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ABSTRACT OF THE DISSERTATION

Basis Vector Model Method for Proton Stopping Power Estimation using Dual-Energy

Computed Tomography

by

Shuangyue Zhang

Doctor of Philosophy in Electrical Engineering
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Professor Joseph A. O’Sullivan, Chair

Accurate estimation of the proton stopping power ratio (SPR) is important for treatment

planning and dose prediction for proton beam therapy. The state-of-the-art clinical practice

for estimating patient-specific SPR distributions is the stoichiometric calibration method us-

ing single-energy computed tomography (SECT) images, which in principle may introduce

large intrinsic uncertainties into estimation results. One major factor that limits the perfor-

mance of SECT-based methods is the Hounsfield unit (HU) degeneracy in the presence of

tissue composition variations. Dual-energy computed tomography (DECT) has shown the

potential of reducing uncertainties in proton SPR prediction via scanning the patient with

two different source energy spectra. Numerous methods have been studied to estimate the

SPR by dual-energy CT DECT techniques using either image-domain or sinogram-domain

decomposition approaches.
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In this work, we implement and evaluate a novel DECT approach for proton SPR mapping,

which integrates image reconstruction and material characterization using a joint statisti-

cal image reconstruction (JSIR) method based on a linear basis vector model (BVM). This

method reconstructs two images of material parameters simultaneously from the DECT mea-

surement data and then uses them to predict the electron densities and the mean excitation

energies, which are required by the Bethe equation for computing proton SPR.

The proposed JSIR-BVM method is first compared with image-domain and sinogram-domain

decomposition approaches based on three available SPR models including the BVM in a well

controlled simulation framework that is representative of major uncertainty sources existing

in practice. The intrinsic SPR modeling accuracy of the three DECT-SPR models is vali-

dated via theoretical computed radiological quantities for various reference human tissues.

The achievable performances of the investigated methods in the presence of image formation

uncertainties are evaluated using synthetic DECT transmission sinograms of virtual cylin-

drical phantoms and virtual patients, which consist of reference human tissues with known

densities and compositions. The JSIR-BVM method is then experimentally commissioned

using the DECT measurement data acquired on a Philips Brilliance Big Bore CT scanner at

90 kVp and 140 kVp for two phantoms of different sizes, each of which contains 12 different

soft and bony tissue surrogates. An image-domain decomposition method that utilizes the

two HU images reconstructed via the scanner’s software is implemented for comparison.

The JSIR-BVM method outperforms the other investigated methods in both the simulation

and experimental settings. Although all investigated DECT-SPR models support low in-

trinsic modeling errors (i.e., less than 0.2% RMS errors for reference human tissues), the

achievable accuracy of the image- and sinogram-domain methods is limited by the image

formation uncertainties introduced by the reconstruction and decomposition processes. In

contrast, by taking advantage of an accurate polychromatic CT data model and a joint

xiv



DECT statistical reconstruction algorithm, the JSIR-BVM method accounts for both sys-

tematic bias and random noise in the acquired DECT measurement data. Therefore, the

JSIR-BVM method achieves much better accuracy and precision on proton SPR estimation

compared to the image- and sinogram-domain methods for various materials and object

sizes, with an overall RMS-of-mean error of 0.4% and a maximum absolute-mean error of

0.7% for test samples in the experimental setting. The JSIR-BVM method also reduces the

pixel-wise random variation by 4-fold to 6-fold within homogeneous regions compared to the

image- and sinogram-domain methods while exhibiting relatively higher spatial resolution.

The results suggest that the JSIR-BVM method has the potential for better SPR prediction

in clinical settings.
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Chapter 1

Introduction

1.1 Motivation

The clinical effectiveness of proton-beam therapy has been demonstrated in several treatment

sites due to its highly conformal dose distributions [1–7]. To realize the full potential of

proton therapy, the range of the proton beam needs to be accurately determined. However,

in current clinical practice, a safety margin of 2− 3.5% of the proton range, which converts

into 2− 7 mm according to the depth of the treatment site, is added to the distal boundary

of the clinical target volume (CTV) in order to ensure CTV coverage due to the proton

range uncertainties [8–10], limiting dose-sparing of surrounding healthy tissue. One of the

dominant sources of proton range uncertainty is the limited accuracy with which proton

stopping power ratios (SPRs) along the beam path are estimated using the state-of-the-art

single-energy computed tomography (SECT) method [11–13].

Dual-energy computed tomography (DECT) techniques have been shown to have the po-

tential to achieve much better accuracy and robustness for SPR estimation compared to

the SECT stoichiometric calibration method [11, 14–25]. By scanning the patient with two
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different x-ray spectra, DECT approaches are able to extract two independent material prop-

erties from the CT measurements in order to more accurately resolve the variations of tissue

density and tissue composition. These DECT-SPR models are theoretically highly accu-

rate. However, most currently proposed DECT methods are based on the two separately

reconstructed SECT images, i.e., those from the scanner’s default reconstruction process.

Random noise and systematic errors in the separately reconstructed CT images may cause

the accuracy of SPR estimates to deteriorate in the clinical setting [13,21,26].

The dual-energy joint statistical image reconstruction (JSIR) approach, which depends on

a physically realistic signal formation model and an effective statistical reconstruction algo-

rithm, has the potential to reconstruct more quantitatively accurate and artifact-free images

and therefore to improve the proton SPR estimation accuracy.

1.2 Background

1.2.1 X-ray computed tomography (CT)

The x-ray CT technique uses an external x-ray source to image the anatomy and characterize

tissue inside the patient’s body. There exist various specifications of CT systems for different

applications. In this dissertation, we focus on the fan-beam, energy-integrating whole-body

CT scanners.

The x-ray beam from the source is collimated into a fan shape that expands within the

XY-plane and forms a very thin layer in the Z-direction. A detector array is placed on the

opposite side to measure the survival probability of x-ray photons penetrating the scanned

object. The source and detector array rotate around the iso-center in the XY-plane to acquire

2



Figure 1.1: Illustration of single-slice CT data acquisition.

data from gantry angles (i.e., views) uniformly spaced on the circle. The acquired data, called

a sinogram, is indexed by the gantry angle and detector index. Figure 1.1 illustrates the

fan-beam geometry (single-slice, 3rd generation scanner) at two different gantry angles.

For a 3D volume, the data acquisition can be performed in either axial or helical mode. In

the axial mode, the patient bed remains at a fixed position during a full rotation of data

acquisition and then moves to a new position in the Z-direction. In the helical mode, the

patient bed continuously moves along the Z-direction while the gantry is rotating. Modern

CT scanners usually have multiple detector rows, which enables acquisition of multiple slices

simultaneously.
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Data formation

When an x-ray beam penetrates through a homogeneous medium, the survival probability

of x-ray photons at a given energy E follows Beer’s law,

Φout(E)

Φin(E)
= exp

(
− l µ(E)

)
, (1.1)

where Φin(E) and Φout(E) are the counts of incident photons and survived photons, respec-

tively, µ(E) is the photon linear attenuation coefficient of the medium, and l is the length

of the x-ray beam passing through the medium.

The x-ray photons emitted from the tube are polychromatic with a peak energy Emax. Fig-

ure 1.2 shows typical incident x-ray spectra Φ0(E) of an x-ray source with a tungsten target

for different peak energies.

Within the typical energy range of patient CT scanners, the photons with lower energies are

more likely to be attenuated than those with higher energies. Therefore, the mean energy

of the x-ray beam becomes larger when the beam passes through more medium, which is

called the beam-hardening effect. Figure 1.3 shows the spectrum changes when penetrating

different widths of water. The mean energy of the beam increases from 66.2 keV to 78.8 keV

with the increased water filtration from 0 mm to 300 mm, respectively.

In conventional fan-beam CT scanners, the source spectra are generally beam path-dependent

because the fan beams are pre-balanced by a compensation filter, which is usually bow-tie

shaped, placed between the source and the scanned patients in order to reduce the required
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dynamic range of the detectors. The down-stream source spectrum is mathematically for-

mulated as

Φ(y, E) = Φ0(E) exp
(
− lF(y)µF(E)

)
, (1.2)

where y is the index of the ray path (i.e., source-detector pair), µF(E) is the attenuation

coefficient of the filter material, and lF(y) is the filter thickness corresponding to the ray

path y.

In modern CT scanners, the detectors can be energy-integrating or photon-counting. Most

clinical scanners are equipped with energy-integrating detectors, which measure the total

energy flux of received photons over the whole spectrum. The ideal air-normalized transmis-

sion signal of a given path y penetrating through an object (i.e., the measured signal of an

object relative to that of air-scan) is modeled as

[
Id
I0

]
(y) =

∫
E

Φ(y, E)D(E) exp
(
−
∫
y
µ(r, E) dr

)
dE∫

E
Φ(y, E)D(E) dE

, (1.3)

where D(E) is the detector-response function and µ(r, E) is the photon linear attenuation

coefficient at spatial location r. Thus,
∫
y
µ(r, E) dr represents the integral of the attenuation

coefficients along the ray path y, which is called the line integral or projection data.

By defining the normalized energy-fluence spectrum as

Ψ(y, E) =
Φ(y, E)D(E)∫

E′ Φ(y, E ′)D(E ′) dE ′
, (1.4)

the transmission signal is rewritten as

[
Id
I0

]
(y) =

∫
E

Ψ(y, E) exp

(
−
∫
y

µ(r, E) dr

)
dE . (1.5)
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For computational purposes, the data model is discretized as

[
Id
I0

]
(y) =

∑
E

Ψ(y, E) exp

(
−
∑
x

h(y|x)µ(x,E)

)
, (1.6)

where x is the index of discretized image pixel,1 E is now an index of a discretized energy

spectrum,2 µ(x,E) is the photon linear attenuation coefficient at image pixel x and energy

E, and h(y|x) is the point-spread function of the scanner system that represents the effective

length of the intersection between the ray path y and image pixel x.3

Image reconstruction

In most conventional single-energy CT reconstruction approaches, the concept of effective

energy, Ē, is employed to simplify the inverse problem. A pre-reconstruction process called

the beam-hardening correction, which attempts to transform the acquired polychromatic

sinogram into an equivalent monochromatic sinogram at the effective energy, is applied

before image reconstruction. Mathematically, we write

exp

(
−
∑
x

h(y|x)µ(x, Ē)

)
≈ BH

([
Id
I0

]
(y)

)
, (1.7)

1The image space is discretized into pixels in the 2D case and voxels in the 3D case. Without loss of
generality, throughout this dissertation we describe all problems in 2D.

2Throughout this dissertation, the photon energy E is discretized at 1 keV intervals. The maximum
energy Emax is determined by the tube potential and the minimum energy Emin is set to 20 keV.

3In this dissertation, the computation of system matrix is done with the object-constrained computed
tomography (OCCT) software package developed by Dr. David G. Politte at Washington University School
of Medicine.
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where BH(·) is the operator of the beam-hardening correction.4 Therefore,

∑
x

h(y|x)µ(x, Ē) ≈ − ln

(
BH
([

Id
I0

]
(y)

))
. (1.8)

Analytical reconstruction methods, including the filtered back-projection (FBP) algorithm

that is widely used for 2D applications, solve the linear inverse problem (1.8), i.e.,

µ(x, Ē) ≈ 〈µ〉(x) = FBP
(
− ln

(
BH
([

Id
I0

])))
, (1.9)

where FBP(·) is the FBP operator and 〈µ〉(x) is the reconstructed spectrally-averaged at-

tenuation coefficient, which is assumed to be an approximation of µ(x, Ē).

The reconstructed image is further re-scaled into CT numbers in Hounsfiled units (HU),

HU(x) = 1000
〈µ〉(x)

µw

(
Ē
) − 1000 . (1.10)

where µw

(
Ē
)

is the linear attenuation coefficient of water at the effective energy. Therefore,

in the ideal case HU = 0 for water and HU = −1000 for air.

4In practice, the beam-hardening correction operation is more commonly applied to the attenua-
tion data, − ln

([
Id
/
I0

])
, rather than the transmission data,

[
Id
/
I0

]
. However, the two representations

− ln
(
BH
([
Id
/
I0

]))
and BH∗(− ln

([
Id
/
I0

]))
are mathematically transferable. In this dissertation, we choose

the first way because some reconstruction algorithms operate on the corrected transmission data.
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Beam-hardening artifact

The single-energy CT image reconstruction discussed above is based on the monochromatic

assumption, i.e., the beam-hardening correction transforms the raw data into a monochro-

matic projection. One of the most commonly used methods is the water-based beam-

hardening correction that builds a one-to-one look-up-table or polynomial function between

the measured polychromatic attenuation and the corrected monochromatic attenuation based

on water attenuation [27–30]. The water-based methods are in principle based on the assump-

tion that all scanned subjects are water equivalent with varying densities. Thus, residual

errors are presented in the reconstructed images if the scanned object deviates from water.

Additional bone-based correction, which is based upon prior assumptions about the bone

compositions, has been used to further remove bone-introduced artifacts [31–33]. However,

in principle, the beam-hardening correction is not able to achieve the “true” monochromatic

projection for a heterogeneous object that is composed of various media.

It is well known that the residual beam-hardening effect may cause cupping artifacts and

streak artifacts in the reconstructed images. Besides the visible artifacts, the residual beam-

hardening effect also causes size- and location-dependence of the reconstructed HUs, es-

pecially for those media with relatively high atomic numbers (e.g., bones). The HU non-

uniformity is an inherent issue for most single-energy CT reconstructions.

Advanced image reconstruction

Besides the most widely used FBP algorithm, more advanced iterative reconstruction al-

gorithms and statistical image reconstruction (SIR) algorithms have also been employed to

solve the inverse problem, (1.7) or (1.8). In one common approach, SIR algorithms assume
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the measurement data follow a known distribution parameterized by the ground truth signal

and formulate the reconstruction problem as a maximum-likelihood estimation problem.

For energy integrating detectors used in clinical CT scanners, the signal statistics of energy

integrating detectors theoretically follow a compound Poisson model, of which the modified

Poisson model is an accurate approximation [34–36]. Several reconstruction algorithms have

been proposed to minimize the negative Poisson log-likelihood function [36–42]. Another

widely used approach is to minimize a weighted-least-squares cost function of the post-log

data (i.e., attenuation data); the weighting may be derived from a series expansion of the

Poisson log-likelihood function [43–46].

Additionally, due to the ill-conditioned nature of the reconstruction problem itself, regu-

larization should be incorporated to achieve more physically feasible reconstruction results.

Spatial penalty functions, which penalize the difference between image intensities of nearby

pixels, are commonly used to enforce image smoothness.

These SIR algorithms tend to dramatically improve the signal-to-noise ratio (SNR) and

image contrast as well as to reduce image artifacts. However, most proposed methods are

based on the monochromatic assumption of the linearized data (i.e., the data after beam-

hardening correction) and therefore do not handle the data modeling errors including residual

beam-hardening effects.

1.2.2 Dual-energy x-ray CT

Dual-energy x-ray CT techniques scan the patient with two different x-ray spectra, which

provides additional information about the properties of the tissue in the patient.
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There are various technical approaches to implement dual-energy CT [47, 48]. Sequential

scanning is the simplest way to acquire dual-energy data, which scans the patient twice

using different tube potentials (i.e., kVp’s). The dual-source technique uses two sets of

sources and detector arrays that are arranged at an angular offset and operate at the same

time to acquire two sets of independent data corresponding to different tube potentials.

The fast kVp switching technique rapidly changes the tube potential between low- and

high-energy levels on a view-by-view basis during the gantry rotation. Splitting beam and

layered detectors are other ways to implement DECT scanning. These techniques can also

be extended to multi-energy CT (or spectral CT), which acquires data for more than two

energy spectra. Another way to implement multi-energy CT is the use of the energy-resolving

photon-counting detector, which counts the received photons and measures the associated

energy of each photon. The measurement data are commonly separated into several energy

bins according to energy level.

Because two or more sets of data are acquired at different energies, the DECT (or multi-

energy CT approach) is able to estimate two independent material parameters that are

insensitive to the source spectra, instead of the spectrally-averaged attenuation coefficient.

Thus, the DECT approach has the potential to provide more accurate material characteri-

zation than the SECT approach.

1.2.3 Proton beam radiotherapy

Proton beam radiotherapy uses beams of high energy protons to irradiate cancerous tissues.

When a proton penetrates through media, the energy deposition generally increases when

the energy of the proton decreases. Therefore, a proton deposits the maximum energy close

the distal end of the beam path, which is known as the Bragg peak. In treatments, proton
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beams with different initial energies are applied to form a spread-out Bragg peak (SOBP)

in order to cover the entire treatment site.

In treatment planning and dose prediction, to determine the proton range (i.e., the position

of the Bragg peak) inside the patient body for a given initial proton energy, it is required

to know the proton stopping powers of media along the beam path. Proton stopping power

is defined as the proton energy loss per unit distance traveled in the medium. Accurate

estimation of proton stopping power is crucial for dose calculation and geometric targeting

in proton therapy planning.

The ratio of proton stopping power of a medium to that of water, SPR, is commonly used

in current clinical practice. The SPR is often assumed to be constant for different proton

energies. The water equivalent path length (WEPL) of a given beam path inside the patient

body is computed by integrating the SPR along the beam path.

In current clinical practice, patient-specific SPR information is obtained via the SECT sto-

ichiometric calibration method that was proposed by Schneider et al. [49]. The parametric

model of photon cross-section proposed by Rutherford et al. [50], which links the measured

CT number and material parameters (i.e., density and composition), is first calibrated via

scanning a tissue-surrogate phantom. The parametric model is given as

HU

1000
+ 1 = ρe

(
KphZ̃

3.62 +KcohZ̆
1.86 +KKN

)
, (1.11)

where ρe is the electron density of the medium, Z̃ and Z̆ are the effective atomic number of

the medium defined by the Mayneord’s equation (see (1.22) in Section 1.2.4) for n = 3.62

and n = 1.86, respectively. Kph, Kcoh, and KKN are the calibration parameters that mainly

characterize the cross-sections for photoelectric effect, coherent scattering, and incoherent
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scattering, respectively, and are assumed to be constant for each different material under the

same scan protocol.

