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Abstract

Computational steering, the interactive adjustment of application parameters and allocation
of resources, is a promising technique for higher-productivity simulations, finer-grained opti-
mization of dynamically varying algorithms, and greater understanding of program behavior
and the characteristics of data sets and solution spaces. Tools for computational steering must
provide monitoring, visualization, and interaction facilities. In addition, these tools must ad-
dress issues related to the consistency, latency, and scalability at each of these phases, and must
consider the perturbation that results. In thig paper we describe transaction-based components
for a computational steering system and present an approach that guarantees consistent mon-
itoring and displays, supports scalable monitoring, and provides the user with the ability to
adjust the tradeoffs among lag, conpsistency and perturbation.
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1 Introduction

Computational steering is the online, interactive allocation of resources and adjustment
of application parameters. This interactivity can be useful for performance optimization
in systems where the demands on resources and the availability of those resources may
fluctuate over time. Another application of computational steering is the adjustment of
parameters in algorithms for which the execution behavior varies randomly, is dependent
upon characteristics of the input data, or for which the the execution behavior is not yet
well understood. In the case of modeling and simulation codes, the ability to observe
and adjust model parameters in an online fashion allows researchers to terminate unpro-
ductive executions early, and to develop intuition regarding interactions among model
parameters. Finally, computational steering can serve as a tool for knowledge discovery,
allowing viewers to more easily detect the cause-and-effect relationships at work, to lo-
calize bugs, and to better understand the behavior of algorithms and characteristics of
both the target problem and data set.

Tools for computational steering must provide a monitoring function, some type of
display and user interface, and a mechanism for propagating steering actions back to the
executing program. In addition, computational steering tools must address issues includ-
ing the consistency, latency, and scalebility of these components, and the perturbation
aggociated with their presence. In the following paragraphs, we discuss these factors as
they relate to computational steering. In subsequent sections, we present transaction-
based monitoring and describe how it deals with these issues.

Steering decisions are typically based on visual presentations of some subset of the
computation’s current state, a historical display of the computation’s behavior, or views
of metrics based on the program’s performance. As in any endeavor, good decisions
require accurate, up-to-date information. However, the distributed nature of the collec-
tion process may result in inconsistent views that distort the portrayal of the program’s
execution. These inconsistent views result from merging multiple streams of information
originating from distributed collection points into a single stream without enforcing the
causal and temporal relationships that held among the program components that pro-
duced the information. Visualizations based on such an out-of-order event stream may
be misleading (e.g., a receive event portrayed as occurring prior to its corresponding
send} or that fail completely (e.g., an attempt is made to update a graphical object that
has not yet been created).

As with the monitoring and display components, consistency is important in the steer-
ing compoenent. While some steering actions may be applied at any of the participating

processes at any point in the computation, others may be correctly applied only at cer-



tain points in the execution of the process, and still others may require some coordination
between processes.

For example, in a parallel simulated annealing algorithm, the goal of the computation
is to locate a configuration, defined by the values of a set of variables, that maximizes
or minimizes some objective function. Other configurations that may be reached from
the current configuration through an application-specific operation known as a move are
called neighbors. Steerable parameters might include the neighborhood size, the number
of neighbor configurations to consider at each iteration, the femperature, a factor used
to calculate the probability of accepting a neighbor configuration as the new current
configuration, the cooling rate, a factor used to reduce the current temperature from one
iteration to the next, and the values that define the configuration itself[1]. Although it
might be possible to alter the neighborhood size or cooling rate at any process at any
point in the computation with no adverse effect on the correctness of the computation
(convergence properties aside), an “on-the-fly” change in the values that define the cur-
rent configuration could produce an erroneous result if the cost function is evaluated as
the values are changing. In this case, it is necessary to apply updates only at “safe”
points in the execution of the process.

Continuing with the same example, some parallel simulated annealing algorithms
actually distribute components of the configuration’s state across multiple processors,
and parallelism arises from their cooperation in evaluating the objective cost function.
Consider a steering action that invokes a redistribution of components across processors
to achieve a better load balance. An uncontrolled invocation of this action might result
in a transient loss of some components, causing the computation to fail or produce an
incorrect value. It is clear that continued correctness will require some coordination of
processes.

