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Abstract. Traditionally, a distributed system has been viewed as a collection of fixed
computational elements connected by a static network. Prompted by recent advances in wireless
communications technology, the emerging field of mobile computing is challenging these
assumptions by providing mobile hosts with connectivity that may change over time, raising the
possibility that hosts may be called upon to operate while only wealdy connected to or while
completely disconnected from other hosts. We define a concurrent mobile system as one where
independently executing components may migrate through some space during the course of the
computation, and where the pattern of connectivity among the components changes as they move in
and out of proximity. Note that this definition is general enough to encompass a system of mobile
hosts moving in physical space as well as a system of migrating software agents implemented on a
set of possibly non-mobile hosts. In this paper, we present Mobile UNITY, which is a notation for
expressing such systems and a logic for reasoning about their temporal properties. Based on the
UNITY language of Chandy and Misra, our goal is to find a minimalist model of mobile
compatation that will allow us fo express mobile components in a modular fashion and to reason
formally about the possible behaviors of a system composed from mobile components. A
simplified serial communication protocol among components which can move in space serves as an
illustration for the notation.
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1. Introduction

The emergence of mobile communications technology is bringing a new perspective to
the study of distributed systems. Viewed simply, this technology bestows network connectivity on
computers that are mobile, allowing these hosts to be treated as nodes in a traditional distributed
compntation. However, this view ignores many important issues surrounding mobile computing.
These issues stem from both the characteristics of the wireless comnection and the natre of
applications and services that will be demanded by users of the new technologies.

The low bandwidth, frequent disconnection, and high latency of a wireless connection
lead to a decoupled style of system architecture. Disconnections may be unavoidable as when a
host moves to a new location, or they may be intentional as when a laptop is powered off to
conserve battery life. Also, wireless technologies will always lag behind wired ones in terms of
bandwidth due to the added techmical difficnliies [5, 8). Systems designed to work in this
environment must be decoupled and opportunistic. By "decoupled,” we mean that applications
must be able to run while disconnected from or weakly connected to servers. "Opportunistic”
means that interaction can be accomplished only when connectivity is available. These aspects are
already apparent in working systems such as Coda [16], a filesystem supporting disconnected
operation, and Bayou [18], a replicated database where vpdates are propagated by pairwise
interaction among servers, without involving any global synchronization. Both systems relax the
degree of consistency offered to the application programmer in favor of higher availability. In the
case of Coda, this tradeoff is justified due to the low degree of write-sharing in the typical
filesystem environment. In the case of Bayon, update conflicts are handled with application-
specific detection and resolntion procedures. Neither system takes the traditional view that
distribution should be hidden from the application programmer; both yield to the reality of frequent
disconnection and deal with the consequences of update conflicts.

In addition to being weakly connected, mobile computers change location frequently,
which leads to demand for contexr dependent services. A simple example is the location dependent
World Wide Web browser of Voelker et al [19]. This system allows the vser to specify location-
dependent queries for information abont the current surroundings and the services available. A
more general point of view is evidenced in [17], which notes that application behavior might
depend on the totality of the current context, including the current location and the nearness of
other components, like the identity of the nearest printer or the group of individuals present in a
rcom. The dynamic namre of imferaciion among components brings with it unprecedented
challenges analogous to those of open software systems. Components must function correctly in
any of the myriad configurations that might occur. They must also continue to function as
components are reconfigured. It is important that we begin to investigate methods for specifying
and reasoning about such behavior,

While some systems will be mobile-aware and require explicit reasoning about Iocation
and context, the vast majority of existing distributed applications make use of location transparent
abstractions. Not every distributed algorithm should be re-written from scratch for the mobile
setting, and support for location transparent messaging services is desirable. Mobile IP [13]
attempts to provide this in the context of the Internet. Even if the goal is transparent mobility, the
designers of such a protocol must face the issues brought on by mobility. Explicit reasoning about
location and location changes are required to argue that a given protocol properly implements
location transparency.
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It is important to note that mobile communications technology is not essential for these
issnes to be made manifest; they were already present in the wide area networks of today. In the
cuirent Internet, links to distant nodes are typically of low-bandwidth and are not very reliable.
Tightly coupled algorithms do not perform well in this kind of environment, and as in the mobile
setting it is appropriate in some cases to sacrifice consistency for better availability.
Reconfigurable systems are closely related to notions of execulable content and mobile agents,
which are motivated by reasons other than host mobility [6]. A mobile software agent might have
explicit knowledge and control over its location (which may be specified as a host address), and
must interact with components with which it is co-located to achieve some goal. Open software
systems that must interoperate under unanticipated circumstances are another example of situations
where a broad range of configurations must be considered during system design and
implementation in order to grarantee correct behavior [12].

The kinds of weakly connected, context-dependent systems inspired by mobile computing
will require new ways of thinking about distributed system design. Important to this task are
models and techniques for specification and verification. This paper proposes a new notation and
underlying forrnal model supporting specification of and reasoning about decoupled, location-
aware systems. The approach is based on the UNITY [3] model of concurrent computation. This
work extends the UNITY notation with constructs for expressing both component location and
transient interaction among components. In Section 2, we review UNITY and provide the
motlivation for our later extensions. Section 3 is a succinet introduction to our new notation, called
Mobile UNITY. A formal axiomatic definition of each construct is included. This section treats
Mobile UNITY as a mere technical modification to UNITY independent of any notions of
mobility. In Secticn 4, we discuss the mobility and modularity aspects of the Mobile UNITY
notation and show how the composition of mobile units reduces to a form of program anion. The
new notation is iilustrated via a simple example, a serial communication protocol which assumes
unidirectional transmission from senders to receivers. The former group is assumed to be
stationary while members of the latter are allowed to move around. Section 3 discusses the
potential use of the new constructs for the semantic definition of novel high-level abstractions of
comimunication and coordination in mobile systems. Conclusions are presented in Section 6.

