Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-97-38

1997-01-01

Enhancements to 4.4 BSD UNIX for Efficient Networked
Multimedia in Project MARS

Milind M. Buddhikot, Xin Jane Chen, Dakang Wu, and Guru M. Parulkar

Cluster based architectures that employ high performance inexpensive Personal Computers
(PCs) interconnected by high speed commodity interconnect have been recognized as a cost-
effective way of building high performance scalable Multimedia-On-Demand (MOD) storage
servers [4, 5, 7, 9]. Typically, the PCs in these architectures run operating systems such as UNIX
that have traditionally been optimized for interactive computing. They do not provide fast disk-
to-network data paths and guaranteed CPU and storage access. This paper reports
enhancements to the 4.4 BSD UNIX system carried out to rectify these limitations in the context
of our Project Massively-parallel And Real-time Storage (MARS) [7].... Read complete abstract
on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Buddhikot, Milind M.; Chen, Xin Jane; Wu, Dakang; and Parulkar, Guru M., "Enhancements to 4.4 BSD UNIX
for Efficient Networked Multimedia in Project MARS" Report Number: WUCS-97-38 (1997). All Computer
Science and Engineering Research.

https://openscholarship.wustl.edu/cse_research/450

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/450?utm_source=openscholarship.wustl.edu%2Fcse_research%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/450

Enhancements to 4.4 BSD UNIX for Efficient Networked Multimedia in Project
MARS

Milind M. Buddhikot, Xin Jane Chen, Dakang Wu, and Guru M. Parulkar

Complete Abstract:

Cluster based architectures that employ high performance inexpensive Personal Computers (PCs)
interconnected by high speed commodity interconnect have been recognized as a cost-effective way of
building high performance scalable Multimedia-On-Demand (MOD) storage servers [4, 5, 7, 9]. Typically,
the PCs in these architectures run operating systems such as UNIX that have traditionally been optimized
for interactive computing. They do not provide fast disk-to-network data paths and guaranteed CPU and
storage access. This paper reports enhancements to the 4.4 BSD UNIX system carried out to rectify these
limitations in the context of our Project Massively-parallel And Real-time Storage (MARS) [7]. We have
proposed and implemented the following enhancements to a 4.4 BSD compliant public domain NetBSD
UNIX operating syste: (1) A new kernel buffer management system called Multimedia M-buf (mmbuf)
which shortens the data path from a storage device to network interface, (2) priority queueing within the
SCSI driver to differentiate between real-time and non-real-time streams, and (3) integration of these new
0S services with a CPU scheduling mechanism called Real Time Upcall [22] and a software disk striping
driver called Concatenated Disk (ccd). These enhancements collectively provide quality of service
guarantee and high throughput to multimedia stream connections. Our experimental results demonstrate
throughput improvements and QOS guarantees on the data path from the disk to network in a MOD
server.

https://openscholarship.wustl.edu/cse_research/450?utm_source=openscholarship.wustl.edu%2Fcse_research%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/450?utm_source=openscholarship.wustl.edu%2Fcse_research%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages

Enhancements to 4.4 BSD UNIX for Efficient
Networked Multimedia in Project MARS

Milind M. Buddhikot, Xin Jane Chen,
Dakang Wu and Guru M. Parulkar

WUCS-97-38

July 1997

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130

Enhancements to 4.4 BSD UNIX for Efficient Networked Multimedia
in Project MARS*

Milind M. Buddhikot

Xin Jane Chen

Dakang Wu

milind@dworkin.wustl.edu JXCHENQ@us.oracle.com dw®@arl wustl.edu

+1 314 935 4203

+1 415 506-8617

+1 314 935 8563

Guru M. Parulkar
guru@arl. wustl.edu

Abstract

Cluster based architectures that employ high perfor-
mance inexpensive Personal Computers (PCs) inter-
connected by high speed commodity interconnect have
been recognized as a cost-effective way of building
high performance scalable Multimedia-On-Demand
(MoD)storage servers [4, 5, 7, 9]. Typically, the pcs
in these architectures run operating systems such as
UNIX that have traditionally been optimized for inter-
active computing. They do not provide fast disk-to-
network data paths and guaranteed ¢cPU and storage
access. 'This paper reports enhancements to the 4.4
BSD UNIX system carried out to rectify these limita-
tions in the context of our Project Massively-parallel
And Real-time Storage (MARS)[7]. We have proposed
and implemented the following enhancements to a 4.4
BSD compliant public domain NetBSD UNIX operating
system: (1) A new kernel buffer management system
called Multimedia M-buf (mmbuf} which shortens the
data path from a storage device to network interface,
(2) priority queueing within the scst driver to differ-
entiate between real-time and non-real-time streams,
and (3) integration of these new 0s services with a
GPU scheduling mechanism called Real Time Upcall
[22] and a software disk striping driver called Con-
catenated Disk (ccd). These enhancements collectively
provide quality of service guarantee and high through-
put to multimedia stream connections. Our experi-
mental results demonstrate throughput improvements
and QOS guarantees on the data path from the disk
to network in a MOD server.

-1 314 935 7534

1 Introduction

Large scale Multimedia-on-Demand (MoD) record-
ing and playback services accessed by potentially thou-
sands of concurrent clients will be critical components
of the rapidly evolving information super-highway.
The multimedia data handled by these services re-
quire Quality-of-Service {Q0$) guarantees in the form
of guaranteed bandwidth and bounded delay. The
end-to-end nature of these services requires that such
guarantees be provided by the end systems, namely
the storage server and the client device such as a Pc,
a workstation or a set-top box, and the network that
connects them. Within a server system, such ser-
vices periodically transfer data between the storage
and network subsystems and thus, both these subsys-
tems must provide QoS guarantees. Designing high
performance scalable servers and services that support
such guarantees has been recognized to be a challeng-
ing task.

The interactive MoD services developed in our
project are based on an innovative cluster based stor-
age server architecture called Massively-parallel And
Real-time Storage (MaRS)[5, 7]. This architecture con-
sists of several high performance storage nodes (such
as PCs) interconnected by a fast desk-area or system-
area ATM interconnect. Each storage node in our cur-
rent prototype is a Pentium Pro 200 MHZ pc with 30
GB local storage and runs a public-domain 4.4 BSD
unIx called NetBSD. However, the existing UNIX sys-
tems used for general purpose computing do not pro-
vide mechanisms required to support QOS guarantees
and also do not provide efficient data and control path
between storage and network subsystems.

In NetBSD, the file system software uses a sophisti-
cated buffer cache to transfer data between user space
and the storage, whereas the network protocol stacks
use a different buffering system called mbufs to trans-
fer data between the user space and the network. Due
to this mismatch, any application initiated data trans-

fer between a file system and the network needs exces-
sive data copying. In MOD environment where services
are implemented in user space, such data copying for
every active client reduces throughput and limits the
total number of clients (revenue). Therefore, a fast
data path that can provide zero-copy data transfer be-
tween storage and network is desirable. Also, a simple
user level API is necessary to enable user level appli-
cations to easily control such a data path.