Overall latency, or lag, is the elapsed time between the occurrence of an event or the
existence of a particular state, and the resulting application of some steering action. Lag
has several components[2],(3]. For purposes of this paper we consider presentation lag
as the elapsed time between the occurrence of an event or the existence of a particular
state and the presentation of the associated graphical updates to the user. We consider
steering lag as the elapsed time between a user’s interaction to initiate a steering action
and the the completion of the application of that steering action at the target process
or processes. Substantial presentation lag may lead the user to employ steering actions
that are no longer appropriate. In the same vein, even appropriate steering decisions and
actions, based on a consistent presentation of accurate data, may go awry if the steering

lag is too great. In either instance, such “behind-the-times” steering actions may result



in degradation, rather than optimization, of program performance or solution guality.

Performance optimization is a primary application of computational steering tech-
niques; thus, minimization of perturbation is an important criterion in the design of a
computational steering environment., Unfortunately, attempts to ameliorate problems
with consistent data often lead to increased perturbation and lag, and attempts to min-
imize perturbation of the application program’s execution often result in increased lag
or inconsistency. For example, the addition of distributed time-keeping techniques to
resolve consistency problems typically results in additional perturbation of the program.
Selective monitoring, collecting data at only a subset of the processes involved in the com-
putation, may lead to inconsistency. Monitoring data may be buffered and forwarded
to visualization component in bulk to reduce perturbation; however, an increase in lag
results. While all systems for computational steering perturb the monitored system to
some degree, it is desirable that this perturbation be both minimal and predictable, so
that users may rely upon their experience with typical lag times in evaluating visualiza-
tions and performing steering actions.

Finally, because the target applications for computational steering techniques are
large, long-running computations, executing on tens, hundreds, or thousands of pro-
cessors, it is essential that users be able to monitor, view, and steer the execution at a
selected (preferably, dynamically selected) subset of the processes, yet still provide consis-
tent, low-latency displays and steering actions. Further, it is desirable that perturbation
at processes not selected for monitoring be minimal.

In the following section we present transaction-based monitoring, define the under-
lying model of computation, and describe an algorithm that permits the collection of
consistent global snapshots, and the presentation of consistent views. We then describe
extensions of this algorithms to permit selective monitoring. Such selective monitoring
promotes scalahility, and helps 4o reduce perturbation. We present several monitoring
schemes with varying consistency guarantees and lag characteristics. Finally, we describe
the adjustments that users may employ to balance the tradeoffs among lag, consistency,

and perturbation to suit their particular application.

2 'Transaction-based Monitoring

Transaction-based monitoring, the monitoring technique employed in the Query-Based
Visualization model[4](QBV}, is a state-based approach to monitoring and visualization,
as opposed to the eveni-based approach used by many computational steering tools. In

this approach, the distributed computation is viewed as a database containing the state



of the individual processes executing across a network. The state of each process changes
due to local computations, as a result of message passing activities, as & consequence of
process creation and termination, and as a result of the application of steering actions.

Queries provide the mechanism by which the state space is examined and explored.
In order to avoid consistency problems, all queries are evaluated logically with respect
to consistent global states of the executing system. Classes of queries include one-fime
gueries, evaluated once, and persistent queries, evaluated after each logical change in the
system state. Snapshot algorithms examine collections of local snapshot histories and
trensection information to produce consistent global snapshots{s]). The queries are then
evaluated against these consistent global snapshots.

Efficient snapshot algorithms are central to the success of this approach. The ability
t0 minimize the number of processes required to participate in the construction of the
snapshots helps t0 minimize perturbation. Without loss of generality, our initial imple-
mentation employs the PVM library and relies on certain assumptions about the way
the computation is structured in order to achieve efficient query processing and snapshot
collection.

In the following subsections, we describe a computational model for distributed pro-
grams, and present algorithms for the construction of consistent snapshots for both

comprehensive monitoring and selective monitoring.

2.1 The computational model

Although the ultimate goal is to permit exploration and steering of arbitrary distributed
computations, our current work focuses on a restricted class whose communication pat-
terns are sufficiently structured so as to facilitate a reasonably efficient implementation
of the Query-Based Visualization model. The key feature we exploit is the fact that
the overall computation can be abstracted to an interleaving of atomic state changes
involving one or more processes - by analogy with databases, we call such state transi-
tions transactions. Transaction processing applications are a natural choice for obtaining
global state information, since their structure matches the logical actions performed by
the application. Many multi-phased computations also fall in this category of applica-
tions whose structure reflects the logical computation. In some cases, the transaction
concept can be superimposed on computations that otherwise execute in a highly un-
structured manner.