After phantom calibration (i.e., solving the protocol-specific constants Kph, Kcoh, and KKN

via a phantom scan), the theoretical CT numbers of a series of reference human tissues are

computed from the calibrated photon cross-section model. A piecewise linear calibration

curve between CT number and proton SPR is then fit using the computed CT numbers and

known SPRs of the reference human tissues. As an illustration, Figure 1.4 shows an example

of the calibration curve for a 120 kVp CT scan protocol.5

The SECT method builds a one-to-one relationship between CT numbers and SPRs. Be-

cause there is only one measurement per image pixel, SECT analysis is unable to disam-

biguate the dependency of CT number on density and elemental composition [12,13]. Tissues

with different SPRs may have very similar CT numbers under a given tube potential. The

patient-specific tissue compositions and densities may deviate significantly from the reference

ones recommended by the International Commission on Radiation Units and Measurement

(ICRU) or the International Commission on Radiological Protection (ICRP) and therefore

deviate from the stoichiometric calibration curve derived by the reference tissues [12]. To

compensate for the proton range uncertainties due to the estimation uncertainties of SPR,

safety margins of 2−3.5% of the proton ranges are added to CTVs during treatment planning.

Since the margin is a fraction of the total proton range, the uncertainties of the delivered

dose distribution become larger when the treatment site is deeper inside the patient body.

5To derive the calibration curve shown in Figure 1.4, the measurement data of the Gammex RMI 467
phantom (Gammex, Middleton, WI) were simulated using the 120 kVp spectrum shown in Figure 1.2 and
the FBP-reconstructed image was used to calibrate the parametric photon cross-section model. The same
reference human tissues as in the original work by Schneider et al. [49] and similar segmentation of the CT
number range (i.e., three linear fits for lung, various organs, and bony tissues, and two more line segments
to account for the adipose tissue) were used for the curve fitting. Different reference tissues or criteria of CT
number segmentation may be used in clinical practice.
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Figure 1.4: The SECT stoichiometric calibration curve for a 120 kVp CT scan protocol. The
reference human tissues are indicated by the green diamonds.

One promising alternative methodology for more quantitative tissue characterization is the

DECT technique. By acquiring two independent measurements under different source spec-

tra, the DECT approaches are able to resolve the HU dependence on density and composition.

More details of DECT-based SPR estimation methods are introduced in Chapter 2.
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1.2.4 Derived radiological quantities

Proton stopping power

Within the energy range typically used in proton therapy (i.e., up to a few hundreds of

MeV), the proton stopping power Sp at a given energy Ep can be approximated by the

Bethe equation [51],

Sp(Ep) = −dEp
dx

= ρe
k0

β2

[
1

2
ln

2mec
2β2Tmax

I2(1− β2)
− β2 − δ(β)

2
− C(β)

Z

]
, (1.12)

where k0 is the product of physical constants, c is the speed of light, and

β =
vp
c

=

√
1−

(
mpc2

Ep +mpc2

)2

(1.13)

is the proton speed relative to that of light,

Tmax =
2mec

2β2

1− β2

(
1 + 2

me

mp

1√
1− β2

+

(
me

mp

)2
)−1

(1.14)

is the maximum energy transferred from a proton to a single electron, me and mp are the

invariant mass of electron and proton, respectively, and ρe and I are the electron density

and mean excitation energy of the medium, respectively.

In (1.12), the density correction δ(β) is significant only when the kinetic energy of the

proton is of the same order as or larger than the rest energy of a proton. The shell correction

C(β)/Z is significant only when the proton velocity is comparable to that of atomic electrons.

These two corrections were ignored in our implementation because they are negligible for the

typical proton energies used in proton therapy [52]. Therefore, the proton stopping power is
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calculated as

Sp(Ep) = ρe
k0

β2

[
1

2
ln

2mec
2β2Tmax

I2(1− β2)
− β2

]
, (1.15)

which can be equivalently rewritten as

Sp(Ep) = ρek1(Ep)
[
k2(Ep)− ln

(
I/eV

)]
, (1.16)

where k1(Ep) and k2(Ep) are functions of the proton energy, Ep, and do not change for

different media.

The SPR is then computed as,

Sp
Sp,w

(Ep) =
ρe
ρe,w
·
k2(Ep)− ln

(
I/eV

)
k2(Ep)− ln

(
Iw/eV

) , (1.17)

where ρe,w, Iw, and Sp,w are the electron density, mean excitation energy, and proton stopping

power of the reference water, respectively.

For all evaluations in this dissertation, Ep is set to 200 MeV, which results in

k1(200 MeV) = 1.5907× 10−24 MeV cm3 ,

k2(200 MeV) = 12.76 .

In this dissertation, all reference SPRs are computed via the Bethe equation. Because the

approximation error of the Bethe equation is independent of any CT-based approach as long

as the reference SPR is computed via the Bethe equation, such approximation error is not

discussed in this study.
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Electron density

The electron density is defined as the number of electrons per unit volume. For a medium

with known density and elemental composition, the electron density is computed by the

atomic mixture rule as

ρe = ρNA

∑
k

ωk

(
Zk
Ak

)
, (1.18)

where ρ is the mass density of the medium, NA is the Avogadro constant, and ωk, Zk, and Ak

are the mass fraction, atomic number, and atomic weight of the k-th element in the medium,

respectively. Moreover, for a given elemental composition, the electron-to-mass density ratio

can be defined as

ρe
ρ

= NA

∑
k

ωk

(
Zk
Ak

)
. (1.19)

Mean excitation energy

The mean excitation energy (i.e., I-value) in the Bethe equation is a geometric average of

the excitation energies of the medium weighted by the oscillator strengths. The accurate

calculation of mean excitation energy is only achievable for simple atomic gases [53]. For

compounds and mixtures, the reference value of the mean excitation energy is approximated

by the Bragg additivity rule [53],

ln I =

∑
k ωk

(
Zk

Ak

)
ln Ik∑

k ωk

(
Zk

Ak

) , (1.20)
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where Ik is the mean excitation energy of the k-th element in the medium, including the

ICRU-recommended solid/liquid phase to gaseous phase correction.

Similar to that of the Bethe equation, the approximatiion error of the Bragg additivity rule

is not included in the scope of this dissertation.

Photon attenuation coefficient

For a medium with known density and elemental composition, the mass attenuation coeffi-

cients can be approximated by the atomic mixture rule as

(
µ

ρ

)
=
∑
k

ωk

(
µ

ρ

)
k

(1.21)

where
(
µ
/
ρ
)
k

is the mass attenuation coefficients of the k-th element in the medium.

All reference mass attenuation coefficients used in this dissertion are obtained from the

National Institute of Standards and Technology (NIST) XCOM database [54] and the linear

attenuation coefficients are then computed as µ = ρ
(
µ
/
ρ
)
.

Effective atomic number

The effective atomic number, Zeff or Z∗, is a commonly used concept for modeling photon

cross-sections. Various parametric fitting models have been proposed to model the energy-

dependent photon linear attenuation coefficient as a function of effective atomic number and

electron density, such as the Spiers model [55], the Alvarez-Macovski model [56], and the

Torikoshi model [57].
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A classical definition of Zeff was first proposed by Mayneord [58] as

Zeff =

∑k ωk

(
Zk

Ak

)
Zk

n∑
k ωk

(
Zk

Ak

)


1
n

, (1.22)

where n = 2.94. Note that this model was originally derived for a particular 140 kVp x-ray

spectrum.

Modifications of Mayneord’s equation with different n’s, as well as other definitions of Zeff ,

are also proposed in the literature.

The effective atomic number Zeff does not have exact physical meaning, but can be con-

sidered as an indicator of the composition of the medium. It should be noted that Zeff is

an energy-dependent quantity for most ρe-Zeff photon cross-section models [15, 59]. There-

fore, the spectrally-averaged effective atomic number is considered in CT-based material

characterization models.

1.3 Notation

This section summarizes the main notation that is used throughout this dissertation. Un-

less otherwise specified, a variable in non-italic, bold style denotes the column vector that

corresponds to the scalar variable in italic, non-bold style.

E Energy of an x-ray photon

Ep Energy of a proton

µ Photon linear attenuation coefficient

19



ρ Mass density

ρe Electron density

I Mean excitation energy

Z Atomic number

Zeff Effective atomic number

Sp Proton stopping power

HU CT number in Hounsfield units

u Modified Hounsfield units, u = HU
/

1000 + 1

i Index of BVM basis, i ∈ {1, 2}

j Index of scan energy, j ∈ {L,H}

x Index of image pixels

y Index of source-detector pairs (i.e., ray path)

h(y|x) An element of CT system matrix that represents the effective length of

the intersection between the ray path y and image pixel x

Φ0 Normalized x-ray CT source spectrum without bow-tie filter (up-stream)

Φ Normalized x-ray CT source spectrum with bow-tie filter (down-stream)

Ψ Normalized x-ray CT energy-fluence spectrum

D Detector response function

Id
/
I0 Measured transmission sinogram relative to the air-scan

I0 Unattenuated source intensity (i.e., air-scan)

d Measured transmission sinogram
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Q Estimated/expected transmission sinogram

γ Background event

c BVM component weight

L Projection (line integral) of BVM component weight

1.4 Contributions of the dissertation

The main contributions of this dissertation are as follows.

• Proposed a method for estimating SPR images from DECT measurement data. The

method is built on a BVM for material characterization and a JSIR algorithm that

integrates image reconstruction and material decomposition.

• Derived the mathematical model for mapping proton SPR of biological tissues and

tissue-like materials from their photon linear attenuation coefficients.

• Investigated the reasons for the slow convergence of the alternating minimization (AM)

algorithm for the joint DECT image reconstruction that is based on the polychromatic

CT data model.

• Proposed acceleration strategies for the joint DECT image reconstruction problem,

which achieves a convergence speed comparable to the SECT monochromatic image

reconstruction.

• Evaluated the intrinsic modeling error of the BVM for predicting proton SPR from

photon cross-section for both reference human tissues and tissues with reasonable com-

position variations.
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• Evaluated the impact of several sources of data acquisition and image formation uncer-

tainties on SPR estimation accuracy achievable by the proposed JSIR-BVM method

as well as previously described image- and sinogram-decomposition approaches in a

well-controlled simulation framework.

• Developed the pre-processing procedure of the raw data extracted from a specific com-

mercial CT scanner and experimentally estimated the equivalent source spectra of the

CT scanner in order to support the implementation of the proposed JSIR-BVM method

in the clinical setting.

• Evaluated the accuracy of the proposed JSIR-BVM method on the commercial CT

scanner via phantom study.

• Investigated the impact of the SPR modeling uncertainty and the DECT image forma-

tion uncertainty, which are the two major contributors to the overall SPR estimation

uncertainty, in both a simulation and an experimental study.

1.5 Organization of the dissertation

Chapter 2 reviews the previously published DECT approaches for SPR estimation: the

image-domain and sinogram-domain decomposition approaches. Different DECT-SPR mod-

els implemented in this dissertation are briefly summarized.

The framework of the proposed JSIR-BVM method for mapping DECT measurements into

proton SPR is introduced in Chapter 3, including the mathematical modeling for material

characterization and the image reconstruction problem. Chapter 4 discusses the implemen-

tation and improvement of the image reconstruction algorithm.
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In Chapter 5, the proposed JSIR-BVM method is evaluated in a well-controlled simulation

framework, which realistically models several major sources of uncertainties encountered

in clinical practice. The proposed JSIR-BVM method is compared to existing image- and

sinogram-domain decomposition methods. Different sources of estimation uncertainties are

investigated in detail.

The proposed JSIR-BVM method is experimentally commissioned in Chapter 6 using raw

DECT data exported from a commercial CT scanner. Two phantoms of different sizes

containing tissue surrogates of known densities and elemental compositions were analyzed

by the JSIR-BVM method and an image-domain decomposition method that is applied to

the scanner-reconstructed CT images.
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Chapter 2

DECT method for proton stopping

power ratio (SPR) estimation

By employing the Bethe equation (1.15), the estimation of proton stopping power can be

achieved by estimating electron density (ρe) and mean excitation energy (I-value). Several

models have been proposed in the literature to link DECT image intensities with ρe and

I-value [11, 14–21]. Most DECT-SPR models assume that I-value can be approximated

by a function of effective atomic number, Zeff , for a constrained set of materials such as

those normally occurring human tissues. The two independent material properties, ρe and

Zeff , are extracted for each image pixel and then used to computed SPRs. Theoretically,

these two-parameter DECT-SPR models are highly accurate with as low as 0.2% root-mean-

square (RMS) errors for standard human tissues [13]. Other DECT-SPR models that do not

require explicit estimation of ρe or Zeff [22–25] have also been developed and show comparable

theoretical accuracy. These methods either build a one-to-one relationship between proton

SPRs and predicted electron densities [22,23,25], or directly fit a parametrical model between

proton SPRs and DECT image intensities [24].
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Most proposed DECT methods for SPR estimation are post-reconstruction, image-domain

analyses of two separately reconstructed CT images acquired with different source spectra.

These methods are easy to implement because one can directly use the scanner’s SECT

image reconstruction process. However, random noise as well as residual systematic errors

in the separately reconstructed CT images (e.g., HU nonuniformity and dependence on

patient size, which are due to residual beam-hardening and scatter artifacts) may cause the

accuracy of SPR estimates derived from image-domain analyses to deteriorate in the clinical

setting [13,21,26].

To compensate for the polychromatic nature of CT x-ray beams, several approaches for de-

composing dual-energy and transmission sinograms into energy-invariant component projec-

tions before image reconstruction have been proposed [16,25,56,60–65]. Joint decomposition

and reconstruction techniques, which simultaneously reconstruct two energy-invariant com-

ponent images, have also been investigated for dual-energy and multi-energy CT [17,66–70].

However, only a few studies have adopted the sinogram-domain method for application of

SPR estimation, while the potential of joint reconstruction techniques for SPR estimation

has not yet been explored.

2.1 Image-domain decomposition approach

The image-domain decomposition approach uses two single-energy images that are recon-

structed separately from acquired low- and high-energy CT measurements using a conven-

tional SECT reconstruction algorithm (e.g., the FBP algorithm). In the SECT reconstruc-

tion, a beam-hardening correction process is applied to the acquired sinograms before recon-

struction in order to transform the raw sinograms into approximately monochromatic ones.

After image reconstruction, two material properties, which are commonly electron density
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ρe and effective atomic number Zeff , can be determined for each image pixel via a calibration

model and then used for computing the SPR map.

In this dissertation, we investigated two of these image-domain decomposition methods in

the literature.

2.1.1 Hünemohr method and Hünemohr-Saito method

The Alvarez-Macovski photon cross-section model [56] decomposes the energy-dependent

photon linear attenuation coefficient of an known material within the typical photon energy

range of x-ray CT scans into a virtual photoelectric absorption contribution and a virtual

Compton scattering contribution as

µ(E) = ρe

(
aAM

Zeff
n

E3
+ bAMfKN(E)

)
, (2.1)

where fKN(E) is the Klein-Nishina formula. The two proportionality factors, aAM and bAM,

are approximately material-independent.

In this model, the effective atomic number Zeff is defined using a modified Mayneord’s equa-

tion (1.22) with n = 3.2, which yields the best fit for the elemental attenuation coefficients

within the range Z = 2− 20 for our CT spectra.

Based on the Alvarez-Macovski model described above, Hünemohr et al. [71] developed the

mathematical relationship between two spectrum-averaged CT numbers and the material
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properties (i.e., ρe and Zeff) as

ρe
ρe,w

= α̃uL + (1− α̃)uH , (2.2)

Zeff

Zeff,w

=

[(
ρe
ρe,w

)−1(
β̃uL + (1− β̃)uH

)] 1
n

, (2.3)

where ρe,w and Zeff,w are the electron density and effective atomic number of water, respec-

tively, uL and uH are the modified HU of low- and high-energy CT images, respectively. The

modified HU is defined as

u =
HU

1000
+ 1 , (2.4)

which is proportional to the spectrally-averaged attenuation coefficient.

The two calibration parameters, α̃ and β̃, depend on the specific dual-energy scanning pro-

tocol and can be determined via scanning a single calibration material other than water.

However, the performance relies on the choice of the calibration material [21].

Additionally, in the derivation of the Hünemohr method, the CT numbers for water and air

are assumed to be exactly 0 HU and −1000 HU, respectively. However, in practice, their CT

numbers may be slightly different from the ideal ones. To account for the inaccuracy of CT

numbers and to improve the performance of the original Hünemohr method, Li et al. [21]

adapted the Saito method for ρe estimation [26] and generalized the calibration model as

ρe
ρe,w

= α̃1

(
uH + α̃0 (uH − uL)

)
+ α̃2 , (2.5)

Zeff

Zeff,w

=

[(
ρe
ρe,w

)−1 (
β̃1

(
uH + β̃0 (uH − uL)

)
+ β̃2

)] 1
n

. (2.6)
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The calibration parameters α̃k and β̃k are determined via scanning a selected calibration

phantom with tissue-substitutes of known densities and compositions.1 The modified method

was shown to achieve performance improvement in the original work by Li et al. [21] and

in our experiments, while it achieves performance similar to the original Hünemohr method

in idealized simulations. In this dissertation, the original Hünemohr method is used for

simulations and is referred to as the Hünemohr method. The modified method is used for

experiments and is referred to as the Hünemohr-Saito method.

When applying this method for proton stopping power estimation via the Bethe Equation,

the I-value is inferred from Zeff using the empirical linear-relationship that was first intro-

duced by Yang et al. [11],

ln I = aZZeff + bZ , (2.7)

where the parameters aZ and bZ are predetermined for different material groups with highly

similar compositions, e.g., soft and bony tissues, separately. Figure 2.1 shows the linear-

relationship for selected reference human tissues (see Appendix A). The I-value parameter-

ization function is given by

ln
(
I/eV

)
=


0.1227Zeff + 3.3909 for soft tissues,

0.0984Zeff + 3.3607 for bony tissues.

