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ABSTRACT OF THE THESIS 
 

 
Integration of Multi-Sensory Earth Observations  
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by 

Erin Marie Robinson 

Master of Science in Energy, Environmental and Chemical Engineering 

Washington University in St. Louis, 2010 

Research Advisor:  Professor Rudolf Husar 

 

 

In order to characterize air quality events, such as dust storms or smoke events from 

fires, a wide variety of Earth observations are needed from satellites, surface monitors 

and models. Traditionally, the burden of data access and processing was placed on the 

data user. These challenges of finding, accessing and merging data are overcome through 

the principles of Service Oriented Architecture. This thesis describes the collaborative, 

service-oriented approach now available for air quality event analysis, where datasets are 

turned into services that can be accessed by tools through standard queries. This thesis 

extends AQ event evidence to include photos, videos and personal observations 

gathered from social media websites such as Flickr, Twitter and YouTube. In this thesis, 

the service-oriented approach is demonstrated using two case studies. The first explains 

the benefits of data reuse in real-time event analysis focusing on the 2009 Southern 

California Smoke event. The second case study highlights post-event analysis for EPA’s 

Exceptional Event Rule. The thesis concludes with a first attempt to quantify the 
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benefits of data reuse by identifying all of the different user requirements for Earth 

observation data. We found that the real-time and post-event analysis had 68 unique 

Earth observation requirements making it an ideal example for illustrating the benefits of 

service oriented architecture for air quality analysis.  While this thesis focuses on the air 

quality domain, the tools and methods can be applied to any area that needs distributed 

data.  
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Chapter 1 
 
Introduction 
 

Traditionally, air quality analysis was a slow, deliberate investigative process occurring 

months or years after the monitoring data had been collected (Husar and Poirot, 2005). 

Satellites, real-time pollution detection and the World Wide Web have changed all that.  The 

era of agile air quality analysis began in the late 1990s, when real-time satellite images became 

available through the Internet. High-resolution color satellite images were uniquely suited for 

early identification and tracking of extreme natural or anthropogenic aerosol events. In April 

1998, for example, a group of analysts keenly followed and documented in real-time the 

trans-continental transport and impact of Asian dust from the Gobi desert on the air quality 

over the Western US. (Husar, et. al. . , 2001). Soon after, in May 1998, a well-documented 

incursion of Central American forest fire smoke caused record fine mass (PM2.5) 

concentrations over much of the Eastern US (Peppler, et. al. . , 2000). During such extreme 

air quality events, managers need 'just in time analysis’, not just air quality data. Real-time 

analysis can explain the causes, the status and the likely evolution of the events.  

 

While technological advances have been made recently, many have stated the need for 

improving information systems to improve analysis and ultimately provide more societal 

benefits. The Decadal Survey (Anthes and Charo, 2005) from the National Research Council 

emphasizes the need for improving information systems used for decision support. In order 

to do improve these systems, the participating organizations will need to make a dramatic 

shift from traditional emphasis on self-reliance toward more collaborative operations — a 

shift that will allow the community as a whole to perform routinely at levels unachievable in 

the past (McConnell, 2008). 

 

The instantaneous ‘horizontal’ diffusion of information via the Internet now permits, in 

principle, the delivery of the right information to the right people at the right place and time. 



2 

Standardized computer-computer communication languages and Service-Oriented 

Architectures (SOA) now facilitate the flexible processing of raw data into high-grade 

‘actionable’ knowledge. Last but not least, the Web has opened the way to generous sharing 

of data and tools and faster knowledge creation through collaborative analysis and virtual 

workgroups. 

 

This thesis will describe the collaborative, service-oriented approach now available for air 

quality (AQ) event analysis. The thesis focuses on the air quality domain, but the same tools 

and methods could be used for other regulatory needs, informing the public or research 

applications. 
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Chapter 2 
 
Traditional Air Quality Event 
Characterization 
 

The characterization of gaseous species requires only the physical dimensions of space and 

time (x,y,z,t). The full characterization of the particulate air pollution system requires four 

additional dimensions: aerosol chemical composition, C, particle size, D, particle shape, S 

and nature of aerosol mixing, X (x, y, z, t, D, C, S, X). A single monitor can only measure a 

subset of these dimensions. For instance, satellite sensors have high spatial resolution (x,y) 

but they detect the radiative effect of a vertical column. Hence, a satellite sensor detects an 

aggregate contribution, which is an integral over five dimensions (z, D, C, S, X). On the 

other hand, surface monitors have high temporal and composition resolution, but lack any 

information to the spatial distribution. Combined the two sensors can give an idea of 

elevation of the aerosol, and if on the surface the composition as well as the spatial 

distribution (Husar, 2010). Consequently, a full spatial, chemical and optical characterization 

of the air pollution system requires the combined use of many pollutant sensors.  

 

2.1 April 2003 Kansas Smoke Characterization 
 

Smoke events are some of the most visible air quality events, both on the surface, impacting 

daily life, and from a satellite perspective. These events have unique composition and 

depending on the size of the fire, the smoke can spread over a region far larger than the area 

actually burned. In order to characterize the smoke impact, both surface and satellite 

monitors are needed.   