2. UNITY Review and Critique

Chandy and Misra put forth the UNITY model [3] as a vehicle for the study of distributed
compuiing. A minimal set of concepts, a simple notation and a restricted form of temporal logic
were evaluated against a broad range of traditional distributed computations and software
development activities including specification, design, coding, and verification. UNITY’s success
as a research tool rests with its ability to focus atiention on the essence of the problem being
studied rather than notational artifacts. This is a direct result of its minimalist philosophy which
we are about to put to the test in a challenging new arena, mobile computing. In this section we
provide a very brief overview of the UNITY notation and proof logic and discuss its strengths and
weaknesses with respect to specifying and reasoning about mobile computations.

The key elements of the UNITY model are the concepts of variable and assignment,
actually the conditional multiple assignment statement. Programs are simply sets of assignment
statements which execute atomically and are selected for execution in a weakly fair manner—in an
infinite computation each statement is scheduled for execution infinitely often. An example
program called sender is shown below. It starts off by introducing the variables used by the
program in the declare section. Abstract variable types such as sets and sequences can be used
freely. The initially section defines the allowed initial conditions for the program. If a variable is
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not referenced in this section, its initial vahie is constrained only by its type. The heart of any
UNITY program is the assign section consisting of a set of assignment statements. The program
below has two assignment statements. Each is given a label for ease of reference.

program sender
declare
bit : boolean
[l word : array[0..N-1] of boolean
[l csend, crecv : integer
initially
bit=0
[l csend=N
assign
transmit :: bit, csend = word{csend], csend+1 if csend < N A csend = crecy
I rew :» word, csend = NewWord(), ifcsend >N
end

The program sender is a model of the sender side of an asynchronous serial communications link.
It declares four variables. The first, bit, is the shared medium used to transmit, one bit at a time,
the value in word. The variables csend and crecy are counters vsed to keep track of the progress of
the sender and receiver, respectively. The statement transmit copies the next bit of word to bit and
increments csend, if the sender and receiver counters have the same value. When the csend
counter reaches W, the statement new is enabled which writes a new value to word and resets
csend. Both transmit and new are assumed to be atomic operations. In the above program, the
gnards are mutually exclusive and only one statement can be effectively executed at any point,
although this is not required by the model; in general, more than one statement may be effectively
enabled. Concurrency is modeled by interleaved execution of these atomic operations. At each
computation step one statement is selected for execution and the program state is atomically
modified according to that statement. Fairness assnmptions require that no statement be excluded
from selection forever.,

The very simple notation illustrated by the above example has been used successfully to
construct abstract operational specifications of some of the best known problems in distributed
computing. More importantly, Chandy and Misra have been able to show that an equally
parsimonious proof logic can be employed in the formal derivation (through specification
refinement) and verification of such programs. In the UNITY proof logic, program properties are
expressed using a small set of predicate relations whose validity can be derived directly from the
program or from other properties through the application of inference rules. These predicate
relations are expressions of allowed sequences of system states, and can be thought of as
specifications for correct behavior. A proof of correctness is a demonstration that the text of a
program meets a certain specification, i.e., the sequence of states encountered in any possible
execution is one of those allowed by the specification. We distinguish two basic kinds of system
propetrties, safety and liveness properties. Intuitively, a safety property states that some undesirable
circumstance does not occur. A liveness property requires that some desirable circumstance
eventually does occur. A pure safety property is satisfied by a behavior if and only if it is satisfied
by every finite prefix of that behavior. A pure liveness property is one that can always be satisfied
by some infinite extension of any finite execution. Any property (set of allowed behaviors) can be
expressed as the intersection of a pure safety and a pure liveness property [2].
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Standard UNITY [3} provides proof rules for very basic safety and liveness properties that
make direct use of the program text. We choose to express basic safety using the constrains
relation of [11}, abbreviated as “co.” This is a predicate relation developed in the context of
generic action systems and is not specific to UNITY, but has a particularty simple form. For two
state predicates p and g the expression p co g means that for any state satisfying p, the next state in
the execution sequence must satisfy g. If this expression is part of a correctness specification, it
rules out all those behaviors for which a state satisfying p is followed by a state that does not
satisfy g. By uvsing this relation one can state formally that the value of csend does not decrease
unless it becomes zero, no matter which statement is executed:

csend=k co csend2k v csend=0

By convention, all free variables are assumed to be universally quantified, e.g., the above property
holds regardless of the current value k assumed by csend. To prove that the program sender meets
the above specification, we nced to show that if any statement is selected for execution in a state
satisfying csend = k, it terminates in a stale satisfying csend 2 k v csend = 0, for all values of k.
We can use well known techniques from sequential programming [4] to carry out this proof for
each statement. Formally, co can be defined as

peog = {(Vsu{p}s{gh

using Hoare triple [7] notation where s is any statement from the program, p is a precondition, and
q is a postcondition. Properties expressed with co should be swuttering invariant, that is, inserting
repeated elements info an execution sequence should not change the value of a co relation applied
to that execution. This is equivalent to assuming that every program includes a do-nothing skip
statement or requiring that p = g.

More complex safety properties can be defined in terms of the co relation. For instance,
verification of a program invariant such as

invariant 0 <csend <N

requires one o show that csend is initially in the range 0 to N and remains so throughout the
execution of the program. The former proof obligation is verified by using the information in the
initially section. The latter proof obligation is a eo property which has to be checked against each
statemnent of the program.

Progress or liveness properties can also be proven from the text of a program. These
properties use UNITY’s built-in fairness assumptions to guarantee that a certain predicate is
eventually established. Progress is expressed in standard UNITY using the ensures relation. The
relation p ensures g means that for any state satisfying p and not ¢, the next state must satisfy p or
g. In addition, there is some statement s that guarantees the establishment of g if execnted in a
state satisfying p and not g. Because fairness guarantees that this statement will eventually be
selected for execution, the ensures relation rules out execution sequences containing states
satisfying p unless the last state in any maximal subsequence of p states itself satisfies ¢ or is
immediately followed by a state satisfying g.

Note that the ensures relation is not itself a pure liveness property, buf is a conjunction of
a safety and a liveness property. The safety part of the ensures relation can be expressed as a co
property, and the existence of an establishing statement can be proven with standard technigues:
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pensuresq = {pa—q co pvq) A Is:: {pa—ag}s{q}

We take ensures as a fundamental element of progress specifications, rather than the newer pure
liveness p transient operator {10] due to ensure’s linguistic clarity and our familiasity with it.

