nautiyal suggest that the dorso-ventral axis of the retina projects along the 

dorso-ventral axis of the LGN, but the data supporting this claim were much less clear than the 

data supporting conclusions about naso-temporal projections. Continuing along this visual 
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pathway, Mulligan and Ulinski reported that (at least some) neurons in any given dorso-ventral 

transect of the LGN project along the full lateral-medial extent of the cortex. Thus, a neuron 

located anywhere along a lateral-medial line in the cortex can respond to stimulation at any point 

along a particular vertical line in the visual field. In contrast with this prediction, we found 

recording sites that responded clearly to only the upper or only the lower visual field rather than 

stimulation at all elevations (Figure 2.20 electrodes 74 and 11). 

 

Figure 2.20 LFP responses to paths at different elevations in the visual field. For 24 electrode we 

show the average responses (lines) and standard deviations (filled area around the lines), in 

response to dots moving along 8 different horizontal paths arranged vertically in the visual field. 

The two colors represent the two opposite angles that traverse the paths. 

2.11 Discussion 

2.11.1 Similarity to Mammalian Inferior Temporal Cortex 

IT (inferior temporal cortex) is a visually responsive area in mammals. Much of what we 

find in turtle cortex resembles what has been seen in mammalian IT. In IT they have also found 

responses to visual stimuli persisting up to 15 s (Fuster & Jervey, 1981). IT cells also tend to 
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have large receptive fields, respond to many stimuli, including moving stimuli, receive sensory 

input from both eyes, and have adaptation effects with interstimulus intervals less than 5 sec 

(Gross, Rocha-Miranda, & Bender, 1972). 

Unlike, turtle visual cortex strong direction sensitivity has been observed in mammalian 

IT. Some of the direction sensitive IT cells had one clear preferred direction (termed 

unidirectional), but most were bidirection sensitive (they responded preferentially to both a 

direction and the opposite direction, but not perpendicular motion).This was demonstrated in IT 

using black bars sweeping across the visual field.  

In contrast, our studies of direction sensitivity have used black dots that take up only a 

small portion of the visual field. Because there is an additional spatial component to our stimuli, 

we are only equipped to look for preference of one direction compared to the opposite direction 

(opposite directions cover the same spatial region). 

Overwhelmingly, we have seen similar responses to opposite directions. This suggests 

that we don’t have unidirectional sensitivity (at least not seen in the number of LFP events), but 

it doesn’t preclude the possibility of bidirectional sensitivity. To test this, further studies should 

be done with moving bars that span the entire visual field. 

2.11.2 Similarity to Mammalian Hippocampus and Piriform Cortex 

Mammalian hippocampus has a similar structure to turtle cortex. Like turtle visual cortex, 

mammalian hippocampus has extensive feedback connections to its primary input source 

(entorhinal cortex) (Witter, 1993). In hippocampus oscillations are also found in the gamma band 
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(Bragin et al., 1995) and theta band with electrodes spanning several hundred microns having 

similar LFP signals (Buzsáki, 2002). 

The olfactory or piriform cortex is also a three layer cortical structure, and has 

feedforward and feedback circuits that are similar to those found in turtle dorsal cortex (Lewis B 

Haberly, 1985) along with numerous other similarities(see Chapter 1). Further identifying 

structural and functional similarities between the turtle dorsal cortex and mammalian piriform 

cortex will likely help elucidate common organizational and computational principal of cortical 

networks (Fournier et al., 2014). 

2.12 Supplementary Information 

2.12.1 Convergence of Receptive Field with Applied Latency 

It takes time for the signal elicited by visual stimuli to travel from the retina to the 

thalamus and then to the cortex. If we want to determine the receptive field represented by some 

signal (in this case, the LFP from an electrode), we need to be account for these delays. 

One way that we have come up with estimates for what delay might be appropriate is to 

test a range of delays and see which delay reveals the most structure in the receptive field. 

Without any delay (Supplementary Figure 2.1) the contributions to the receptive field from dots 

moving at different angles only partially overlap, and consequently, the receptive field is quite 

large when taken as a whole. In contrast, when we apply a 300 ms delay, the contributions to the 

receptive field from different angles overlap nearly perfectly, and the receptive field as a whole 

is smaller and appears more structured. 
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It should be noted that the figures shown here have a smaller RF than is typical. 

Electrodes with smaller RFs were deliberately chosen to more clearly show the convergence of 

the RF with different delays. 

 

Supplementary Figure 2.1 Convergence of the receptive field with response delays. Receptive 

field plots for turtle 77 electrode 48 (Top) and turtle 75 electrode 75 (Bottom) made by applying 

stimulus response delays of 0 ms, 150 ms, and 300 ms. 

The process above assumes that a smaller, more structured receptive field is ‘right’. This 

seems like a reasonable assumption, but it is still worth mentioning.  

We can actually gather another piece of evidence by applying multiple delays that does 

not require this assumption. We can establish an upper limit to the response latency by applying 

a latency large enough that we see a reliable response to times before a dot actually moves 

(Supplementary Figure 2.2). Looking at the red 90 degree responses for turtle 77 (or the black 
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270 degree responses for turtle 75), we see that the differences in response onset for the various 

paths that can be seen for 250 ms and 300 ms delays start to be cut off for 350 ms delays (i.e., the 

earliest responses are no longer shown because they don’t correspond to a location on the path 

because at that time, no dot was moving along a path). This gives us an upper limit of 350 ms (in 

this case) for response latency. 

 

Supplementary Figure 2.2 Limits of the visual field provide upper limits to response latency. 

Receptive field plots for turtle 77 electrode 48 (Top) and turtle 75 electrode 75 (Bottom) made 

by applying stimulus response delays of 0 ms, 150 ms, and 300 ms. 

2.12.2 Receptive Field Similarity versus Electrode Pair Distance across the 

MEA for 3 Turtles 

A trend in receptive field similarity versus distance is to find a negative slope. That is to 

say that similarity decreases when electrode pair distance increases. Zooming out we see a trend 

in the strength of this trend throughout the cortex. It is often the case that this trend is strongest in 
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one area of the cortex (typically a rostral area) and is less apparent in other areas (Supplementary 

Figures 2.3-6). 

 

Supplementary Figure 2.3 Receptive field similarity versus distance for Turtle 3. Plots of RF 

similarity versus electrode distance for several electrodes. The electrodes are arranged as they are 

on the MEA. Each point is the similarity of the LFP at that electrode with another visually 

responsive electrode. 
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Supplementary Figure 2.4 Receptive field similarity versus distance for Turtle 5. Plots of RF 

similarity versus electrode distance for several electrodes. The electrodes are arranged as they are 

on the MEA. Each point is the similarity of the LFP at that electrode with another visually 

responsive electrode. 
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Supplementary Figure 2.5 Receptive field similarity versus distance for Turtle 6. Plots of RF 

similarity versus electrode distance for several electrodes. The electrodes are arranged as they are 

on the MEA. Each point is the similarity of the LFP at that electrode with another visually 

responsive electrode. 



70 

 

Supplementary Figure 2.6 Receptive field similarity versus distance for Turtle 7. Plots of RF 

similarity versus electrode distance for several electrodes. The electrodes are arranged as they are 

on the MEA. Each point is the similarity of the LFP at that electrode with another visually 

responsive electrode. 

2.12.3 Possible Direction Sensitivity in Spiking Data 

It’s difficult to draw conclusions regarding direction sensitivity from much of our spiking 

data because 1) we haven’t systematically gone through all of our data to identify visually 

responsive units as we’ve done for the LFP on every electrode, and 2) when it seems that we are 

looking at visually responsive units, the responses are often so sparse that it’s tough to establish 

significance or clear patterns. 

With that in mind there are some indications that we might expect direction sensitivity 

from individual cells in turtle cortex. For instance, consider the receptive field shown for spiking 

activity in Supplementary Figure 2.7. We should be careful drawing conclusions from a data set 

including only 6 spikes, but I would argue that we have strong evidence suggesting that the 
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timing of those 6 spikes are far from random. The probability of 6 random spikes all occurring 

during motion in 1 direction (out of 4 possible directions) is already less than 1%. That they 

would further have occurred on all of (but no more than) a group of four adjacent paths and only 

at the location corresponding to ~25% from the beginning of the path is substantially less 

probable. Finally, that the receptive field is substantially similar to the LFP receptive field from 

the same electrode also suggests that the six spikes represent some real structure. 

 

Supplementary Figure 2.7 Possible direction sensitivity and spike-LFP receptive field 

similarity. (Right) Receptive field of a spiking cell. (Left) Receptive field of the LFP picked up 

by the same electrode. (Bottom) An indication of the similarity between the two receptive fields 

showing a comparison with shuffled data. 

It is worth noting one way the preceding reasoning could at times be misleading. 

Occasionally, a cell will be very quiet for a long time and the in a small period of time (maybe a 

second or two) fire a quick burst of action potentials. In that case, all the aforementioned 

‘unlikely’ events could quite simply be explained by calling the six spikes a single burst event. 
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That is clearly not what happened in this case. There was at least 30 s between each of the six 

recorded spikes, and most between most of the spikes there was even a presentation of dots 

moving at other angles. 

We can even argue that this is an example of unidirectional sensitivity (sensitivity to only 

one direction as opposed to a direction and its opposite, which is bidirectional sensitivity). In 

nearly all cases the LFP receptive field showed equally strong responses to dots moving in 

opposite directions. Here that clearly isn’t the case. Again, we should consider whether we can 

draw meaningful conclusions from only 6 spikes. 

Each path in the visual field was presented 8 times. Therefore, seeing 6 spikes in the 32 

presentations (from the 4 paths that had spikes), suggests that the probability of a spike being 

evoked by a dot moving along one of those paths is 19%. If a dot moving in the opposite 

direction for the same 4 paths was equally as likely to evoke a spike, then the probability of not 

seeing a single spike for the 32 presentations along those paths is ~0.1%. 

2.12.4 LED Peristimulus Time Histograms for Several Turtles 

Peristimulus time histograms of LFP events are useful for illustrating the temporal 

patterns of typical responses. By plotting these for several electrodes across the MEA, we get a 

sense for the extent to which these properties vary throughout the cortex (Supplementary Figures 

2.8-14). 
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Supplementary Figure 2.8 Peristimulus Time Histograms for several electrodes, Turtle 19. The 

electrodes are arranged as they were in the cortex. The PSTHs show LFP events in response to a 

brief LED flash (bin size = 50 ms, number of trials = 90). 
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Supplementary Figure 2.9 Peristimulus Time Histograms for several electrodes, Turtle 22. The 

electrodes are arranged as they were in the cortex. The PSTHs show LFP events in response to a 

brief LED flash (bin size = 50 ms, number of trials = 90). 
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Supplementary Figure 2.10 Peristimulus Time Histograms for several electrodes, Turtle 23. 

The electrodes are arranged as they were in the cortex. The PSTHs show LFP events in response 

to a brief LED flash (bin size = 50 ms, number of trials = 90). 

 

Supplementary Figure 2.11 Peristimulus Time Histograms for several electrodes, Turtle 27. 

The electrodes are arranged as they were in the cortex. The PSTHs show LFP events in response 

to a brief LED flash (bin size = 50 ms, number of trials = 90). 
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Supplementary Figure 2.12 Peristimulus Time Histograms for several electrodes, Turtle 29. 

The electrodes are arranged as they were in the cortex. The PSTHs show LFP events in response 

to a brief LED flash (bin size = 50 ms, number of trials = 90). 
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Supplementary Figure 2.13 Peristimulus Time Histograms for several electrodes, Turtle 30. 

The electrodes are arranged as they were in the cortex. The PSTHs show LFP events in response 

to a brief LED flash (bin size = 50 ms, number of trials = 90). 
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Supplementary Figure 2.14 Peristimulus Time Histograms for several electrodes, Turtle 31. 

The electrodes are arranged as they were in the cortex. The PSTHs show LFP events in response 

to a brief LED flash (bin size = 50 ms, number of trials = 90). 
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2.12.5 Additional Moving Dot Receptive Field across the Electrode Array 

 

Supplementary Figure 2.15 LFP receptive fields across the microelectrode array for Turtle 6. 

The LFP receptive field as probed by moving dots is plotted for 14 visually responsive electrodes 

arranged as they are across the MEA. 
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2.12.6 Reliable Responses to Moving Dot Stimuli 

In Figure 2.10 we showed a set of responses demonstrating several types of response 

variability. Here we show a set of responses to a different stimuli (dots moving in the opposite 

direction), which exhibit far less response variability. 

 

Supplementary Figure 2.16 Reliable responses to moving dot stimuli. LFP signal (black) with 

action potentials (red rasters) during 16 presentations (each row is a separate presentation) of 8 

dots moving across the visual field following 8 different paths. The 8 colored columns indicate 

the timing of the 8 dots moving across the visual field. 

2.12.7 Clues Regarding the Spatial Extent of the Local Field Potential 

If we want to claim that there is any meaning behind the LFP recorded at two different 

electrodes being similar, we should convince ourselves that they are simply recording the same 

signals. To this end, we split the LFP into many narrow frequency bands and compared the 

activity on two neighboring electrodes (Supplementary Figure 2.17). While most of the activity 

on one electrode is also seen on the neighboring electrode (though maybe with a different 
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amplitude), there are events that occur on only one of the electrodes. This shows that there are 

contributions to the LFP that can be seen clearly on one electrode but not seen at all 400 µm 

away and lends support to the claim that the similarity of LFP activity isn’t merely a result of 

recording from largely overlapping regions. 
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Supplementary Figure 2.17 Differences in LFP activity in adjacent electrodes. Responses to a 

black dot moving across a white screen for two electrodes separated by 400 µm. The signal is 

shown after filtering in 8 different narrow frequency bands. The 8 red paths shown in each box 

are 8 repetitions of the same stimulus. The blue circle highlights an example of an oscillation 

being present on one electrode but not the other. 
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2.12.8 Additional Average LED Responses 

As seen in Figure 2.4, at times the LFP response to an LED flash can have a dominant 

frequency present even in the average, but a single dominant frequency can’t be found in all 

turtles Supplementary Figure 2.18. 

 

Supplementary Figure 2.18 Average responses to LED flashes for several turtles. Responses 

shown for LED flashes of three different intensities: low (blue), medium (red), and high (black). 

The averages are shown as bold lines with the individual trials shown as thinner slightly 

transparent lines. 
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2.12.9 Adaptation with Moving Bar Stimuli 

Clear adaptation to visually evoked activity is seen in response to bars moving across the 

visual field in different direction. In Supplementary Figure 2.19 we see the strongest response to 

the bar that moved first in the series of 8 bars moving, and we see the weakest response to the 

bar that moved second. The order of the angles in which the bars moved was not the same for 

each trial, which tells us that the differences in response strengths can’t simply be explained by 

direction sensitivity, and much more likely are due to adaptation effects. 

 

Supplementary Figure 2.19 LFP and action potential responses to moving bars. The LFP is 

shown in black. Action potentials are indicated by red rasters. Each row is a separate trial, each 

colored column indicates the timing of a bar moving across the visual field. The histogram along 

the bottom is a peristimulus time histogram for the action potential data. 
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Chapter 3: Oscillations 

Functional roles of rhythmic oscillations in cognition are still a matter of debate in the 

neuroscience community. They are generally thought of as a core mechanism in synchronizing 

brain signals through bursts of oscillations. Using time-frequency analyses of the local field 

potential (LFP) recorded from turtle primary visual cortex, we found a large variability from 

electrode-to-electrode and turtle-to-turtle. Results also indicate a broad distribution of oscillation 

durations (ranges up to 2 s) and peak frequencies with little or no correlation between these two 

quantities. Visual inspection doesn’t reveal any qualitative discrepancies between ongoing and 

stimulus-evoked oscillations. These results were verified by our simulated network. This study 

suggest that neuronal oscillations in turtle primary visual cortex have a stochastic nature and 

aren’t sufficiently reliable to serve as a communication signal. 

3.1 Introduction 

3.1.1 Motivation 

Rhythmic oscillations have been found in many species and many brain structures (for a 

review see (X. Wang, 2010)). They have been discovered in cat neocortex (Bouyer, Montaron, & 

Rougeul, 1981), rat hippocampus (J Csicsvari, Hirase, Czurkó, Mamiya, & Buzsáki, 1999), 

human motor cortex and olfactory bulb (Adrian, 1950; Jasper & Penfield, 1949), visual and 
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auditory cortices of monkeys (Brosch, Budinger, & Scheich, 2002; Friedman-Hill, Maldonado, 

& Gray, 2000), and auditory cortex of rats (Franowicz & Barth, 1995) to name a few. Despite the 

fact that they have been studied extensively, the functional significance of these oscillations is 

still unclear. It has been hypothesized that rhythmic oscillations provide temporal windows for 

long-range communication between multiple regions (Buzsáki & Draguhn, 2004; Pascal Fries, 

Nikolić, & Singer, 2007; Pascal Fries, 2005; Gray & Singer, 1989; Lisman & Idiart, 1995). To 

this end the phase of the oscillations should be conserved over a period of time (autocoherent), 

which happens not to be the case (Burns, Xing, & Shapley, 2011; Burns, Xing, Shelley, & 

Shapley, 2010). Neuronal oscillations, however, exist even in brain slices (Cardin et al., 2009; 

Compte et al., 2008; Miles & Poncer, 1993; Whittington, Traub, & Jefferys, 1995). 

3.1.2 Questions to address 

To serve as a feature binding (Eckhorn et al., 1988) and phase coding signal, neuronal 

oscillations need to be similar and very reliable. The aim of this study is to address whether 

oscillations in primary visual cortex of turtles are coherent enough to function as a clock signal. 

There is a large controversy about the relationship between peak frequency and gamma band 

(30-100Hz) power in the cortex. On one hand, empirical relationships have been proposed 

(Henrie & Shapley, 2005; Lima, Singer, Chen, & Neuenschwander, 2010), but on the other hand, 

none of these relationships are consistent (Gieselmann & Thiele, 2008; Jia, Xing, & Kohn, 

2013). Therefore, our study is particularly focused on characterizing oscillatory responses in V1 

(primary visual cortex). 
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3.1.3 Structure of the Paper and Summary of Results 

To address these questions, we recorded ex vivo from primary visual cortex in turtles 

using MEAs (micro electrode arrays). In line with previous work (Delano, Pavez, Robles, & 

Maldonado, 2008; D. Xing et al., 2012), a large variability of the duration and peak frequency of 

oscillatory bursts has been observed. Moreover, a large variation is seen between electrodes and 

preparations. Qualitative discrepancies between ongoing and stimulus-evoked oscillations are 

discussed. We recreated these dynamics in a network with recurrent connections, Poissonian 

inputs, and balanced excitation/inhibition. Using complex time-frequency analysis, we test the 

autocoherent oscillator (ACO) hypothesis for experimentally recorded LFPs and instantaneous 

population rate of the computational network. 

3.2 Materials and Methods 

3.2.1 Ex-vivo eye-attached whole-brain preparation 

Adult red-ear turtles (Trachemys scripta elegans, 150-200g weight, 12-15cm carapace 

length) were used in this study. Procedures used in this study were approved by the Washington 

University Institutional Animal Care and Use Committee and conform to the guidelines of the 

National Institutes of Health on the Care and Use of Laboratory Animals. Rapid decapitation was 

performed after anesthetization with Propofol (10mg/kg) following established procedures (Ziolo 

& Bertelsen, 2009). 

The brain was surgically removed from the skull with the right eye attached and 

continuously perfused with artificial cerebral spinal fluid bubbled with 5% carbogen. The 

anterior half of the right eye was removed to provide a clear path to project an image onto the 
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retina (Figure 3.1). Starting from the left olfactory bulb, a rostro-caudal incision was made along 

the medial cerebral hemisphere allowing us to unfold the cortex and expose the ventricular 

surface of the visual cortex. 

 

Figure 3.1: Turtle ex-vivo preparation. Visual stimuli are reflected off a mirror and focused on 

the retina with a lens placed above the tissue. 

3.2.2 Visual Stimulation 

For the included studies, three methods of visual stimulation were used:  

LED Stimulation 

For LED stimulation, a red LED was connected to the output of a National Instruments 

BNC-2090 terminal block connected to a National Instruments PCI-6024E DAQ board. This 

output was controlled with a custom LabView program on a computer running Windows 7.  

Monitor/Mirror Stimulation 

For monitor/mirror stimulation (Figure 3.1), a 19 LCD monitor (Samsung model 

Syncmaster T190) displayed the stimuli. This image was reflected off a mirror located across 

room above the tissue, and focused on the retina with a lens placed above the tissue. 
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Projector Stimulation 

For projector stimulation, an AAXA P4 X projector was placed above the retina and 

focused with a system of lenses. Both monitor/mirror and projector stimulation was provided 

using software written in python on a computer running Ubuntu 10.4.  

Visual stimuli included black dots moving on a white screen, naturalistic video, and red 

LED flashes. 

3.2.3 MEA recordings and data acquisition 

Data were collected at a 30 kHz sampling rate using the Cerebus data acquisition system 

by Blackrock Microsystems. Two different styles of microelectrode arrays were used for our 

recordings. For some recordings, we used a 96-channel array (10 × 10 square grid, 400µm 

interelectrode spacing, 500µm electrode length, no corner electrodes, Blackrock Microsystems). 

For others, we used an array of shank electrodes (4×4 array of shank electrodes with 8 recording 

sites on each electrode, 300µm and 400µm x and y distance between shanks and 100µm between 

recording sites along a shank). We attached either array to a post fastened to a micro-manipulator 

(Sutter, MP-285) and inserted the array to a depth of 500µm starting from the ventricular side of 

the unfolded cortex such that the plane of the tips of the electrodes was parallel to the dorsal 

surface of the cortex. We recorded wide-band (0.7–15 kHz) extracellular voltages relative to a 

silver chloride pellet electrode in the tissue bath. 
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3.3 Data Analysis 

3.3.1 Burst Detection 

To detect bursts of fluctuations in the LFP, we filtered the raw signal using 9 different 10 

Hz wide passbands from 10 to 100 Hz. We then took the Hilbert transform of each of these 

filtered signals and normalized it by dividing by its mean value. Finally, we created a new signal 

by taking the maximum value from all 9 normalized Hilbert transforms at every time step. This 

new array indicates whether there was substantial activity in any of the 9 pass bands we 

considered. This signal was used to look for bursts of oscillations.  

To do so we looked at all the crossing of both a high threshold (6 std) and a low threshold 

(4 std). Each time the signal crosses the high threshold it becomes part of a burst, and the onset 

(and offset) of each burst is defined by extending forward (and backward) in time from the high 

threshold crossing until more there is more than 250ms to the next low threshold crossing. The 

data used for burst duration distributions came for multihour recordings including a mixture of 

visually evoked and dark periods. 