 

Fortunately, both the air quality monitoring and data dissemination technologies have also 

advanced considerably since the 1990s. Recent developments offer outstanding 
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opportunities to fulfill the information needs for the new agile air quality management 

approach. The data from surface-based air pollution monitoring networks now provides 

routinely high grade, spatio-temporal and chemical patterns throughout the US for PM2.5 and 

ozone. Satellite sensors with global coverage and kilometer-scale spatial resolution now 

provide real-time snapshots, which depict the pattern of haze, smoke and dust in stunning 

detail. The ‘terabytes’ of data from these surface and remote sensors can now be stored, 

processed and delivered in near real time. Air quality analysts can now observe air pollution 

events as they unfold, ‘congregate’ over the Internet in ad hoc virtual work-groups to share 

their observations and collectively gather the insights needed to explain the observed 

phenomena.  

 

For several days every spring, the refuse from the agricultural fields in Kansas-Oklahoma are 

burned resulting in major smoke plumes that cover multi-state areas of the Midwest. The fire 

pixels (Fig. 2.1a), obtained from satellite and other observations, provide the most direct 

evidence for the existence and location of major fires. In Figure 2.1a, the cluster of fires in 

Kansas is evident. 
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Figure 2.1 Kansas smoke event, April 12 2003. a.Fire pixels from MODIS satellite sensor, b. fine 
particle mass concentration from FRM c. organic fine particle mass concentration from VIEWS, d. 

noon total reflectance and e., f. the aerosol optical thickness derived from the SeaWiFS satellite sensor. 
 

The spatial pattern of PM2.5 (Fig. 2.1b) comes from the EPA Federal Reference Method 

monitoring network. The FRM network establishes the spatial and temporal patterns of the 

key pollutants PM2.5 and ozone. Figure 2.1c shows the spatial pattern of organic fine mass 

which is part of the chemical speciation data from VIEWS data systemi. Together these 

surface monitors identify that there is aerosol on the surface and that it is comprised of 

organics.  
 

The true color SEAWiFS satellite image (Fig. 2.1d) show a blueish haze over Kansas. The 

Aerosol Optical Thickness (AOT), derived from SEAWiFS (Raffuse, 2002), show a strong, 

back-scattering signal in the blue wavelength as well, further confirming the presence of 

smoke (Fig. 2.1e,f). Together these datasets confirm that on April 12, 2003 the haze over the 

Midwest was due to smoke and where the organic PM2.5 was high, the smoke was impacting 

surface air quality.  

 

2.2 Traditional Data Access 
 

No single dataset in the above Kansas Smoke example characterizes the spatio-temporal 

distribution of the smoke. For this characterization, four different datasets were used: two 

satellite datasets and two surface monitors. None of these datasets have the sole purpose of 

characterizing smoke, however because they are accessible via the web, they were brought 

together to describe the event.  

 

Even if all the data were accessible through the Internet, researchers would go to every data 

provider to access and download the data and then run that data through specialized, 

“stovepipe”, processing routines for their purpose. In the client-server architecture (Fig. 2.2) 

the individual servers are designed and maintained as autonomous systems, each delivering 

information in its own way.  
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Figure 2.2 Schematics of traditional client-server relationship 

 

For example, SEAWiFS raw data are stored within the NASA DAAC as swaths, the satellite 

data still warped the way that the satellite passed over. To create the images seen in Figure 

1d, we ordered satellite swaths covering a geo-rectangle of interest, received an e-mail when 

the package was ready, downloaded the data and unzipped it two times (due to the size). 

Once the raw data were on our computers, we then preprocessed the swaths to georeference 

the satellite data, Rayleigh correct the images and splice them together to form a single image 

for the U.S. We then further processed the data in order to extract AOT (Fig. 2.1e,f). 

Similarly, each of the other datasets was accessed, downloaded and used through a multi-step 

process.  

 

The traditional process described above is tedious and places the burden of data use on the 

data user. There are many hurdles to overcome from the user perspective. She doesn't know 

a certain type of data exists, if she does then she can't access, if she can access then she isn't 

sure about the quality and if she does find that is good quality, she can't merge it with other 

datasets (NAS, 1989).  
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Chapter 3 
 
Service-Oriented Air Quality Analysis  
 

These challenges of finding, accessing and merging data are overcome through the principles 

of Service Oriented Architecture (SOA). While catalogs or brokers have been around for a 

long time, the key benefit of the SOA approach is the loose coupling between service 

providers and service users. Loose coupling is accomplished through plug-and-play 

connectivity facilitated by standards-based data access service protocols. SOA is the only 

architecture that we are aware of that allows both loose, dynamic connection and seamless 

flow of data between a rich set of provider resources and diverse array of users.  

 

The dynamic connection or data federation is accomplished by turning data stored and 

exposed through a server into a data service. Data as a service makes it accessible to other 

computers through standard query interfaces and communication protocols (Fig. 3.1).  