A progress property that the sender program should satisfy is that the counter csend
eventually should increase or be reset to zero. This can be expressed as

csend = k ensures csend > k v csend =0

This relation states that if the variable csend has value %, it retains this value until it is set to a
greater one or to zero, and that some statement will eventually perform this task. Another
desirable progress property is that if csend equals zero, it should eventually be set to 1.

csend = ) ensures csend = 1

It is straightforward to prove the safety part of each of these ensures relations. However, we run
into a problem when we try to prove that some statement will eventually establish the right hand
side of each of these ensures. The fransmit statement that increments csend is only enabled when
esend = crecy. Because no statement in sender changes crecv, we can easily prove

stable crecv=k

which is a formal expression of the fact that the crecv variable retains its initial value. Thus no
statement can increase csend when csend # crecv. If we had initially constrained the value of
crecy to be zero in the inifially section, then we conld prove the latter ensures, but not the former.
However, no such assumption appears in the program text, and crecv is initially constrained only to
be an integer.

The problem with these proofs arises because the sender program expects to be composed
with the receiver program, shown below. The receiver declares three variables, bit, csend, and
crecv, that also appeared in sender, and one new variable, buffer. The receiver action receive
copies the variable bit into the array buffer and increments crecv. The reser action resets the
counter crecy to -1.

program receiver
declare
bit : boolean
{ buffer : array[0..N-1] of boolean
[l csend, crecv : integer
initially
bit=10
[ crecv=N
assign
I receive :: buffer[crecv+1], crecy ;= bit, crecv+1if crecv < N A crecv 5 csend
{1 reset ::crecvi=-1 ifcrecv2zN A csend =0
end

We use the UNITY union operator, [} to construct a new system, denoted by sender [lreceiver.
Operationally, the new system consists of the union of all the program variables, i.e., variables
with the same name refer to the same memory, the union of all the assignment statements, which
are executed in a fair atomic interleaving, and the intersection of the initial conditions. Note that
program receiver constrains the initial value of crecv, but not that of esend. If csend is initialized
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according to the sender program, then neither receive nor reset is initially enabled. The only action
that can execute is new. This enables reset, which in turn enables fransmit, which in turn enables
receive. From that point transmit and receive execute alternately until the entire word has been
transmitted. Then another cycle with a different word can begin.

Neither of the above programs is able to make progress without the presence of the other.
This is a very tightly coupled system where the two counter values are used to implement a turn-
taking scheme for the transmit and receive statements. In an actual serjal communication channel,
this turn taking would be the result of the real-time behavior of the two components. The system
as presented above is not a good abstraction of such a physical system because the properties of the
abstract components in isclation are very different from the properties of the physical components
in isolation: a serial transmitter does not block in the absence of a receiver. In most formal work
on distributed systems this kind of distinction is not important becavse components are interfaced
statically. In mobile computing systems, however, components may move about and interface in
different ways over the life of the computation. To facilitate realistic and reliable reasoning about
such systems, we would like the components to reflect the correct behavior when in both coupled
and decoupled modes of operation and when making the transition between the two.

Perhaps the system could have been constructed differently, while remaining within the
framework of standard UNITY. However, it is difficult to express this kind of turn-taking
synchronization without resorting to shared state indicating which component should act next. The
UNITY superposition mechanism is designed to express synchronization between two programs,
but only in a very limited and stylized way. Superposition on an underlying program F proceeds
by adding new statements and variables to F such that the new statements do not assign to any of
the original underlying variables of F, and each of the new statements is synchronized with some
statement of F. This allows for the maintenance of history variables, that do not change the
behavior of the underlying program but are needed for certain kinds of proofs, and construction of
layered systems, where the underdying layers are not aware of the higher layer variables. A major
contribution of [3] was the examination of program derivation strategies using union and
superposition as basic construction mechanisms. From a purely theoretical standpoint, it is natural
to ask whether we can rethink these two forms of program composition by reconsidering the
fundamentals of program interaction and what abstractions should be used for reasoning about
composed programs.

The sender [ireceiver program could have been expressed as a superposition of the
receiver on the sender, where the receiver is simply a maintainer of the history of bits transmitted
since the last execution of new. However, we find this kind of composition unappealing for two
reasons. First, it is asymmetric and will not generalize well to situations where the components
must communicate in both directions. Second, it is again a static form of composition unsnited for
dealing with systems that have mobile components.

Mobile computing systems must operate under conditions of transient connectivity.
Connectivity will depend on the current location of components and therefore Iocation may be a
part of the model. As we see with the serial communication example, real-time properties are also
important, althongh it may be more elegant to express these constraints with higher-level
synchronization constructs rather than explicit models of time. When disconnected, components
should behave as expected. This means that the components must not be made too aware of the
other programs with which they interface. The sender, for example, must not depend on the
presence of a receiver when it transmits a value, It is unrealistic for the sender to block when no
receiver is present. However, there are constraints that the two programs must satisfy when they
are connected. We wish to express these constraints when the programs are composed, while not

Printed 271167



cluttering up the individual components in such a way that they must be aware of and dependent on
the existence of other programs. This argues for the development of a coordination language
sufficiently powerful to express these interactions and to preserve the modularity of a single
program running in isolation. As we will see in the sections that follow, this composition
mechanism will have certain aspects in common with UNITY union and other traits characteristic
of superposition. In the next section we propose several additions to standard UNITY in
preparation for a later introduction of mobile components and transient interactions.

3. Mobile UNITY without Mobility

In this section we define our model of computation employing a UNITY-based notation
and proof logic. In the next section we discuss program structuring mechanisms and composition.
For now, the notation concerns single programs and, therefore, its applicability to mobile
computing will not be irmnmediately obvious. Our contributions to the study of mobile compnting
will be discussed later—they include explicit modeling of program location and a modular
specification of interactions among mobile programs. We postpone for the next section a
discussion on how constructs introduced here facilitate the composition of mobile programs in the
style of a declarative coordination language.

