Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-97-31

1997-01-01

The Design and Performance of a Real-time CORBA Event Service

Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt

The CORBA Event Service provides a flexible model for asynchronous communication among
objects.However, the standard CORBA Event Service specification lacks important features
required by real-time applications. For instance, operational flight programs for fighter aircraft
have complex real-time processing requirements. This paper describes the design and
performance of an object-oriented, real-time implementation of the CORBA Event Service that is
designed to meet these requirements. This paper makes three contributions to the design and
performance measurement of object-oriented real-time systems. First, it illustrates how to
extend the CORBA Event Service so that it is suitable for real-time systems. These extensions
support... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Harrison, Timothy H.; Levine, David L.; and Schmidt, Douglas C., "The Design and Performance of a Real-
time CORBA Event Service" Report Number: WUCS-97-31 (1997). All Computer Science and Engineering
Research.

https://openscholarship.wustl.edu/cse_research/446

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/446?utm_source=openscholarship.wustl.edu%2Fcse_research%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/446

The Design and Performance of a Real-time CORBA Event Service

Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt

Complete Abstract:

The CORBA Event Service provides a flexible model for asynchronous communication among
objects.However, the standard CORBA Event Service specification lacks important features required by
real-time applications. For instance, operational flight programs for fighter aircraft have complex real-time
processing requirements. This paper describes the design and performance of an object-oriented, real-
time implementation of the CORBA Event Service that is designed to meet these requirements. This paper
makes three contributions to the design and performance measurement of object-oriented real-time
systems. First, it illustrates how to extend the CORBA Event Service so that it is suitable for real-time
systems. These extensions support periodic rate-based event processing and efficient event filtering and
correlation. Second, it describes how to develop object-oriented event dispatching and scheduling
mechanisms that can provide real-time guarantees. Finally, the paper presents benchmarks that
demonstrate the performance tradeoffs of alternative concurrent dispatching mechanisms for real-time
Event Services.

https://openscholarship.wustl.edu/cse_research/446?utm_source=openscholarship.wustl.edu%2Fcse_research%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/446?utm_source=openscholarship.wustl.edu%2Fcse_research%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages

The Design and Performance of a Real-time
CORBA Event Service

Timothy H. Harrison, David L. Levine and
Douglas C. Schmidt

WUCS-97-31

December 1997

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130

The Design and Performance of a
Real-time CORBA Event Service

Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt

{harrison,levine,schmidt }@cs.wustl.edu
Department of Computer Science, Washington University
St. Louis, MO 63130, USA*

December 2, 1997

This paper will appear in the Proceedings of the OOPSLA
'97 conference, Atlanta, Georgia, October, 1997. It is available
from the Washington University, St. Louis, Department of
Computer Science, as Technical Report #WUCS-87-31.

Abstract

The CORBA FEwyent Service provides a flexible model for
asynchronous communication among objects. However,
the standard CORBA Fuvent Service specification lacks
tmportant features required by real-time applications. For
instance, operational flight programs for fighter aircraft
have complex real-time processing requirements. This pa-
per describes the design and performance of an object-
oriented, real-time implementation of the CORBA Event
Service that 15 designed to meet these requirements.

This paper makes three contribulions fo the design
and performance measurement of object-oriented real
time systems. First, it illustrates how to extend the
CORBA Euvent Service so that it is suitable for real-time
systems. These extensions support periodic rate-based
event processing and efficient event filtering and correla-
tion. Second, it describes how to develop object-oriented
event dispatching and scheduling mechanisms that can
provide real-time guarantees. Finally, the paper presents
benchmarks that demonstrate the performance tradecffs of
alternative concurrent dispatching mechanisms for real
time Event Services.

1 Introduction

There is a widespread belief in the embedded systems
community that object-oriented {OQ) techniques are not

*This work was funded in part by McDonnell Douglas Aerospace
and in part by NSF, grant NCR-3628218.

suitable for real-time systems. In particular, the dynamic
binding properties of OQ programming languages seem
antithetical to real-time systems, which require determin-
istic execution behavior and low latency. However, many
real-time application domains {such as avionics, telecom-
munications, process control, and distributed interactive
simulation) can benefit from flexible and open distributed
object computing architectures, such as those defined in
the CORBA specification [1).

1.1 Overview of CORBA

CORBA is a distributed object computing middleware
standard being defined by the Object Management Group
(OMG). CORBA. is designed to support the development
of flexible and reusable distributed services and applica-
tions by (1) separating interfaces from remote implemen-
tations and (2) automating many common network pro-
gramming tasks (such as object registration, location, and
activation; request demultiplexing; framing and error-
handling; parameter marshalling and demarshalling; and
operation dispatching).

Figure 1 illustrates the primary components in the
OMG Reference Model architecture {2]:

At the heart of the OMG Reference Model is the Ob-
ject Request Broker (ORB). ORBs allow clients to invoke
operations on target object implementations without con-
cern for where the object resides, what language the ob-
ject is written in, the OS/hardware platform, or the type
of communication protocols and networks used to inter-
connect distributed objects [3].

This paper focuses on the CORBA Event Service,
which is defined within the CORBA Object Services
(COS) component in Figure 1. The COS specification [4]
presents architectural models and interfaces that factor

- INTERFACES,

Figure 1: OMG Reference Model Architecture.

out common services for developing distributed applica-
tions.

Many distributed applications exchange asynchronous
requests using event-based execution models [5]. To sup-
port these common use-cases, the CORBA. Event Service
defines supplier and consumer participants. Suppliers
generate events and consumers process events received
from suppliers. In addition, the CORBA Event Service
defines an Event Channel, which is a mediator [6] that
propagates events to consumers on behalf of suppliers.

The OMG Event Service model simplifies application
software by allowing decoupled suppliers and consumers,
asynchronous event delivery, and distributed group com-
munication [7]. In theory, this model seems to address
many common needs of event-based, real-time applica-
tions. In practice, however, the standard CORBA Event
Service specification lacks other important features re-
quired by real-time applications such as real-time event
dispatching and scheduling, periodic event processing, and
efficient event filtering and correlation mechanisms.

To alleviate the limitations with the standard COS
Event Service, we have developed a Real-time Event Ser-
vice (RT Event Service) as part of the TAO project [3] at
Washington University. TAO is a real-time ORB endsys-
tem that provides end-to-end quality of service guarantees
to applications by vertically integrating CORBA middle-
ware with OS I/0 subsystems, communication protocols,
and network interfaces. Figure 2 illustrates the key ar-
chitectural components in TAQO and their relationship to
the real-time Event Service.

TAOs RT Event Service augments the CORBA Event
Service model by providing source-based and type-based
filtering, event correlations, and real-time dispatching.
To facilitate real-time scheduling (e.g., rate monctonic
(8]), TAO’s RT Event Channels can be configured to sup-
port various strategies for priority-based event dispatch-
ing and preemption. This functionality is implemented

Pusgy,

SERVANT

0S 1O SUBSYSTEM

Figure 2: TAO: An ORB Endsystem Architecture
for High-Performance, Real-time CORBA.

using a real-time dispatching mechanism that coordinates
with a gystemn-wide real-time Scheduling Service.

TAQs RT Event Service runs on real-time OS plat-
forms {e.g., VxWorks and Solaris 2.x) that provide real-
time scheduling guarantees to application threads. Win-
dows N'T' also provides real-time threads, though it lacks
certain features required for hard real-time systems [9)].

1.2 Related Work

Conventional approaches to quality of service (QoS) en-
forcement have typically adopted existing solutions from
the domain of real-time scheduling, [8], fair queuing in
network routers [10], or OS support for continuous me-
dia applications [11]. In addition, there have been efforts
to implement new concurrency mechanisms for real-time
processing {such as the real-time threads of Mach [12] and
real-time CPU scheduling priorities of Solaris [13]).
However, QoS research at the network and OS5 layers
has not necessarily addressed key requirements and us-
age characteristics of distributed object computing mid-
dleware. For instance, research on QoS for network in-
frastructure has focused largely on policies for allocat-
ing bandwidth on a per-connection basis. Likewise, re-
gearch on real-time operating systems has focused largely
on avoiding priority inversions and non-determinism in
synchronization and scheduling mechanisms. In contrast,
the programming model for developers of QO middleware

focuses on invoking remote operations on distributed ob-
jects. Determining how to map the results from the net-
work and OS layers to OO middleware is a major focus
of our regearch.

There are several commercial CORBA-compliant
Event Service implementations available from multiple
vendors (such as Expersoft, Iona, Sun Systems, and Visi-
genic Software}. Iona also sells OrbixTalk, which is a
messaging technology based on IP multicast. Unfortu-
nately, since the CORBA Event Service specification does
not address issues critical for real-time applications, these
implementations are not acceptable solutions for many
domains.

The OMG has issued a request for proposals (RFP) on
a new Notification Service [14] that has generated several
responses [15]. The R¥P specifies that a proposed Notifi-
cation Service must be a superset of the COS Event Ser-
vice with interfaces for the following features: event filter-
ing, event delivery semantics (e.g., at least once, at most
once, efc.), security, event channel federations, and event
delivery QoS. The organizations contributing to this ef-
fort have done some excellent work in addressing many
of the shortcomings of the CORBA Event Service [16].
However, the OMG R¥P documents do not address the
implementation issues related to the Notification Service.

Although there has been research on formalisms for
real-time objects [17], relatively little published research
on the design and performance of real-time OO systems
exists. Our approach is based on emerping distributed
object computing standards (ie., CORBA) - we focus
on the design and performance of various strategies for
implementing QoS in real-time ORBs [3].