Existing device drivers for storage systems do not
distinguish between real-time and non-real-time re-
quests and therefore provide no guarantees. Clearly,
the storage driver must prioritize real-time requests
over non-real-time requests. A user level application
can effectively male use of such real-time service guar-
antees from the disk driver only if the ¢cPU scheduler
provides Qos guarantees in the form of periodic exe-
cution.

1.1 Research Contributions

We would like to note that the shortcomings dis-
cussed above have been well known to be performance
bottlenecks {2, 12, 13, 21, 26]. However, none of the
earlier solutions are complete and research efforts such
as {3, 4, 15, 18, 25, 28] are underway to rectify them.
(Please see Section 6). Our work shares some comumon
ideas and objectives with these research efforts.

This paper describes our innovaiive ideas and de-
tails the software infrastructure we have developed
to implement these ideas. The design, implementa-
tion and performance evaluation of the novel 05 en-
hancements are the primary research contributions of
this paper. Specifically, we have proposed and imple-
mented the following enhancements to a 4.4 BSD com-
pliant public domain NetBSD UNIX operating system:
(1} A new kernel buffer management system called
Multimedia M-buf (mmbuf) which shortens the data
path from a storage device to network output device,
{2) priority queneing within the scsi driver to differ-
entiate between real-time and non-real-time streams,
and (3} integration of these new 05 services with a
CcPU scheduling mechanism called Real Time Upcall
[22] and a software disk striping driver called Con-
catenated Disk (ced). We have created a new system
call API for applications to access these services.

We have implemented these ideas in NetBSD 1.2G
and demonstrated clear performance improvements.
Our experimental results show: (1) A = 60% over-
all improvement in throughput from storage to the
network interface by combined use of software strip-
ing and zero copy data path, (2) qos guarantees in
the form of periodic accesses from the enhanced scsI
system, and 33) guaranteed access to CPU and storage
resources at the user level for applications that employ
RTUs and access the new 05 enhancements.

1.2 Organization of the paper

The rest of this paper is organized as follows: Sec-
tion 2 describes the sources of inefficiencies and lack of
QOs in the existing control and data path for network
destined data retrieval from the storage subsystem. A
brief overview of our new solutions is provided in Sec-
tion ?77. Section 3 describes at length the design of

the new mmbuf buffer management system. Section 4
describes our two step approach to providing guaran-
teed periodic access to storage: namely, modifications
to scsl driver to support priority gueueing and use
of Real-Time Upcalls (RTU). This section also details
the system call APl available to a user application to
access these new 0§ services. In Section 5, we present
detailed performance evaluation of these 05 modifi-
cations and discuss performance benefits and limita-
tions. Finally, we present our conclusions.

2 Limitations of Existing File I/0 for
Networked Multimedia

In this section, we summarize the limitations of ex-
isting UNIX to support networked multimedia and thus
motivate the need for our work.

¢ Unnecessary data copying is a performance
penalty: Figure 1 illustrates the layered archi-
tecture used in the storage and network 1/0 sys-
tems of current UNIX operating systems. Clearly,
in a MOD server implemented in user space the
data transfer path from a disk te the network in-
terface involves two memory copies: the first copy
(in response to read({) call) moves data from the
kernel buffer cache to a user space bufier. The
second copy (in response to a send () call) by the
the socket layer copies the data from a user space
buffer into the mbuf chain in the kernel. This
approach works fine for small sized accesses ab-
served in general purpose 1/0, such as traditional
text, and binary file accesses. However, multi-
media data such as audio, video, and animations
do not possess any caching properties: first they
liave a ravenous appetite for memory space and
second, they are relevant only for very a small
duration from the time of their retrieval. That
is, data is often replaced before it can be reused,
rendering the extra copy a performance penalty.
Consider, a 128 MB machine with typically §.5
MBs configured as buffer cache. This cache is
enough to store 3 seconds of an average MJIPEG
file, and the the kernel has to replace everything
in the buffer cache every 3 seconds. Therefore, the
buffer cache blocks can bhe reused only if several
processes reading the same video file are phase
locked to each other in a 3-second time inter-
val. Such behavior among interactive clients will
be rare. Therefore, retrieving multimedia data
through a buffer cache does not provide any per-
formance benefits. Also, any application initiated
data transfer from a disk file to the network re-
quires use of two different buffer systems, which
were designed with different objectives, and leads
to excessive data copying and system call over-
heads. Large amount of data copy from memory
to memory not only takes processor time bt also
consumes prectous memory and system bus band-
width.

¢ Lack of guaranteed storage access: The stor-
age subsystems in the current 4.4 BSD UNIX does

Appln
Bulffers

Application

VNODE Layer

UNIX FF§

Buller Cacle

I 2

Sockel Layer

Ter

uoe

NATM

Disk Driver

o i
: T T -
.- snd g il recy
: Zeirii i . ¥ -

ATM Interfoce I & .

Figure 1: Existing File and Network 1/0

not differentiate between real-time and non-real-
time applications for disk 1/0. All requests to the
disk driver are queued into a single job queue and
ordered using the elevator algorithm to achieve
efficient disk head movement. Clearly, a job
can take an arbitrarily long time to complete
if there are several other processes doing disk
1/o. Such behavior is undesirable for real-time
requests which must be completed by a certain
deadline for the retrieved data to be useful.

+ Lack of guaranteed CPU access: CPU schedul-
ing in current UNIX systems is optimized for inter-
active computing and thus, does not provide any
mechanisms for applications to request periodic
access to the cpu. Clearly, in the event that a file
system is enhanced to support periedic Qos, user
applications must be able to obtain guaranteed
access to the CPU to avail these guaraniees.

3 Design of the mmbuf buffering sys-

tem
Figure 2 (a) shows the data structure of an mm-
buf, which is a superset of an mbuf and the Bsp buffer
cache block. Each mmbuf consists of a header and a
data buffer. The mmbuf header consists of the follow-
ing four parts:

1. Mbuf header: The struct mbuf field in the
mmbuf header represents the mbuf header. It
is used to store information required to send the
data stored in the mmbuf to the networlk.

2. Buffer cache header: The struct buf field in
the mmbuf header represents a bufler cache block
header. It is used by the file system to read data
into the buffer.

3. Pointer to a buffer manager: The mmbuf
header maintains a pointer - bmptr, using which
a buffer manager in the upper level of the ler-
nel can be accessed. The mmbuf can be in four
different states: empty, full, read_in_progress and
send_in_progress. This manager manages the mm-
buf’s status and operation, and provides a han-
dler (bm_iodone()) used by the file system to up-
date the mmbuf’s status.

4. Padding: A padding of 96 bytes is used to make
the header size 256 byte to aveid memory frag-
mentation. This padding provides sufficient room
for any future enhancements to buffer cache or
mbufs.