Underlying this view of distributed computing is the reality of message-based com-
munication via reliable FIFO channels with the added complication that processes may

be created dynamically and may terminate at any time. By and large, the application



code need nct be written in any special way. The only exception is the need to specify
the end of each transaction in each of the participating processes. Identifying the end
of a transaction is easy in the case of computations where the communication pattern is
known before-hand, such as phased computations or server-client message exchanges, and
requires minimal application knowledge to add the transaction annctations. To annotate
applications without a known communication pattern one must exploit the specifics of
the particular application.

In the remainder of this subsection, we provide a characterization of the computational
model we employ, and show its relation to global snapshots. A more formal treatment

may be found in [6].

2.1,1 Transactions

A distributed computation consists of a set of processes that work together to achieve
a common goal. Each process exports a set of attributes that reflect the state of the
process, The process’s state changes when an event occurs at the process. The event
sequence is a history recording the changes undergone by the process. An event ¢ is
characterized by:

¢ the process with which this event is associated.

¢ the state of the process immediately after e occurs.

» 2 local sequence number that reflects the event’s location in the process’s history of

evenis,

e an event type indicating the nature of the event (i.e., send, receive, mark or local).

A local event represents a state transition within a single process. A mark event
indicates that the process has completed its participation in the current transaction. A
matching send/receive event pair is called a communication. In addition, the events init,
start and stop (special instances of the events send, receive and mark) denote a request
to create a process, the start of a process, and the termination of a process, respectively.

We then view the distributed computation as a set of events, with a partial order
corresponding to the happened-before relation, and an equivalence relation that captures
the notion that two events are part of the same transaction. A distributed computation
is well-formed (i.e., an appropriate model for transaction-based monitoring) if it satisfies

the following properties:
s at each process, a total ordering of events at that process exists
¢ computation processes interact only via message-passing

e every send event has a corresponding receive at some other process



e transactions are equivalence classes over the events in the computation

e the send and receive events of a communication belong to the same transaction

As described in [4], computations that satisfy the above properties permit the calcula-
tion of equivalence classes, reflecting an ordering of the transactions in the computation
such that a transaction a happened-before a transaction b if and only if there is an event
in a that occurred before some event in b. Transactions form the boundaries in the

process executions that we will use to construct consistent global snapshots.

2.2 Snapshot collection

In this subsection we present four algorithms for obtaining online global snapshots. We
then compare the algorithms in terms of their consistency guarantees, and effects on
lag, perturbation and scalability. No algorithm is a clear best choice for all applications.
Rather, the choice of algorithm depends on the computation being monitored and the
requirements the user has for the sequence of snapshots shown. All of the algorithms
construct snapshots of the computation that include the data requested by the queries
that the user has igsued. Snapshots are taken at the boundaries of the transactions of the
application. The sequence of snapshots constructed provides a view of the application’s
logical progression.

In each case, we assume the computation is well-formed. Processes are augmented
with a reporting mechanism that transmits information about transaction completion
and the resulting state of a process to a snapshot manager, a process outside of the dis-
tributed computation that assembles the monitored data into logically consistent snap-
shots. Communication with the snapshot manager is assumed to be message based,
reliable, and FIFQ, and interactions with the snapshot manager are not considered to

be events of the computation.

2.2.1 Comprehensive monitoring

Let us assume that we desire to continuocusly monitor all processes involved in some
distributed computation. The global state can be easily constructed from the information
available about each of the events. As we are interested only in the global state between
transactions, it is reasonable for processes to locally and incrementally store information
that is needed by the snapshot manager, and then to send it once, after a mark event, the
last event in a transaction. The effect of this is to reduce the number of messages that
need to be sent to the snapshot manager. This local gathering of information reduces

perturbation(fewer messages, less overhead), but may add to lag because the delivery



of state information to the visualization system is delayed until the completion of a
transaction.

Message delivery delays may lead to the situation in which some of the mark events
do not arrive at the snapshot manager in a timely fashion. However, the FIFO nature
of the communication ensures that we can extract a well-formed computation from the
mark events that the snapshot manager receives. Mark events are maintained in a queue
of messages from a process until the event can be used to reconstruct a transaction.
Reconstruction of a transaction is possible once the mark events for all of the processes
that participated have arrived. The snapshot manager keeps the unused marks in queues
to ensure that it reconstructs the transactions in the order which they occurred in the
computation. In this way the snapshot manager constructs a well formed computation
that is a prefix of the actual computation.