The QuO project at BBN [18] has defined a model for
communicating changes in QoS characteristics between
applications, middleware, and the underlying endsystems
and network. The QuO architecture differs from our work
on RT Event Channels, however, since QuQ does not pro-
vide hard real-time guarantees of ORB endsystem CPU
scheduling. SunSoft [19] describes techniques for opti-
mizing the performance of CORBA Event Service imple-
mentations. As with QuQ, their focus also was not on
guaranteeing CPU processing for events with hard real-
time deadlines.

Rajkumar, et ol., describe a real-time publisher/sub-
scriber prototype developed at CMU SEI [5]. Their Pub-
lisher/Subscriber model is functionally similar to the COS
Event Service, though it uses real-time threads to prevent
priority inversion within the communication framework.
One interesting aspect of the CMU model is the sepa-
ration of priorities for subscription and event transfer so
that these activities can be handled by different threads
with different priorities. However, the model does not uti-

lze any QoS specifications from publishers (suppliers) or
subscribers (consumers). As a result, the message deliv-
ery mechanism does not assign thread priorities according
to the priorities of publishers or subscribers. In contrast,
the TAQ Event Service utilizes QoS parameters from sup-
pliers and consumers to guarantee the event delivery se-
mantics determined by a real-time scheduling service.

1.3 Organization

This paper is organized as follows: Section 2 describes
how the CORBA Event Service model can help to sim-
plify application development in real-time domains like
avionics; Section 3 discusses the real-time extensions we
added to the CORBA Event Service; Section 4 outlines
the QO framework for real-time event dispatching and
scheduling that forms the core of TAO’s Real-time Event
Service; Section 5 shows how different implementations
of the dispatching and scheduling mechanisms perform
under different workloads on VxWorks running real-time
threads; Section 6 discusses our experiences using OO
techniques in a real-time context; and Section 7 presents
concluding remarks.

2 Overview of the OMG CORBA
Event Service

2.1 Background

The standard CORBA operation invocation model sup-
ports twoway, oneway, and deferred synchronous interac-
tions between cHents and servers. The primary strength
of the twoway model is its intuitive mapping onto the
object->operation() paradigm supported by OO lan-
guages. In principle, twoway invocations simplify the de-
velopment of distributed applications by supporting an
implicit request/response protocol that makes remote op-
eration invocationg transparent to the client.

In practice, however, the standard CORBA operation
invocation models is too restrictive for real-time appli-
cations. In particular, these models lack asynchronous
message delivery, do not support timed invccations or
group communication, and can lead to excessive polling
by clients. Moreover, standard oneway invocations might
not implement reliable delivery and deferred synchronous
invocations require the use of the CORBA Dynamic In-
vocation Interface (DII), which yields excessive overhead
for most real-time applications [20].

The Event Service is a CORBA Object Service that is
designed to alleviate some of the restrictions with stan-
dard CORBA invocation models. In particular, the COS

Event Service supports asynchronous message delivery
and allows one or more suppliers to send messages to one
or more consumers. Event data can be delivered from
suppliers to consumers without requiring these partici-
pants to know about each other explicitly.

2.2 Structure and Participants for the
COS Event Service

Figure 3 shows the key participants in the COS Event

Service architecture:

" Consumer

Figure 3: Participants in the COS Event Channel
Architecture.

The role of each participant is outlined below:

¢ Suppliers and consumers: Consumers are the ulti-
mate targets of events generated by suppliers. Suppliers
and consumers can both play active and passive roles. An
active push supplier pushes an event t0o a passive push
consumer. Likewise, a passive pull supplier waits for an
active pull consumer to pull an event from it.

s Event Channel: At the heart of the COS Event Ser-
vice is the Event Channel, which plays the role of a media-
tor between consumers and suppliers. The Event Channel
manages ohject references to suppliers and consumers. It
appears as a “proxy” consumer fto the real suppliers on
one side of the channel and as a “proxy” supplier to the
real consumers on the other side.

Suppliers use Event Channels to push data to con-
sumers. Likewise, consumers can explicitly pull data
from suppliers. The push and pull semantics of event
propagation help to free consumers and suppliers from
the overly restrictive synchronous semantics of the stan-
dard CORBA twoway communication model. In addi-
tion, Event Channels can implement group communica-
tion by serving as a replicator, broadcaster, or multicaster
that forward events from one or more suppliers to multi-
ple consumers.

:.::;: ¢ ._ns_l.]_ﬁl_m_'

There are two models (i.e., push vs. pull) of partici-
pant collaborations in the COS Event Service architec-
ture. This paper focuses on real-time enhancements to
the push model, which allows suppliers of events to ini-
tiate the transfer of event data to consumers. Suppliers
push events to the Event Channel, which in turn pushes
the events to consumers.

2.3 Applying TAO’s Real-time KEvent
Service to Real-time Avionics Sys-
tems

Modern avionics systems are characterized by processing
tasks with deterministic and statistical real-time dead-
lines, pericdic processing requirements, and complex data
dependencies. Building flexible application software and
QO middleware that meets these requirements is chal-
lenging because the need for determinism and predictabil-
ity often results in tightly coupled designs. For instance,
conventional avionics mission control applications consist
of closely integrated responsibilities that manage sensors,
navigate the airplane’s course, and control weapon re-
lease.

Tight coupling often yields highly efficient custom im-
plementations. As the example below shows, however, the
inflexibility of tightly coupled software can substantially
increase the effort and cost of integrating new and im-
proved avionics features. For example, navigation suites
are a source of continual change, both across platforms
and over time. The specific components that make up
the navigation suite (e.g., sensors) change frequently to
improve accuracy and availability. Many conventional
avionics systems treat each implementation as a “point
solution,” with built-in dependencies on particular com-
ponents. This tight coupling requires expensive and time
consuming development effort to port systems to newer
and more powerful navigation technologies.

2.4 Overview of Conventional Avionics
Application Architectures

Figure 4 shows a conventional architecture for distribut-
ing periodic I/O events throughout an avionics applica-
tion. This example has the following participants:

¢ Aircraft Sensors: Aircraft-specific devices generate
sensor data at regular intervals {e.g., 30 Hz ({.e., 30 times
a second), 15 Hz, 5 Hz, etc.). The arrival of sensor data
generates interrupts that notify the mission computing
applications to receive the incoming data.

¢ Sensor Proxies: Mission computing systems must
process data to and from many types of aircraft sensors,

High Level
Abstraciion

S
4

@wﬁsww&m&wm%%

<

Low Level

Aireraft i
Abstraciion

Sensors

Figure 4: Example Avionics Mission Control Ap-
plication.

including Global Position System (GPS), Inertial Naviga-
tion Set (INS), and Forward Looking Infrared Radar. To
decouple the details of sensor communication from the
applications, Sensor Proxy objects are created for each
sensor on the aircraft. When I/Q interrupts occur, data
from a sensor ig given to an appropriate Sensor Proxy.
Each Sensor Proxy object demarshals the incoming data
and notifies I/O Facade objects that depend on the sen-
sor’s data. Since modern aircraft can be equipped with
hundreds of sensors, a large number of Sensor Proxy ob-
jects may exist in the system.

¢ 1/O Facade: I/O Facades represent objects that de-
pend on data from one or more Sensor Proxies. I/O
Facade objects use data from Sensor Proxies to provide
higher-level views to other application objects. For in-
stance, the aircraft position computed by an I/O Facade
is used by the navigation and weapon release subsystems.

The push-driven model described above is commonly
used in many real-time environments, such as industrial
process control systems and military command/control
systems. One positive consequence of this push-driven
model is the efficient and predictable execution of op-
erations. For instance, I/Q Facades only execute when
their event dependencies are satisfied (i.e., when they are
called by Sensor Proxies).

In contrast, using a pulldriven model to design the
migsion control application would require I/O Facades
that actively acquire data from the Sensor Proxies. If
the data was not available to be pulled, the calling I/0
Facade would need to block awaiting a result. In or-
der for the I/0O Facade to pull, the system must allo-

cate additional threads to allow the application to make
progress while the I/0O Facade task is blocked. How-
ever, adding threads to the system has many negative
consequences (such as increased context switching over-
head, synchronization complexity, and complex real-time
thread scheduling policies). Conversely, by using the push
model, blocking is largely alleviated, which reduces the
need for additional threads. Therefore, this paper focuses
on the push model.

2.5 Drawbacks with Conventional Avion-
ics Architectures

A disadvantage to the architecture shown in Figure 4
is the strong coupling between suppliers (Sensor Prox-
ies) and consumers (I/O Facades). For instance, in or-
der to call back to I/O Facades, each Sensor Proxy must
know which I/O Facades depend on its data. As a result,
changes to the I/O Facade layer (e.g., addition/removal
of a consumer) require the modification of Sensor Prox-
ies. Likewise, consumers that register for callbacks are
tightly coupled with suppliers. If the availability of new
hardware (such as Forward Looking Infrared Radar) re-
quires a new Sensor Proxy, I/O Facades must be altered
to take advantage of the new technology.

2.6 Alleviating Drawbacks with Conven-
tional Avionics Architectures

Figure 5 shows how an Event Channel can alleviate the
disadvantages of the tightly coupled consumers and sup-
pliers shown above in Figure 4.

In Figure 5, Sensor Proxy objects are suppliers of I/0O
events that are propagated by an Event Channel to I/0O
Facades, which consume the demarshalled I/0 data. Sen-
sor Proxies push I/O events 4o the channel without hav-
ing to know which I/O Facades depend on the data. The
benefit of using the Event, Channel is that Sensor Proxies
are unaffected when I/O Facades are added or removed.
This architectural decoupling is described concisely by
the Observer pattern [6].

