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ABSTRACT OF THE THESIS

Mixed-Mode Control Interfaces

of Mobile Robot Teams

by

Erik Karulf

Master of Science in Computer Science

Washington University in St. Louis, 2011

Research Advisor: Assistant Professor William Smart

We propose applying various techniques and ideas, from video games, to the design

of a task-level control interface for teams of mobile robots. The control interface,

which visually resembles a video game and contains the functional elements of tradi-

tional robot control software, was designed and implemented using the ROS software

framework. Unlike previous interfaces in the literature, our interface allows the user

to control more than one robot and supports “sliding autonomy.” This application

allows the user to assign differing levels of independence to the robots dynamically,

dependent on the situation. We present an overview of the implemented system, a

discussion of its various elements, and identify results from some of our preliminary

user studies.
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Chapter 1

Introduction

Steve Cousins, CEO of the robotics company Willow Garage, suggests, “in the next
ten to twenty years our culture will experience a personal robotics revolution much
like the personal computing revolution of the 1980’s and 1990’s” [4]. While we agree
with Dr. Cousins, we believe the advancement of robotics in our society is limited by
control interfaces. There is a growing need for robot control interfaces that enable a
single user to effectively control more than one remote robot [11]. The increasing levels
of autonomy demonstrated by our robots allow them to be controlled at progressively
higher levels of abstraction. Such systems are not perfect; human intervention is
frequently required when unanticipated circumstances develop, or an object beyond
the capability of the perception systems must be evaluated [11].

The requirement for intermittent intervention suggests that our interfaces should be
capable of both high-level (task-based) and low-level (direct teleoperation) control
of remote robots, as well as the capacity to easily switch between these modes, as
necessitated by the situation [11]. The goal of a single operator controlling many
robots further indicates the need for a system which allows an individual to alert the
operator when help is needed. If there are too many robots for the operator to attend
to at once, there is a clear possibility a robot may sit idle, waiting for assistance, for
an extended period of time, without such a notification system [11].

Many of the obstacles of controlling remote robots are similar to the challenges of
controlling characters in video games. Real-time strategy games require controlling
many tens, or hundreds, of heterogeneous units at once. First-and third-person games
involve the detailed direct control of a single character. We believe that the interfaces
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utilized for these games make ideal candidates for interfaces for mobile robot control
[11].

Our motivation for drawing from video games is straightforward. Video games with
easy-to-use, effective interfaces will be played more often, and they will sell better
than games with poor interfaces. Almost four decades of market forces have refined
interfaces for many genres of games; this has resulted in systems that are intuitive,
easy to use, and effective. Furthermore, since many people play these games, they
are already familiar with the interfaces. We hypothesize that these facts will make
robot control interfaces based on computer game interfaces highly effective tools [11].

We present RIDE, the Robot Interactive Display Environment, a control interface
for robots that draws heavily on computer game interfaces for inspiration. RIDE
combines aspects from a number of computer game genres, allowing the operator to
switch between direct and supervisory control, as the situation requires. Unlike exist-
ing interfaces in literature, RIDE allows both the user and the robot to negotiate the
level of autonomy. RIDE achieves this negotiable level of autonomy by integrating
several types of interfaces: a supervisory control mode and a direct control mode.
The supervisory mode borrows display and control elements from real-time strategy
games to allow task-oriented control of many robots. The direct mode borrows visual
elements from racing games for a more fine-grained control of a single robot. Addi-
tional details of RIDE’s design—including the transition between the two modes—is
described in Section 3.1.

To evaluate the effectiveness of the RIDE interface, specifically the notification sys-
tem, we conducted a formal user study. Our experiment asked subjects to perform
a search task using two simulated robots in a small house. The experiment had
two conditions: one with notifications displayed, and one with notifications hidden.
We instrumented the application to record the user’s behavior and timing informa-
tion. The results of this data, along with the pre-experiment and post-experiment
questionnaires, are presented in Section 4.2. In addition to discussing video game
interfaces and presenting RIDE, we present the results of our initial user studies with
the interface, which suggests it is well suited to search tasks with multiple robots.
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Chapter 2

Human-Computer Interaction

Human-Computer Interaction (HCI) is the study of how humans interface with tech-
nology. This includes traditional interfaces, such as graphical user interfaces con-
trolled with a mouse and keyboard, as well as alternative interfaces such as the
accelerometers in the Nintendo WiiTM controller or the motion tracking system in
the Microsoft KinectTM.

Despite the advances in efficacy and popularity of non-traditional devices, this paper
will be limited to standard devices found on most computer systems, e.g., a moni-
tor, mouse, and keyboard. In Section 5.2 we will briefly highlight how alternative
interfaces would enhance our proposed interface.

2.1 Video Game Interfaces

Originally created as an application of computer graphics for use in the entertainment
industry, video game development has matured into an independent industry in its
own right. The popularity of video games has grown significantly throughout the
past decade. The Entertainment Software Association estimates 68% of American
households now play computer or video games [19]. This large demographic represents
a pool of users already versed in exploring 3D virtual worlds interactively. In these
interactions, users are not only perceiving the virtual world through simulated senses,
but users are also performing actions and controlling their presence in the virtual
world through input devices, eg., a mouse and keyboard.

3



2.1.1 Video Games in Research

Due to their common ancestry with human-computer interaction, many of the prin-
ciples of video game design can be applied to the field of human-robot interaction
(HRI), which will be discussed further in Section 2.2. There are several published
applications of video games within the fields of artificial intelligence and machine
learning. We will explore two applications that leverage human resources to comple-
ment artificial intelligence.

Von Ahn concluded that video games can be an effective tool for generating training
data sets for machine learning [22]. Von Ahn developed special video games he
labeled “games with a purpose.” Such games provide a means to solve problems
often considered trivial for humans, yet simultaneously considered quite challenging
for computers. The ESP Game, Von Ahn’s first game, uses human computation to
classify images that computer algorithms are unable to recognize. In these games,
the interaction of the human and the computer has changed to include the human
in the computation of data. This is an interesting inversion of traditional autonomy,
where the human is given tasks by the computer’s artificial intelligence [22].