 
Figure.3.1  Schematics of OGC standard protocols, WMS and WCS. 

 

The air quality community has adopted the Open Geospatial Consortium (OGC)ii Web Map 

Services (WMS) and Web Coverage Services (WCS) as the standard query interface for 

requesting and delivering air quality (AQ) data.  

 

Data providers "publish" data in a catalog, users "find" data in the catalog and when ready, 

they connect or "bind" to the selected data access service. Users of the federated data can 

then access the federated resource pool through suitable catalogs. From the user's 
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perspective, federating the data makes the physical location irrelevant. This loosely-coupled 

networked architecture is consistent with the "publish-find-bind" triad of SOA (Fig. 3.2). 

The result is a dynamic binding mechanism for the construction of loosely-coupled work-

flow applications. 

 

 
Figure 3.2 Service Oriented approach where many data providers are loosely connected to many user 

applications 
 

This viewpoint of the information system architecture describes the functional relationship 

between the distributed components and their interaction at the interfaces. This viewpoint 

highlights the key difference between the traditional client-server architecture and the loosely 

coupled, networked architecture, where queries and views are mediated by services (Fig. 3.2). 

Service interfaces accomplish the chores of homogenizing the distributed, heterogeneous 

datasets allowing the user to access data from multiple servers and immediately use their 

standards-based tools speeding up the analysis process from weeks or months to days or 

weeks.  

 

Service Oriented Architecture has been accepted as the desired way of delivering Earth 

Observation data products. However, the adoption of formal standards-based data-as-

service offerings has been slow within NASA, NOAA, EPA and other Agencies. Offering 

images through OGC WMS standard interface is becoming common for many Federal 

Agency data products, but there is currently no effective way for the users to find those 

services since they are dispersed over many web pages. As a consequence, current SOA 

information systems are rather fragile. Autonomous data access and processing services can 

be integrated into application software for data exploration and analysis using appropriate 

workflow software. 
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3.1 DataFed 
 

The federated data system, DataFediii (Husar and Poirot, 2005), is a mediated integrator of 

heterogeneous, distributed data (Fig. 3.3).  

 
Figure 3.3 Federated vs. stovepipe data system architecture  

 

The architecture of DataFed is consistent with the SOA approach of creating all 

components as reusable services. For data providers, DataFed offers wrappers to turn 

heterogeneous data into data services and then provides a catalog for the end user to find 

and browse metadata for registered datasets.  Applications that access standard data services 

and process the data using workflow chains have also been developed as a part of DataFed.  

 

3.1.1 DataFed Wrappers 
 

Many historic datasets don’t have standard interfaces built-in. Wrappers provide uniform 

interfaces to heterogeneous data by compensating for physical access and syntactic 

differences (Husar and Poirot, 2005). Each wrapper has two sides, one facing the 

heterogeneous data source that requires custom programming. Data wrappers incorporate 

the physical server location, perform the space-time subsetting services, execute format 

translations etc. The other side of the wrapper faces outward toward the internet cloud and 
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presents the uniform interface to the heterogeneous data, i.e. turning data into machine-

consumable services. 

 

The wrapper can be physically located on the same server as the data source. However, in a 

networked environment, such as DataFed, the wrapping process can be performed as a 

service by a third party. The placement of third-party wrapper components between network 

nodes is desirable for all network links, not only for legacy connections. They allow 

modification of service connections in response to environmental changes, e.g. an update of 

an interface standard without intruding on the operation of the data server. The result of this 

‘wrapping’ process is an array of homogeneous, virtual datasets that can be queried by spatial 

and temporal attributes and processed into higher-grade data products. 

 

3.1.2 DataFed Metadata 
 

In current catalogs, metadata mainly covers finding and accessing data since the provider or 

distributor of the data provides metadata. This metadata includes intrinsic discovery 

metadata such as spatial and temporal extent, keywords and contact information for the 

provider. Metadata also includes distribution information for data access.  

 

In DataFed, the user experience is improved by adding additional AQ-relevant metadata 

added to provider-contributed metadata in order for the AQ user to easily find the data. This 

additional metadata allows for sharp queries to be given in the parameter, time, and physical 

space. Another feature of the user-centric system is that using web analytics additional 

metadata are attached to each dataset in order to provide information about dataset usage 

characteristics. DataFed has its own catalog, AQ uFINDiv, where data access services can be 

registered for standards-based access for processing, visualization and exploration. 
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Figure 3.4 AQ uFIND – DataFed Catalog for finding and accessing data.  
 

AQ uFIND is the web service-based tool set: User-oriented Filtering and Identification of 

Networked Data (uFIND). The purpose of uFIND is to provide rich and powerful facilities 

for the user to: discover and choose a desired dataset by navigation through the multi-

dimensional metadata space using faceted search (Fig. 3.4); and seamlessly access and browse 

datasets with DataFed tools.  