Another benefit of an Event Channel-based architec-
ture is that an I/O Facade need not know which Sen-
sor Proxies supply its data. Since the channel mediates
on behalf of the Sensor Proxies, 1/O Facades can reg-
ister for certain types of events (e.g., GPS and/or INS
data arrival) without knowing which Sensor Proxies ac-
tually supply these types of events (Section 3.2 discusses
typed-filtering). Once again, the use of an Event Chan-
nel makes it possible to add or remove Sensor Proxies
without changing I/O Facades.

Sensors

Figure 5: HExample Avionics Application with
Event Channel.

3 Overview of the Real-time

Event Service

3.1 DMotivation

As shown in the previous section, the CORBA COS Event
Service provides a flexible model for transmitting asyn-
chronous events among objects. For example, it removes
several restrictions inherent in synchronous twoway com-
munication. Moreover, it frees application programmers
from the tedious and error-prone details of handling regis-
trations from multiple consumers and suppliers. In addi-
tion, the COS Event Service interfaces are fairly intuitive
and the consumer/supplier connections and event deliv-
ery models are symmetrical and straightforward.
However, the standard COS Event Service Specifica-
tion lacks several important features required by real-
time applications. Chief among these missing features
include real-time event dispatching and scheduling, peri-
odic event processing, and centralized event, filtering and
correlations. To resolve these limitations, we have devel-
oped a Real-time Event Service (RT Event Service) as
part of the TAO project [3]. TAO’s RT Event Service ex-

tends the COS Event Service specification to satisfy the
quality of service (QoS) needs of real-time applications in
domains like avionics, telecommunications, and process
control.

The following list summarizes the features missing in
the COS Event Service and cutlines how TA(O’s Real-time
Event Service supports them:

¢ No guarantees for real-time event dispatching
and scheduling: In a real-time system, events must
be processed so that consumers can meet their QoS dead-
lines. For instance, the Sensor Proxies shown in Figure §
generate notification events that allow the I/0 Facades
who depend on the sensor data to execute. To enforce a
real-time scheduling policy, higher priority I/O Facades
must receive events and be allowed to run to completion
before lower priority I/O Facades receive events.

The COS Event Service has no notion of QoS, how-
ever. In particular, there is no Event Channel interface
that consumers can use to specify their execution and
scheduling requirements. Therefore, standard COS Event
Channels provide no guarantee that they will dispatch
events from suppliers with the correct scheduling prior-
ity, relative to the consumers of these events.

TAQ’s RT Event Service extends the COS Event Ser-
vice interfaces by allowing consumers and suppliers to
specify their execution requirements and characteristics
using QoS parameters (such as worst-cage execution time,
rate, etc.). These parameters are used by the channel’s
dispatching mechanism to integrate with the system-wide
real-time scheduling policy to determine event dispatch
ordering and preemption strategies. Section 4.2.1 de-
scribes these QoS parameters in more detail.

s No specification for centralized event filtering
and correlation: Some consumers can execute when-
ever an event arrives from any supplier. Other consumers
can execute only when an event arrives from a specific
supplier. Still other consumers must postpone their exe-
cution until multiple events have arrived from a particular
set of suppliers {e.g., a correlation of events).

For instance, an I/ Facade may depend on data from
a subset of all Sengsor Proxies. Furthermore, it may use
data from many Sensor Proxies in a single calculation of
aircraft position, Therefore, the I/Q Facade can not make
progress until all of the Sensor Proxy objects receive 1/0
from their external sensors.

Tt is possible to implement filtering using standard COS
Event Channels, which can be chained to create an event
filtering graph that consumers to register for a subset of
the total events in the system. However, the filter graph
defined in standard COS increases the number of hops
that a message must travel between suppliers and con-

sumers. The increased overhead incurred by traversing
these hops is typically unacceptable for real-time appli-
cations with low latency requirements. Furthermore, the
COS filtering model does not address the event correla-
tion needs of consumers that must wait for multiple events
to occur before they can execute.

To alleviate these problems, TAQ’s RT Event Service
provides filtering and correlation mechanisms that allow
consumers to specify logical OR and AND event depen-
dencies. When those dependencies are met, the RT Event
Service dispatches all events that satisfy the consumers’
dependencies. For instance, the I/O Facade can spec-
ify its requirements to the RT Event Service so that the
channel only notifies the Facade object after all its Sensor
Proxies have received I/O. At that time, the I/O Facade
receives an aggregate of all the Sensor Proxies it depends
on via a single push,

¢ No support for periodic processing: Consumers
in real-time systems typically require ¢ units of computa-
tion time every P milliseconds. For instance, some avion-
ics signal processing filters must be updated periodicaily
or else they will spend a substantial amount of time re-
converging. Likewise, an I/O Facade might guarantee
regular delivery of its data to higher level components,
regardless of whether its Sensor Proxy objects actually
generate events at the expected rate.

In both cases, consumers have strict deadlines by which
time they must execute the requested C units of compu-
tation time. However, the COS Event Service does not
permit consumers to specify their temporal execution re-
quirements. Therefore, periodic processing is not sup-
ported in standard COS Event Service implementations.

TAO’s RT Event Service allows consumers to specify
event dependency timeouts. It uses these timeout re-
quests to propagate temporal events in coordination with
gystem scheduling policies. In additional to the canonical
use of timeout events (i.e., receiving timeouts at some in-
terval), a consumer can request to receive a timeout event
if its dependencies are not satisfied within some time pe-
riod (i.e., a real-time “watchdog” timer). For instance,
an I/Q Facade can register to receive a timeout event if
its Sensor Proxy dependencies are not satisfied after some
time interval. This way, it can make best effort calcula-
tions on the older sensor data and notify interested higher
level components.

3.2 RT Ewvent Service Architecture

Figure 6 shows the high-level architecture of TAQ’s RT
Ewvent Service implementation.

Consumer

..Consumer.

EVENT
CHANNEL

Supplier

Figure 6: RT Event Service Architecture.

The role of each component in the RT Event Service is
outlined below:

s Event Channel: Inthe RT Event Service model, the
Event Channel plays the same role as it does in the con-
ventional COS Event Service. Externally, it provides two
factory interfaces, ConsumerAdmin and SupplierAdmin,
which allow applications to obtain consumer and supplier
administration objects, respectively. Thege administra-
tion objects make it possible to connect and disconnect
consumers and suppliers to the channel. Internally, the
channel is comprised of several processing modules based
on the ACE Streams framework [21]. As described be-
low, each module encapsulates independent tasks of the
channel.

¢ Consumer Proxy Module: The interface
tc the Consumer Proxy Module is identical to
ConsumerAdmin interface defined in the COS Event
Service CosEventChannelAdmin module. It provides
factory methods for creating objects that support the
ProxyPushSupplier interface. In the COS model, the
ProxyPushSupplier interface is used by consumers o
connect and disconnect from the channel.

TAQ’s RT Event Service model extends the standard

COS ProxyPushSupplier interfaces so that consumers
can register their execution dependencies with a channel.
Figure 7 shows the types of data exchanged and the inter-
object collaborations involved when a consumer invokes
the ProxyPushSupplier::connect push_consumer reg-
istration operation.

EVENT
CONNECT_PUSH CHANNEL
CONSUMER — —
Object Ref “IConsumer e |

Proxies

RT_Info

CONNECT_PUSH
SUPPLIER

Subscription Info

Publish Types

Timeout Registration

Object Ref

Figure 7: Collaborations in the RT Event Service
Acrchitecture.

s Supplier Proxy Module: The interface to this mod-
ule is identical to SupplierAdmin interface defined in the
COS Event Service CosEventChannelAdmin module.
provides factory methods for creating objects that sup-
port the ProxyPushConsumer interface. Suppliers use the
ProxyPushConsumer interface to connect and disconnect
from the channel.

TAQ’s RT Event Service model extends the standard
CQOS ProxyPushConsumer interface so that suppliers can
specify the types of events they generate. With this in-
formation, the channel’s Subscription and Filtering Mod-
ule can build data structures that allow efficient run-time
lookups of subscribed consumers.

ProxyPushConsumer objects also represent the en-
try point of events from suppliers into an Event
Channel. ‘When Suppliers transmit an event to the
ProxyPushConsumer interface via the proxy’s push opera-
tion the channel forwards this event to the push operation
of interested consumer object(s).

¢ Subscription and filtering: The CORBA Event
Service defines Event Channels as broadcasters that for-
ward all events from suppliers to all consumers. Thisg
approach has several drawbacks. If consumers are only
interested in a subset of events from the suppliers, they
must implement their own event filtering to discard un-
needed events. Furthermore, if a consumer ultimately

discards an event, then delivering the event to the con-
sumer needlessly wastes bandwidth and processing.

To address these shortcomings, TAQO’s RT Event Ser-
vice extends the COS interfaces to allow consumers to
subscribe for particular subsets of events. The channel
uses these subscriptions to filter supplier events, only for-
warding them {o interested consumers.

There are several reasons why TAQO implements fil-
tering in the channel. First, the channel relieves con-
sumers from implementing filtering semantics. Second,
it reduces communication channel load by eliminating
filtered events in the channel instead of at consumers.
Furthermore, o implement filtering at the suppliers, the
suppliers would require knowledge of consumers. Since
this would violate one of the primary motivations for an
event service (that is, decoupled consumers and suppli-
ers), TAO integrates filtering into the channel.