(2.8)

1Different calibration phantoms have been used in the literature for calibrating either the SECT stoichio-
metric calibration method or DECT-based methods. In this dissertation, the conventional Gammex RMI
467 phantom (Gammex, Middleton, WI), which contains 13 tissue surrogates, is used for all calibration
purposes.
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Figure 2.1: The linear fit between the logarithm of mean excitation energies and effective
atomic number for reference human tissues, which is used as the I-value parameterization
in the Hünemohr method.

2.1.2 Bourque method

Bourque et al. [15] developed a dual-energy stoichiometric calibration process to convert

uL and uH into electron density and effective atomic number. In their method, spectrally-

averaged electronic cross-sections are fit to a polynomial function of their atomic numbers

Z as

∫
Ψj(E)σe,Z(E) dE = 〈σ̂e〉j(Z) =

K∑
k=1

ăj,kZ
k−1 , j ∈ {L,H} , (2.9)

where Ψj(E) is the known source spectra. Then, given a specific DECT scan protocol, the

effective atomic number for an arbitrary mixture is defined as

Zeff,x =
1

2

[
〈σ̂e〉−1

L

(∫
ΨL(E)σe,x(E) dE

)
+ 〈σ̂e〉−1

H

(∫
ΨH(E)σe,x(E) dE

)]
. (2.10)
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The calibration model for converting DECT image intensities into material characteristics

is given in the form of polynomial functions as

Zeff =
K∑
k=1

β̆k

(
uL − uH

uL + uH

)(k−1)

, (2.11)

ρe
ρe,w

=
uL/H∑M

m=1 ᾰL/H,mZ
(m−1)
eff

, (2.12)

where β̆k, ᾰL,m, and ᾰH,m are scan-specific parameters, which need to be determined from

a calibration phantom scan just as in the Hünemohr-Saito method. Consistent with the

original work, the orders of polynomial fitting are set to K = M = 6.

When applying this model for proton stoppinng power estimation, Zeff is first calculated for

each image location. Two separate estimates of ρe are calculated from images of low and

high energies, respectively, and then averaged to obtain the final estimate of ρe. The I-value

is parameterized as a piecewise polynomial function of Zeff for the reference human tissue

compositions (as shown in Figure 2.2). For the simulated spectra used in this dissertation

(see Figure 5.1), the parameterization function is given by

I/eV =



13.50Zeff − 21.18 for Zeff < 6.17 ,

− 0.006952Z5
eff + 0.3047Z4

eff − 4.833Z3
eff + 32.87Z2

eff − 75.96Zeff + 35.39

for 6.17 ≤ Zeff ≤ 13.54 ,

12.82Zeff − 61.75 for Zeff > 13.54 .

(2.13)
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Figure 2.2: The polynomial fit between mean excitation energies and effective atomic number
for the reference human tissues, which is used as the I-value parameterization in the Bourque
method.

2.2 Sinogram-domain decomposition approach

The sinogram-domain decomposition approach attempts to extract two component line-

integrals (i.e., projections) that are invariant to the spectra before the image reconstruction

process. After the decomposition, the two corresponding component images are then recon-

structed via the FBP algorithm.

Let Ψj(y, E), j ∈ {L,H} be the energy-fluence spectrum of the low- and high-energy scans for

photon energy E and source-detector pair y, and
[
Id
I0

]
j
(y) be the air-normalized transmission

measurement. The measurement can be modeled as

[
Id
I0

]
j

(y) =
∑
E

Ψj(y, E) exp

(
−
∑
x

h(y|x)µ(x,E)

)
, (2.14)

31



where µ(x,E) is the photon linear attenuation coefficient at image pixel x and photon energy

E, and h(y|x) is the point-spread function of the scanner system.

Consider a general linear decomposition model of the photon linear attenuation,

µ(x,E) = ν1(x)η1(E) + ν2(x)η2(E) , (2.15)

where ηi(E) are two corresponding basis functions that are independent of materials and

νi(x) are the two energy-invariant, material-specific basis coefficients. Note that the Alvarez-

Macovski photon cross-section model (2.1) as well as the BVM, which will be introduced in

Chapter 3, are two examples of the linear decomposition model. For the Alvarez-Macovski

photon cross-section model, the two basis functions are defined as


η1(E) = aAM

1

E3
,

η2(E) = bAMfKN(E) ,

(2.16)

and the two corresponding material-specific parameters are defined as


ν1(x) = ρe(x)

[
Zeff(x)

]n
,

ν2(x) = ρe(x) .

(2.17)

Therefore, ρe and Zeff images can be uniquely determined once νi(x) are known and then be

used to compute the proton stopping power for each image pixel [16].

Based on a selected decomposition model, two corresponding line integrals are defined as

Lν,i(y) =
∑
x

h(y|x)νi(x) , (2.18)
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implying that

[
Id
I0

]
j

(y) =
∑
E

Ψj(y, E) exp
(
− Lν,1(y)η1(E)− Lν,2(y)η2(E)

)
. (2.19)

The two line integrals Lν,i(y) can be numerically solved from (2.19) for each source-detector

pair y independently with the known spectra Ψj(y, E). Note that the beam-hardening cor-

rection is embedded in the poly-energetic sinogram decomposition. Thus, no separate beam-

hardening correction is needed in this process.

After the decomposition, the two corresponding images of material-specific parameters, νi(x),

can be obtained from Lν,i(y) using any conventional SECT reconstruction algorithm, which

is the FBP algorithm in our implementation.

On the other hand, the calibration-based image-domain ρe-Zeff methods in Section 2.1 can

also been extended into the sinogram-domain approach [16]. Once the two material parame-

ters νi(x) are reconstructed, two monochromatic HU images can be computed via (2.15) for

both the calibration phantom and the test object. The calibration-based ρe-Zeff models can

then be applied to the monochromatic HU images.
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Chapter 3

Basis vector model (BVM) for

DECT-based proton SPR estimation

The BVM was first investigated by Han et al. [52, 59, 72] to link photon cross-section and

proton stopping power. In this chapter, we extend and improve their methodology and build

the BVM-based framework for mapping proton stopping power from polychromatic DECT

data.

3.1 BVM for photon linear attenuation coefficients

The BVM assumes that within the typical energy range of CT scans,1 the energy-dependent

linear attenuation coefficients of biological media can be approximated by linear combinations

of those of two dissimilar basis materials, i.e.,

µ(x,E) = c1(x)µ1(E) + c2(x)µ2(E) , (3.1)

1For clinical whole-body scanners, the maximum photon energy Emax (i.e., the x-ray tube potential) is
within the range from 70 keV to 150 keV. The minimum photon energy Emin is set to 20 keV throughout
this dissertation, because for all considered spectra, photons below 20 keV comprise less than 10−7 of the
total source energy.
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Table 3.1: Physical densities, electron densities, and elemental composition of the two basis
materials.

Basis material ρ (g/mL) ρe/ρe,w
Elemental Mass Fraction (%)

H C O Cl Ca
Polystyrene 1.061 1.028 7.74 92.26
23% CaCl2 solution 1.221 1.186 8.62 68.38 14.69 8.31
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Figure 3.1: The linear attenuation coefficient curves of the two basis materials between
20 keV and 140 keV.

where µi(E) are the linear attenuation coefficients of the two basis materials at photon

energy E and ci(x) are the corresponding BVM component weights for the unknown material

at image location x. In this dissertation, polystyrene and CaCl2 aqueous solution (23% by

mass), which bracket the range of naturally occurring biological media, are used as the

basis materials for all typical human tissues and tissue surrogates. Table 3.1 summarizes

the physical properties of the two basis material. Figure 3.1 shows the linear attenuation

coefficient curves of the two basis materials.

The selection of the basis materials was previously discussed in [73]. It was demonstrated

that this model is able to parameterize linear attenuation coefficients with 1− 2% accuracy

in an energy range from 20 keV to 1 MeV and in an effective atomic number range from 2
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to 20. This model can also be used for estimating other radiological quantities including

partial cross-sections, mass-energy absorption coefficients, and differential cross-sections. In

this dissertation, we focus on applying this model for proton stopping power mapping from

DECT data.

3.2 BVM for proton stopping power

To compute the proton stopping power map via the Bethe equation (1.15), the electron den-

sity ρe and mean excitation energy I are predicted for each pixel from two BVM component

images reconstruced from DECT data. The electron density of a biological medium can be

accurately estimated by the linear combination [52]:

ρe(x) = c1(x)ρe,1 + c2(x)ρe,2 , (3.2)

where ρe,i are the electron densities of the two basis materials. As an extension, this ap-

proximation can also be applied to non-biological, tissue-surrogate materials composed of

elements similar to tissues.

On the other hand, I-value can not be directly determined from CT image intensities. Thus,

a common way to estimate the I-value is to employ an empirical relationship between I-value

and some quantity that is related to the elemental composition and can be deterimined from

CT data (i.e., most commonly the effective atomic number Zeff as shown in Figure 2.1 and

Figure 2.2) [11, 15, 18, 71]. To adopt the BVM for proton stopping power estimation, we

hypothesized that for a constrained group of materials with highly similar compositions, the
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logarithm of the I-value closely follows a linear relationship with the weighted-component-

ratio defined as

rc(x) =
c1(x)ρe,1

c1(x)ρe,1 + c2(x)ρe,2
, (3.3)

and the estimate of I-value is given as

I(x) = exp
(
arrc(x) + br

)
, (3.4)

where ar and br are pre-determined fitting parameters.

The empirical I-value parameterization model is fit using reference human tissues (see Ap-

pendix A). The theoretical BVM component weights were computed via the spectrum-

weighted least-squares fitting as described in Section 3.4, which ensures that the computed

weights agree with those derived from idealized image reconstruction. As shown in Fig-

ure 3.2, there exists a good linear relationship between ln I and rc for the reference human

tissues. It can also be seen that the soft tissues and bony tissues follow different linear

relationships due to the dissimilarity between their compositions, i.e., soft tissues are mostly

composed of hydrogen, carbon, nitrogen, and oxygen, while bony tissues contain a large

fraction of calcium and phosphorous.

The empirical parameterization function is generated separately for soft and bony tissues by

finding the best linear fit for the reference tissues as

ln
(
I/eV

)
=


− 1.3308 rc + 5.4525 for soft tissues,

− 0.3299 rc + 4.5228 for bony tissues,

(3.5)
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Figure 3.2: The linear relationship between the logarithm of mean excitation energies and
the BVM weighted-component-ratio for the reference human tissues.

and then can be applied to patient data. Thyroid tissue is excluded in the linear fitting

between ln I and rc because it is an outlier to other soft tissues due to the existence of iodine

(Z = 53). The residual I-value modeling errors for the reference human tissues are all within

±3% (except for thyroid tissue).

The proposed I-value parameterization model, as is the case for all such models, can only

approximate I-values for materials with compositions similar to those used to derive the

model. In another word, the I-value parameterization functions (2.8), (2.13), and (3.5) only

apply to biological tissues. If the composition of a scanned object deviates from those of

biological tissues, such as the tissue surrogates used in our experiments, a modified fitting

that better reflects the prior knowledge about the composition of the scanned object should

be adapted for all I-value parameterization models to reduce the underlying SPR modeling

error (see Chapter 6).
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Note that the I-value parameterization introduced here is slightly different from the alter-

native one introduced in the previous work by Han et al. [52,59], which uses an unweighted

component ratio defined as c1

/
(c1 + c2). Following is the derivation of the I-value parame-

terization using the weighted-component-ratio.

Assume that substance x consists of two component media A and B. Let µA and µB be

the column vector of the linear attenuation coefficients of the two component media, and

wA and wB be the corresponding mass fractions of the two components in substance x. The

linear attenuation coefficients of substance x can be approximated via the mixture rule as

(
µ

ρ

)
x

= wA

(
µ

ρ

)
A

+ wB

(
µ

ρ

)
B

. (3.6)

By the result from Section 3.4, the expected BVM component weights of substance x are

given by

c1

c2

 = Pµx = ρxP

[(
µ

ρ

)
A

(
µ

ρ

)
B

]wA
wB

 , (3.7)

where the transform matrix P is defined in (3.27).
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By the Bragg additivity rule, the I-value of substance x is formulated as

ln Ix =

wA

(
ρe
ρ

)
A

ln IA + wB

(
ρe
ρ

)
B

ln IB

wA

(
ρe
ρ

)
A

+ wB

(
ρe
ρ

)
B

=

[(
ρe
ρ

)
A

ln IA

(
ρe
ρ

)
B

ln IB

]wA
wB


(
ρe
ρ

)
x

≈

[(
ρe
ρ

)
A

ln IA

(
ρe
ρ

)
B

ln IB

]wA
wB


1

ρx

[
ρe,1 ρe,2

]c1

c2



=

[(
ρe
ρ

)
A

ln IA

(
ρe
ρ

)
B

ln IB

](
ρxP

[(
µ

ρ

)
A

(
µ

ρ

)
B

])−1

c1

c2


1

ρx

[
ρe,1 ρe,2

]c1

c2



=

[(
ρe
ρ

)
A

ln IA

(
ρe
ρ

)
B

ln IB

](
P

[(
µ

ρ

)
A

(
µ

ρ

)
B

])−1

c1

c2


[
ρe,1 ρe,2

]c1

c2


.

(3.8)

Then

ln Ix = ar,0
c1ρe,1

c1ρe,1 + c2ρe,2
+ br,0 , (3.9)
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where the coefficients

[
ar,0 br,0

]
=

[(
ρe
ρ

)
A

ln IA

(
ρe
ρ

)
B

ln IB

](
P

[(
µ

ρ

)
A

(
µ

ρ

)
B

])−1

ρe,1 0

ρe,1 ρe,2


−1

(3.10)

only depends on the two component media A and B.

The above result demonstrates that for a series of mixtures that are made up of the same two

components, ln I is linear with the weighted-component-ratio rc, no matter which pair of basis

materials is used. As an extension, for a constrained set of materials whose compositions can

be accurately represented by two major principal components (i.e., the soft or bony tissues),

ln I closely follows a linear relationship with rc.
2

3.3 Reconstruction of BVM component weights

For an object scanned under DECT protocols, the two images of BVM component weights,

c1(x) and c2(x), can be recovered by either an image-domain decomposition approach, a

sinogram-domain decomposition approach, or our JSIR approach. Figure 3.3 compares the

three possible routings.

Image-domain decomposition approach

To implement the BVM-based image-domain method, a phantom containing the two BVM

basis materials, polystyrene and 23% CaCl2 solution, is required for the calibration process in

order to convert the two HU images into BVM component images [74]. Two BVM component

2A previous study by Lalonde et al. [19] demonstrated that the compositions of soft or bony tissues can
be accurately modeled as a combination of two components with varied fractions for different tissues and a
third constant component.
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Figure 3.3: Comparison of the three different routings of reconstruction BVM component
images from the DECT data.

weights for an unknown material at image location x are computed as

c1(x)

c2(x)

 =

ū1,L ū2,L

ū1,H ū2,H


−1 uL(x)

uH(x)

 , (3.11)

where uL(x) and uH(x) are the separately reconstructed SECT images of the scanned object

for low and high energy, respectively. ūi,L and ūi,H are the modified HUs of the basis materials

obtained from calibration images.

Sinogram-domain decomposition approach

To implement the BVM-based sinogram-domain method, we rewrite (2.19) for BVM as

[
Id
I0

]
j

(y) =
∑
E

Ψj(y, E) exp
(
− L1(y)µ1(E)− L2(y)µ2(E)

)
, (3.12)
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where Li(y) =
∑

x h(y|x)ci(x). The two line-integrals Li(y) are solved for each source-

detector pair y independently and then used to reconstruct the BVM component images

ci(x) via the FBP algorithm.

Joint statistical image reconstruction (JSIR) approach

Unlike the image-domain or sinogram-domain methods that perform separate steps of mate-

rial decomposition and image reconstruction, the JSIR approach reconstructs the two images

of BVM component weights, c1 and c2, directly and simultaneously from the two energy-

uncompensated measurement sinograms. Instead of assuming an exact match between the

ground truth and the measurements, the JSIR reconstruction process is based on a statistical

model of CT data and formulated as a penalized maximum likelihood estimation problem.

Let dj(y), j ∈ {L,H} be the transmission measurement of source-detector pair y, which are

assumed to be independently Poisson distributed with mean of

Qj(y : µ) = I0,j(y)
∑
E

Ψj(y, E) exp

(
−
∑
x

h(y|x)µ(x,E)

)
+ γj(y) , (3.13)

where Ψj(y, E) is the normalized energy-fluence spectra of the two scans and I0,j(y) is the

corresponding unattenuated in-air profile, which is expressed in noise-equivalent quanta

(NEQ) [35, 36]. Note that in most situations Ψj(y, E) and I0,j(y) are detector-dependent

because of the bow-tie filter. Additionally, an estimate of background events (i.e., scat-

tered radiation), γj(y), which is assumed to be known, is also included in the data model to

improve the model accuracy.
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Plugging (3.1) into (3.13), the expect mean of the transmission measurement can then be

written as a function of the two BVM component images as

Qj(y : c) = I0,j(y)
∑
E

Ψj(y, E) exp

(
−
∑
x

h(y|x)
2∑
i=1

ci(x)µi(E)

)
+ γj(y) . (3.14)

To find the maximum likelihood estimator of the two BVM component images, maximization

of the Poisson log-likelihood is converted to the equivalent problem of minimizating the I-

divergence [75] between the measured transmission data dj and the estimated mean values

Qj parameterized by ci. The I-divergence is defined as

dI(dj‖Qj) =
∑
y

(
dj(y) ln

dj(y)

Qj(y)
− dj(y) +Qj(y)

)
, (3.15)

which is nonnegative and is convex over dj and Qj.