Grollman, in his dissertation work, applied a video game interface with HRI principles
to capture training data for robotic user interfaces [6]. His application, RGame,
recorded user’s actions as they controlled a robotic dog and taught it to play soccer.
Grollman created an AI model for shooting and defending tasks, which utilized the
aggregate of data collected from RGame. Similar to Von Ahn’s research, the RGame
interface allowed the computer request information from the user to help it solve a
problem [6].

2.1.2 First-Person & Third-Person Games

First-person games involve the direct control of a single character by the player. The
game world is rendered from the viewpoint of that character, often with additional
game information overlaid upon it.
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The majority of the interface is occupied with a rendering of the world from the
character’s perspective. The player can only see what the character can see, and
the viewpoint is fixed. Additional game information is overlaid in the manner of a
heads-up display.

The challenge of first-person games is to build a situational awareness of the un-
seen elements of the surrounding environment. While this limited perspective often
leads to exciting and engaging gameplay, it is a design choice that explicitly limits
situational awareness.

Third-person games are similar, except the viewpoint is typically located above and
behind the character. The viewport in third-person games follows the character as she
moves through the world. Third-person games allow the player to see the character in
the world and yields a greater sense of context. However, the viewpoint is still fixed,
forcing the player to reconstruct unseen parts of the world in the player’s mind.

Figure 2.1 shows the user interface for Halo 3, a recent first-person game [3]. The
bottom left shows a local map, with the locations of other players and adversaries,
while character and weapon status is displayed along the top.

2.1.3 Real-Time Strategy Games

Real-time strategy (RTS) games focus on resource management and combat between
a small number of players (human and computer) where each controls large numbers
of heterogeneous units. These units represent troops, vehicles, buildings, and similar
resources.

Players give orders to their units at the task level, instructing them to, for example,
engage in combat, harvest some natural resource, or move to a particular location.
Units then carry out these orders autonomously, reporting back when they are done
or when some unforeseen circumstances are encountered. Orders are typically given
using a graphical interface, where displayed units can be selected and then assigned
a task.
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Figure 2.1: Bungie’s Halo 3 : A first-person interface

Figure 2.2 shows the user interface from Microsoft’s Age of Empires III RTS, a repre-
sentative and extremely popular example of the genre [14]. The interface is dominated
by the main display, which shows an iconic, isometric view of the world. The view-
point of the display can be moved to show different parts of the game world. The
display shows different types of units (cannons, cavalry, and infantry), terrain (water,
trees, and plains), buildings (gates, farms, and roads), and game information (selected
units, waypoints). The player selects units, individually or in groups, with mouse and
keyboard commands. Once selected, these units can be assigned a specific task from
the task list.

The task list appears in the bottom right of the interface and displays icons for all
available tasks, based on the currently-selected units. Some tasks, such as movement,
require more information, which is provided by clicking on the main display with the
mouse.
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Figure 2.2: Microsofts’s Age of Empires III : A real-time strategy interface

Information about the currently-selected units is displayed to the left of the task list.
In the figure, a single heavy cannon unit has been selected, and information on its
allegiance, player name, health, weaponry, and armor is shown.

A map of the entire game world, called the minimap, is displayed in the bottom left
corner of the interface. This map shows the locations of all units, colored according
to the controlling player, along with basic terrain type. Overlaid on the map is a
representation of the field-of-view in the main display (white rectangle in Figure 2.2).
In Figure 2.2, only the areas previously explored by the player are displayed in the
minimap.

Clicking anywhere on the displayed part of the minimap moves the viewpoint in the
main display to focus at that point. This option provides a quick way of moving the
main display viewpoint around the (potentially large) virtual world. The minimap
also displays primitive notifications; when a unit needs attention, a colored dot repre-
senting the unit flashes. A button, to the side of the minimap, centers the viewpoint
of the main display on a unit currently without an assigned task, if one exists.
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The interface in Figure 2.2 highlights notifications in two locations. Large notifica-
tions, in the center of the screen, provide urgent information to the user about the
current objective. The larger notification is displayed on the screen for a short time
before it is automatically hidden. Smaller notifications on the left side of the screen
provide less urgent, actionable information to the user. The smaller notifications
persist until dismissed by the user. When clicked the smaller notifications focus the
camera on location in this case, a new piece of artillery.

Finally, a menu bar stretches across the top of the display. This displays current
status in the top right (current quantities of resources), and it gives access to less-
frequently-used functions, such as help screens and configuration dialogs.

2.2 Human-Robot Interaction

Human-Robot Interaction (HRI) focuses on the interface between humans and robots.
In their survey paper on HRI, Goodrich and Schultz introduce five attributes, shown
in Figure 2.3, that define the interactions between humans and robots [5].

• Level of behavior and autonomy

•• Nature of information exchange

• Structure of the team

• Adaptation, learning, and training of people and the robot

• Shape of the task

Figure 2.3: Five attributes of Human-Robot Interaction

Of the five attributes of HRI, we will focus on autonomy and information exchange.
Autonomy is defined as the extent of actions a robot may take independently. “Sliding
autonomy,” the idea that autonomy may vary depending on context, is introduced
in further detail in Section 2.2.1. Information exchange describes the data that flows
between a robot and a human. Like sliding autonomy, we introduce the idea that
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information exchange may vary based on context. Section 2.2.2 introduces our refine-
ments to the existing work in this field [5].

2.2.1 Autonomy

The relationship between a robot and a human, as provided through the interface,
can be viewed or conceptualized along the lines of a continuum or a scale of auton-
omy. Teleoperation represents one end of the spectrum, where the robot exhibits
no qualities of autonomous behavior. On the other hand, a fully autonomous robot,
acting independent of human input, represents the other extreme of autonomy. A
simple scale of autonomy can be found in Figure 2.4 [5].
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Figure 2.4: Scale of Robot Autonomy

Robots, as they presently exist, have a fairly limited set of autonomous actions avail-
able. As a result, most current interfaces are artificially conservative in their auton-
omy due to limitations in artificial intelligence. As research into artificial intelligence
and machine learning grows, a much more diverse set of autonomous behaviors will
inevitably become available. As user interface designers, we are tasked to create
extensible interfaces to support future behaviors.