3.3.2 Relative Power 

Taking the PSD of the voltage signal can be useful to learn about the spectral properties 

during that time, but there are a few drawbacks to simply looking at the PSD. Typically, when 

looking at an evoked response or any event of neural activity, we are interested in how that 

activity is different than the ongoing spontaneous activity. If we simply look at the PSD we don’t 

get this information. For instance, if there were consistent ongoing high power in a band near 80 

Hz, then seeing a peak at 80 Hz during a period of evoked activity would not indicate that any 
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information was carried by that high power. Also, if one wishes to look at the changes in power 

of many electrodes, one might be misled by different electrodes having different impedances. To 

deal with both of these issues, we define something called the relative power. 

We examined visually evoked LFP responses to look for trends in the frequency profiles. 

Our primary measure of power at a given frequency is the relative power. The relative power is 

the power during a 2 s period after a stimulus onset divided by a baseline power (Figure 3.2). 

The baseline power was calculated by taking the average of the power spectral densities of all the 

2 s periods before the stimulus onsets, during which any recorded activity was not visually 

evoked. To calculate the power spectral densities, we downsampled our recordings to 3 kHz and 

then performed multitaper (3 tapers) spectral estimations of 500 ms sliding windows (sliding by 

50 ms) covering the 2 s periods. The average of powers from these sliding windows was used as 

the power to then calculate relative power from. 

 

Figure 3.2: Relative power of a voltage recording. (Top) A 2 s sample extracellular voltage trace 

is shown. (Middle) The power spectral density of this signal (red curve) and of an average 

baseline (dashed curve). (Bottom) The relative power of this signal (relative to the average 

baseline). 
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3.3.3 Peak Frequency 

To allow for the detection of peaks in relative power at more than one frequency for a 

single trial, we looked at more than simply the maximum value in the relative power. Instead, we 

started with all local maxima in relative power, and called any given maxima a peak frequencies 

if it met three conditions: 1) there must be a neighborhood around that frequency in which the 

relative power at some higher frequency (and lower frequency unless the neighborhood includes 

0 Hz) was at most 
1

4
 the relative power at the putative peak frequency, 2) in this neighborhood, 

the putative peak frequency must have the highest relative power, and 3) the relative power at the 

putative peak frequency must be at least 4 (i.e., the evoked power must be at least 4 times the 

baseline power). 

3.3.4 Continuous Gabor Transform 

The Fourier transform of a signal allows us to have frequency components with 

extremely high resolution. But, based on uncertainty principles, we lose all control on spatial 

duration: we know what frequency components exist in the signal, but we do not know when in 

time different components are triggered. To gain information about the temporal dynamics of the 

signal, we have to give up some frequency precision. The Gabor short-time Fourier transform is 

designed for this purpose. The signal is first multiplied by a window function, also called Gabor 

filter, and the resulting signal is Fourier transformed to render the time-frequency content. 

   (1) 

where x(t) is the signal to be transformed. The Gabor filter can be defined as follows 
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    (2) 

where t0 and σ are the center and temporal extent of the window function. 

The Continuous Gabor Transform (CGT) results in a complex matrix with its absolute 

values as power and its phases as the phase of the signal for that time and frequency component. 

Using these values, parametric trajectories can be plotted in polar coordinate with the radius as 

the amplitude and phase of the complex numbers during time. We define a frequency component 

that can be modeled as a sinusoidal function with a fixed phase as autocoherent (ACO). For 

ACO signals, parametric trajectories with residual phase (sinusoidal phase subtracted from 

original phase) should be confined to a region in the plot. Circular variation (CV) is a measure of 

localization of trajectories in phase portrait and can be it can be defined as, 

    (3) 

CV is always normalized to be between zero and one, with zero for the most coherent 

(sinusoidal) and one for completely random signals (Burns et al., 2010). 

3.4 Computational Model 

We used a network model of leaky integrate-and-fire cortical neurons. This network 

model was composed of three neuronal populations: 2000 regular spiking (RS) pyramidal 

neurons, 250 fast spiking (FS) interneurons, and 250 low-threshold spiking (LTS) interneurons. 

The connections are random and all connections, except inhibition from FS on LTS, are present. 

Using electrophysiological data, RS, FS, and LTS impacts were modeled as AMPA, fast, and 

slow GABA currents respectively. Detailed values are shown for each figure separately. 



97 

Thalamo-cortical inputs were provided as Poisson-like spike trains for all three populations and 

modeled as AMPA currents. Network activity is defined using the instantaneous population rate, 

which is obtained by summing over all spikes from all neurons in 0.5 ms time bins. This is 

analogous to the experimentally recorded LFP. 

3.5 Results 

3.5.1 Variability in Oscillatory Bursts 

The relative power at a given frequency represents the extent to which the power in that 

frequency has increased beyond an average baseline level calculated from periods without 

stimuli. Figure 3.3 shows recordings from four nearby electrodes in response to 50 ms red LED 

flashes. The top plot shows 1 s voltage traces with their relative power shown immediately 

belowe. Beneath that, the relative power is shown for 30 more trials and the average relative 

powers are shown in the last row. Interestingly, the relative power often has peaks within narrow 

frequency bands, and multiple peaks can be present simultaneously. It is useful to think of each 

peak as being generated by some neural circuit. Several types of variability in the peak 

frequencies are worth mentioning:  
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Figure 3.3 Variability in oscillatory bursts. Recordings from four nearby electrodes in response 

to 50 ms red LED flashes. The top plot shows one second voltage traces with their relative power 

plotted for that single trial in second row. Beneath that, the relative power is shown for 30 more 

trials and the last row shows the average relative powers over all trials. 

Trial-to-Trial Variability 

Each set of 30 repeated trials demonstrate that there can be significant trial-to-trial 

variability. While there is consistently an increase in power at some low frequency, the sharpness 

of the peak frequencies and the centers of those peaks vary from trial to trial. Often, there are 

certain frequencies that have high relative powers in most trials but not all. This suggests that 

there is a neural network that is typically activated by the given stimulus, but occasionally it is 

either inactive or overwritten by a more active network motif. 

Electrode-to-Electrode Variability 

For a single trial, peaks in relative power are often shared with nearby electrodes, but 

different peaks may see their maximal relative power at different electrodes. In some instances 

two distant electrodes may share peaks that do not show up on electrodes in between. In some 
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data sets, it appears that one subset of electrodes tends to have a specific peak frequency, while 

another subset tends to have a different peak frequency. These electrode subsets often overlap. 

More detailed correlation exists between electrodes in the time domain using narrow filters 

corresponding to the frequency bands identified by the relative power plots. 

Another type of variability not indicated by figure 3.3 is stimulus-to-stimulus variability. 

There could be a huge variability in relative power peaks in response to different stimuli 

presented (data not shown). All these variability types indicate the versatile functional roles of 

oscillatory bursts in information processing in visual cortex. 

3.5.2 Duration Distributions 

Understanding the role of oscillation variability in cognitive processes requires 

characterizing properties of oscillatory epochs. This also helps in constructing computational 

models. Considering the synchronizing role for neuronal oscillations in the brain, raises a 

question about the existence of a characteristic duration and frequency for oscillation epochs. 

Neuronal rhythms should last as long as the brain is processing information while frequency 

should remain unchanged. 
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Figure 3.4 Burst duration distributions. (A) Burst duration distributions for a single electrode 

from twelve different turtles. They have been arranged by column purely by visual inspection to 

demonstrate a few recurring features: a broad, gamma-like distribution peaked at duration near 1 

s; a narrow distribution with most bursts being less than 1 s; bimodal distributions; and three 

other distributions without any particular common feature simply to further illustrate the 

diversity of burst duration distributions. (B) The distribution of the burst durations from 796 

electrodes recorded from 51 turtles combined with 50 ms bins for the histogram. The 

contribution from each turtle is colored differently from the others near it, by simply cycling 

through 8 colors. (C) The same data shown in (B) zoomed in to show just the first 500 ms of the 

response using 5 ms bins for the histogram. 

Using the Hilbert transform (see Materials and Methods, Burst detection), we explored 

patterns in burst duration profiles. Figures 3.4A,B show duration profiles for 796 electrode 

recordings from 51 turtles. Burst duration distributions for a set of 12 electrodes are shown in 

figure 3.4A. A few recurring features are seen in these 12 distributions: a broad, gamma-like 

distribution peaked at duration near 1 s; a narrow, exponential-like distribution with most bursts 

being less than 1 s; bimodal distributions with most bursts being less than 2s; along with three 
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other distributions without any particular common feature simply to further illustrate the 

diversity of burst duration distributions.  

While we see clear and sometimes complicated structure in the distributions for 

individual electrodes, the combined distribution of many electrodes has a simpler structure and 

can be described quite simply. Figures 3.4B,C show the distribution of the bursts from 51 turtles 

(total 796 electrodes) combined. When combining this many distributions, the main feature that 

persists is the dominance of short bursts.  

An added benefit of using this larger data set is that we have enough data to increase our 

temporal precision. In Figure 3.4B, at the resolution used to bin the data, it’s unclear if the first 

few bins are following much of a trend. By decreasing our bin size to 5 ms and zooming in to 

just the first 500 ms of the distribution, we can see smoother patterns, the peaks of which may 

correspond to common stereotypical distributions for individual electrodes. 

The speculation is that there could be a space dependence for oscillation features. Since 

we recorded from a slightly different location each time, we would end up with different duration 

distributions. Another possibility could be that different internal states of the brain at the time of 

presenting the stimulus might differentially affect burst durations. Brain response is a complex 

interaction of inputs from sensory systems combined with the spontaneous activity (the internal 

state) of the brain at that time. Because we have no control over the internal state, we expect a 

variety of responses even when presenting the same stimulus. 
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3.5.3 Peak Frequency Distributions 

Duration variability shouldn’t be an issue on its, own especially when durations are an 

order of magnitude longer than the time scale on which neuronal circuits process information and 

oscillations can still be used as a long range communication and linking means. However, 

frequency variability could have an adverse impact on the function of oscillations in the cortex. 

We examined visually evoked LFP responses to look for patterns in the frequency profiles. Our 

primary measure of power at a given frequency is the relative power (see Materials and Methods, 

Relative power). Using our approach (see Material and Methods, Peak frequency) we were able 

to detect peaks in relative power at more than one frequency for a single trial. Distributions of 

relative power peak frequencies for a single electrode from twelve different turtles are shown in 

figure 3.5. At first glance, the diversity of profiles is noticeable. Profiles have been arranged to 

demonstrate a few recurring features: a broad distribution of peak frequencies primarily between 

10 Hz and 40 Hz with a gamma-like distribution; a very narrow distribution less than 20 Hz; a 

narrow distribution less than 20 Hz along with occasional peak frequencies covering a broad 

range of frequencies; and three additional distributions to further demonstrate the diversity of 

distributions. 
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Figure 3.5 Distributions of relative power peak frequencies. Distributions shown for twelve 

single electrodes from twelve different turtles. They have been arranged to demonstrate a few 

recurring features: a broad distribution of peak frequencies primarily between 10 Hz and 40 Hz; 

a narrow distribution less than 20 Hz; a narrow distribution less than 20 Hz along with 

occasional peak frequencies covering a broad range of frequencies; and three additional 

distributions to further demonstrate the diversity of peak frequency distributions. 

3.5.4 Test of autocoherency 

Here we tested to see whether oscillations have the properties of a ”clock” signal. A 

deterministic mechanism can lead to ACO oscillation, which provides a unique reference time 

for precise temporal encoding of visual information. The reason for our focus is that ACO 

oscillations are immensely supported by experimental data (Jozsef Csicsvari, Jamieson, Wise, & 

Buzsáki, 2003; Gray & Singer, 1989). Thus, the result of this test helps to keep or rule out many 

computational models and clarifies the situation. 
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Figure 3.6 Non-autocoherency of oscillatory bursts. (A) A 4 s voltage trace from one of the 

electrodes. A 10 ms red flash is triggered at 1 s. (B) Power spectrum of the signal for frequencies 

less than 100 Hz. It shows an increase in power at the onset of the stimulus. (C) Parametric phase 

portraits of the data shown in A for frequencies from 10 to 100 Hz with the increments of 10 Hz. 

Exact frequency and CV are shown at the top of the polar plots. 
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To this end, we use a time-frequency analysis method first proposed by Burns et al. 

(Burns et al., 2010). Their ACO test for the data from monkey V1 showed that oscillations in the 

gamma-band don’t have the properties of a ”clock” signal. Moreover, they showed that ACO 

signals exist in EEG recordings in alpha rhythms. To quantify autocoherency, they used circular 

variation (CV; see Methods and Materials) as a measure of localization of parametric paths in 

phase space. The CV is the ratio of the average complex coefficients from CGT normalized by 

the average amplitudes of the coefficients. A CV close to zero indicates that trajectories are 

localized in a sector of space and phase is nearly conserved, an ACO oscillation. A CV close to 

one implies that the phase path is wandering all over the space and oscillations are non-ACO. 

Figure 3.6 shows the results for a 4 s LFP trace from turtle V1. For the LFP trace shown 

in figure 3.6A, a 10 ms red LED flash was presented at one second. Figure 3.6B shows the power 

spectrum of this trace for a wide range of frequencies (5 Hz - 110 Hz). This plots shows an 

elevation in the alpha and gamma frequency bands. Phase portraits are plotted in polar 

coordinates and are shown in Figure 3.6C. Frequency for each parametric trajectory is listed at 

its top with a CV value. The radius of the trajectories is the amplitude of the coefficients, which 

are actually the square root of the power, and the phase is the phase of the coefficients with 

phase of a pure sine wave subtracted. Except for the alpha band all other CVs are very large and 

close to one, which indicates non-ACO of oscillations in the gamma band. However, ACO 

oscillations have been observed in rat hippocampus on shorter time scales, ∼100 ms 

(Montgomery & Buzsáki, 2007; Montgomery, Sirota, & Buzsáki, 2008). Therefore, we also 

tested CV values during just elevated power, from 1 s to 1.5 s period, and the results were robust. 

Figure 3.7 shows histograms of CVs for 9 frequency bands over a large number of 

recording sessions (3146). Each histogram is for 2 sec of LFP recording in response to LED 
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flashes. CVs are widely distributed from 0.3 to 1 in the alpha band (10 Hz – 30 Hz) with a 

slightly left-skewed distribution. This fails to reject autocoherency of oscillations and thus, there 

isn’t a conclusive result on autocoherency of oscillations. In contrast, very sharp distributions of 

CVs close to 1 indicate the nonautocoherency of oscillations in gamma band frequencies. These 

results, which are in line with those presented in Burns et al. 2010 (Burns et al., 2010), indicate 

that gamma-band rhythms cannot be trusted as a unique reference time in time scales of 500 ms, 

but alpha-band oscillations can function as a clock signal in order to synchronize distant brain 

regions and help to bind features of visual stimuli. 

 

Figure 3.7 CV histograms for alpha and gamma rhythms. Each inset is a CV histogram for 3146 

instances of 2 sec LFP recordings in response to 10 ms red LED flashes at the frequency listed 

on its top. Broad distributions of CVs in alpha-band (10-30 Hz) fail to reject autocoherency of 

oscillations. In contrast, very sharp distribution of CVs indicates the non-autocoherency of 

oscillations. 
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3.6 Computational Model Results 

3.6.1 Duration and Peak Frequency PDF 

The computational model is built with three types of cells: one excitatory and two 

interneuron types (see Materials and Methods). In other work (being prepared for publication) 

we showed that changing the LTS time constants changes the duration of oscillations but keeps 

frequency intact and, on the other hand, changing the FS time constants affects the frequency but 

not the duration. With that in mind, for this study, we ascribe normally distributed values to each 

time constant. All other parameters used for this study are the same as that previous work. These 

parameters lead to a broad duration distribution comparable to what we’ve seen from 

experiment. However, it is incapable of generating a wide distribution of frequencies from alpha 

to gamma band. Figure 3.8B shows a normal distribution of frequencies (57 ± 11, mean ± std). 

Another aspect of the data that cannot be seen in the model results is the variability in the shape 

of the distributions. Figure 3.8A and B are the typical, if not only, shapes that can be produced in 

the model. 



108 

 

Figure 3.8 Duration and peak frequency distribution in simulated model. (A) Drawing rise and 

decay time constants in FS and LTS cells from normal distributions broadens the duration PDF 

of population rate signal. (B) Distributed time constants also shift the peak frequency distribution 

to lower values with the mean in the middle of gamma band. For both insets time constants are 

as follows (mean ± std): LTS rise 10 ± 2, LTS decay 70 ± 15, FS rise 2 ± 0.3, FS decay 10 ± 1 

3.6.2 Test of ACO 

We showed that recorded LFP activity doesn’t show ACO in gamma-band, but does 

show ACO in alpha-band. Now we test the concept that a deterministic oscillation underlies the 

alpha- and gamma-band peaks observed in the population rate signal of the model. The clock 

hypothesis is a prominent observation in experimental studies of wide-band generally and 

gamma-band specifically. Therefore, it is a crucial criterion to narrow down all neuronal network 

models and proposed mechanisms for generating oscillations to a handful of them. 

This test has been done in other work we are preparing for publication. The network 

shows an epoch of oscillation around 60 Hz while CVs for all frequency bands from 20–100 Hz 

are very close to one, which indicates that oscillations are nonACO. This model is able to capture 

this feature of oscillations by having a stochastic mechanism for generating variable phase 

rhythms. It predicts that, for a constant visual (external) input, the time-scale on which 

oscillations are ACO is set by the internal dynamics of the network, which are obviously shorter 
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than the time scale of persistent activity (∼1 s). However, the model is incapable of generating 

ACO alpha rhythms. Randomness of duration and peak frequency observed for recorded LFPs, 

can be fulfilled by having a noisy external input to the neurons of the network. We believe that 

this noise has a critical role in generating alpha- and gamma-band peaks with variable phase. 

Another sophisticated mechanism is needed to lead to ACO alpha-band activity. 

3.7 Discussion 

3.7.1 Results Summary 

This study is a comprehensive assessment of neuronal oscillations of turtle V1 cortex in 

terms of their power, duration, peak frequency, and phase. Results indicate that a huge variability 

exists among electrodes and trials. This pertains to the information processing happening in 

underlying neuronal circuits and the state of the cortex at that time. Large variability can be seen 

from stimulus-to-stimulus as well (data not shown). Huge variability seen in duration and peak 

frequencies disallows straightforward functional roles for oscillations. Non-ACO of oscillations 

prevents the brain from using gamma-band oscillatory epochs as a means to synchronize distant 

brain regions on long time scales of ∼500 ms. However, there are two points worth mentioning. 

First of all, temporally unstructured dynamics could be resolved on shorter time scales of 100 

ms, on which gamma oscillations could be a clock signal. Second, our analysis doesn’t reject the 

possibility of alpha-band rhythms to be ACO and to be used as a universal reference time. This 

raises a very important question: what are the functional roles of gamma-band oscillations? 

Moreover, what approaches should be taken to evaluate functional roles of oscillations in 

general? 
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3.7.2 Underlying Mechanisms for Oscillations 

The simplest mechanism that can be devised for generation of oscillations in any 

frequency band in the LFP is a network of cells rhythmically firing at that frequency. However, 

experimental work suggest that neurons fire irregularly (J Csicsvari et al., 1999; P Fries, 

Reynolds, Rorie, & Desimone, 2001) and sparsely (J Csicsvari et al., 1999; Jozsef Csicsvari et 

al., 2003; Engel, Koning, Gray, & Singer, 1990) even when oscillations are present in the LFP 

signals of the network. Theoreticians showed that ACO oscillations emerge in a population of 

inhibitory neurons (X. J. Wang & Rinzel, 1993; X.-J. Wang & Rinzel, 1992). These early models 

indicated that recurrent interaction among inhibitory cells is the key underlying mechanism for 

the emergence of oscillations (Skinner, Kopell, & Marder, 1994). Numerous models included 

both excitatory and inhibitory cells proposed for generation of oscillations especially in gamma 

bands (N Brunel & Hakim, 1999; Nicolas Brunel & Wang, 2003; Geisler, Brunel, & Wang, 

2005; X J Wang, Golomb, & Rinzel, 1995). All these models demonstrate ACO oscillations in 

which phase is conserved over a period of time determined by the quality of external drive since 

they use a deterministic mechanism for generating oscillations (Burns et al., 2010). 

3.7.3 Functional Implications of the Variability of Oscillations 

During the past two decades, a surge of research on oscillations has happened and a 

wealth of promising papers have been published discussing how cortical oscillations may 

contribute to cognitive functions (Başar, Başar-Eroglu, Karakaş, & Schürmann, 2000; Başar, 

1999; Herrmann, Munk, & Engel, 2004; Ward, 2003) (for a review on oscillation functional roles 

see (X. Wang, 2010)). One hypothesis for the role of neural oscillations is the concept of phase 

coding (G. Buzsaki & Chrobak, 1995; Buzsáki & Draguhn, 2004; Gyorgy Buzsaki, 2006; Pascal 
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Fries et al., 2007; Harvey, Collman, Dombeck, & Tank, 2009). This hypothesis states that the 

timing of spikes with respect to the phase of ongoing network oscillations carries information 

about the presented stimulus. Another essential role that has been conceived for rhythmic 

oscillations is that they serve as a ”clock” signal (Pascal Fries et al., 2007; Pascal Fries, 2005; 

Lisman & Idiart, 1995; Singer & Gray, 1995). In this view, the brain uses oscillations for precise 

temporal encoding and for this purpose, the phase of the oscillations should be conserved during 

evoked response. 

Some studies, on the other hand, show that gamma-band activity is a stochastic process 

and is too random to serve as a clock signal for synchronizing brain regions over the length of 

the stimulus (Burns et al., 2011, 2010; D. Xing et al., 2012). Their experimental results (D. Xing 

et al., 2012) indicate that gamma activity has an identical temporal structure in both awake and 

anesthetized monkeys and their modeling results, in line with others (Kang, Shelley, Henrie, & 

Shapley, 2010), suggest that gamma-band dynamics could be replicated in a recurrent network 

with Poisson-distributed inputs and is unlikely to be a reference time. Another study (Ray & 

Maunsell, 2010) also shows that gamma-band activity is unlikely to serve as a feature binding 

signal in visual cortex, since neighboring sites have a different frequency profile in response to a 

single Gabor patch. To resolve this old-standing controversy and evaluate the importance of 

oscillations in neuronal circuits, a real-time analysis should be done while controlling the 

occurrence of oscillations (Rutishauser, Kotowicz, & Laurent, 2013). Using this approach while 

the animal is performing a task, the roles of oscillations can be explored. 
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Chapter 4: Neuronal Avalanches 

Adaptation maintains cortical neuronal networks in a dynamic state that is thought to 

optimize aspects of sensory information processing. Although adaptation depends on multi-scale 

interactions among many neurons, most previous work has focused on single neurons; how 

adaptation manifests at the population level is largely unknown. Here we measured population 

activity in visual cortex during visual stimulation. At stimulus onset, large-scale activity was 

dominant; during adaptation, diverse multi-scale activity emerged. Emergence of multi-scale 

activity during adaptation was reproduced in a computational model with external inputs and 

synaptic depression. In the model, adaptation tunes the system towards the boundary of two 

regimes: one with dominant large-scale activity, the other with dominant small-scale activity. 