Because of the ill-conditioning of the dual-energy reconstruction problem, a regularization

function is employed to enforce smooth images. The objective function of the minimization

problem is then defined as

g(c) =
∑
j=L,H

dI(dj‖Qj) + λR(c) , (3.16)

in which the spatial penalty function R(ci) is formulated as

R(c) =
2∑
i=1

∑
x

∑
x′∈N (x)

wx,x′φ
(
ci(x)− ci(x′)

)
, (3.17)

where N (x) is the adjacent neighborhood of pixel x, and wx,x′ is an inverse-distance weight

for each pixel-pair. The value difference between neighboring pixels is penalized by the
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potential function

φ(t) = δ

(∣∣∣∣ tδ
∣∣∣∣− ln

(
1 +

∣∣∣∣ tδ
∣∣∣∣)) . (3.18)

This Huber-type penalty funcion is a modified version of the well-known log-cosh function,

which helps preserve edges while suppressing image noise [76]. The penalty function is convex

and twice continuously differentiable, with a quadratic region for |t| � δ and a linear region

for |t| � δ.

The single scalar λ controls the trade-off between data fitting and image smoothness. A

larger λ produces images with a smaller noise level but lower resolution.

The optimization algorithm for minimizing the objective function (3.16) will be discussed in

Chapter 4.

3.4 Theoretical value of BVM component weights

Assume that x-ray beams of two different energy spectra pass through a thin layer of material

with thickness l, where l is sufficiently small and the source intensities are sufficiently large

(i.e., the measurement is noiseless). Let Ψj(E) and I0,j, j ∈ {L,H} be the two spectra and

the corresponding source intensities, respectively. Let µx(E) and µi(E), i ∈ {1, 2} be the

linear attenuation coefficients of the scanned material and basis materials, respectively. The

measured transmission, which equals the true transmission, is formulated as

dj = I0,j

∑
E

Ψj(E) exp
(
− l µx(E)

)
, (3.19)
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and the BVM-modeled transmission is formulated as

Qj = I0,j

∑
E

Ψj(E) exp
(
− l
(
c1µ1(E) + c2µ2(E)

))
. (3.20)

In our JSIR method, the BVM component weights c1 and c2 are determined by minimizing

∑
j=L,H

dI(dj ‖ Qj) =
∑
j=L,H

(
dj ln

(
dj
Qj

)
− dj +Qj

)
. (3.21)

Applying the Taylor expansion to the objective function at l = 0 gives

∑
j=L,H

dI(dj ‖ Qj) =
l2

2

∑
j=L,H

I0,j

[∑
E

Ψj(E)
(
c1µ1(E) + c2µ2(E)− µx(E)

)]2

+o(l2) . (3.22)

Rewrite (3.22) in matrix form gives

∑
j=L,H

dI(dj ‖ Qj)

=
l2

2

[µ1 µ2

]c1

c2

− µx


ᵀ(∑

j=L,H

I0,jΨjΨj
ᵀ

)[µ1 µ2

]c1

c2

− µx

+ o(l2)

=
l2

2

A
c1

c2

− b


ᵀ

W

A
c1

c2

− b

+ o(l2) ,

(3.23)
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where

A =

ΨL
ᵀ

ΨH
ᵀ

[µ1 µ2

]
=

∑E ΨL(E)µ1(E)
∑

E ΨL(E)µ2(E)∑
E ΨH(E)µ1(E)

∑
E ΨH(E)µ2(E)

 ,

b =

ΨL
ᵀ

ΨH
ᵀ

µx =

∑E ΨL(E)µx(E)∑
E ΨH(E)µx(E)

 ,

W =

I0,L 0

0 I0,H

 .

(3.24)

Thus, the theoretical BVM component weights are given by a least-squares fitting of the

linear attenuation coefficient curve weighted by
(∑

j=L,H I0,jΨjΨj
ᵀ
)

as

c1

c2

 = argmin
τ

([
µ1 µ2

]
τ − µx

)ᵀ
(∑
j=L,H

I0,jΨjΨj
ᵀ

)([
µ1 µ2

]
τ − µx

)

= argmin
τ

(Aτ − b)ᵀW (Aτ − b)

= (AᵀWA)−1 (AᵀW ) b ,

(3.25)

which is equivalent to

c1

c2

 = Pµx , (3.26)

where

P = (AᵀWA)−1 (AᵀW )

ΨL
ᵀ

ΨH
ᵀ

 . (3.27)
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Figure 3.4 compares the simulated and computed BVM component weights for 4 represen-

tative reference tissues. The simulated BVM weights are the reconstructed values at the

centers of cylindrical, homogeneous objects with diameters of 40, 80, 120, . . ., 280, and

320 cm, while the computed BVM weights were derived using the corresponding local spec-

tra at the centers (i.e., source spectra filtered by the tissue of the corresponding diameters).

It can be seen that there is a good agreement between the computed and simulated BVM

weights. The differences are less than 10−3 for cortical bone and are well below 2 × 10−4

for soft tissue and spongiosa. Thus, the theoretical BVM component weights computed via

(3.26) are able to represent the expected ground truth with very high accuracy.

Note that the theoretical BVM component weights depend slightly on the local spectra, and

therefore may change slightly across a homogeneous object. However, the impact of the

location-dependent equivalent spectra is much less than that of SPR modeling error and

image formation uncertainty. A spectrum variation of up to 400 mm water filtration leads to

less than 0.03% and 0.1% changes of predicted ρe for all the reference soft and bony tissues,

respectively, except for the thyroid tissue. The changes of predicted I-value are less than

0.14% and 0.18% for the reference soft and bony tissues, respectively.

In the JSIR-BVM method, the unattenuated central-axis spectra were used to compute the

theoretical BVM weights of the reference human tissues for fitting the I-value parameteri-

zation functions.
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Figure 3.4: Comparison of theoretically computed BVM weights and simulated BVM weights
for selected reference human tissues under difference levels of addition spectral filtration by
varying object size. The arrows indicate the directions of phantom size increase.
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Chapter 4

Joint statistical image reconstruction

(JSIR) of DECT data

In the JSIR-BVM method, the reconstruction of the two BVM component images is for-

mulated as an optimization problem with the objective function defined by (3.16). The

optimization problem can be solved by the regularized dual-energy alternating minimization

(DE-AM) algorithm [41, 42], which alternately minimizes a decomposed surrogate function

in each iteration (see Appendix B). The surrogate function is an upper bound of the origi-

nal objective function and is much easier to minimize than the original objective function.

Therefore, decreasing the value of the surrogate function ensures a decrease in the original

objective function.

The original DE-AM algorithm, however, suffers from slow convergence [77]. In this chapter,

we derive a modified DE-AM algorithm, which can dramatically speed up the convergence

and is able to achieve convergence speed that is comparable to a monochromatic single-

energy AM algorithm. Most acceleration strategies for the monochromatic single-energy

AM algorithm, such as the subset methods [78–82] and the momentum methods [82,83], can

be applied to the modified DE-AM algorithm for further acceleration.
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Note that all the algorithms evaluated in this chapter are unregularized and are implemented

without ordered subsets. Unless otherwise indicated, all synthetic data are generated without

noise and background events.

4.1 Constraint on BVM component weights

Within the photon energy range of CT scans (i.e., from 20 keV to 150 keV), the photon linear

attenuation coefficient function of typical tissue samples are nonnegative and nonincreasing

with respect to energy E. To achieve meaningful reconstruction results, the objective func-

tion (3.16) should be minimized under the constraint

(c1, c2) ∈ Dc =
{

(c1, c2) : c1(x)µ1(E) + c2(x)µ2(E) ≥ 0 ∀ (x,E) : Emin ≤ E ≤ Emax;

c1(x)µ1(Ea) + c2(x)µ2(Ea) ≥ c1(x)µ1(Eb) + c2(x)µ2(Eb) ∀ (x,Ea, Eb) :

Emin ≤ Ea < Eb ≤ Emax

}
.

To simplify the constraint in the reconstruction algorithm, we use a projected basis vector-

pair

[
µ̃1 µ̃2

]
=

[
µ1 µ2

] 1 −ξa

−ξb 1


ᵀ

(4.1)

instead of the actual linear attenuation function of the two physical basis materials,

[
µ1 µ2

]
,

in the reconstruction algorithm. The corresponding projected component weights are then
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given by

[
c̃1 c̃2

]
=

[
c1 c2

] 1 −ξa

−ξb 1


−1

, (4.2)

which satisfies

[
µ̃1 µ̃2

]c̃ᵀ
1

c̃ᵀ
2

 =

[
µ1 µ2

]cᵀ
1

cᵀ
2

 . (4.3)

Let

ξa = min

(
min

Emin≤E≤Emax

µ1(E)

µ2(E)
, min
Emin≤Ea<Eb≤Emax

µ1(Ea)− µ1(Eb)

µ2(Ea)− µ2(Eb)

)
,

ξb = min

(
min

Emin≤E≤Emax

µ2(E)

µ1(E)
, min
Emin≤Ea<Eb≤Emax

µ2(Ea)− µ2(Eb)

µ1(Ea)− µ1(Eb)

)
.

(4.4)

Then the constraint (c1, c2) ∈ Dc is equivalent to nonnegativity constraints over c̃1 and c̃2,

i.e.,

(c̃1, c̃2) ∈ D̃c =
{

(c̃1, c̃2) : ∀x, c̃1(x) ≥ 0, c̃2(x) ≥ 0
}
. (4.5)

For simplicity of notation, we denote the projected basis vector-pair (µ̃1, µ̃2) and the corre-

sponding component weights (c̃1, c̃2) as (µ1,µ2) and (c1, c2), respectively, in the remainder

of this chapter and in Appendix B, which discuss the reconstruction algorithms. While in

the other parts of this dissertation, we only discuss the component weights for the original

basis vector-pair that is the linear attenuation functions of basis materials.
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4.2 Factors limiting convergence speed of the DE-AM

algorithm

As stated in Appendix B, the generalized AM algorithm can be applied to different categories

of forward data models. In order to reveal the impact of forward model complexity on

the algorithm convergence, we choose three representative categories of models: (1) the

monochromatic single-energy model

Q(y) = I0(y) exp
(
−
∑
x

h(y|x)µ̄0ci(x)
)
, (4.6)

(2) the polychromatic single-energy model

Q(y) = I0(y)
∑
E

Ψ(y, E) exp
(
−
∑
x

h(y|x)µ0(E)c0(x)
)
, (4.7)

and (3) the polychromatic dual-energy model

Qj(y) = I0,j(y)
∑
E

Ψj(y, E) exp
(
−
∑
x

h(y|x)
2∑
i=1

µi(E)ci(x)
)
, j ∈ {L,H} . (4.8)

The corresponding AM algorithms are referred to as the M-SE-AM, P-SE-AM, and DE-AM

algorithms, respectively. For the two single-energy reconstructions, µ0 was chosen to be the

attenuation function of water and µ̄0 was chosen to be the effective attenuation coefficient

of water given the source spectrum.

The three categories of AM algorithms are compared using the same virtual mini CT scanner

geometry (see Section 4.5). Figure 4.1 compares the convergence of the above three AM

algorithms for modeling error-free and noise-free sinograms. The result suggests that for the

same geometry and similar objects, the DE-AM algorithm requires more than 1000 times the
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Figure 4.1: Objective function values as a function of iteration numbers for different cate-
gories of AM algorithms.

number of iterations to achieve a convergence level comparable to the M-SE-AM algorithm.

The P-SE-AM algorithm is about 3 to 5 times slower than the M-SE-AM algorithm.1

In each iteration of the AM algorithm (see Appendix B), the objective function g
(
c
)

is

“lifted” twice to get the alternative function that is much easier to minimize. The first lifting

results in the surrogate function gsur
(
c : ĉ(k)

)
and the second one results in the decoupled

surrogate function g̃sur
(
c : ĉ(k)

)
, which has a closed-form solution.

1In the polychromatic implementations (i.e., the P-SE-AM and DE-AM algorithms), the minimum photon
energy Emin was set to 20 keV. A lower minimum energy will further slow down the two algorithms due to
a larger auxiliary variable z(i, x) given by (B.19).
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To illustrate the explanation of the slow convergence of the DE-AM algorithm more clearly,

we rewrite the decoupling process (B.20) into two sub-steps as follows

gsur(c : ĉ(k))

=
∑
j

∑
y

∑
E

[
p̂

(k)
j (y, E)

∑
i

µi(E)
∑
x

h(y|x)ci(x)

+ q̂
(k)
j (y, E) exp

(
−
∑
i

µi(E)
∑
x

h(y|x)
(
ci(x)− ĉ(k)

i (x)
))]

+ C

≤
∑
j

∑
y

∑
E

∑
i

[
p̂

(k)
j (y, E)µi(E)

∑
x

h(y|x)ci(x)

+ q̂
(k)
j (y, E)

µi(E)

z1(i)
exp

(
− z1(i)

∑
x

h(y|x)
(
ci(x)− ĉ(k)

i (x)
))]

+ C

≤
∑
j

∑
y

∑
E

∑
i

∑
x

[
p̂

(k)
j (y, E)µi(E)h(y|x)ci(x)

+ q̂
(k)
j (y, E)

µi(E)

z1(i)

h(y|x)

z2(x)
exp

(
− z1(i)z2(x)

(
ci(x)− ĉ(k)

i (x)
))]

+ C

= g̃sur
(
c : ĉ(k)

)
,

(4.9)

where the auxiliary variables z1(i) and z2(x) satisfy

z1(i) ≥ 0, ∀i;

z2(x) ≥ 0, ∀x;∑
i

µi(E)

z1(i)
≤ 1, ∀E;

∑
x

h(y|x)

z2(x)
≤ 1, ∀y.

(4.10)

The first decoupling is referred to as the basis decoupling and the second one is referred to

as the spatial decoupling.
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It can be seen that the constraint over z2(x) is the same for all categories of AM algorithms

whenever the scanner geometry and image size are the same. Thus, we assume that the

impacts from spatial decoupling are comparable for all categories of AM algorithms. Several

acceleration strategies of the M-SE-AM algorithm have been previously discussed [82]. In

this dissertation, we only focus on the impact of basis decoupling and surrogate lifting and

derive acceleration methods that are related to these two factors.

• Basis decoupling:

In the original DE-AM algorithm, the update of each iteration,
(
ĉ(k+1) − ĉ(k)

)
, is

proportional to the reciprocal of the auxiliary variable z(i, x) = z1(i)z2(x). Therefore,

smaller auxiliary variables lead to larger updates in each iteration.

On the other hand, in order to ensure that the surrogate function upper-bounds the

original objective function, the auxiliary variables are constrained by

ω(y, E) ≡
∑
x

∑
i

µi(E)h(y|x)

z(i, x)
≤ 1. (4.11)

We can use ω(y, E) as an indicator for the relaxation level of the decoupling. A small

ω(y, E) suggests that there exists a large gap between the un-decoupled and decoupled

functions and with high possibility the step size is underestimated.

Figure 4.2 shows the distribution of ω(y, E) for a typical conventional CT scanner

geometry (i.e., the Philips Brilliance Big Bore scanner) for the three categories of AM

algorithms. For the M-SE-AM algorithm, a large fraction of ω(y, E)’s are close to 1.

For the P-SE-AM and DE-AM algorithms, however, the majority of ω(y, E)’s are less

than 0.25 and 0.1, respectively. Empirically, a simple scale-down of z(i, x) by 4-fold

and 10-fold in the P-SE-AM and DE-AM algorithms, respectively, would still guarantee

monotonic convergence of the algorithms for various scanner geometries.
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Figure 4.2: The distribution of ω(y, E) for (a) M-SE-AM algorithm, (b) P-SE-AM algorithm,
and (c) DE-AM algorithm.

In addition, Chen [77] has shown that there exists a high correlation between the two

BVM component weights, which is much higher than the spatial correlation. Therefore,

the objective function is highly ridged in the basis domain. Because the two BVM

component weights are updated separately in the original DE-AM algorithm, such

high correlation in the basis domain also contributes to the slow convergence.

• Surrogate lifting:

The surrogate function retains the same gradient as the original objective function but

has a different curvature. For the single-energy case, the surrogate function is a good

approximation of the original function. However, for the dual-energy case, there exist

large gaps between the surrogate function and the highly ridged objective function

in some directions. Therefore, even if the optimal point of the surrogate function is

achieved in each iteration, it may not be a good update for the original objective

function.
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Figure 4.3: (a) Contour lines of g(c) and the trajectory of c(k) for the DE-AM algorithm
and (b) the objective function vs. iteration numbers corresponding to the trajectories. The
arrows in (a) indicate the initial points.

To visualize the two issues above, we consider a reduced dual-energy problem that has only

one ray path (i.e., source-detector pair) and one image region that needs to be estimated.

The reduced forward model is as follows,

Qj(c) = I0,j

∑
E

Ψj(E) exp

(
−h0

2∑
i=1

µi(E)ci

)
, j ∈ {L,H} (4.12)

in which h0 is set to 100 mm and the ground truth is set to c∗1 = 1.05 and c∗2 = 0.20, which

are approximately the BVM component weights of water.2

Figure 4.3 shows the iterations of the DE-AM algorithm for two different initial points. The

contour lines of the objective function indicate that it has a hill-valley shape in the basis

domain. The estimates drop down the hill within about 40−50 iterations and then go slowly

along the valley, which requires thousands of iterations to get close to the optimal point.

2Note that these ci values correspond to the projected BVM component weights as described in Section 4.1.
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To further separate the impact of basis decoupling and surrogate lifting, we then analyze

two modified problems from the same initial points.

Figure 4.4 shows the DE-AM iterations that minimize the centered surrogate function gsur
(
c :

c∗
)
, which is expanded at the ground truth c∗ and has the same optimal point as the original

objective function g(c). This modification has no surrogate lifting but is affected by the basis

decoupling. The centered surrogate function also has a hill-valley shape (not shown in the

figure). The trajectories of the estimates have similar behavior as in Figure 4.3 (i.e., dropping

down the hill and going slowly along the valley of the centered surrogate function) but it

requires about 10-fold fewer iterations to achieve convergence.

Figure 4.5 shows the iterations for finding the exact optimal point of the surrogate function

gsur
(
c : ĉ(k)

)
in each iteration. Thus the convergence is only affected by the surrogate lifting.