The idea of sliding autonomy allows a human, and a robot, to change the level of
autonomy as needed. For illustration purposes, consider a robot that explores a
warehouse. If the robot planned a poor navigation path, a user could manually
specify the waypoints of an optimal path. If the robot is unable to complete the
specified path due to an obstruction in the path, the robot could ask the user to
directly teleoperate around the obstacle. Once free of the obstruction, the user would
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input a new set of goal coordinates and allow the autonomous navigation system to
resume control. When combined with machine learning, sliding autonomy provides
the robot an excellent platform for interactive learning from demonstration. The idea
of interactive learning from demonstration is already well established [22] [6].

2.2.2 Information Exchange

The nature of information exchange defines the flow of data between the human
and the robot. What information is provided, how it is represented, and when it is
communicated are all properties of the interface design. This encompasses low-level
communication of navigation and sensor data as well as high-level commands sent
from the human [5].

The purpose of visualization interfaces is to represent the one-way exchange of infor-
mation from the robot to humans. This data typically includes location information,
laser or sonar readings, battery readings, accelerometer readings, and map data. Orig-
inal interfaces were written to be accessible programatically. These interfaces were
slowly adapted to display sensor data graphically, but the resulting interfaces were
disjointed and required operator training. Examples of these 2D user interfaces can
be seen in Figure 2.5 [1].

In 2007, Nielsen introduced an ecological user interface with the goal of combining
sensor data into a single, integrated display. Nielsen designed his interface for ef-
fective teleoperation, the technique of controlling a robot remotely. In his study,
Nielsen compared an integrated 3D user interface to a simple 2D user interface for
several environment-searching tasks. The 3D user interface displayed combined sensor
data through a single viewport, while the 2D user interface displayed the same data
through individual elements. The study found the 3D interface decreased collisions
and decreased task completion time [16].

Nielsen attributes the success of the 3D interface to improved situational awareness.
The observed effect of situational awareness and context on interface effectiveness is
congruous with the findings of other researchers [16].
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Figure 2.5: Existing Human-Robot Interface by Bruemmer et al

A limitation of Nielsen’s interface is that its focus on teleoperation leaves the robot
without autonomy. While teleoperation may be optimal for single robot environments
it does not allow for concurrent robot control. This limitation requires a human
operator for every active robot. We believe that providing an ecological interface
common to multiple robots allows for more efficient use of human resources.
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Chapter 3

Implementation

We present RIDE, the Robot Interactive Display Environment, as an example of a
multi-mode interface. While a number of control interfaces either similar to, or draw
direct inspiration from, RTS games [2] [10] [13] [21] or from first or third-person games
[2] [9] [12], we are not aware of any systems which provide as many RTS interface
features as RIDE. We are also not aware of any existing interfaces that allow the user
to move between task-level and direct control in the way that RIDE allows. We should
also note that the work presented in this paper builds directly on a previous prototype
version of RIDE [20]. We discuss the user interface in full detail in Section 3.1.

We use a robotics middleware package, ROS, to abstract details of robotics software
from the RIDE user interface. We briefly introduce key concepts of ROS, the Robot
Operating System, in Section 3.2. In Section 3.3, we describe the system level ar-
chitecture of RIDE. The source code for RIDE is freely available at the Washington
University ROS repository, http://wu-ros-pkg.sourceforge.net.

3.1 User Interface

RIDE provides multiple interface modes, each specialized for different levels of auton-
omy. In our design phase, we decided to separate the user interface into two segments:
the supervisor mode and the direct mode. The “supervisor mode” relies on the robot
to perform actions autonomously and report the information back to the human, as
appropriate. The “direct mode” allows the user to directly teleoperate a robot. By
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including both control styles, the user is given flexibility to use the most appropriate
control mode for a given situation.

In addition to switching the control schemes between modes, we also changed the
fidelity of information exchanged. We found that by providing streaming video for
each robot, it was not only taxing on the network bandwidth, but also wearing on
the human’s perception. The movement from the video would draw the users eye to
several places on the screen making effective management difficult. To combat this
problem, we reduced the number of available sensors in the supervisor mode. When
a user wished to inspect a region with higher fidelity, he could switch into the direct
mode and enable all sensors for the current robot.

Menu Bar

Viewport

Widgets

Minimap Status Panel Actions Mode
Switch

Figure 3.1: RIDE User Interface: Supervisory Mode

The screenshot figure in Figure 3.1 shows the RIDE supervisory control mode with
annotated descriptions of the user interface elements. The viewport is the main
portion of the display. The viewport changes camera perspective based on the control
mode; it is either locked behind the robot in the direct control mode or user operated
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in the supervisory interface. We took care to add alpha transparency to all user
interface elements to prevent obstructing the viewport.

The menu bar, at the top of the screen, remains static between the two control modes.
The various menus allow for customization of the user-interface on a global and per-
robot basis. These settings can be saved, and restored in future sessions. There are
also menu bar buttons to control the camera viewpoint and zoom level, toggle the
sensor information displayed, and to list all currently known robots.

The widget panel is displayed at the bottom of the screen. The widget panel always
contains a left, center, and right widget. A widget to change the display mode is
always locked to the far right of the widget bar. Table 3.1 describes the widgets
displayed based on the state of the interface.

Mode Left Widget Center Widget Right Widget
Direct Control minimap Information Panel Proximity Panel
Supervisory Control
(Single Robot)

minimap Status Panel Action Panel

Supervisory Control
(Multiple Robots)

minimap Group Panel Action Panel

Table 3.1: RIDE User Interface Widgets

3.1.1 Supervisory Control

As mentioned in Section 2.1.3, RTS games employ a top-down view of the world to
control many units. Real time strategy games exemplify the qualities we desire for
a supervisory interface. Real-time strategy games support the task-based control of
heterogenous unit types; each unit type has separate abilities, strengths, and weak-
nesses. We wanted a way to visualize this information in the user interface without
cluttering the main viewport during normal use. We developed two user interface
widgets to represent the abilities, strengths, and weaknesses of each robot visually.

