Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-97-45

1997-01-01

Compositional Programming Abstractions for Mobile Computing

Peter J. McCann and Gruia-Catalin Roman

Recent advances in wireless networking technology and the increasing demand for ubiquitous,
mobile connectivity demonstrate the importance of providing reliable systems for managing
reconfiguration and disconnection of components. Design of such systems requires tools and
techniques appropriate to the task. Many formal models of computation, including UNITY, are
not adequate for expressing reconfiguration and disconnection and are therefore inappropriate
vehicles for investigating the impact of mobility on the construction of modular and
composable systems. Algebraic formalisms such as the pi-calculus have been proposed for
modeling mobility. This paper addresses the question of whether UNITY, a state-based
formalism with a... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

McCann, Peter J. and Roman, Gruia-Catalin, "Compositional Programming Abstractions for Mobile
Computing" Report Number: WUCS-97-45 (1997). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/455

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F455&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F455&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F455&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F455&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F455&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F455&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F455&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/455?utm_source=openscholarship.wustl.edu%2Fcse_research%2F455&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/455

Compositional Programming Abstractions for Mobile Computing

Peter J. McCann and Gruia-Catalin Roman

Complete Abstract:

Recent advances in wireless networking technology and the increasing demand for ubiquitous, mobile
connectivity demonstrate the importance of providing reliable systems for managing reconfiguration and
disconnection of components. Design of such systems requires tools and techniques appropriate to the
task. Many formal models of computation, including UNITY, are not adequate for expressing
reconfiguration and disconnection and are therefore inappropriate vehicles for investigating the impact of
mobility on the construction of modular and composable systems. Algebraic formalisms such as the pi-
calculus have been proposed for modeling mobility. This paper addresses the question of whether UNITY,
a state-based formalism with a foundation in temporal logic, can be extended to address concurrent,
mobile systems. In the process, we examine some new abstractions for communication among mobile
components that express reconfiguration and disconnection and which can be composed in a modular
fashion.

https://openscholarship.wustl.edu/cse_research/455?utm_source=openscholarship.wustl.edu%2Fcse_research%2F455&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/455?utm_source=openscholarship.wustl.edu%2Fcse_research%2F455&utm_medium=PDF&utm_campaign=PDFCoverPages

Compositional Programming Abstractions for
Mobile Computing

Peter J. McCann and Gruia-Catalin Roman

WUCS-97-45

October 1997

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 1

Compositional Programming Abstractions for

Mobile Computing

Peter J. McCann, Gruia-Catalin Roman

P. McCann is with Lucent Technologies, Naperville, Illinois, E-mail: mccap@research.bell-labs.com. G.-C.
Roman is with the Department of Computer Science, Washington University, St. Louis, Missouri, E-mail;

roman@cs .wustl.edu.

October 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 2

Abstract

Recent advances in wireless networking technology and the increasing demand for ubiguitous, mobile
connectivity demonstrate the importance of providing reliable systems for managing reconfiguration and
disconnection of components. Design of such systems requires tools and techniques appropriate to the task.
Many formal models of computation, including UNITY, are not adequate for expressing reconfiguration
and disconnection and are therefore inappropriate vehicles for investigating the impact of mobility on the
construction of modular and composable systems. Algebraic formalisms such as the m-calculus have been
proposed for modeling mobility. This paper addresses the question of whether UNITY, a state-based
formalism with a foundation in temporal logic, can be extended to address concurrent, mobile systems.
In the process, we examine some new abstractions for communication among mobile components that

express reconfiguration and disconnection and which can be composed in a modular fashion.

Keywords

Formal methods, mobile computing, Mobile UNITY, weak consistency, shared variables, synchroniza-

tion, transient interactions.

I. INTRODUCTION

The UNITY (1] approach to concurrency has been influential in the study of distributed
systems in large part because of its emphasis on design aspects of the programming process,
rather than simply serving as a tool for verification. The technique has been used to
derive concurrent algorithms for a wide range of problems, and to specify and verify
correctness even in large software systems [2]. However, because of the essentially static
structure of computations that can be expressed, standard UNITY is not a suitable tool
for addressing the problems faced by the designers of mobile computing systems, such as
cellular telephone networks. This paper addresses the problem of modeling dynamically
reconfiguring distributed systems with an extension of the UNITY methodology, which we
refer to as Mobile UNITY.

While formal models capable of expressing reconfiguration have been explored from the
algebraic perspective [3] and from a denoctational perspective [4], [5], very few state-based
models can naturally express reconfiguration of components. Also, while algebraic models
such as the m-calculus may be adequate for expressing reconfiguration, it is not so clear
how to handle the issue of disconnection. Recent work has recognized the importance of

introducing location and failures as concepts in mobile process algebras [6], [7], [8], but

October 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1498 3

because the authors are primarily concerned with modeling mobile software agents and
the effect of host failures on such systems, they do not directly address disconnection of
components that continue to function correctly but independently.

In addition to directly modeling reconfiguration and disconnection, Mobile UNITY at-
tempts to address design issues raised by mobile computing. These issues stem from both
the characteristics of the wireless connection and the nature of applications and services
that will be demanded by users of the new technologies. Broadly speaking, mobile comput-
ing leads to systems that are decoupled and contezt dependent, and brings new challenges
to implementing the illusion of location-transparency. By examining the trends in appli-
cations and services currently being implemented by system designers, we hope to gain
insight into the fundamentals of the new domain and outline opportunities for extensions
to models of computation such as UNITY.

Decoupling. The low bandwidth, frequent disconnection, and high latency of a wire-
less connection lead to a decoupled style of system architecture. Disconnections may be
unavoidable as when a host moves to a new location, or they may be intentional as when
a laptop is powered off to conserve battery life. Systems designed to work in this environ-
ment must be decoupled and opportunistic. By “decoupled,” we mean that applications
must be able to run while disconnected from or weakly connected to servers. “Oppor-
tunistic” means that interaction can be accomplished only when connectivity is available.
These aspects are already apparent in working systems such as filesystems and databases
that relax consistency so that disconnected hosts can continue to operate [9], [10].

Decoupling corresponds to the issue of modularity in system design, although in the
case of mobility modularity is taken to a new extreme. Because of user demands, com-
ponents must continue to function even while disconnected from the services used. Also,
components must be ready to interface with whatever services are provided at the current
location; the notion that a component is statically composed with a fixed set of services
must be abandoned. The separation of interfaces from component implementations has
long been advocated in the programming language community, but these notions need to
be revisited from the more dynamic perspective of mobile computing.

Context Dependencies. In addition to being weakly connected, mobile computers

October 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 4

change location frequently, which leads to demand for context dependent services. A
simple example is the location dependent World Wide Web browser of Voelker et al [11].
This system allows the user to specify location-dependent queries for information about
the current surroundings and the services available. A more general point of view is
evidenced in [12], which notes that application behavior might depend on the totality of
the current context, including the current location and the nearness of other components,
like the identity of the nearest printer or the group of individuals present in a room. The
dynamic nature of interaction among components brings with it unprecedented challenges
analogous to those of open software systems. Components must function correctly in any
of the myriad configurations that might occur. They must also continue to function as
components are reconfigured.

In Mobile UNITY, although interaction is specified on a pairwise basis and is usually
conditioned on the proximity of two components, the model in general can express inter-
action that is conditioned on arbitrary global predicates, such as the willingness of two
components to participate in an interaction, the presence of other components, or the
presence of interference or noise on a wireless link. Also, any given collection of pairwise
interactions compose naturally to produce compound interactions that may span many
components.

Location Transparency. While some systems will be mobile-aware and require ex-
plicit reasoning about location and context, other applications naturally make use of
location-transparent messaging. For example, Mobile IP [13] attempts to provide this
in the context of the Internet. It is illustrative of the mobility management issues that
must be addressed by designers. Our previous work [14] modeled Mobile IP in Mobile
UNITY. Other location registration schemes have also been dealt with formally, for exam-
ple with the m-calculus [15] and with standard UNITY [16]. Although the latter work is
similar to ours in that it is an application of UNITY to mobility, it deals mainly with the
part of the algorithm running in the fixed network and only indirectly with communication
between the mobile nodes and the fixed network.

From the perspective of formal modeling, location registration provides a rich source of

problems to use as examples. Such mobility management algorithms show that even if the

October 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 3

goal is transparent mobility, the designers of such a protocol must face the issues brought
on by mobility. Explicit reasoning about location and location changes are required to
argue that a given protocol properly implements location transparency. Also, location
registration protocols may form the very basis for location- and context-dependent services,
which might make use of location information for purposes other than routing.