 

3.1.3 DataFed Workflow  
 

The Service Oriented Architecture (SOA) is used to build web-applications by connecting 

the web service components (e.g. services for data access, transformation, fusion, rendering, 

etc.) in Lego-like assembly as illustrated in Figure 3.5 (Husar and Hoijarvi, 2008). The 

generic web-tools are also created in this manner include catalogs for finding, data browsers 

for spatial-temporal exploration, tools for transport analysis, spatial-temporal pattern analysis 

and download for use in other tools. 
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Figure 3.5 A typical web service program for the creation of multi-layer data views. 

 
In DataFed, a custom-designed workflow engine using web service interfaces performs the 

orchestration of processing services. The workflow is designed for chaining both DataFed 

services as well as other, external web services. Likewise, DataFed’s services are available to, 

and have been integrated with, other organization’s workflow software. A data view (Fig. 

3.5) is a user-specified representation of data accessible through DataFed. Data views consist 

of a stack of data layers, similar to the stack of spatial GIS data except that DataFed views 

can represent temporal and other dimensional pattern. Each data layer is created by chaining 

a set of web services, typically consisting of a Data Access Service, which is followed by the 

services for processing, portrayal etc. Data views are defined by an XML file, which contains 

the instructions to create a data view. The view file is also used to store the state, i.e. the 

input settings of the view.  

 

The services are organized as a stack of workflow chains (Fig. 3.5). Each row is a data layer, 

where the values that are displayed are computed through the service chain. The service 

chain starts with data access followed by several processing services and then completed 

through a rendering service.  Figure 3.5 illustrates a map view consisting of four independent 

data layers. The view in the top, right corner of Figure 7 shows the intrusion of forest fire 

smoke from Quebec to the N.E. United States. The color NASA satellite image is accessed 
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through an OGC WMS data access service. The point monitoring data are accessed from an 

SQL server through a wrapper, which formulates the SQL queries, based on the geographic 

bounding box, time range and parameter selection in the OGC WCS query. 

 
The DataFed Browser/Editor, seen in Figure 3.6, is the primary tool for the exploration of 

spatial-temporal pattern of pollutants. The multi-dimensional data are sliced and displayed in 

spatial views (maps) and in temporal views (timeseries). Each data view also accepts user 

input for point and click navigation in the data space. Other views can also be displayed such 

as cyclic view for the display of diurnal, weekly and seasonal cycles at a given location or 

within a user-defined bounding box.  

 
Figure 3.6 DataFed Browser for browsing data in space, time and parameter 

 

3.2 Social Media as an Air Quality Sensor 
 

As part of this thesis, the air quality information system was extended to gather air quality-

relevant observations from social media. Social media sites like YouTubev, Flickrvi, Bloggervii 

and Deliciousviii combined with Internet access, practically everywhere have lowered the 

threshold needed to share photos, videos, personal observations and other content in real-
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time. These responsive human sensors with their smart phones have created a “skin” for the 

Earth.   

 

Social media sites can be thought of as mediators like DataFed, that wrap distributed content 

into a web services and provide space to include metadata that aids in helping others find 

content. The social media sites allow for searching in multiple ways: keywords, text, who 

added the content, etc. One of the ways that these are “social” is by allowing the user to 

subscribe to the query via Really Simple Syndication (RSS). RSS is a format for allowing 

users to subscribe to receive updates whenever the content is changed. RSS has become a 

standard for publication through use and always includes: content title, description and link 

regardless of what site it comes from. This standardization allows RSSs from multiple sites 

to be aggregated or for tools like RSS readers to be built to read any feed. This combination 

of subscribing to a query via RSS allows for a traditionally, static query to become a real-time 

query that always provides the most current information.  

 

Businesses are taking advantage of aggregating RSS streams from various social media sites 

or “listening” to the social-media chatter about their brand, respond to complaints and 

develop brand loyalty by reaching out to customers. News agencies are also using social 

listening techniques and have implemented sites like iReport, since it is more and more likely 

that citizen reporters will ‘break’ news stories and identify major events.  

 

Scientists can benefit from social listening as well. Air Quality (AQ) events such as fires and 

dust storms are highly visible and impact daily life, thus the pictures, videos, blogs and tweets 

are shared through web within minutes of the event occurring (Fig. 3.7). Figure 3.7 shows 

the results for a search on smoke from three major social media sources, Twitter, Flickr and 

YouTube during the August 2009 Southern California (SoCal) Fire.  There were hundreds of 

videos and thousands of tweets describing the event.  
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Figure 3.7 YouTube, Flickr and Twitter displaying material published to the web during 2009 SoCal 

Fires 
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The air quality community is taking advantage of this new source of sensing information 

through, “community remote sensing”. Community remote sensing incorporates the new 

and evolving social media ‘sensors’ along with remotely sensed surface and satellite data to 

provide contextual information about what is occurring in the environment. 