The first element, known as the “information panel,” can be seen in Figure 3.1. When
a robot is selected, the information panel shows a listing of the robot’s name, type,
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battery status, current task, and a list of sensors. An iconic rendering of the robot is
displayed to visually represent the model of the robot.

The second panel developed for the supervisory mode was the “action panel.” The
action panel displays a list of buttons representing available actions for the selected
robot. This list of actions is populated from what actions the robot self-reports it
can perform. The implementation details of action auto-discovery is described in
Section 3.3. Clicking on a button prompts for any additional arguments, such as
asking the user to click on a position; it then sends the task instruction to the robot.
In our development, we found that visualizing a confirmation helped improve clarity
of what instructions were given to the robot. As an example, when the user instructs
a robot to move to a specific destination, the user interface will blink the target icon,
twice, on the destination.

Grouping Robot Teams

In our study of RTS games, we found that players organized units into heterogenous
groups such that the individual units complemented each other’s strengths and weak-
nesses. This required an interface that allowed a user to select multiple robots, at the
same time, and then control the group effectively.

When a user wished to select a group of robots, instead of a single left click, the
user left click and dragged a rectangle around the robots she wished to select. Much
like single unit selection, a detailed information panel displays relevant data about
the robot. However, instead of showing detailed information on a single robot, the
“information panel” will be updated to show basic information on the group as a
whole. The information panel displays a 3D mockup for each robot currently selected
and the name of the robot. The user may move the mouse on top of the 3D mockup
to obtain additional information about the robot.

In addition to the information panel, the “action panel” also has a slight change in
behavior. The action panel selects the intersection of a set of actions available to each
robot. RTS games provided a base set of actions that all controllable units must be
able to perform: “Stop” and “Move.” We require the same two actions be defined for
all robots in RIDE. The advantage of requiring the move command for all robots is
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that we could utilize a shortcut found in most RTS games. When a robot is selected
– instead of clicking on the move button and then clicking on a destination, the user
need only right click on the destination location.

3.1.2 Direct Control

The direct control mode sets up a high fidelity of information exchanged between the
human and the robot as the user teleoperates the robot. Due to the large amount of
prior work in the field of interfaces for teleoperation, we searched for video game design
elements that would complement the existing interfaces. While there are several styles
of video games that we could draw from for inspiration, we decided to base our direct
control mode on “open environment games.”

While not a genre in its own right, open environment games, or sandbox games,
define a style of gameplay. Rather than the story following a predetermined linear
path, the player explores a world where the story unfolds around her. For some,
this style of gameplay is heralded as the future of games. Setting aside the narrative
aspect of open environment games, the design elements that they employ have direct
applicability to robot interfaces.

The interfaces of open environment games are usually fairly minimal; the preference
is to leave most of the user interface available for camera display. The few user
interface elements that do exist are typically semi-transparent, which allows the user
to see through UI components to the map. We applied this principle to all user
interface components in RIDE by applying a small amount of alpha transparency.
You can see an example of the transparency looking at the floor behind the user
interface elements, at the bottom of the screen, in Figure 3.1.

In most open environment games, a third person camera follows behind the player’s
avatar. While controls exist that allow the user to manually rotate the camera, most
gameplay occurs with default camera positioning. This camera control style is the
inspiration behind our third-person direct control mode. The user uses the arrow
keys, on the keyboard, to move the robot in a given direction and uses the mouse to
rotate the camera as needed.
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A common component of most open environment games is a minimap which allows
users to orient themselves, with relation to the “world.” In video games, important
characters, landmarks, and other notable locations may be displayed in the minimap.
We added a minimap to the lower right hand corner of the RIDE user interface.
The minimap is a component common to both the direct and supervisory control
interfaces. We feel strongly that the minimap’s location on screen should remain in
the same location for both modes.

3.1.3 Tasks and Notifications

We adapted several elements from Nielsen’s ecological user interface in our design of
RIDE. We arranged the user interface to display inside a single viewport, to avoid
splitting the user’s attention. We also procedurally constructed a 3D world using the
map and sensor data. This rich user experience allows to the user visually perceive
the state of the world, as the robot perceives it. Finally, we introduced new con-
cepts to improve upon the weaknesses of the existing interfaces: a task system and a
notification system [16].

We introduced an asynchronous task system, which allows the human to directly
command robots through a set of predetermined tasks. A robot may run only one
single task at a time, and receipt of a new task replaces the previous task. The task
system was written generically to allow each robot to provide actions appropriate
to its hardware and software. Additional details on the implementation of the task
system can be found in Section 3.1.1.

To complement the task system, a notification system was also introduced. The
notification system enables the robot to communicate with the human. The design
of the notification system enables the robot to select the importance of the message,
and it permits the human to filter messages by importance. This gives the human
operator the ability to ignore routine informational messages, while still receiving
urgent messages. An example notification is shown in Figure 3.2. The example shows
the robot self-reporting it has discovered a box, it’s goal in this search and rescue
scenario.
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Figure 3.2: RIDE Notification Example

3.2 Robot Operating System

The RIDE interface uses the ROS robotics middleware framework to abstract com-
mon components of robotics software. ROS breaks a large robotic system into many
discrete computational nodes. Because the nodes for a single robot operate as distinct
processes, potentially across multiple platforms, ROS provides communication mid-
dleware. The communication between nodes is brokered through a special roscore
node. This roscore node maintains a list of active nodes, topics, services, and
configuration values [18]. We describe the publish/subscribe topic system and the
synchronous service system in Section 3.2.1. Finally, we discuss tf, ROS’s built-in
kinematic tree in Section 3.2.2.

3.2.1 Topics and Services

ROS provides a framework where computational nodes communicate via topics and
services. A topic is a named broadcast endpoint that supports multiple readers and
writers. Nodes that write to a topic are known as “publishers.” A publisher announces
it is publishing to one or more topics to the roscore node. Nodes that wish to read
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from a topic are known as “subscribers.” While similar in design to the Common
Object Request Broker Architecture (CORBA), the roscore node only provides a
list of publishers to a subscriber node; the subscriber communicates directly with the
publisher. In general, nodes either publish sensor data, transform and republish data,
or control actuators from published data. A simple example of a ROS digraph can
be seen in Figure 3.3. While topics are well suited for periodic broadcast messages,
the “best effort” delivery make topics unsuitable for command data [18].