Each mmbuf has a data cluster of one or more vir-
tually contiguous pages associated with it (Figure 2
(a)). The maximum size of a cluster is a configurable
parameter. Both the mbuf and buffer headers in the
mmbuf header maintain a pointer to the data cluster.
When data are read from the disk, the cluster 1s ac-
cessed from the pointer in the buffer header whereas
when data are sent to the networls interface, the same
cluster is accessed from the mbuf header. Note that
the disk drivers can perform scatter-gather 1/0 to vir-
tually contigunous clusters greater than a page in size.
However, in case of systems that do not support Di-
rect Virtual Memory Access (DvMA)®, the maximum
size of an mbuf cluster is limited to a page. Due to
this network drivers traditionally do not handle DMA
of buffers greater than a page in size. This means that
though an mmbuf with a 16 KB cluster can be passed
as a single buffer block to the disk driver, it must be

1Sun machines support DVMA, whereas PCI based Intel ma-
chines don’t

—
(a) Mmbuf (b } Mmbuf chain
g pa—
struct mbuf
"\ A‘\
" mbuf. ' mbuf. > mbuf. mbuf.
struct buf m_datn m_data m_daty m_datn
mbuf, mbuf. | | mbuf. mbuf.
void *bmpir m_next m_next m_next m_next
P buf. buk. But. But.
. R Buffer b_daa b_data b_data b_data
int bmid
Manager
char irdo[96]
{ 1) Clusters list
clpool
next L mext |,) next [next |, next
clp clp clp clp clp
v d 1 i !
G} Descriptor list
noclpool
next || next | next pof next || next
clp clp clp clp clp

Figure 2: New Multimedia Memory Buffer {mmbuf)

passed as a chain of 4 mmbufs to the networl protocol
stack. This is illustrated in Figure 2 (b).

Since we unified the buffering structure in file 1/0
and network 1/0, we have to support operations from
both domains. The interface to the mmbuf system is
described below (Figure 3).

Mimbuf system initialization: mmbinit()

At the system boot time, the initialization routine in
the kernel sets up a separate submap — a pagemap
mmb_map in kernel virtual address space - for mmbuf
data clusters. It also invokes the mmbuf initialization
function - mmbinit() to allocate wired-down {non-
pageable) pages in the mmb.map. The mmbuf system
maintains two lists of cluster descriptors (Figure 2,
(1),&2)). The first list, called cluster list is accessed
by the clpool ptr and contains descriptors that have
cluster of MMCLBYTES size associated with them. The
second list, called the descriptorlist, is accessed by the
noclpool ptr and contains empty descriptors with no
associated cluster. Imitially, 16 mmbuf data clusters
are put on the cluster list.

Allocating and
deallocating an mmbuf (mmget (struct mmbuf *
mp,int flag) and mm_free(struct mmbuf *m))

The MM@GET routine allocates an mmbuf with an as-
sociated data cluster. It removes the cluster from the
descriptor at the head of the cluster list and inserts
the free descriptor at the head of the descriptor list for
reuse. The relevant attribute fields in mbuf and buffer
header portions of mmbuf header are initialized before
it is returned. A similar function, mm_getchain() allo-
cates a chain with (MMoLBYTES/NBPG) mmbufs, each
pointing to a page in the cluster. If a cluster alloca-
tion is attempted when no data clusters are available
on the cluster free list, more wired-down data clusters
are allocated from virtual memory map mmb_map and
pui onto the list. A mmbuf is deallocated using the
mm_free() function, which removes a free descriptor
from the deseriptor list, initializes it with the cluster
to be freed and inserts the cluster at the head of the
cluster list.

mmbirit(}

System Initinlize

Routines mmbuf cluster
page poal m_freem()
MMGET(mm)
mm_getchain(ram} M, PREPENDQ
» [H] n_adj
Prefetch Routine . iy
empty mmbuof chain miod()
e e el - -
t
ik
MTOB(mn) BTOM(mm)

Buifer read routines full minbuf chaia

Send routines

Figure 3: Invocation of mmbuf interface functions

Using mmbufs in file 1/0

Since the file 1/0 uses the mmbuf as a buffer cache
block, a macro MTOB(void *m) is provided which,
given the mmbuf pointer, returns the pointer to the
file system buffer header. In addition to the attributes
of the buffer block that are set in the bFflags field
of the buffer header for normal reads, two additional
flags B.CALL and B_MMBUF are set in case of file 1/0
using mmbufs. The B_caLL flag indicates that when
the data is read from the disk into the data cluster,
before calling the standard b_iodone() handler, a cus-
tom handler bm_iedone() should be invoked. This
new handler performs the buffer manager function and
appropriately modifies the state of the mmbuf from
empty to full.

Using mmbufs in network operations

It is desirable that network protocol routines and in-
terface drivers be able to transparently use mmbufs
as regular mbufs without requiring significant code
changes. Typically, the network protocols compose
packets by adding protocol headers or trailers in the
form of mbufs to the head or tail of an existing mbuf
chain containing data. Since an mbuf header in the
mmbuf describing associated data cluster will be iden-
tical to a stand-alone cluster mbuf header, same oper-
ations can be carried out even if data is in an mmbuf
chain. However, one crucial difference here is that the
data cluster of the mmbuf is allocated from a page
pool different from the one for cluster mbufs. The
mmbuf chains are allocated using the memory alloca-
tion routines of the mmbuf system when data fetch
requests are generated. The network 1/0 routines can
add mbufs {allocated by the standard mbuf allocation
routines) as protocol header or trailers fo such chains.

In a typical packet send operation, the network
interface driver calls the mbuf memory deallocation
function m_freem after packet is copied to the network
interface card. It is desirable that the driver retain
the same call to free an mbuf+mmbuf chain. How-
ever, the deallocation of an mmbuf must return the
associated cluster pages to the mmbuf page pool. To
achieve these two objectives, we make use of an inter-

esting feature in the original mbuf design which allows
for a pointer to an external function to be called when
the assoclated cluster page is to be freed. The cur-
rent mbuf implementation does not use this pointer:
instead it has a stand-alone function. This unused fea-
ture is exploited in our design; we set this pointer to
our own mm_free{)routine when we initialize an mm-
buf.

The mbuf routines such as m_copy and m_copym,
reference global variables of the mhuf’s cluster page
pool. These routines therefore need to be modified to
ensure that they differentiate between an mumbuf and
an mbuf, and update the global variables for different
page pools consistently. These routines are commonly
used in transport protocols such as TCP which support
retransmissions. In our current MOD testbed, we use
AaLS and AAL0 native-mode aATM protocols that have
UDP semantics and hence, do not require these func-
tions. Therefore, our current mmbuf implementation
does not support these enhanced functions which are
crucial to ensure that the mmbuf system can be used
with the Tcp protocol. To accomplish this, a simple
change is required: if the MM_MMBUF flag is set in
the mhuf, the reference counter for mmbuf clusters is
updated otherwise the reference counter for mbufs is
modified. We believe that this change is straightfor-
ward to incorporate in our current design and will be
available in the next release of our software.

4 Periodic QoS Guarantees

In this section we first describe the priority queue-
ing within the scsI driver. We then briefly describe a
new CPU scheduling technique called Real-Time Up-
calls {rTU) that user applications can use to gain peri-
odic access to CPU to exploit Q0§ from the scsi driver.
We also discuss the ccp software disk array that can
be combined with the mmbuf system and sCsI Qos to
achieve much higher disk to network throughput.

Periodic QoS Guarantees from Stor-
age System

4.1

In this section we describe the fair queueing over
multiple priority classes within the scs1 driver. We
also discuss the ccD software disk array that can be

combined with the mmbuf system and scsI qos to
achieve much higher disk to network throughput.