We can see that the minimization of the alternative surrogate function is very ineffective

along the valley of the original objective function. It takes only one step to reach the valley

but about 100 iterations to crawl along the valley. Furthermore, Figure 4.6 shows the ratio of

the surrogate function gsur
(
c : c∗

)
to the original objective function g(c). It can be seen that

although the surrogate function is quite close to the objective function in some directions,

its value can be over 10 times larger than the objective function along the valley direction.

Thus, the surrogate function is a very poor approximation of the objective function in the

valley direction, which contributes to the small step-sizes shown in Figure 4.5.

In the following, we derive algorithm modifications to deal with the two factors causing

slow convergence. In Section 4.3, we propose a modified DE-AM algorithm that attempts

to eliminate the impact of basis decoupling. Then in Section 4.4, we propose an algorithm

based on an approximate function instead of the surrogate function that is able to achieve

faster convergence beyond the limitation of the surrogate function.
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Figure 4.4: (a) Contour lines of g(c) and the trajectory of c(k) for minimizing the centered
surrogate function gsur

(
c : c∗

)
and (b) the objective function vs. iteration numbers . The

arrows in (a) indicate the initial points.
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Figure 4.5: (a) Contour lines of g(c) and the trajectory of c(k) for finding the optimal point
of the surrogate function gsur

(
c : ĉ(k)

)
in each iteration and (b) the objective function vs.

iteration numbers. The arrows in (a) indicate the initial points.
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, for the reduced problem.
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4.3 Acceleration with Newton’s update in the basis do-

main

In order to eliminate slow convergence due to the basis decoupling, we apply a spatial-only

decoupling to the surrogate function as follows,

gsur
(
c : ĉ(k)

)
=
∑
j

∑
y

∑
E

[
p̂

(k)
j (y, E)

(∑
x

∑
i

h(y|x)µi(E)ci(x)

)

+ q̂
(k)
j (y, E) exp

(
−
∑
x

h(y|x)
∑
i

µi(E)
(
ci(x)− ĉ(k)

i (x)
))]

+ C

=
∑
j

∑
y

∑
E

[
p̂

(k)
j (y, E)

∑
x

h(y|x)
∑
i

µi(E)ci(x)

+ q̂
(k)
j (y, E) exp

(
−
∑
x

h(y|x)

z0(x, y)
z0(x, y)

∑
i

µi(E)
(
ci(x)− ĉ(k)

i (x)
))]

+ C

≤
∑
x

∑
j

∑
y

∑
E

[
p̂

(k)
j (y, E)h(y|x)

∑
i

µi(E)ci(x)

+ q̂
(k)
j (y, E)

h(y|x)

z0(x, y)
exp

(
− z0(x, y)

∑
i

µi(E)
(
ci(x)− ĉ(k)

i (x)
))]

+ C

= ğsur
(
c : ĉ(k)

)
,

(4.13)

where the auxiliary variable

z0(x, y) =
∑
x′

h(y|x′) (4.14)

satisfies the constraint of the convex decomposition lemma (Lemma B.2).

Therefore, ğsur

(
c : ĉ(k)

)
is decoupled in the spatial domain (i.e., is separable for each image

location x) but is not decoupled in the energy/basis domain. The decoupled surrogate
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function can be rewritten as a decoupled sum

ğsur
(
c : ĉ(k)

)
=
∑
x

ğsur
x

(
c(x) : ĉ(k)(x)

)
, (4.15)

where c(x) =

[
c1(x) c2(x)

]ᵀ
.

To derive an algorithm, Newton’s method is used to minimize ğsur(c : ĉ(k)) over c for each

image location x in parallel.

Let

∇ğsur
x (x) =

∇1(x)

∇2(x)

 (4.16)

and

∇2ğsur
x (x) =

∇2
1,1(x) ∇2

1,2(x)

∇2
2,1(x) ∇2

2,2(x)

 (4.17)

be the gradient and Hessian matrix of ğsur
x

(
c(x) : ĉ(k)(x)

)
at the current estimate ĉ(k)(x),

which are given by

∇i(x) =
∂

∂ci(x)
ğsur
x

(
c(x) : ĉ(k)(x)

)∣∣∣∣
c(x)=ĉ(k)(x)

=
∑
y

h(y|x)

[∑
j

∑
E

p̂
(k)
j (y, E)µi(E)−

∑
j

∑
E

q̂
(k)
j (y, E)µi(E)

] (4.18)
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and

∇2
i,i′(x) =

∂2

∂ci(x)∂ci′(x)
ğsur
x

(
c(x) : ĉ(k)(x)

)∣∣∣∣
c(x)=ĉ(k)(x)

=
∑
y

h(y|x)z0(x, y)

[∑
j

∑
E

q̂
(k)
j (y, E)µi(E)µi′(E)

]
,

(4.19)

respectively. Because µ1 and µ2 are linearly independent, the Hessian matrix is positive

definite.

Let ∆c(k) be the Newton direction of the decoupled surrogate function ğsur
(
c : ĉ(k)

)
at

c = ĉ(k), i.e., for each image pixel x,

∆c(k)(x) =

∆c
(k)
1 (x)

∆c
(k)
2 (x)

 = −
[
∇2ğsur

x (x)
]−1[∇ğsur

x (x)
]
. (4.20)

Note that the decoupled surrogate function ğsur
(
c : ĉ(k)

)
has the same gradient as the original

objective function g(c) at c = ĉ(k), i.e.,

∇g
(
ĉ(k)
)

= ∇gsur
(
ĉ(k) : ĉ(k)

)
= ∇ğsur

(
ĉ(k) : ĉ(k)

)
. (4.21)

The directional derivative of g(c) along ∆c(k)

[
∇g
(
ĉ(k)
)]ᵀ

∆c(k) =
[
∇ğsur

(
ĉ(k) : ĉ(k)

)]ᵀ
∆c(k)

= −
∑
x

[
∇ğsur

x (x)
]ᵀ[∇2ğsur

x (x)
]−1[∇ğsur

x (x)
]
< 0

(4.22)
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if c(k) is not the optimal point of g(c). Therefore, ∆c(k) is ensured to be a descent direction

of the original objective function g(c). The backtracking line search method [84] is used to

select the step size in each iteration.

The iterative reconstruction algorithm is show below.

Algorithm 1: Accelerated DE-AM algorithm #1

Pre-compute z0(x, y) =
∑

x′ h (y|x′)

Initialize c
(0)
i (x)

Select α ∈ (0, 1)

for k = 0, 1, 2, . . . do

foreach y, j, E do

q̂
(k)
j (y, E) = I0,j(y)Ψj(y, E) exp

(
−
∑

x h(y|x)
∑

i µi(E)c
(k)
i (x)

)
p̂

(k)
j (y, E) = dj(y)

q̂
(k)
j (y,E)∑

E′ q̂
(k)
j (y,E′)

end

foreach x do

Compute ∇ğsur
x (x) and ∇2ğsur

x (x) by (4.18) and (4.19)

Compute the Newton direction ∆c(k)(x) = −
[
∇2ğsur

x (x)
]−1[∇ğsur

x (x)
]

end

Choose the maximum step size t(k) = t ∈ (0, 1] that satisfies

g
(
ĉ(k) + t∆c(k)

)
≤ g
(
ĉ(k)
)

+ αt
[
∇g
(
ĉ(k)
)]ᵀ

∆c(k)

Update ĉ(k+1) = ĉ(k) + t(k)∆c(k)

end

4.4 Acceleration with approximation function

One difficulty with directly minimizing the original objective function g(c) is the log-sum-exp

term in the objective function. The DE-AM algorithm alternately minimizes the surrogate
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function gsur
(
c : ĉ(k)

)
, which upper-bounds the original objective function and approximates

it in the nearby region of the current estimates ĉ. However, in Section 4.2 we showed that the

surrogate function is a very poor approximation of the objective function in some directions

and leads to slow convergence.

In Jensen’s inequality (B.14), if the distribution of the random variables is concentrated, the

decomposition gap E
[
f(τ )

]
− f
(
E[τ ]

)
is relatively small and it is possible to use f

(
E[τ ]

)
as

an approximation of E
[
f(τ )

]
.

Using this as motivation, we compute an approximation of the data model in the nearby

region of the current estimate ĉ(k) as

Qj(y) =
∑
E

I0,j(y)Ψj(y, E) exp
(
−
∑
x

h(y|x)
∑
i

µi(E)ci(x)
)

= Q̂
(k)
j (y)

∑
E

q̂
(k)
j (y, E)

Q̂
(k)
j (y)

exp

(
−
∑
x

h(y|x)
∑
i

µi(E)
(
ci(x)− ĉ(k)

i (x)
))

≈ Q̂
(k)
j (y) exp

(
−
∑
E

q̂
(k)
j (y, E)

Q̂
(k)
j (y)

∑
x

h(y|x)
∑
i

µi(E)
(
ci(x)− ĉ(k)

i (x)
))

= Q̃j

(
y : ĉ(k)

)
.

(4.23)

Letting

ξ̂
(k)
i,j (y) =

∑
E

q̂
(k)
j (y, E)

Q̂
(k)
j (y)

µi(E) , (4.24)

then (4.23) can be rewritten as

Q̃j

(
y : ĉ(k)

)
= Q̂

(k)
j (y) exp

(
−
∑
x

h(y|x)
∑
i

ξ̂
(k)
i,j (y)

(
ci(x)− ĉ(k)

i (x)
))

. (4.25)
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An approximation of the objective function is then generated as the I-divergence between

the measurement dj(y) and the approximate data model Q̃j

(
y : ĉ(k)

)
instead of the exact

data model Qj(y) as

gapx
(
c : ĉ(k)

)
= dI

(
d ‖ Q̃ : ĉ(k)

)
=
∑
j

∑
y

[
− dj(y) ln

(
Q̂

(k)
j (y) exp

(
−
∑
x

h(y|x)
∑
i

ξ̂
(k)
i,j (y)

(
ci(x)− ĉ(k)

i (x)
)))

+ Q̂
(k)
j (y) exp

(
−
∑
x

h(y|x)
∑
i

ξ̂
(k)
i,j (y)

(
ci(x)− ĉ(k)

i (x)
))]

=
∑
j

∑
y

[
− dj(y) ln

(
Q̂

(k)
j (y)

)
+ dj(y)

(∑
x

h(y|x)
∑
i

ξ̂
(k)
i,j (y)

(
ci(x)− ĉ(k)

i (x)
))

+ Q̂
(k)
j (y) exp

(
−
∑
x

h(y|x)
∑
i

ξ̂
(k)
i,j (y)

(
ci(x)− ĉ(k)

i (x)
))]

.

(4.26)

It should be noted that the approximation function gapx
(
c : ĉ(k)

)
is not guaranteed to be an

upper bound of the original objective function g(c). However, it is very close to the original

objective function in the nearby region of ĉ(k) and is a much better approximation than the

surrogate function (as shown in Figure 4.7 compared to Figure 4.6).

Empirically, minimization of gapx
(
c : ĉ(k)

)
would result in a decrease of g(c) whenever ĉ(k)

is not too far away from the optimal point of g(c).3 Figure 4.8 compares the values of the

objective function at the optimal points of the surrogate function and the approximation

function compared to the initial objective function, i.e.,

log10

g
(

argmin
c

gtp
(
c : c(0)

))
g
(
c(0)
)

 , tp ∈ {sur, apx} . (4.27)
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Figure 4.7: The common logarithm (base 10) of the ratio of the centered approximation
function relative to the original objective function, log10

(
gapx

(
c : c∗

)/
g(c)

)
, for the reduced

problem.

The result suggests that, in a relatively large region near the optimal point, the minimization

of the approximation function decreases the value of the original objective function by a

factor greater than 10 times of that achieved by minimizing the surrogate function, while

both functions have relatively poor performance along the valley direction of the objective

function.

Therefore, at each iteration k, we minimize the approximation function gapx(c : ĉ(k)) in-

stead of the surrogate function gsur(c : ĉ(k)), which would empirically achieve much faster

convergence than the minimization of the surrogate function.

3In practice, FBP reconstructed images, which are generally not far away from the optimal images, are
used as the initial estimate.
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Figure 4.8: The common logarithm (base 10) of the ratio of the objective function g(c) at the
optimal point of (a) the surrogate function gsur

(
c : c(0)

)
and (b) the approximation function

gapx
(
c : c(0)

)
relative to the that at the initial point c(0) as a function of the initial point.
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Similar to Section 4.3, the approximate function is further decoupled as

gapx
(
c : ĉ(k)

)
=
∑
j

∑
y

∑
x

[
dj(y)

∑
i

ξ
(k)
i,j (y)ci(x)

+ Q̂
(k)
j (y) exp

(
−
∑
x

h(y|x)

z0(x, y)
z0(x, y)

∑
i

ξ̂
(k)
i,j (y)

(
ci(x)− ĉ(k)

i (x)
))]

+ C

≤
∑
x

∑
j

∑
y

[
dj(y)h(y|x)

∑
i

ξ̂
(k)
i,j (y)ci(x)

+ Q̂
(k)
j (y)

h(y|x)

z0(x, y)
exp

(
− z0(x, y)

∑
i

ξ̂
(k)
i,j (y)

(
ci(x)− ĉ(k)

i (x)
))]

+ C

= ğapx
(
c : ĉ(k)

)
=
∑
x

ğapx
x

(
c(x) : ĉ(k)(x)

)
.

(4.28)

The gradient ∇ğapx
x (x) =

∇1(x)

∇2(x)

 and the Hessian matrix ∇2ğapx
x (x) =

∇2
1,1(x) ∇2

1,2(x)

∇2
2,1(x) ∇2

2,2(x)


are given by

∇i(x) =
∂

∂ci(x)
ğapx
x

(
c(x) : ĉ(k)(x)

)∣∣∣∣
c(x)=ĉ(k)(x)

=
∑
y

h(y|x)
∑
j

[
dj(y)ξ̂

(k)
i,j (y)− Q̂(k)

j (y)ξ̂
(k)
i,j (y)

]
=
∑
y

h(y|x)

[∑
j

∑
E

p̂
(k)
j (y, E)µi(E)−

∑
j

∑
E

q̂
(k)
j (y, E)µi(E)

] (4.29)
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and

∇2
i,i′(x) =

∂2

∂ci(x)∂ci′(x)
ğapx
x

(
c(x) : ĉ(k)(x)

)∣∣∣∣
c(x)=ĉ(k)(x)

=
∑
y

h(y|x)z0(x, y)
∑
j

Q̂
(k)
j (y)ξ̂

(k)
i,j (y)ξ̂

(k)
i′,j(y)

=
∑
y

h(y|x)z0(x, y)
∑
j

[∑
E q̂

(k)
j (y, E)µi(E)

] [∑
E q̂

(k)
j (y, E)µi′(E)

]
Q̂

(k)
j (y)

,

(4.30)

respectively.

The decoupled approximate function ğapx
x (c : ĉ(k)) also has the same gradient as the original

objective function g
(
c
)

at c = ĉ(k), i.e.,

∇g
(
ĉ(k)
)

= ∇gapx
(
ĉ(k) : ĉ(k)

)
= ∇ğapx

(
ĉ(k) : ĉ(k)

)
. (4.31)

Therefore, the Newton direction of the decoupled approximate function ğapx
x (c : ĉ(k)) is a

descent direction of the original objective function g
(
c
)
.
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The iterative algorithm is shown below.

Algorithm 2: Accelerated DE-AM algorithm #2

Pre-compute z0(x, y) =
∑

x′ h (y|x′)

Initialize c
(0)
i (x)

Select α ∈ (0, 1)

for k = 0, 1, 2, . . . do

foreach y, j, E do

q̂
(k)
j (y, E) = I0,j(y)Ψj(y, E) exp

(
−
∑

x h(y|x)
∑

i µi(E)c
(k)
i (x)

)
p̂

(k)
j (y, E) = dj(y)

q̂
(k)
j (y,E)∑

E′ q̂
(k)
j (y,E′)

end

foreach x do

Compute ∇ğapx
x (x) and ∇2ğapx

x (x) by (4.29) and (4.30)

Compute the Newton direction ∆c(k)(x) = −[∇2ğapx
x (x)]

−1
[∇ğapx

x (x)]

end

Choose the maximum step size t(k) = t ∈ (0, 1] that satisfies

g
(
ĉ(k) + t∆c(k)

)
≤ g
(
ĉ(k)
)

+ αt
[
∇g
(
ĉ(k)
)]ᵀ

∆c(k)

Update ĉ(k+1) = ĉ(k) + t(k)∆c(k)

end

4.5 Simulation result

A virtual mini CT geometry with 116 detectors and 600 source views per rotation was used

to evaluate these algorithms. The image size was 80× 80 with pixel size 1 mm× 1 mm. The

ground truth of the component images is shown in Figure 4.9. The four inserts were selected

to imitate muscle, cortical bone, adipose tissue and femur bone (clockwise from the top),
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Figure 4.9: True component images of the virtual phantom used for the mini CT scanner
geometry: (a) c0(x), (b) c1(x), and (c) c2(x).

while the background was set as water. The tube potentials were set to 90/140 kVp and

140 kVp for the dual-energy case and the single-energy case, respectively.

A noise-free case and a Poisson noise case were considered for dual-energy joint reconstruc-

tion. The sinogram noise level was chosen for tube exposures of 250 mAs and 75 mAs for

90 kVp and 140 kVp, respectively. All simulated data were generated with no modeling error

(i.e., the synthetic sinograms were generated from true ci images). The sinogram-domain

decomposition results via FBP reconstruction were used as the initial images for all algo-

rithms.

Figure 4.10 shows the objective functions of the original DE-AM algorithm and the two

accelerated modifications as a function of iteration numbers. Figure 4.11 and Figure 4.12

show the corresponding RMS errors of the two component images for selected numbers of

iterations. Note that the RMS errors are not monotonically decreasing because they are not

the goal of the minimization problem. The result suggests that the three algorithms follow

difference trajectories of the estimates from the initial point to the optimal point.
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After enough iterations, all three algorithms converge to the same solution. The original

DE-AM algorithm, however, requires more than 105 iteration to converge for this mini CT

geometry. The accelerated DE-AM algorithm #1 dramatically accelerates the convergence

compared to the original DE-AM algorithm. The accelerated DE-AM algorithm #2 achieves

the best performance among the three algorithms, which requires approximately only 1/100

and 1/5 of iterations, compared with the original DE-AM algorithm and the accelerated

DE-AM algorithm #1, respectively, to achieve the same level of convergence.