To compute the global snapshots the snapshot manager needs to have the process’s
state information after the transaction, and be able to determine transaction ordering
and transaction membership. The snapshot manager has the process’s state information
available because every process sends its monitored attributes to the snapshot manager
when the process completes a transaction. The state information is also tagged with the
transaction that generated it. A transaction can be uniquely identified by knowing the
process id and the sequence number of the mark event that ended the transaction. Given
the transaction membership of every transaction, transaction ordering can be inferred.
If all transaction memberships are known and the communication is FIFQ, then the
order that mark events are recelved from a process represents the order in which their
respective transactions occurred. This provides sufficient information to reconstruct the
transaction ordering.

To compute transaction membership, we require each mark to include in its report to
the snapshot manager the identity of all the processes that messages have been sent to
or received from since the previous mark. These are the process’s neighbors during the
transaction. The FIFO communication and the mark events’ reporting of the process’s
neighbors during the iransaction allow the snapshot manager to determine the transac-
tion membership. The snapshot manager does this by locking at the earliest mark event
from each process not yet associated with a transaction. We know that this mark must
be part of that process’s next transaction in the computation because of the FIFO com-
munication between the process and the snapshot manager. The snapshot manager then
takes the transitive closure over the neighbors reported by the merk event; that is, it
finds the smallest set of mark events that have each other’s processes as their neighbors,

the transaction membership.



Premature decisions regarding transaction membership are not possible. A missing
mark x must be associated with a process p that either sent a message to or received a
message from one of the processes the snapshot manager already knows to have partici-
pated in the transaction, call this process ¢. Let y be the mark associated with ¢ in this
transaction. The event y will inform the snapshot manager that process p is part of the

transaction and the snapshot manager will wait accordingly for the mark event x.

2.2.2 Naive selective monitoring

As the number of processes grows, the perturbation induced by comprehensive monitor-
ing increases as well. Further, the lag associated with the construction of global snapshots
increases, not only as the result of the additional load on computation and communi-
cation resources, but also because the snapshot manager waits for mark events from
slow processes before proceeding with the transaction membership calculation, leading
to backups in snapshot processing. Thus, a lighter weight method of collecting snapshots
is desirable. Of course, selective monitoring precludes visualizations of global state. How-
ever, visualizations based on a few representative processes may be preferable to global
views in many sifuations.

The user initiates selective monitoring by issuing a guery that describes the subset
of processes and state variables of interest. A number of queries, the active query set,
may be active at one time. Only monitored processes, those involved in the evaluation of
the active query set, will communicate state information to the snapshot manager. This

approach has a number of nice consequences:

* The incoming message load at the snapshot manager now depends on the size,
scope, and transaction granularity of the active query set, rather than on the size

and transaction granularity of the entire computation.

¢ Processes that are not monitored are perturbed very little by the monitoring li-
braries.

+ The increased efliciency of the monitcring software decreases the usage of resources
shared with the application (i.e. shared communication links) thus reducing the

overall perturbation of the system.

Unfortunately, consistency problems arise if only the monitored processes report mark
events to the snapshot manager. Consider, for example, Figure 2, which depicts 6 pro-
cesses and 3 transactions. The processes A, C, and F are the only processes being
monitored. Transaction £2 involves only processes B and D and sends no information to
the snapshot manager because neither process is currently monitored. Note that in this

situation the snapshot manager can no longer reconstruct the ordering relation between



t1 and £3. Note also that in ¢ processes C and F have no direct interactions and, since
D and E are not required to report to the snapshot manager, it becomes impossible to
solve the membership problem for the transaction ¢5. Reconstruction of the transactions
requires that the reporting mark events supply additional information if a consistent

order and labeling of the transactions is desired.

2.2.3 Selective monitoring

The naive selective algorithm has some desirable properties (i.e. scalable, low latency,
and small perturbation), but makes inadequate guarantees to create consistent views.
Conversely, the comprehensive algorithm guarantees consistent views, but does not scale
well to large applications. The selective monitoring algorithm is a hybrid between the
two previous algorithms. It guarantees consistent views of a subset of the global state
while incorporating some of the advantages of the naive selective algorithm.