4.2 Priority Queueing within the scsi
Disk Driver

The existing queueing mechanism (Figure 6 (1))
consists of a single request queue sorted using a disk
scheduling algorithm such as the elevator algorithm
{a variant of the Circular-scaN algorithm) . This
request quene is serviced by an event-driven service
function - sd_start, which is invoked when the new
requests are received for an idle disk or when an on-
gomg disk read/write request is completed. Since, the
multimedia refrieval requests compete with ordinary
delay-tolerant non-real-time requests to the disk, lack
of request differentiation results in lack of service guar-
antees from the storage system. Figure 6 (2) illustrates
the new priority based queueing that can rectify this
Iimitation. Specifically, the enhanced queueing mecha-
nism should support multiple job queues with different
priorities, each representing a single service class. The
job queue with the lowest priority, called the NRTQ, is
used for regular non-real-time requests such as those
generated by existing read() system calls. The jobs
for the other queues are generated by continuous me-
dia retrievals. The service class specified in read re-
quests for such retrievals decides to which priority
queue the jobs are assigned. Note that a multimedia
applications can dynamically change its service class
or be statically assigned to a fixed service class at the
time of stream creation.

Every time an on-going disk request is completed,
the driver invokes the job selector which based on the
resource allocation policy decides which job to extract
from the job queues. The job selector must satisfy fol-
lowing requirements: First, it must ensure that none
of the service classes are starved i.e. denied accesses
to storage bandwidth for unbounded amount of time.
It therefore must employ a resource allocation policy
that ensures fair sharing of storage bandwidth among
the various priority classes. If at any given instance
only jobs of a particular class are present, they must
get full storage bandwidth. Second, the job selector
must select the requests to processed in such a way
that the seek and rotational latencies for disk accesses
are minimized.

We decouple these two objectives as follows: We
achieve fair resource sharing by using a simple Fair
(Jueueing Algorithm called Deficit Round Robin DRR
[?]. The original DRR algorithm was proposed in the
context of fair sharing of a communication link band-
widih among several data flows, each with its own
packet queue. The basic idea in DRR is illustrated
in Figure 5. Under DRR, the link services the packet
queues in a round robin fashion. However, unlike tra-
ditional round-robin schemes, in each round it pro-
vides only a fixed quantum of service, defined in terms
of number of bytes of data to be transmitted in the
round, to each queue. When serving a queue in a
round, the link allocates a quantum @ to it. If the
current value of quantum is less than the size of the
packet -k at the head of the queue, the packet is trans-
mitted and the counter is decremented by k. This con-

tinues until @ is less than the packet size, when the
deficit & bytes of service which was not used in cur-
rent round is carried over to the next round. Clearly,
the quantum size must be set to the maximum size
of the packet over all flows. Also, the per flow/queue
quantum values need not be identical and if selected
different result in weighted DRR fair queueing. The
DRR algorithm requires (O(1) time to process every
packet and is simple and inexpensive to implement.

In order to adapt the DRR algorithm for disk driver
with multiple queues, we note that disk read/write
requests are always in terms of multiples of smallest
size block - typically 512 bytes, calied a sector. Rach
job request to the disk driver carries in it’s heacer
fields the size of read/write request in terms of the
sector size. Therefore. we can define the quantum of
service offered to a request queue in terms of number
of sectors read in the round. As shown in Figure ?7,
each queue ¢ is assigned a quantum @;, which can be
set statically or changed over time to achieve adaptive
resource allocation.

In addition to the N priority queue, the DRR im-
plementation for disk driver maintains a worl queue
(Figure 5. This gquene is formed at the start of eaclt
service round by removing jobs from the queues until
the quantum associated with each queue is exhausted
or there are no more jobs left. If a queue does not
have any jobs at the instance the queue is formed, it’s
quantum is not carried over to next round.

The low level disk driver always processes request
from the tt work_queue in FIFO fashion and therefose,
the work.queue must be sorted using an appropriate
disk scheduling algorithm, such as the BsD elevator
algorithm or newer scheduling algorithms {25, 28, 32]
to minimize seek and rotation latencies in each round.

4.3 Implementation of DRR with two pri-
ority queues

We describe a prototype implementation of DRR
fair queuveing in the current BSD UNIX. In our cur-
rent implementation, we support two priority classes
- a non real-time request queue and a real-time re-
quest quene. All the requests generated hy the stan-
dard read/write or readv/writev system calls are
enqueuned in the non-real-time request queue, whereas
the requests generated by the new streamread() API
are queued in the real-time queue.

Following modifications were made to the scsi
driver:

¢ Modification on sd_softc data structure:
Figure 7 (a) illustrates the sd_softc structure
in the existing generic scsI driver that captures
the software state of a scsi disk. Figure 7 (b)
illustrates changes to this structure to support
DRR fair queueing. Specifically, we added two
new queues - rtqueune and the workqueue. The
new state variables, rtqnt and nrtgnt keep track
of the quantum values for the real-time and non
real-time queues. The two other state variables -
max.rtgnt and max.nrtgnt record the maximum
amount in terms of number of sectors of data read
for each queue in a work round. These variables

@ Existing SCSI Driver

@ Enhanced SCSI Driver

NRTQ RTQ
A4 M o
Q | S— By Pz p\
L
sd
hd h 4 r.

Resource

Job selector Allocation
Policy

sd¥

RTQ = Real-time requesis queue

NRTQ = Non real-time requests quene

Figure 4: New priority queueing scsi system

control the resource allocation and delay expe-
rienced by requests in each queue. They can be
altered by an user level application such as a MoD
server or a web server, by using a ioctl call.

Modified Enqueue procedure: When a
buffer is passed to the driver’s enqueue routine
sdstrategy(), it checks the bufler flags to see if
the buffer’s B_MMBUF flag is set. If the flag is not
set, the buffer is enqueued into the non-real-time
queue, otherwise it is inserted into the appropri-
ate the real-time request queue. In presence of
multiple priority queues, the buffer carries infor-
mation about the priority class, which 1s used to
queue it to appropriate queue.

Modified dequeune procedure: In the cur-
rent scst driver, the sdstart routine dequeues
buffers from the job queue and issues commands
to the lower level disk driver. This routine is
called when a new request is received or when
a request in progress is completed. In our cur-
rent design, when there is spare capacity in the
scs1 adaptor queue, sdstart checks for jobs in
the worl-queue, If there are any requests present,
it constructs a scs1 command and sends it to the
lower level driver. However, if the work-queue is
empty, a sd_form workqueue routine is invoked
which uses the the rtgqnt and nrtgnt counters
to extract jobs from the rtqueue and nrtquete.
These jobs are sorted into work queue using the
standard disksort function. If there are no jobs
in the real-time queue and maxnrtqat is set to
a small value compared to max_rtqnt, the work-
queue will forred more often. To minimize, this

-1

overhead, the driver can monitor the rtgueune cc-
cupancy to adapt the quantum allocation.