The services system within ROS addresses the need for “reliable” message delivery.
A service is a named endpoint with one service provider and many service clients.
Similar to topic subscribers and publishers, service providers and clients announce
their intentions to the roscore node. Unlike broadcast topics, messages pass between
the service provider and client through a unicast stream.

laser

b9

Driver Nodes Control Nodes

detect
danger

warn
people

Figure 3.3: Example ROS nodes and topics
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3.2.2 Kinematic Tree

A large part of the complexity of robotic systems is transforming coordinate frames
in a timely manner. ROS offers a special topic located at tf and provides a cross-
language library, also called “tf”, to ease coordinate transformation tasks.

ROS builds a kinematic tree using data published to the tf topic. Coordinate frames
contain a timestamp, an object’s name, the parent coordinate frame and the quater-
nion offset between the two. The tf package allows a developer to request a quaternion
offset between two coordinate frames.

In order to maintain a correct representation, the library automatically discards stale
coordinate frame data. This requires objects to publish their location at a specified
frequency. When all nodes are published at an acceptable rate the full kinematic tree
is accessible. A sample kinematic tree for a robot with a stero-vision rig mounted
on-top of a pan-tilt unit can be seen in Figure 3.4.

/map

/base_footprint

/base_pantilt /base_laser

/webcam_left /webcam_right

Figure 3.4: Sample Kinematic Tree
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3.3 RIDE Architecture

Originally designed for a single robot system, ROS is not well suited to control multi-
robot teams. This conflicts with RIDE’s design to control large numbers of robots.
We decided to maintain the ROS architecture by maintaining a roscore and set of
nodes on each robot. We define a collection roscore and supporting nodes as a
“realm.” We developed a utility, rosmultimaster, to allow a single node to connect
to multiple realms. This design allows robots to operate independently and gives
RIDE the freedom to connect to robot realms as needed.

Each robot realm runs a RIDE node (ride_agent in figure 3.5), which publishes
information about the robot, including the tasks that it can perform, the sensors
that it has, diagnostic information, and notifications. The RIDE interface uses this
information to subscribe to relevant sensor, diagnostic, and notification topics from
the robot.

Figure 3.5 shows the set of ROS nodes for a simulated robot. All sensor information
(base_scan, odom) originates from the simulator node (state_bridge). Similarly, all
movement commands (cmd_vel) are consumed by state_bridge. On a real robot,
there would be separate nodes for each of the sensors, and for the movement controller.

RIDE also establishes direct, service connections with the nodes responsible for per-
forming the tasks that can be allocated to the robot. In Figure 3.5, GoToNode is
responsible for movements tasks given to the robot. The ride_agent node is also
capable of sending movement commands directly to the motion controller (or simu-
lator), to stop the robot when needed.

When robots connect to the RIDE interface, the tasks that they can perform are
recorded, and this information is used to populate the task list when the robots are
subsequently selected. Currently, the set of tasks that a robot can perform is assumed
to be static, and drawn from a fixed set of known tasks. This assumption allows us to
assign an appropriate icon for each task, and to know the parameters that each task
requires (which require additional modal interactions with the interface). Similarly,
we assume that the sensors available to our robots are drawn from a known set. This
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lets us be sure that we have appropriate visualizations for each possible sensor. We
discuss plans to relax these assumptions in future work (see Section 5.2).

3.4 Panda3D

RIDE uses the popular 3D rendering engine Panda3D to display the virtual environ-
ment to the user. Like most rendering engines, Panda3D relies on a scene graph for
rendering objects onto the screen. We dynamically constructed the 3D environment
based on data from the mapping realm and each robot’s representation of the world.
Due to the common mapping realm, mentioned in Section 3.3, all robots share a com-
mon coordinate frame. This allows the RIDE UI to represent a one-to-one mapping
of objects from each robot’s kinematic tree to objects in Panda3D’s scene graph. For
example, the robot given in the Figure 3.4 would render a robot equipped with a laser
rangefinder and a two web cams mounted to a pan-tilt unit.
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Chapter 4

User Study

We conducted a formal user study to evaluate the effectiveness of the RIDE interface
and to test the validity of our thesis, specifically the notification system. We designed
an hour-long user study with the goal of testing the asynchronous task and notification
system. Our experiment had two-conditions; in one condition the notification system
was displayed, and in the other condition, the notification systems were not enabled.
An example notification is shown in Figure 3.2.

The user study was advertised via flyers posted publicly on the Washington University
Campus. Our user pool consisted of 22 adult participants, 6 female and 16 male
(M = 23.5, SD = 5.45). The median age was 21.

Using two simulated robots in a small house, subjects were asked to perform a search
task. Subjects were directed to locate three boxes in the house, as quickly as possible.
The subjects were told the boxes were not shown on the map and that the boxes would
be detected by the laser range-finder sensor. To confirm that the subjects had found
the box, they were asked to point it out to the experimenter, once the box had been
found. Subjects were informed they could use any of the features of the interface
they wanted. In all runs of the experiment, the starting positions of the robots, and
box locations, were the same. The simulated robots modeled Videre Design Erratic
ERAs with a Hokuyo URG laser range finder.

Each subject was individually run through the user study. A user study session
consisted of a pre-experiment questionnaire, a short set of practice sessions, two
search and rescue experiments, and a post-experiment questionnaire. We created two
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separate experiment conditions, one without notifications and one with notifications,
and created a program to execute both in a random order during the user study.

4.1 Experimental Design

The primary goal of our user studies was to determine if the RIDE user interface
was an effective tool for control groups of robots. Our secondary goal was to test the
individual interface elements unique to RIDE and to determine if they enhanced the
user experience. We examined prior work to find activities that a group of robots
could effectively accomplish, if controlled properly, and would not require additional
background experience of the subjects. We decided upon the “search and rescue”
modality, as, generally, it is an easily understood activity that can be accomplished
quickly, through effective coordination of robots.