 

Air Twitter (Robinson, 2010) is a social media listening tool that operates using an SOA 

approach (Fig. 3.8). AQ-related, user generated content is published on sites like Twitter, 

blogs, Delicious and Flickr and described using terms like air quality, fire and smoke. For the 

air quality application, we searched each of these social media sites for content tagged with 

‘smoke’, ‘dust’, ‘air quality’ and other outdoor air quality-related terms. Once we found 

relevant search terms, we subscribed to the search list using the RSS link available from the 

social media site. 
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Figure 3.8 a. Air Twitter Information System b. AirTwitter timeseries 
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The feeds from multiple social media sites are aggregated using existing aggregation services 

and then filtered to remove content that isn’t relevant such as ‘quality of Nike Air’ for ‘Air 

Quality’, thus allowing Air Twitter to harvest outdoor air quality, user-generated content into 

a single stream. The Air Twitter stream is re-tweeted through a twitter account 

(@ESIPAQWGix) (Fig. 3.8a). This feature of exposing the Air Twitter stream is a unique 

feature not common among business or news social listening. As a result of this exposure 

and constant sharing of real-time AQ information a community of over 1300 followers has 

developed. This community includes politicians as well as many local community AQ 

agencies that publish their real-time surface monitoring data through Twitter. Further, when 

AQ events do happen, this is the audience that we alert first.  

 

The aggregated Air Twitter stream is also saved in a local database, which allows time series 

analysisx of the number of tweets hourly and daily in order to identify (Fig. 3.8b) AQ events. 

The letters above the time series are hyperlinks, clicking the letter will display the Air Twitter 

stream for the selected hour or day. As the number of tweets increase, we use this view to 

look for a common location or event thread in the tweets. The red box in Figure 3.8b 

highlights the increase in tweets seen in August 2009. This event identification occurs hours 

to a full day ahead of event identification only using scientific data.  

 

3.3 Combining Science Data and Social Media for 
AQ Event Analysis  
 

As AQ events are identified, collaborative EventSpaces (Robinson, 2008) are created to 

collect the social and scientific information about the event. An EventSpacexi is a 

collaborative, wiki workspaces, open to community editing and discussion. EventSpaces are 

devoted to a particular air quality event analysis to facilitate the community-based AQ 

analysis. These workspaces include both a structured and unstructured part. The structured 

part includes: when and where the event happened and what type of event occurred (smoke, 

dust, etc.). This allows for cataloging these events for future reference.  The unstructured 
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part of the page is used to harvest community content such as pictures, video and blog posts 

about the event or AQ data from models, surface observations and satellites. Once the 

EventSpace is created, the @ESIPAQWG twitter account tweets the link to the relevant 

EventSpace wiki page every few hours in an effort to involve the broader AQ community 

that follows @ESIPAQWG. 
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Chapter 4 
 
Case Study: Real-time Event Analysis of 
August 2009 Southern California Fires 
 

Air Quality events are visible, dramatic environmental events. Both the social and scientific 

data cause AQ analysts to take note and since, at least at first, they are somewhat of a 

mystery there is significant willingness to share information and to work together. 

Demonstrations of this was seen in the Asian Dust event (Husar et. al. , 2001). Service-

Oriented Air Quality analysis allows content from all over the web to be brought together as 

soon as the event is identified.   

 

Analyzing the peak seen in the red box in Figure 10b, we saw that a majority of the tweets 

were about the Southern California Fire. This event identification occurred 24 hours ahead 

of satellite and surface monitors available for that area.  This identification led to creating an 

EventSpacexii within the first day (Fig. 4.1) of significant burning. The link to the EventSpace 

was tweeted repeatedly through @ESIPAQWG to notify the AQ-interested followers and 

because of this publicity the link to the EventSpace was picked up by the LA Times and was 

also shared through California Fire-related groups on Flickr and CNN’s iReport.  
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Figure 4.1 Air Quality EventSpace for 2009 Southern California Wildfires   

 

The EventSpace was updated throughout the entire active period of burning with relevant 

content. As science data were available, days, weeks or months after the event, this 

EventSpace brought together relevant satellite data such as MODIS for true color images of 

the smoke, MODIS Fire pixels to identify fire locations and OMI Absorbing Aerosol Index 

to provide additional evidence for the spatial extent of the smoke. Surface observations from 

EPA’s AIRNow were incorporated to identify the elevation of the smoke and models such 

as the Naval Research Laboratory’s NAAPS smoke models provided further validation for 

the given spatial-temporal pattern of the smoke. All of the air quality data are accessed 

through the federated data system, DataFed (Husar, 2007) and displayed in the EventSpace 

using links to the DataFed views, screencast animations and kml layers for display on 

Google Earth.  

 

 

The EventSpace was monitored using Google Analytics, which records web traffic and 

provides tools to visualize when and where the views are coming from. During the August 

California Fires the traffic increased five-fold to the ESIP wiki (Fig. 4.2a). Furthermore, the 

increase in traffic was entirely due to views of the SoCal Fire EventSpace (Fig. 4.2b). A top 
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driver to the site was from Twitter. Presumably, this was from the publicity gained by 

tweeting the link to the EventSpace to the @ESIPAQWG followers and having that link re-

tweeted by major network nodes like the LA Times helped drive traffic up. An interesting 

and unexpected observation was that most of the increased traffic was coming from 

Southern California (Fig. 4.2c). So the right people were finding the right information at the 

right time.  