4.4 Concatenated disk driver {ccd)

The Concatenated Disk Driver (CoD) is a disk strip-
ing software developed by Jason Thorpe [30}. Ul allows
one or more 4.4 BSD disks or disk partitions of the
same or cifferent sizes to be combined into a single
virtual disk or a software disl array. As shown in Fig-
ure 8, the data stored on this virtual disk is striped
across the component disks and thus, retrievals which
are multiple striping units in size result in parallel 1/0
from multiple disks. The ccd provides near-linear n-
creage in write throughput and sub-linear increase in
read throughput as the number of disks in the soft-
ware dislk array is increased. In the following section,
we will show that this increased throughput combined
with the new mmbuf system provides significant im-
provement in disk to network data throughput.

Figure 8 (b) shows the interaction between read
layers of the mmbuf and the ced. When an mmbuf is
passed to the ced layer, the B.¢ALL flag in the mmbufl
header is set to ensure the custom bm_iodone routine
is called in the event the 1/0 on the virtual disk is
complete. The ccd layer splits this buffer into mul-
tiple buffers, copies the original buffer header to each
buffer and using a striping information table enqueues
the requests to the job queues of the component disks.
The handler routine for these buffers is set to the func-
tion ced_iodone() from the ced code.

Note that ccp differs from the commercial RAIDs
in many ways. Unlike RAIDs which perform striping
using a hardware controller, ccp is a software disk ar-
ray. Other than simple mirroring, ¢¢D does not sup-

Figure 5: DRR Fair Queueing for a communication link

port any other data redundancy techniques, such as
the ones supported by various levels of RAIDs (Level
3,4,5). Also, at present, a ccD can be composed only
from component disks or partitions with BsD file sys-
tems. We believe that though ccp is sub-optimal, it
represents a very simple and cost-effective way to build
small disk arrays.

4.5 Periodic cPU access: Real Time Up-
call (RTU)

Real Time Upcalls is a novel mechanism designed
and implemented within our research group at Wash-
ington University [22] to provide guaranteed CPU ac-
cess to user level and kernel level periodic tasks.

RTUs are an alternative to real-tiime periodic
threads and have advantages such as low implemen-
tation complexity, portability, and efficiency. Figure 9
illustrates the basic concept behind rRTUs. An RTU is
essentially a function in a user program that is invoked

eriodically in real-time to perform certain activity
22]. Various examples of such activities are proto-
col processing such as TcpP, UDP, multimedia and bulk
data processing, and periodic data retrievals from stor-
age systems. The user process employs a new system
call-rtu_create(} — to create an RTU by specifying
a function and the period with which it needs to be
executed. Two other system calls, namely, rtu_run()
and rtu.suspend(), allow the user process to start
and suspend an RTU.

The rTU mechanism is implemented in a manner
that does not require any changes to the existing UNIX
scheduler implementation. The RTU scheduler is a
layer above the UNIX scheduler that decides which
RTU (and as a result which process) to run. It uses
a variant of the Rate Monotonic (RM) scheduling pol-
icy. The main feature of this policy is that there is no
asynchronous preemption. The resulting benefits are
minimizing expensive context switches, efficient con-
currency control, efficient dispatching of upcalls, and
elimination of the need for concurrency control be-
tween RTUs [22]. Several examples of the effectiveness
of RTUs in providing excellent gos guarantees for me-

]

dia processing and user-level-protocol processing have
been reported in [7, 22]. The rRTU facility has already
been demonstrated to be useful for high performance
user level protocol implementations. A more detailed
discussion of the implementation and related work in
this area such as Scheduler Activations (1], Proces-
sor Capacity Reserves[20], Q-threads [16] etc. can be
found in [22, 24].

4.6 Streams APl

‘We have designed an API consisting of a new set
of system calls that allow applications to access mm-
bufs and real-time guarantees from the scsi1 driver for
network destined disk retrievals. A novel feature of
these calls is that they allow aggregation of multiple
read /send requests for same or different active streams
into a single system call, much like a supercall [11}.
Such aggregation significantly minimizes system call
overheads especially under heavy loads. The streams
APi interface supports following four main functions:

1. streamopen{filename,nochains):

The streamopen() call, like a traditional open()
system call opens a file, initializes the file entry
structure, installs a pointer to it in the process
file descriptor table, and returns the index of it’s
location. It allocates nochains mmbuf chains for
prefetching the data from the file and initializes
the buffer manager structure that manages these
chains. The size of these chains can be dynami-
cally changed.

2. stream_read() and stream.send():
The stream read() call takes a set of descrip-
tors opened by streamopen and reads data into
assoctated mmbuf chains. It supports blocking
(synchronous), and non-blocking (asynchronous,
polied) semantics. The stream_send() also takes
a set of descriptors and sends the data already
read by stream_read calls into mmbuf chains. It
also appropriately modifies the state of the mm-
buf chain to sending and then to empty. Note that
a separate stream_rdsnd() call that can combine

Enhanced SCSI Driver with DRR

| RTQs

sd_start()

Quantam
n terms of
disk sectors

Figure 6: Fair Queueing in scsi Driver

these two calls is also available to achieve further
aggregation.

3. streamstate(): Using this system call a user
level application can poll the state of the mmbuf
chains associated with multiple open stream de-
scriptors on which a stream_read or a stream.send
has been invoked.

4, streamclose(): This system call closes a
stream setup by a previous stream_open call. It
ensures that any ongoing disk to network 1/0 is
successfully completed hefore the descriptor and
the associated mmbuf chains are released.

We used these system calls in our experiments de-
scribed in the next section. The design and implemen-
tation of these system calls are out of the scope of this
report and can be found in [8].

5 Performance Evaluation

In this section, we will describe the experimenis
carried out to characterize the performance benefits of
our solutions. We have successfully implemented the
mmbuf system, priority queueing in the scsI driver
and the new stream aPI {system calls) in the latest re-
[ease of NetBSD. These enhancements have also been
integrated with the ccp driver, the RTU mechanism
and a locally developed driver for the ATM interface

from Efficient Networks [10]. Also, experimental pro-
totypes of a single node as well as a distributed multi-
node MARS video server using these enhancements are
completed [8].

In all the experiments described here, we used a
200MHz Penfium PC with 128 MB RAM, ENI ATM in-
terface, and an Adaptec dual scst arc-3940, running
the enhanced NetBSD 1.2G kernel. We connected two
9 6B Seagate BARACUDDA scsI disks to the controller.
Each disk has a rotational speed of 7200 rRPM with
internal transfer rate of 80-124 Mbps. The Frs file
system created in our measurements used a block size
of 8 KB and a fragment size of I KB. However, the
results reported hold equally well for file system with
different. values for these parameters.