Adding filtering to the Event Channel requires a well-
defined type system for events. Although the complete
schema, for this type system is beyond the scope of this
paper, it includes source ID, type, data, and timestamp
fields (the schema is fully described in [22]). The RT
Event Channel uses the event type system in the following
ways:

1. Supplier-based filtering — Not all consumers that
connect to an Event Channel are interested in the
same events. In this case, consumers only register
for events generated by certain suppliers. The event
type system includes a source ID field that allows ap-~
plications to specify unique supplier identifiers with
each event. The Subscription and Filtering Module
uses this field to locate consumers that have sub-
scribed to particular suppliers in 0f1) worst-case
time.

2. Type-based filtering — Each event contains a type
field. This allows consumers to register for events of a
particular type. Since the type field is represented as
an enumerated type, the subscription and Filtering
Module utilizes a lookup structure to find type-based
subscribers in O(1) worst-case time.

3. Combined supplier/type-based filtering — Con-
sumers can register for any combination of supplier
and type-based filtering (e.g., only supplier-based,
only type-based, or supplier-based and type-based).
To implement this efficiently, the Subscription and
Filtering Module maintains type-based subscription
tables for every supplier in the system.

When an event enters the Subscription and Filter-
ing Module, consumers that subscribe $o combined
supplier/type-based IDs are located with two table

lookups. The first lookup finds all the type-based
subscription tables corresponding to the event’s
source IID. The second lookup finds the consumers
subscribed to the event’s type ID.

The Subscription and Filtering Module permits con-
sumers to temporarily disable event delivery by the chan-
nel through suspend and resume operations. These are
lightweight operations that have essentially the same ef-
fect as de-registering and re-registering for events. There-
fore, suspend and resume are suitable for frequent
changes in consumer sets, which commonly occur during
mode changes. By incorporating suspension and resump-
tion in the module closest to the suppliers, Event Channel
processing is minimized for suspended consumers.

e Priority Timers Proxy: The Supplier Proxy Mod-
ule contains a special-purpose Priority Timers Prozy that
manages all timers registered with the channel. When
a consumer registers for a timeous, the Priority Timers
Proxy cooperates with the Run-time Scheduler to ensure
that timeouts are dispatched according to the priority of
their corresponding consumer.

The Priority Timers Proxy uses a heap-based callout
queue [23]. Therefore, in the average and worst case, the
time required to schedule, cancel, and expire a timer is
O(log N) (where N is the total number of timers). The
timer mechanism preallocates all its memory, which elim-
inates the need for dynamic memory allocation at run-
time. Therefore, this mechanism is well-suited for real-
time systems requiring highly predictable and efficient
timer operations.

¢ BEvent correlation: A consumer may require cer-
tain events to occur before it can proceed. To imple-
ment; this functionality, consumers can specify conjunc-
tive (“AND”) or disjunctive (“OR”) semantics when reg-
istering their filtering requirements (i.e., supplier-based
and/or type-based). Conjunctive semantics instruct the
channel to notify the consumer when all the specified
event dependencies are satisfied. Disjunctive semantics
instruct the channel to notify the consumer(s) when any
of the specified event dependencies are satisfied. Con-
sumers can register their filtering requests with a channel
multiple times. In this case, the channel creates a dis-
junction relation for each of its consumer registrations.

Mechanisms that perform filtering and correlation are
called Event Filtering Disceriminators (EFDs). EFDs al-
low the run-time infrastructure to handle dependency-
based notifications that would otherwise be performed
by each consumer as all events were pushed to it. Thus,
EFDs provide a “data reduction” service that minimizes
the number of events received by consumers so that they
only receive events they are interested in.

¢ Dispatching: The Dispatching Module determines
when events should be delivered to consumers and pushes
the events to them accordingly. To guarantee that con-
sumers execute in time to meet their deadlines, this mod-
ule collaborates with the system-wide Scheduling Service
(discussed in Section 4.2). TAQ’s Ofi-line Scheduler ini-
tially implements the rate monotonic scheduling policy.
Section 4 illustrates how adding new dispatching imple-
mentations is straightforward since this module is well-
encapsulated from other components in the Event Chan-
nel’s OO0 real-time event dispatching framework.

3.3 Static and Dynamic Event Channel
Configuration

The performance requirements of an RT Event Service
may vary for different types of real-time applications. The
primary motivation for basing the internal architecture
of the TAQ Event Channel on the ACE Streams frame-
work is to allow static and dynamic channel configura-
tions. Each module shown in Figure 7 may contain mul-
tiple “pluggable” strategies, each optimized for different
requirements. The Streams-based architecture allows in-
dependent processing modules to be added, removed, or
modified without requiring changes to other modules.

TAQ’s Event Channel can be configured in the follow-
ing ways t0 support different event dispatching, filtering,
and dependency 34 semantics:

¢ The modules implementing a “full” TAO Event

Channel include the Dispatching, Correlation, Filter-
ing, and Consumer/Supplier Proxy modules. Con-
figuring a channel with all of these modules sup-
ports type and source-based filtering, correlations,
and priority-based queueing and dispatching.

+ Ag discussed in Section 4, TAQ's Event Channel
Dispatching Module implements several concurrency
strategies. Bach strategy caters to the type and
availability of system resources (such as the OS
threading model and the number of CPUs). TAQ’s
Event Channel framework is designed so that chang-
ing the number of threads in the system, or changing
to a single-threaded concurrency strategy, does not
require modifications to unrelated components in a
channel.

The following configurations can be achieved by re-
moving certain modules from an Event Channel:

— Removing the Dispatching Module from the
Event Channel results in an Event Forwarding
Discriminator (EFD) configuration that sup-
ports event filtering and correlations. An EFD

configuration is shown in Figure 9(C). Since
TAQ’s Filtering and Correlation Modules have
been implemented to guarantee deterministic
run-time performance, the EFD configuration is
applicable for real-time applications that do not
require priority-based queueing and dispatching
in the Event Channel. As discussed in Section
4.1.1 below, such systems might implement real-
time dispatching in the ORB’s Object Adapter
level, thereby simplifying the channel.
Removing the Correlation Module from a full
TAQ Event Channel yields a Subscription and
Filtering configuration. This configuration is
useful for applications that have no complex
inter-event correlation dependencies, but sim-
ply want to receive events when they match a
simple filter.

A Broadcaster Repeater configuration can be
achieved by removing the Correlation and Dis-
patching Modules. This configuration sup-
ports neither real-time dispatching nor filter-
ing/correlations. In essence, this implements
the semantics of the standard COS Event Chan-
nel push model.

In static real-time environments (such as conventional
avionics systems), the configuration of an Event Channel
is generally performed off-line to reduce startup overhead.
In dynamic real-time environments (such as telecommuni-
cation call-processing), however, component policies may
require alteration at run-time. In these contexts, it may
be unacceptable to completely terminate a running Event
Channel when a scheduling or concurrency policy is up-
dated. In general, therefore, an RT Event Channel frame-
work must support dynamic reconfiguration of policies
without interruption while continuing to service commu-
nication operations [24]. Basing TAQ’s RT Event Chan-
nel on the ACE Streams framework supports both static
and dynamic (re)configuration.

4 An Object-Oriented Framework
for Real-time Event Service
Dispatching and Scheduling

Applications and middleware components using a real-
time Event Service have deterministic and statistical
deadlines. As a result, TAQ’s RT Event Channel uti-
lizes a real-time Scheduling Service to ensure that events
are processed before deadlines are missed. Most real-time
scheduling policies (such as rate monotonic and earliest

deadline first) require priority-based event dispatching
and preemption. To maximize reuse and allow flexibility
between multiple scheduling policies, TAQ’s Event Chan-
nel framework separates the dispatching mechanism from
the scheduling policy. The dispatching mechanism im-
plements priority-based dispatching and preemption, but
consults a Run-time Scheduler to determine the priorities
of objects and events.

This section discusses the Dispatching Module and
Scheduling Service in TAO’s RT Event Channel.

4.1 The Dispatching Module

The Dispatching Module is responsible for implementing
pricrity-based event dispatching and preemption. When
the Dispatching Module receives a set of supplier events
from the Event Correlation Module, it queries the Run-
time Scheduler to determine the priority of the consumers
that the events are destined for. With that information,
the Dispatching Module can either (1) insert the events in
the appropriate priority queues (which are dispatched at
a later time) or (2) preempt a running thread to dispatch
the new events immediately.

The following figure shows the structure and dynamics
of the Dispatching Module in the context of the Event
Channel.

™, B:push (event) . Event Channel

- Consumer Proxies

6: dequene (event, consumer)

5: enquene (event, consumer)

4: push (event, constumer)}
3:push {(event, consumer)
2:push (event)

Supptier.
1: push (event)

Figure 8: Event Channel Dispatching.

10

The participants in Figure 8 include the following:

¢ Consumer and Supplier Proxies: The Event
Channel utilizes proxies to encapsulate communication
with the consumers and suppliers. For & distributed con-
sumer or supplier, a proxy manages the details of remote
communication.

¢ Lvent filtering and correlation: When events ar-
rive from consumers, the Event Filtering and Correla-
tion Modules determine which consumers should receive
the events and when to dispatch the events. These
modules forward the events to the Dispatching Module,
which handles the details of dispatching each event to
its consumer(s) in accordance with the priority of the
event/consumer(s) tuple.

* Run-time Scheduler: The Dispatching Module col-
laborates with the Run-time Scheduler to determine pri-
ority values of the event/consumer tuples. Given an event
and the target consumer, the Run-time Scheduler de-
termines the priority at which the event should be dis-
patched to the consumer.