As discussed, we designed a scenario where the robots were used to find boxes hidden
throughout a house. The boxes would not be visible on the on-screen map directly,
but they would display through the sensors on the robots. The house can be viewed,
without boxes, in Figure 4.1.

The robots were configured to simulate Erratic ERA-MOBI robots. The simulation
engine, as described in Section 3.3, was programmed to emulate a laser sensor and an
odometry sensor. These two sensors allowed the robot to detect the boxes, walls, and
other obstacles, through the laser readings or by picking up a stalled engine through
the odometry sensor.

We designed three separate runs for a user study session: a training run, a run with
notifications disabled, and a run with notifications enabled. We elected to assume
that subjects would require a small amount of training before they were allowed to
control robots. In order to meet this assumption, we provided each subject with the
same five-minute practice run to ensure a common training set.
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In the following subsections I will describe, in order, the components of a user study
session. This research protocol was approved by the Washington University Institu-
tional Review Board (IRB). The full documentation submitted to the IRB is docu-
mented in Appendix A.

4.1.1 Pre-Experiment

At the beginning of each user study, we obtained informed consent, from each sub-
ject, to participate in research. The informed consent paperwork may be found in
Appendix A. After obtaining informed consent, subjects were asked to complete a
short pre-experiment questionnaire, to record the subject’s background information,
such as demographic information, experience with computers, video games and iden-
tification of which video games the subject’s played regularly, as well as the subject’s
robotic experience. Ultimately, the goal of the questionnaire was to obtain useful
information for correlation in data analysis.

After completion of the questionnaire, subjects were introduced to the RIDE interface
and given a short lecture on robotics. The target audience for RIDE required a basic
understanding of the robots they were to be controlling. The lecture covered basic
concepts including robot movement (quasi-holonomic vs. holonomic) and laser range
finders.

After the scripted lecture on robotics, we asked the subjects to narrate their thought
processes out loud, a practice called “speak aloud” within the HCI community. We
asked subjects to play a round of Minesweeper, while speaking their thoughts out loud,
to give them practice and become comfortable speaking out-loud. The pre-experiment
preparation concluded, after approximately five minutes, when the researcher was
confident in the subject’s ability to describe her thought process.

4.1.2 Training Run

The training run took place inside the virtual house pictured in Figure 4.1. Unlike the
experimental runs, there were no boxes present within the house during the training
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run. Instead, the subject was asked to demonstrate basic control over the interface
by accomplishing a series of tasks. Once the user completed the training activities,
he/she was given an opportunity to continue using the user interface until the user
was comfortable proceeding with the experiments.

4.1.3 RIDE UI Experiments

The user study program randomly chose either the notification or the non-notification
experiment. In both experiments, the subjects were told of four boxes hidden within
the house. We asked the subjects to find the boxes quickly. Once a user believed
they had found the box, they were instructed to circle the box with their mouse
pointer. This information was used in conjunction with other data in post-processing,
to determine if the user correctly identified each box.

During the experiment, the researcher was unable to offer any advice or answer any
questions. The researcher took hand-written notes on each experiment with an em-
phasis on recording information related to the user’s thought process. The automated
user study application is set to record keystrokes, mouse events, application state and
the screen of the participant.

4.1.4 Post-Experiment

We asked participants a series of structured and semi-structured questions to conclude
the user study. The post-experiment questionnaire is found in Appendix A.

We also conducted a brief semi-structured interview after the post-experiment ques-
tionnaire. These questions were based on remarkable events noted by the researcher
during the experiments. The semi-structured interview results were not included in
formal analysis of RIDE, rather they were aimed to provide insight for continued
application development.
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Figure 4.1: User Testing Environment
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4.2 Results

In this section, we present the results of our user study. The subjective ratings in the
pre-experiment and post-experiment questionnaires were measured using a 7-point
Likert scale. Unless noted, in the following analysis we present the results of running
a between-participants analysis of variance (ANOVA) using completion time, total
neglect time or total idle time as the dependent variables. All times are presented
in seconds. The total neglect time is the sum of the neglect times for each robot,
and consequently, can be greater than the completion time for the task. Similarly,
the total idle time is the sum of the idle times for the two robots. Tabular results
report the mean, standard deviation, of times, the F-statistic from the ANOVA (for
F (1, 20)), and the significance level.

4.2.1 Effects of Prior Experience

In general, we found that prior experience with video games or with controlling a robot
affected a subject’s performance on the search task. The single factor that showed
the greatest influence on performance was video game use (Table 4.2.1). Subjects
who did not regularly play video games took almost twice as long, on average, to
complete the search task than subjects who did regularly play video games. An even
more marked difference was seen in total neglect and idle times. Non-gamers had, on
average, approximately three times longer neglect and idle times, compared to regular
gamers.

VG NVG F p
Completion Time 244.67 (142.57) 550.43 (178.03) 18.798 < 0.001
Neglect Time 181.27 (160.54) 585.57 (218.85) 24.073 < 0.001
Idle Time 238.13 (190.06) 720.00 (319.07) 19.850 < 0.001

Table 4.1: Effects of regular video game use (VG) vs. no regular video game use
(NVG).

Surprisingly, experience playing RTS games did not have a significant effect on com-
pletion time, total neglect time, or total idle time. However, first-person game ex-
perience was mildly significant for completion time (see Table 4.2.1). Subjects who
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played first-person games completed the search task more quickly than those that did
not play first-person games. Similar results, but with more significance, were seen for
both total neglect time and total idle time.

FP NFP F p
Completion Time 264.82 (150.42) 419.09 (237.44) 3.3138 = 0.0837
Neglect Time 195.45 (170.41) 424.36 (291.50) 5.0555 < 0.05
Idle Time 255.09 (202.24) 527.81 (375.06) 4.5062 < 0.05

Table 4.2: Effects of regular first-person video game play (FP) vs. no regular first-
person video game play (NFP).