5.1 Experiment 1: Performance benefits
of CCD and mmbufs

The purpose of this experiment is to demonstrate
that use of mmbuf and ccds decreases the data re-
trieval time and improves data throughput from the
disk to the network interface card. We created two
test programs: Program 1, using open() opens a large
video file and using the socket{) call creates a NATM
socket associated with an ATM connection. It reads
and sends 32 KB chunks of data sequentially using
standard read{) and write{) system calls. We mea-
sure the total time to read and send data ranging
from 40 MB to 360 MB. The second program, Pro-

sd_softe

device_info

drive_info

sd_softc

device_info

drive_info

scsi_link info

disk_params

scsi.link_info max_riqnt " Max. quantum for real time requests
disk. .
15 params max_nrtqnt — Max. quantum for non- real time requests
buf_quene —{ - -]
rtgnt v
> Current quantum count
nrteqit 'y
nrl_gueue
r{_queue

work_queue

{a} Old sd_softc structure

(b) Modified sd_softc structure

Figure 7: Maodifications to sd_softc state structure

gram 2, opens the same file as in program 1 using the
streamopen() call. It also uses the same ATM con-
nection. Using the streamread() call, it reads 32 kB
of data and sends it using streamsend(). Similar to
Program 1, we measure total time to complete the read
and sends for file sizes varied from 40 to 360 MB. Note
that the streamread() calls in our measurements are
completely blocking and thus, the read semantics are
the same as in Program 1. Also, note that in case of
standard reads in Program 1, the kernel may perform
read-ahead and thus, service some of the reads out of
the buffer cache.

We configured two disks as a ced device and ran
the experiments. In this case, the data throughput
for streamread/send is 17.65 MBps, which is & 10
% faster than normal read/send on ced, and ~ 60 %
faster than stream read/send on sd. The results are
shown in Table 1 and Figure 10. We observed consis-
tently lower completion times for streamread/send
on ccds than for read/send and improvements varied
from 5 to 12 %. We also measure the time to complete
similar tasks in case of a file system on a single disk.

From the experiment results we can see that the
data striping implemented by ccd improves data
throughput of normal read/send by 47 %, and im-
proves data throughput for stream read/send by 60%.
The ccd breaks each read request of 32 KB into 4 8
KB buffers and alternates reads between the two disks.

10

This parallelism in the data reads reduces the disk 1/0
time for the same amount of data is greatly reduced.
Also, asynchronous nature of the streamread/send
calls allows multiple outstanding 1/os, which is in
contrast with synchronous nature regular read/sends.
This 1/0 pipelining combined with minimization of
data copies leads to roughly 12 % throughput improve-
ment.

5.2 Experiment 2: Demonstration of pri-
ority to real-time requests from SCSI
driver queue

The purpose of this experiment is to demonstrate
that the enhanced scst driver with priority queueing
gives QOS5 guarantees to real-time requests and pro-
vides nearly constant data throughput independent of
non-real-time load. All the measurements in this ex-
periment were done on a file system created on a 2-disk
ced as in Experiment 1.

Figure 11 illustrates the experimental set up. We
created three test programs: the Program ! forks n
children which serve as background process generating
digk 1/0 load. Each child sequentially reads a separate
large file using the read() system call . We varied n
from | to 8. Each of the files is large enough to aver-
flow the system’s buffer cache, and therefore disk 1/0
is always required for all forked processes. We did not
perform any measurements for the background pro-

bm_iodone
S - ;
J mmbuf . ‘
data B.CALL b_iodone = bm_jodone
virtusl disk ! ced] uifer -
1 o
[l
/ i ~_ mmbuf layer
) = ced layer . X
split buffers |] [] i | b_iodone = cediodone
I J [split data
physical disks 9 F:\/i F:a buffers B CALL B_CALL B_CALL
(a) Parallel disk 1/0 with ccd {(b) Interaction of mmbuf and ccd
Figure 8:
“ser Procesy t fa() | fr{) i
ru_createf) [l ¥ | : l 5 ; i » User
|
j Kernel
Upeall

“CPU Scheduler

Figure 9: The model for User Level Real Time Upcalls

cesses, The second program, Program 2, is much like
a background process, but it also opens a NATM socket
and sends the data read from the disk using send()
call. I{ reads and sends data in 32 KB blocks for a
total of 400 MB of data. The file read here is different
from the files background processes read. The third
program, Program 3, performs same tasks as Program
2 but uses the stream APL

In paRrT I of the experiment we run the background
processes and Program 2. We measure the total iime
for Program 2 to complete for different background
loads. Similarly, in PART 11 of the experiment we run
the background processes and Program 3. We measure
the total time for Program 3 to complete for different
background loads.

Table 2 and Figure 11 (b) present the experiment
results. We can see that the time it takes for normal
read/send in Program 2 increases with the number of
background loads. In case of Program 3, the total time
remains roughly constant.

Stream read gives better performance than normal
read because it gets higher processing priority at the
sast disk driver. Since the scsr adaptor can buffer 4
- outstanding jobs simultaneously while 1 stream can
only file one request at a time, the background jobs
are also sent t0 the s¢sI adapter. When there are 4 or
more streams reading, the mmbuf jobs queued to the
priority queue will occupy most of the adapter’s buffer
leaving no space for background tasks. Therefore, all

the background processes are put to sleep when the
streamreads are in progress, in turn ensuring that the
throughput for streamreads is nearly constant. This
clearly indicates that when there are a large number
video and audio retrieval requests within the system,
the enhanced priority queueing provides good guaran-
tees. Such guarantees can be enhanced even further
by using appropriate resource partitioning schemes.

5.3 Experiment 3: Periodicity of data
transfer with RTU

The purpose of this experiment is to demonstrate
that by using RTUs and the enhanced file system, a
user level process {such as a web server) can obtain
excellent Q0s guarantees for predictable storage and
CPU access.

We created a test program that sefs up a single
stream and schedules siream read/send within a pe-
riodic RTU. FEach stream reads data and sends to a
different receiver. We ran this process in presence
and absence of the CPU intensive background load and
measured the number of times deadlines were missed.

We ran three concurrent copies of this test program
with single stream and RTU periods of 60, 75, 120 ms.
The table illustrates the throughput measured for each
stream.

We observed that no deadlines are missed with or
without CPU intensive background processes in both
parts of the experiment. The applications were able to

11

Table 1: Read time for normal rd/send and streamrd /send

File Size read/send on sd | read/send on ccd | streamread/send on

{MB) normal on sd (sec) { stream on sd (se¢) | stream on ced (sec)

40 4.0 3.0 2.38

120 11.13 8.03 7.01

200 19.01 13.00 11.77

280 26.0 18.50 16.39

360 33.0 22.41 20.38

Throughput 10.90 MBps 16.064 MBps 17.65 MBps

Table 2: Streamrd/send performance under load

Background task | Normal (secs) | 4 streamreads (secs) | 32 Streamreads (secs)
0 22.0 21.44 20.38
2 60.0 22.44 22.0
4 217.0 22.31 22.0
6 567.0 22.40 21.14

maintain a constant transfer rate using RTU schedul-
ing. Also, in the presence of multiple {schedulable)
streams with different periods, each stream got it’s
share of cPU and storage bandwidth. Without RTU,
constant data rate required by video streams from
storage and CPU is hard to achieve. An experimen-
tal video server which uses the stream API and RTUs,
s currently operational in our ATM testhed.

6 Related Work

In the recent past, design of high performance mul-
timedia servers, operating systems, file systems, and
specialized disk scheduling techniques for Qos guaran-
teed multimediaretrieval have been widely researched.
Due to space limitation, we are not exhaustive in our
coverage of related work in these areas. In the follow-
ing, however, we try to strike a balance between recent
active projects and research widely cited in literature.