Near this regime boundary, activity has no dominant scale, exhibits power-law statistics, and 

follows specific scaling laws. Our experiments confirm these predictions, indicating that 

adaptation maintains scale-free cortex dynamics, which have long been hypothesized to optimize 

information processing. 

4.1 Introduction 

A long-standing hypothesis at the interface of physics and neuroscience is that neural 

networks self-organize to the critical point of a phase transition, thereby optimizing aspects of 
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sensory information processing (Beggs, 2008; Plenz, Niebur, & Schuster, 2014; Woodrow L 

Shew & Plenz, 2013). This idea is partially supported by strong evidence for critical dynamics 

observed in the cerebral cortex (Beggs & Plenz, 2003; Friedman et al., 2012; Haimovici, 

Tagliazucchi, Balenzuela, & Chialvo, 2013; Klaus, Yu, & Plenz, 2011; Petermann et al., 2009; 

Priesemann, Valderrama, Wibral, & Le Van Quyen, 2013; W. L. Shew, Yang, Yu, Roy, & Plenz, 

2011), but the impact of sensory input on these dynamics is largely unknown. Thus, the 

foundations of this hypothesis – the self-organization process and how it manifests during strong 

sensory input – remain unstudied experimentally. Here we show in visual cortex and in a 

computational model that strong sensory input initially elicits cortical network dynamics that are 

not critical, but adaptive changes in the network rapidly tune the system to criticality. This 

conclusion is based on observations of multifaceted scaling laws predicted to occur at criticality 

(Friedman et al., 2012; Sethna, Dahmen, & Myers, 2001). Our findings establish sensory 

adaptation as a self-organizing mechanism which maintains criticality in visual cortex during 

sensory information processing.  

Sensory nervous systems adapt, dynamically tuning interactions among large networks of 

neurons, to cope with a changing environment (Bialek, 2012; Kohn, 2007). The principles 

governing such adaptation at the macroscopic level of neuronal network dynamics are not well 

understood. Computational models and theory suggest that such adaptation can maintain critical 

network dynamics (A. Levina, Herrmann, & Geisel, 2007; Anna Levina, Herrmann, & Geisel, 

2009; Meisel & Gross, 2009), but these previous studies did not consider the strongly driven 

regime that is expected during intense sensory input. Indeed, sufficiently strong input may 

increase the overall excitability of a network by bringing neurons closer to their firing thresholds 

and potentially tipping the network into a high firing rate regime that is inconsistent with critical 
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dynamics (Supplementary Information 1). Thus, the question remains: does strong sensory input 

drive cortical network dynamics away from criticality or can adaptation counteract this tendency 

and maintain the critical regime?  

4.2 Methods 

4.2.1 Ex vivo eye-attached whole brain prep 

All procedures were approved by Washington University’s and University of Arkansas’ 

Institutional Animal Care and Use Committees and conform to the guidelines of the National 

Institutes of Health on the Care and Use of Laboratory Animals. Adult red-eared turtles (n=9, 

Trachemys scripta elegans, 150 – 200 g weight, 12-15 cm carapace length) were studied. 

Following anesthesia (Propofol 10 mg/kg) and decapitation, we surgically removed the brain, 

optic nerves, and eyes, from the cranium (Supplementary Information 9). One eye was 

hemisected and drained, thus exposing the retina for visual stimulation; the other eye was 

removed. Two cuts allowed the cortex to be unfolded, exposing the ventricular surface, thus 

facilitating the subsequent insertion of the microelectrode array. The eye and the brain were 

continuously perfused with artificial cerebrospinal fluid (in mM; 85 NaCl, 2 KCl, 2 MgCl2, 45 

Na HCO3, 20 D glucose, and 3 CaCl2 bubbled with 95% O2 and 5% CO2), adjusted to pH 7.4 at 

room temperature. Recordings began 2-3 hrs after induction of anesthesia.  

4.2.2 Microelectrode array measurements 

We recorded wideband (0.7 Hz – 15 kHz) extracellular voltages relative to a silver 

chloride pellet electrode in the bath at 30 kHz sample rate (Blackrock Microsystems, Cerebus). 
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With post-processing filtering (band-pass 5-100 Hz) we extracted local field potential (LFP). We 

used two different electrode arrays. The first was a 96-channel microelectrode array (10x10 

square grid, 400 µm inter-electrode spacing, 500 µm electrode length, no corner electrodes, 

Blackrock Microsystems). Using a micromanipulator (Sutter, MP-285), we inserted this array to 

a depth of 250-500 µm with the plane of electrodes parallel to the dorsal surface of cortex. The 

second array was comprised of a three dimensional grid of electrodes (4x4x8 grid, 16 shanks, 8 

electrodes per shank, 300 µm inter shank spacing, 100 µm interelectrode spacing on each shank, 

Neuronexus). This second array was inserted to a depth such that electrodes spanned the cortex 

from the ventricular to the dorsal surface. We analyzed data from electrodes that were located 

with the visually responsive region of cortex (Supplementary Information 2). This included 

between 13 and 28 electrodes (19 on average) for 10x10 electrodes and approximately 48 

electrodes for the 3D grid electrodes. 

4.2.3 Visual stimuli 

Visual stimuli (two types of grayscale movie, black dots moving on a white background, 

uniform black to gray transition) were created by a computer and delivered with either a 

miniature video projector (Aaxa Technologies, P4X Pico Projector) or an LCD monitor 

(Samsung 19”, 1440x900 pixels, contrast ratio = 20000:1, response time = 2 ms). The 

projector/monitor image was focused onto the retina with additional lenses (Figure 4.1a). The 

mean light intensity (irradiance) at the retina was 20 mW/m2.for the monitor and 1 W/m2 for the 

projector. In two experiments, we also used brief flash from a light emitting diode (LED, 60 

W/m2 at retina) placed near the retina to stimulate with a 1 s flash. Additional details about the 

stimuli including timing are in Supplementary Information 10. 
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Figure 4.1 Visually driven network dynamics are power law distributed after non-power law 

transient. (a) Ex vivo whole brain with eyes attached. Visual stimuli are projected onto the intact 

retina while activity is recorded with a 96-channel microelectrode array (MEA) inserted into the 

unfolded visual cortex. (b) Avalanches are defined as spatiotemporal clusters of large amplitude 

LFP peaks (black dots). Five example avalanches are displayed with one dot per LFP peak. 

Avalanche size = number of LFP peaks; duration = time between the first and last peaks. (c) 

Natural movie visual stimulus (subset of 1 frame per 200 ms shown). (d) At movie start (green 

dashed line), there is a transient increase in stimulus-triggered average LFP peak rate. Average is 

over 315 movie presentations. Gray region delineates quartiles. (e) Stimulus-triggered avalanche 

size time series reveals tendency for very large avalanches during the transient response (red). 

Later, during the visually-driven steady state, less extreme avalanches occur (blue). Each point 

represents one avalanche. The line following each point indicates avalanche duration. Responses 

to 315 repeats of movie stimulation are overlaid. (f,g) Probability density functions for sizes and 

durations of avalanches during the transient response (red line) and during the visually-driven 

steady-state (blue dots). Large avalanches (arrow) occur during the transient response, yielding 

bimodal distributions of avalanche sizes and durations. Avalanches during the visually-driven 

steady state are power law distributed over the range indicated with dark blue dots. Gray shading 

indicates the range (0.05-0.95) of expected probabilities for a perfect power law with the same 

number of samples as the experiment. Jittering the times of LFP peaks destroys the power-law 

(dashed line) by abolishing large sized avalanches. Panels d-g are from one experiment with one 

turtle. 

 

4.2.4 Avalanche analysis 

The first step of avalanche detection was to compute the standard deviation of every LFP 

trace. Next we defined an ‘LFP peak’ as a period of time during which an LFP trace fluctuates 

beyond 3 to 4 standard deviations, due to either a positive or negative deflection (Figure 4.1b). 

For each LFP peak, we determined the time of its extreme value and the identity of the channel 

on which it was recorded. The channel information was used to exclude from analysis LFP peaks 

which were not within visual cortex. An avalanche was defined as a spatiotemporal cluster of 

consecutive LFP peaks with inter-peak intervals not exceeding a temporal threshold ∆T (channel 

information does not play a role in avalanche definition). ∆T was chosen to be the average inter-

peak interval (<IPI>, inverse of population LFP peak rate), resulting in ∆T=24 ± 18 ms (mean ± 
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SD). Avalanche duration was defined as the difference between the first and last LFP peak time 

within the avalanche. The size of an avalanche was defined as the number of LFP peaks 

comprising the avalanche. Avalanches analyzed separately depending on whether they occurred 

during the transient period or visually-driven steady state period. Robustness of results to 

changes in ∆T and definitions of time periods are in Supplementary Information 11. 

4.2.5 Power law fitting and fit quality, q 

Using maximum likelihood methods (Clauset, Shalizi, & Newman, 2009; Klaus et al., 

2011), we fit a truncated power law (truncated at both the head and tail) to the avalanche 

distributions during visually-driven steady state (Supplementary Information 12). The fitting 

function for the avalanche size distribution was 1
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Mx  was assumed to be the largest observed size. The minimum size 0x  and the exponent τ 

were fitting parameters. Since avalanche duration is a non-integer variable, the fitting function 

for the duration distribution was
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was taken as the largest observed duration, and 0y  and α were fitting parameters. Exponents τ 

and α between -1 and -4 in increments of 0.01 were tried. Minimum values 0x  and 0y  were tried 

increasing from 0, but only up to the point when the fitted power law matches the data well 

enough to have a Kolmogorov-Smirnov statistic sampNKS /1 , where sampN  is the number of 

avalanches comprising the dataset (Supplementary Information 12). For fitting model data size 

and duration distributions, we used the fitting function f(S) above, because both size and duration 

are discrete variables for the model. 
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After finding the best-fit power law, the next step was to assess goodness-of-fit q 

(Clauset et al., 2009; Klaus et al., 2011). We compared the experimental data to 1000 surrogate 

data sets drawn from the best-fit power law distribution with the same number of samples as the 

experimental data set. The deviation between the surrogate data sets and a perfect power law was 

quantified with the KS  statistic. The quality q of the power law fit was defined as the fraction of 

these surrogate KS  statistics which were greater than the KS  statistic for the experimental 

data. We use a very conservative criterion, q>0.1, for judging the data to be power law 

distributed. This is demonstrated visually in Figure 4.1f,g and Figure 4.2e,f by plotting the 

experimental distribution over a gray band which delineates the 5-95 percentiles of the surrogate 

data sets. 
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Figure 4.2 Depressing synapses tune model dynamics to critical regime after noncritical 

transient. (a) Conceptual cartoon illustrating model features, including recurrent synapses (black) 

and input synapses (green) which change strength according short-term depression. (b) A step 

increase in input (green, input spikes per timestep for whole network) causes a transient increase 

in the population spike rate of the network (black, median). Time series is averaged over 40 

trials. Gray region delineates quartiles. (c) Following the input rate increase, there is a relatively 

slow decrease in median synaptic strength for both recurrent (black) and input (green) synapses 

(average over 40 trials). Gray region delineates quartiles. Dashed line marks stimulus onset. (d) 

Stimulus-triggered avalanche time series. During a transient period after increase in input rate, 

avalanches of very large size occur (red). (e) Distributions of avalanche size during the transient 

period (red) reveal a ‘bump’ in the avalanche size distribution at large size (arrow). Avalanche 

sizes are power law distributed after synapses have adapted (blue). Gray shading indicates the 

range (0.05-0.95) of expected probabilities for a perfect power law with the same number of 

samples. (f) Avalanche durations follow a similar trend. Model parameters: low input R=0.05, 

high input R=100, default synapses Λ0=1.1, 30% subsampling, 5000 timesteps computed after 

increase in R. 

 

4.2.6 Computational Model 

1000N  all-to-all connected binary neurons received input from outside the network. 

The ‘strength’ of the synapse from neuron j onto neuron i at time t is determined by the 

corresponding element of the synaptic weight matrix )(tWij . 20% of neurons are inhibitory, i.e., 

with negative entries in the weight matrix. )(ti  is the strength of the input synapse onto neuron 

i (all excitatory). The binary state )1( tsi  of neuron i ( 0s inactive, 1s  spiking) is 

determined probabilistically based on the sum )1( tp  of its inputs

 


N

j jijii tstWtttp
1

)()()()()1(  . If 10  p , then the neuron fires with probability p . If 

1p , then the neuron fires with probability 1. If 0p , then the neuron does not fire. Time is 

discrete and state updates are synchronous. The input )(ti  from the ith input synapse is binary 

(1 with probability r). The onset of stimulation is modelled as a step increase from r=5x10-5 to 
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either r=0.02 or r=0.1. In Figs. 4.2 and 4.3, we report the population input rate of NrR  . The 

update rules for synaptic dynamics are   )()()()()1(
11

tstWtWWtWtW jijdij

o

ijrijij


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. The default weight matrix was 

constructed such that its largest eigenvalue Λ0 has absolute value equal to either 1.0, 1.05, or 1.1 

(Supplementary Information 7). A largest eigenvalue of 1.0 corresponds approximately to an 

average synaptic weight of 1/N and is known to result in critical dynamics for models with static 

synapses (Larremore, Shew, & Restrepo, 2011). Synapses depress with a time constant of 

20d  timesteps following a presynaptic spike and recover exponentially with a time constant 

of 400r  timesteps.  
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Figure 4.3 Steady state visually-driven avalanches follow predictions for critical regime. (a) 

Each point displays the size and duration of one avalanche (from one experiment, one turtle, 

same as Figure 4.1). Avalanches from the visually-driven steady state are shown. The linear 

relationship on logarithmic axes reveals a power law relationship between avalanche size and 

duration as predicted by criticality theory: 
DS ~ . The slope of the best-fit line (red) matches 

with the predicted    1/1    (yellow). (b) In different experiments, different values were 

found for duration exponents α and size exponents τ. (c) Different best-fit β were found for 

different turtles. Predicted β matched the best-fit β in the visually-driven steady state. Line 

indicates identical match. (d-f) Computational model displays the same relationship among 

power law exponents as found experimentally. Different size and duration exponents (e) were 

obtained by varying the input rate R, the degree of subsampling, and default synapse strengths Λ0 

(see inset legend). 

Each avalanches is initiated by external input. Upon reaching a timestep with no active 

cortical neurons, the avalanche is considered to be ended. We simulated 30 trials of step increase 

in input. In each trial, we ran the model for 5000 timesteps following the onset of increased 



129 

input. Subsampling (Figure 4.3) entailed analyzing the spikes from a randomly chosen 30% or 

10% of the network.  

4.3 Results 

Here we addressed this question in turtle visual cortex and in a companion computational 

model. In our experiments, we obtained long-duration recordings of population neural activity 

(local field potential, LFP) using a microelectrode array inserted into the geniculo-recipient 

dorsal cortex (visual cortex) of the turtle eye-attached whole-brain ex vivo preparation (Saha, 

Morton, Ariel, & Wessel, 2011) (Figure 4.1a and Supplementary Information 2). We measured 

multi-scale spatiotemporal patterns of neural activity while visually stimulating the retina. 

Similarly, in our model we studied changes in neural network activity in response to changes in 

external input. Experimentally and in the model, we assessed whether the measured dynamics 

were near or far from criticality. For this, we examined statistics and spatiotemporal scaling laws 

of “neuronal avalanches”, which are bouts of elevated population activity with correlations in 

space and time (Beggs & Plenz, 2003) (Figure 4.1b). In brief, a neuronal avalanche is defined as 

a group of LFP peaks, occurring on any electrode, irrespective of location, and separated by 

inter-peak intervals less than a specified time (Methods). For experiments in which spikes (i.e., 

multiunit activity) were also measureable, we confirmed that the rate of LFP peaks increases 

with the rate of spikes (Supplementary Information 3). Thus, a period of time with many LFP 

peaks, e.g., a neuronal avalanche, reflects an increase in population spike rate in the cortex. 

At the onset of stimulation, we observed that LFP amplitude, LFP peak rate, and 

avalanches were typically large scale – not consistent with critical dynamics – during a transient 

period (Figs. 4.1c-e and Supplementary Information 4). More specifically, avalanche sizes S and 
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durations D were often bimodally distributed during the transient (Figure 4.1f,g and 

Supplementary Information 5). Following this large-scale transient response, LFP amplitude 

decreased and avalanches became more diverse in spatiotemporal scale (Figure 4.1e), resulting in 

power-law distributions, 


SSP ~)(  (Figure 4.1f) and 


DDP ~)(  (Figure 4.1g) over a wide 

range of sizes and durations. This fact is supported by rigorous maximum likelihood fitting 

methods (Clauset et al., 2009; Klaus et al., 2011) and strict statistical criteria for fit quality (

1.0q , Methods).  

 These conclusions held for nine turtles and four types of visual stimuli (n = 13 data sets; 

complex movies, static gray screen, diffuse flashes, moving dots) with power law quality values 

13.031.0 q (mean ± SD). Importantly, the different visual stimuli had very different 

spatiotemporal structure, yet all resulted in power law avalanche distributions. This indicates that 

the power laws were due to inherent neuronal network dynamics rather than externally imposed 

statistics of the stimulus. Notably, randomizing the recorded LFP peak times abolished the power 

law distributions of avalanche size and duration, thus demonstrating the importance of 

correlations, (Figure 4.1f,g). Moreover, activity recorded outside visual cortex was not power 

law distributed (Supplementary Information 6).  

What biophysical mechanisms could mediate self-organization towards scale-free 

population activity during visual processing? To address this question, we investigated a 

parsimonious model network of probabilistic integrate-and-fire neurons with all-to-all 

connectivity (Figure 4.2a) (Haldeman & Beggs, 2005; Kinouchi & Copelli, 2006; W. L. Shew et 

al., 2011). A subset of neurons (20%) was inhibitory. Motivated by previous experiments 

(Chung, Li, & Nelson, 2002) and models (A. Levina et al., 2007), we modeled adaptation as 
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short-term synaptic depression with recovery (Methods). However, our model differed from 

previously studied models as detailed in Supplementary Information 7. We studied how the 

model dynamics and avalanche statistics change due to increasing the input rate. During a 

transient period after increasing the input rate, the population spike rate increased and synapses 

depressed (Figure 4.2b,c). During the transient, avalanches also increased dramatically in size 

and duration (Figure 4.2d), qualitatively similar to the experimental observations (Figure 4.1e). 

Avalanche size and duration distributions during the transient period displayed a distinct bimodal 

character consisting of small and large avalanches (Figure 4.2e,f), qualitatively similar to what 

we found experimentally (Figure 4.1f,g) and inconsistent with a power law. Following the 

transient jump in population activity, the network dynamically reached a new steady-state of 

population activity and average synaptic strength (Figure 4.2b,c). In this driven steady state, 

during continued high external input rate, the simulated neuronal avalanche size and duration 

distributions were power laws ( 1.0q ) (Figure 4.2e,f, Supplementary Information 7). 

In the model, a sufficiently strong increase in input rate transiently tips the system into a 

regime without critical dynamics (Supplementary Information 1). Adaptation then tunes the 

system to a critical regime. Given the similarity between our model results and our experiment, it 

is tempting to conclude that the experimentally observed power law avalanche distributions 

occurred because adaptation tunes the visual cortex to criticality. However, caution is called for, 

because power laws provide necessary, but insufficient evidence for the critical regime (Beggs & 

Timme, 2012; Sornette, 2006; Stumpf & Porter, 2012). Therefore, additional tests are needed to 

determine whether criticality underlies the experimentally observed power laws. 

Two such tests arise from a particular relationship between the size and duration of 

avalanches, which is predicted to occur at criticality(Friedman et al., 2012; Sethna et al., 2001) 
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and confirmed by our model (Figure 4.3d-f, Supplementary Information 1 and 7). First, the 

average avalanche size increases with duration according to a specific function 
DS ~ . Second, 

the exponent β is predicted to depend on the exponents τ and α as    1/1   . (A third 

additional test is confirmed in Supplementary Information 8.) 

Our experiments confirmed both these predictions (Figure 4.3a-c). First, we showed that 

avalanche size scales with duration according to a power law (Figure 4.3a). Second, we 

determined the “best-fit β” from the size versus duration data for each experiment (Figure 4.3a). 

Next we computed the “predicted β” using the observed exponents τ and α. For different turtles 

and different visual stimuli, we obtained a range of exponents; 1.7 < τ < 2.6 and 1.8 < α < 2.8 

(Figure 4.3b). Importantly, the observed values of τ and α provided a good prediction, 

   1/1   , of the best-fit β for all experiments (Figure 4.3c, Supplementary Information 

5). 

The experimentally observed range of the values for the exponents τ and α (Figure 4.3b) 

raises an important question as to the origin of this variability. In the model, we demonstrated 

that τ and α depended on three factors (Figure 4.3e): 1) the subsample fraction, 2) the external 

input rate, and 3) the default synaptic strength (parameterized by the largest eigenvalue Λ0 of the 

default synaptic weight matrix (Larremore et al., 2011), see Supplementary Information 7). 

Subsampling, i.e., creating avalanche distributions based on spikes from a subset of all model 

neurons, tended to increase τ and α, consistent with previous studies (Priesemann et al., 2014; 

Ribeiro, Ribeiro, Belchior, Caixeta, & Copelli, 2014). The effects of input rate and default 

synapse strengths depended on the level of subsampling. Importantly, the various combinations 

of τ and α observed in the model preserve the size versus duration scaling relationship (Figure 

4.3f), similar to what we found experimentally (Figure 4.3c). We note that the near linear 
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relationship between τ and α (Figure 4.3b,e) has not, to our knowledge, been predicted 

theoretically. 