The motivation for decoupling the Run-time Sched-
uler from the Dispatching Module is to allow schedul-
ing policies to evolve independently of the dispatching
mechanism., TAQO’s Run-time Scheduler was initially im-
plemented with a rate monotonic scheduling policy that
used the consumer’s rate to determine the tuple’s pri-
ortty. Subsequent Run-time Scheduler implementations
use an Earliest Deadline First (EFD) policy, where the
deadline of the event {or consumer) determines the prior-
ity of the tuple. Thus, by separating the responsibilities
of scheduling from dispatching, the Run-time Scheduler
can be replaced without affecting unrelated components
in the channel.

e Priority Queues: Given an event/consumer tuple,
the Run-time Scheduler returns a preemption priority and
a sub-priority. The Dispatching Module maintains a pri-
ority queue of events for each preemption priority used by
the Run-time Scheduler. When an event/consumer tuple
arrives, it is inserted onto the queue corresponding to the
preemption priority returned by the scheduler. The sub-
priority is used by the Dispatcher to determine where in
the Priority Queue the tuple is placed (described below).

e Dispatcher: The Dispaicher is responsible for remov-
ing event/consumer tuples from the priority queues and
forwarding the events to the consumers by calling their
push operation. Depending on the placement of each tu-
ple in the Priority Queues, the Dispatcher may preempt
a running thread in order to dispatch the new tuple.

For instance, consider the arrival of an event/consumer
tuple in a Dispatching Module implemented with real-

time preemptive threads. If the Run-time Scheduler as-
signs the tuple a preemption priority higher than any
currently running thread, the Dispatcher will preempt a
running thread and dispatch the new tuple. Furthermore,
assuming that lower numbers indicate higher priority, the
Dispatcher in Figure 8 would dispatch all tuples on queue
0 before dispatching any on queue 1. Similarly, it would
dispatch all tuples on queue 1 before those on queue 2,
and so on.

To remove tuples from Priority Queues, the Dis-
patcher always dequeues from the head of the queue.
The Run-time Scheduler can determine the order of de-
queueing by returning different sub-priorities for differ-
ent event/consumer tuples. For instance, assume that
an implementation of the Run-time Scheduler must en-
sure that some event B is always dispatched before event
Ey, but does not require that the arrival of £» preempt a
thread dispatching F;. By assigning a higher sub-priority
to0 event/consumer tuples containing F, the tuple will al-
ways be queued before any tuples confaining E;. There-
fore, the Dispatcher will always dequeue and dispatch E;
events before F; events.

A benefit of separating the functionality of the Dis-
patcher from the Priority Queues is to allow the imple-
mentation of the Dispatcher to change independently of
the other channel components. TAO’s RT Event Chan-
nel has been implemented with four different dispatching
mechanisms, as described in the following subsection.

Consumer
Proxies
3¢ push {evenl; consumer)

Jite dispatehing module

1.: push {event)

- Supplier-: -
-~ Proxics

{CY EFD Dispatching

{(B) Threaded Dispatching

Figure 9: Dispatcher Implementations.

4.1.1 Dispatcher Preemption Strategies

An important responsibility of the Event Channel’s
Dispatcher mechanism is preemption. Most real-time

11

scheduling policles require preemption. For example, if
consumer A with a priority of 2 i3 executing when con-
sumer B with a priority of 1 becomes runnable, consumer
A should be preempted so that B can run until it com-
pletes or is itself preempted by a consumer with a priority
of 0. As shown in Figure 9, TAQ’s Event Channel Dis-
patching Module supports several levels of preemption via
the following strategies:

¢ Real-time upcall (RTU) dispatching (with de-
ferred preemption): Figure 9(A) shows a single-
threaded implementation where one thread is responsi-
ble for dispatching all queued requests. This requires
that consumers cooperatively preempt themselves when a,
higher priority consumer becomes runnable. This model
of “deferred preemption” is based on a Real-time Upcall
(RTU) concurrency mechanism [25].

The primary benefit of the RTU model is its ability
to reduce the context switching, synchronization, and
data movement overhead incurred by preemptive multi-
threading implementations. However, preemption is de-
layed to the extent that consumers check to see if they
must preempt themselves. This latency may be unaccept-
able in some real-time applications.

¢ Real-time preemptive thread dispatching: An
increasing number of OS platforms (e.g., VxWorks, So-
laris 2.x, and DEC UNIX) support real-time threads.
Figure 9(B) shows an implementation of the Dispatch-
ing Module that allocates a Real-time thread (or pool of
threads) to each priority queue.

The advantage of this model is that the dispatcher can
leverage kernel support for preemption by associating ap-
propriate OS priorities to each thread. For instance, when
athread at the highest priority becomes ready to run, the
085 will preempt any lower priority thread thai is running
and allow the higher priority thread to run. The disad-
vantages are that this preemption incurs thread context
switching overhead, and that applications must identify,
and synchronize access to, data that can be shared by
multiple threads.

e Single-threaded priority-based dispatching:
The Dispatching Module can also be implemented with
no support for preemption. This is similar to the RTU
dispatching mechanism in the sense that a single-thread
is used to dispatch events based on priority. However,
once a consumnier receives an event, it can run to comple-
tion regardless of the arrival of events for higher priority
consumers.

As with the RTU model, single-threaded dispatching
exhibits lower context switching overhead than the real-
time thread dispatching model. Moreover, since the chan-
nel maintains its own thread of control, it does not bor-

row supplier threads to propagate events. As a result,
the channel is an asynchronous event delivery mecha-
nism for suppliers. However, since the channel’s dispatch-
ing thread does not implement preemption, consumers
run to completion regardless of priority. As a result,
single-threaded dispatching can suffer from priority inver-
sion, which results in lower system utilization and non-
determinism.

e EFD dispatching: As discussed in Section 3.3, the
Dispatching Module can be removed from the channel,
yvielding a purely EFD-based Event Channel. This con-
figuration is shown in Figure 9(C). An EFD channel for-
wards all events to the consumers without any prior-
ity queueing, real~time scheduling, or context switching.
Events are dispatched without attention to priority, and
there is no preemption of consumers when higher priority
event/consumer tuples become available.

EFD channels are appropriate in systems that do not
have significant priority-based requirements. In these
cases, there is no overhead incurred by a Dispatching
Module. However, EFD channels are not always suit-
able when real-time scheduling policies must be enforced.
Ag shown in Section 5, our performance results show that
these drawbacks can cause missed deadlines even under
relatively low loads.

The current design of the Digpatching Module is mo-
tivated largely from need to support a single host, real-
time event propagation mechanism. To allow all CORBA
applications to utilize the ORB’s real-time scheduling
and dispatching features, we are integrating the role of
the Dispatching Module into TAQ’s Real-time Object
Adapter [3]. However, this paper focuses on an implemen-
tation that integrates real-time dispatching into TAO’s
Real-time Event Service.

4.1.2 Scheduling Enforcement

The real-time scheduling for the version of TAO’s Event
Channel described in this paper is performed off-line.
Therefore, no mechanisms for enforcing component be-
havior are provided. Consequently, tasks that overrun
their allotted resource allocations can cause other tasks
t0 miss their deadlines. An advantage of this “trust-
ing” policy is there is no overhead incurred by QoS en-
forcement mechanisms that would otherwise be necessary
to monitor and enforce the scheduling behavior at run-
time. A disadvantage is that all components must behave
properly, i.e., they must use only the resources allotted
to them. Though the architecture of our Event Service
framework supports QoS enforcement, the decision not to
include this mechanism in the Event Channel is motivated

12

by the static scheduling characteristics and stringent per-
formance requirements of real-time avionics applications.

4.1.3 Visualization of Dispatching Module Im-
plementations

To visualize the semantic differences between the four
Dispatching Module implementations outlined in Section
4.1.1, we implemented a timeline visualization tool in
Java. The timeline tool reads event logs from RT Event
Service test runs and displays a timeline of supplier and
consumer activity. Figures 10 and 11 show timelines from

multi-threaded and single-threaded implementations of

the Dispatching Module, respectively. Each test run con-
sists of 3 suppliers and 3 consumers, which are listed on
the y-axis. Suppliers and consumers run at the high-
est frequency (40 Hz), supplier; and consumer; run at
the next highest frequency (20 Hz), and supplierp and
consumery run at the lowest frequency (10 Hz).

The x-axis denotes time in pseconds. Fach consumer
and supplier outputs a point when it receives an event
from the Event Channel. Another point is output when
it finishes processing the event, Suppliers receive time-
outs and generate a single event for each timeout. Each
consumer registers for events from a single supplier. A
horizontal line indicates the time span when the respec-
tive consumer or supplier runs on the CPU.

Each figure is explained below:

Thed sl et

Supplerz—-* -

Consumer—B-o s

Suppliery === i

i

Cohsumer1t

Supplierg~ =B+ v

i H
ioeuent)

FEVPRY TIPS

ooy
Fe [
1ol -1 i i
470b 554350 161700
50 § 183581 169518 i
195244 joresa ! 17ke0

L3 : ;
¥ Ty L
ssdse vieabn warsh RELT
135400 | 19508 | ¢
199455 | 1nikng

1sfuiu 205990 £ 213]50 E:i:usw
wgusy | nidne
213561 215338

77640
S

Figure 10: Timeline from Multi-Threaded Channel.