Prior experience controlling a robot was also significant. Subjects with previous
experience controlling a robot had lower completion times than subjects with no
prior experience (Table 4.2.1). Similarly total neglect time and total idle time were
both significantly lower for subjects with previous experience controlling a robot than
for those without.

RE NE F p
Completion Time 236.33 (170.27) 415.08 (207.99) 4.5248 < 0.05
Neglect Time 163.33 (178.53) 411.38 (265.54) 5.9435 < 0.05
Idle Time 220.22 (222.86) 510.00 (339.22) 5.0228 < 0.05

Table 4.3: Effects of prior experience controlling a robot (RE) vs. no prior experience
controlling a robot (NE).

Finally, the percentage of total time spent in supervisory mode was somewhat de-
pendent on prior experience of first-person games. Subjects with prior experience of
first person games spent more time in supervisory mode than the other two modes
(M = 89.86%, SD = 15.20) than those subjects with no experience of first-person
games (M = 72.60%, SD = 23.28), F (1, 20) = 4.2348, p = 0.05287.

4.2.2 Use of Supervisory Mode

Subjects spent, on average, more than 69% of their time in supervisory mode (t =
2.4944, p < 0.01), and less than 0.3% of their time in first-person mode (t = −2.747, p <
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0.01). Completion time, total neglect time, and total idle time were significantly af-
fected by the percentage of total time spent in supervisory mode. The median time
percentage of time spent by subjects in supervisory was 94.19%. Subjects that spent
more than this median percentage of time in supervisory mode completed the search
task, on average, twice as fast as subjects who spent less than median time in super-
visory mode (Table 4.2.2). The effects on total neglect time and total idle time were
similar.

GM LM F p
Completion Time 197.17 (79.80) 515.70 (181.79) 30.119 < 0.001
Neglect Time 124.17 (89.09) 532.80 (218.64) 35.198 < 0.001
Idle Time 174.17 (111.90) 652.20 (305.51) 25.482 < 0.001

Table 4.4: Effects of spending greater than median time in supervisory mode (GM)
vs. spending less than median time in supervisory mode (LM).

4.2.3 Effects of Notifications

Subjects rated the task as easier to perform with notifications (M = 1.70, SD = 0.94)
than without notifications (M = 2.67, SD = 0.98), F (1, 20) = 5.4319, p < 0.05.
Subjects also rated themselves as needing less help with notifications enabled (M =
1.50, SD = 0.71) than with notifications disabled (M = 2.50, SD = 1.09), F (1, 20) =
6.2338, p < 0.05.

Subjects’ ratings of how easy it was to control the robot were also mildly affected by
the use of notifications. Subjects rated the robot as easier to control with notifications
enabled (M = 1.80, SD = 0.92) than with notifications disabled (M = 2.58, SD =
0.90), F (1, 20) = 4.0528, p = 0.05775.

Although notifications had no significant effect on completion time, total neglect time,
or total idle time across all subjects, a significant effect was noticed for subjects with-
out prior robot control experience. For subjects with no prior experience controlling
robots, the time taken to complete the search task was significantly less with notifi-
cations enabled (Table 4.2.3). Total neglect time, and total idle time were similarly
dramatically reduced in this group with notifications enabled.
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NE ND F p
Completion Time 301.57 (149.13) 547.50 (195.07) 6.6401 < 0.05
Neglect Time 269.21 (204.21) 576.50 (241.72) 6.1615 < 0.05
Idle Time 319.86 (205.03) 731.83 (340.67) 7.2453 < 0.05

Table 4.5: Effects of enabling notifications (NE) vs. disabling notifications (ND).
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Chapter 5

Conclusion

We propose applying techniques and design elements from video games to address
weaknesses in existing human-robot interfaces. We submitted RIDE, an interface for
controlling heterogeneous robot teams using design elements from video games. We
introduced the concept of “sliding autonomy” to allow the human operator and the
robot to vary the degree of robot autonomy dependent on the situation. We presented
an overview of the implemented system, RIDE, and using the ROS middleware frame-
work. Finally we present the results of preliminary user studies showing, among other
results, the effectiveness of our notification system.

5.1 Discussion

The results presented in Section 4.2 show, unsurprisingly, that subjects who play video
games or have prior experience controlling robots are better at performing the search
task (ie. have lower completion, total neglect, and total idle times) with the RIDE
interface than those who do not regularly play video games. While experience with
RTS games seems to have no significant effect on the how well subjects perform the
task, experience with first-person games clearly demonstrates an effect, decreasing all
three times. First-person game experience caused subjects to use the first-person in-
terface less than subjects who did not play first-person games, suggesting experienced
first-person gamers recognize limitations of the interface.

All subjects, regardless of experience, showed a preference towards the supervisory
mode interface spending over 69% of their time, on average, in this mode. The
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first-person mode was only used by a single subject during non-training runs. This
leads us to believe limitations in our current implementation of the first-person are
preventing adoption. Currently, the map is rendered as a texture on the ground plane
in all modes, making it hard to see and correctly interpret at acute viewing angles.
We hypothesize extruding the map into 3D space, effectively creating “walls” coming
out of the floor, would provide a first-person user a much better sense of positional
awareness with respect to the map. The idea of extruding the map to create 3D walls
is similar to an interface by Bruemmer et al [2].

The percentage of time spent in supervisory mode dramatically affects the times,
with higher percentages correlating with much faster completion, and much reduced
neglect and idle times. This suggests that an RTS interface is more appropriate than
first- or third-person interfaces for this type of search task.

Notifications have a similarly beneficial effect, making the task subjectively easier to
perform, and causing the subjects to ask for help less frequently. Surprisingly, across
our whole population, notifications did not have significant effect on completion time,
total neglect time, or total idle time.

However, the use of notifications did have a significant effect on subjects with no
prior robot control experience, lowering completion time, neglect time, and idle time
dramatically. We attribute this difference in effect to a flaw in our experimental
design. We believe that the two-robot search task was not taxing enough for those
who had controlled robots before. We hypothesize that these advanced subjects were
able to manually monitor both robots at the same time, actively anticipating failures,
making the notification system redundant. More inexperienced users, on the other
hand, might not notice a robot in need of help when attending to the other robot,
leading to increased total neglect and idle times. In this situation, notifications serve
a critical function.