 

 
Figure 4.2 a. Entire site traffic for ESIP wiki Aug. 16-Sept.16; b. Traffic to SoCal EventSpace driven 

from Twitter; c. Geographic location of traffic. 
 

The overall benefit of using the online community as an AQ event indicator, allows specific 

effort to be made for initial documentation of air quality events and the result is a catalog of 

descriptive observations with some sparse analysis that can be followed-up. 
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Chapter 5 
 
Case Study: Exceptional Event Analysis 
for May 2007 Georgia Swamp Fires 
 

The quality of ambient air is maintained at healthy levels by the setting and compliance with 

National Ambient air Quality Standards (NAAQS) based on measurements using Federal 

Reference Method (FRM) monitors. In the past, AQ regulatory decisions were made based 

on standard reference methods for PM2.5, ozone, etc. In 2006, the NAAQS for PM2.5 was 

significantly revised by reducing the daily standard from 65 to 35 µg/m3 and recently for 

ozone from 85 to 75 ppb. The tightening of the short-term standards and the Exceptional 

Event (EE) Rule shifts the attention from controlling the yearly average to the reduction and 

control of short-term, episodic air pollution. Since the 2006 NAAQS amendments, both 

PM2.5 and ozone are subject to the new EE Rule, which allows the exclusion of data strongly 

influenced by impacts from "exceptional events," such as smoke from a wildfire or dust 

from abnormally high winds. States "flag" data for those days that they believe to be 

impacted by exceptional events and must provide evidence for the event, using other data 

sources such as satellites and models. Such flagged days, if concurred with by EPA, may be 

given special consideration in the compliance calculations.  

 

The flagging procedure has to be in accordance with section 40 CFR 50.14 (c)(3)(iii) of the 

EE rule. Preparing and evaluating the evidence for flagged data are a technically challenging 

task both for the State and the Regulatory offices. It requires: 

A. Event Identification 

B. Clear Causal Relationship between the Data and the Event 

C. The Event is in Excess of the "Normal" Values 

D. The Exceedance or Violation would not Occur, But For the Exceptional Event 
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The Exceptional Event Rule was the first EPA Rule where data from outside sources, such 

as media reports, satellite sensors and other surface observations as well as models could be 

incorporated to provide evidence. Fortunately, recent developments both in terms of service 

oriented data access and the new, collaborative web tools available offer outstanding 

opportunities to fulfill the information needs for the new agile air quality management 

approach. 

 

5.1 May 2007 Georgia Swamp Fires  
 

We will use the May 2007 Georgia Swamp Fire (Fig. 5.1) to illustrate this agile data system’s 

ability to assess the impact of an exceptional event on the PM2.5 concentration over the 

eastern U.S. using multiple datasets. The smoke from this event has impacted multi-state 

regions, which are also receptors of major anthropogenic sulfate sources. Hence it is a 

suitable event for demonstrating the key "but for" condition of the EE Rule (Husar and 

Robinson, 2008). The illustrative analysis will focus on May 24, 2007. 

 
Figure 5.1 a. GA Smoke, b. Fire pixels c. Airnow surface PM2.5 and OMI Absorbing Index   

 

The images below are generated by web-based tools of DataFed: generic data exploration 

tools and three tools with specialized workflow were used for this analysis. All the tools 

leverage the benefits of OGC standards-based service oriented architecture: each tool is 

applicable to multiple datasets; service orchestration makes it easy to create new tools; and 

the shared web-based tools promote collaboration and communal data analysis. This allows 

the users to use these tools for the exploration of exceptional events that occur on other 

days.  
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5.1.1 A: Event Identification 
 

The first step is to establish that a sample is a likely contributor to noncompliance. A site is 

in noncompliance if the 98th percentile of the PM2.5 concentration over a three year period is 

over 35 µg/m3. However, a sample may be in compliance even if the PM2.5 concentration is 

> 35µg/m3, provided that such values occur less than 2 percent of the time. 

 
The PM2.5 samples that are potential contributors to non-compliance can be determined 

visually and qualitatively by the PM2.5 Data Browser Tool (Fig. 3.6). The map view shows the 

PM2.5 concentration as colored circles for each station for a specific date. The coloring of the 

PM2.5 concentration values (circles) is adjusted such that the concentrations above 35µg/m3 

are shown in red (Fig. 5.2). This provides an easy and obvious way to identify the candidate 

samples for noncompliance.  

 
Figure 5.2 FRM data layer. Red circles show magnitude of surface concentration in exceedance 

 

The second sub-activity of this step is to identify the exceptional event. An Analyst Console 

(Fig. 5.3) is a facility to display the state of the current aerosol system. These Analysts 

Consoles are key for establishing the emergence, evolution and dispersal of exceptional 

events. Through a collection of synchronized views data from a variety of disparate 

providers are brought together, the sampling time and spatial subset (zoom rectangle) for 

each dataset is synchronized, and that the user can customize the console’s data content and 

format.  
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Figure 5.3 Analyst console showing a variety of data to provide spatial context for the event 

 
 

Another way to identify and document events is through searching the web for social media 

and news articles. The general public provides additional qualitative observations of 

exceptional events shared through internet-accessible blog posts, photos through Flickr and 

videos through YouTube (Fig. 5.4). Figure 5.4 shows that at the time of analysis on the 

Georgia Smoke event, about a year later, there were hundreds of photos and videos and 

thousands of blog entries on the event.  