In standard UNITY, the basic unit of system construction is the program. The structure of
a UNITY program was defined in the previous section as consisting of a declare section, an
initially section, and an assign section. In our notation we preserve the UNITY syntax for the
declare and initially sections and augment that of the assign section. Our investigation into
programming abstractions suitable for mobile computing led vs to the addition of four constructs to
the standard UNITY notation:

o Transactions provide a form of sequential execution. They consist of
sequences of assignment statements which must be schednled in the
specified order with no other statements interleaved in between. The
assignment statements of standard UNITY may be viewed as singleton
transactions, We will use the term normal statement or simply statement to
denote both transactions and standard statements in a given program. As
before, normal statements are selected for execution in a weakly fair manner
and executed either as a single atomic action or as a series of successive
atomic actions.

*  Labels provide a mechanism by which statements can be referenced in other
constracts. This provides us with the ability to modify the definitions of
existing statements without actrally requiring any textual changes to the
criginal formulation.

s Inhibitors provide a mechanism for strengthening the guard of an existing
statement without modifying the original. This construct permits us to
simulate the effect of redefining the scheduling mechanism so as to avoid
executing certain statements when their execufion may be deemed
undesirable.

®  Reactive statements provide a mechanism for extending the effect of
individual assignment statements with an arbitrary terminating computation.
All assignment statements of a given program are extended in an identical
manner. The reactive statements form a program that is scheduled to
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execute to fixed-point, a state where no further execution of a reactive
statement will modify the system state, after each individual assignment
statement including those that appear inside a transaction. This construct
allows us to simulate the effects of the interrupt processing mechanisms
which are designed to react immediately to certain state changes.

In the remainder of this section we examine each of these new constructs in turn and develop a
proof logic that accommodates these notational extensions. A summary of these constructs appear

in Figure 1.
Notation Name Description
X=eifr assignment Conditional multiple-assignment

statement from standard UNITY.

sux:=eifr

labeled assignment

Label can be added to allow for
inhibition.

su{s;s,;.:8)ifr

transaction

The sub-statements are executed in
sequence. The reactive statements
execute to fixed-point after each sub-
statement. Transactions themselves
may not be reactive.

inhibit s when r

inhibiting clause

The statement s may not execute
when the system is in a state
satisfying r

X = ¢ reacts-for

reactive statement

Execute the given  statement
immediately whenever the system is
in a state satisfying » May be
interleaved with other reactive
statements. Reactive statements may
not be inhibited.

Figure 1. Mobile UNITY constructs.

The notation for transactions assumes the form

where s, must be an assignment statement. Once the scheduler selects this statement for execution,
it must first execute s,, and then execute s,, etc. In the absence of any reactive statements, the

{88, .--8,)

effect is that of an atomic transformation of the program state.
A label may precede any statement and must be followed by the symbol *:2’ as in

All labels must be unique in the context of the entire program and there is no need to label every
statement. The primary motivation for the introduction of labels is their use in constructing

inhibitors.

n (8,8, .-8)

The inhibitor syntax follows the pattern

Printed 12/2/97



inhibit n when p

where # is the label of some statement in the program and p is a predicate. The net effect is a
strengthening of the guard on statement n by conjoining it with —p and thus inhibiting execution of
the statement when p is true.

10
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A reactive statement is an assignment statement {(not a sequence of statements) extended
by a reaction clause that strengthens its gnard as in

s reacts-to p

‘The set of all reactive statements, call it ®, must be a terminating program. We can think of this
program as executing immediately afier each assignment statement. To account for the
propagation of complex effects, we allow the set of all reactive statements to execute in an
interleaved fashion until fixed-point. As ® is merely a standard terminating UNITY program, a
predicate FP(%) can be computed which is the largest set of states for which no reactive staternent
will modify the state when executed. This is the fixed-point of &,

This two-phased mode of computation where every assignment statement is punctuated
by a flurry of reactions may seem uvnreasonable at first, and indeed, it is possible to write
completely unrealistic system specifications with many complicated actions relegated to the
reactive statements. However, it is also possible to write unrealistic UMNITY programs.
Assignment statements can be arbitrarily complex and may have no efficient implementation. We
favor, however, expressive power over predefined constraints and pursue strategies in which it is
the responsibility of the designer to exercise control over the notation in order to achieve an
efficient realization on a particular architecture. As shown later, proper use of these constructs will
help us to write modular and efficiently implementable specifications of mobile computations.

A program making use of the above constructs is shown below. It consists of two non-
reactive statements, one of which is a transaction, one inhibiting clause, and one reactive
statement.

program toy-example
declare
x, debug : integer
initially
x=0
{1 debug=0
assign
sux=x+1
It oGe=x+l;x=x-1)

] inhibit s whenx = 15
] debug := x reacts-to x > 15
end

The statement s increments x by one. The statement ¢ is a transaction consisting of two sub-
statements. The first increments x by one. The second decrements x by one. The programmer
might add the inhibiting clause to prevent x from being incremented past 15. This prevents
statement s from performing this action, but the statement ¢ may still execute and temporarily
increase x to 16. This intermediate state would not be visible to the programmer and indeed the
proof logic given below would allow one to prove inv, x < 15 from the text of toy-example. Such
states can be detected, however, by adding reactive statements such as the last one, which assigns
the value of x to debug whenever x > 13, including doring intermediate states of transactions. This
is a modular way to add side-effects to a large set of statements withont re-writing each statement.
We will see later how these aspects of our notation help to model mobile systems.
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Now we give a logic for proving properties of programs that use the above constructs.
Our execution model has assumed that each non-reactive statement is fairly selected for execution,
is executed if not inhibited, and then the reactive program % is allowed to execute until it reaches a
fixed point state, after which the next non-reactive statement is scheduled. In addition, R is
allowed to execute to fixed point between the snb-statements of z fransaction. These reactively
angmenied statements thus make vp the basic atomic state transitions of our model and we denote
them by s*, for each non-reactive statement s. We denote the set of non-reactive statements by A
Thus, the definitions for basic ¢o and ensures properties become:

peoq = (Vse A {p}s*{q}
and
pensures g = pa—q co pvg A {Ise A {pa—ql s* {qb)

Even though s* is really a statement augmented by reactions, we can stil nse the Hoare triple
notation {p} s* {g} to denote that if s* is executed in a state satisfying p, it will terminate in a state
satisfying g. The Hoare triple notation is appropriate for any terminating computation.