4.4 Discussion 

The close match between our experimental observations and our model results, suggest 

that adaptation plays a crucial role in tuning cortical circuits towards the critical regime during 

vision. Why should adaptation in sensory cortex tune the network to operate near a critical 

regime? Previous computational studies and cortex slice experiments suggest that the critical 

regime optimizes several aspects of information processing (reviewed in ref. 3) including 

dynamic range (Kinouchi & Copelli, 2006; Larremore et al., 2011; W. L. Shew, Yang, 

Petermann, Roy, & Plenz, 2009) and information transmission (Beggs & Plenz, 2003; W. L. 

Shew et al., 2011). Our observation that transient response to stimulus onset is not critical 

suggests that sensory cortex dynamically adapts to gain the functional benefits of critical 

dynamics during strong sensory input.  

The critical regime has long been hypothesized to be a target of homeostatic processes in 

neural networks. This could be achieved by some ‘top-down’ mechanism (e.g., neuromodulators 

like dopamine (Gireesh & Plenz, 2008)) that tunes the network or as the result of local self-

organization (Bak, Tang, & Wiesenfeld, 1987; Bornholdt & Röhl, 2003; A. Levina et al., 2007; 

Meisel & Gross, 2009). In either case, one concern with this hypothesis has been that, 

theoretically, the critical regime occupies an infinitesimal volume in state space (the boundary 

between two different regimes), which may be too small a target to hit for a real biological 

tuning process contending with noise and imperfections. Recent theoretical findings mitigate this 

concern, showing that in networks with complex structure, the critical regime expands, 
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occupying a substantial region (Griffiths phase) in state space (Moretti & Muñoz, 2013). Thus, 

our experiments, together with previous theory, establish the critical regime as a viable target for 

adaptive self-tuning during cortical sensory information processing. 

4.5 Supplementary Information 

4.5.1 Weakly Driven Versus Strongly Driven Model Network Dynamics 

Our modelling efforts highlight an important distinction between weakly and strongly 

driven systems. For simplicity, we first consider a model with static synapses (Supplementary 

Figs. 4.1,4.2). In contrast with our dynamic model, here we fixed synaptic weight matrices W 

and Ω and did not implement the dynamic rules for changing synapse strengths. Otherwise, the 

model was identical to the dynamic model. In the weakly driven case, the timescales of driving 

and avalanches are well separated. In this case, interactions among neurons (e.g., synapse 

strengths, number of connections per neuron, relative strength of excitatory versus inhibitory 

synapses) determine whether or not a system produces critical dynamics (i.e., power law 

avalanche distributions and size vs duration scaling). More succinctly, in the weakly driven case, 

a synaptic weight matrix with largest eigenvalue Λ=1 defines criticality (Larremore et al., 2011). 

In contrast, in the strongly driven case, non-critical dynamics may occur, even with ‘structurally 

critical’ synapses, i.e., Λ=1. In the case of strong drive and depressing synapses (Figure 4.2), 

both the intensity of external input and Λ are dynamic variables. If synaptic depression 

sufficiently decreases effective input to the cortex and Λ is near unity after such depression, only 

then will critical dynamics result. In conclusion, to maintain critical dynamics and associated 

functional advantages, a system must account for both Λ and the level of external drive it 

receives.  
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Supplementary Figure 4.1. Sufficiently strong input results in a noncritical dynamics. These 

results are from our model with static synapses. The synaptic weight matrix is fixed. Otherwise 

the model is identical to the model presented in the main text. (a) Population spike rate (gray 

scale) varies with both the strength of synapses (parameterized by Λ, the absolute value of the 

largest eigenvalue of the synaptic weight matrix) and the input rate (total spikes per time step for 

the whole network). The color scale is logarithmic. (b) Phase transition from subcritical to 

supercritical dynamics as synapse strength is increased. Critical dynamics occur at Λ≈1. Input 

rate is fixed just below R=10 spikes per time step. Corresponds to the green dashed line in panel 

a. (c) Increasing from low to high input rates causes a transition from critical dynamics (R < ~10 

spikes per time step) to non-critical dynamics for high input rates. Synapses are fixed at Λ=1. 

Corresponds to the red dashed line in panel a. 
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Supplementary Figure 4.2. Strong drive and Λ far from 1 preclude critical dynamics. (upper 

left)A phase diagram like that shown in Supplementary Figure 4.1a. The letters a-i indicate the 

parameters corresponding to the example avalanche distributions and scaling laws shown in 

panels a-i. The blue box encloses the two examples that match best with our experimental 

observations. (panels a-i)LEFT: Avalanches size S probability density function. Heavy black 

line: range of power law scaling. Blue: full range. MIDDLE: Avalanche duration D probability 

density function. RIGHT: Avalanche size versus duration. Red dashed lines: best fit S vs D 

scaling relationship. Yellow lines: predicted S vs D scaling. Red arrows: Indicate the large 

avalanches (bimodally distributed) that occur for Λ>1(g,h,i) or for intense input with Λ=1 (d). 

Note that critical dynamics (large range of power law scaling and well-predicted S vs D scaling) 

are not found if either Λ is far from 1 or if the input rate is too high. 

4.5.2 Visual Cortex in Turtles 

Turtle visual cortex is defined by the geniculo-recipient area of the dorsal cortex (Cosans 

& Ulinski, 1990; Mulligan & Ulinski, 1990). We accepted a recording channel as part of visual 

cortex when its average LFP response to visual stimulation exceeded a given threshold. For the 

10x10 grid electrodes, we identified visually responsive channels based on stimulus-triggered 

average maps of the absolute value of LFP (for an example see Supplementary Figure4.3b). For 

the 3D grid electrodes, we placed the entire array in visual cortex, but used data from every other 

electrode along each shank (total of about 48 electrodes). Based on this approach, visual cortex 

included between 13 and 28 electrodes (19 on average) for 10x10 electrodes and approximately 

48 electrodes for the 3D grid electrodes. Importantly, the visually responsive region defined by 

our approach was always centered on rostral dorsal cortex (Supplementary Figure4.3c), which is 

where previous anatomy studies have identified LGN projections to cortex(Mulligan & Ulinski, 

1990; P. Ulinski, 2007).  
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Supplementary Figure 4.3. Delineating visual cortex based on visually responsive channels. (a) 

The whole brain is removed from the turtle with eyes attached. The ventricle beneath the cortex 

allows the unfolding of the cortex without severing afferent/efferent fibers. A 96-channel 

microelectrode array (MEA) is inserted into the unfolded visual cortex and surrounding cortical 

regions. DVR = Dorsal Ventricular Ridge. (b, left) Stimulus triggered average |LFP| is shown for 

every electrode in the 96 channel array. Each row of the image represents one electrode. Time 

advances from left to right. The red line is the time the stimulus was turned on. Grayscale 

indicate magnitude of |LFP| normalized by SD averaged over 45 trials. Note that some channels 

have significant LFP amplitude, but little response to stimulus. These channels are located in the 

medial cortex, outside visual cortex (compare to Supplementary Figure4.8 data). (b, 

right)Percent change in |LFP| relative to the pre-stimulus baseline is plotted for every electrode. 

The post-stimulus time window is 4 s. We define a channel as visually responsive if the % 

change in |LFP| exceeds a threshold (10% in this example). (c) Each pixel in this image 

represents the % change in |LFP| for one electrode (same data as Middle panel). The pixels are 

spatially arranged according to actual electrode positions. The visually-responsive (above-

threshold) channels are shown outlined in red. In all turtles, the visually-responsive channels 

were primarily in the rostral-lateral corner of the array. Note that this figure is relevant for 

experiments with the 10x10 microelectrode arrays. In contrast, the three dimensional grid array 

covered less area was positioned such that all electrodes were in the visually responsive area. 

4.5.3 LFP-Spike Relationship 

Our two primary reasons for analyzing LFP peaks rather than spikes were that 1) spikes 

were not always clearly measurable in our experiments and 2) that LFP may better represent a 

large population of neurons. Here we show that the rate of LFP peaks rises with the rate of multi-

unit spikes for one turtle that did have clearly measurable spikes. This relationship suggests that 
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although we specify avalanche size in terms of number of LFP peaks, the avalanche may be 

interpreted as comprised of a roughly proportional number of spikes.  

 

Supplementary Figure 4.4. LFP peak rate increases with multi-unit spike rate. Each point 

represents the numbers of peaks and spikes counted in one 0.5 s period. This was done in 

consecutive 0.5 s windows over the entire recording. The red line is the average of the points. 

Multi-unit activity was detected with a 5 SD threshold after band-pass filtering 300 - 3000 Hz.  

 

4.5.4 Spatiotemporal Dynamics of Visually-Driven Population Activity 

(Beyond LFP Peaks) 

The data we present in our main results are based on LFP peaks and their statistics. Here 

we present some alternative perspectives showing the spatiotemporal dynamics of continuous 

LFP signals.  
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Supplementary Figure 4.5. Examples of raw data. Shown are examples of raw LFP traces 

(from all visually responsive electrodes) for the first five turtles. For turtles 1 and 2, the stimulus 

(onset at green line) was a complex movie. For turtles 3-5, the stimulus was black dot scanning 

across a white background. 
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Supplementary Figure 4.6. Spatiotemporal dynamics of visually driven population activity. (a) 

Natural movie visual stimulus (for clarity, a subset of frames is shown). (b) At movie start, there 

is a transient increase in pairwise covariance of LFP. Each vertical strip of this plot displays one 

distribution of pairwise covariance computed during a 300 ms sliding time window (10 ms slide 

step). Data is from 45 repeated movie presentations. Color indicates how often a given 

covariance was observed. (c) Spatial patterns of stimulus-triggered average |LFP|. Each image 

represents the average LFP (% change relative to pre-stimulus baseline) at all 96 channels on the 

array at the time indicated by each arrow. (d) Low frequency LFP (1-5 Hz) recorded at one 

channel during repeated presentation (n = 45 trials) of the natural movie. For each trial (row), 

LFP amplitude is represented (color coded) in terms of z-score (difference from mean, 

normalized by SD). Small variability (gray) about the cross-trial average (black) demonstrates 

reliability of response to repeated stimuli. Frame-specific changes in LFP indicate stimulus 

specificity of response. The gray shaded region delineates quartiles. 

4.5.5 Avalanche Distributions and Scaling Relations for All Experiments 

The following 13 plots (Supplementary Figure 4.7) shows avalanche size and duration 

distributions for all experiments. Each plot includes probability density functions (PDF) with 

logarithmic bins (top left, top middle) as well as cumulative distribution functions (bottom left, 
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bottom middle) for three data sets: 1) avalanches that occurred during the visually-driven steady 

state (blue), 2) avalanches during the transient (red), and 3) avalanches based on temporally 

jittered LFP peaks (Tj=10 s) from the visually-driven steady state (gray). In addition, we show 

the size versus duration scaling plot (top right) comparing the predicted scaling (yellow line) 

with the best fit scaling (red dashed line). In all plots, dark blue points represent the range of 

avalanches that best fits a truncated power law. The light blue points indicate the range that is 

outside the fitted range. In the PDF plots, the gray band delineates the range of expected 

probabilities for N avalanches drawn from a perfect power law distribution with the same 

exponent as the best fit power law for the data. Here, N is the number of experimentally 

observed avalanches within the fitting range. Finally each plot specifies what values were found 

for power law exponents τ and α, the parameter ∆T used in the avalanche analysis, the deviations 

δ between the best fit power law and the other distributions, the power law quality q, predicted β, 

best fit β, the total number of avalanches Na, and the number of avalanches included in the fitted 

range for sizes (NfS) and durations (NfD).  
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Supplementary Figure 4.7. Avalanche distributions and scaling laws for all experiments. A 

general caption for this figure and the following 12 figures is given above in Supplementary 

Information 5.  
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4.5.6 Avalanche Statistics outside Visual Cortex 

 

Supplementary Figure 4.8 Critical dynamics are not a universal feature of cortical circuits: no 

power laws outside visual cortex. Here we present recordings from outside visual cortex 

(Supplementary Figure 4.3)in the cortical region adjacent to visual cortex, known as medial 

cortex, the putative homolog of mammalian hippocampus(P. Ulinski, 2007). (a) Stimulus-

triggered avalanche size time series confirms that, among electrodes outside visual cortex, the 

cortex is active, but activity is independent of visual response. Each point represents one 

avalanche. Avalanche durations are represented by the gray line to the right of each point. The 

avalanches recorded during 45 repeats of movie stimulation are overlaid. (b,c) Outside visual 

cortex, avalanche size (b) and duration (c) distributions are not power laws. For comparison, the 

best fit power law is represented by the gray shaded region and the power law for avalanches 

within visual cortex is shown in blue (data from same turtle as Figure 4.1). Jittering LFP peak 

times (dashed) leaves avalanche size statistics largely unchanged, indicating that cross-channel 

correlations are weak outside visual cortex. Inset summarizes the deviation from the visual 

cortex power law for all experiments. While fitting power laws to activity outside of visual 

cortex (Supplementary Figure 4.8), we did not fit the 0y  parameter, because such fitting resulted 

in 0y very close to 
My  excluding the vast majority of the dataset. This fact is further 

demonstration that the data are not power law outside visual cortex. Likewise 0x  was not a 

fitting parameter for activity outside visual cortex.  
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4.5.7 Details and Example Data from Model with Adapting Synapses 

Our model with adapting synapses was designed to test the idea that short-term 

depression may account for our primary experimental observation: power law avalanches after a 

transient period of depressive adaptation. The model consisted of 1000N  all-to-all connected 

binary neurons (mimicking cortex). In addition, each neuron receives input from outside the 

network (mimicking thalamic drive). The ‘strength’ of the synapse from cortical neuron j onto 

neuron i at time t is determined by the corresponding element of the synaptic weight matrix 

)(tWij . 20% of neurons are inhibitory. All the output synapses of inhibitory neurons are modeled 

with negative entries in the weight matrix. Similarly, )(ti  is the strength of the thalamocortical 

synapse onto neuron i (all excitatory). The binary state )1( tsi of neuron i ( 0s inactive, 1s  

spiking) is determined probabilistically based on the sum )1( tp of its inputs 





N

j

jijii tstWtttp
1

)()()()()1(   

If 10  p , then the neuron fires with probability p . If 1p , then the neuron fires with 

probability 1 ( p  is very rarely >1). If 0p , then the neuron does not fire ( p  is very rarely <0). 

Time is discrete and state updates are synchronous. The input )(ti  from the ith thalamocortical 

synapse is 1 with probability r and zero with probability 1- r, for all i. To simulate the onset of 

visual stimulation, we implement a step increase from r=5x10-5 to either r=0.02 or r=0.1. In the 

main text and in figures (Figures 4.2, 4.3, Supplementary Figs. 4.1, 4.2, 4.9) we report the 

population input rate of NrR  ,which specifies the total number of input spikes per timestep for 
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the whole network. Data from both of these situations is summarized in Figure 4.3 and 

Supplementary Figure 4.9.  

At time 0t  the cortico-cortical synapse matrix is equal to the default matrix 
0

ijW . The 

default matrix is constructed as follows. Initially all entries are drawn from a uniform 

distribution on ]1,0[ . Then a randomly chosen subset of 20% of columns are multiplied by -1 

(these are the inhibitory output synapses). Then, the weight matrix is normalized so that its 

largest eigenvalueΛ0 has absolute value equal to either 1.0, 1.05, or 1.1. Data generated with 

these different model parameters is summarized in Figure 4.3 and Supplementary Figure 4.9. A 

largest eigenvalue of 1.0 corresponds approximately to an average synaptic weight of 1/N and is 

known to result in critical dynamics for models with static synapses and weak input (Larremore 

et al., 2011) (Supplementary Figs 4.1, 4.2). The initial thalamocortical synapses 
0

i  are all equal 

to N/8 . Both the corticocortical and thalamocortical synapses are dynamic in an activity-

dependent manner, similar to previous models (A. Levina et al., 2007; Anna Levina et al., 2009). 

They depress with a time constant of 20d timesteps following a presynaptic spike. They also 

recover exponentially with a time constant of 400r timesteps. These timescales for depression 

and recovery were chosen so that the synapses reach a steady state in less than about 500 

timesteps, which is consistent the timescales of adaptation we observed experimentally, if we 

interpret one timestep as approximately 1 ms. The discrete time update rules for synaptic 

dynamics are 

  )()(
1

)(
1

)()1( tstWtWWtWtW jij

d

ij

o

ij

r

ijij
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In this model, avalanches are initiated by thalamocortical input and sustained by a 

combination of corticocortical interactions plus thalamocortical input. Upon reaching a timestep 

with no active cortical neurons, the avalanche is considered to be ended. Model avalanche size 

and duration distributions were treated with the same statistical tests as the experimental 

data.One exception to this was that, for the model data, the upper cutoff xM was a fitting 

parameter, but in experiments it was fixed. This was done because in the model there was a clear 

cutoff at large size avalanches that needed to be accounted for. 

We used this model to simulate 30 repetitions of step increase in thalamocortical drive. 

The transient period in the model was defined in the same way as the experiments and was 

typically 200-300 timesteps. We ran the model for 5000 timesteps following the onset of 

increased drive. This allowed us to obtain distributions based on thousands of avalanches; a 

similar number of avalanches was found in experiments (Supplementary Table 1). We also used 

the model to investigate how greater or lesser degrees of subsampling might impact the statistics 

of avalanche distributions during the visually-driven steady state (Figure 4.3, Supplementary 

Figure 4.9). Our findings are consistent with previous studies of subsampling, which found that 

increasing subsampling in densely connected networks steepens the avalanche distributions 

(Priesemann et al., 2014; Ribeiro et al., 2014). 

Comparison to related models 

Although the synaptic dynamics in our model was motivated by the model studied by 

Levina et al. (2007), our model differs in important ways from Levina et al’s model. Our neurons 

are leaky, as in numerous recent studies of criticality in neural systems (Kinouchi & Copelli, 
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2006; Larremore et al., 2011; Woodrow L Shew, Yang, Petermann, Roy, & Plenz, 2009; S.-J. 

Wang, Hilgetag, & Zhou, 2011); they do not integrate inputs over indefinite time intervals. We 

set the timescale of depression to be somewhat slower 20 timesteps than the ~5 timesteps for 

Levina et al. We chose this timescale to approximately match the observed duration of the 

transient response in our experiments. Another difference is that we include inhibitory neurons, 

similar to other recent studies (Larremore, Shew, Ott, Sorrentino, & Restrepo, 2014; S.-J. Wang 

et al., 2011; Yang, Shew, Roy, & Plenz, 2014). Finally, we consider the strongly driven case, 

whereas Levina et al. maintained a separation of timescales that is typical in models of self-

organized criticality. In contrast, Hartley et al. (2014) considered a range of different driving 

including similar rates of external input to what we studied here. Interestingly, Hartley et al. 

concluded that strong drive does not preclude critical dynamics. We suspect that this apparent 

discrepancy with our results is due their defining avalanches using a very short ∆T for 

segmenting avalanches and implementing continuous time modeling, but this possibility remains 

to be verified in further studies. 
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Supplementary Figure 4.9 Detailed examples from model with dynamic synapses. In Figure 4.3 

of the main manuscript, we summarize the exponents and scaling relations for nine different sets 

of model parameters. Here we show the corresponding avalanche distributions and scaling laws 

for each of these different model data sets. Each row is for a different level of input R and default 

synapses Λ0. For a given R and Λ0, we show the effects of subsampling (green – fully sampled, 

blue-30% subsampled, brown-10% subsampled). Red distributions represent avalanches during 

the transient following the increase in drive. The best fit power law exponents α and τ as well as 

the scaling exponents β are displayed for each condition. In the probability distributions the light 

blue portions of each line are outside the range of power law scaling. 

4.5.8 Empirical Branching Function Versus ∆T 

 

 

Supplementary Figure 4.10 Empirical branching parameter versus ∆T curves support the 

hypothesis that visually-driven steady state activity and our model operate in critical regime. 

Here we study the empirical branching parameter σ* following previously developed methods 

(Priesemann et al., 2014). In brief, for the experiments (LEFT), we computed the ratio of the 

number of LFP peaks observed in a time bin of duration ΔT to the number observed in the 

previous time bin. This ratio was averaged over all consecutive pairs of time bins to obtain σ*. 

This was then repeated for a different sized time bin to determine how σ* depends on ΔT. As 

shown in previous work (Priesemann et al., 2014), if this curve reaches a peak significantly 

above σ*=2 then this may be considered as evidence for critical dynamics. (MIDDLE) Results 

from the model with adapting synapses. Different colors represent different model parameters 

(green: Λ0=1.1, R=0.1; purple Λ0=1.0, R=0.1; yellow Λ0=1.05, R=0.02). (RIGHT) Results from 

the model with two different levels of subsampling (top 30%; bottom 10%). 
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4.5.9 Ex vivo eye-attached whole-brain preparation 

Following anesthesia (Propofol 10 mg/kg) and rapid decapitation with a guillotine, we 

surgically removed the brain, optic nerves, and eyes, from the cranium as described earlier 

(Kriegstein, 1987; Mancilla et al., 1998; D M Senseman, 1996). In brief, during surgery we cut 

the conjunctiva and extraocular muscles to free the eyes from their orbits. After removing the 

brain from the skull, we made a cut rostro-caudally along the medial cortex, starting at the 

ventricle of the olfactory bulb. This cut preserves the normal afferent input of the visual cortical 

area, because the geniculocortical pathway traverses the lateral cortical wall within the lateral 

forebrain bundle (Mulligan & Ulinski, 1990). Subsequently, two medio-lateral cuts to the 

telencephalon at its anterior and posterior ends prepared for unfolding of the hemisphere and 

exposing the ventricular surface (Supplementary Figure 4.3a). The contralateral eye was 

hemisected and drained of its vitreous, thus exposing the retina; the ipsilateral eye was removed. 

The preparation was transferred to the perfusion chamber positioned on an air table with the eye-

cup beneath a focusing lens (Figure 4.1a). The unfolded cortex was pinned with short pieces of 

tungsten wires (25 µm diameter) to an agar block in the recording chamber with the ventricular 

side up, thus facilitating the subsequent insertion of the microelectrode array.  

4.5.10 Details and timing of visual stimuli 

Visual stimuli were created by a computer and delivered with either of two methods. In 

the first method, an LCD monitor (Samsung 19”, 1440x900 pixels, contrast ratio = 20000:1, 

response time = 2 ms). The image on the monitor was projected onto the retinal surface of the 

hemisected eye-cup with a converging lens system (Figure 4.1a). The mean light intensity 

(irradiance) at the retina was 20mW/m2.A monitor pixel corresponded to 7 µm on the retina or 
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~0.08o of visual angle (Ariel & Kogo, 2001; Northmore & Granda, 1991).This first method was 

used in turtles 1-5. In the second method, visual stimuli were projected directly onto the retina 

with a miniature video projector (Aaxa Technologies, P4X Pico Projector) with additional lenses. 