The remainder of the paper is organized as follows. Section II presents a brief in-
troduction to standard UNITY and the modifications we have made to express context-
dependent interactions. The last part of the section gives a proof logic that accommodates
the changes. Section IIT makes use of the new notation to express a new abstraction for
communication called transient sharing. Section IV continues by introducing and formally
expressing a new communication mechanism called transient synchronization. Concluding

remarks are presented in Section V.

II. MoBIiLE UNITY NOTATION

Our previous work [17] presented a notation and logic for pairwise interactions among
mobile components. The pairwise limitation simplified some aspects of the discussion,
for instance, side-effects of an assignment were limited to only those components directly
interacting with the component containing that assignment. However, the proof logic pre-
sented was very complex and operational, sometimes relying on sequencing of operations
to define precise semantics. In this paper we present a simpler expression of transient
interactions that focuses attention on the implications that component mobility has for
the basic atomicity assumptions made by a system model, and provide a proof logic that
is much more concise than our earlier work. In the process, we generalize interactions to
include multiple participants.

The new model is developed in the context of very low-level wireless communication, in
order to focus on the essential details of transient interaction among mobile components.
The key concept introduced in this section is the reactive statement, which allows for the
modular specification of far-reaching and context-dependent side effects that a statement of
one component may have. Using this primitive and a few others as a basis, in subsequent
sections we present high-level language constructs that may be specified and reasoned

about.

October 12, 1987 DRAFT

JIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 6

A. Standard UNITY

Recall that UNITY programs are simply sets of assignment statements which execute
atomically and are selected for execution in a weakly fair manner—in an infinite compu-
tation each statement is scheduled for execution infinitely often. Two example programs,
one called sender and the other receiver, are shown in Figure 1. Program sender starts off
by introducing the variables it uses in the declare section. Abstract variable types such
as sets and sequences can be used freely. The initially section defines the allowed initial
conditions for the program. If a variable is not referenced in this section, its initial value
is constrained only by its type. The heart of any UNITY program is the assign section

consisting of a set of assignment statements.

program sender program receiver
declare declare
bit + boolean bit : boolean
initially | history : sequence of boolean
5 initially
=0 bit = 0
assz.gn | history = ¢
bit 1= 0 assign
| bit:=1 history := history - bit
end

end

Fig. 1. Two standard UNITY programs.

The execution of program sender is a weakly-fair interleaving of its two assignment
statements. The assignment statements here are each single assignment statements, but
in general they may be multiple-valued, assigning different right-hand expressions to each
of several left-hand variables. Such a statement could be written ¥ := €, where 7 is a
comma-separated list of variables and € is a3 comma-separated list of expressions. All
right-hand side expressions are evaluated in the current state before any assignment to
variables is made. Execution of a UNITY program is a nondeterministic but fair infinite
interleaving of the assignment statements. Each produces an atomic transformation of the
program state and in an infinite execution, each is selected infinitely often. The program

sender, for example, takes the variable bit through an infinite sequence of 1’s and 0°s. The

October 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 7

next value assigned to bit is chosen nondeterministically, but neither value may be forever
excluded.

The program receiver has two variables, one of which is a sequence of boolean values,
but contains only one assignment statement. The statement uses the notation history - bit
to denote the sequence resulting from appending bit to the end of history. This expression
is evaluated on the right-hand side and assigned to history on the left hand side, essentially
growing the history sequence by one bit on each execution. Note that we have not yet
introduced the notion of composition, so the two programs should be considered completely

separate entities for now.

A.1 Proofs.

Rather than dealing directly with execution sequences, the formal semantics of UNITY
are given in terms of program properties that can be proven from the text. The fair
interleaving model leads to a natural definition of safety and liveness properties, based
on quantification over the set of assignment statements. We choose to use the simplified
form of these definitions presented in [18] and [19] for the operators co and transient.
Each operator may be applied to simple non-temporal state predicates constructed from
variable names, constants, mathematical operators, and standard boolean connectives.
For example, if p and g are state predicates, the safety property p co ¢ means that if the
program is in a state satisfying p, the very next state after any assignment is executed must
satisfy g. Proof of this property involves a universal quantification over all statements s,

showing that each will establish g if executed in a state satisfying p.
A
pcog=(Ys: {p}s{gh) Ap=>gq

The notation {p}s{q} is the standard Hoare-triple notation [20]. In addition to the quan-
tification, we are also obligated to show p = ¢, which in effect takes the special statement
skip (which does nothing) to be part of the quantification. Without this qualification,
some cases of co would not be true safety properties, because they could be violated by
the execution of an action which does nothing.

As an example of co, consider the property
bit=0V dit=1cobit=0V bit=1.

October 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 8

Clearly, this property holds of program sender, because every statement, when started
in a state where bit is 1 or 0, leaves bit in a state satisfying 1 or 0. This property is an
example of a special case of co because the left- and right-hand sides are identical. Such
a property may be abbreviated with the operator stable, as in stable bit =0 V bit = 1.
Because the initial conditions satisfy the predicate, i.e., bit =0 = bit =0 V bit = 1, it is
also an invariant, written invariant 4t = 0 V bit = 1. When it is not clear from context

to which program a property applies, it can be specified explicitly, as in
invariant bit =0 V bit = 1 in sender.

Progress properties can be expressed with the notation transient p, which states that
the predicate p is eventually falsified. Under UNITY’s weak fairness assumption, this can

be defined using quantification as
transient p £ (3s :: {p}s{-p})

which denotes the existence of a statement which, when executed in a state satisfying p,
produces a state that does not satisfy p. For example, the property transient bif = 0 can
be proven of the program sender, because of the statement that sets bt to 1.

The transient operator can be used to construct other liveness properties. The reader
may be more familiar with the ensures operator from UNITY, which is really the con-

junction of a safety and a liveness property.
pensures g2 (p A ~gcop V g) A transient (p A —q)

The ensures operator expresses the property that if the program is in a state satisfying p,
it remains in that state unless ¢ is established, and, in addition, it does not remain forever
in a state satisfying p but not ¢.

While ensures can express simple progress properties that are established by a single
computational step, proofs of more complicated progress properties often require the use
of induction to show that the program moves through a whole sequence of steps in order
to achieve some goal. This notion is captured with the leads-to operator, written —.

Informally, the property p — ¢ means that if the program is in a state satisfying p, it will

QOctober 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO, X, MONTH 1998 9

eventually be in a state satisfying ¢, although it may not happen in only one step and the

property p may be falsified in the meantime. For example, consider the property
length(history) = 3 — length(history) =5 in receiver (1)

which states that if receiver is ever in a state where the length of the history sequence is
3, it will eventually be in a state where this length is 5. In the meantime, however, the
length of the sequence may (and does!) take on the value 4, which satisfies neither side of
the relation.

Proofs of leads-to properties are carried out inductively, with emsures as a base case.

Formally, the rules of inference can be summarized as:

. ensures
(baSIS) %q—q
(transitivity) %qf—_)qu—_)l

where S is any
(Vp:peSupq)
(Fp:peSup)—>yg

(disjunction) set of predi-

cates.

The rules are written in hypothesis-conclusion form; each has an assumption above the
line, and a deduction below the line. The basis rule, for ingtance, allows one to conclude
p ~» g from p ensures gq. The transitivity rule could be used in a proof of Equation 1,
taking p to be the formula length(history) = 3, ¢ to be the formula length(history) = 4,
and r to be the formula length(history) = 5. The disjunction rule is useful for breaking
up a complicated proof into cases.

The proof rules introduced above come from standard UNITY, but they are also a part
of Mobile UNITY. However, the notion of what is a basic state transition is different in
the two models, because Mobile UNITY can express the location- and context-dependent
state transitions that typify mobile computing. Although this means the basic Hoare
triple must be redefined, the rest of the UNITY inference toolkit, including other rules for

carrying out high-level reasoning which are not shown here, are preserved.

October 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 10

A.2 Composition.

Before giving the new composition mechanisms of Mobile UNITY, we should first de-
scribe the standard UNITY mechanisms for program composition. The most basic compo-
sition mechanism is known as program union, and we can use the UNITY union operator,
"I, to construct a new system, denoted by sender || receiver. Operationally, the new sys-
tem consists of the union of all the program variables, i.e., variables with the same name
refer to the same physical memory; the union of all the assignment statements, which are
executed in a fair atomic interleaving; and the intersection of the initial conditions.