In selective monitoring we distinguish between the data collection and transaction
labeling parts of the algorithm. The responsibility of the data collection portion is to
deliver monitored data to the snapshot manager. Transaction labeling, determining the
membership and ordering of a transaction, is carried out by a separate protocol. The data
collection aspect of selective monitoring is the same as in the previous two algorithms,
so we will focus on the transaction labeling protocol.

A transaction is monitored if and only if it contains an event that is monitored. During
selective monitoring, the snapshot manager must be able to reconstruct the membership
in each transaction as well as the happened-before relation among the monitored trans-
actions. Since some processes may not report in we can not use the same solution that we
did for the comprehensive algorithm. To address the membership question, we require
mark events that are part of the same transaction to perform the “logical equivalent” of
a barrier synchronization during which membership information is collected. To find the

membership of a transaction each process performs two actions:

1. Agsume the existence of a total ordering over processes. Wait to receive informa-
tion from all neighbors (direct or transitive) with a higher id that the process has
knowledge of. Recall that the neighbors of a process are those processes that it
communicated with during the transaction. Transitive neighbors are the processes

that a process hears of from its higher-id, direct neighbors during this phase.

2. Send all of the known membership information received about other processes who
participated in this transaction, including the information received from other pro-
cesses, to the process with the highest id lower than its own. I there is no process

with a lower id, then this process is the transaction leader.



When the transaction leader has completed action (1) it will know the membership
of the transaction, and can transmit this information to the snapshot manager. In facs,
this operation is a lighter-weight operation than a barrier synchronization. Consider
that a barrier synchronization has two steps - a barrier-in, and a barrier-out. In a barrier
synchronization, no process may execute the barrier-out operation until all processes in-
volved in the barrier have executed the barrier-in, at which point they may all execute a
barrier-out, and continue processing. The operation involved in the transaction protocol
has more concurrency, and may be viewed as a hierarchical tree, in which each process is
a child node of the highest-value lower-id process that the process knows it has commu-
nicated with, either directly or transitively., The leaf nodes report to their parents, and
may then continue. Parent nodes may continue when they have received information
from all of their child nodes (again, either directly or transitively). The only process
required to wait for all other processes is the lowest-id process in the transaction. Note
however, that the application is not required to wait at any process, as the transaction
protacol runs on its own logical thread, independent of the application. A more thorough
discussion of this algorithm can be found in {6].

This algorithm guarantees consistent global snapshots. However, an increase in lag
and perturbation as compared to the naive selective algorithm is the price of the con-
sistency. Greater lag times result from the time required for the fransaction labeling
information to reach the snapshot manager. Increase perturbation results from the
use of a light weight protocol among the application processes and having unmonitored
transactions send a message to the snapshot manager. Compared to the comprehensive
monitoring algorithm, this algorithm provides the same level of consistency, but reduces
number of messages sent to the snapshot manager per transaction from a factor of n, the

total number of processes, to a factor of m, the number of monitored processes.

2.2.4 Scalable monitoring

If an even more scalable consistent monitoring algorithm is needed then the scaluble
monitoring algorithm can be used. The data portion of this algorithm is the same as in
selective monitoring (i.e. a monitored process sends its data to the snapshot manager
at the end of the transaction). The transaction labeling protocol is modified so that
application processes can keep track of which monitored transactions they are causally
dependent upon - these transactions are called the visible predecessors. By maintaining
the transaction ordering information in the application processes, the snapshot manager
does not need to receive any information from unmonitored transactions.

Processes maintain knowledge of which monitored transactions they are causally de-

10



pendent on through use of a vector clock, with an entry for each monitored process that
participated in & transaction that directly causally preceded the current transaction. The
value of a vector clock entry is the local time at which the monitored process was causally
affected by (typically, received a message from) that visible predecessor. Each process of
a transaction knows a portion of the transaction’s visible predecessors, but none ¢f them
necessarily know all of them. So, in addition to determining the transaction member-
ship, the transaction labeling protocol is responsible for determining the transaction’s
visible predecessors and communicating the visible predecessors to all participants in
the transaction. Figure 2 shows an example of why the visible predecessors need to be
communicated to all processes in a transaction. If D does not know that t1 occurred
before t2, this information is not available when the visible predecessors of 3 are being
computed. When A and F report in, they need to know that t1 occurred before t3,
otherwise the snapshot manager might present the transactions in an order inconsistent
with the partial order over events.