Resolution was similar to method 1, but the mean light intensity was higher, 1 W/m2. This 

method was used for turtles 7-9.For turtle 6 and one additional experiment with turtle 2, we used 

brief flash from a light emitting diode (LED) placed near the retina to stimulate as described 

further below. For the LED, the light intensity was 60 W/m2 (flash duration 1 s).Stimuli were 

created using psychopy, an open-source psychophysics module written for the Python 

programming language(Peirce, 2008). Software tools were written to allow the experimenter to 

characterize the projection of the computer screen onto the retina (Saha et al., 2011). A computer 

game controller was used to position stimulus image and the eye-cup interactively. The eye-cup 

parameters, including the position and orientation of the visual streak, and the size and position 

of the optic disk were documented. An image based on these parameters overlaid on the eye cup 

preparation (in the recording chamber) when projected through the focusing system. The image 

was not corrected for curvature of the retina. Two of the turtles were presented with gray-scale 

naturalistic movies (“CatCam” (Betsch, Einhäuser, Körding, & König, 2004)) as used in studies 

of the mammalian geniculocortical system (Mante, Bonin, & Carandini, 2008). The movie clip 

was 10 s in duration and presented in blocks of 45 repetitions at 20 s intervals. 15 min of gray 

screen was presented between blocks. Three turtles were presented with a previously studied, 5 s 

duration “motion enhanced” movie (Nishimoto & Gallant, 2011). The screen was black before 

movie presentation. These three turtles were also presented with a 5 s uniform gray screen, 

preceded by black screen. The movies were alternated with the gray screen stimuli, presented 80 

times at 35 s intervals. Three turtles were presented with black dots (6 deg) moving (6 deg/s) 
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linearly across a white background. 8 directions of motion were used, each repeated 8 times in 

pseudorandom order. For each direction, a dot traversed the visual field on 8 to 15 paths during 

an 86 - 182 s period followed by 5 minutes of darkness before starting the next direction. Two 

turtles were presented with diffuse red LED flashes (1 s in duration, 2 min intervals, 200 

repetitions). The movies and dots were generated on the projection systems described above. For 

diffuse flashes, the LED was positioned 2 cm above the retina, diffusely illuminating the entire 

retina. As specified in Supplementary Table 1, some turtle were tested with two different types 

of visual stimuli.  

4.5.11 Robustness to changes in ∆T and defining transient, visually-driven 

steady state, and ongoing time periods 

An avalanche was defined as a spatiotemporal cluster of consecutive LFP peaks with 

inter-peak intervals not exceeding a temporal threshold ∆T (Methods). Consistent with previous 

studies (Beggs & Plenz, 2003), ∆T was chosen to be the average inter-peak interval (<IPI>, 

inverse of population LFP peak rate). This resulted in ∆T in the range 7 to 64 ms (24 ± 18ms, 

mean ± SD). We note that avalanche statistics and scaling laws were robust to deviations in ∆T 

within about ±30% from <IPI> (Supplementary Figs. 4.11, 4.12). 

The transient time periods T were determined based on the overlaid avalanche time series 

of all trial of visual stimuli (e.g., Figs. 4.1e, 4.2d). T was computed automatically by first 

calculating an envelope curve of the avalanche time series defined as the 90 percentile of the 

avalanche time series in consecutive time bins. Then T was defined as the full width at half max 

of this envelope curve. This resulted in T ranging from 108 to 784 ms (423 ± 202 ms, mean ± 

SD, see also Supplementary Table 1). The visually-driven steady state time periods were defined 
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as any period of visual stimulation, excluding the transient period. Thus, the visually-driven 

steady state period ended when the visual stimulus ended. One exception was for the two 

experiments with LED flash stimuli, for which a sustained neural response continued long after 

the flash ended. For these, we included the sustained response (10 s) as part of the visually-

driven period. Ongoing time periods were defined as all periods when no visual stimulus was 

presented.  

Avalanches that started within a period were assigned to that period, irrespective of 

whether the avalanche extended into the next period. One exception was that avalanches in the 

ongoing period that ended during the transient period were excluded from analysis. We also note 

that we excluded avalanches within periods of time when the LFP peak rate was nonstationary 

over long time scales (Supplementary Figure 4.13). Data from outside visual cortex was not 

analyzed except for the data shown in Supplementary Figure 4.8. 

Most previous studies of neuronal avalanches which have focused on ongoing activity 

recorded in mammalian cortex. Although ongoing activity was not the focus of our work, we 

note that, in some experiments, ongoing avalanches were power law distributed similar to the 

visually-driven avalanches steady state (Supplementary Figure 4.14 top). However, in several 

experiments the rate of ongoing LFP peaks was too low to obtain enough avalanches to draw 

sound statistical conclusions about how ongoing avalanches were distributed (Supplementary 

Figure 4.14 bottom). Rates of LFP peaks, durations of recording periods, and numbers of 

avalanches for each of the three different periods (transient, steady-state visually-driven, 

ongoing) are shown in Supplementary Table 4.1. 
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Supplementary Figure 4.11 Dependence of experimental results on choice of ΔT. The figure 

together with the following 12 plots shows how the form of avalanche size and duration 

distributions as well as scaling between size and duration depends on ∆T. ∆T values are specified 

in seconds. In all figures, the black curve represents the actual ∆T=<IPI> used in the manuscript. 

(LEFT, MIDDLE) In each distribution the range that was determined to be well-fit by a 

truncated power law is shown with a heavier line. (When the range is very small, the distribution 

is not well fit by a power law.) (RIGHT) The right panel compares the predicted size versus 

duration scaling (dash dot line) and the best fit scaling (solid line) for each ∆T. Points are 

omitted for clarity. Notice that values of ∆T within about ±30% from the <IPI> still give a 

reasonable scaling relation, but more severe changes in ∆T result in non-power law size and 

duration distributions and/or poor prediction of the scaling relation. 
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Supplementary Figure 4.12 Good prediction of scaling relation occurs if ∆T is chosen nearby 

<IPI>. This plot summarizes one feature of the series of plots in Supplementary Figure 4.11. It 

summarizes how well the predicted scaling relation matches the best fit scaling relation and how 

this depends on ΔT. Here it is clear that a small difference (good prediction) occurs in a range of 

approximately ±30% around ΔT=<IPI>. 
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Supplementary Figure 4.13 Stationarity of experimental system. (a) The rate of LFP peaks 

recorded over the course of multiple hours is steady (one representative example experiment 

shown). Each rate time series was computed by counting LFP peaks in consecutive time 

windows of duration dt and normalizing by dt. Durations dt=0.1, 1, 10, and 100 s were used 

(colors indicated in legend). The apparent 10 min cyclic pattern is due the timing of repeated 

visual stimulus presentation. Note that after about 2.5 hours (epochs labeled H, I and J), non-

stationarity sets in. In all experiments, we include data in our analysis only during stationary 

periods. (b) The stimulus-triggered average response to repeated visual stimulation is also steady 

(except for epoch H, I, and J). The color code corresponds to the periods labeled alphabetically 

in panel a. 
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Supplementary Figure 4.14 Ongoing activity exhibited critical dynamics in a subset of 

experiments. (top) In some of our experiments, ongoing activity also exhibited strong evidence 

for critical dynamics, similar to the visually-driven steady state avalanches. These cases are 

consistent with previous studies of neuronal avalanches in mammals, which have primarily been 

based on ongoing activity. (bottom) In other experiments, we observed that ongoing activity 

occurred at such low rate that statistically sound conclusions were not possible.  
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4.5.12 Power law fitting and the measure δ 

To test whether evoked and ongoing avalanches were distributed according to a power 

law, we carried out a two-step analysis. First, we identified the best-fit power law using 

established maximum likelihood methods (Clauset et al., 2009; Klaus et al., 2011; Langlois, 

Cousineau, & Thivierge, 2014). As in previous studies, we assumed that there is a lower size 

limit, below which power law statistics are not expected (Clauset et al., 2009; Langlois et al., 

2014). The rationale for this assumption was that some measurement noise is unavoidable and 

likely to be uncorrelated across channels, thus resulting in some small size ‘noise-corrupted’ 

avalanches. In line with this idea, we found that avalanches that were shorter than approximately 

∆T in duration were distributed quite differently than larger duration avalanches (Supplementary 

Figure 4.15). For this reason, in all of our figures (except Supplementary Figure 4.15) we plot 

avalanches with durations exceeding 0.8∆T. An important difference between our method and 

the typical approach (Clauset et al., 2009) is that we assumed that avalanches are also limited in 

how large they can be. Such avalanche size and duration limits have been recognized in other 

work as well (Klaus et al., 2011; Langlois et al., 2014). Thus, we identified the maximum 

likelihood truncated power law fit to our data. This approach obviates the need for comparing to 

similar distributions (e.g., power law with exponential cutoff (Clauset et al., 2009; Klaus et al., 

2011)), because the truncation cuts off such end effects already. Since our definition of 

avalanche size is a discrete, integer variable, the fitting function for the avalanche size 

distribution was  
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The maximum size 
Mx  was assumed to be the largest size actually observed in the 

experimental data. We note that, in our experiments, unlike many previous experiments in 

mammals, we did not observe a clear size cutoff at the number of channels used to record. This 

reflects the tendency for a single channel to have many LFP peaks during a single avalanche. 

The minimum size 0x and the power law exponent τ were fitting parameters. Since avalanche 

duration is a non-integer variable, the fitting function for the avalanche duration distribution was 
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Again, the maximum duration 
My  was taken as the largest observed duration, while 0y  

and αwere fitting parameters. The fitting process involved trying all exponents in the range from 

-1 to -4 with increments of 0.01, similar to previous work (Clauset et al., 2009). However, 

another important difference between our approach and previous work (Clauset et al., 2009) is 

that our fitting algorithm tried values of 0y values increasing from 0, but only up to the point 

when the fitted power law matches the data well enough to have a Kolmogorov-Smirnov statistic 

sampNKS /1 , where sampN  is the number of avalanches comprising the dataset. This prevents 

the algorithm from increasing the minimum size until most of the data are excluded from fitting. 

The threshold of sampN/1  is justified based on how KS  variability is expected to vary with 

sampN  for surrogate datasets drawn from a true power law (Goldstein, Morris, & Yen, 2004) 

(Supplementary Figure 4.16).  
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For fitting model data size and duration distributions, we used the fitting function f(S) 

above, because both size and duration are discrete variables for the model. Also, for the model 

data,
Mx  was used as a fitting parameter because there typically was a clear exponential cutoff in 

the model avalanche distributions. 

After finding the best-fit power law, the next step was to assess goodness-of-fit q. For 

this, we again follow established methods (Clauset et al., 2009; Goldstein et al., 2004). We 

compared the experimental data to 1000 surrogate data sets drawn from the best-fit power law 

distribution. The surrogate data sets had the same number of samples as the experimental data 

set. In this way, the surrogate data sets are as close as possible to a power law, for a given finite 

sample size. The deviation between the surrogate data sets and a perfect power law was 

quantified with the KS  statistic. The quality q of the power law fit was defined as the fraction of 

these surrogate KS  statistics which were greater than the KS  statistic for the experimental 

data. Thus, if the experimental data had a smaller KS  statistic than at least 100 of the surrogate 

values, then q>0.1. We use a very conservative criterion, q>0.1, for judging the data to be power 

law distributed. This is demonstrated visually in Figure 4.1f,g and Figure 4.2e,f by plotting the 

experimental distribution over a gray band which delineates the 5-95 percentiles of the surrogate 

data sets. It should be noted that for a large number of samples, this goodness-of-fit test is very 

strict (i.e., more than about 200 avalanches (Clauset et al., 2009)). In our experiments, the 

number of avalanches during visual stimulation was 2467, on average (ranging from 415 to 

13871). 

Deviation between two distributions, δ. 

Avalanches occurring during the transient period following stimulus onset were not 

power law distributed. Large avalanches occurred with high probability, often resulting in 
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bimodally distributed sizes and durations. To quantitatively measure how avalanche distributions 

from the transient periods deviate from the power laws observed during the visually-driven 

steady state periods, we used a measure δ, which is similar to measures developed in previous 

studies (W. L. Shew et al., 2009; Tetzlaff, Okujeni, Egert, Wörgötter, & Butz, 2010). To 

compute δ, we first constructed a cumulative distribution function (CDFs) for the test 

distribution (transient) and the reference distribution (visually-driven steady state). Then δ is the 

sum of 10 differences between the reference CDF and the test CDF (Supplementary Figure 4.17). 

The points, at which the 10 differences were taken, were equally spaced on a logarithmic scale 

between the minimum and maximum avalanche size. When δ> 0, which typically was the case 

for avalanche distributions from the transient periods, this indicates that large events occurred 

more frequently than would be expected if they came from the same distribution as the visually-

driven steady state periods (Supplementary Figure 4.17).  

We also used δ to examine control distributions, in which avalanches were reanalyzed 

after randomly jittering the occurrence times of LFP peaks. For this, we added to each LFP peak 

time a random number drawn from a uniform distribution on [-Tj,+Tj]. Such jittering decreases 

spatiotemporal correlations and reduces the probability of large avalanches. In terms of δ, this 

results in δ< 0. To quantify the effects of jittering, we determined how large the jitter time Tj 

must be to reach δ<-0.1, a significant deviation. We found Tj=1.4±0.4 (mean±SD) across all 

experiments (Supplementary Table 1). 
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Supplementary Figure 4.15 Very short duration avalanches are distributed differently. The 

analysis of experimental data presented in the manuscript is based on analyzing only those 

avalanches with durations longer than 0.8 ∆T. The reason for this approach was that for very 

short duration avalanches, with D less than about ∆T, a different regime of avalanches is clear in 

the duration distribution (the flat region in the middle panel). The low D regime tends to have a 

nearly flat distribution of durations and scales differently with avalanche size (light blue points in 

right panel) This different regime may be due to influence of noise for small, short duration 

avalanches. 
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Supplementary Figure 4.16 Fitting the lower bound cutoff of power law regime depending on 

sample size. As discussed in methods, we used the KS statistic for fitting the lower cut off point 

x0 in the power-law fitting process. We increased x0 until a criterion level of KS was reached. 

The sensible choice for a criterion KS depends on the number of samples N. In this figure we 

describe numerical simulations used to determine the criterion KS. First, we computed the KS 

statistic for a perfect power-law reference CDF with exponent ε, compared to a surrogate data set 

with N samples drawn randomly from a power-law with exponent ε. We repeated this 1000 

times. CDFs of these 1000 KS values are shown in the left panel above. Colors represent 

different exponentsε. Then we defined the criterion KScrit to be the KS value below which 90% 

of the values lie (dashed line). We carried out this process for six different sample sizes N= 100, 

500, 1000, 2000, 5000, and 10000. We found that KScrit was very close to sampN/1  as shown in 

the right panel above (blue – data from left panel plot; red – exact sampN/1  function). This 

approach generalizes existing tabulated values for such fitting criteria (Goldstein et al., 2004). 
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Supplementary Figure 4.17 Quantifying how avalanche distributions differ between transient 

periods, visually-driven steady state periods. The deviation δ is computed as the sum of 10 

differences (e.g., yellow lines for transient avalanches) between a reference CDF (green) and the 

measured CDF (red). Here, the reference CDF is the best-fit power law for the visually-driven 

steady state (blue). If large avalanches are more or less prevalent in the measured CDF than in 

the reference CDF, then δ> 0 or δ< 0, respectively. Near zero deviation occurs when the 

measured CDF matches the reference CDF (e.g., blue). See Supplementary Figure 4.7 for similar 

CDF plots and δ values for avalanche size and duration distributions for all experiments. 
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Chapter 5: Spikepy, a Flexible Spike-

sorting Application and Framework 

The analysis of extracellular neural recordings usually begins with spike-sorting. There is 

an active discussion within the research community about how to best perform spike-sorting. 

Spikepy is a flexible spike-sorting application that serves to facilitate this discussion in two 

important ways. Firstly, it provides an extensible plugin-based framework that can be used as a 

test bed for new spike-sorting algorithms. And importantly, it is an easy-to-use application so the 

average electrophysiologist can have access to the latest spike-sorting advances. 

5.1 Introduction 

Recording the electrical potential from extracellular electrodes remains a popular 

technique in neuroscience. The extracellular signals recorded may include spikes (the remnants 

of neuronal action potentials) originating from multiple neurons. The category of analysis that 

involves both detecting these spikes and associating them with the correct source is called spike-

sorting. 

Spike-sorting research has been around for more than two decades and is still an active 

area of research (Einevoll, Franke, Hagen, Pouzat, & Harris, 2012; Lewicki, 1998). Much of the 

early tools developed required a great deal of manual control, but within the last ten years or so a 
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lot of effort has been spent to automate the spike-sorting process (Einevoll et al., 2012; Franke, 

Natora, Boucsein, Munk, & Obermayer, 2010; S. Kim & McNames, 2007; Pouzat, Mazor, & 

Laurent, 2002; Quiroga, Nadasdy, & Ben-Shaul, 2004). This is due in no small part to the 

growing popularity and shrinking cost of multielectrodes, which make manual sorting techniques 

unappealing. 

The automation of spike-sorting processes should result in a lively discussion of the 

merits and costs of one algorithm over another, yet this is largely absent. The process of spike-

sorting is complex, and often involves many steps to complete. Algorithm developers often focus 

on only one step in the process. When they then go to implement their new algorithm, they are 

forced to also implement the other steps, before they can evaluate the performance of the 

algorithm. As a result, the comparisons are not direct, since these other steps often influence 

performance in a significant way. 

This paper introduces a framework that aims to address this by providing a standardized 

platform to perform spike-sorting. Spikepy is a plugin-based framework, where each step is a 

type of plugin, allowing algorithm developers to focus on just the step they are interested in. The 

framework takes care of creating both a graphical user interface as well as a full featured API. 

Additionally, the framework handles reading data in and exporting to various file formats via 

plugins. Many of the most popular algorithms are already written as plugins, making Spikepy a 

spike-sorting solution that is ready to be used without writing any code at all. 

Spikepy is free and open-source software, released under the GPL version 3 software 

license. Spikepy will run in Windows, Mac osX and Linux. You can download Spikepy from 
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http://code.google.com/p/spikepy where there are installation instructions, sample data, as well 

as other documentation. 

There is also a mailing list at http://groups.google.com/group/spikepy-users. 

5.2 Methods 

5.2.1 Plugin Framework 

Spikepy is built around the plugin concept. Plugins are responsible for almost everything 

in Spikepy from loading data, to processing data, even visualizing results. Spikepy is responsible 

for coordinating these plugins and providing the user interface either through the GUI or as an 

API. This coordination is made possible through the use of Trial objects and their associated 

Resources. 

Trial objects are a way of grouping data from various stages of processing together. The 

primary role of Trial objects is to provide access to their Resources which are where the data are 

stored. Resources store information about how the data were last altered and provide a 

mechanism to lock/unlock access to the data to facilitate multi-processing. Spikepy plugins 

require that some Resources are available in order to run and provide Resources as their outputs. 

(Figure 5.1) 
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Figure 5.1 Spikepy plugin types. (A) FileInterpreters read in data files and create Trial objects. 

(B) DataInterpreters take Resources and produce data files. (C) Methods carry out the various 

spike-sorting processing stages. They require Resources as well as produce them. (D) 

Visualizations create charts and graphs from Resources. 

5.2.2 Processing Stages 

Spike-sorting is often carried out in four steps starting with filtering, spike-detection, 

feature-extraction, and then clustering. Spikepy generally follows this paradigm but allows for 

the possibility of different filtering to happen before spike-detection and feature-extraction. 

(Figure 5.2) This makes it possible to filter once to detect spikes, disregarding the spike-shape 

distortion associated with the filter. Another filtering stage before the extraction stage is 

performed when spike-shape is potentially more important. This process is further generalized to 

include any number of auxiliary steps that can occur before or after any of these required 

processing stages. 
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Each of the stages in Figure 5.2 corresponds to a method-plugin family, including the 

auxiliary stages. Spikepy determines the order in which processing will occur by attempting to 

solve the dependencies of a plugin (what Resources the plugin requires). This is possible since 

all plugins tell Spikepy what Resources they produce as well as what Resources they require. 

When it is possible multi-processing will occur, utilizing all available processors on the 

computer (settings allow you to limit the number of processes). 

 

Figure 5.2 Spike-sorting processing stages. The five main processing stages are shown generally 

starting with filtering and ending with clustering. The two filtering stages are colored more 

darkly to indicate that they are entry-points to the spike-sorting process. AuxiliaryMethods can 

be run before or after any of the five required stages. Curved arrows indicate standard 

requirements (e.g., spike detection requires pre-detection filtering to have finished). 

 

5.2.3 Extending Spikepy 

Substantial effort has been made to ensure that writing plugins for Spikepy is simple and 

straightforward. Authors of new plugins do not have to know how the internals of Spikepy work. 

Figure 5.3 show the actual code that creates an auxiliary plugin that resamples a signal to a new 
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sampling frequency. The actual function that resamples the signal is not shown, only the source 

that is required to turn it into a plugin. 

Plugins are Python classes that inherit from one of the base-classes corresponding to the 

four plugin types. (Figure 5.1) Plugins have class-variables that tell Spikepy how to handle the 

plugin. Obligatory class variables for SpikepyMethods include requires and provides which are 

lists of Resource names. There are also optional class-variables (described in the documentation) 

such as is stochastic that help Spikepy figure out when it is or is not necessary to run a 

SpikepyMethod plugin again with the same settings. 

 

Figure 5.3 Writing a Spikepy plugin. This code segment is all that is required to create a plugin 

that will resample the signal following the extraction-filtering stage. On lines 6 - 10 the class-

variables tell Spikepy how to handle this plugin. Line 13 defines a plugin setting that allows the 

user to select the sampling frequency for the resampled signal. Spikepy will automatically build 

the GUI element for these settings. The run method on line 15 has positional arguments 

corresponding to the Resources that the plugin “requires”, and keyword arguments that 

correspond to the plugin settings. Lines 16 - 17 return the data for the two Resources that this 

plugin “provides”. 



188 

5.2.4 Strategies 

One consequence of the flexibility that the plugin system provides is that the user makes 

many choices about how the data are processed. These decisions should be recorded in some way 

so that the research is reproducible and so that data can be batch processed. In Spikepy a strategy 

is an index of all the plugins used as well as all of the settings associated with those plugins. 

These strategies can be saved and shared easily, making it possible to communicate clearly how 

you analyzed your data. 