¢ Real-time thread dispatching: Figure 10 shows
how OS real-time thread support for preemption re-
sults in suppliery and consumerg being preempted when-

ever higher priority tasks become runnable. Qur perfor-
mance results (discussed in Section 5) demonstrate that
Dispatching Module implementations (such as the real-
time thread dispatching) that support more responsive
preemption mechanisms yield higher resource utilization
without missing deadlines.

e Single-threaded dispatching: Figure 11 shows how
a single-threaded dispatching module can result in dead-
lines being missed if lower priority tasks hold the CPU
for excessive periods of time. The negative values next to
the end times of suppliery and consumer; show the num-
ber of pusecs the deadlines were missed. In other words,
consumery held the CPU too long, so that higher rate
suppliers and consumers were unable to execute in time
to preserve correct application behavior.

fimetul 4

Suppligrz=y 1er ver e A anas
Longumer2 = s e :'"

Cenfumer1— -

;)
Supplieri=~" ** < 3c- L]

simeguy

supp!lero? - 4 - s D SRR

i
Confumer0*; * ot

1
i
i

ﬁﬁ:e die ("Jil!‘m i

itz @ + - : » e e g
SH4000 595350 GOR709 610050 GTAE0 €24750 (632100 639456) FIGHOE STAU0 GF1500
Seunon : w1y
526931 gas3a6 | wsabrr)
eat :

A

Rt
H

s

Figure 11: Timeline from Single-Threaded Chan-
inel.

4.2 Real-time Scheduling Service

“IThe RT Event Service must guarantee that consumers

eceive and process events with sufficient time to meet
heir deadlines. To accomplish this, we have developed a
Real-time Scheduling Service. The two primary compo-
nents in the Real-time Scheduling Service are the Run-

time Scheduler and Off-line Scheduler. Although a com-

plete discussion of these components is beyond the scope
of this paper, their responsibilities are summarized below
{[22] describes these components in detail).

A T T R S v

4,2,1 Run-time Scheduler

The Run-time Scheduler associates priorities with tar-
get object implementation operations at run-time. The
implementation of the Real-time Scheduling Service de-
gcribed in this paper uses a static scheduling policy.
Therefore, thread priorities are determined prior to run-
time by the Off-line Scheduler.

Our Real-time Scheduling Service requires that if an
object is to be scheduled, each of its operations must
export an RT_Info data structure describing the opera-
tion’s execution properties. During scheduling configu-
ration runs (described in Section 4.2.2 below), RT _Infos
contain execution times and rate requirements. At run-
time, the static Scheduler need not know any information
about an operation’s execution characteristics. Only the
operation’s priority is needed, so the scheduler can de-
termine how the operation should be dispatched. Thus,
at run-time, each operation’s Rt_Info need only contain
priority values for the operation.

At run-time, the Dispatching Module queries the Run-
time Scheduler for the priority of a consumer’s push op-
eration. The Run-time Scheduler uses a static repository
that identifies the execution requirements (including pri-
ority) of each operation. The Event Channel’s Digpatch-
ing Module uses the operation priority returned by the
Run-time Scheduler to determine which priority queue
an event/consumer tuple should be inserted onto.

All scheduling and priority computation is performed
off-line. This allows priorities to be computed rapidly
(i.e., looked up in O(1) time} at run-time. Thus, TAQ’s
Run-time Scheduler simply provides an interface to the
results of the Off-line Scheduler, discussed below.

4.2.2 Off-line Scheduler

The Off-line Scheduler has two responsibilities. First, it
assigns priorities to object operations. Second, it deter-
mines whether a current Event Channel configuration is
schedulable given the available resources and the execu-
tion requirements of supplier and consumer operations.
Both responsibilities require that operation interdepen-
dencies be calculated by a Task Interdependency Compi-
lation process during during a configuration run. Task
Interdependency Compilation builds a repository that
records which objects’ operations call each other. This
can be visualized as a directed graph where the nodes in
the graph are object operations and directed edges indi-
cate that one operation calls another, as shown in Fig-
ure 12.

Once Task Interdependency Compilation is complete,
the Off-line Scheduler assigns priorities to each object op-

23 ms/20 Hz=>priomITY 1

L L[L[] smom

ErEE

f/lxeo.wy.aw\lwm'.\wl!’ Pranee

_ RT_OreramiONg

i
4 Work

Operation 10 M5
T TR

Figure 12: Scheduling Service Internal Repository.

eration. The implementation of the Event Service de-
scribed in this paper utilizes a rate monotonic scheduling
(RMS) policy [8, 26]. Therefore, priorities are assigned
based on task rates, i.e., higher priorities are assigned to
threads with faster rates. For instance, a task that needs
to execute at 30 Hz would be assigned to a thread with
a higher priority than a task that needs to execute at 15
Hz.

Most operating systems that support real-time threads
guarantee higher priority threads will (1) preempt lower
priority threads and (2) run to completion {or until higher
priority threads preempt them). Therefore, object opera-
tions with higher priorities will preempt object operations
with lower priorities. These priority values are computed
by the Off-line Scheduler and are stored in a table that is
queried by the Run-time Scheduler at execution time.

5 Performance Tests

5.1 Utilization Measurements

For non-real-time Event Channels (e.g., EFD-based), cor-
rectness implies that consumers receive events when their
dependencies are met (i.e., source/type subscriptions and
correlations). Conversely, for real-time Event Channels
(e.g., RTUs and real-time threads), correctness implies
that deadlines are met. Therefore, correct RT Event Ser-
vice behavior requires that (1) consumers receive events
when their dependencies are satisfied end (2) consumers
receive these events in time to meet their deadlines.

An important metric for evaluating the performance

14

of the RT Event Service is the schedulable bound. The
schedulable bound of a real-time schedule is the maxi-
mum resource utilization possible without deadlines being
missed [25]. Likewise, the schedulable bound of the RT
Event Service is the maximum CPU utilization that sup-
plier and consumers can achieve without missing dead-
lines.

For TAO’s Real-time Scheduling Service to guarantee
the schedulability of a system (i.e., all tasks meet their
deadlines), high priority tasks must preempt lower prior-
ity tasks. With RMS, higher rate tasks preempt lower
rate tasks.

EBach of the RT Event Channel’s Dispatching Module
strategies support varying degrees of preemption. The
EFD and Single-Threaded implementations support no
preemption; the RI'U implementation supports deferred
preemptions; and the multi-threaded version uses OS sup-
port for immediate preemption. The goal of the bench-
marks described below is to measure the utilization im-
plications of each approach.

The performance tests discussed below were conducted
on a single-CPU Pentium Pro 200 MHz workstation with
128 MB RAM running Windows NT 4.0. Test configu-
rations included 3 suppliers and 3 consumers. As shown
in Figure 13, the timeline tool can zoom out to show the
periodic nature of the test participants.

tmeaet Umeus
A -

supplierz

B8

Consumer,

+ dmeau
Supplinry e '

Lonsumer1 =

Hbanout ||

supplitrd

threaded, RTU, single-threaded, and EFD), as the work-
load configuration was changed (x-axis).

100
3
1
a0 ¢ ! !
= £ 1
S 80 | 5 .
N A |
5 70 + ; !
a [l £
Q & / l
—_— & 1
o - |
e 80 ,
ATU Channel — !
Multi-Ehreaded Channel —— y
50t Single-Threaded Channet -=-- !
EFD Ghannal —— 3
|
4[] : : L 2 : 1 L J 5,
o] i 206 30 40 50 B0 70 80 50 100
GPU Utitization of Highest Rate Tasks
Figure 14: CPU Utilization for RTU, Multi-

Threaded, Single-Threaded, and EFD channel im-
plementation,

More specifically, the x-axis in Figure 14 represents the
percentage workload given to the 40 Hz supplier and con-
sumer. For instance, at the 10 percent x-axis column, the
0 Hz supplier and consumer were given relatively small
amounts of work (10 percent of the total possible) to per-

{iform each iteration (40 times second). Then the work-

load for the 20 Hz and 10 Hz participants was repeatedly
increased (thus increasing overall CPU utilization) until
deadlines started to be missed. The maximum utilization
achieved was then plotted relative to the y-axis,

As the values along the x-axis increase, the workload
of the 40 Hz participants increases and the workload of
the 20 Hz and 10 Hz participants decreases. Likewise,

H
wEod
e |
L

342k

n!d'!
b neriasty

Figure 13: Wide view of test run.

The view in Figure 13 shows the relative frequen-
cies of the participants. Supplier; generates events for
consumer; at the highest frequency (40 Hz). Likewise,
supplier; generates events for consumer; at 20 Hz, and
suppliery generates events for consumerg at 10 Hz,

Figure 14 shows the total CPU utilization achieved (y-
axis) by each Event Channel implementation {(4.e., multi-

15

\Hz and 10 Hz participants are larger.

for lower values on the x-axis, the workload of the 20
For each value
n the x-axis, the maximum utilization achieved with-
ut any missed deadlines was then ploited on the y-axis.
he graph in Figure 14 illustrates how the utilization of

" different channel implementations can vary as the config-

uration of the system changes.

The results of our performance benchmarks show that
the RTU and multi-threaded implementations of the
channel achieve approximately 95 percent utilization for
all workload configurations. That these implementa-
tions fell 5 percent behind the maximum utilization re-
sults from the overhead imposed by the Event Chan-
nel. Although the RTU and multi-threaded implementa-
tions performed consistently for all configurations, utiliza-

tions for the single-threaded and EFD implementations
vary significantly as the workload configurations change.
These results show how the increased support for pre-
emption provide greater stability across workloads.

The differences between the single-threaded and EFD
channels can be accounted for by the fact that the single-
threaded channel provides minimal support for preemp-
tion, After each event is propagated to a consumer in
the single-threaded channel, the channel’s thread (in the
Dispatching Module) dispatches the next highest priority
event/consumer tuple. Thus, if while an event is being
dispatched, a higher priority event/consumer tuple ar-
rives in the channel {e.g., a timeout for a high priority
consumer), the new tuple will be dispatched as soon as
the currenfly running event completes.