To propagate the ordering information to all processes in a transaction, we make
use of the transaction labeling protocol. Each message sent during the protocol will
now include the vector clock representing the transactions that directly causally precede
the current transaction. Upon receipt of a protocol message, a process now combines
the received vector clock with the vector clock for the appropriate transaction. The
transaction leader will know the visible predecessors for the transaction.

If there are no monitored processes in the transaction, the transaction leader sends
the visible predecessor vector clock to all of the processes of the transaction. If there
are any monitored processes, then the visible predecessor vector clock is sent to the
snapshot manager along with the monitored transaction membership and a vector clock
representing the monitored processes and their local times is passed to the unmonitored
processes. The vector clock sent to unmonitored processes represents its new visible
predecessor information. (Monitored processes are able to create their own vector clock
containing just their id and local time.) Unmonitored processes now have a third action,
which is to wait for the transaction leader to send the visible predecessor information
before it can perform action (2) for any subsequent transactions. Recall in the example
in Figure 4, process D participated in transactions t2 and 3. If D performed action (2)
for t3 before receiving the visible predecessors back from the transaction leader, then D
could not include the information that t1 was a visible predecessor.

So, by trading some latency and increase message traffic we increased the scalability of
the monitoring system while preserving the consistency guarantees. Improving scalability

at the cost of other characteristics is one example of the many trade-ofls that can be made

11



Name Perturbation | Lag | Message | Scalable | Consistency
Comprehensive 2 1 n 4 Yes
Naive Selective 1 1 m 1 No

Selective 3 3 n+m 3 Yes
Scalable 3 4 2n 2 Yes

Table 1: A ranking of global snapshot algorithms (1=Best, 4=Worst, n=number of processes,

m=number of monitored processes)

to customize monitoring algorithms to the needs of the user and the application being

monitored.

3 Comparisons and Additional Optimizations

In the previous section we presented four algorithmns for the collection of global snap-
shots in a transaction-based monitoring system, with varying effects on consistency, la-
tency, perturbation and scalability. Table 1 shows a ranking of the algorithms (1=Best,
4=Worst) in terms of their ability to reduce perturbation and lag, and promote scal-
ability and consistency. Also included is an indication of the number of messages per
transaction for each algorithm (n=number of processes, m=number of monitored pro-
cesses). It can be seen from the rankings in table 1 that none of these algorithms is
the clear best choice. The user must consider the tradeoffs among these factors when
selecting the algorithm that best suits the application at hand.

Additional optimization techniques may be applied to each of these algorithms to
further customize and balance the factors listed in the table.

¢ Bounded Lag: If queues become too full, or measured lag exceeds a threshold value,
then then old data can be discarded in favor of more recent data. This can be
applied at both the snapshot manager and at the application processes. Lag will
be reduce. In some snapshot algorithms, consistency guarantees may be affected.

In either case, the visualization may then contain some discontinuities.

o Message Buffering: Local snapshots may be buffered and sent to the snapshot

manager in bulk. This increases lag, but reduces message traffic and perturbation.

¢ Message Piggybacking: Where possible, transaction protocol messages may be held
back, to be sent along later with application messages. Again, this will increase lag,

but reduce message traffic and perturbation.

The issues we have addressed must be considered by every system for computational
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steering. In the following section we present an overview of approaches employed in

related tools and systems.

4 Related Work

A number of application-specific steering systems have been designed to address the
needs of researchers in atmospheric modeling[7], Aluid flow[8] and seismic tomography [9],
among others. Although these systems must also address the problems of lag, consistency,
scalability, and perturbation, they may do so in an application-specific manner.

In our work, we have considered how these problems may be addressed in a more
general manner, independent of the particular computation being steered and the par-
ticular set of displays presented. Thus, we discuss below several general tools that have
been designed to facilitate the steering process, and describe their approaches to solving
these problems.

The CUMULVS system[10] for the steering of PVM programs assumes that the appli-
cation is structured around a main simulation loop. A data transfer routine is placed in
this loop. When this routine is executed, the equivalent of a local snapshot is collected,
and marked with an iteration number. Local snapshots may then be combined into
global snapshots on the basis of the iteration number. For steering, users may specify a
range of iteration numbers during which the desired steering operation may be applied.