In hypothesis-conclusion form, we can write an inference rule for deducing {p} s* {47},
given some H, a predicate that holds after execution of s in a state where s is not inhibited, and /,
an invariant that holds thronghout execution of the reactive statements &, We require that H is
sufficient to establish I (H=sI}, and that once & reaches fixed point, g is established (InNFP(R)=q).
The following rule holds for non-reactive statements s that are singleton transactions:

pAUs)=q, {pA—(s)}s{H}, HSFP(®) in &, stableIin ] H=T, IANFP(R)=q
{p}s* {q}

For each non-reactive statement s, we define 1(s) to be the disjunction of all when predicates of
inhibit clauses that name statement s. Thus, the first part of the hypothesis states that if s is
inhibited in a state satisfying p, then g must be true of that state aiso. We take {pa—i(s)}s{H}
from the hypothesis to be a standard Hoare triple for the non-augmented statement s.

For those statements that are of the form (s; s,; ... s} we can use the following inference
mile before application of the one above:

{a} {s;;s,; ... s, )* {c}, {c} s.* {b}
{a}{s; s, ... s )* {b}

where ¢ may be guessed at or derived from b as appropriate. This represents sequential
composition of a reactively-augmented prefix of the transaction with its last sub-action. This rule
can be used recursively until we have reduced the transaction to a single sub-action. Then we can
apply the more complex rule above to each statement. This rule may seem complicated, but it
represents standard axiomatic reasoning for ordinary sequential programs, where each sub-
statement is a predicate transformer that is fonctionally composed with others.

The proof obligations H—FP(%®) in % and stable [ in % can be proven with standard
techniques becanse R is treated as a standard UNITY program. We can simplify the role if we
know that the non-reactive statemnent s will not enable any reactive statements, that is, will leave %
at fixed point. This can be expressed as:

pAUs)=q, {paus)is{q), g=FP(R)
{p}s* {q}
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which allows us to substitute the obligation g=FP(R®) for the more complicated invariant and
fixed-point argnment.

The notation and basic inference mechanism provide tools for reasoning about basic
programs. Apart {from our redefinition of co and emsures, however, we keep the rest of the
UNITY inference toolkit which allows us to derive more complex properties in terms of these
primitives. In the following section, we will show how the notation can be used to construct
systems of mobile components that exhibit much more dynamic behavior than could be easily
expressed with standard UNITY.

4. Adding Mobility and Structured Composition

Our concern with mobility forced us to reexamine the UNITY model. The initial intent
was to provide the means for a strong degree of program decoupling, to model movement and
disconnection, and to offer high-level programming abstractions for expressing the transient nature
of interactions in a mobile setting. Decoupling, defined as the program’s ability to continue to
function independently of the communication context in which it finds itself, is achieved by
making the process namespaces disjoint and by separating the description of the component
programns from that of the interactions among components. Mobility is accommodated by
attaching a distinguished lecation variable to each program; this provides both location awareness
and location control (locomotion) to the individuat programs. The mode! presented in the previous
section is the result of a careful investigation of the implementability of high-level constructs for
transient interactions. Reasoning about mobile systems of many components will be carried out in
terms of this model.

As distinct from our earlier presentation, this section focuses on composition of several
programs rather than the properties of a single program. Coordination is captured implicitly and
declaratively by interaction constructs rather than being coded directly into the component
programs; we will show how each of the new constructs presented in the previous section
contributes to a decoupled style of program composition. The reactive statement captures the
semantics of interrupt-driven processing and enables us to express synchronous execution of local
and non-local actions. The inhibit clause captures the semantics of processing dependencies. In
essence, both kinds of statements express scheduling constraints that cut across the local
boundaries of individual components. Extra statements are sometimes added to a composition to
capture the semantics of conditional asynchronous data transfer among components. Together,
these constructs define a basic coordination language for expressing program interactions. Simple
forms of these statements have direct physical realization and can be used to construct a rich set of
abstract interactions including UNITY-style shared variables, location-dependent forms of
interaction, and clock-based synchronization. Next, we illustrate some of the less tightly coupled
forms of interaction by revisiting the serial communication example in a setting in which the
participants can actually come together and move apart from each other. After several successive
refinements we put forth a version that is faithful to possible physical realizations of the protocol.

Decoupled style of computing, Let us define a system as a closed (static) set of
interacting compenents. In UNITY, a systern might consist of several programs which share
identically named variables. Each program has a name and a textual description. The operator “[j’
is used to specity the assembly of components into a system. In this paper we construct a system
in a similar manner but we introduce a syntactic structure that makes clear the distinction between
parameterized program types and processes which are the components of the system. A more
radical departure from standard UNITY is the isolation of the namespaces of the individual
processes. We assume that variables associated with distinet processes are distinet even if they
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bear the same name. Thus, the variable bit in a program like sender from the earlier example is no
longer automatically shared with the bit in the receiver—they shounld be thought of as distinct
variables. To fully specify a process variable, its name should be prepended with the name of the
component in which it appears, for example sender.bit or receiver.bit. The separate namespaces
for programs serve to hide variables and treat them as internal by defanlt, instead of universally
visible to all other components. This will facilitate more modular system specifications, and will
have an impact on the way program interactions are specified for those situations where programs
must communicate.