Alternatively, when a supplier generates an event in
the EFD channel, it is dispatched immediately to all con-
sumers. If the EFD channel is dispatching an event to
consumers when a timeout occurs for a higher pricrity
consumer, the timeout will not be dispatched until all
other consumers have completed. In the single-threaded
channel, the timeout would be dispatched after the next
consumer completed. The EFD’s semantics increase the
chances of missed deadlines and consequently reduce uti-
lization.

It is also instructive to note that the single-threaded
implementation performs optimally when the workload
of 40 Iz participants is the greatest. For higher x-axis
values, the workload of the 20 Hz and 10 Hz partici-
pants is lower. This reduces the demand for preemption
since lower priority suppliers and consumers only use the
thread of control for a very short time (since they are
doing less work). Therefore, the graph shows that as
the demand for preemption decreases (x values become
greater}, the lack of support for preemption becomes less
crucial.

5.2 Latency Measurements

Another important measure of Event Channel perfor-
mance is the latency it introduces between suppliers and
congumers. To determine Event Channel latency, we de-
veloped an Event Latency Test. This test timestamps
each event as it originates in the supplier and then sub-
tracts that time from the arrival time at the consumer to
obtain the end-to-end supplier -+ consumer latency. The
consumer does not do anything with the event other than
to keep track of the minimum, maximum, and average la-
tencies.

The Minimum Event Spacing Test looks at the average
event delivery time for all of the events that a supplier
delivers to its consumers. As before, consumers do not

do anything with events that are pushed to them. The
average event delivery time includes the event interval
(spacing) and Event Channel overhead. Ideally, it should
be as close as possible to the event interval. As the event
interval is reduced, however, the Event Channel overhead
starts to become gignificant. This test finds that mini-
mum event interval.

These tests were run on a Sun UltraSPARC 2 with
two 167 Mhz CPUs, running SunOS 5.5.1. The Event
Channel and test applications were built with g++ 2.7.2
with —02 optimization. Consumers, suppliers, and the
Event Channel were all co-located in the same process
to eliminate ORB remote communication overhead. Fur-
thermore, there was no other significant activity on the
workstation during testing. All tests were run in the So-
laris real-time scheduling class, so they had the highest
software priority (but below hardware interrupts) [13).

With the single-threaded Event Channel, we measured
a best-case supplier-to-consumer latency of ~90 psecs.
“Best-case” refers to a single supplier and single consumer
registered with Event Channel. The supplier received a
timeout every 260 milliseconds and then sent a times-
tamped event to the consumer. As the number of suppl-
ers and/or consumers increased, the latency increased as
well, as shown in Table 1.

Under these conditions, the average event delivery time
was comparable to the event timeout interval of 250 mil-
liseconds. The supplier timeout value was progressively
reduced to find the point at which the Event Channel
overhead significantly affected the average delivery time.
That timeout interval was ~20 millisec; below that value,
the average event delivery time increased sigaificantly.

We have investigated optimizations for this Event
Channel implementation to improve these performance
numbers. Probes were inserted to track the progress of
an event through the Event Channel components. The
detailed latency breakdown is shown in Table 2.

Table 2: Breakdown of Event Latency.

[Event Channel Operation Time, psec
delivery to Supplier Module {thru Supplier Proxy} 8.4
delivery to Subscription Module 0.9
Subscription Module:

push_source 7.9
push_source_type: Correlation Module 34.8
push_source_type: Dispatching Module queuing 7.9
dispatch {dequeue) the event 29.7
decode the event 0.9
deliver event to consumer proxy 6.4
push event to consumer 3.4
total 97.3

16

Table 1: Bvent Latency, ysecs, Through Event Channel, 250 millisec Event Interval.

Average
per Event, Latency, usec

Suppliers | Consumers | Events millisec i First Consumer | Last Consumer
1 1 100 250.035 90 -
1 10 100 250.057 331 603
1 50 100 250.050 1247 2073
2 1 100 250.203 197 -
2 10 100 250.587 337 531
2 50 100 250.379 1250 2330
50 1 100 251.117 393 -
50 10 100 250.859 473 1831
50 50 100 250.626 501 2092
50 50 1000 250.074 356 1020

The probes measure the time gpent by an event in each
of the major Event Channel components shown in Fig-
ure 6. Most of the time is spent in the Subscription Mod-
ule. Therefore, we ingerted additional probes into it o
precisely pinpoint its latency contribution. The two oper-
ations, push_source and push_source_type, correspond
to consumer event registration for events from a particu-
lar supplier and for events from a particular supplier of a
specified type, respectively.

In the Latency Test, the consumers registered only
for events from a particular supplier of a specified type.
So, the time spent in push_source was not used to de-
liver the event. Additional probes were inserted into
push_source_type. They show the time spent in the ma-
jor Event Channel components that contribute to actual
event delivery, in this case.

Performance analysis revealed the following potential
areas for improvement:

s Bypassing the Correlation Module for uncorrelated
events;

¢ Optimizing internal data structures (there is a fixed-
size table that, when initialized, constructs each of its
slots individually whether or not they will be used);

« Eliminating dynamic allocation and deallocation;

¢ Streamlining the Dispatching Module to bypass
queueing when possible. There are some cases when
the Dispatching Module queuing can be eliminated.
For example, if the supplier thread has the same pri-
ority as the target consumer, and there are no events
queued for that priority, the supplier thread can be
used to dispatch the event.

To estimate the event latency with these optimizations

applied, we developed the estimated latency breakdown
shown in Table 3

Table 3: Estimated Breakdown of Optimized Event
Latency.

Hstimated
Event Channel Operation Time, psec
Subscription module delivery (thru Supplier proxy) 6
Subscription module 8
Dispatching Module enqueue 8
check env 2
Dispatching Module dequeue 30
delivery to Consumer (thru Consumer proxy) 19
total (estimated) 64

This estimate is based on removal of the overhead
of “unused” subscriptions, (e.g., push.source for a
push_source_type message), and the overhead of corre-
lation when not used.

6 Evaluating the Use of OO for
Real-time Systems

While applying OO technologies to real-time systems
we encountered two issues regarding polymorphism that
threatened to compromise the predictability and perfor-
mance of our systems. This section briefly discusses each
of the issues and how our systems address the potential
problems.

17

6.1 The Cost of Dynamic Binding Mech-
anisms

Since our systems are developed using C++, dynamic
binding is implemented via virtual method tables (VFTs).
As a result, compilers can implement highly optimized
virtual method call mechanisms that impose constant-
time overhead. These algorithms typically involve load-
ing the this pointer, adjustment of the #his pointer (for
multiple inheritance), lookup of the method offset in the
VET, and final calculation of the address before invok-
ing the method. However, these steps still have bounded
completion times allowing predictable virtual method call
performance regardless of the degree of inheritance used
by applications.

‘We measured the cost of virtual method calls on four
platforms: VxWorks 5.3 on a 60 MHz Pentium with
Cygnus g++ 2.7.2-960126, Solaris 2.5.1 on a dual-CPU
168 MHz Sun UltraSPARC 2 with g++ 2.7.2, Irix 6.4
on a dual-CPU 180 MHz SGI Origin200 with SGI C++
7.10, and Windows NT 4.0 on a 200 MHz PentiumPro
with Microsoft Visual C+4-+ 5.0. As shown in Table 4, a
virtual method call costs roughly 2 to 5 times that of a
global function or non-virtual method call.

While these ratios seem high, for some platforms, the
absolute time penalty (relative to a global function call)
for a virtual method call was less than 0.6 usec on the
tested platforms. Qur experience has been that this is not
an impediment to real-time system performance, though
we avold virtual methods where not needed. Further-
more, modern compilers implement strategies for replac-
ing indirect virtual method calls with direct non-virtual
calls [27]. The results for the IRIX C++ and Microsoft
VC++ compilers indicate well-optimized virtual method
calls.

6.2 The Cost of Polymorphism

Polymorphism facilitates run-time changes in object be-
havior. Real-time systems often require predictable be-
havior of all components. Initially, the flexibility of poly-
morphism seems to be at odds with the requirement for
real-time predictabilify. We resolved this issue using the
Off-line Scheduler discussed in Section 4.2. Since schedul-
ing is performed off-line, all objects and operations must
be known in advance. Therefore, it is the responsibility
of the Off-line Scheduler to determine whether a partic-
ular system configuration will meet all of its deadlines.
As a result, when a virtual method is called at run-time,
the gystem is not concerned with the actual implemen-
tation being invoked. The Off-line Scheduler has already
guaranteed that its deadline will be met, based on the

published parameters of each schedulable operation.

One advantage of our approach is that operation invo-
cations only pay the overhead of the C++ virtual method
call. If the schedule was not determined off-line, a run-
time (dynamic) scheduler would need to intercede be-
fore any abstract operation was invoked, which incurs
additional overhead. For instance, if a rate monctonic
scheduling policy is used, the scheduler must determine
the rate that each object operation executes in order to
calculate its priority. Furthermore, this type of dynamic
scheduler must make some type of guarantee, either weak
or strong, that deadlines will be met.

One way a scheduler could make strong guarantees is
to perform admission control, which permits operations
to execute when the necessary resources are available.
Admission control requires that object operations export
execution properties such as worst-case execution time.
Alternatively, the scheduler might implement a weaker,
“hest-effort” admission policy. For example, if an Farli-
est Deadline Firgt policy is used, object operations with
the nearest deadlines are given priority over operations
with later deadlines. Such a policy would require that ob-
ject operation deadlines be exported or calculated by the
scheduler. This type of support for dynamic scheduling
can incur significant overhead, and thus decrease effec-
tive resource utilization. As a result, dynamic scheduling
solutions are sometimes not viable solutions for systems
with hard deadlines and constrained resources.