Comparing Figure 4.10 with Figure 4.1, it can be seen that the accelerated DE-AM algorithm

#2 accounts for the factors discussed in Section 4.2 that limit the speed of the original DE-

AM algorithm and achieves convergence almost as fast as the M-SE-AM algorithm.
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Figure 4.10: Objective function values as a function of iteration numbers for different recon-
structions of (a) noise-free sinograms and (b) sinograms with Poisson noise.
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Figure 4.11: The RMS errors of (a) c1(x) and (b) c2(x) as a function of iteration numbers
for different reconstructions of noise-free sinograms.
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Figure 4.12: The RMS errors of (a) c1(x) and (b) c2(x) as a function of iteration numbers
for different reconstructions of sinograms with Poisson noise.
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Chapter 5

Performance of the JSIR-BVM

method: compared to image- and

sinogram-domain decomposition

methods

In this chapter, the performance of the BVM-JSIR method is evaluated and compared with

image- and sinogram-domain decomposition methods in a simulation framework. Three

different DECT-SPR models including the BVM are implemented to fairly compare different

reconstruction and decomposition techniques.1

5.1 Virtual CT scanner setup

The proprietary geometry of the Philips Brilliance Big Bore scanner (Philips Medical Sys-

tems, Cleveland, OH), which was the one used for our experiments (see Chapter 6), was

1Part of this chapter is based on Zhang et al. [85].
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Figure 5.1: The normalized central-axis energy-fluence spectra of the DECT scans used in
theoretical computations and simulations.

used to generate the synthetic sinograms of the virtual phantom and patient. The sinograms

were generated with 816 detectors in the detector row and 1320 source views per rotation,

which corresponds to the ultra-fast mode of the Philips Brilliance Big Bore CT scanner. All

generated synthetic sinograms were scatter-free.

The DECT source spectra, Φ0,j(E), were computed by the Birch-Marshall model [86] for

90 kVp and 140 kVp tube potentials with 12 mm of equivalent Al filtration and were math-

ematically hardened using the known geometry and density of the TeflonTM bow-tie filter

giving rise to the detector-dependent spectra, Φj(y, E). The detector-response function,

D(E), was generated for the detectors of the Philips Brilliance Big Bore scanner. The sim-

ulated spectra were chosen to imitate the typical spectra of the actual scanner. Figure 5.1

shows the simulated energy-fluence spectra at the central axis of the virtual scanner, which

were also used to evaluate the theoretical accuracy of different DECT-SPR models.
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For all calibration-based methods, The Gammex RMI 467 tissue characterization phantom

(Gammex, Middleton, WI), which contains 13 tissue substitutes, was used for the calibra-

tion process. The exact densities and elemental compositions of calibration materials were

assumed to be known in the calibration process.

5.2 Photon linear attenuation coefficient modeling ac-

curacy

The BVM component weights of the reference human tissues were computed via (3.26) and

then used to reproduce the energy-dependent photon linear attenuation coefficients via (3.1).

Figure 5.2 shows the prediction error within the typical energy range of CT x-ray sources

for 12 selected reference tissues that are representative of the reference tissue set. As the

result shows, the BVM is able to reproduce the linear attenuation coefficients of typical

tissues within 1.5% for photon energy higher than 25 keV. For lower energies, the modeling

error is larger. Because there are almost no incident photons of energy below 30 keV, it is

fundamentally difficult to accurately predict the linear attenuation coefficients for such low

energies from the DECT measurements.

It should be noted that among all the reference human tissues listed in Appendix A, the

thyroid is difficult to model for most CT-based techinques [11, 15, 73]. This is because the

thyroid contains 0.1% of iodine, whose atomic number (Z = 53) is much higher than the

atomic number of typical elements found in tissues (2 ≤ Z ≤ 20). The iodine presents

a K-edge at 33.2 keV,2 which is within the energy range of CT scans. As a result, it is

impossible to accurately approximate its linear attenuation coefficient using basis materials

that are chosen for typical tissue composition. Figure 5.3 shows the attenuation coefficient
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Figure 5.2: Theoretical BVM modeling errors for photon linear attenuation coefficients of the
reference human tissues between 25 keV and 140 keV, shown as the residual errors relative
to the reference values.
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Figure 5.3: (a) Photon linear attenuation coefficient of thyroid and (b) the corresponding
BVM modeling error between 20 keV and 140 keV.

curve of the reference thyroid tissue and the corresponding modeling error derived by the

BVM. The residual modeling error is similar to that of other tissue compositions above the

K-edge energy, while the modeling error exceeds 10% for energies below the K-edge energy.

The thyroid tissue is also found to be the worst case in the BVM-based technique for proton

stopping power estimation. Therefore, it may require additional correction for CT scans that

contain the thyroid region.

5.3 Proton SPR modeling accuracy

The accuracy with which the BVM, as well as the Hünemohr and Bourque ρe-Zeff models,

reproduce proton stopping powers was tested by comparing the theoretical model predictions

against the computed ground truth for the tabulated mass densities and element composi-

tions of the reference human tissues.

2The probability of photoelectric absorption significantly increases when the photon energy is slightly
higher than the K-shell binding energy of the material due to the ejection of the K-shell electron.
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For the BVM, the electron densities and mean excitation energies were predicted from the

BVM component weights via (3.2) and (3.5).

To evaluate the Hünemohr model and the Bourque model, the theoretical CT numbers were

calculated by taking the average over the known x-ray spectrum as

HUj = 1000

( ∫
E

Ψj(E)µ(E) dE∫
E

Ψj(E)µw(E) dE
− 1

)
, (5.1)

where µ(E) and µw(E) are the linear attenuation coefficients of the scanned material and

water, respectively. The calibration parameters were determined by using the calculated

CT numbers of the Gammex RMI 467 phantom materials and were then applied to the

calculated CT numbers of the reference human tissues.

Figures 5.4–5.6 show the residual prediction error for each of the three two-parameter DECT-

SPR models for reference humans tissues listed in Appendix A.3 The minimum, maximum,

absolute-mean, and RMS of the modeling errors are summarized in Table 5.1.

All three models show comparable modeling accuracy under idealized conditions with no CT

image-formation uncertainties. The electron-density estimation errors are within 0.2% for

all tissues with the exception of the thyroid tissue. The predicted SPRs of all tissue types

are within 0.5% of the reference values and the RMS errors are less than 0.2%. The result is

consistent with the literature, which has shown that most currently available DECT models

support relatively low intrinsic SPR prediction errors with 0.16% to 0.41% RMS errors for

general human tissues [13, 52]. However, it should be noted that such high accuracy may

not be achievable due to the aforementioned image-formation uncertainties and other related

uncertainties.

3The deflated lung is not shown because it has the same composition as the inflated lung, and therefore
has the same theoretical modeling error.
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Figure 5.4: Theoretical modeling errors of the BVM for (a) electron density, (b) mean
excitation energy, and (c) proton SPR at 200 MeV of the reference human tissues, shown as
the residual errors relative to the reference values.
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Figure 5.5: Theoretical modeling errors of the Hünemohr model for (a) electron density, (b)
mean excitation energy, and (c) proton SPR at 200 MeV of the reference human tissues,
shown as the residual errors relative to the reference values.
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Figure 5.6: Theoretical modeling errors of the Bourque model for (a) electron density, (b)
mean excitation energy, and (c) proton SPR at 200 MeV of the reference human tissues,
shown as the residual errors relative to the reference values.

Table 5.1: Statistics of the theoretical residual errors predicted using different DECT-SPR
models.

Model
Relative estimation error (%)

min max abs-mean RMS

ρe

BVM −0.01 0.59 0.08 0.10
Hünemohr −0.14 0.48 0.03 0.07
Bourque −0.17 0.57 0.08 0.10

Zeff

BVM – – – –
Hünemohr −0.14 0.48 0.03 0.07
Bourque −0.10 0.02 0.01 0.02

I
BVM −2.79 7.25 0.92 1.33
Hünemohr −2.78 5.81 0.95 1.30
Bourque −2.17 3.59 0.82 1.06

Sp

BVM −0.24 0.44 0.14 0.16
Hünemohr −0.34 0.39 0.12 0.16
Bourque −0.37 0.28 0.12 0.16
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The overall SPR modeling error can be divided into two parts: one is that of the reproduction

of the material properties that can be directly determined from DECT data, i.e., the photon

cross-section modeling parameters (ρe, Zeff) or (ρe, rc); and the other one is the I-value pa-

rameterization as an empirical function of Zeff or rc. It has been shown that one major SPR

modeling uncertainty that is inherent to all DECT approaches is the uncertainty associated

with the I-value parameterization [21], due to the lack of a one-to-one correspondence be-

tween photon cross-section modeling parameters and the I-value. Therefore, inappropriate

I-value parameterization due to poor prior knowledge of the scanned object may introduce

substaintial errors into the SPR prediction result of all DECT approaches [87].

It is believed that the elemental compositions of tissue may vary dramatically between dif-

ferent individuals and also for the same individual at different ages or in different health

conditions. For examples, the fraction of lipid in adipose tissues gradually increases from

approximately 35% for newborns to approximately 70% for adults on average [88]. The mar-

row tissue is nearly 100% red marrow in newborns, while the fraction of red marrow decreases

to a range of 25% to 70% of total marrows for elderly males and especially approaches near

zero in the medullary cavities of the long bones of adults [89]. Certain diseases may also sig-

nificantly change the tissue compositions. For example, cirrhosis of the liver due to chronic

alcoholism may cause the mass fraction of lipid in the liver to increase from approximately

5% to 19% [88,90].

To more comprehensively assess the inherent modeling uncertainties in the application for

unknown patient tissue characterization, we followed the analysis by Han [52] that investi-

gated the sensitivity of SPR estimates to the variations of human tissue composition. We

varied the fraction of major components for three categories of human tissues: adipose-like

tissue, muscle-like tissue, and trabecular bone. For adipose- and muscle-like tissues, the frac-

tion of lipid, protein, and water were varied, while the compositions of ash and carbohydrate
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Table 5.2: Variations in the component composition of soft and bony tissue.

Adipose-like
tissue

Muscle-like
tissue

Trabecular
bone

Protein† 0− 10 10− 25
Lipid† 30− 88 0− 12
Water† 1.7− 69.7 61.1− 88.1
Carbohydrate† 1
Ash† 0.3 0.9
Osseous† 20− 70
Red marrow§ 0− 100
† represented by the percentage mass fraction.
§ represented by the percentage mass fraction in total marrow.

were kept constant. For trabecular bone tissues, the fraction of osseous tissue (modeled

as cortical bone) and red/yellow marrows were varied. The range of component fractions

shown in Table 5.2 was chosen to accommodate the large tissue variation reported in the

literature [88,91–93] in order to cover the extreme cases that may occur in practice.

Figures 5.7–5.9 show the SPR modeling error that is due only to the I-value parameterization

error, which is computed as

e = 100% ·

(
k2(200 MeV)− ln

(
Ipar

/
eV
)

k2(200 MeV)− ln
(
Iref

/
eV
) − 1

)
(5.2)

for the three investigated models, where the constant k2(200 MeV) is given in Section 1.2.4,

Iref is the reference I-value computed via the Bragg additivity rule, and Ipar is the I-value

derived from the empirical parameterization function of Zeff or rc. In other words, the

electron densities are assumed to have no error.

All three models achieve good modeling errors over a wide range of tissue compositions,

while the Hünemohr model and the Bourque model may have some relatively large modeling

errors in some cases. The absolute SPR error of the BVM due to I-value parameterization is
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Figure 5.7: The percentage SPR error propagated from I-value parameterization error of (a)
BVM, (b) Hünemohr model, and (c) Bourque model for muscle-like tissues.
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Figure 5.8: The percentage SPR error propagated from I-value parameterization error of (a)
BVM, (b) Hünemohr model, and (c) Bourque model for adipose-like tissues.
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Figure 5.9: The percentage SPR error propagated from I-value parameterization error of (a)
BVM, (b) Hünemohr model, and (c) Bourque model for trabecular bones.
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Figure 5.10: The percentage relative SPR error of of (a) muscle-like tissues, (b) adipose-
like tissues, and (c) trabecluar bones predicted by BVM as a function of the composition
variation.

less than 0.10%, 0.20%, and 0.45% for muscle-like, adipose-like, and trabecular bone tissues,

respectively, over the investigated ranges of tissue composition variations in Table 5.2. The

Hünemohr model achieves less than 0.11%, 0.11%, and 0.77% absolute errors for muscle-like,

adipose-like, and trabecular bone tissues, respectively. The Bourque model achieves less

than 0.11%, 0.35%, and 1.25% absolute errors for muscle-like, adipose-like, and trabecular

bone tissues, respectively. Among all the three models, BVM is most robust to the tissue

composition variations. The Bourque model is slightly more sensitive to tissue composition

variations of adipose-like tissues. Both the Hünemohr model and Bourque model present

approximately 1% errors for the trabecular bone with relatively low fraction of osseous tissue.

Figure 5.10 shows the overall SPR modeling error (i.e., contributions from both I-value pa-

rameterization error and ρe modeling error) of the BVM. The absolute modeling error is less

than 0.13%, 0.21%, 0.45% for adipose-like, muscle-like, and trabecular bone. Moreover, com-

parison between Figure 5.10 and Figures 5.7–5.9 suggests that the I-value parameterization

error dominates the overall SPR modeling error for the BVM. The result demonstrates that

the BVM maintains good theoretical modeling accuracy over a wide range of component

variations of typical human tissues.
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5.4 Simulation of virtual phantoms

A series of synthetic sinograms were generated for virtual test phantoms containing 34 se-

lected reference human tissues to evaluate the accuracy of different SPR mapping approaches

and models in the presence of image noise and other uncertainties inherent in the CT recon-

struction process. The geometry of the virtual phantoms was designed based on the Gam-

mex RMI 467 phantom, which consists of a cylindrical solid water background of 330 mm

diameter with 17 cylindrical inserts of 30 mm diameter (as shown in Figure 5.11). Two

different phantom realizations were required to include all 34 selected tissue inserts. The

standard Gammex tissue substitutes were used as the calibration materials for the Hünemohr

method and the Bourque method in both the image- and sinogram-domain decomposition

approaches, while a Gammex-like phantom with polystyrene and 23% CaCl2 solution inserts

was used for calibrating the BVM-based image-domain decomposition method. Table 5.3

lists the insert arrangements for these test and calibration phantoms. The ground truth

images of the virtual phantoms are shown in Figure 5.12.

Noiseless sinograms that represent the ideal case of infinite source intensity were generated

via (3.13). The sinogram measurement noise was modeled as Poisson random noise, while

the effect of scattered radiation and spectrum alteration was neglected in this simulation

analysis.

The simulated sinograms were processed using three distinct decomposition approaches:

the image-domain, sinogram-domain, and JSIR approaches. Three DECT-SPR models were

applied to the reconstruction results in both the image- and sinogram-domain decomposition

approaches, while only the BVM was applied in the JSIR approach. Table 5.4 summarizes

the seven methods that are investigated in this simulation study.
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Figure 5.11: Illustration of the virtual phantom geometry.

Figure 5.12: Ground truth monochromatic CT images (60 keV) of virtual phantoms: (a)
tissue #1, (b) tissue #2, (c) Gammex, and (d) BVM-bases.
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Table 5.3: Arrangement of inserts in the test and calibration phantoms. The insert locations
inside the phantoms are shown in Figure 5.11.

No. Tissue #1 Tissue #2 Gammex BVM-bases
1 adipose 2 lymph CT solid water
2 blood, whole brain CT solid water
3 breasts cell nucleus CB2 50% CaCO3 polystyrene
4 eye lens small intestine AP6 adipose
5 heart, blood filled kidney 2 SR2 brain CaCl2 solution
6 liver 2 lung, deflated SB3 cortical bone
7 lung, inflated muscle skeletal 2 BR12 breast polystyrene
8 ovary pancreas water
9 cartilage red marrow CB2 30% CaCO3 CaCl2 solution
10 yellow marrow skin CT solid water CaCl2 solution
11 thyroid femur IB3 inner bone
12 cranium mandible CT solid water polystyrene
13 humerus, total bone sacrum (M) LN300 lung
14 spleen testis CT solid water CaCl2 solution
15 rib, 10th rib, 2nd/6th LN450 lung
16 cortical bone spongiosa B200 mineral bone polystyrene
17 vertebral, C4 ex. vertebral, D6/L3 ex. LV1 liver

Table 5.4: Summary of investigated methods.

Decomposition approach DECT-SPR model Calibration
imag-BVM image-domain BVM Yes
imag-HM image-domain Hünemohr model Yes
imag-BM image-domain Bourque model Yes
sino-BVM sinogram-domain BVM No
sino-HM sinogram-domain Hünemohr model Yes
sino-BM sinogram-domain Bourque model Yes
JSIR-BVM joint SIR BVM No
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All image reconstructions were processed with a pixel size of 1 mm× 1 mm and a slice thick-

ness of 3 mm. For the image- and sinogram-domain decomposition methods, the images were

reconstructed with a ramp filter modified by a 1.5 mm Gaussian kernel [94]. A water-based

beam hardening correction [29, 30] was applied to each synthetic polychromatic sinogram

before the single-energy reconstructions in the image-domain methods. For the JSIR-BVM

method, the regularization parameters were set to δ = 0.01 and λ = 6. These reconstruc-

tion parameters were selected to achieve similar resolutions from different reconstruction

algorithms for typical soft tissue contrast (75 HU) in the 330 mm diameter phantom [94].