Communication between sender and receiver thus takes place via the shared variable
bit. The sender writes an infinite sequence of 1’s and 0’s to this variable, fairly interleaved,
and the receiver occasionally reads from this variable to build its héstory sequence. Note
that the receiver may not see every value written by the sender, because execution is a fair
interleaving, not turn-taking. Also, the resulting history generated by the receiver may
have duplicate entries because the assignment statements of sender may be excluded from
execution for a finite amount of time.

Another way to compose systems is through the use of superposition, which combines
the components by synchronizing statements rather than sharing variables. Superposition
on an underlying program F proceeds by adding new statements and variables to F* such
that the new statements do not assign to any of the original underlying variables of F,
and each of the new statements is synchronized with some statement of F. This allows for
(1) the maintenance of history variables that do not change the behavior of the underlying
program but are needed for certain kinds of proofs, and (2} the construction of layered
systems, where the underlying layers are not aware of the higher layer variables.

For example, the receiver, instead of being composed via program union, could have
used superposition to synchronize its assignment to history with the assignments in the
sender that update bif, thus ensuring that it would receive an exact history of the values
written to bit. However, superposition is limited because communication can take place in
only one direction. Also, like program union, it is an essentially static form of composition
that provides a fixed relationship between the components. It also would require that

the single statement in the program receiver be broken up into two statements, one for

Cctober 12, 1967 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 11

recording 1’s and the other for recording 0’s. The challenge of mobile computing is to
model the system in a more modular fashion, where the receiver does not know about the
internal workings of the sender, and which allows the receiver to be temporarily decoupled
from the sender during periods of disconnection. Towards this end we must investigate
novel constructs for expressing coordination among the components, so that for instance,
the receiver can get an exact history sequence while the components are connected, but
may lose information while disconnected.

A major contribution of [1] was the examination of program derivation strategies us-
ing union and superposition as basic construction mechanisms. From a purely theoretical
standpoint, it is natural to ask whether we can rethink these two forms of program com-
position by reconsidering the fundamentals of program interaction and what abstractions

should be used for reasoning about composed programs.

B. System Structuring

If the two programs sender and receiver represent mobile components, or software run-
ning on mobile hardware, then it is not appropriate to represent the resulting system as
a static composition sender || receiver. Mobile computing systems exhibit reconfigura-
tion and disconnection of the components, and we would like to capture these essentially
new features in our model. Composition with standard UNITY union would share the
variable bif thronghout system execution and would prohibit dynamic reconfiguration and
disconnection of the components.

In this section we introduce a syntactic structure that makes clear the distinction be-
tween parameterized program types and processes which are the components of the system.
A more radical departure from standard UNITY is the isolation of the namespaces of the
individual processes. We assume that variables associated with distinct processes are dis-
tinct even if they bear the same name. For example, the variable bif in the sender from
the earlier example is no longer automatically shared with the bit in the receiver—they
should be thought of as distinct variables. To fully specify a process variable, its name
should be prepended with the name of the component in which it appears, for example
sender.bit or recetver.bit. The separate namespaces for programs serve to hide variables

and treat them as internal by default, instead of universally visible to all other compo-

October 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTE 1998 12

nents. This will facilitate more modular system specifications, and will have an impact
on the way program interactions are specified for those situations where programs must

communicate. Figure 2 shows the system sender-receiver which embodies these concepts.

System sender-receiver

program sender at A

end

program receiver at A

end

Components

receiver at Ag

| sender at Xq

Interactions

end

Fig. 2. Example system notation.

The system starts out by declaring its name, in this case sender-receiver. Then, a
set of programs are given, each of which is structured like a standard UNITY program,
the details of which are elided here. A new feature of these programs is the addition of a
program variable A which stands for the current location of the program. It could have been
placed in the declare section with the other program variables, but it is promoted here
to the same line as the program name to emphasize its importance when reasoning about
mobile computations. The precise semantics of the location variable will be discussed in
Section II-C.

Assume for now that the internals of each program are as given in Figure 1. In Figure 2,
these programs are really type declarations that are instantiated in the Components

section. In general, the program types may contain free parameters that are bound by

Qctober 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 13

the instantiations; for example, the recesver could have been declared as receiver(i), and
might have been instantiated as receiver(1l) at A;. A whole range of receivers could have
been instantiated in this way.

The transient interactions among the program instances should be given in the Inter-
actions section. Constructs used for specifying interactions are unique to Mobile UNITY
and will be introduced in Section II-D. For now we leave the details of this section blank,
but it will be developed further to capture the location- and context-dependent aspects of

communication between the components.

C. Location

Mobile computing systems must operate under conditions of transient connectivity.
Connectivity will depend on the current location of components and therefore location
is a part of our model. Just as standard UNITY does not constrain the types of program
variables, we do not place restrictions on the type of the location variable A. It may be
discrete or continuous, single or multi-dimensional. This might correspond to latitude and
longitude for a physically mobile platform, or it may be a network or memory address
for a mobile agent. A process may have explicit control over its own location which we
model by assignment of a new value to the variable modeling its location. For instance, a
mobile receiver might contain the statement A := NewlLoc(A), where the function NewlLoc
returns a new location, given the current location. In general, such an assignment could
compute a new location based on arbitrary portions of the program state, not just the
current location. In a physically moving system, this statement would need to be com-
piled into a physical effect like actions on motors, for instance. In a mobile code (agents)
scenario, this statement would have the effect of migrating an executing program to a new
host. Even if the process does not exert control over its own location we can still model
movement by an internal assignment statement that is occasionally selected for execution;
any restrictions on the movement of a component should be reflected in this statement.
Also, A may still appear on the right-hand side of some assignment statements if there is

any location-dependent behavior internal to the program.

October 12, 1997 DRAFT

IEEE TRANSACTICNS ON SOFTWARE ENGINEERING, VOL. XX, NC. X, MONTH 1998 14

D. Interactions

When disconnected, components should behave as expected. This means that the com-
ponents must not be made too aware of the other programs with which they interface.
The sender, for example, must not depend on the presence of a receiver when it transmits
a value. It is unrealistic for the sender to block when no receiver is present. However,
there are constraints that the two programs must satisfy when they are connected. We
wish to express these constraints when the programs are composed, while not cluttering
up the individual components in such a way that they must be aware of and dependent
on the existence of other programs. This argues for the development of a coordination
language sufficiently powerful to express these interactions and to preserve the modularity
of a single program running in isolation. As we will see in the sections that follow, this
composition mechanism will have certain aspects in common with UNITY union and other
traits characteristic of superposition.

The new constructs presented here, although they are primarily motivated by the need
to manage context-dependent coordination of the components in the Interactions section,
are really orthogonal to the system structuring; one can put these in stand-alone UNITY
programs as well. In fact, the formal proof logic abstracts away from the structuring
conventions and assumes a flat set of program variables (properly qualified by the name
of the program in which they appear) and assignment statements. However, for now, we
present each construct and give an example of how each may be used in the Interactions

section of the system sender-receiver.

D.1 Extra Statements.

Suppose that the sender and receiver can only communicate when they are at the same
location, and we wish to express the fact that sender. bit is copied to receiver. bit when this

is true. We might begin the Interactions section with
receiver.bit .= sender. bit when sender. A = receiver. .

This kind of interaction can be treated like an extra program statement that is executed
in an interleaved fashion with the existing program statements. The predicate following

when is treated like a guard on the statement (when can be read as if). The statement

October 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 15

as written copies the value from sender.bit to recetver.bit when the two programs are
at the same location. Here “at the same location” is taken to mean that the programs
can communicate, but in general the when predicate may take into account arbitrary
factors such as the distance between the components or the presence of other components.
Note that this interaction alone is not guaranteed to propagate every value written by the
sender to the receiver; it is simply another interleaved statement that is fairly selected for
execution from the pool of all statements. Therefore, the sender may write several values
to bit before the extra statement executes once even when the programs are co-located.
The receiver may of course move away (by assigning a new value to receiver.\ before any
value is copied. Also, the construction of receiver.history is not necessarily an accurate
account of the history of bits written to receiver.bit, because the execution of the history-
recording action is completely unconstrained with respect to the extra statement and will

be interleaved in a fair but arbitrary order.

D.2 Reactions.

A reactive statement provides & mechanism for making certain that each and every value
written to sender.bif also appears at receiver.bif. Such a statement would appear in the

Interactions section as
recetver.bit 1= sender.bit reacts-to sender. .\ = receiver. .