The Falcon system for interactive program steering[11] relies on the existence of an
ordering filter placed at the point at which the sireams are merged to ensure a valid
ordering of events collected by the monitoring system. This causality filter[12], is based
on the causal relationships between the events in the program. The Falcon implemen-
tation attempts to minimize program perturbation through the use of per-thread event
buffers, emptied by a local monitoring agent. In this system, perfurbation events are
maintained, that permit users to be aware of and evaluate the effects of perturbation on
the visualizations of the program’s execution{13].

Later work by the same group has produced Progress(PROGram and REsource Steer-
ing System), which supports the addition of steering functionality to multithreaded C
programs executing on multiprocessors, through the use of a steering toolkit that provides
sensors, probes, and actuators. Unconstrained steering updates may be applied through
write probes, while actuators ensure that steering operations are applied at “safe points”
in a particular process. No facility for coordination of updates across processes hag yet
been implemented.

The Magellan steering system[14], also from Georgia Tech, applies a language-based

13



approach to control multithreaded, asynchronous steering servers that cooperatively steer
applications, and addresses many of the issues presented in this paper, but in the context
of event-based monitoring.

Debuggers may used to provide some of the same functionality as computational
steering tools, as in Dynascope[15] However, the level of perturbation associated with
debuggers is typically quite high, and consistency of update is left entirely to the user.

Also of interest are shared-memory and dataflow models for computational steer-
ing. The VASE system[16] was developed for the steering of SIMD computers. Shared
global state simplifies the consistency issue in particular, as consistent global snapshots
and steering actions may be achieved by momentarily blocking all processes except the
steering or monitoring process. Systems such as SCIRun use dataflow architectures for

steering and visualization[17], characterized by large-grain steering control.

5 Summary and Future Work

Tools for computational steering must provide a monitoring function, some type of dis-
play and user interface, and a mechanism for propagating steering actions back to the
executing program. In addition, computational steering tools must address issues includ-
ing the consistency, latency, and scalability of these components, and the perturbation
associated with their presence. In this paper, we have discussed these factors, presented
transaction-based monitoring, and described several monitoring algorithms that permit
users to prioritize the effects of the above factors.

In our work, we address the issues of consistency, latency and feedback in the visual-
ization component. Due to space considerations, we have not included this component
in our discussion. Descriptions of this component may be found in [18, 19, 4, 20].

We are currently developing algorithms for the steering component. Most current
steering systems either apply steering updates on a strictly local basis, or force the pro-
cesses to synchronize. Between these two alternatives are many unexplored options for
using steering actions in a distributed environment. We plan to map out this uncharted
territory, by characterizing the different approaches available, and determining appropri-
ate approacheg for different environments. Ultimately, this will provide the basis for a
rich set of tools for designers and maintainers of distributed applications.

Aside from those familiar with distributed computations, steering can benefit end-
users of distributed computations. Computations are frequently distributed solely for
the purpose of speeding up the computation. In these cases it may not be apparent

to the user how the application is logically progressing and how the compufation is
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Figure 1: A portion of a well-formed computation. White circles represent application events, in-

cluding sends and receives. Black circles represent mark events. Shaded areas represent iransactions.

distributed across the system.

‘Tools to support these users and applications must be able to apply steering actions at
an arbitrary subset of the computation in a way that updates the application consistently.
One approach we are investigating is the use of optimistic steering actions, where steering
adjustments will be made and then the consistency is later checked. Violating processes
will be stopped and rolled back so that a consistent steering action can be applied. If
may also be possible to identify classes of applications that may have efficient consistent
steering mechanisms, similar to the way CUMULVS takes advantage of the loop driven

nature of the applications it monitors to efficiently create consistent snapshots.
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Figure 2: A distributed computation where only processes A, C, and F are being monitored. The
local information available at their mark events is inadequate to reconstruct the transaction ordering

and membership.
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Figure 3:
indicates that the process has not yet completed action (2}). a) The transaction has just completed
and no actions have been taken yet. b,c,d) The maximal process sends its information to the next

lowest process that it knows of. e) Process 1 is the transaction leader since it knows of no process

(b)

e

Fach process is represented as a circle, their height is based on their ids. A solid circle

lower than itself and has heard from all of its neighbors.
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