5.2.5 Graphical Interface 

Spikepy has an easy to use, cross-platform GUI that allows for a more interactive spike-

sorting session (Figure 5.4). The interface lets the user choose plugins to use and enter 

processing settings and either run the entire strategy or just one stage of processing at a time. The 

GUI then generates all the relevant visualizations of the results of processing. Under the hood 

though, the GUI is accessing the exact same API that is available to anyone who wants to write 

Python scripts that use Spikepy. 
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Figure 5.4 The Spikepy graphical user interface. In the background is a screen-capture of the 

main window in the Spikepy GUI. (A) A zoomed in view of the strategy panel where users can 

choose the method for each processing stage, choose previously saved strategies, and run stages 

or whole strategies. (B) A zoomed in view of the control panel for the Extraction Filter stage. 

The first section is for the currently selected method (Wavelets Filter) while the controls below 

this are for auxiliary methods that are associated with the Extraction Filter stage (not all are 

shown – notice the scrollbar). Note: all GUI control panels are automatically built by Spikepy, so 

plugin authors do not need to know how to program a GUI. (C) A view of the save strategy 

dialog. Users are prompted for a methods name and a settings name. All strategies using the 

exact same set of methods share a methods name making it easier to keep strategies organized. 

5.2.6 Application Programming Interface 

The Spikepy API turns Spikepy into a Python library that can be utilized in any Python 

program. The API is organized around the Session object. The Session object provides methods 

for opening files, creating and updating strategies, and all the other actions available through the 
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GUI. In addition to those methods, you can gain access to the underlying data in order to 

customize how the data are processed. 

The arguments to many of the functions in the API are designed to make interactive 

programming (i.e., using iPython) easy. All arguments which are names, such as trial names, 

strategy names and plugin names will accept any unique substring instead of the entire name. For 

example, if the name of a plugin was Some Long Plugin Name, then the string Long would 

suffice as an argument, provided that there are no occurrences of Long in any other plugin 

names. That is, any unambiguous substring of a name can be used instead of the entire name. 

5.3 Results 

Spikepy is a plugin-based framework which means that it is easily extensible, in addition 

though, it comes prepackaged with a number of very useful plugins. In this section we will 

describe these builtin plugins, and compare and contrast them when appropriate. We will follow 

the standard processing order of stages as shown in Figure 5.2, and discuss auxiliary plugins 

throughout the section. 

5.3.1 Filtering 

There are two filtering stages in Spikepy, one that occurs just before the spike-detection 

stage, and one that occurs just before the feature-extraction stage. This means that a filter that is 

especially well suited to help with spike-detection can be used before the spike-detection stage 

and another filter that is more beneficial for feature-extraction can be used before that stage. 

From the standpoint of the plugin system, they are all simply filtering plugins. 
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There are three builtin filtering plugins as of Spikepy version 0.82, they are: 

1. Infinite Impulse Response – IIR filters commonly referred to as Butterworth 

and Bessel type filters are so named because using them to filter an impulse (Dirac delta), 

the response will continue on infinitely in time. 

2. Finite Impulse Response – FIR filters are also referred to as sinc type filters 

because they can be implemented by convolving a windowed sinc function with the 

signal. If you filter an impulse, the response will not continue on infinitely in time. 

3. Wavelets – The signal is filtered by first decomposing the signal using wavelet 

decomposition, and then recomposing it using only some of the resulting wavelet 

coefficients, setting the others to zero.  

These filters vary from one another in many ways. In terms of complexity the IIR filters 

are the least complex, followed by the FIR filters and finally the Wavelets filters. In terms of 

computation time required, the IIR filters are the fastest, followed by the Wavelets filters and 

finally the FIR filters. What is probably one of the most important qualities though is the ability 

of the filter to preserve spike shape while removing unwanted frequencies from the signal. In that 

regard, the FIR and Wavelets filters are about equally good, with the IIR filters distorting the 

waveform substantially more (Figure 5.5). 

One drawback to using the Wavelets filter over the FIR filter, is that with the former you 

cannot specify the cutoff frequencies directly, instead you must specify the min-level and max-

level. A simple formula relates these parameters to the cutoff frequencies: 

𝜔𝑙𝑜𝑤 =
𝜔𝑠

2𝐿𝑚𝑖𝑛
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𝜔ℎ𝑖𝑔ℎ =
𝜔𝑠

2(𝐿𝑚𝑎𝑥+1)
 

where 𝜔𝑙𝑜𝑤is the lower cutoff frequency, 𝜔ℎ𝑖𝑔ℎis the upper cutoff frequency, and 𝜔𝑠 is 

the sampling frequency of the signal. 𝐿𝑚𝑖𝑛 and 𝐿𝑚𝑎𝑥are the min and max levels respectively. 

This means that the sampling frequencyof the signal essentially limits the choices of cutoff 

frequencies that the Wavelets filters can achieve. This limitation is absent in the FIR filters. 

 

Figure 5.5 Comparing filter methods. (black) unfiltered (red) IIR filter: 3rd order Butterworth, 

band-pass (300-2,500 Hz) (blue) FIR filter: window=Hanning, taps=1001, band-pass (300-2,500 

Hz) (green) Wavelets filter: wavelet=db20, min level=2, max level=4 (equivalent to band-pass 

(312-2,500 Hz) for this sampling frequency (10,000 Hz)). 

5.3.2 Spike Detection 

There is only one DetectionMethod plugin that comes with Spikepy and it offers 

threshold spike detection. Before we describe this plugin however, it should be noted that there 

are a couple of auxiliary plugins that are useful in conjunction with the spike-detection plugins. 

First, there is an auxiliary plugin that will resample the signal after filtering. This is usually used 
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to upsample the signal so that spikes are better aligned after detection. Also, there is an auxiliary 

plugin that implements the non-linear energy operator (Gibson, Judy, & Marković, 2010). This 

plugin accentuates the spikes relative to the noise (Figure 5.6), and may aide in spike-detection. 

 

Figure 5.6 The non-linear energy operator auxiliary plugin. (light-blue) FIR filter: 

window=Hanning, taps=1001, band-pass (300-2,500 Hz) (black) Signal filtered in the same way, 

but applying the non-linear energy operator afterward. (result scaled by 30x). 

The threshold spike-detection plugin that Spikepy comes with has a number of useful 

options. The plugin allows you to specify either one or two thresholds (see Figure 4.7). These 

thresholds can be specified in mV, or as a multiple of the standard deviation of the signal. 

Another possibility is to specify the threshold(s) as a multiple of the median value of the absolute 

value of the signal (calculated after removing the mean-value of the signal). In addition to the 

threshold(s), you can specify a max-spike-duration which will cause the algorithm to ignore 

spikes which are unphysiologically long (i.e., from recording artifacts or low frequency 
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oscillations). And finally, you can enforce a refractory period, causing the algorithm to remove 

spikes which occur too soon after previously detected spikes.  

Looking forward, we would like to see additional spike-detection algorithms 

implemented. One promising method uses the Cepstrum of Bispectrum (Shahid & Smith, 2009; 

Shahid, Walker, & Smith, 2010). Another method involves using wavelets as spike templates (K. 

H. Kim & Kim, 2003). Yet another possibility is to threshold the temporal derivative(s) of the 

signal. This could be achieved by adding another auxiliary plugin similar to the nonlinear energy 

operator plugin. 

5.3.3 Feature Extraction 

Spikepy currently has two plugins to extract features from the signal given the spike 

times. The first is a simple spike-windowing plugin where a portion of the extraction-filtered 

signal is cut out surrounding each 
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Figure 5.7 Threshold spike-detection plugin. You can specify up to two thresholds, a maximum 

spike duration, and a refractory time. The thresholds can be in various units such as mV, or 

standard deviations of the signal. The maximum spike duration and refractory time are in ms. 

Spikes that violate the maximum spike duration or refractory period are thrown out. 

detected spike (Figure 5.8). Since the output of the detection stage is simply a list of spike times, 

one list per recording channel, this plugin must first determine if the spikes recorded on multiple 

channels are in fact the same event. The settings peak drift and min num channels specify how 

many channels must register a spike, and within what period of time for them to be grouped 

together as a single event. 
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Figure 5.8 Spike window feature-extraction. (top) A short segment of a 16-channel extracellular 

recording showing spikes detected (red tick marks). (middle) A raster of spikes (in black) that 

meet the criteria of being on at least 3 channels within 0.3 ms of one another (peak drift=0.3 and 

min num channels=3). (bottom) The highlighted region in the top traces has been serialized to 

form a feature-vector. The parameters pre padding and post padding determine how much time 

before and after the spike to snip out of the traces. 

The other feature-extraction plugin that comes with Spikepy is the method used in a 

paper by Rodrigo Quiroga et al. (Quiroga et al., 2004). This method uses the previous method as 

a starting point, then it utilizes wavelet decomposition to obtain wavelet coefficients. The 

distribution of these coefficients are then tested for normality and those coefficients with the 

lowest scores (largest difference from the normal distribution) are chosen. This results in a 

lowering of the dimensionality of the feature-vector, while maintaining or perhaps even 

enhancing the separation of events in feature-space. Many other feature-extraction methods exist, 

and are often called dimensionality-reduction techniques since they take the high-dimensional 

spike-window and return something with a much smaller feature-vector. Principal Component 
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Analysis, or PCA could be made into a feature-extraction plugin rather easily. Also easy to 

implement would be something as simple as spike-height and spike-width, or other scalar 

features of spikes such as spike-power. 

5.3.4 Clustering 

Spikepy has only one builtin clustering plugin as of version 0.82, the plugin implements 

the k-means clustering algorithm. There are a number of algorithms that we desire to have 

included in future releases of Spikepy. The super paramagnetic clustering algorithm that is used 

by WaveClus (Quiroga et al., 2004), a mixture-model algorithm (gaussians, student-t 

distributions, etc), and hierarchical clustering all seem interesting.  

Spikepy has a number of clustering quality metrics implemented as an auxiliary plugin 

(Figure 5.9). These are the metrics described by Schmitzer-Torbert et al. (Schmitzer-Torbert, 

Jackson, Henze, Harris, & Redish, 2005), isolation distance, and L-ratio. The isolation distance is 

better if it is large, and the L-ratio is better if it is small. The actual magnitude of these metrics is 

dependent on the number of features that are being clustered, as well as the size of the feature 

vectors. They are therefore not useful for comparing the clustering quality achieved with other 

datasets unless they are of similar size. Additional clustering metrics should be made into 

auxiliary plugins such as those described in a recent paper by Hill et al. (Hill, Mehta, & 

Kleinfeld, 2011). 
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Figure 5.9 Clustering quality metrics. (A-C) A histogram of the squared Mahalanobis distance 

from the cluster center is shown for each of the three clusters. The histograms of the two ’other’ 

clusters are drawn stacked on top of each other. The L-ratio, L-value, and isolation quality are 

also shown for each cluster. Notice in C) that the isolation distance is undefined, this is because 

this cluster contains more features than the other two clusters combined. (D) The data projected 

onto the first two principal components gives some idea of the clustering quality. The 

percentages shown indicate the amount of variance explained by the first two principal 

component vectors. 

5.4 Discussion 

Even as new high-tech imaging techniques that are capable of recording the spiking 

activity of neurons are gaining favor, recording with extracellular electrodes remains very 

popular. To get the most out of these recordings, reliable spike-sorting must be performed. 

Because of the trend towards more and more electrodes, as well as the numerous brain/computer 

interface applications, this process must become automated. A significant impediment to reliable 

and automated spike-sorting is the lack of a common framework that would allow easy 

comparisons between competing spike-sorting algorithms. 
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Existing spike-sorting solutions such as Spike2 or WaveClus are either proprietary 

software, or require proprietary software in order to run. In addition, they are not written with 

extensibility in mind, so new algorithms cannot be added easily. Notable exceptions to this 

include an open-source project called OpenElectrophy (Garcia & Fourcaud-Trocmé, 2009) and 

the cloud computing system called Carmen (L. S. Smith et al., 2007), although neither is 

designed specifically for spike-sorting and require you to commit your entire dataflow to use 

their system.  

We have described the construction of both a flexible plugin-based framework to perform 

spike-sorting as well as a core set of plugins. It is cross-platform and entirely free open-source 

software meaning that it can be adopted in virtually any laboratory and will be maintained for as 

long as the community finds it useful. Those who need to perform spike-sorting in their 

workflow will find the combination of a user-friendly graphical user interface and a powerful 

application programming interface makes Spikepy very useful. Additionally, researchers who are 

developing new spike-sorting algorithms will want to take advantage of the plugin-based 

framework that allows for very quick prototyping (they won’t have to write an entire spike-

sorting application) and will give them the ability to easily compare the effectiveness of their 

algorithms to others. Moreover, it connects these two populations by getting the latest 

advancements into the hands of those who need to perform spike-sorting but who may not be 

experts in the specific sub-domains underlying such advancements. 
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Chapter 6: Open Questions and 

Additional Topics 

The art and science of asking questions if the source of all knowledge. 

-Thomas Berger 

6.1 Introduction 

One of my greatest struggles writing this thesis (and more generally conducting the 

research represented herein) was and is being distracted by the multitude of opportunities for 

exploration that this system and data set provides. 

I find it useful to think of scientific research as jigsaw puzzles that may never be finished. 

As you work on one, the hope is that you’ll be able to connect enough pieces to eventually stand 

back, look at it, and say, “Neat. We can clearly see what this part of the picture is, and what it 

certainly is not. Now that there’s some context for this region of the puzzle, hopefully others can 

add to it, fill in some missing pieces, or even fix misplaced pieces (if such a piece should be 

found out)”. 

As I dug through the pieces to put together whichever puzzle I happened to be working 

on, I constantly found pieces that belonged to other puzzles. Tossing those pieces aside would 
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certainly have expedited my progress on the original puzzle, but for better or worse, many of 

those pieces looked fascinating and held the promise of separate puzzles that might reveal 

awesome pictures. That fascination very often led to shifts in priorities, in which I would start 

looking for pieces to connect to my new piece in the new puzzle instead of the old puzzle. Often, 

this new puzzle would be abandoned for other new puzzles, but eventually I would return to a 

few puzzles that I had committed to bringing some clarity to (see above chapters and 

subchapters). 

What’s presented in this chapter is a collection of many of the other puzzles I have 

worked on. Some are mostly a pile of pieces, others are partially put together, and certainly, 

many of them will connect to each other and the above work. These are presented with the hope 

that others will pick them up and piece them together. 

6.2 Changes in evoked responses and spontaneous activity 

during experiments 

When we report our experimental findings, we are, with complete honesty, showing what 

the cortex is capable of and what patterns and variability exist with and without the presence of 

visual stimulation. What is not always explicitly stated, but is certainly implied, is that our results 

(to some extent) represent what is happening in the living, behaving animal in the wild. 

Nearly all electrophysiology experiments seek to gain an understanding of what is 

happening in the normal living animal, and nearly all have experimental aspects that likely skew 

the data such that the recorded data is different than it might be in natural conditions (e.g., 

anesthetics, the stress of being in a lab or constrained, disrupted neural connections by 

intentional and unintentional acts of preparing the tissue, differences in nutrient availability when 
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ACSF is used,…). Many of these cannot be fully corrected for, and the expectation is that, even 

though there are unknown differences between experimentally observed neural activity and the 

neural activity under natural conditions, many of the features observed are still relevant. 

While acknowledging that not all differences can be corrected for (or even known in 

many cases), it seems that we should do our best to understand those that can be studied. One 

such aspect in our experiments that stands out as an opportunity for further study is the change in 

neural activity over the course of several hour of the experiment. 

I see three main reasons it might be valuable to study changes in neural activity over the 

course of an experiment: 1) to learn and correct for trends, 2) to establish what is usable and 

relevant data, and 3) possibly to learn about what mechanisms mediate certain types of activity. 

If trends are found over the course of an experiment we tend to assume that t=0 is the 

most biologically relevant time, but it is worth considering whether the stress caused to the 

system may have transient effects that the brain recovers from, after which the brain is in a more 

biologically relevant state than it was for the intitial recordings 

At some point it would be good to study in what area (or areas) of the brain the changes 

are taking place (e.g., retina, LGN, cortex,…). 

An additional question to ask is, are the changes actually just adaptation? This could be 

tested if we consistently found that in the beginning of running a stimulus we saw response A, 

and then after 2 hours of running that stimulus we saw response B. To test this we would show 

the stimulus at the beginning of an experiment to confirm that we observe A. Then, instead of 

showing the stimulus repeatedly for 2 hours, we would either show a markedly different stimulus 

for 2 hours or show no stimulus at all for 2 hours. Following the 2 hours, we could then see if the 



205 

response to the original stimulus was closer to A (evidence for adaptation) or B (evidence for 

stimulus independent changes in activity). 

This test has not been done, but anecdotally, the observation that, when the response to 

one stimulus decreases, the responses to other stimuli also decrease supports the hypothesis of 

stimulus independent changes in activity. 

6.2.1 Visual Response Amplitude Diminishing 

It is typical to have fairly reliable responses early in an experiment greatly diminished or 

completely absent responses late in an experiment as is shown in Figure 6.1, which shows 

responses to 6 early presentations of a complex movie followed by responses to 6 late 

presentations.  

 

Figure 6.1 Experimental rundown. Responses to 12 repeated presentations of a complex movie. 

Data collected from Turtle 7. 
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6.2.2 Increased Spontaneous Activity over Time 

Two features occasionally observed over the course of an experiment are gradually 

decreasing responses as well as increased spontaneous activity (Figure 6.2). 

 

Figure 6.2 Rastergram of 180 LFP responses to LED Flashes. Data taken from Turtle 27, 

Electrode 95. 

6.2.3 Changes in the Persistent Activity over the Course of an Experiment 

The persistent activity of a response can change in ways different from how the initial 

response changes over the course of an experiment. Figure 6.3 show the persistent activity in 

response to LED flashes gradually shifting toward later and later responses during an experiment 

repeating this stimuli 120 times. Figure 6.4 shows persistent activity disappearing while the 

initial response remains. 
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Figure 6.3 Persistent activity changing over the course of 120 trials. (Top) Rasters for LFP 

events in response to an LED flash at time 0 s.(Bottom) Peristimulus time histogram for all 

trials. Data from turtle 2, electrode 87. 
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Figure 6.4 Persistent activity disappearing over the course of 120 trials. (Top) Rasters for LFP 

events in response to an LED flash at time 0 s.(Bottom) Peristimulus time histogram for all 

trials. Data from turtle 29, electrode 86. 

6.2.4 Average LED Evoked LFP Shape over Time 

In Chapter 1 we saw the average of LFP responses to LED flashes of different intensities. 

It is interesting to see how those change over time. Figure 6.5 shows precisely this. Interestingly, 

for the lowest LED intensity (blue), certain frequencies become more dominant throughout the 

course of the experiment (see the dark trace from 0 ms to 500 ms).  
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Figure 6.5 Changes in the average LFP response to LED flashes over time. Average response to 

low, medium, and high intensity LED flashes (blue, red, and green) are shown. The brightest 

colors are from the first 20 trial for each intensity, the medium brightness lines are for the second 

set of 20 trials for each intensity, and the darkest lines are from the last 20 trials for each 

intensity. Data from Turtle 32, electrode 22. 

Another interesting observation concerns the changes in amplitude over time. Generally 

speaking, the amplitudes decrease over time, but for the responses to the high intensity flashes 

(green lines in Figure 6.5), the late response actually increases in amplitude over time. 

6.2.5 Changes in LFP Burst Duration over Time 

In Chapter 3 we investigated the distribution of the durations of LFP oscillations. These 

distributions change in a fairly reliable way over the course of the experiment. Figure 6.6 shows 

the over time we tend to have a higher percentage of shorter bursts. 
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Figure 6.6 Burst duration distributions over time. The burst distributions from different periods 

of the experiment are shown together. The bluest distributions are the earliest periods, and the 

reddest distributions are the latest periods. Gamma fits have also been applied to each 

distribution as well as to the total (black line). The figure for Turtle 2 is shown above. The 

figures for Turtles 3, 23, 29, and 30 are shown below in that order. 



211 

 

 



212 

 

 

6.2.6 The 24 Hour Experiment 

One of the tetrode experiments remained active for 24 hours. The turtle was anesthetized 

to begin the surgery at 12:PM. The first visually responsive recording was at 4:20 PM. The last 

visually responsive recording was at 12:46 AM. 
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Towards the end, there were plenty of spontaneous spikes without strong LFP bursts, but 

when there were strong LFP oscillations, there would be an increase in spikes for the duration of 

the oscillation and then the spontaneous spikes would cease for 5-20 seconds (Figure 6.7). 

 

Figure 6.7 Activity recorded 24 hours into an experiment. Each row is a separate recording. The 

blue column indicates the timing of a diffuse visual stimulation. The LFP signal is shown in 

black, and spiking data are shown as red rasters with the peristimulus time histogram along the 

bottom. 

6.2.7 Retinal Health 

We take pictures of the retinal health at the beginning and the end of an experiment (See 

Section 6.25). Often those pictures are very different and it’s clear that at the end, the retina is 

not healthy. It may be good to take pictures of the retina throughout the experiment to see at 

what point its health seems to degrade. 
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6.2.8 Physical Damage to the Cortex 

For most of our experiments, we took pictures of the cortex at both the beginning and the 

end of the experiment. Some of our post experiment pictures show additional damage to the 

cortex. Figure 6.8 shows a tear in the cortex. If the tear was caused by over stretching the cortex 

with the pins used to secure the cortex, the damage associated with that tear likely extend beyond 

the short distance from the edge (that happens to be easily visible). It also may be the case that 

this damage takes time to take full effect, in which case some of the decrease in responsiveness 

could be due to physical damage. 

 

Figure 6.8 Picture of cortex with damage. Picture of the cortex in the recording chamber after an 

experiment. The 10x10 grid of light spots show where the MEA was placed. The arrow points to 

tearing in the cortex. Picture of turtle 7. 
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In addition to damage from tearing, there is also evidence for some experiments that the 

base of the MEA itself was pushing on the cortex (Figure 6.9). In addition to the two turtles 

shown, these visible impression are also found on at least turtles 4, 11, and 20. Each of these 

turtles had either no visual responses or only weak visual responses. With that in mind it’s 

probably less likely in these cases that this damage prevented activity, and more likely that 

inactivity caused this damage (in the sense that after doing the normal search for visual responses 

without success, the experimenters may have become more aggressive with the MEA 

placement). 

.  

Figure 6.9 Pictures of cortex with impressions from the MEA. Picture of the cortex in the 

recording chamber after an experiment. The 10x10 grid of spots show where the MEA was 

placed. The arrows points to depressions left in the cortex by the base of the MEA. Pictures of 

turtle 32 (Left) and turtle 39 (Right). 
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6.2.9 Anoxia Induced Increase in Extracellular GABA Levels 

Even though turtles are resistant to the effects of anoxia (Hounsgaard & Nicholson, 

1990), we still hope that, by circulating of oxygenated ACSF (artificial cerebral spinal fluid), we 

keep the brain in a nearly normoxic state.  