Operationally, the reactive statement is scheduled to execute whenever the predicate fol-
lowing reacts-to is true. In this sense it is a statement with higher priority than the other
statements in the system. In general, there may be other reactive statements implement-
ing other interactions. Informally, all of the reactive statements have equal priority and
are executed in an interleaved fashion, much like a standard UNITY program. The set of
reactive statements, sometimes denoted with the symbol R, continues to execute until no
statement would have an effect if executed. Formally this is known as the fized point of
R. Note that this particular statement is idempotent, so if there is no interference from
other reactive statements, it reaches fixed point affer one execution. In Section II-E we
show how this construct can be captured in an axiomatic semantics.

Because this propagation occurs after every step of either component, it effectively

October 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 16

presents a read-only shared-variable abstraction to the receiver program, when the two
components are co-located. Later we will show how to generalize this notion so that
variables shared in a read/write fashion by multiple components can be modeled. In
general, reactive statements allow for the modeling of side effects that a given non-reactive
statement may have when executed in a given context, such as a particular arrangement

of components in space.

D.3 Inhibitions.

Note that even with reactive propagation of updates to sender.bit, the receiver still will
not construct an accurate history of the values that appear on receiver.bit. Because of the
nondeterministic interleaving of statements, several values may be written to receiver.bit
between executions of the statement that updates receiver.history. In a real wireless
communication system, closely synchronized clocks and timing considerations would ensure
that values are read at the proper moment so as not to omit or duplicate any bits in the
sequence.

An inhibitor provides a mechanism for constraining UNITY’s nondeterministic scheduler
when execution of some statement would be undesirable in a certain global context. Adding
a label to a statement lets us express inhibition in a modular way, without modifying the
original statement. For example, consider a new sender program, given in Figure 3. The

program sender at A

declare
bet : boolean

| counter : integer
initially
bit =0
[counter =0
assign
s0 :: bit, counter := 0, counter + 1
| 81 : bit, counter := 1, counter + 1
end

Fig. 3. A new version of program sender that counts bits.
two statements each now carry a label; we can refer to the first as sender.s0 and the second

October 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 17

as sender.s1. FEach also updates the integer counter to reflect the number of bits written
so far. This counter serves as an abstraction for a real-time clock, virtual or actual, that
may be running on program sender.

If we assume that the statement of program receiver is labeled read, for example,
read :: history := history - bit
then we might add the following set of clauses to the Interactions section:

inhibit sender.s0 when sender.counter > length(receiver.history)
| inhibit sender.s1 when sender.counter > length(receiver.history)

| inhibit receiver.read when length(receiver.history) > sender.counter.

The net effect of inhibit s when p is a strengthening of the guard on statement s by
conjoining it with —p and thus inhibiting execution of the statement when p is true. The
inhibitions given above constrain execution so that the receiver reads exactly one bit for
every bit written by the sender. Note that the constraint applies equally well when the
components are disconnected; this is not unrealistic because we can assume that realtime
clocks can remain roughly synchronized even after disconnection, even though the reactive
propagation of values will cease.

Reactive statements must not be inhibited.

D.4 Transactions.

With reactive propagation and inhibitions as given above, execution of the system will
append values to receiver.history even when the two components are disconnected. Thus
there will be subsequences of receiver. history containing redundant copies of the last value
written by the sender. In an actual wireless transmission system, the receiver does have
some indication of receipt of a transmission, and would not build a history that depended
only on timing constraints. In our model, this might be represented as an extra third state
that can be taken on by the wireless transmission medium. Assume that the bit in each

component was therefore declared:
bit : boolean U { L}
and initialized to L, which means simply that no transmission is currently taking place.

Qctober 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 18

Transmission of a bit by the sender then involves placing a value on the communications
medium, and then returning it to a quiescent state. The receiver may then reactively record
the value written. A transaction provides a form of sequential execution, and can be used

by the statements in sender that write new values to sender.bit:

50 :: (bit := 0; bit :=1)
si w2 (bit :=1; bit :=1).

A transaction consists of a sequence of assignment statements, enclosed in angle brack-
ets and separated by semicolons, which must be scheduled in the specified order with no
other nonreactive statements interleaved in between. The assignment statements of stan-
dard UNITY may be viewed as singleton transactions. Note that reactive statements are
allowed to execute to fixed point at each semicolon and at the end of the transaction; this

lets us write a new receiver program, shown in Figure 4. Here the first reactive statement

program receiver at A

declare
bit : boolean U {L} || flag : boolean

| history : sequence of boolean
initially
bit =0 flag =10
| history =€
assign
history, flag := history - bit,1 reacts-to bit £ A-flag
| flag:=0 reacts-to bit =L
end

Fig. 4. A new version of program receiver that reacts to transactions.

records values written to the shared bit, and the variable flag is added to make the re-
active recording idempotent. Another reactive statement is added to reset flag when the
communications medium returns to a quiescent state.

Transactions may be inhibited, but may not be reactive.

October 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 19

E. Proof Logic

Now we give a logic for proving properties of programs that use the above constructs.
The execution model has assumed that each non-reactive statement is fairly selected for
execution, is executed if not inhibited, and then the set of reactive statements, denoted
R, is allowed to execute until it reaches fixed point, after which the next non-reactive
statement is scheduled. In addition, R is allowed to execute to fixed point between the
sub-statements of a transaction. These reactively augmented statements thus make up the
basic atomic state transitions of the model and we denote them by s*, for each non-reactive
statement s. We denote the set of non-reactive statements (including transactions) by N.

Thus, the definitions for basic co and transient properties become:
A
peog={VseN = {p}s"{gh) Ap=g¢q

and
transient p 2 (35 € M :: {p}s*{-p}).
Even though s* is really a possibly inhibited statement augmented by reactions, we can still
use the Hoare triple notation {p}s*{¢} to denote that if s* is executed in a state satisfying
p, it will terminate in a state satisfying g. The Hoare triple notation is appropriate for
any terminating computation.
We first deal with statement inhibition. The following rule holds for non-reactive state-

ments s, whether they are transactions or singleton statements:

pAi(s) =g, {pA—i(s)}s®{q} (2)
{p}s*{q}

We define i(s) to be the disjunction of all when predicates of inhibit clauses that name

statement s. Thus, the first part of the hypothesis states that if s is inhibited in a state
satisfying p, then g must be true of that state also. The notation s® denotes the statement
s extended by execution of the reactive statement set R. For singleton, non-transactional
statements, {r}s®{q} can be deduced from
{r}s{H}, H— (FP(R)Ag)in R
= (3)
{r}s®{q}

where H may be computed as the strongest postcondition of r with respect to s, or guessed

at as appropriate. We take {r}s{H} from the hypothesis to be a standard Hoare triple for

QOctober 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1993 20

the non-augmented statement s. The notation FP(R) denotes the fixed-point predicate
of the set of reactive statements, which can be determined from its text. The “n R”
must be added because the proof of termination is to be carried out from the text of the
reactive statements, ignoring other statements in the system. This can be accomplished
with a variety of standard UNITY techniques.
For statements that consist of multiple steps in a transaction, we have the rule
{r}(s1; s2;...; sn—1)*{w}, {w}sF{q} (4)
{r}{(s1; s2;..-; 8a) " {q}

where w may be guessed at or derived from r and ¢ as appropriate. This represents

sequential composition of a reactively-augmented prefix of the transaction with its last sub-
action. Then Equation 3 can be applied as a base case. This rule may seem complicated,
but it represents standard axiomatic reasoning for ordinary sequential programs, where
each sub-statement is a predicate transformer that is functionally composed with others.

The notation and proof logic presented above provide tools for reasoning about concur-
rent, mobile systems. Apart from the redefinition of the basic notion of atomic transitions,
we keep the rest of the UNITY inference toolkit which allows us to derive more complex
properties in terms of these primitives. In the following sections, we will show how the
programming notation can be used to construct systems of mobile components that exhibit

much more dynamic behavior than could be easily expressed with standard UNITY.

IT1I. TRANSIENT SHARING

In the previous sections, we presented a notation and logic for reasoning about systems
of mobile components. In this section and in Section IV, we attempt to build higher level
abstractions out of those low-level primitives that will contribute to the design of systems
that are decoupled and context-sensitive. To be successful, such abstractions should be
familiar to designers, should take into account the realities of mobile computing, should
be implementable, and should have a strong underlying formal foundation. An obvious
starting point is the inter-program communication mechanisms from standard UNITY,
namely shared variables and statement synchronization. This section examines a variant
of sharing suited to mobile computing systems and gives an underlying semantics in terms

of the notation we have already developed.