To quantify the accuracy of the predicted proton SPR image of these virtual test phantoms,

relative SPR estimation error is evaluated for all pixels within a region of interest (ROI) of

24 mm diameter inside each homogeneous tissue insert and then the average estimation error

is calculated for each tissue’s ROI. The mean error over all ROI pixels, the RMS-of-mean

error (i.e., RMS of the mean errors of each tissue), and RMS error over all ROI pixels are

then computed as

emean =
1

K

K∑
k=1

ēk =
1

KN

K∑
k=1

∑
x∈Rk

ex , (5.3)
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] 1
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1
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∑
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ex
2

] 1
2

, (5.5)

where N is the number of pixels in each ROI, K is the number of tissue types, Rk is the

ROI of the k-th tissue, ex is the relative SPR estimation error at image pixel x, and ēk is the

mean estimation error for the k-th tissue. The mean error shows the overall bias of the SPR

estimates, while the RMS-of-mean error measures the variation of the systematic estimation
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error for different tissues. The RMS error reflects the pixel-to-pixel variation in the SPR

image.

5.4.1 Impact of reconstructed image intensity uncertainties

To address the performance of the investigated methods under different dose levels, the

source intensities in the CT data model were varied in order to adjust the sinogram noise

level, while keeping the relative source intensities of the low- and high-energy scans equal.

The reference source intensity level (i.e., 100%) was set to 300 mAs for 90 kVp and 90 mAs

for 140 kVp, respectively, which were chosen to reproduce the total volume CT dose index

(CTDIvol) typical of a single-energy diagnostic adult abdomen scan on the actual scanner. A

low-noise case and a high-noise case were simulated with 200% and 50% source intensities,

respectively. Additionally, noiseless sinograms were also included in the analysis to represent

the ideal case of infinite source intensity.

Figure 5.13 shows the reconstructed CT images from the 100% source-intensity-level syn-

thetic sinograms for the BVM-based image-domain, sinogram-domain, and JSIR methods.

The image noise levels associated with each method for different levels of source intensity

are shown in Figure 5.14. All CT images were computed at 60 keV, which is approximately

the mean of the effective energies of low- and high-energy scans. The image noise level is

calculated as one standard deviation (1σ) of HU values for pixels within selected regions

inside the solid water background.

The DEAM-reconstructed images in the JSIR-BVM method are 4-fold less noisy than the

FBP reconstructions in either the image- or sinogram-domain decomposition methods while
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Figure 5.13: Monochromatic CT images (60 keV) of the tissue #1 phantom reconstructed by
the BVM-based (a) image-domain, (b) sinogram-domain, and (c) JSIR methods from 100%
source-intensity sinograms. (d) shows the profiles across a bone insert (rib, 10th) indicated
by the magenta lines in images.
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Figure 5.14: Comparison of the image noise level of 60 keV monochromatic CT images from
different reconstruction approaches.
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Figure 5.15: SPR images (200 MeV) of the tissue #1 phantom estimated by the BVM-based
(a) image-domain, (b) sinogram-domain, and (c) JSIR methods from 100% source-intensity
sinograms. (d) shows the profiles across a bone insert (rib, 10th) indicated by the magenta
lines in images.

preserving image sharpness at the high-contrast insert boundaries (see Figure 5.13c). Com-

pared to the image-domain decomposition method, both the sinogram-domain decomposi-

tion and the JSIR method are able to reduce the streak artifacts between bony inserts in

the images. The JSIR method more effectively suppresses such artifacts and achieves more

accurate reconstructions. Both CT image noise and residual beam-hardening artifacts are

propagated into the converted SPR images as shown in Figure 5.15. The quality of the SPR

images derived from the FBP-based image- and sinogram-domain decomposition methods

are compromised by the high image noise.
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Figure 5.16: Relative SPR estimation errors for reference tissues from each investigated
method as a function of sinogram source intensity levels: (a) mean error for all pixels within
ROIs, which equals the mean of average estimation errors for different tissues, (b) RMS of
average estimation errors for different tissues (RMS-of-mean error), and (c) RMS errors for
all pixels within ROIs.

In Figure 5.13, the systematic difference between the results derived from different methods

is much smaller than the insert-background contrast and is therefore difficult to visualize

on the images. To more quantitatively compare these methods, Figure 5.16 summarizes the

statistics for estimation accuracy of all seven investigated methods under different source-

intensity levels. Figure 5.17 and Figure 5.18 compare the mean estimation error within

each tissue’s ROI for all methods applied to the noiseless and 100% source-intensity-level

sinograms, respectively.

In the noiseless case, all methods achieve small mean errors, i.e., below 0.15% for all methods.

For the sinogram-domain methods and the JSIR method, the RMS-of-mean errors are less
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Figure 5.17: Mean of relative SPR estimation errors for each reference tissue sample predicted
by each investigated method from noisless sinograms.
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Figure 5.18: Mean of relative SPR estimation errors for each reference tissue sample predicted
by each investigated method from 100% source-intensity sinograms. Outliers not included
in the display window are indicated by the arrows.
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than 0.25% and are comparable to the intrinsic modeling error. The mean SPR estimation

error for each individual tissue samples is within 0.5% (except for the thyroid tissue). On

the other hand, the RMS-of-mean errors of the image-domain decomposition methods are

approximately twice the modeling error. The higher estimation errors of the image-domain

decomposition methods in the noiseless case can be explained by the systematic image in-

tensity errors including the HU nonuniformity due to the impact of residual beam-hardening

effects. The BVM-based image-domain decomposition method clearly shows the impact of

residual beam-hardening effects, i.e., the SPRs of bony tissues with higher Zeff tend to be

more underestimated.4

The performances of most of the methods deteriorate when noise is present in the sinograms.

The RMS-of-mean errors generally increase with the noise level. Among the seven methods,

the JSIR-BVM method has the best performance, which achieves mean and RMS-of-mean

errors of less than 0.05% and 0.31%, respectively, for all noise levels. These errors are close

to the intrinsic BVM modeling accuracy and almost do not change with the noise level.

As shown in Figure 5.18, under the 100% source intensity level the JSIR-BVM achieved

mean errors of less than 1% for all tissue samples. On the other hand, some of the other

methods exhibit relatively large mean errors for individual tissue samples, especially for the

low-density deflated lung tissue.

For the same source intensity level, the RMS errors of the JSIR-BVM method are less than

1/6 of those of all the other six methods, which indicates that the JSIR-BVM method

has much smaller pixel-to-pixel SPR variations inside homogeneous regions compared to the

other two approaches. Thus the JSIR-BVM method achieves high mean estimation accuracy

4For bony tissues, the reference SPR, which is shown as the x-axis in Figure 5.17 and Figure 5.18, is
generally positively correlated with Zeff .
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under different noise levels as well as dramatically reduces the statistical uncertainty of SPR

estimates.

For all six image- and sinogram-domain decomposition methods, the pixel-wise variations of

SPR estimates are approximately twice as large as the corresponding 60 keV monochromatic

CT image noise. The BVM and Hünemohr model-based methods exhibit similar noise prop-

agation from the sinogram to the SPR image. The Bourque model-based methods, however,

results in slightly larger RMS error than the other methods for the same noise level. Besides

introducing random uncertainty into SPR images, sinogram noise also lead to systematic

errors for most image- and sinogram-domain decomposition methods. Generally, the RMS-

of-mean errors monotonically increase with the sinogram noise level, which indicates the

mean SPR estimation error for each individual tissue samples increases when the sinogram

noise gets higher. The mean errors exhibited by both Bourque and Hünemohr model-based

methods also increase with the increased noise level, while those of BVM-based methods re-

main relatively low for all noise levels. The sinogram-domain decomposition methods based

on BVM and Hünemohr’s model generally achieve lower mean and RMS-of-mean errors than

the corresponding image-domain decomposition methods. Bourque’s model-based sinogram-

domain decomposition method, however, is the least robust of all the methods. Among

the six image- and sinogram-domain decomposition methods, the sinogram-domain BVM

method is the most robust in the presence of noise.

5.4.2 Impact of test object geometry

The impact of object size variations on the estimation accuracy was evaluated by scaling

the 330 mm diameter test phantoms to 250 mm diameter (i.e., about 25% smaller than the

calibration phantom) with proportionally scaled insert sizes and positions, while calibration
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processes were based on 330 mm calibration phantoms. Only noiseless sinograms were used

in these comparisons in order to avoid the impact of random uncertainties.

Figure 5.19 shows the differences of the mean SPR estimates on the scaled 250 mm phantom

compared to those on the 330 mm test phantoms for all tissue inserts. As indicated by

the results, both the JSIR-BVM method and the sinogram-domain decomposition methods,

which jointly reconstruct spectrum-invariant component images, are almost unaffected by

the size change. The mean SPR differences between the test phantoms of the two different

sizes are less than 0.15% for the same tissue (except for the low-density deflated lung tissue

in the JSIR-BVM method).

All image-domain decomposition methods, however, are sensitive to phantom size due to the

dependence of residual beam hardening effects on scan object size, leading to size-dependent

CT numbers in the separately reconstructed images. This effect leads to overestimation of

SPRs of 1− 4% for bony tissues in the 250 mm phantom compared to the 330 mm phantom.

Bony tissues with higher Zeff tend to exhibit a larger difference in SPR estimates due to the

sensitivity to beam hardening effects. SPR estimates of low-Zeff tissues, such as the adipose

tissue, are reduced up to about 0.3% on the smaller test phantom. This pattern of errors is

nearly identical for all three image-domain methods based on different DECT-SPR models.

This result suggests that the HU difference caused by the residual beam hardening effects

in the single-energy reconstructed images is the dominant contribution to the systematic

variation of SPR estimates.

The image-domain BVM method was then chosen to further analyze the impact of object size

and location. A series of test phantoms with cortical bone inserts at different positions (i.e.,
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Figure 5.19: Percentage difference of mean SPR estimate for each reference tissue sample
due to the test phantom size being changed from 330 mm to 250 mm for each investigated
method.
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Figure 5.20: The average CT numbers of the cortical bone sample on the (a) 90 kVp and (b)
140 kVp images reconstructed via FBP, and (c) the corresponding relative SPR estimation
error from the image-domain BVM method as a function of the distance between the center
of the insert and that of the phantom. The dashed lines indicate the expected CT numbers
for the bone insert located at the phantom center.

different distances from the phantom center) were generated, where each phantom contains

only one cortical bone insert.5

As Figure 5.20 shows, both the reconstructed CT image intensities and predicted SPR values

of cortical bone tissue depend on both of the phantom size and the radial distance from the

phantom center. In the two separately reconstructed images, the CT numbers of the smaller

phantom are generally higher than those on the larger phantom. On the same phantom, the

CT numbers also increase with the distance from the phantom center.

The trend of the CT number variation can be explained as follows. Conventional beam hard-

ening corrections, including the water-based correction we implemented and many calibration-

based correction methods of commercial scanners, assume that the patient is composed of

variable-density but fixed atomic composition. However, when patient tissue composition

5The cortical bone has the highest Zeff among all reference tissues and is therefore the most sensitive to
geometry change.

103



deviates significantly from water, water-based BH correction would result in residual HU

dependency on size and location, or more precisely the local equivalent spectrum. The

equivalent spectrum for a pixel at the center of a cylindrical phantom is generally harder

than that for a pixel at the borders due to the larger filtration from other parts of the scanned

object. Thus, the HU values of high-Z materials at the borders tend to be higher than those

of the same material at the center. Similarly, for objects of different sizes, the larger objects

generally have more filtration and therefore have lower CT numbers.

On the same phantom, the difference of CT numbers between the central and the peripheral

inserts can be as much as 40 HU (i.e., around 1.5%) in both low- and high-energy CT images,

which leads to more than a 2% increase in the predicted SPR. The difference between the

SPR estimates of the central insert on the large phantom and that of the peripheral inserts

on the small phantom can be as much as 6%. Similar results are also obtained for the other

two image-domain decomposition methods. On the other hand, the position-dependent HU

variations in the sinogram-domain decomposition and the JSIR methods are less than 5 HU.

Thus the two approaches are able to achieve uniform SPR estimates with less than 0.1%

variation across the whole phantom.

Moreover, besides the test object variability, the location-dependent CT number variations of

the calibration phantoms can also introduce noticeable uncertainties into the SPR estimates

of the test objects for the calibration-based image-domain methods. Figure 5.21 shows that

a rearrangement of the Gammex inserts in the calibration phantom, in which the inner ring

and outer ring of inserts were exchanged, alters soft and bony tissue SPR estimates by as

much as 0.36% and 0.77%, respectively, for the image-domain Bourque method.
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Figure 5.21: Comparison of average SPR estimation error for each tissue sample of the
image-domain Bourque method calibrated by the Gammex phantom with two different insert
arrangements.

5.5 Simulation of a virtual patient

The seven methods in Table 5.4 were then evaluated using the ICRP adult female phan-

tom [95].6 Three slices in the head, thorax, and pelvis regions were selected for simulation

and twelve ROIs were selected within homogeneous areas (as shown in Figure 5.22). The

ROIs contain ten soft tissue regions, including one lung tissue region with relatively low

density, and two spongiosa regions. Table 5.5 shows the reference radiological properties of

the tissues in selected ROIs.

Synthetic sinograms were generated for the 100% source intensity level, which was set to

300 mAs for 90 kVp and 90 mAs for 140 kVp, and then processed by the seven investigated

methods. Other specifications of data generation and image reconstruction are the same as

6The anatomical model of the ICRP adult female phantom is based on a 43-year-old individual with height
of 167 cm and weight of 59 kg. The tissue composition of the adult female phantom was given by ICRP and
is not exactly the same as the reference human tissues listed in Appendix A. The detailed properties for all
tissue types can be found in [95].
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Figure 5.22: True SPR images (200 MeV) of the virtual patient with selected ROIs: (a) head,
(b) thorax, and (c) pelvis.
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Table 5.5: Properties of ICRP tissue types within selected ROIs.

Tissue Type
Index of ROI

ρe/ρe,w I (eV) Sp/Sp,whead thorax pelvis
Cranium, spongiosa a1 1.209 81.4 1.198
Femora, upper half, spongiosa c1 1.038 69.3 1.048
Blood b1 1.050 75.2 1.050
Muscle tissue b2 c2 1.040 74.6 1.041
Brain a2 1.045 73.9 1.047
Large intestine c3 1.033 74.5 1.035
Uterus c4 1.023 71.5 1.030
Breast (mammary gland) b3 1.021 66.9 1.036
Adipose tissue a3 c5 0.951 64.9 0.968
Lung tissue (compressed lungs) b4 0.382 75.1 0.382

those in Section 5.4, except that the reconstruction parameter λ of the JSIR method was set

to 6 for the thorax and pelvis slices and 20 for the head slice due to the volume difference.

Figure 5.23 shows the reconstructed SPR images for the three BVM-based methods. As the

results show, the images reconstructed by the image- and sinogram-domain methods are of

comparable quality and contain streak artifacts along the directions in which the path length

through the patient body is relatively long. On the other hand, the JSIR-BVM method

dramatically suppresses noise and artifacts as well as presents better spatial resolution than

the other two methods, especially for the bone-soft tissue boundaries.

Figure 5.24 and Figure 5.25 compare the mean and standard deviation of the estimation er-

rors, respectively, within each ROI. The JSIR-BVM method outperforms the other methods,

which achieves RMS-of-mean errors of 0.15%, 0.90%, and 0.20% for electron density, mean

excitation energy, and proton SPR, respectively. The maximum absolute-mean errors for

each of the ROIs are 0.27%, 1.92%, and 0.37% for electron density, mean excitation energy,

and proton SPR, respectively. The JSIR-BVM method also achieves much smaller variation

within homogeneous regions, while the other six methods present comparable pixel-to-pixel

variations.
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Figure 5.23: The SPR images of the three slices estimated by the BVM based (a) image-
domain, (b) sinogram-domain, and (c) JSIR methods. The display window is the same as
that in Figure 5.22.

Among the other six methods, the BVM- and Hünemohr model-based sinogram-domain

methods achieve better performance than the others, whose RMS-of-mean errors are 0.27%

and 0.50%, respectively, for proton SPR estimates. The performances of both Bourque

model-based methods get worse when the patient volume increases (i.e., in the pelvis slice).

All three image-domain methods overestimate the SPR of spongiosa tissue in the head slice

(i.e., ROI “a1”) by 2% to 3%, which is due to the size-difference between the calibration

phantom (330 mm in diameter) and the scanned patient site. The impact of size-dependence

in the image-domain methods is not very clearly shown for other ROIs because all selected
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Figure 5.24: Mean estimation error of (a) electron density, (b) mean excitation energy, and
(c) proton SPR for selected ROIs.
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Figure 5.25: Standard deviation (1σ) of estimation errors of (a) electron density, (b) mean
excitation energy, and (c) proton SPR for selected ROIs.
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ROIs are soft tissues or spongiosa tissues with relative low Zeff , which are not as sensitive

to geometry difference as dense bones.

Figure 5.26−5.28 show the distribution of WEPL errors of each patient slice. The WEPLs

were computed via Radon transform of the reconstructed SPR images for 100 parallel beams

with width of 1 mm for every degree. Table 5.6 summarizes the RMS of WEPL estimation

errors for each method and Table 5.7 shows the percentage of predicted WEPLs whose

absolute errors exceed 1% of the reference value.

The JSIR-BVM method has the smallest bias and variance of the resultant distribution of

WEPL errors among these methods. Most of the estimated WEPLs are close to 0% for all

three slices, while only less than 1.5% of the estimates have more than 1% error.

For the head slice, the estimates of all image-domain method are approximately system-

atically biased by 0.9% to 1.3%, while those of the BVM- and Hünemohr model-based

sinogram-domain methods are slightly biased by −0.4% to −0.6%. The systematic bias is

much smaller for the thorax and pelvis slices, which is because the size difference between

the patient and the calibration phantom is smaller for these two slices.

The sinogram-domain Bourque method becomes the worst for the large patient volume (i.e.,

the pelvis slice), which may be due to the sensitivity of this method to image noise, which

was shown in Section 5.4.