It is now possible to construct a system consisting of multiple sender and receiver
processes without actually modifying the code presented earlier. We simply add a parameter to the
program names and instantiate as many processes as we desire, in this case two senders and one
receiver. The resulting system can be specified by a structure such as:

System Senders_and_Receivers

program sender(i)
...standard UNITY program...
end

program receiver(j)
...standard UNITY program...
end

Components
sender(1) [Isender(2) Jreceiver(0)

Interactions
...coordination statermnents...
end

The last section of the system specification, the Interactions section, defines the way in which
processes communicate with each other. Let's say that we desire sender(1} and receiver(0) to
interact with each other in the style of UNITY by sharing similarly named variables while
sender(2) remains disconnected. The statements in the Interactions section will have to explicitly
define these rules using the constructs presented in the previous section, naming variables
explicitly by their fully-qualified names. The entire system can be reasoned about using the logic
presented in the previous section, because it can easily be re-written into an unstructured program
with the name of each variable and statement expanded according o the program in which it
appears, and all statements merged into the assign section. Our study can now begin in earnest
with the issne that motivated us to approach sysiem specifications in this manner in the first place,
i.e., the concept of mobility.

Location awareness and control. In mobile computing systems, interaction between
components is transient and location-dependent. We consider the individual process to be the
natural unit of mobility. Each process has a distinguished variable A that models its current
iocation. This might correspond to latitude and longitude for a physically mobile platform, or it
may be a network or memory address for a mobile agent. A process may have explicit control
over its own location which we model by assignment of a new value to the variable modeling its
location. In a physically moving system, this statement would need to be compiled into a physical
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effect like actions on motors, for instance. Even if the process does not exert control over its own
jocation we can still model movement by an internal assignment statement that is occasionally
selected for execution. Any restrictions on the movement of a component should be reflected in
this statement.

As an example, we introduce the notion that each sender process exists at some fixed
location in space. The process is neither aware of nor in control of its own location. We express
this fact by the absence of any statements that make reference to or modify the location variable.

program sender(i) at A

declare
bit : boolean
I word : array[0..N-1] of boolean
[ c:integer
initially
A = SenderLocation(i)
assign
transmit :: bit, ¢ := word[c], ¢+1 ifc<N
I new t word, ¢ 1= NewWord(), 0 ifc=N
end

‘While the code looks similar to the earlier version, the reader is reminded that henceforth ail
variables are considered local and only the coordination statements appearing in the Interactions
section allow components to interface with each other. For readability and clarity in expressing
this distinction, some of the variables have been renamed. (Whenever the context is clear we refer
to variables by their unqualified names, e.g., ¢, rather than the full name sender(i).c.) As before,
the sender maintains a variable word which holds a sequence of bits to be transmitted. The counter
¢ is a pointer to the next bit that will be copied to the variable bit, which represents the state of
some lower-level communications medinm. Upon transmitting the current bit, the counter ¢ is
incremented. When it reaches N, no further bits are transmitted until a new word is written to word
and ¢ is reset by the statement new. The above program is capable of transmitting bits in complete
isolation without any receiver present.

In contrast to the sender, let us assume a roving receiver that may change location in
response {0 receiving a word containing a valid spatial location. The code assumes the form

program receiver(j) at A

declare
bit : boolean
[l buffer : array[(..N-1] of boolean
Il c:integer
assign
zero nc:=0 ifbit=1 A cz2N
[ receive :: buffer[c], c :=bit, c+l ifc<N
0 move : A :=buffer if ValidLocation(buffer) A ¢2N
end

Upon receipt of a full word which happens to be a valid location the receiver may choose to move
to that location before the start of a new data transmission. This happens if the move statement is
selected for execution. Since we assume the same weak fairness as in standard UNITY, there is no
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guarantee that the move statement is ever selected upon receipt of a new location. Actually, there
is no guarantee that the receiver will detect the arrival of a start bit (value 1) and reset its counter ¢
before the sender moves on to sending the next value. A new mechanism is needed to force the
scheduler to execute these statements at the right time. We found the solution in the coordination
language developed for the Interactions section.

Reactive control. Below we give a modified version of the code for the mobile receiver.
The statements move and zero are reactive statements. In the case of statement zero, for instance,
the statement reacts to the presence of a 1 on the input variable bit (while the counter ¢ is at least
N} by resetting the counter ¢ to zero. This enables the receive statement, which copies bits from
the input in sequence into the array buffer. Correct execution will therefore require that the first bit
of sender.word be a 1, and that the last bit be a zero.

program receiver(j) at

declare
hit ; boolean
Bl buffer : array[0..N-1] of boolean
[l c: integer
assign
Zero ne=0 reacts-tobit=1 A ¢c=N
1 receive :: boffer[c], ¢ :=bit,c+1 ifc<N
[ move : A:=buffer reacts-to ValidLocation(buffer) A c2 N
end

The reacts-to p construct is used here to model the interrupt triggered by the presence of a 1 on the
input line when ¢ 2 &, and the actual statement has the effect of zeroing the bit counter and thereby
falsifying c 2 N.

Asynchronous communication. We now address interprocess communication. Our
treatment contimies io be informal and focused on refining our example. Becanse location is
modeled like any other state variable, we can use it in the Interactions section below to write
transient and location-dependent interactions among the components. For example, suppose that
the sender and receiver can only communicate when they are at the same location, and we wish to
express the fact that sender{i).bit is copied to receiver(j).bit when this is trne. We might begin the
Interactions section with

receiver(j).bit ;= sender(i).bit  when sender(i).A = receiver(j).A

which can appear inside a quantifier over the proper ranges for i and j. This kind of interaction can
be treated like an extra program statement that is executed in an interleaved fashion with the
existing program statements. The predicate following when is treated like a guard on the
statement (when can be read as if). Note that this interaction alone is not guaranteed to propagate
every value wriften by the sender to the receiver; it is simply another interleaved statement that is
fairly selected for execution from the pool of all statements. Thus, sender(i).transmit may execute
twice before this statement executes once even in a fair execution.

Synchronous communication, Given the observations above, we must strengthen the
statement by using reacts-to to ensure that every bit transmilted is copied to the receiver, when the
two are co-located:
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recetver(j).bit 1= sender(i).bit  reacis-to  sender(i).A = receiver(j).A

Recall that the semantics of reacts-to imply that the statement will be executed repeatedly as part
of a program made np of all reactive statements until that program reaches fixed point. When
executed in isolation, this statement reaches fixed point with one execution, after which we can
deduce receiver(j).bit = sender(i).bit v sender(i). A # receiver(j).A.  Becanse this propagation
occurs between every step of the two components, it effectively presents a read-only shared-
variable abstraction to the receiver program, when the two components are co-located. Later we
will show how to generalize this notion so that variables shared in a read/write fashion by mnltiple
components can be modeled.