October 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 21

In the mobile setting, variables from two independently moving programs are not always
connected, and this is reflected in the model by the isolation of each of the namespaces,
as was the case with sender.bit and receiver.bit from our earlier example. However, with
the addition of a reactive propagation statement to the Interactions section, these two
variables took on some of the qualities of a shared variable. While the two components
were at the same location, any value written by the sender was immediately visible to the
recetver. The semantics of reactive statements guarantee that such propagation happens
in the same atomic step as the statement sender.s0 or sender.sl.

Sharing may also be an appropriate abstraction for communication at a coarser granu-
larity; for example, one might think of two mobile hosts as communicating via a (virtual)
shared packet, instead of a single shared bit. This is realistic because of the lower level
protocols, such as exponential back-off, that are providing serialized access to the com-
munications medium. At an even coarser (more abstract) level, there might be data
structures that are replicated on each host, access to which is serialized by a distributed
algorithm implementing mutual exclusion. Of course, no such algorithm can continue to
guarantee both mutual exclusion and progress in the presence of disconnection, but our
(so far informal) notion of a transiently shared variable does not require consistency when
disconnected.

In what follows, we package these notions into a coordination construct that can be
formally specified and reasoned about. As a running example, we consider a queue of
documents to be output on a printer. Assume that a laptop computer, connected by some
wireless communication medium, is wandering in and out of range of the printer, so it
maintains a local cache of this queue. When the laptop is in range of the printer, updates
to the queue are atomically propagated, expressed as a transient sharing of the gueue.

This may be denoted by the expression
laptop.q = printer.q when laptop.A = printer.A

The operations on the queue could include the laptop appending or deleting items from
the queue, and the printer deleting items from the head of the queue as it finishes each
job.

The = relationship can be defined formally in terms of reactive statements that propa-

Qctober 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO, X, MONTH 1998 22

gate changes. Because the sharing is bidirectional, there is slightly more complexity than
the earlier example where a single reactive statement could propagate values in one di-
rection. In the present case, we need a mechanism for detecting changes and selectively
propagating only new values. Therefore we add additional variables to each program that
model the previous state of the queue. In program laptop, this variable is called gurinter.q,
and in program printer, this variable is called gjupiep.q- The reactive statements that detect
and propagate changes are
printer.q, printer. Qiaptop.q, 1aPLOD. Qorinter.q = laptop.q, laptop.q, laptop.q
reacts-to laplop.q # laptop. gprinter.q /A laptop.A = printer.A
laptop.q, laptop. Gurinter.qy PTINEET. Quuptop.g = DTinter.q, printer.q, printer.q
reacts-to printer.q # printer.qiprop.g A printer.A = laptop.A
which execute when any history variable is different from the current value of the variable
which it is tracking, when the components are connected. Each statement updates both
history variables as well as the remote copy of the queue. This can be thought of as “echo
cancellation,” in that the remote copy is kept the same as its history variable, and the
reverse reaction is kept disabled. In addition, we add statements that simply update the

history variables, without propagating values, when the components are disconnected:

laptop. gurinter.q = laptop.q
reacts-to lapiop.A # printer.A
DTINter. Qioptop.q -= printer.q
reacts-to printer.A # laptop.)\
These statements reflect the fact that because disconnection may take place at any mo-
ment, one component cannot know that its change actually did propagate to the remote
component and so the local behavior (update of the history variable) must be exactly the
same in both cases.

Although the reactions given above may meet our informal expectations for a shared
variable while connection is continuous, there are some subtle issues that arise when dis-
connection and reconnection are allowed. For instance, when disconnection takes place,
the laptop and printer each have separate identical copies of the queue. If changes are

made independently, for instance, if the laptop adds a few items and the printer deletes a

Qctober 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 23

few items, an inconsistent state arises which may present a problem upon re-connection.
The semantics given above are well defined for this case: whichever component makes
the first assignment to the reconnected queue will have its copy propagated to the other
component. This may be undesirable; documents which have already been printed may
be re-inserted into the queue, or documents which have been added by the laptop while
disconnected may be lost.

Instead of wiping out these changes we would like to integrate them according to some
programmer-specified policy. For inspiration we can look to filesystems and databases
like [9] and [10] that operate in a disconnected mode. Here the program variables would
be replicated files or records of a database, and update propagation is possible only when
connectivity is available. These systems also provide a way for the programmer to specify
reintegration policies, which indicate what values the variables should take on when con-
nectivity is re-established after a period of disconnection. We call this an engage value.
The programmer may also wish to specify what values each variable should have upon
disconnection. We call these disengage values. For example, the print queue example

may be extended with the following notation:

laptop.q ~ printer.q when laptop. A = printer.A

engage laptop.q - printer.q

disengage ¢, printer.q
The engage value specifies that upon reconnection, the shared queue should take on the
value constructed by appending printer.q to laptop.q. The disengage construct contains
two values; the first is assigned to laptop.g and the second is assigned to printer.q upon
disconnection. The values given empty laptop.q and leave the printer.g untouched. This is
justified because the queue would realistically reside on the printer during periods of dis-
connection and the laptop would have no access to it. However, any documents appended
to the queue by the laptop are appended to the print queue upon reconnection.

Formally, the above construct would translate into reactions that take place when a

change in the connection status is detected. Again we add an auxiliary history variable,
this time to record the status of the connection, denoted by statusipop.gprinterq FoOI

engagement, we add

October 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1958 24

laptop.q, printer.q, statUsSigptop.qprinter.q ‘=
laptop.q - printer.q, laptop.q - printer.q, true
reacts-t0 = staluSiapiop.gprinter.g /N Printer.A = lapiop.A
which integrates both values when the connection status changes from down to up. For

disengagement, we add

laptop.q, printer.q, statusigpiop.gprinter.q = €, printer.q, false
reacts-to statUusispiop.g printerg A Printer.X s laptop.A
which assigns different values to each variable when the connection status changes from
up to down. In the absence of interference, each of these statements executes once and is
then disabled. _

Systems like [9] and [10] have a definite notion of reintegration policies like engage
values when a client reconnects to a fileserver or when two replicas come into contact.
Specification of disengage values may be of less practical significance unless disconnection
can be predicted in advance. Although this is not feasible for rapidly reconfiguring systems
like mobile telephone networks, it may in fact be a good abstraction for the file hoarding
policies of [9], which can be carried out as a user prepares to take his laptop home at the
end of a workday, for instance.

Predictable disconnection is not possible in every situnation, for example when we try to
model directly a mobile telephone system. Users travel between base stations at will and
without warning. Also, an operating system for a wireless laptop may be attempting to
hide mobility from its users and should be written in such a way that it can handle sudden,
unpredictable disconnection. Such a system would also be more robust against network
failures not directly related to location. Because of well known results on the impossibility
of distributed consensus in the presence of failures [21], providing engage and disengage
semantics in these settings is possible only in a probabilistic sense. This may be adequate;
consider, for instance, the phenomenon of metastable states [22]. Almost every computing
device in use today is subject to some probability of failure due to metastability, but the
probability is so low that it is almost never considered in reasoning about these systems.
A similarly robust implementation of engage and disengage may be possible. However,

the basic semantics of ~ do not imply distributed consensus and are in fact implementable.

Qctober 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 25

Construct Description Definition
By, B.yag, Azpy = Az, Az, Az
reacts-to Az # Azp, Ap

Read-only
A.z — B.y when p | transient sharing

A. = A.
(A. is read by B.y) R

reacts-to —p

Read-write A.z — B.y when p
A.z = B.y when p
transient sharing By — A.z when p

engage(A.z, B.y)
A.z, B.y, statusaz py = e, €, lrue
when p Engagement'
reacts-to - statussgpy AN D
value e

disengage(A.z, B.y)
. A.z, By, statusg g py 1= di, do, false
when p Disengagement?

reacts-t0 statusszpy A TP
value d,,ds HEY

TABLE I

TRANSIENT SHARING NOTATIONAL CONSTRUCTS.

The transient sharing construct given above is a relationship between two variables, but
it is compositional in a very natural way. For instance, suppose we would like to distribute
the print jobs among two different printers. This could be accomplished by simply adding

another sharing relationship of the form
printer.q = printer?.q when true

which specifies that the queune should be shared with printer?2 always. Each printer would
have atomic access to this shared queue and could remove items from the head as they
are printed. Because all reacts-to statements are executed until fixed point, any change
to one of the three variables is propagated to the other two, when the laptop is co-located
with the printer. This transitivity is a major factor contributing to the construction of
modular systems, as it allows the statement of one component to have far-reaching implicit
effects that are not specified explicitly in the program code for that component.