 
Figure 5.4 Social Media available to document the event 

 
In the future it is possible that these sources may be aggregated into EventSpaces described 

above in the real-time case study. This initial analysis could then provide a reference to state 

and regional analysts during this post-event analysis for event description. 
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5.1.2 B: Clear Causal Relationship between the Data and the 
Event 
 

In the next steps, trajectory analysis is applied to delineate which of the monitoring sites are 

likely to be impacted by the smoke. In this analysis the location of the smoke source area is 

delineated by the black rectangle, centered on the Okefenokee fire location (Fig. 5.5).  

 

 
Figure 5.5 Backtrajectory analysis around Okefenokee Fire  

 

All the backtrajectories that pass through that "source rectangle" are made visible while the 

other trajectories are suppressed. The coloration of individual trajectories prior to entering 

the source rectangle is set to thin blue lines. During and after the passage through the source 

rectangle, the trajectory line thickness and color is changed according to the concentration at 

the receptor site. By following the trajectories leaving the source rectangle, it is possible to 

delineate the regions of potential smoke impacts. That region can potentially be satisfying 

the "but for" condition. The backtrajectory analysis is done using the Combined Aerosol 

Trajectory Tool, CATTxiii. CATT is a web-based tool to explore the relationship between 

pollutant concentrations and their sources. It is based on ensemble backtrajectory 

aggregations for specific air-chemical conditions (Husar and Poirot, 2005). 

 

Another sub-activity that is part of this step is to look at the chemical-spatial pattern of the 

event.  The VIEWS chemical speciation data (Fig. 5.6a) and the NAAPS Model (Fig. 5.6c) 

from the Naval Research Laboratory both indicate that on May 24, the highest sulfate 

concentration was recorded just north of the Ohio River Valley. On the other hand, the 
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highest organic carbon concentration (Fig. 5.6b, d) is measured along the stretch from 

Georgia/Alabama to Wisconsin. This spatial separation of sulfate and organics indicates 

different source regions.  

 

 
Figure 5.6 VIEWS a. Sulfate and b. Organic Carbon PM2.5 speciation; NAAPS c. Sulfate and d. Smoke 
 

5.1.3 C: The Event is in Excess of the "Normal" Values 
A useful measure of the "normal" concentration is the 84th percentile (+1 sigma) for a given 

station. In the illustration below, a time windows of +/- 15 days (one month window) was 

chosen. This period is longer than a typical exceptional event, but it is sufficiently short to 

preserve seasonality. In order to establish the normal values the concentrations can be 

averaged over multiple years for the given time window measured in Julian days, i.e. days 

between 160 and 190 (Fig. 5.7).  

 
Figure 5.7 Three year time series for a site impacted by GA Smoke. Yellow indicates the +/- 15 day 

window. 
 

Hence, a particular sample is considered anomolously high (deviates from the normal) if its 

value is substantially higher than the 84th percentile of the multi-year measurements for that 

"month" of the year.  
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Figure 5.8 Anomaly detection a. actual measurement b. 84th percentile from 3 years c. difference.  

 
Figure 5.8a shows the measured day average PM2.5 concentration. Figure 5.8b shows the 

contour field for the 84th percentile PM2.5 concentrations. Figure 5.8c shows the 

concentration anomaly, the excess concentration of the current day values over the 84th 

percentile values. Hence, a particular sample is considered anomalously high (deviates 

from the normal) if its value is substantially higher than the 84th percentile of the multi-

year measurements for that "month" of the year. 

 

This analysis was done using Concentration Anomaly Tool. This tool is a workflow chain 

in DataFed that provides a useful measure of the "normal" concentration. There is 

considerable need for flexibility in defining the 'normal' when calculating the deviation 

above normal and this tool allows defining the percentile used for normal, the number of 

days included in the analysis as well as modifying the dataset that the analysis is 

performed over.  
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5.1.4 D. The Exceedance or Violation would not Occur, But 
For the Exceptional Event 
 

According to the EE Rule, observations can be EE-flagged if the violation is caused by the 

exceptional event. Considering the subtleties of the EE Rule, below are graphical 

illustrations (Fig. 5.9) of the Exceptional Event criteria. 

 

 
Figure 5.9 Areas identified for Exceptional Event status 

 
 The leftmost figure (Fig. 5.9a) shows a case when the 'exceptional' concentration raises 

the level above the standard. A valid EE to be flagged. 

 In the next case (Fig. 5.9b), the concentration from controllable sources is sufficient to 

cause the exceedance. This is not a 'but for' case and should not be flagged. 