The idea of minimizing data copy to achieve higher
performance is well known and has been reported
tn early operating systems such as Tenex[2] and
Accent[26]. The Container Shipping system 1[21}, the
DASH IPC [29] and fbufs [12) have addressed the prob-
lem of minimizing physical data movement across pro-
tection domains in an 0s by employing virtual mem-
ory re-mapping techniques. However, none of these
projects report design of the zero-copy 1/0 between
disks and networks.

A more recent paper by Brustoloni et al. [3] pro-
poses new copy avoidance techniques called emulated
share and emulated copy which do not require any
changes to 1/0 API as required by some of the above
mentioned techniques (including ours). Their pa-
per conclusively demonstrates advantages of avoiding
copy, data passing and scheduling using a NetBSD
UNIX 0S5 enhanced with implementation of their Ge-
nie 1/0 system. In this system, the application can

12

specify in a single Genie call, invocations to single or
multiple 1/0 modules (such as drivers, protocol stacks
or file systems). Also, an application can request mul-
tiple invocations in & call to be processed in one of
many ways: sequential, parallel, periodic or selective.
We believe that the Genie framework can support a
zero copy data path between a file system and network
pratocol stack. However, currently no such design has
been reported.

Kevin Fall et al.’s [13, 14] work on providing in-
kernel data paths to improve 1/0 throughput and cru
availability has goals very similar to ours, namely,
mininizing data copies and supporting asynchronous
and concurrent 1/0 operations. They have designed
and implemented a mechanism called Splice in Ul-
tirix 4.2 operating system to meet these goals. Im-
plemented as a system call, splice() takes three ar-
guments, two UNEX file 1/0 descriptors (one specifying
the source of data and the other sink) and a inte-
ger sz size parameter. The splice() call arranges
within the kernel for sz bytes of data to be moved
from the source descriptor to sink descriptor without
user program intervension. However, this mechanism
lias several drawbacks: first, the current implementa-
tion supports splices between two file descriptors, two
socket descriptors or a socket descriptor and a frame
buffer. It does not support splice between a socket and
file descriptor which would be essential for majority
of networked multimedia applications. In fact, such
splices can not be supported due to lack of an mm-
buf like buflering system that can support zero copy
data path between storage and network subsystems.
Also, once an application invokes the splice call, the
data transfer between descriptors is entirely under the
control of the kernel and is performed in the sofiware
mterrupt. Clearly, the lack of ability to control data
path malkes implementation of application level flow

QoS Guarantees from Enhanced SCSI System

PARTT 600.0 : : :)
Program | —-1 Normal Read
Background Loads Brograin 2 [NRT) g SrreamBead (k=32)
&3 StreamRead (k=8)
400.0 + N
NRTQ I 1 TG jg
| it [e
200.0 P :
PART [. /’E'/
Frogeam 1 0.0 i i o > T 3
Bxckground Losds .
0.0 2.0 4.0 6.0
- 1 l - # Background Processes

(a) Setup for Experiment 2

{b) Guarantees provided by priority queuing in sd

Figure 11:

Table 3: Results for Experiment 3 {or different RTUs sharing Bandwidth

Streamld | RTU Period (ms) | Throughput {(Mbps)
1 60 8.536
2 75 6.824
3 120 4.264

control very difficuli. Moreover, the present splice im-
plementation is not available for NetBSD operating
systems and hence, can not be easily adopted for our
needs.

A more recent and on-going research effort at the
Distributed Multimedia Lab at UT Austin, aims to
build an integrated file system called Symphony [28].
Unlike approaches which use a software integration
layer to create a homogeneous abstraction of a sin-
gle file system out of multiple file systems geared for
different data types, symphony handles multiple data
types in a physically integrated file system. The sym-
phony system supports a Q0S$ aware disk scheduler,
a storage manager for data type specific placement
policies, a fault tolerance layer, and a two level meta
information structure. It also supports admission con-
trol, server-push and client-pull service models and
data type specific caching. The current implementa-
tion runs as a single multi-threaded process in user
space and accesses the disks as raw devices. Unfor-

13

tunately, the implementation details available at the
time of writing this paper are sketchy. Somie of the
key similarities and differences of our worl from this
project are as follows: like symphony, our work alsc
employs differentiation of disk retrievals into multiple
priority classes and provides hooks for implementing
suitable disk scheduling policies such as SCAN-EDF,
CSCAN,, symphony disk scheduler, or Grouped Sweep
Scheduling {25, 28, 32] and assoclated admission con-
trol algorithms. Similar to Symphony, our meta in-
formation is two level: the frame level meta info and
the traditional UNIX inode information. However, in
our design, the frame level info is completely indepen-
dent of the inode information about the data file and
can be potentially stored on different storage and/or
file system [8]. Unlike symphony, we follow design
advocated in {311 and keep our file svstem in the ker-
nel. Also, we support an efficient zero-copy cata path
for network destined storage retrievals. Unlike Sym-
phony, we believe that service models such as client

Time (sec)

Performance Gains of Mmbufs

40.0
e—>o read/send on ST
s—= readfsend on CCD 5

300 L &——3 streameead/send on CCD /

20.0

10.0

0'0 [i L
0.0 100.0 200.0 300.0 400.0
File Size (MBs)

Figure 10: Improvements resulting from use of mm-
bufs

pull and server push are best implemented in the user
space. Also, note that symphony has been developed
for SOLARIS operating system and exploits the multi-
threaded nature of the kernel. QOur work is entirely
based on BSD class of operating systems (NetBSD,
FreeBSD, OpenBSD, 4.4 BSD).

Cur project MARS, of which the work reported in
this paper is a part, has several similarities with the
Tiger File system project at Microsoft {4]. Tiger is
a distributed, fault-tolerant, real-time file server that
uses a distributed storage architecture consisting of
cubs pcs controlled by a control manager. It stripes
constant-bit-rate (CBR) data such as video, and au-
dio over cubs in fixed length data units. The striped
data is played back to clients over a broadband net-
work using a “schedule” distributed by the controller
via a control network. Unlike our project MARS, the
storage nodes {“cubs”) in Tiger employ Windows N1
operating system enhanced to support zero copy data
path between disk and network. However, this data
path is different from our mmbuf system and does not
use any priority based disk queueing.

7 Conclusions

In this paper, we analyzed the limitations of ex-
isting 4.4 BsD UNIX operating system in supporting
MoD applications and presented the design of a new
mmbuf buffering system and an enhanced scs1 driver
with support for priority queuing. We also presented
experimental results for our enhanced system. Specif-
ically, we showed: (1) A 60 % overall improvement
in data throughput from disk device to the netwark
interface, (2) Q0S guarantees in the form of periodic
accesses from the enhanced scst system, and (3) guar-
anteed access to CPU and storage resources at the user

14

level for applications that employ RTUs and access the
new 0s enhancements.

Clearly, these measurements indicate that our 0s
enhancements provide Qos guarantees and significant
improvements 1 throughput on the data-path from
the disks to the network interface. The research con-
tributions described in this paper combined with new
cPU scheduling mechanism such as RTUs {22} malkes
4.4 BSD UNIX a strong candidate for a true multime-
dia operating system,

Also, note that, since, cur work is based on
a public-domain operating system, all the o3
extensions are freely available (via web or {tp)
to interested parties.