A summary of the notation developed in this section appears in Table I, which also

QOctober 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1598 26

breaks up the ~ construct into two uni-directional sharing relationships. In general these
can be combined in arbitrary ways, but remember that any proofs of correctness require
proof that R terminates, so not every construction will be correct. For example, if there
are any cycles in the sharing relationship, and if two different variables on a given cycle
are set to distinct values in the same assignment statement, then it is not possible to
prove termination. This is analagous to UNITY s restriction that each statement assigns
a unique value to each left-hand variable. Also, termination of R may be difficult to prove
if some engagement or disengagement values cause other when predicates to change value.

‘The transient sharing abstraction presented here has shown promise as a way to manage
the complexity of concurrent, mobile systems. Based on a familiar programming paradigm,
that of shared memory, it provides a mechanism for expressing highly decoupled and
context-dependent systems. The abstraction is apparently a good one for low-level wire-
less communication, and mutual exclusion protocols that implement the abstraction at a
coarser level of granularity may be simple generalizations of existing replication, transac~
tion, or consistency algorithms. This section presented a formal definition for the concept

that facilitates reasoning about systems that make use of it.

IV. TRANSIENT SYNCHRONIZATION

The previous section presented new abstractions for shared state among mobile compo-
nents, where such sharing is necessarily transient and location dependent, and where the
components involved execute asynchronously. However, synchronous execution of state-
ments is also a central part of many models of distributed systems. In this section we inves-
tigate some new high-level constructs for synchronizing statements in a system of mobile
components, trying to generalize the synchronization mechanisms of existing non-mobile
models. For example, CSP [23] provides a general model in which computation is carried
out by a static set of sequential processes, and communication (including pure synchro-
nization) is accomplished via blocking, asymmetric, synchronous, two-party interactions
called Input/Output Commands. The 1/0 Automata model [24] expresses communication

'If engagement is used without a corresponding disengagement, an extra reaction must be added to reset

statusa.z,B.y b0 false when p becomes false.
%Similarly, if disengagement is used without a corresponding engagement, an extra reaction must be added to

set staiusd.x,B.y 1o frue when p becomes true.

October 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 27

via synchronization of a named output action with possibly many inpuf actions of the same
name. Statement synchronization is also a part of the UNITY model, where it provides
a methodology for proving properties of systems that can only be expressed with history
variables and for the construction of layered systems. Synchronous composition can also
be used in the refinement process [25], although our emphasis here is on composition of
mobile programs rather than refinement.

In UNITY, synchronous execution is expressed via superposition, in which a new system
is constructed from an underlying program and a collection of new statements. Because
the goal is to preserve all properties of the underlying program in the new system, the new
statements must not assign values to any of the variables of the underlying program. In
this way, all execution behaviors that were allowed by the underlying program executing
in isolation are also allowed by the new superposed system, and any properties of the
underlying program that mention only underlying variables and were proven only from
the text of the underlying program are preserved. The augmented statements may be
used to keep histories of the underlying variables or to present an abstraction of the
underlying system as a service to some higher layer environment.

UNITY superposition is an excellent example of how synchronization can be used as
part of a design methodology for distributed systems. It also shows an important dis-
tinction between our notion of synchronization, which is the construction of new, atomic
statements from two or more simpler atomic statements by executing them in parallel, and
the notion of synchronous computing which is a system model characterized by bounded
communication and computation delays [26]. While the latter is a very important com-
ponent of our current understanding of distributed systems, and in many circumstances
is perhaps a prerequisite to the implementation of the former, it is not our focus here.
Rather, we examine mechanisms that allow us to compose programs and to combine a
group of statements into a new one through parallel execution. This idea of statement
co-execution was inspired by UNITY superposition.

However, superposition is limited in two important ways. First, a superposed system
is statically defined and synchronization relationships are fixed throughout the execu-

tion of the system. Continuing the theme of modeling mobility with a kind of transient

October 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 28

program compaosition, we would like the ability to specify dynamically changing and loca-
tion dependent forms of synchronization where the participants may enter into and leave
synchronization relationships as the computation evolves. Static forms of statement syn-
chronization are more limited as discussed in [27]. Second, superposition is an asymmetric
relationship that subsumes one program to another and disallows any communication
from the superposed to the underlying program. While this is the source of the strong
formal results about program properties, such a restriction may not be appropriate in the
mobile computing domain where two programs may desire to make use of each other'’s
services and carry out bi-directional communication while making use of some abstraction
for synchronization.

Inspired by UNITY superposition, which combines statements into new atomic actions,
we will now explore some synchronization mechanisms for the mobile computing domain.
These take the form of coordination constructs involving statements from each of two
separate programs. Informally, the idea is to allow the programmer to specify that the
two statements should be combined into one atomic action when a given condition is true.
For example, consider two programs A and B, where A contains the integer z and B
contains the integer y. Assume there is a statement named increment in each program,
where A.increment is

increment s =z + 1

and B.increment is

increment ny =y +1

Let us assume the programs are mobile, so each contains a variable A, and that they can
communicate only when co-located. Also, assume that the counters represent some value
that must be incremented simultaneously when the two hosts are together. We might use

the following notation in the Interactions section to specify this coordination:
A.increment || B.increment when (A.A = B.})

Note that this does not prohibit the statements from executing independently when the

programs are not co-located. If the correctness criteria state that the counters must

October 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 29

remain synchronized at all times, we could add the following two inhibit clauses to the
Interactions section:

inhibit A.increment when (4.\ # B.))

inhibit B.increment when (A.) 3 B.))
As distinct from standard UNITY superposition, the |[construct is a mechanism for
synchronizing pairs of statements rather than specifying a transformation of an underlying
program. Also, the interaction is transient and location dependent, instead of static and
fixed throughout system execution.

To reason formally about transient statement synchronization, we must express it using
lower-level primitives. The basic idea is that each statement should react to selection
of the other for execution, so that both are executed in the same atomic step. We can
accomplish this by separating the selection of a statement from its actual execution, and

assume for example that a statement A.s is of the form:

A.s.driver it (A.Sphase = GO; A.5ppese = IDLE)
A.s.action||A.sy = false reacts-to A.Sppese = GOA A.sy
A.sp = true reacts-to A.Spypge = IDLE (5)

where A.Sppuse I8 an auxiliary variable that can hold a value from the set {GO, IDLE},
and A.s.action is the actual assignment that must take place. Note that A.s.action reacts
to a value of GO in A.sppqeq and that A.s; is simultaneously set to false so that the action
executes only once. When A.sppqse returns to IDLE, the flag A.s¢ is reset to ¢rue so that
the cycle can occur again. The non-reactive statement A.s.driver will be selected fairly
along with all other non-reactive statements, and because A.s.action reacts during this
transaction, the net effect will be the same as if A.s.action were listed as a simple non-
reactive statement. However, expressing the statement with the three lines above gives
us access to and control over key parts of the statement selection and execution process.
Most importantly, we can provide for statement synchronization by simply sharing the
phase variable between two statements. Assuming both statements are of the form given

in Equation 5, we can define | as:
A.s || Biwhenr 4 A.Sphase & B.tphose when r (6)

October 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 30

Then, whenever one of the statements is selected for execution by executing A.s.driver
or B.t.driver, the corresponding phase variable will propagate to the other statement and
reactive execution of B.t.action or A.s.action will proceed. Also, transitive and multi-way
sharing will give us transitive and multi-way synchronization. Note that if we wish to
disable the participants from executing, as we did with inhibit above, we must be sure
to inhibit all participants at the level of the named driver transactions. If we inhibit
only some of them, they may still fire reactively if |[is used to synchronize them with
statements that are not inhibited. We call the |[operator coselection because it represents
simultaneous selection of both statements for execution. When used in the Interactions
section of a system, it embodies the assumption that statement execution is controlled by
a phase variable, as in Equation 6.