 In the third case (Fig. 5.9c), there is no exceedance. Hence, there is no justification for an 

EE flag. 
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Based on the combined chemical data and backtrajectories it is evident that the high PM 

concentrations that are observed along the western edge of the red trajectory path is due to 

the impact of the Georgia smoke. On the other hand the high PM2.5 concentrations just 

north of the Ohio River Valley are primarily due to known, controllable sulfate sources. 

 

5.1.5 Summary  
 

For the May 24 Georgia Smoke event three different tools were used – the DataFed 

browser, CATT and the Concentration Anomaly Tool to manipulate the data services in 

order to provide the needed evidence. All of these tools were created using the service-

oriented, workflow chains and can be reused and modified as needed. Air quality analysts did 

the bulk of the work, however, data were brought in from blogs and Flickr as evidence in the 

first step of event identification, so the public can be included as participants. For this 

analysis we used seven satellite datasets, three surface monitoring data, three weather 

datasets and one global model, totaling in fourteen datasets that were need.  From this 

analysis (Fig. 5.9) it was possible to delineate the areas of the U.S. that were eligible for 

Exceptional Event status.  
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Chapter 6 
 
Earth Observations Requirements 
 

The section below is an initial attempt to quantify the data reuse through SOA by identifying 

the various Earth observation requirements. Earth Observation (EO) Requirements are the 

specific user needs for data and information needed for the AQ analysis. The process of EO 

Requirement identification (Husar, 2010) is:  

1. Identify sub-activities needed to perform either real-time or post-event analysis 

2. Identify the User Types needed for the sub-activity 

3. Identify the EO’s needed for each user  

 

The two case studies show air quality analysis as the event happens in real-time and post-

event as a regulatory procedure. However, both types of analysis need the same kind of 

information from social and scientific datasets. The difference is that in real-time analysis 

observations are staggered in availability. However, because of real-time event analysis a 

better effort could be made to acquire all of the necessary observations needed for post-

analysis.  

 

The following charts apply the above methodology to the Earth observation requirements 

needed for AQ Event Analysis. This analysis of EO needs allows identification of reuse for 

one type of measurement in multiple applications and where one application needs many 

observations. For air quality analysis 68 different requirements were identifiedxiv.  Figure 6.1 

shows that the requirement distribution among the four EE steps. It is clear that event 

identification and description and determining causality between a particular monitor and an 

exceptional event are the most EO intense. It is also clear that, except for the third step 

identifying the temporal anomaly, all of these analyses need more than just the FRM data.  
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Figure 6.1 Earth Observation requirement by EE Rule Step 

 

The above data shows the potential for data re-use. For example, FRM data can be reused 

four times, first identifying the event, establishing causality, then establishing that the event 

is an anomaly in time and finally that it is an exceptional.  

 

Figure 6.2 shows the distribution of EO Requirements by user type.  
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Figure 6.2 EO Requirement by User Type 

 

This figure illustrates that once additional data are brought in, there are also numerous other 

types of users that are incorporated. These users may have no knowledge of being part of 

the Exceptional Event analysis however, because they are publishing their data (or event 

images) for their own purpose.  The distribution of methods shows that the EOs needed 

come from a variety of sources.  
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Chapter 7 
 
Future Work 
 

This thesis has shown that AQ events need many different kinds of data for characterization 

and even with all the data the work is done best when it includes multiple perspectives. The 

future work includes improving collaboration within the AQ community to better share data 

and to move beyond data sharing issues to pursue more community-based event analysis. 

The other extension of this work is to expand beyond AQ. The SOA methodology scales up 

and down for any application that has distributed data that may be useful in multiple 

applications. 

7.1 Collaboration on AQ Event Analysis 
 

Full understanding and characterization of air pollution events is a very labor-intensive, 

subjective and sporadic process. Collecting and harmonizing the variety of data sources, 

describing events in a coherent, compatible manner and assuring that significant events will 

not ‘fall through the cracks’ is a challenging task for research groups, but even more for State 

and Regional air quality analysts. Conceivably, the event analysis performed in the 

community EventSpace could serve as triggers and guides to the States in deciding which 

station-data to flag.  

7.2 Global Earth Observing System of Systems  
 

Since 2005, a voluntary partnership has formed between 58 countries in order to share data 

in an effort to solve broad societal challenges. The Group on Earth Observations (GEO) is 

coordinating this partnership. GEO is an intergovernmental organization working to 

improve the availability, access, and use of EOs to benefit society. GEO is coordinating 

efforts to build a Global Earth Observation System of Systems (GEOSS, 2005). The only 
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way to create this loosely-coupled, dynamic System of Systems is to extend the SOA 

principles to a global level (Fig. 7.1).  

 
Figure 7.1 Global Earth Observing System of System (GEOSS, 2005) 

 

The main idea of GEOSS is that a single earth observation can have many uses and one 

societal benefit needs many observations. The GEO Information System, GEOSS, proposes 

to be a broker where data providers can publish their data and users can come to find data, 

access and apply the offered data in their respective social benefit areas. GEOSS is built 

using the same OGC standards used by DataFed, so once users find the data they will be 

able to directly access the data and use it in standards-based tools like DataFed.   
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