One pattern that we’ve noticed regarding experimental rundown of activity, is that we 

seem to maintain strong visual responsiveness for longer periods of time in our experiments 

using single electrodes/tetrodes than in our experiments using MEAs. One possible explanation 

for this is that the tissue is getting less oxygen in the MEA experiments. 

There are two reasons this might be the case. First, the MEA itself inhibits the flow of 

ACSF in the area we’re recording from. The Utah array we’ve used is a 10x10 array with 400 

µm spacing, and there is less than 1 mm between the surface of the cortex and the solid base that 

the electrodes secure to. In this 4x4 mm area, it is very likely that there is reduced ACSF flow. 

The second reason we may have less ACSF flow in the MEA experiments, is that the 

surface of the recording chamber that the brain sits against is different. In single electrode and 

tetrode experiments, we have a layer of nylon mesh sitting on the surface of the recording 

chamber precisely for the reason of allowing increase ACSF flow. For our MEA experiments, 

we’ve replace the nylon mesh layer with a layer of agar. We do this to protect the MEA. If the 

MEA were to go all the way through the cortex and hit nylon, it would almost certainly break, 

costing thousands of dollars. On the other hand, if it goes through the cortex and hits agar, it will 

be just fine. Unfortunately, the agar layer almost certainly prevents the flow of ACSF beneath 

the brain. 
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Suspecting that the flow of oxygenated ACSF is decreased in our MEA experiments, we 

should consider what effects that might have. It has been shown in turtle that the extracellular 

level of the inhibitory neurotransmitter GABA can increase drastically during sustained anoxia, 

reaching 90 times the normoxic level after 240 min (Nilsson & Lutz, 1991). Though the extent to 

which our tissue may be oxygen deprived is certainly less than severe than what was used for 

that study, it may be the case that the level of deprivation was still enough to substantially 

increase GABA levels. In any case 240 min is the correct order of magnitude for when we 

typically saw a decrease in visual responsiveness, and an increase in inhibitory neurotransmitter 

levels seems like a very reasonable explanation for a decrease in neural activity. 

6.3 Correlated Activity at Distant Electrodes or Incorrect 

Electrode Map 

When plotting LFP receptive field similarity versus distance (see Chapter 3), we typically 

see a negative slope (i.e., nearby electrodes tend to have more similar LFP receptive fields than 

distal electrodes). By decreasing the threshold we use for characterizing electrodes as visually 

responsive, we can include additional electrodes in our analysis. For turtle 7 this means including 

electrode 83 (among others).  

When we plot the RF similarity versus distance for electrode 83 with all other visually 

responsive electrodes (Figure 6.10), in contrast to the typical result, the data is actually better 

described by a positive slope. Additionally if we look at the RF similarity versus distance plots 

for all the other electrodes we see that they now have a point that doesn’t seem consistent with 

the general trend of all the other points. If we highlight the points in these graphs that represent 
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an electrode pair involving electrode 83 (Figure 6.10, points colored orange), we see that those 

strange points are those involving electrode 83. 
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One possible explanation to this odd observation is that the supposed electrode map (the 

spatial location on the MEA corresponding to each signal, which is just identified by some 

electrode number of the computer) is actually incorrect. Further investigation into this 

hypothesis, reveals a consistent finding. 

If we modify our electrode map such that electrode 83 is moved to location that is 

normally reserved for electrode 85 (and simply exclude the data from electrode 85), we end up 

with a set of RF similarity plots in which data points for electrode pairs including electrode 83 

are consistent with the general trends established by the rest of the data (Figure 6.11). 

 

 

Figure 6.11 Turtle 7 receptive field similarity with electrode 83 and 85 swapped. 

To further test this hypothesis, we can see if this manipulation ‘fixes’ the trends of RF 

similarity plots for other turtles. 
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6.4 Visually evoked and ongoing electrode groups 

There is some evidence that, at times, one set of electrodes will be active together for 

spontaneous activity and a different set of electrodes will be active together for visually evoked 

activity (Figure 6.13). It would be interesting to see if these groups are completely disjoint and if 

they are consistent over the course of an experiment. 

 

Figure 6.13 Distinct groups of electrodes sharing LFP bursts. Each row shows the raw data of a 

different electrode. Data from Turtle 2, recording vis001, 240 sec into the file. 

 

6.5 Strange Fluctuations 

Fairly often, we recorded many strange large fluctuations in the extracellular voltage that 

we have no explanation for (Figures 6.14-17). Our typical response is along the lines of, “That’s 

weird, I guess we can’t use that data.”, and then we move along. These never get very much of 
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our attention, but maybe they should get some. After all, they are generated by the circuitry of 

the cortex, so at the very least they tell us that the cortical circuitry is capable of producing these 

signals. It would be interesting to take an inventory of strange fluctuations and see if certain 

features show up again and again in multiple turtles. 

 

Figure 6.14 Strange fluctuations in Turtle 7.Each row shows the data from a separate electrode. 

Raw data 894 seconds into file 001. 

 

Figure 6.15 Strange fluctuations in Turtle 6. Each row shows the data from a separate electrode. 

Raw data 120 seconds into file 001. 
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Figure 6.16 More strange fluctuations in Turtle 6. Each row shows the data from a separate 

electrode. Raw data 710 seconds into spontaneous recording001. 

 

Figure 6.17 Strange fluctuations in Turtle 32. Each row shows the data from a separate 

electrode. Raw data in at the beginning of recording LED001. 
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6.6 Direction Dependent Response Variability 

Usually when we look for direction sensitivity, we look for difference in the strength of 

the response, but it may actually be useful to look for differences in other aspects of the response 

as well. For instance in Figure 6.18, the average strength of responses to dots moving in opposite 

directions are roughly similar, but the reliability of those responses are vastly different.  

 

Figure 6.18 Direction dependent response variability. Each row is a separate trial. The LFP 

signal is shown in black. Action potentials are shown as red rasters. Each colored column 

indicates the timing of a black dot moving across a white screen. 

6.7 Long Term Adaptation (30 s – 60 s) 

In the experiment done on 3/15/2012 we observed reliable on and off responses to a 

screen alternating between a white and green screen every 60 s, but when the time between 

switching the screen color was 20 s (or less) the responses were very rare (Figure 6.19). 
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Recognizing that full recovery from adaptation can take between 20 and 60 s is important for 

designing future experiments. 

 

Figure 6.19 Long term adaptation. Each row is a different trial. Each colored area indicates the 

timing of a full screen color change. There were 10 s, 20 s, and 60 s durations of color change 

(bottom three modes) as well as faster flashes of color changes (top three modes). LFP (black) 

and action potentials (red) are shown.  

6.8 Precisely timed coordinated activity in specific 

frequency ranges in multiple electrodes 

6.8.1 Introduction to shared bouts of activity 

For some of our experiments, we filtered the recorded extracellular voltage in several 

narrow-pass-bands and plotted all filtered signals using Butterworth filters as was done in 
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(Rutishauser et al., 2013). This was often done for many of the electrodes from the MEA. For 

any one of those sets of plots, the filtered signals we plotted had many bouts of increased 

activity. When flipping through many of these figures made for different electrodes, we noticed 

that some of the bouts of activity seen in one figure would be present in in the next figure (i.e., 

from another electrode) with almost exactly the same timing, while others would be present for 

only one of the two electrodes (See Supplementary Figure 2.17). There are many interesting 

questions to answer regarding these shared bouts of activity. 

One possibility for the detection of bouts of activity is to use the same technique as was 

used for LFP burst detection in Chapter 3, with threshold values changed appropriately. 

After detecting the bout times for all frequency bands on all electrodes, we could define 

coincident bouts on two electrodes, A and B, as shared if at least 80 % (or some other 

appropriate value) of the duration of the bout on electrode A overlapped with the duration of the 

bout on electrode B (and vice versa).  

This may be well visualized by plotting the Hilbert transforms of the narrow frequency 

bands from the two electrodes on top of each in different colors other with alpha 50% and the 

plots filled to the x axis. 

For a more detailed study of shared bouts, one could go beyond simply labeling bouts as 

shared or not shared. This may be done by considering the relative amplitude of the coincident 

bouts. If the amplitude of the bout on electrode A is very strong (either absolutely or with respect 

to the typical level of activity on electrode A) and the amplitude of the bout on electrode B is 

very weak, the bout would be weakly shared. 

Many questions come to mind regarding shared bouts: 
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Q1: What percentage of bouts are shared? 

Q2: Are there certain groups of electrodes that tend to share bouts together? 

Q3: Are shared bouts stimulus specific? 

If there are groups of electrodes that tend to share bouts together, does the shared visually 

evoked activity of these groups provide more stimulus specificity than any of the individual 

electrodes taken alone? 

Q4: Are unshared bouts stimulus specific? 

Instead of (or in addition to) the hypothesis underlying Q3, one could look at the stimulus 

specificity of unshared bouts of activity. 

Q4: Are shared bouts frequency dependent? 

If a pair (or group) of electrodes shares bouts of activity in one frequency range, do they 

also share bouts for other frequency ranges? 

Q5: What’s the spatial arrangement of groups of electrodes that share bouts? 

When a group of electrodes does share bouts of activity, is there a pattern to how those 

electrodes are distributed around the MEA? Are they neighboring electrodes or scattered? Do 

they lie along a rostral-caudal line? Do the lie along a dorsal medial line? Is the spatial 

arrangement different for groups that are defined by sharing different frequency bands? For these 

questions, we may get a clearer picture using the more involved quantification of shared bouts 

that includes the strength with which they are shared. 

6.8.2 Discrete LFP generators 

If we find that certain bouts are shared only by neighboring electrodes, and that the 

relative amplitude of the bouts on those electrodes (relative to the amplitude on the other 



229 

electrodes), then we may actually by looking at LFP signals that sample overlapping volumes. If 

this is the case we would learn that 1) there are discrete LFP generators, 2) the locations of these 

generators, and 3) the spatial extent of our LFP recording volume. 

The recording volume of the LFP has often been thought to be within roughly 150-400 

µm of the electrode (Katzner et al., 2009; Dajun Xing et al., 2009), but others have suggested in 

may be as large as several millimeters at times (Kajikawa & Schroeder, 2011). With this in mind, 

it may be plausible that multiple electrodes record activity from a single location. 

If we find what appear to be discrete generators, we may have a new potentially awesome 

signal to analyze. This could move us from hearing the muddled noise of the crowd to hearing 

the details of individual components within the crowd, which may have more stimulus specificity 

or reveal clearer patterns between different aspects of cortical activity. It would be good revisit 

many of our previous studies in the context of generators and repeat studies using generator-

specific signals. 

6.8.3 Time Delays and Signal Propagation 

It could reasonably be suspected that when several electrodes share a bout, it is because 

the cells near the electrodes share common inputs. If these electrodes are different distances from 

the common input cells, we might expect slight differences in the onset time of the bouts. This 

could also reveal something resembling propagating waves as have been discussed in several 

studies (Du, Ghosh, & Ulinski, 2005; Du, Ghosht, & Ulinski, 2003; J C Prechtl et al., 1997; 

David M Senseman & Robbins, 2002).What follows is a plan to investigate this. 
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When a group of electrodes shares bouts, for each bout, take the average time of bout 

onset (averaged over all electrodes in the sharing group). Then for each of those electrodes, look 

at the difference between its bout onset time and the average onset time. We’ll call this time 

difference the bout onset delay. Finally, for each electrode in the sharing group, plot the 

distribution of bout onset delays. If the distributions for some of the electrodes are significantly 

different from other electrodes, this may suggest something about signal propagation. 

6.9 Clarifying the Spatial Features of the Receptive Field 

with Stationary Stimuli 

With very few exceptions, we probed the receptive field by presenting a black dot 

moving across a white background. In only a couple experiments did we present stationary black 

dots at different locations in the visual field. Then, the RF from this stimuli could be compared 

with that from the moving dots. This stimuli would offer the advantage of not requiring a 

latency/delay to determine what part of the visual field actually elicited the activity recorded. An 

additional advantage of this stimuli over moving dots, is that we wouldn’t need to worry about 

response to one area of the visual field being inhibited by adaptation to motion in another area 

(or conversely mistakenly interpreting persistent activity elicited by motion in one area as a 

response to motion in a different area of the visual field stimulated slightly later). This 

experiment was done on 4/05/2012, but this was late in the experiments and visual responses 

were less reliable. 
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6.10 Extending Receptive Field Similarity Analysis 

For the moving dot experiments, we were able to plot LFP receptive field versus 

electrode pair distance across the array. The results from these experiments are interesting, but 

we didn’t consider response similarity for other stimuli or similarity between pairs of spiking 

units. There may be more to learn by extending our analyses to include these 

6.10.1 Defining Response Similarity for Diffuse Flash and Complex Movie 

Stimuli 

For the moving dot experiments, the LFP event times were converted to locations along 

paths in the visual field, the paths were then binned, and the event counts in those bins were used 

to compare pairs of electrodes and calculate a similarity. A very similar technique could be used 

to calculate response similarity for experiments using LED flashes and complex movie 

presentations. For these stimuli, instead of binning over paths in the visual field, we could simple 

bin time starting with the stimulus onset (or possibly slightly after stimulus onset to avoid 

artifacts) and ending with the end of the response (or slightly after since including additional 

time of inactivity won’t affect the results). After make that change, the remaining analysis would 

proceed exactly as with the moving dots. 

For the LED experiments, this may produce a much richer set of results than what we’ve 

already seen from the moving dot analysis. It would be interesting to test if the similarity results 

produced by moving dot data would be reproduced by other stimuli. 

A More Complete Picture of the Visual Cortex 

In addition to verifying or comparing with previous results from the moving dot data, the 

LED experiment also give us an opportunity to get a more complete picture of visual cortex 
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because those experiments often had more visually responsive electrodes than the 4 moving dot 

experiments had. 

6.10.2 RF Similarity versus Distance for Action Potential Data 

In Chapter 2, for moving dot data, we showed that action potential receptive fields tend to 

be significantly similar to LFP receptive fields and that for LFP receptive fields from different 

electrodes there is a trend (at least in the rostral visual cortex) of nearby electrode pairs having 

more receptive field similarity than distant electrode pairs. Connecting these two results together, 

we might expect that we would see the same trend if we compare action potential receptive fields 

from different electrodes with each other.  

On the other hand, the receptive fields found with spike data are at times smaller than 

those found using the LFP. Action potential-action potential RF similarity has not been 

considered yet. It would be interesting to repeat these analyses for spike data to see if the same 

(or other trends emerge). 

6.11 Adaptation for Complex Movies 

Often, when showing a complex video, there is a strong response to the onset and offset 

of the video, which may likely be due to a change in luminance/contrast. Later in the complex 

video there may be other activity that is reliably evoked across trials. It’s difficult to tell if the 

timing of the later activity aligns with interesting (activity-evoking) happening within the 

stimulus OR if the timing of this activity is actually delayed activity from the video onset (we’ve 

seen responses to LEDs that have an initial response ~1s and then a second response after ~9s), 

OR if the lack of activity before the later activity is the result of adaptation from the video onset 
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and the later activity happens after that adaptation dies off. To distinguish between these 

possibilities, one could show the videos many times with different sections of the beginning of 

the video removed. 

6.12 Checking Orientation Tuning Decoupled from Spatial 

Tuning 

Our main tool for looking at direction tuning has been moving dots. While it is true that 

the moving dots are moving in a specific direction, it is also true that the dots (as they move) 

occupy a broad range of locations in the visual field. Consequently, when we record a strong 

response to a dot moving across the top of the screen, we can’t actually say if the response is 

caused by the dot occupying that area of the visual field, or by the dot moving with a certain 

direction (or if the combination of direction and location is important). 

There is some evidence that the location is more important: 1) opposite angles along the 

same path tend to have the same response, and 2) every time a pair of opposite angles (e.g., 0 and 

180 degrees) have a strong response for paths only along the bottom half of the visual field, the 

responses to the perpendicular directions are also primarily in the bottom half of the visual field. 

Despite evidence that the direction of motion may have little impact on response strength, 

it would be nice to test for orientation with a more targeted and controlled experiment. One way 

of doing this would be to used small windows (maybe 10 visual degrees) in which a sine grating 

moves. In this way, orientation tuning could be tested in localized areas of the visual field. By 

doing this at many locations throughout the visual field we could also test spatial tuning as a 

whole, and whether orientation varies throughout the visual field. 
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6.13 Electrical Stimulation 

When doing single electrode experiments, there was a concern that we were biasing our 

selection of cells to record from by stopping our search for a cell when we found an actively 

spiking cell. This could mean that we record primarily from a subset of cells that are 

spontaneously active, while there could be other sets of cells with other visual response 

properties that we overlooked. To prevent this bias, we attempted to find cells by electrical 

stimulation during six experiments. The first two (7/12/11 and 7/14/11) were dedicated to 

determining the best conditions/settings/locations for recording and stimulating. During these 

experiments, electrical stimulation was provided using patch electrodes with broken tips. Two 

sites within the cortex (Figure 6.20) and one site in the lateral forebrain bundle were stimulated 

while recording with a ½ megaohm tungsten electrode. 
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Figure 6.20 Stimulating electrode place in the cortex. Picture of the cortex with a stimulating 

electrode (thick) and a recording electrode (thin). 

6.13.1 Antidromic Stimulation 

Over many stimulating/recording configurations I saw no clear evidence of antidromic 

stimulation even when I recorded near spiking cells. On 8/03/2011 there were responses that may 

or may not have been antidromic spikes (Figure 6.21), but the cell was not visually responsive. 
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Figure 6.21 Possible antridromic stimulation. Several trials overlaid on top of each other. The 

negative deflection with a width of a few milliseconds may have been from an antidromically 

stimulated cell. 

6.13.2 Recording Depth Dependent Results 

On 7/12 changing recording depths (from 0 um to 250 um) changed only the scale of the 

response to electrical stimulation 

 

Figure 6.22 Changes in amplitude of response to electrical stimulation at different recording 

depths. Recordings taken from 6 different depths. 
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On 7/14 the same depth changes resulted in a continuous change to the structure of the 

response to electrical stimulation 

 

Figure 6.23 Changes in shape of response to electrical stimulation at different recording depths. 

Recordings taken from 6 different depths. 

6.14 Stimulus Specificity of Spectrogram Structures 

Likely as a result of smoothing, the spectrograms of responses to moving dot stimuli do 

not clearly reveal narrow frequency bands of increased activity, but in this smoother picture, 

repeatability in response is more evident than when looking with the finer spectral resolution and 

coarser temporal resolution of the PSD’s and relative powers. The spectrograms are suggestive 

of spatial stimulus specificity in the response amplitude, directional stimulus specificity in the 

response time course, and averages that clearly seem representative of individual trials. 

Looking at the spectrogram of recorded signals reveals consistent differences between 

stimuli. Figure 6.24 shows the spectrograms for electrode 85, turtle 7. If we compare the 

spectrograms for the responses to a dot moving at 0 degrees to those for the responses to a dot 
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moving at 180 deg, we can see clear differences. The 0 degree spectrograms show a very sharp 

onset across a broad range of frequencies (0-60 Hz) with the higher frequencies dying off more 

quickly than the lower frequencies. In contrast, the 180 degree spectrograms show a 

blurrier/smoother onset (of the same frequency range) with all frequencies dying off with the 

roughly the same time course. 
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Figure 6.24 Spectrogram responses to dots moving in opposite directions. Responses to dots 

moving along 8 paths. (Top Half) Responses to 4 trials of motion at 0 degrees with the average 

beneath. (Bottom Half) Responses to 4 trials of motion at 180 degrees with the average beneath. 
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6.15 Possible Responses to Absent Stimuli 

The experiment performed on 9/28/2011 had its strongest and most reliable response 1 s 

after the last bar Figure 6.25. For these trials, there was 1 second between bars. Therefore, this 

response could be a response to an ‘absent’ stimuli. In other words, the turtle may have expected 

a stimulus after 1 s of no stimulation, because most moving bar presentations were followed by 

another moving bar 1 s later. Then the absence of such a subsequent moving bar could have been 

detected as a deviation from expectations, and that deviation may have evoked a response. 

 

Figure 6.25 Possible Response to Missing Stimuli. LFP responses (black signal) and spike 

responses (red rasters) to ten presentations of a black bar moving across a white screen in eight 

different directions. Bottom: A peristimulus time histogram of the spiking responses. 

Responses to missing expected stimuli have also been recorded in humans with scalp 

EEG recordings of responses to auditory stimulation, (McCallum, 1980), and even in the LFP of 

turtle visual cortex, dorsal ventricular ridge, and optic tectum (J. C. Prechtl & Bullock, 1994; 

James C. Prechtl & Bullock, 1993). 
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6.16 LFP Burst Refractory Period 

In Chapter 3 we demonstrated the effects of adaptation to both spontaneous and visually 

evoked activity. In that study, the activity we were quantifying was LFP events, which primarily 

happened to manifest within LFP bursts. If we step back and look at the bursts as our activity of 

interest (instead of individual LFP events), we may gain further insight into adaptation. By 

detecting LFP burst (using the same methods used in Chapter 4) times and plotting the 

distributions of interburst interval times, we may discover an LFP burst refractory period, and 

learn a bit more about the timescale of adaptation. 

6.17 A Clearer Picture of V1 in the Cortex 

Use the pictures taken after the experiments were finished to see where the electrodes 

were. Indicate on the cortex which were visually responsive (and maybe the strength with which 

they responded). Do this for many experiments (not only on their own cortical map, but also 

together on one picture of a cortex), and see if a clearer picture emerges regarding where the 

visually responsive region of the cortex is. 

In most of our experiments the dorsal rostral corner of the MEA was visually responsive. 

Unless, by chance, we happened to place our electrodes right at a strong border across which 

visual responses stopped, this suggests that we were usually missing out on some visually 

responsive region of the cortex. It may be useful to place the MEA more dorsally and rostrally 

(to the extent that the practical experimental limitations allow) to get a clearer picture of what the 

dorsal and rostral borders of the visual cortex look like. An added benefit of this, of course, is 

simply having more visually evoked data. 
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When performing studies it may be important to probe the system with many different 

stimuli, and a sufficient number of times to account for the variability of responsiveness of 

different areas to different stimuli. One study shows substantial overlap of effective and 

ineffective recording sites for a particular stimulus (Figure 6.26) (J. C. Prechtl & Bullock, 1994). 

 

Figure 6.26 Overlap of effective and ineffective recording sites in turtle cortex. (A) 

Experimental design. (B) Placement of shank array in dorsal cortex. (C) Recording sites that 

were effective and ineffective at eliciting responses from omitted stimuli. Figure taken from (J. 