The semantics of Equations 5 and 6 do not really guarantee simultaneous execution
of the statements in the same sense as UNITY ¢||”, but rather that the statements will
be executed in some interleaved order during R. In many cases this will be equivalent
to simultaneous execution because neither statement will evaluate variables that were
assigned to by the other. However, there may be cases when we desire both statements
to evaluate their right-hand-sides in the old state without using values that are set by the
other statement. For these cases, we can add another computation phase to Equation 5
which models the evaluation of right-hand sides as a separate step from assignment to

left-hand variables:

A.s.driver :: {A.5ppase 1= LOAD; A.8ppese 1= STORE; A.8ppgse := IDLE)
A.s.load||A.syy := false reacts-to A.sppese = LOAD A A.syf
A.s.storef|A.s55 := false reacts-to A.Sppese = STORE A A.sq¢

A.s1p, A.sgp := true, true reacts-to A.sppese = IDLE (7)

Here the phase variables may hold values from the set {LOAD, STORE, IDLE} and the
original A.s.action is split into two statements, one for evaluating and one for assigning.
A.s.load is assumed to evaluate the right-hand side of A.s.action and store the results in
some internal variables that are not given explicitly here. A.s.store is assumed to assign

these values to the left-hand variables of A.s.action. In this way, statements can still be

October 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 31

synchronized by sharing phase variables as in Equation 6, but now all statements will eval-
uate right-hand sides during the LOAD phase, will assign to left-hand variables during the
STORE phase, and will reset the two flags during the IDLE phase. This prevents interfer-
ence between any two synchronized statements, even if the two are connected indirectly
through a long chain of synchronization relationships, and even if variables assigned to by
the statements are shared indirectly. For example, we return to the increment example

and consider the following set of interactions:

A.increment || B.increment when (A.A = B.A)

Az~ Cz whenr

C.z~ By whenr
Here the statements A.increment and B.increment are synchronized, but the variable A.z
is indirectly shared with the variable B.y, via the intermediate variable C.z, when the
predicate r is true. If the increment statements are of the form given in Equation 5,
then changes to one variable may inadvertently be used in computing the incremented
value of the other variable, which seems to violate the intuitive semantics of simultaneous
execution. In contrast, increment statements of the form given in Equation 7 have a
separate LOAD phase for computing the right-hand sides of assignment statements and
shared variables are not assigned to during this phase. Assignment to shared variables,
and the associated reactive propagation of those values, is reserved until the STORE
phase. This isolates the assignment statements from one another and prevents unwanted
communication.

There may be situations, however, where we do wish the two statements to communicate
during synchronized execution. This strategy is central to models like CSP and I/0
Automata, where communication occurs along with synchronized execution of statements.
In CSP, a channel is used to communicate a value from a single sender to a single receiver.
I/O automata can pass arbitrary parameters from an output statement to all same-named
input statements. As an example, we will now give a construction that expresses 1/0
Automata-~style synchronization. Recall that each automaton has a set of input actions,
a set of infernal actions, and a set of output actions. The execution of any action may

modify the state of the machine to which it belongs; in addition, the execution of any

October 12, 1997 DRATFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 32

output action fakes place simultaneously with the execution of all input actions of the
same name in all other machines. We can assume that output actions are of a form similar

to Equation 5, but with an important addition:

A.s.driver it (A.8pgrams = €XD; A.Sppase = GO; A.8ppa5e := IDLE)
A.s.action||A.sy := false reacts-to A.sppese = GO A A.s4
A.sp = true reacts-to A.sppgse = IDLE (8)

We have added the assignment A.Spprems = €Xp as the first statement of the transaction.
This assignment models binding of the output parameters to a list of auxiliary variables
A.Sparams. Here exp is assumed to be a vector of expressions that may reference other pro-
gram variables. For example, assume for a moment that the function of the A.increment
statement from the earlier example is to increment the variable by a value e which is a
function of the current state of A. Assume also that B.increment must increment B.y
by the same amount when the two are co-located. This value could be modeled as a pa-
rameter A.increment, of the synchronization, and A.increment would then be of the form

given in Equation 8:

A.increment.driver i1 (increment, = e;
incrementpygse = GO,;
incrementphase = IDLE)
T = x + increment, ||A.sf := false reacts-to A.sppese = GOA A5

A.sp:=true reacts-to A.sppese = IDLE (9)

And B.increment could also be of this form, with perhaps a different expression e for the

increment value. We could then express the sharing of the parameter with the interaction
A.increment, ~ B.increment, when (A.A = B.})
and the synchronization of the statements with
A.increment || B.increment when (A.)A = B.)\)

Thus, either statement may execute its driver transaction, which in the first phase assigns

a value to the parameter which is propagated to the other component, in the second phase

October 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1598 33

triggers execution of both statements, and in the third resets the flags associated with
each statement.

We can easily make use of the guards on the statements to specify many different and
interesting forms of synchronization with the use of appropriately tailored inhibit clauses.
For example, in addition to the definition of coselection defined by Equations 5 and 6, we
can specify a notion of coexecution which has the added meaning that when co-located,

the statements may only execute when both guards are enabled. This might be defined as

coexecute(4.s, B.t, r) &
A.Sphase & B.tphgse Whenr
inhibit A.s.driver whenr A —(4.s.quard A B.t.guard)
inhibit B.t.driver whenr A —(A.s.guard A B.t.guard)
which still allows the statements to execute in isolation when not co-located. In contrast,
we might require that the statements may not execute in isolation when disconnected. We

call this exclusive coexecution and it could be specified as

xcoexecute(A.s, B.t, r) &
A.Sphase & B.tppgse Whenr
inhibit A.s.driver when —(r A A.s.guard A B.t.guard)
inhibit B.{.driver when —(r A A.s.guard A B.t.guard)

A similar notion of exclusive coselection could be defined if we ignore the guards on the
statements
xcoselect(A.s, B.t, r) £

A.8phase = B.tppese whenr

inhibit A.s.driver when —r

inhibit B.t.driver when —r
Each of these constructions could be generalized to pass parameters from a sender to a
receiver. In general, if both driver statements are of the form specified in Equation 8, either
statement may bind parameters and propagate them to the other as long as the sharing
specified is bi-directional and the driver statement itself is not inhibited. Because the

semantics of a transaction mean that it will finish before another is allowed to begin, there

is no ambignity about which statement is currently executing and no conflict in assigning

October 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 34

parameters to the synchronized execution. Also, any of the above could be used with
statements of the form in Equation 7 instead of Equation 5 to provide truly simultaneous
access instead of interleaved access to any other shared variables that might be referenced
by or assigned to by the various actions.

In contrast to the symmetric forms of synchronization considered so far, the coordina-
tion between actions in models such as I/O Automata and CSP is asymmetric. In each
model, actions are divided into input and output classes; parameters are passed from out-
put actions to input actions. The two models differ in the number of participants in a
synchronization. I/O Automata are capable of expressing one-to-many synchronization
styles, while CSP emphasizes pairwise rendezvous of output actions with input actions.
All of these synchronization styles can be expressed in Mobile UNITY with appropriate
use of transactions, variable sharing, and inhibitions. For example, one-to-many synchro-
nization with parameter passing can be simulated by a quantified set of one-way variable
sharing relationships, where the output statement executes as a transaction and the input
statements are simply reactive. For rendezvous style synchronization, the phase variable
must be propagated to at most one input action, which can be ensured by a flag which is
set by the first (nondeterministically chosen) reactive statement and which prevents other
propagations from taking place. Of course, other aspects of CSP, such as the dynamic
creation and deletion of terms, could not be so easily captured in a UNITY-style model
because of fundamental differences in the underlying approaches. Similarly, the discussion
of I/O Automata has assumed that it is acceptable to model a whole set of IOA actions
with one parameterized UNITY action, which may not be appropriate in every case. Even
so, modeling the basic synchronization mechanisms of the two models in Mobile UNITY
can be a useful exercise.

Our point in examining the many different forms of synchronization is to show the ver-
satility and broad applicability of the model. Because the field of mobile computing is
so new, we cannot predict which high-level abstractions will become dominant and gain
acceptance in the research community. However, we believe that the examples above show
that Mobile UNITY can at least formalize direct generalizations to the mobile setting of

existing mechanisms for synchronous statement execution in models of non-mobile con-

Cctober 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 35

currency, and there is good reason to believe it is capable of expressing new constructs

that may be proposed in the future.

V. DiscussioN

The Mobile UNITY notation and logic presented in this paper is the result of a careful
reevaluation of the implications of mobility on UNITY. We took as a starting point the
notion that mobile components should be modeled as programs (by the explicit addition
of an auxiliary variable representing location), and that interactions between components
should be modeled as a form of dynamic program composition (with the addition of coordi-
nation constructs). The UNITY-style composition, including union and superposition, led
to a new set of basic programming constructs amenable to a dynamic and mobile setting.
Previous work extended the UNITY proof logic to handle pairwise forms of such interac-
tion. This paper presented a more modular and compositional construction of transient
sharing and synchronization that allowed for multi-party interactions among components.