References

(1] Anderson, T.E., et.al.,, “Scheduler Activations:
Effective Iernel Support for User Level Man-
agement of Parallelism,” ACM Transactions on
Computer Systems, 1992, pp. 53-79.

Bobrow, D., G., “Tenex, A Paged Time Sharing
System for ppPR-10,", Communications of ACM,
Vol. 15, No. 3, pp. 135-143, Mar. 1972.

Brusteleni, J., C., and Steenkiste, P. “Evalna-
tion of Data Passing and Scheduling Avoidance,”
Proceedings of NOSSDAVI7?, St. Louis, MO, pp.
101-111, May 19-21, 1997,

Bolosky, W., et al, “The Tiger Video File-
server,” Proceedings of NOSSDAVIE, pp. 97-104,
Zushi, Japan, Apr. 23-26, 1996.

Buddhikot, M., Parulkar, G., M., and Cox,
Jerome, Jr., “Design of a Large Scale Multi-
media Server,” Journal of Computer Networks
and ISDN Systems, Elsevier (North Holland), pp.
504-524, Dec 1994,

Buddhikot, M., and Parulkar, G., M., “Efficient
Data Layout, Scheduling and Playout Control
in MARS? ACM/Springer Multimedia Systems
Journal, pp. 199-211, Volume 5, Number 3, 1997.

Buddhikot, M., Parulkar, G., and Gopalakrish-
nan, R., “Scalable Multimedia-Cn-Demand via
World-Wide-Web (WWW) with QOS Guaran-
tees,” Procecedings of Sizth International Worl-
shop on Network and QOperating Sysiem Sup-
port for Digital Audio and Video, NOSSDAVYE,
Zushy, Japan, April 23-26, 1996.

Buddhiket, M., Wu, D., Jane, X., and Parulkar,
G., “Project MARS: Experimental Scalable and
High performance Multimedia-On-Demand Ser-
vices and Servers,” Washington University, De-
partment of Computer Scince, Technical report
{in preparation).

Bernhardt, C., and Biersack, E., “A Scalable
Video Server: Architecture, Design and Imple-
mentation,” In Proceedings of the Real-time Sys-
tems Conference, pp. 63-72, Paris, France, Jan.
1995,

[8]

[10} Cranor, C., “BSD ATM,” Release Notes, Wash-

[11]

[12]

(13)

(14]

(18]

[16]

117
(18]

[19]

[20]

[23]

ington University in St. Louis, Jul 3, 1996.

Cranor, C., and Parulkar, G, “Design of Universal
Continuous Media I/0Q,” Proceedings of NOSS-
DAVE5, pp 83-86, April 1995.

Druschel, P., and Peterson, L., “Fbufs: A high-
bandwidth cross domain transfer facility,” Pro-

ceedings of 14*" SOSP, pp. 1892-202, Dec. 1993,

Fall, K., and Pasquale, J., “Exploiting In-Kernel
Data Paths to Improve I/O Throughput and
CPU Availability”, Proceedings of the USENIX
Winter Technical Conference, San Diego, Cali-
fornia, January 1993, pp. 327-333.

Fali, K., and Pasquale, J.,
“Improving Continuous-Media Playback Perfor-
mance With In-Kernel Data Paths”, Proceedings
of the [EEE International Conference on Mulli-
media Computing and Systems (ICMCS}, Boston,
MA, June 1994, pp. 100-109

Goyal, P., Guo, X., Vin, HM., “A Hierarchical
CPU Scheduler for Multimedia Operating Sys-
tems,” Znd Symposium on Operating Systems De-
sign and Implementation (0SDI9G), Oct. 96, pp.
107-121.

Kawachiya, K., Tokuda, H., “Q-Thread: A New
Execution Model for Dynamic QOS Control of
Continuous-Media Processing,” NOSSDAV 96,
Japan, April 1996.

Kleiman, S., “Design of vnode interface.,” Pro-
ceedings of the USENIX Symposium, 1986.

Khanna, 5., et. al., “Real-time Scheduling in
Sun085.0,” USENIX, Winter 1992, pp.375-390.

McKusik, M., et al. “The Design and Implemen-
tation of the 4.4 BSD Operating System,” Addi-
son Wesley, 1996.

Mercer, C.W., Savage, S., Tokuda, H., “Proces-
sor Capacity Reserves: Operating System Sup-
port for Multimedia Applicati ons,” IEEE Indl.
Conf. on Multimedia Computing and Systems,
May 1994.

Pasquale, Joseph, Anderson, Eric, and Muller,
P. Keith, “Container Shipping: operating sys-
tem support for i/o intensive applications,” IEEE
Computer Magazine, 27 (3): 84-03, March 1994.

Gopal, R., “Efficient Quality of Service Support
in Computer Operating systems for High Speed
Networking and Multimedia,” Dectoral Disserta-
tion, Washington University in St. Louis, Dec.
1996.

Gopalakrishnan, R., Parulkar, G.M.. “A Frame-
work for QoS Guarantees for Multimedia Appli-
cations within an End-system,” Swiss German
Computer Science Society Conf., 1995.

15

[24]

(25]

[26]

[27)

28]

Gopalakrishnan, R., Parulkar, G.M., “A Real-
time Upcall Facility for Protocol Processing with
QOS Guarantees,” (Poster) ACM Symposium on
Operating Systems Principles (SOSP), Copper
Mountain, Colorado, Dec. 1995,

Reddy, A., L., and Wyllie, J.“Disk Scheduling
Algorithms for Multimedia Operating Systems,”
Proceedings of ACM Multimedia'93, Anaheim,
CA, pp. 225-234, Aug. 1993.

Rashid, R., and Robertson, G., *“Accent:
A Communication-Oriented Network Operating
System Kernel,”, Proceedings of 8% Symposium
on Operating System Principles, ACM Press,
New York, pp. 64-85, 1981.

Shreedhar, M., and Varghese, G. “Efficient Fair
Queveing using Deficit Round Robin,” I[IEEE
Transactions on Networking, 1995.

Shenoy, P., Goyal, P., Rao, §., S., and Vin, H.,
“Symphony: An Integrated Multimedia File Sys-
tem,” Technical Report TR-97-09, Department
of Computer Sciences, Univ. of Texas at Austin,
March 1997.

Tzou, Shin-Yan and Anderson, David, “The per-
formance of message-passing using restricted vir-
tual memory re-mapping,” Software - Practice
and Ezperience, 21(3): 251-267, March 1991.

Thorpe, Jason, Personal Communication, March
1996.

Welch, B, “The File System Belongs to the ker-
nei?”, Proceedings of the 2% ustNix Mach sym-
posium, Nov 20-22, pp. 233-250, 1991.

Yu, P., Chen., M., and Kandlur, D., “Grouped
Sweeping Scheduling for DASD based Storage
Management,” Multimedia Systems, Springer-
Verlag, pp. 99-109, Dec. 1993.

	Enhancements to 4.4 BSD UNIX for Efficient Networked Multimedia in Project MARS
	Recommended Citation
	Enhancements to 4.4 BSD UNIX for Efficient Networked Multimedia in Project MARS

	tmp.1439928365.pdf.KYxqn