Scheduling constraints, Even if the variable sender(i).bir is now copied to the receiver
between every high level program statement, we still need additional coordination between the two
components. For example, there is no constraint on the number of times receiver(j).receive can
execule between executions of sender(i).transmit. This could lead to undesired behavior where the
receiver duplicates bits. Fortunately, each component is maintaining a counter which is the index
of the next bit transmitted or received. We can express the synchronization constraint with the
inhibit interaction construct, continning the Interactions section:

inhibit sender(i).transmit when sender(i).c » receiver(j).c A sender(i).A = receiver(j).A
inhibit receiver(j).receive when receiver(f).c 2 sender(i).c A sender(i).h = receiver(j).A

Operationally, an inhibit s when p interaction has the effect of strengthening the guoard on the
named statement s by the conjunct —p, which is a possibly global state predicate. In this case, the
sender is not allowed to transmit when its counter is greater than the receiver’s, and the receiver
may only receive when its counter is less than that of the sender. Neither constraint has any effect
when the components are separated. Thus, a sender that is not co-located with some receiver may
increment sender(i).c in a free-running fashion without regard to the state of the receiver. Note
that when a receiver moves to a new sender the value of receiver(j).c is at least N, but because the
new sender’s counter was possibly running free, it may have any value in the range 0 £ sender(i).c
£ N. The receiver may then think that any 1 received is a start bit and will reset its counter. The
inhibit clauses will then cause the sender to wait while the receiver catches up, after which the two
processes will be synchronized again. A real system would thus need a more complicated start
sequence that does not appear in any data word to avoid fooling receivers in this way. A real
receiver would resynchronize only upon receipt of the new start symbol and not somewhere in the
middle of a word, as cur mechanism might. This is not a failure of our notation but rather the level
of abstraction at which we have specified the problem.

The inhibit interactions as given may seem to be an unrealistic “action-at-a-distance,” but
they actually reflect real-time properties that give rise to the turn-taking behavior. In fact, the
inhibit construct provides a natural way to specify this synchronization at a lower level, if we add
a local clock and history variables to each node. The following system specification captures
precisely these notions.

17

Printed 1272497



18

System Senders_Receivers_Timers

program sender(i) at A, t
declare
bit : boolean
[ word : array[(..N-17 of boolean
[l ¢, sendstamp : integer

initially
A = SenderLocation(i)
assign
transmit < bit, ¢ := word{c], c+1 ifc <N A t2sendstamp + A-c
I rew :: word, ¢, sendstamp := NewWord(), 0,t ifc2>N
[ timer ti=t+1 if t < sendstamp + A-c + A/4
end

program receiver(j) at A, t
declare
bit : boolean
[ buffer : arrayf0..N-1] of boolean
[l ¢, recvstamp : integer

assign
receive :: buffer[c], c:=in,c+l ifc<N A t2recvstamp + A-c+ A/2
[ zero ¢, recvstamp:=0,t reacts-tobit=1 A ¢c=N
l imer ti=t+1 if t < recvstamp + A-(c+1) - A4
[} move ::A:=buffer reacts-to ValidLocation(buffer) A ¢c2N
end
Components

sender(1) [lsender(2) [Jreceiver(()

Interactions
receiver(j).bit := sender(i}.bit
reacts-to  sender(i).A = receiver(j).A
inhibit sender(i).fimer
when sender(i}.t - sendstamp > receiver(j).t - recvstamp
A sender(i).A = receiver(j).A
inhibit receiver(j).timer
when receiver(j).t - recvstamp > sender(i).t - sendstamp
A sender(i).A = receiver(j).A
end

The constant 4 is used in each of the programs to represent the nominal time interval (in ticks of
the sender{i).t or receiver(j).t clock) between transmissions or receptions of a bit. The statement
sender(i).transmit is allowed to execute only if time has advanced to at least the cth interval since
sender(i).new executed. This is a lower bound on the time at which the statement may execute.
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The statement sender(i}.timer is not allowed to execute if it will advance time more than one-
fourth of the duration of the current interval before the current bit has been transmitted. This is an
upper bound on the time at which sender(i).transmit may execote. The receiver has a pair of
similar constraints, shifted to allow for reception only after the sender has transmitted a bit, with
proper choice of 4. Reasoning about the correctness of the above protocol will naturally require
assumptions about the value of 4. The expression of the real-time constraints here is similar to the
MinTime and MaxTime of [1], except that we choose here to deal with discrete, local clocks rather
than a continnous, global one.

Note that the restrictions on the transmit/receive actions are now completely local and the
global inhibit interactions merely constrain the two timer values sender(i).t and receiver(j).t so that
they increment at approximately the same rate after initiation of the transmission. The fact that we
can again use inhibit to express real-time properties in this way suggests that it is fundamental to
concurrent composition of realistic programs.

The constructs introduced in this section define a new UNITY-style programming
notation. We refer to it as Mobile UNITY, in recognition of the driving force behind its
development. Even in the absence of mobility, the features of the new notation improve
modularity and strengthen separation of concerns. Both movement and interaction staternents
require a subtle change in the mindset. They represent modeling constructs which are needed to
facilitate reasoning about such systems while not over-specifying the component programs. Their
possible realization is in terms of mechanical controls (in the case of movement), scheduling
constraints and services that are to be provided by the operating system, or physical properties of
the transmission medium.

5. Discussion

To confrol the complexity of mobile-aware applications, researchers will create new
programming abstractions that reflect the realities of mobile computing, including disconnections
and bandwidth variability, but which are all at once implementable, intuitive, and which facilitate
reasoning about the correctness of whole systems of mobile components. While we do not
presuine to know what these abstractions will be, we hope to show that the notation presented so
far is versatile enough to model many different approaches to mobile computing, and therefore can
serve as a good basis for describing the formal semantics of these new constructs. Figure 2
provides a summary of the kinds of constructs we were able to build from the primitives introduced
in Section 3. These constructs might best be thought of as patterns of program interaction and
coordination, derived from traditional communication mechanisms such as shared variables and
synchronization. In addition we worked on the formulation of clock synchronization constructs
similar in style to the mechanism shown in Section 4.