We applied these constructs to a very low-level communication task in an attempt to
show that the basic notation is useful for realistic specifications involving disconnection.
The seemingly very strong reactive semantics matched well the need to express dynami-
cally changing side-effects of atomic actions. Finally, we explored the expressive power of
the new notation by examining new transient forms of shared variables and synchroniza-
tion, mostly natural extensions of the comparable non-mobile abstractions of interprocess
communication—indeed others may propose radically different communication abstrac-
tions for mobile computing. The notation was able to express formally all extensions that
were considered and promises to be a useful research tool for investigating whatever new
abstractions may appear. Plans for future work include the application of Mobile UNITY
to distributed databases with weak consistency semantics, capable of continuing operation
in the presence of disconnection. These problems only recently have received atfention in
the engineering and research community, and formal reasoning has an important role to
play in communicating and understanding proposed solutions as well as the assumptions

made by each.

October 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 36
VI. ACKNOWLEDGEMENTS

This paper is based upon work supported in part by the National Science Foundation of
the United States under Grant Numbers CCR-9217751 and CCR-9624815. Any opinions,
findings, and conclusions or recommendations expressed in this paper are those of the

anthors and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

[1] ¥. Maai Chandy and Jayadev Misra, Parallel Program Design: A Foundation, Addison-Wesley, New York,
NY, 1988.

[2] Mark G. Staskauskas, “Formal derivation of concurrent programs: An example from industry,” IEEE
Trensactions on Software Engineering, vol. 19, no. 5, pp. 503-28, May 1993.

[8] Robin Milner, Joachim Parrow, and David Walker, “A calculus of mobile processes. 1,” Information end
Computation, vol. 100, no. 1, pp. 1-40, 1952,

f4] William D. Clinger, “Foundations of actor semantics,” Tech. Rep. AL-TR-633, MIT Artificial Intelligence
Laboratory, 1981.

[6] Gul Agha, Actors: A Model of Concurrent Computation in Distributed Systems, MIT Press, Cambridge,
Massachusetts, 1986.

[6] Roberto M. Amadio, “An asynchronous model of locality, failure, and process mobility,” in Cosrdination
Languages and Models, Berlin, 1997, pp. 374~91, Springer-Verlag.

[7] James Riely and Matthew Hennessy, “Distributed processes and location failures,” Tech. Rep. 2/97, Computer
Science, School of Cognitive and Computing Sciences, University of Sussex, Brighton, England, 1997,

[8] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier Rémy, A calculys of mobile
agents,” In Proceedings of the International Conference on Concurrency Theory. 1996, vol. 1119 of Lecture
Notes in Computer Secience, pp. 406—421, Springer-Verlag.

[9] M. Satyanarayanan, James J. Kistler, Lily B. Mummert, Maria R. Ebling, Puneet Kumar, and Qi Lu,
“Experience with disconnected operation in a mobile computing environment,” in Proceedings of the USENIX
Symposium on Mobile and Location-Indepedent Computing, Cambridge, MA, 1993, pp. 11-28.

[10] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, Mike J. Spreitzer, and Carl H.
Hauser, "Managing update conflicts in Bayou, a weakly connected replicated storage system,” Operating
Systems Review, vol. 29, no. §, pp. 172-83, 1995,

[11] Geoffrey M. Voelker and Brian N. Bershad, “Mobisaic: An information system for a mobile wireless computing
environment,” in Proceedings of the Workshop on Mobile Computing Systems and Applications, Santa Cruz,
CA, 1994, pp. 185-90, IEEE.

[12] Bill N. Schilit, Norman Adams, and Roy Want, “Context-aware computing applications,” in Proceedings of
the Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA, 1994, pp. 85-90, IEEE.

[13] Charles Perkins, “IP mobility support,” RFC 2002, IETF Network Working Group, 1996.

[14] Peter J. McCann and Gruia-Catalin Roman, “Moebile UNITY coordination constructs applied to packet
forwarding for mobile hosts,” in Coordination Langueges and Models, Berlin, 1997, vol. 1282 of Lecture Notes

in Computer Science, pp. 338-54, Springer-Verlag.

October 12, 1997 DRAFT

IBEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 1998 37

[15] Fredrik Orava and Joachim Parrow, “An algebraic verification of 2 mobile network,” R91:02, Swedish Institute
of Computer Science, 1991.

[16] Beverly Sanders, Berna Massingill, and Svetlana Kryukova, “Specification and proof of an algorithm for
location management for mobile communication devices,” in Proceedings of the International Workshop on
Formal Methods for Paraliel Programming: Theory and Applications, Geneva, April 1997, [PPS 797,

[17] Gruia-Catalin Roman, Peter J. McCann, and Jerome Y. Plun, “Mobile UNITY: Reasoning and specification
in mobile computing,” ACM Transactions on Software Engineering and Methodology, vol. 6, no. 3, pp. 250-82,
1997.

[18] Jayadev Misra, “A logic for concurrent programming: Safety,” Journal of Computer and Software Engineering,
vol. 3, no. 2, pp. 239-72, 1995.

[19] Jayadev Misra, “A logic for concurrent programming: Progress,” Journal of Computer and Software Engi-
neering, vol. 3, no. 2, pp. 273-300, 1985.

f20] C.A.R. Hoare, “An axiomatic basis for computer programming,” Communications of the ACM, vol. 12, no.
16, pp. 576-580,583, 1969.

[21] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson, “Impossibility of distributed consensus with
one faulty process,” Journel of the Association for Computing Machinery, vol. 32, no. 2, pp. 374-382, 1985,

[22] Tom J. Chaney and Charles E. Melnar, “Anomalous behavior of synchronizer and arbiter circuits,” IEEE
Transactions on Computers, vol. C-22, no. 4, pp. 421422, 1973.

[23] C.A.R. Hoare, "Communicating sequential processes,” Communications of the ACM, vol. 21, no. 8, pp.
666-677, 1978.

[24] Nancy A. Lynch and Mark R. Tuttle, “An introduction to input/output automata,” CWI Quaterly, vol. 2,
no. 3, pp. 219-246, 1989.

[25] Reino Kurki-Suonio, “Fundamentals of object-oriented specification and modeling of collective behaviors,”
in Object-Oriented Behavioral Specifications, Haim Kilov and William Harvey, Eds., pp. 101-120. Kluwer
Academic Publishers, 1996.

[26] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer, “On the minimal synchronism needed for distributed
consensus,” Journal of the Association for Compuiting Mechinery, vol. 34, no. 1, pp. 77-97, 1987.

(27] Gruia-Catalin Roman, Jerome Y. Plun, and C. Donald Wilcox, “Dynamic synchrony among atomic actions,”
IEEE Trensections on Parallel end Distributed Systems, vol. 4, no. 6, pp. 677-685, 1993.

October 12, 1997 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. ¥, MONTH 1998 38

Peter J. McCann received his B.S. degree (1993) in engineering and applied science from
the California Institute of Technology, and the M.S. degree {1995} and D.Sc. degree (1997)
in computer science from Washington University in St. Louis, Missouri. He is currently a
Member of Technical Staff at Bell Laboratories. His research interests include formal rea-
soning about concurrent, mobile systems and prograrmming abstractions for weak-consistency

distributed systems.

Gruia-Catalin Roman was a Fulbright Scholar at the University of Pennsyivania, in Philadel-
phia, where he received a B.S. degree (1973), an M.S. degree (1974}, and a Ph.D. degree (1976),
all in computer science. He has been on the facuity of the Department of Computer Science at
Washington University in Saint Louis since 1976. Roman is a professor and chairman of the
department, His current research involves the study of formal models and design methods for
mobile computing and the development of techriques for the visualization of distributed com-

putations. His previous research has been concerned with models of concurrency, declarative

visualization methods, design methodologies, systems requirements, interactive computer vision algorithms, formal

langunages, biomedical simulation, computer graphics, and distributed databases. Roman is also an active software

engineering consultant. His consulting work involves development of custom software engineering methodclogies

and training programs.

Qctober 12, 1997

DRAFT

	Compositional Programming Abstractions for Mobile Computing
	Recommended Citation
	Compositional Programming Abstractions for Mobile Computing

	tmp.1439928365.pdf.kQu8P