In conclusion, we believe that mixed-mode video-game-based interfaces, such as RIDE,
offer an effective way to control large numbers of mostly-autonomous mobile robots.
Our initial studies suggest that an active notification system allows inexperienced
users to more efficiently control teams of robots, reducing neglect and idle times. We
believe that this result will also apply to more experienced users in situations where
they are sufficiently overloaded, or where unexpected events happen frequently.
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5.2 Future Work

Observing the user interface usage, during the user studies, revealed several weak
points in our implementation. We believe that small enhancements to RIDE will
greatly benefit the end user experience.

In Section 2.2.2 we introduced Nielsen’s prior work designing ecological interfaces
for robotics. While the paper was a large influence on our design work, we feel our
interface would benefit from additional visual cues. In their proposed UI, Nielsen ex-
truded the known elements from the coverage map vertically to create an approximate
three dimensional representation [16]. In our original design, we rejected this design
element as we believed it misrepresented the third dimension to the user. However,
during user studies, the users often mentioned it was difficult to position the camera
for teleoperation while keeping the map visible.

During our user studies we also discovered that many users, especially users without
prior robotics experience, found the robots to behave in a counterintuitive manner. As
an example, the path planning algorithm we used in our study is weighted in a way
that often chooses a longer, more circuitous route to avoid obstacles, than a more
direct route that passes near obstacles. We believe that exposing more behavioral
information will reduce the cognitive load on users. Future versions of the RIDE
application would benefit from adapting the prior work in visualizing autonomous
navigation systems to the field of robotics.

5.3 Future User Studies

While successful, the design of the preliminary user study introduced several miti-
gating factors that prevented a definitive acceptance of our hypothesis. We feel our
hypothesis can be clearly demonstrated with a revised experimental design. We iden-
tify and propose solutions to address several major problems with our experimental
design.

In our preliminary user study, our intent was to provide a common set of knowledge
in terms of robotics and video game experience. Unfortunately, by providing this
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training we made the analysis between experience groups much more difficult. As a
result, we have widened our target audience to include users without robotics expe-
rience. In future studies, we plan to limit our training to include only speak-aloud
practice to avoid introducing any potential biases.

In addition to the problems in our pre-experiment preparation, we have identified
several ways to improve upon the experimental design itself. The purpose of our
experiments was to prove applying video game principles to HRI interfaces will im-
prove usability. In order to prove our hypothesis, we used notification display as an
independent variable and recorded completion time as a measure of usability. While
this is a valid approach, we would like to re-focus our experiment to directly test our
mixed-mode interface by measuring cognitive load.

In order to evaluate the sliding autonomy approach, we will run a randomized three-
condition within subject experiment. Instead of using notifications we will use the
control modes as our independent variable. This gives us three conditions to test:
direct only control, supervisory only control, and blended control. This would allow
us to directly compare the given modes and record metrics on the blended control
interfaces, such as time spent in each mode and the number of mode switches.

As mentioned above, while we can correlate successful task completion with improved
usability, we would like to utilize a more direct metric. Researchers at the United
States National Aeronautics and Space Administration (NASA) developed a metric
for describing a human’s workload while accomplishing a task. The metric, known
as the “Task Load Index,” is computed from a user’s perceived workload on six sub-
scales: mental demand, physical demand, temporal demand, performance, effort, and
frustration [8]. Our revised user study would ask subjects to rate their workload on
each of the Task Load Index’s six sub-scales after each experiment. At the conclusion
of the user study, we would ask users to answer the fifteen questions to determine the
weighting of the sub-scales when computing the task load index [7].

Given the context of testing the control modes using the NASA Task Load Index,
we decided to modify the subjects’ tasks to more accurately represent our use cases.
These new - more challenging - tasks would require a larger simulated world, more
robots, and a different scenario. A weakness in the preliminary user study’s scenario,
is that the robots were able to complete their task immediately. This model does not
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match a use case in the real world, where most actions will require a non-zero amount
of time to complete. Such a study, we believe, will show the benefits of mixed-mode
interfaces across the whole population.
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Appendix A

Institutional Review Board
Documentation

Included Documentation:

• Consent for Participation in Research Activities (2 pgs)

• Pre-Experiment Questionnaire (1 pg)

• Post-Experiment Questionnaire (2 pgs)
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Subject ID: __________

Game-Based Robot Control Interfaces

Pre-Experiment Questionnaire

Age: Gender: Major/Occupation:

How many hours per week do you spend working on a computer?
__ None __ 1 to 5 __ 6 to 10 __ 11 to 15 __ 16 to 20 __ more than 20

How many hours per week do you spend playing computer or video games?
__ None __ 1 to 5 __ 6 to 10 __ 11 to 15 __ 16 to 20 __ more than 20

What type for games do you play regularly?
__ First-person shooter (eg Halo) __ Platform games (eg Super Mario)
__ Adventure (eg King’s Quest) __ Role-playing (eg Diablo)
__ MMORPG (eg World of Warcraft) __ Sports (eg Madden NFL)
__ Strategy (eg Age of Empires) __ Simulation (eg The Sims)
__ Music (eg Guitar Hero) __ Arcade (eg Pacman)
__ Card games (eg solitaire) __ Board games (eg chess)
__ Virtual presence (eg Second Life) __ Other (please specify)

List the three games that you play the most:

What systems do you regularly play games on?
__ Playstation __ Xbox __ Ninendo Wii
__ Nintendo (non-Wii) __ Computer (PC/Mac) __ Other (please specify)

Do you regularly play computer of video games with other people?
__ No, I usually play single-player games
__ Yes, I usually play with a group of people who are in the same room
__ Yes, I usually play with a group of people over the Internet

Do you have a driver’s license?  __ Yes __ No

Have you ever explored a virtual environment using a computer?
__ No
__ Yes (please describe briefly, eg “Second Life”, or “architectural walk-through”)

Have you ever controlled, operated, or driven a real robot?
__ No
__ Yes (please describe briefly)
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