Since all objects and operations in TAQ's Real-time
Event Service are determined off-line, one could argue
that no real polymorphism exists. Although this is true
to a certain extent, there are more benefits to dynamic
binding than just changing behavior at run-time. In par-
ticular, we found that the ability to develop components
independently of applications that use them significantly
increases the potential for reuse in the avionics domain.
For instance, since the Event Channel pushes to abstract
PushConsumer interfaces, the code for the Event Channel
remains decoupled from the number and type of applica-
tion PushConsumer objects.

7 Concluding Remarks

The CORBA COS Event Service provides a flexible OO
model where Event Channels dispatch events to con-
sumers on behalf of suppliers. TAQ’'S Real-time Event
Service described in this paper augments this model with
Event Channels that support source and type-based fil-
tering, event correlations, and real-time event dispatch-
ing. TAQ’s Event Channels can be configured with mul-
tiple scheduling policies (e.g., rate monotonic scheduling

18

Table 4: Cost of Virtual Method Calls.

VxWorks 5.3.1 Solaris 2.5.1 IRIX 6.4 Windows NT 4.0

Pentium Sun UltraSPARC 2 | SGI Origin200 PentiumPro

60 Mz 168 MHz 180 MHz 200 MHz
Call type Cygnus g++ g+ 2.7.2 CC 7.10 MS VC-+ 5.0
global function call time, usec 0.300 0.069 0.061 0.030
non-virtual method call time, usec 0.450 0.061 0.061 0.035
virtual method call time, usec 0.900 0.173 0.084 0.035
ratio, virtual to global function call 3.0 2.5 14 1.2
ratio, virtual to non-virtual call 2.0 2.8 14 1.0

and earliest deadline first) by configuring different Run-
time Scheduler strategies. Similarly, channels can be built
with varying levels of support for preemption by configur-
ing different Dispatcher preemption strategies (e.g., EFD,
single-threaded, RTU, and real-time thread Dispatchers).
This flexibility allows applications to adapt their schedul-
ing and dispatching policies to obtain optimal utilization
for different application requirements and platform re-
source characteristics.

Qur performance results demonstrate that dispatching
mechanisms with finer-grained support for preemption
yield more consistent CPU utilization across different ap-
plication configurations. These resuits also indicate that
the dynamic binding mechanisms used by our C++ com-
pilers are not fundamentally at odds with the determinis-
tic execution behavior required by real-time applications.
In addition, our results illustrate that it is feasible to
apply CORBA Object Services to develop real-time sys-
tems. TAQ’s Real-time Scheduling Service architecture
was submitted as a response to the OMG Real-time Spe-
cial Interest Group Request for Information on Real-time
CORBA [22].

The current implementation of TAO’s Real-time Event
Service is written in C++ using components from the
ACE framework {21]. ACE is a widely used commu-
nication framework that contains a rich set of high-
performance components. These components automate
common communication software tasks such as connec-
tion establishment, event demultiplexing and event han-
dler dispatching, message routing, dynamic configuration
of services, and flexible concurrency control for network
services, ACE has been ported to a variety of real-time
0OS platforms including VxWorks, Solaris, Win32, and
most POSEX 1003.1¢ implementations.

The RT Event Service is currently deployed at McDon-
nell Douglas in St. Louls, MO, where it is being used
to develop operation flight programs for next-generation
avionics systems.

8 Acknowledgments

This work was funded in part by McDonnell Douglas
Aerospace (MDA). We gratefully acknowledge the sup-
port and direction of the MDA Principal Investigator,
Bryan Doerr. In addition, we would like to thank
Brian Mendel for designing and implementing the single-
processor ORB that was used for our Event Channel tests,
and Seth Widoff for building the Java visualization tool
that generated the time lines shown in Sections 4 and 5.

9 References

References

[1}] Object Management Group, The Common Object Re-
quest Broker: Architecture and Specification, 2.0 ed., July
1995.

S. Vinoski, “CORBA: Integrating Diverse Applications
‘Within Distributed Hetercgeneous Eavironments,” IEEE
Commaunications Magazine, vol. 14, February 1997,

D. C. Schmidt, A. Gokhale, T. Harrison, and
G. Parulkar, A High-Performance Endsystem Archi-
tecture for Real-time CORBA,” IEEE Communications
Magazine, vol. 14, February 1997.

Object Management Group, CORBAServices: Com-
mon Object Services Specification, Revised Edition, 95-
3-31 ed., Mar. 1995.

R. Rajkumar, M. Gagliardi, and L. Sha, “The Real-
Time Publisher/Subscriber Inter-Process Communica-
tion Model for Distributed Real-Time Systems: Design
and Implementation,” in Firgt IEEE Real-Time Technol-
ogy and Applications Symposium, May 1995,

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Soft-
ware. Reading, MA: Addison-Wesley, 1993,

S. Maffeis, “Adding Group Communication and Fault-
Tolerance to CORBA,” in Proceedings of the Confer-

2]

(3]

[4]

(3]

(6]

19

El

[10]

[11]

(2]

(23]

[14]

[20]

[21]

ence on Objeci-Oriented Technologies, {Monterey, CA),
USENIX, June 1995.

C. Liv and J. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment,”
JACM, vol. 20, pp. 46-61, January 1973.

M. Timmerman and J-C. Monfret, “Windows NT
as Real-Time 08?7 Real-Time Magazine, 20 1997,
http:/ /www.realtime-info.be/encyc/magazine/97q2/-
winntasrtos.htm.

L. Zhang, “VirtualClock: A New Traffic Control Al-
gorithm for Packet Switched Networks,” in Proceedings
of the Symposium on Communications Architectures and
Protocols (SIGCOMM), (Philadelphia, PA), pp. 18-29,
ACM, Sept. 1990.

G. Couison, G. Blair, J.-B. Stefani, F. Horn, and L. Haz-
ard, “Supporting the Real-time Requirements of Contin-
uous Media in Open Distributed Processing,” Computer
Networks and ISDN Systems, pp. 1231-1246, 1995.

H. Tokuda, T. Nakajima, and P. Rao, “Real-Time Mach:
Towards Predictable Real-time Systems,” in USENIX
Mach Workshop, USENIX, October 1990.

S. Kbanna and et. al.,, “Realtime Scheduling in SunQS
5.0,” in Proceedings of the USENIX Winter Conference,
pp. 3756~380, USENIX Association, 1992,

Object Management Group, Notification Service Request
For Propogel, OMG Document telecom/97-01-03 ed,,
January 1997.

Object Management Group Telecommunications Domain
Task Force, “Notification Service RFP (Telecom RFP3),"
1997.

D. C. Schmidt and S. Vinoski, “Object Interconnections:
Overcoming Drawbacks in the OMG Events Service,”
C++ Report, vol. 9, July-August 1997.

I. Satok and M. Tokoro, “Time and Asynchrony in Inter-
actions among Distributed Real-Time Objects,” in Pro-
ceedings of 9th Furopean Conference on Object-Oriented
Programming, Aug. 1995.

J. A. Zinky, D. E. Bakken, and R. Schantz, “Architec-
tural Support for Quality of Service for CORBA Ob-
jects,” Theory and Practice of Object Sysiems, vol. 3,
no. 1, 1997.

Y. Aahlad, B. Martin, M. Marathe, and C. Lee, “Asyn-
chronous Notification Among Distributed Objects,” in
Proceedings of the 2™ Conference on Object-Oriented
Technologies and Systems, (Toronto, Canada), USENIX,
June 1996.

A. Gokhale and D. C. Schmidt, “The Performance of
the CORBA Dynamic Invocation Interface and Dynamic
Skeleton Interface over High-Speed ATM Networks,” in
Proceedings of GLOBECOM °96, {London, England),
pp. 50-56, IEEE, November 1996.

D. C. Schmidt, *ACE: an Object-Oriented Framework
for Developing Distributed Applications,” in Proceed-
ings of the 6** USENIX C++ Technical Conference,

[27]

20

{Cambridge, Massachusetts), USENIX Association, April
1994,

D. C. Schmidé, D. L. Levine, and T. H. Harrison,
“An ORB Endsystem Architecture for Hard Real-Time
Scheduling,” Feb. 1997. Submitted to OMG in response
to RFI ORBOS/46-09-02.

R. B. Barkley and T. P. Lee, “A Heap-Based Callout
Implementation to Meet Real-Time Needs,” in Proceed-
ings of the USENIX Summer Conference, pp. 213222,
USENIX Association, June 1988.

J.-B. Stefani, “Requirements for a real-time ORB,” tech.
rep., ReTINA, 1996,

R. Gopalakzrishnan and G. Parulkar, “Bringing Real-time
Scheduling Theory and Practice Closer for Multimedia
Computing,” in SIGMETRICS Conference, (Philadel-
phia, PA), ACM, May 1996.

M. H. Xlein, T. Ralya, B. Pollak, R. Obenza, and M. G.
Harbour, A Practitioner’s Handbook for RHeal- Time Anal-
ysis: Guide to Rate Monotonic Analysis for Reol-Time
Systems. Norwell, Massachusetts: Kiluwer Academic
Publishers, 1993.

S. Porat, D. Bernstein, Y. Fedorov, J. Rodrigue, and
E. Yahav, “Compiler Optimization of C4-+4 Virtual
Function Calls,” in Proceedings of the 2™ Conference
on Object-Oriented Technologies and Systems, (Toronto,
Canada), USENIX, June 1996.

	The Design and Performance of a Real-time CORBA Event Service
	Recommended Citation
	The Design and Performance of a Real-time CORBA Event Service

	tmp.1439928365.pdf.4Jhup