C. Prechtl & Bullock, 1994). 
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6.18 Sparsely Spiking Cells 

It may be that we’re near more visually responsive spiking cells than we realize, but we 

haven’t noticed them because they spike so sparsely. For instance the spiking cell recorded from 

electrode 42 from turtle 77, had only 6 spikes during 512 presentations of a dot moving along a 

path across the visual field, but it is almost certain that those 6 spike were visually evoked (as 

opposed to random) (see discussion in Chapter 2.12.3). 

We have many additional examples of sparsely spiking cells that may be visually 

responsive (Figrue 6.27). There are many stimulus specificities that we have yet to see in LFP 

responses or in responses of cells that spike abundantly. It would be good to give more attention 

to sparsely spiking cells to see if they have different response properties. 

 

Figure 6.27 Receptive field of a sparsely spiking cell. (Right) Receptive field of a spiking cell. 

(Left) Receptive field of the LFP picked up by the same electrode. (Bottom) An indication of 

the similarity between the two receptive fields showing a comparison with shuffled data. The 

following figures follow the same format. 
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6.19 MEA Spike Response Latencies 

6.19.1 Overview 

So far only a cursory glance has been given to the spike response latencies from the MEA 

data. We’ve quickly flipped through the data and picked out 41 electrodes across 13 turtles that 

appeared to have large spikes in response to the few trials we looked at. 

To do a more thorough study, a standard spike detection should be done for all 

electrodes, and those detected spikes should be used to determine visual responsive cells using 

the same algorithm used to establish visual responsive electrodes with LFP events in Chapter 2. 
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6.19.2 First, Second, and Third Spike Latencies 

When looking at the distributions of first spike latencies, for some cells (e.g., the cells 

recorded by electrodes 5 and 9 for turtle 68 and less clearly the cell recorded by electrode 50 for 

turtle 71), there is a clear early first spike latency that occurs very often and a later first spike 

latency that also occurs often, without many occurrences of first spike latencies in between 

(Figure 6.28). 
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Figure 6.28 Early and late first spike 

latencies. (Top) The timing of the first 

spikes following either the onset of a red 

LED flash (turtles 2 -32) or the transition 

from a blank screen to the beginning of a 

complex movie (turtles 48-86). (Bottom) 

Summary histogram of all data. Early 

responses (from the first 60 trials) are 

shown in red. Late responses (to later trials) 

are shown in black. 

  



251 

One possible explanation for this, may be that there the full spiking response (beyond the 

first spike) is a series of somewhat precisely timed spikes and that the probability of one of the 

spikes in the series occurring does not depend on whether the previous spike occurred 

6.19.3 Variability from Turtle to Turtle 

The variability in first spike latency for electrode to electrode tends to be much less than 

the variability from turtle to turtle. In Figure 6.28 you can that all four electrodes shown for turtle 

68 have a first spike latency of ~200-250 ms quite often. The electrodes from turtles 53 and 48 

seem to be similarly grouped. 

6.19.4 Establishing First Spike Latency Lower Bounds with Extended 

Recordings 

Section 6.2 describes how visual responses can change and diminish over the course of a 

few hours. Because of this, for many of our analyses, we use only the early portion of our 

recordings, with the assumption that they more accurately represent the activity of the turtle in 

nature. 

While the additional data may obscure an otherwise clear result for most analyses, it may 

be provide a cleaner result if we are interested establishing a lower bound for first spike latencies 

for individual cells. When we limit our study to just the first 60 trials, there are some cells that 

fire sparsely enough that we don’t have good enough statistics to clearly identify a reliable first 

spike latency (e.g., the cells recorded by electrodes 57 and 87 for turtle 69, Figure 6.28). If, 

instead, we include data from hundreds of trials, we can end up having enough data for an 

obvious minimum value for spike latency. 
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As is the case with many of the features we analyze, we can see clear changes in the 

distributions of first spike latencies from the beginning of the experiment to the end, but it seems 

that one import feature of the distributions may be preserved throughout the experiment: the 

timing of the earliest first spikes. One could argue that it might be reasonable to expect this. 

After all, if the latency of the earliest first spikes is primarily dependent on the time it takes for 

excitatory signals to propagate along the pathway to the cell, then slower signal propagation 

increasing the latency seems much more likely than faster signal propagation existing to decrease 

the latency (but these assumptions may be too lofty). 

If we want to lend support to the claim that the earliest first spike latencies are preserved 

over time without using such lofty and simplistic assumptions, we can instead look to the data. 

Though the motivation to use the extended data set was that some channels had very few data, 

other channels had plenty data that show an obvious earliest first spike latency (electrode 42 

from turtle 68, electrode 70 from turtle 81, and electrode 49 from turtle 48, Figure 6.28). If we 

compare the earliest first spike latencies found using only the first 60 trials with the earliest first 

spike latencies found using all trials, we see that they agree very well. The fact that the cells that 

we can test provide reliable first spike latencies over long periods of time suggests that those that 

we can’t test also might. 

6.19.5 Trends Relating to Cortical Location and Visual Field Location 

Mazurskaya reported that the latency to first spike to stimuli in the nasal visual field and 

stimuli in the temporal visual field differed by 100 ms (P. Mazurskaya, 1973). This would be 

something to check with stationary dots. In addition to checking this for individual neurons it 
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would also be good to see if the region of the visual field that evoked the earlier first spike 

latency varied across the electrode array. 

6.20 Big Picture Turtle Clustering 

A recurring theme in this research has been variability. There’s variability at all levels 

(e.g., trial to trial, cell to cell, recording site to recording site). At maybe the coarsest level, turtle 

to turtle, we may be able to better understand our prep with a more deliberate look at this 

variability. 

There are dozens of parameters that can be used to describe each experiment with a 

single turtle as a whole: the number of days since the turtle was fed, the time of day the surgery 

began, the person performing the surgery, the estimated locations and lengths of the cuts to the 

cortex, the location of the electrodes, the amount of time between anesthetization and the first 

occurrences of visual responses, the amount of time that visual responses continued, the number 

of spiking cells, the number of LFP visually responsive electrodes, the quality of the cut through 

the retina, the presence of persistent LFP activity in response to LED flashes, the presence (or 

amount of) ongoing LFP bursts (or spiking activity), and high level summary values for any 

other feature that has been studied.  

We could looking for patterns and correlations among these parameters in a few ways. 

The simplest would be to simply look at two or three parameters at a time by plotting one 

parameter versus another with a point for each turtle. This process could easily automated to be 

done for all pairs of parameters. Alternatively, we could look at all parameters at once using a 

clustering algorithm. 
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If trends are found linking a methodological parameter to a parameter of neurological 

activity, this may inform/affect our methods. If trends are found linking two parameters of 

neurological activity, this may provide clues to the underlying mechanisms. 

6.21 Recording Multiple Areas with Multiple Arrays of 

Shanks 

In nearly all of our experiments, we have only placed electrodes in the cortex. We know 

that most of the inputs to cortical cells come from other cells within in the cortex, but to better 

understand the nature of the different contributions to cortical activity, it would be nice to record 

simultaneously from the cortex and the LGN. 

6.21.1 Identifying LGN and Cortically Driven Cortical Activity  

The relative timing of LGN and cortical activity may help us understand what activity is 

driven directly by LGN inputs as opposed to being a secondary effect of additional processing in 

the cortex. This is more likely to be relevant for action potential data since the time differences 

between different stages of processing may be too short to discern with the limited temporal 

precision of the LFP signal. 

One topic for which the LFP signal may be quite useful is spontaneous activity. For some 

turtles, we see spontaneous LFP oscillations. We think that these occur independently of LGN 

activity. In an experiment on 3/15/2012, recording with a single extracellular electrode in a 

cortical slab (a cortex disconnected from the rest of the brain), we observed bursts of LFP 

oscillations. This tells us that bursts of LFP oscillations can occur without any LGN input, but 
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that doesn’t preclude the possibility that, in a normally connected brain, the spontaneous LFP 

bursts are actually triggered by some activity in the LGN. 

6.21.2 Existing Data and Future Experiments 

For two experiments (turtles 15 and 16), we attempted experiments using multiple arrays 

of shank electrodes: one in the cortex and one in the LGN (Figure 6.29). Unfortunately, the 

electrodes were long enough and flimsy enough that the surface tension of the ACSF that they 

were partially submerged in caused the electrodes to bend towards each other. This can be seen 

in Figure 6.29. This made it difficult to cleanly insert the electrodes into the tissue. For this 

reason, in future experiments shorter electrodes should be used or the arrays should be modified 

(maybe with glue or Sylgard) so that the electrodes are rigidly spaced sufficiently close to the 

end of the electrodes that the glue/Sylgard support (and the portions of the electrodes beyond the 

support) are completely submerged in the ACSF. 
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Figure 6.29 Multiple MEAs to simultaneously record cortical activity and thalamic input.  

6.22 Relevance of the Ipsilateral Eye 

Our standard procedure is to remove the eye (by cutting the optic nerve) that is ipsilateral 

from the cortex we’re recording from. From a practical standpoint, it would extremely difficult to 

project the same image with the same orientation to both eyes. We know that the LGN projects 

to the ipsilateral cortex, and Nautiyal and Ulinski reported that while all the retinal lesions they 

made produced degenerated axons in the contralateral cortex, only some of the retinal lesions 

produced degeneration in the ipsilateral LGN (P S Ulinski & Nautiyal, 1988). With that in mind, 

if we are going to present stimuli to only one eye, the contralateral eye is the obvious choice. 
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The fact that most of the sensory input comes from the contralateral eye does not imply 

that the input from the ipsilateral eye is irrelevant or has no effect on the signal recorded on the 

retina (in fact, it would be absolutely surprising if the LGN received input from the ipsilateral 

retina, and this didn’t affect the activity in the cortex). There are two experiments that might help 

us better understand the relevance of the ipsilateral eye. 

6.22.1 Matching Stimuli 

I started this section by mentioning that matching the orientation of a stimulus presented 

to both eyes is likely a practical limitation. This is certainly true if we’re using stimuli with much 

spatial structure, but it’s much less of an issue if we use diffuse flashes. The experiment is 

simple. Record the response to a diffuse flash presented to both eyes and then compare the 

results to those when the flash in presented to only one eye. Of course the interpretation of the 

analysis would need to consider how relevant the responses to a diffuse flash are to other stimuli. 

6.22.2  Disconnecting Versus Covering the Eye 

Close one eye and look at the world. Now sever one optic nerve and look at the world. 

We know that our visual perception is hardly affected by having one eye closed or covered, but 

we don’t have an intuitive sense of how our perception is changed when an optic nerve is cut and 

the severed axons are left in ACSF. 

Again, this is a simple thing to test. We could leave the contralateral eye attached but 

covered by an opaque screen and collect a data set (ongoing data and responses to flashes, 

moving dots, and complex movies). Then we would snip the optic nerve and collect another data 

set to compare.  
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These two experiments could be done in the same turtle and then the turtle could continue 

to be used by the researcher for whatever other experiments were planned. 

6.23 Further Study of LED Flash LFP Responses 

When averaging over the responses of 180 presentations of LED flashes, we find 

remarkable phase coherent responses and reproducibility at several different frequencies. 

Furthermore, if we present LED flashes of three different amplitudes, we get three different 

average that clearly share many features, but vary in their overall time courses, the prominence 

of certain features, and in other ways that aren’t so simply described. While some of the changes 

as we increase stimulus intensity seem clear (e.g., the overall time course of the response 

increases with LED intensity), others are less obvious (e.g., the changes of amplitudes of specific 

cycles of the oscillatory responses or the superpositions of very low and medium frequencies and 

precisely what those frequencies are). To more fully understand flash intensity dependence, it 

would be good to repeat these experiments at several other intensities (including lower 

intensities) to see how we get from one response to another and how this develops from 

responses to very weak intensities. 

6.24 The Effects of Surgical Cuts into the Cortex 

Out of necessity, we make cuts into the cortex before recording any data. The cuts allow 

us to flatten the cortex so that we have a clear target for an array of electrodes to be inserted. 

Each cut severs a myriad of cortical connections. We assume that these lost connections don’t 

have a significant effect on the visual responses we record (after all, we do still see strong 

responses), but we haven’t conducted any experiments to explicitly test this. The closest thing 
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we’ve done is retrospectively look at the cuts we’ve made after conducting an experiment with 

little or no visual responsiveness to check if they are noticeably different from experiments that 

had strong visual responses. One conclusion we arrived at through this type of thinking was that 

removing the entire olfactory bulb may affect visual responses, and, consequently, our new 

policy is only to cut off the tip of the olfactory bulb. 

Of course we only assume a strong response is a good thing (i.e., that a very strong 

response is what we would also find in the animal behaving in the wild, if we had access to those 

neural signals). It may be that when we’re rejoicing in the lab over the most magnificently strong 

LFP response seen on almost every electrode, what’s actually happening is that some regulatory 

mechanism that’s required to suppress/inhibitactivity to a biologically useful level, has been 

disabled/diminished and we’re recording from a malfunctioning brain. 

Even if this isn’t the case (and we certainly hope it’s not), it would still be good to 

understand better what (if any) effects our cortical cuts have on visual responses. It may be 

possible to test this experimentally. We could do an experiment in which we make no cortical 

before placing the brain in the recording chamber. We could then insert a single electrode (or 

maybe a shank electrode if it weren’t prohibitively large) into the visual cortex through the DVR, 

around the DVR, or even through the pial surface, without make any cuts (or with only minimal 

cuts if the visual cortex can’t be accessed with no cuts).  

After finding a site with evoked LFP activity (and hopefully spikes as well), we could 

then record a baseline activity set (e.g., ongoing activity, responses to flashes, and responses to 

moving dots). Then we would cut off the end of the olfactory bulb and record another activity 

set. This could be repeated for the rostral-caudal cortical cut, and the two medial-dorsal cortical 



260 

cuts. For each cut we could even record an activity set first after making a partial cut and then 

again after making a deeper cut. 

If any differences are observed after any of the cuts, this could 1) further our 

understanding of the visual pathways and connectivity and 2) motivate changes to our 

experiments in the hope of recording more biologically relevant activity. 

An additional feature to look for before making cuts is the extent of the visual cortex. 

Though it’s difficult to compare rostral-caudal locations without very precise landmarks, it 

seems that at least one study has recorded visual responses in more caudal regions than we have 

(P. Mazurskaya, 1973), and it’s not the case that we haven’t seen it because we haven’t looked 

for it. Consistently, when our MEAs extend into these regions, the LFPs and unit activity is not 

visually responsive. That we should expect visual responses in the more caudal areas of the 

cortex is also supported less directly by HRP stains, that suggest that the caudal cortex receives 

input from visually responsive thalamic regions (Mulligan & Ulinski, 1990). 

With these reports in mind, it might be worth checking whether the discrepancy with 

what we’ve observed could be explained by the cuts we make to the tissue. To test this we could 

quite simply carry out the experiment described above, while being sure to search for visually 

responsive areas in this caudal region before making any cuts. 

6.25 A Second Look at Retinal Health 

Not only is this section itself a second look at retinal health (another section involved 

retinal health in a different context), but also, this section really is about taking a second look at 

retinal health while performing each experiment.  
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To clarify, every experiment, we take a first look at retinal health immediately after 

hemisecting the eye. At this point we can tell if we accidentally caused some undue damage to 

the retina by not getting a very clean cut. Signs of undue damage include visibly obvious tears 

and retinal peeling. 

The limited consideration we’ve given to the effects that retinal health have had on our 

recorded activity has typically just involved this first look, but in addition to this first look, for 

most experiments, we have also taken and saved a second look. That is to say that when the 

experiment is finished we take an additional picture of the retinal. 

The picture of health of the retinal at the end of the experiment (actually, the morning 

following the experiment is when the picture is usually taken) tends to be drastically different 

than the picture taken before the experiment, and as a whole is not representative of the retina for 

to early recordings, but certain aspects of the retinal picture taken the next morning may 

highlight damage to the retina that was likely to be present for the entire experiment (albeit easy 

to overlook in the pre experiment pictures). It seems that as the general health of the retina 

degrades over time, certain defects are emphasized.  

In Figure 6.30 we compare the retinas of two turtles both before and after an experiment. 

In the before pictures, we can see that turtle 10 seems to have a cleaner cut and less retinal 

peeling than turtle 8. The after pictures are consistent with those observations, but additionally 

they show extensive retinal tearing in turtle 8. After starting an experiment, there are no external 

forces applied to the retina (with the exception of gravity and the very gentle flow of ACSF into 

the eyecup). With that in mind, it is most likely that the tearing damage we see in the post 

experiment picture for turtle 8 represents damage that was present the entire experiment (because 
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there is no event mid experiment that would cause tearing), but only manifests so clearly after 

the experiment. For this reason, when considering the effects of retinal health on recorded 

activity, it’s advisable to look at both the pre experiment and post experiment pictures. 

 

Figure 6.30 Retinal health before and after experiments. Pictures of two retinas taken at the 

beginning of an experiment and the taken again the following morning. 

6.26 Frequency Dependent Receptive Field Similarity 

In rat hippocampus it appears that theta band activity may be more similar over long 

ranges than gamma activity is (Figure 6.31). 
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Figure 6.31 Theta and gamma band frequencies in rat hippocampus. Figure taken from (Buzsáki, 

2002) 

It would be interesting to repeat the receptive field similarity studies (see Chapter 3) 

using different frequency ranges. As the study was first done it used a 7 Hz – 59 Hz passband 

filter. Alternatively, we could recreated the figures several times using several smaller passband 

filters from 0 Hz – 100 Hz, and compare the resulting RF similarity versus electrode distance 

plots. A hypothesis might be that passbands with higher frequencies have steeper similarity 

versus distance slopes (to the extent that the frequency bands have enough activity to reveal any 

trends). 
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6.27 Detailed Experimental Methods 

6.27.1 Hemisecting the Eye 

To make it easier to get a clean cut through the eye without causing excessive damage to 

the retina or optic nerve, we use modified ring forceps. We took a pair of ring forceps and cut out 

a section of one of the rings large enough for an optic nerve to fit through (Figure 6.32). This 

allows us to hold the eye with the optic nerve roughly in the center of the open ring. In so doing, 

we can securely hold the eye with the plane through which we want to make our cut in the center 

of and parallel to the forceps (so that the forceps are not in the way of the cut we want to make) 

without squeezing the optic nerve against the eye. After securing the eye, we make the cut using 

platinum chrome double edge razor blades. 

 

Figure 6.32 Modified ring forceps. Ring forceps with a hole ground out of one of the rings. 

6.27.2 Perfusion Details 

To perfuse the eye without obstructing the image we project onto the retina, a small wick 

was made from a Kimwipe (Figure 6.33). The wick connected an ACSF feed located ~1 cm 

above and to the side of the eye to the inside edge of the hemisected eye. If any brain tissue were 

large enough to extend above the surface of the ACSF (e.g., the right cortex or the optic tecta), it 

would be cover with a small piece of Kimwipe so that it would also stay in contact with ACSF 

(Figure 6.33). 
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Figure 6.33 Wick for retinal perfusion and keeping tissue wet. A thin strip of Kimwipe leads 

from a perfusion dripper into the eyecup. Other pieces of Kimwipe cover tissue that would not be 

submerged in ACSF. Picture from turtle 14. 

6.27.3 Finding a Visually Responsive Recording Site 

After positioning the brain in the recording chamber, we need to place our electrode(s) 

appropriately to record the signals we’re interested in. Over the course of a few years, we used a 

few different methods used to find recording. 

Establishing a Zero Depth 

The first step was always to establish a zero point (specifically a zero depth). Two 

techniques were used to do this: visual inspection and signal monitoring. 
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First, we would simply look through the microscope as we lowered the electrode(s) 

toward the tissue and look for either a dimple in the tissue or for the tip of the electrode to 

disappear into the tissue. Dimples were difficult to see because our electrodes typically entered 

the tissue without causing much disturbance. Looking for the electrode tip to disappear behind 

tissue provided results with mixed confidence. Often, the tip didn’t actually disappear after 

entering tissue, but instead you could see the inserted tip through the translucent tissue. The point 

at which this started was sometimes clear, and sometimes not. The variability was likely do to 

lighting differences from experiment to experiment, as we didn’t use lights with a fixed position 

(they moved around throughout the experiments to light different areas). Both of these visual 

cues were made more difficult to find by the distortion from the meniscus that the ACSF would 

form with the electrode. 

In addition to looking for visual indications, we also watched the signal coming in from 

the electrode. If we observed neural activity, this served to tell us that we were definitely in 

tissue, but didn’t tell us how deep we were. We didn’t find a clear and reliable marker that we 

made first contact with the tissue. 

Eventually, we found that all of these techniques were more effective if we first got the 

electrode very near the tissue, momentarily drained the ACSF from the chamber, and then 

proceeded to look for these indications. This eliminated the distorting meniscus, and changed the 

electrical signal from the difference between ACSF and tissue to the difference between air and 

tissue, which was a much clearer difference. 

Finding Visual Responses 

For our single electrode and tetrode experiments, the search for a visually responsive 

recording site was done by presenting a search stimuli to the retina while slowly lowering the 
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electrode into the cortex. The most common search stimulus used was a collection of dots of 

different sizes bouncing around the visual field at different speeds. 

While the stimulus was presented we lowered the electrode into the tissue at 1-5𝜇𝑚/𝑠, 

and look for neural activity in the live signal from the electrode. If we didn’t find a visually 

responsive region after getting sufficiently deep (~500 𝜇𝑚), we would lift the electrode from the 

tissue, move laterally 100 𝜇𝑚 and try again. 

Depending on the resolution used to monitor the live signal, it could be difficult to 

distinguish between activity at different frequencies (e.g., a spike versus slower fluctuation). To 

make this easier, we added an audio monitor to the search procedure. The greater resolution of 

the  

It should be noted that we were specifically looking for visually responsive areas. 

Therefore, if there were cells with high stimulus specificity that weren’t responsive to our search 

stimuli, our experiments would be unlikely to reveal those. 

6.28 Moving Dot Figures with Perpendicular Projections 

Instead of adding a curve for each angle indicating the number of events for each path, 

add a histogram for each angle, summing over all paths counting the number of events at each 

location along the path (Figure 6.34). It will be interesting to answer the following questions: Do 

the histograms showing responses at different locations along the path agree with their opposite 

angles? Do they agree with the average path responses for perpendicular angles? This may 

provide additional insights regarding the durations of responses and the latency of responses. 
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Figure 6.34 Moving dot receptive perpendicular projections (concept). Black bars show where 

the histogram for the black 270 degree data would logically go. 
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