The first construct to appear in the table supports sharing among variables belonging to
different components. The construction is transient in the sense that sharing is controlled by the
predicate appearing in the when condition. The latter can be made to reflect co-location or some
notion of being within radio transmission range. The construct is also transitive. Two variables
need not be shared directly. When connectivity is available, a file on the laptop may be shared
with a host in the office. In turn the host may share the file across the network with some other
distant host. File changes at any one of the three places will propagate atomically. As connections
go down, ie., the when condition tnrns false, the range over which sharing take place is reduced.
By maintaining history variables and by employing reactive statements we are able to express this
rather complex constiuct in terms of the basic notation. Special care must be exercised to
gnarantee that the resulting reactive program does terminate. This can be a problem in Mobile
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UNITY because the notation allows the designer a very high degree of freedom with regard to
what can be specified. In practice the constructs made available for coordinating mobile programs
would be subject to restrictions which will help us offer termination guarantees. We should make
it clear that, at the moment, the constructions we built are not to be viewed as practical
implementations, only as a demonstration of the expressive power and semantic utility of the basic
notation. Three other constructs related to variable sharing appear in the table: one way sharing,
engagement whicl: allows for variables having distinct values to agree upon a common value at the
time sharing starts, and disengagement which allows, at the termination of a sharing relation, for
the parties to assume distinct values.

Notation

Name

Description

Ax=Bywhenr

shared variable

Changes to either A.x or By are reactively
propagated to the other, when the system is in
a state satisfying r.

Ax<« Bywhenr

read-only shared
varizble

Changes to B.y are reactively propagated to
A.x, when the system is in 2 state satisfying r.

engage(A X, B.y)
when r
value e

engage clause

The expression £is assigned to both A.x and
B.y reactively upon a fransition from a state
not satisfying r to one that does satisly r.

disengage(A.x, B.y)
when r
value 5, &,

disengage clause

The expression §, is assigned to A.x and the
expression &, is assigned to B.y reactively
upon a transition from a state that does satisfy
r to one that does not satisfy r.

As [B.twhenr

coselection

A.s and Bt are selected for execution
simultaneously when the system is in a state
satisfying r.

xcoselect(A.s, B.t, 1)

exclusive
coselection

A.s and B are selected for execution
simultaneously when the system is in a state
satisfying r, and may not execute
independently even when r is false.

coexecute{A.s, B.t, )

coexecution

A.s and B are selected for execution
simultaneously when the system is in a state
satisfying r and both of the internal guards of
A.sand B.1.

xcoexecunte(A.s, B.t, ©)

exclusive
coexecution

As and Bt are selected for execution
simultaneously when the system is in a state
satisfying r and the internal guards of A.s and
B.r They may not execute independently
even when ris false.

Flgure 2. High level coordination constructs in Mobile UNITY.

In UNITY, synchronization can be expressed by the use of a parallel bar which is actually
treated as a stafement constructor more than a synchronization mechanism and by the use of
superposition which is asymmetric and allows actions in one program to be extended by actions of
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another under certain technical restrictions having to do with variable access rights. Participation
in the synchronization is again static. By contrast, we provide transient and transitive forms of
synchronization. Coselection forces statements from distinct programs to be selected for execution
always together as long as the when condition holds true. In this manner, students’ laptops
entering a classroom could be forced to execute in perfect synchrony with the teacher’s stationary
host. A stronger form a synchronization involves the added requirement that the synchronized
statements all have true guards. In this case the teacher wonld not be able to start lecturing before
all the students in the room are ready. Yet another variant disallows the statement execution unless
the when condition holds, i.e., coordination is feasible. The teacher may be thus restricted from
assigning a grade when the student is not present, in our example. All these constructions involve
the use of inhibit statemenis and rely on the shared variable abstraction discussed above.

The primary motivation for the development of these constructs was the need to explore
the expressive power of the notation we proposed and the desire to seek new kinds of high level
constructs for building mobile applications. Mobile UNITY, however, is not a langoage for
building systems but a model for the study of fundamental concepts and ideas in mobility. A more
pragmatic dimension of this research is also emerging. Mobile UNITY has been used in an
exercise on involving the specification and verification of a network protocol, Mobile IP [13] in
[9], and to express various forms of code mobility [14]. Several pairwise high-level interaction
constructs (e.g., shared variabies and statement synchronization) were presented in [15]. These and
other efforts to use Mobile UNITY to verify properties of computations involving mobile
components will continue. We are also investigating coordination constructs that have effective
implementation in the ad-hoc networks setting. There, Mobile UNITY will be used to provide a
formal semantic definition for the constructs which would be made availabie to the developer in
the form of some standard application program interface that will offer strong semantic guarantees.

6. Conclusion

The Mobile UNITY notation and logic is the result of a carefui reevalnation of the
implications of mobility on UNITY, a model originally intended for statically structured
distributed systems. We took as a starting point the notion that mobile components should be
moedeled as programs (by the explicit addition of an auxiliary variable representing location), and
that interactions between components should be modeled as a form of dynamic program
composition (with the addition of coordination constructs}). The UNITY-style composition,
including union and superposition, led to a new set of basic prograrmming constructs amenable to a
dynamic and mobile setting. We applied these constructs to a low-level communication task in an
attemnpt to show that the basic notation is useful for realistic specifications involving disconnection.
The seemingly very strong reactive semantics matched well the need to express dynamically
changing side-effects of atomic actions. Finally, we explored the expressive power of the new
notation by examining new transient forms of shared variables and synchronization, mostly natural
cxtensions of the comparable non-mobile abstractions of interprocess communpication. The
notation promises {0 be a useful research tool for investigating new abstractions in mobile
computing. These problems have only recently received attention in the engineering and research
community, and formal reasoning has an important role to play in communicating and
understanding proposed solutions as well as the assumptions made by each.
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