5.6 Discussion

The performance of DECT-based SPR estimation methods is affected by two main sources

of uncertainties. The first class is the SPR modeling error, which refers to the estimation
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Figure 5.26: The distribution of errors of WEPLs predicted by each investigated method for
the head slice.
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Figure 5.27: The distribution of errors of WEPLs predicted by each investigated method for
the thorax slice.
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Figure 5.28: The distribution of errors of WEPLs predicted by each investigated method for
the pelvis slice.
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Table 5.6: The RMS of WEPL estimation errors for each investigated method.

head thorax pelvis
imag-BVM 1.12% 0.55% 0.45%
imag-HM 1.37% 0.54% 0.53%
imag-BM 1.47% 0.57% 0.45%
sino-BVM 0.78% 0.45% 0.51%
sino-HM 0.64% 0.43% 0.45%
sino-BM 0.52% 0.81% 2.27%
JSIR-BVM 0.40% 0.16% 0.21%

Table 5.7: Fraction of absolute WEPL estimation errors exceeding 1% of the reference value.

head thorax pelvis
imag-BVM 45.90% 6.62% 4.52%
imag-HM 59.83% 6.85% 6.87%
imag-BM 69.92% 8.26% 3.90%
sino-BVM 19.82% 3.63% 5.80%
sino-HM 11.68% 2.95% 3.97%
sino-BM 5.90% 21.80% 95.45%
JSIR-BVM 1.49% 0.01% 0.10%

errors of radiological quantities (i.e., electron density, mean excitation energy, and SPR)

derived from the idealized DECT measurements. The second class is the image formation

uncertainty introduced during CT sinogram acquisition and image reconstruction processes.

Both previous studies [13, 52] and our analysis show that multiple available DECT-SPR

models are able to support relatively low intrinsic SPR modeling errors for the reference

human tissues. However, we also demonstrate that such high accuracy is not achievable in

clinical settings due to the aforementioned image formation uncertainties, including image

noise propagated from the measurement and systematic errors due to incomplete correction

for scattering and beam hardening. It should be noted that the impact of random noise

on method performance is model specific. In our analysis, the Bourque model shows more

sensitivity to the noise level than the BVM and the Hünemohr model. This is possibly
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due to the high degree of nonlinearity of the Bourque model, which involves three 5th-order

polynomial fittings using only 13 distinct tissue substitutes in the calibration process.

As the results demonstrate, the widely-accepted image-domain decomposition approach is

vulnerable to image formation uncertainties. Though it is assumed that the scanning condi-

tions of the calibration phantoms can be identically reproduced for the test phantoms and

patients, the anatomy, size, ROI location, and composition of patients may differ from those

of the calibration phantoms. Our study shows that even simple dissimilarities between the

calibration phantom and test object, such as size scaling or ROI position changes, yield CT

number variations that cannot be fully accounted for by the calibration process, and thus

introduce systematic errors into SPR estimates. Since these image-domain decomposition

methods rely on two separately reconstructed CT images, residual beam hardening effects

introduce image intensity uncertainties as well as other image artifacts, leading to systematic

SPR estimation error much larger than the intrinsic modeling error, thereby limiting the ben-

efit of DECT in mitigating proton range uncertainty. Similar issues caused by uncorrected

systematic variations have also been discussed in previous studies [26, 96]. On the other

hand, the sinogram-domain methods and the JSIR-BVM method are able to circumvent the

influence of unaccounted beam hardening effects with prior knowledge of the spectra.

Although sinogram-domain decomposition methods suffer less from the systematic uncertain-

ties introduced by geometry changes, they may also show degraded estimation performance

in the presence of random noise in the measurement data. Likewise, image-domain decompo-

sition methods are also vulnerable to noise in the images. Due to the DECT decomposition

process being ill-conditioned, the random sinogram noise is amplified in both image- and

sinogram-domain decomposition methods. Moreover, Bär et al. [13] have suggested that

the impact of random noise cannot be canceled via averaging and may introduce systematic

errors into the proton range computation. Our current study confirms that mean errors and
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RMS-of-mean errors of most image- or sinogram-domain decomposition methods increase

with elevated sinogram noise. The WEPLs predicted by image- or sinogram-domain de-

composition methods have a much wider distribution around the truth than the JSIR-BVM

methods and may be systematically biased.

Our JSIR-BVM method accounts for both systematic bias correction and random noise sup-

pression, and thus shows a robust response to the inherent uncertainties of the acquired

sinogram data. Unlike step-wise methods that perform the two-parameter estimation on

reconstructed HU images, the JSIR-BVM method directly solves the intertwined problem

of the material characterization and image reconstruction. The underlying statistical re-

construction algorithm along with a well-established CT data model dramatically reduces

both systematic uncertainties and random noise [42, 94, 97]. The results demonstrate that

the JSIR-BVM method supports accurate SPR mapping and WEPL prediction for various

object geometries and outperforms other investigated methods in terms of robustness to

random uncertainties.

The performance of the JSIR-BVM method relies on an accurate CT forward model, i.e.,

the ability to compute the expected mean of CT measurements given a known scan object.

One important component of forward-modeling uncertainties is that of the x-ray spectra. In

these simulation analyses, the spectrum-related errors are ignored and thus have no impact

on the reported results. In other words, the spectra are assumed to be known exactly by

both the sinogram-based and joint reconstruction techniques. Meanwhile, a perfect beam-

hardening correction function, which fully corrects the nonlinearity of water attenuation

under the spectra used for sinogram generation, is assumed for image-based techniques.7 This

simulation study also neglects the effect of scattered radiation for all methods. Additionally,

7It should be noted that the image-domain methods also require some sort of prior knowledge about the
spectrum, which is implicitly embedded in the beam-hardening correction.
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in our simulation of these calibration-based methods, the physical density and elemental

compositions of calibration materials were assumed to be known exactly. In the clinical

setting, uncertainties of the actual composition and density of calibration materials may

also impact the performance of calibration-based methods. The more realistic performance

achievable in practices will be addressed in the experimental study.
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Chapter 6

Experimental implementation of the

JSIR-BVM method

In this chapter, we experimentally assess the performance of the JSIR-BVM method using

the raw DECT data acquired on a commercial CT scanner. The image-domain Hünemohr-

Saito (HS) method was applied to the scanner-reconstructed CT images for comparison.

6.1 Experiment setup

Two customized test phantoms of different sizes (shown in Figure 6.1) were used in our

experiments to assess the performance of the proposed JSIR approach. The head-sized

phantom has a cylindrical acrylic shell with a diameter of 215 mm and is filled with water.

A separate acrylic body-ring, which is elliptically shaped with a major axis of 350 mm and a

minor axis of 260 mm, was placed around the cylindrical phantom in order to imitate typical

pelvic volume. The first phantom setup is referred to as the head phantom and the second

one is referred to as the body phantom.
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Figure 6.1: Image of the test phantom used in the experiment (front view). The phantom
consists of a water-filled cylinder with a removable elliptical body-ring. The photo was taken
by Dong Han at Virginia Commonwealth University.

Table 6.1: Properties of investigated phantom materials.

Material Composition†
ρ

(g/mL)
ρe/ρe,w

§ Zeff
I

(eV)
Sp/Sp,w

§

soft

Water H2O 0.998 1.000 7.46 75.3 1.000
Acetone C3H6O 0.788 0.784 6.34 66.1 0.796
Ethanol C2H5OH 0.789 0.804 6.41 63.1 0.820
n-Propanol C3H7OH 0.803 0.821 6.22 61.5 0.841
n-Butanol C4H9OH 0.807 0.826 6.09 60.5 0.848

bony

CaCl-1 CaCl2 7.20% 1.052 1.045 9.34 80.0 1.037
CaCl-2 CaCl2 18.24% 1.153 1.130 11.22 87.8 1.110
CaCl-3 CaCl2 23.07% 1.202 1.171 11.88 91.6 1.144
KP-1 K2HPO4 9.37% 1.075 1.066 9.02 80.2 1.058
KP-2 K2HPO4 17.17% 1.149 1.130 9.98 84.5 1.114
KP-3 K2HPO4 29.26% 1.273 1.235 11.19 91.9 1.206
KP-4 K2HPO4 45.21% 1.467 1.397 12.48 103.0 1.346

† The concentrations of aqueous solutions are represented by the mass fractions of the
salt.
§ Pure water at 20 ◦C is used as reference.
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Table 6.2: Scan specifications used in the experiment.

Tube potential 90 kVp 140 kVp
Exposure 600 mAs 200 mAs
CTDIvol 28.5 mGy 31.6 mGy

Collimation 0.75 mm× 4

Twelve liquid samples with known compositions were used as the phantom materials in the

experiment (see Table 6.1).1 These samples were contained in plastic bottles with a diameter

of 31 mm and then mounted to an out-of-field plate inside the phantom.2 The phantom

materials are divided into two groups: water and organic compounds are considered as soft

tissue surrogates, while CaCl2 and K2HPO4 aqueous solutions are considered as bony tissue

surrogates.

The test phantoms and the Gammex RMI 467 calibration phantom (Gammex, Middleton,

WI) were scanned on a Philips Brilliance Big Bore CT scanner (Philips Medical Systems,

Cleveland, OH) using an axial pelvis protocol at two different tube potentials (shown in

Table 6.2). The narrowest collimation setting that is available on the scanner was used in

order to minimize the contamination of scattered radiation.

To implement the image-based HS method, the images were reconstructed by the scanner’s

standard reconstruction process with a pixel size of 0.9776 mm × 0.9776 mm and a slice

thickness of 3 mm.

To implement the JSIR reconstruction, the raw sinograms were exported from the scanner

and were pre-processed by the tool provided by the vendor without the beam hardening and

bow-tie filter corrections. An air-scan was done under the same scan conditions for each

1The compositions of aqueous solutions were determined by measuring the mass of the solutes and the
volume of the water solvent. The densities were determined by measuring the mass of 50 mL of the sam-
ples. The measurement uncertainties of the densities and compositions introduce 0.1% uncertainty into the
computed ground-truth SPRs.

2A fluorinated ethylene propylene (FEP) bottle was used for the acetone sample. High-density polyethy-
lene (HDPE) bottles were used for all other samples.
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tube potential to provide the reference unattenuated in-air profile. The determination of the

scanner-specific parameters required in the JSIR reconstruction is discussed in Section 6.2.

The pixel size and slice thickness of the reconstructed images were set to be the same as

the scanner’s reconstruction. The regularization parameters in the DEAM algorithm were

set to δ = 0.01, and λ = 15 and 4 for head and body phantoms, respectively, as a trade-off

between noise and resolution that ensures the spatial resolution is slightly higher than the

scanner’s reconstruction for typical soft tissue contrast (75 HU) [94].

The estimates of the electron density, mean excitation energy, and proton SPR of each test

sample were compared to the reference ground-truth values listed in Table 6.1, which are

computed from the known compositions and densities. The estimation errors were evaluated

for a region of interest (ROI) of 24 mm diameter within each homogeneous test sample. The

mean and standard deviation of the estimation errors were computed for each test sample.

Additionally, water equivalent path length (WEPL) was computed from the reconstructed

SPR images for parallel beams from all directions. The differences between the WEPLs

predicted from the two methods were compared.

6.2 Forward modeling of the experimental data

Implementing the proposed JSIR-BVM method on a conventional CT scanner requires the

following scanner-specific parameters in the CT forward model (3.13):

• The system matrix of the CT scanner, h(y|x), which was computed as the effective

length of the intersection between the beam path y and image pixel x for the known

scanner geometry.
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• The reference unattenuated in-air profiles, I0,j(y, E), which were experimentally deter-

mined via an air-scan done under the same scan conditions of the test object.

• The detector-dependent energy-fluence spectra, Ψj(y, E), which were experimentally

determined via the equivalent spectrum method as described in the following para-

graphs.

• An estimate of the background events presented in the measured data, γj(y), which

were assumed to be zero for the narrow collimation used in our experiment.

Determination of the equivalent energy-fluence spectra

The knowledge of the energy-fluence spectrum, which is the down-stream source spectrum

weighted by the detector response function, is required for our JSIR-BVM method. A direct

measurement of the source spectrum can be done via spectroscopy using energy-resolving

detectors [98–100]. However, direct measurement is not trivial and requires a strict measure-

ment procedure. An alternative way, which is used in our experimental implementation, is

to estimate the equivalent spectrum via measuring the narrow-beam transmission of metal

filters [74, 101,102].

As stated in Section 1.2.1, the energy-fluence spectrum is mathematically modeled as

Ψ(y, E) =
Φ0(E)D(E) exp (−lF(y)µF(E))∫

E′ Φ0(E ′)D(E ′) exp (−lF(y)µF(E ′)) dE ′
, (6.1)

where Φ0(E) is the incident x-ray spectrum of the source tube, D(E) is the response function

of the detector, lF(y) is the width of the bow-tie filter for beam path y, and µF(E) is the

attenuation coefficient of the bow-tie filter material.
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The incident x-ray spectrum is mathematically modeled via the semi-empirical Birch-Marshall

model [86], which parameterizes the spectrum by the peak energy Emax and equivalent alu-

minum filtration leq as

Φ0(E) = ΦBM (E |Emax, leq ) = ΦBM (E |Emax, 0) exp
(
− leq µAl(E)

)
, (6.2)

where µAl(E) is the photon linear attenuation coefficient of pure aluminum.3 Ay et al. [103]

have shown that the Birch-Marshall model was able to predict the 140 kVp spectrum for a

tungsten target to within 1.1% of the direct measurements.

The detector-response function of the energy-integrating detector is modeled as

D(E) = E
(

1− exp
(
− lD µD(E)

))
, (6.3)

where µD(E) and lD are the linear attenuation coefficients and thickness of the scintillator

in the detector module, respectively.

For each of the two tube potentials used in the experiment, transmission profiles of narrow

beams penetrating through stacks of high-purity aluminum (Al) and copper (Cu) filters

with varying thickness were measured on the central axis of the scanner. A collimator

assembly (shown in Figure 6.2) was used to ensure that the measurements were free from

the contamination of scattered radiation. Twenty-one different combinations of Al and

Cu filters were measured for each tube potential. The equivalent Birch-Marshall spectra

were determined by minimizing the relative square-error between the modeled and measured

3The original Birch-Marshall model has three parameters: peak energy, equivalent aluminum filtration,
and the anode angle for the source tube. The anode angle is a fixed parameter for a given tube, which is
known for our scanner.
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Figure 6.2: The collimator assembly and filters (Al and Cu foils with various thicknesses)
used for equivalent spectrum measurement. The photo was taken by Dong Han at Virginia
Commonwealth University.

transmissions, i.e.,

(
Êmax, l̂eq

)
= argmin

(Emax,leq)

∑
k

(
T

[k]
meas

T
[k]
mdl (Emax, leq)

− 1

)2

, (6.4)

where T
[k]
meas is the measured relative transmission of the k-th combination of Al and Cu

filters with thicknesses of l
[k]
Al and l

[k]
Cu, respectively, and the expected transmission

T
[k]
mdl (Emax, leq)

=

∑
E ΦBM (E |Emax, leq )D(E) exp

(
−l[k]

AlµAl(E)− l[k]
CuµCu(E)− lFµF(E)

)
∑

E ΦBM (E |Emax, leq )D(E) exp
(
− lFµF(E)

) ,
(6.5)

where µF(E) and lF are the attenuation coefficient and thickness of the TeflonTM bow-tie

filter at the central axis, respectively.
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Figure 6.3: The normalized energy-fluence spectra at the central axis of the Philips Brilliance
Big Bore CT scanner determined by the equivalent spectrum method.

Table 6.3: The spectrum parameters of the Philips Brilliance Big Bore CT scanner deter-
mined by the equivalent spectrum method.

Tube potential Emax (keV) leq (mm)
90 kVp 90 12.1
140 kVp 139 12.9

Then the estimated energy-fluence spectrum is given by

Ψ(y, E) =
ΦBM(E

∣∣Êmax, l̂eq)D(E) exp
(
− lF(y)µF(E)

)
∑

E′ ΦBM(E ′
∣∣Êmax, l̂eq)D(E ′) exp

(
− lF(y)µF(E ′)

) . (6.6)

Figure 6.3 shows the experimentally determined energy-fluence spectra of the CT scanner

used in our experiment. The fitting parameters of the Birch-Marshall model are shown in

Table 6.3.
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6.3 Theoretical modeling accuracy

6.3.1 Parameterization of mean excitation energy

Because the elemental compositions of the phantom materials differ from those of typical

human tissues, the I-values of the phantom materials deviate from I-value parameteriza-

tion curves for both the JSIR-BVM method and the image-based HS method (i.e., Fig-

ure 3.2 and Figure 2.1, respectively). To minimize the underlying SPR modeling errors due

to large differences between compositions of phantom tissue surrogates and actual tissues,

phantom-specific I-value parameterizations were generated for both methods using a series of

water-alcohol-acetone mixtures and water-CaCl2-K2HPO4 mixtures for soft and bony tissue

surrogates, respectively.

The parameterization functions were determined to be

ln
(
I/eV

)
=


−1.746 rc + 5.835 for rc ≥ 0.75,

−0.269 rc + 4.551 for rc < 0.75,

(6.7)

for the JSIR-BVM method and

ln
(
I/eV

)
=


0.147Zeff + 3.222 for Zeff ≤ 8.5,

0.055Zeff + 3.890 for Zeff > 8.5,

(6.8)

for the image-based HS method. Figure 6.4 compares the I-value fitting curves derived from

the two sets of reference materials (i.e., reference human tissues and mixtures of phantom

materials) for the two methods. Figure 6.5 compares the corresponding residual I-value

modeling errors predicted using the two sets of fitting curves. The I-values residuals of the

phantom-specific parameterization are comparable for the two methods, with the RMS of the
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Table 6.4: Residual modeling errors of the two investigated methods.

Material
JSIR-BVM Image-HS

ρe (%) I (%) Sp (%) ρe (%) I (%) Sp (%)
Water 0.12 0.42 0.07 0.00 −0.09 0.01
Acetone 0.02 −3.38 0.42 −0.11 −2.42 0.17
Ethanol 0.00 2.18 −0.25 −0.13 3.26 −0.50
n-Propanol −0.02 2.43 −0.29 −0.15 3.30 −0.52
n-Butanol −0.03 2.59 −0.32 −0.16 3.24 −0.53
CaCl-1 0.09 0.86 −0.02 0.00 2.31 −0.28
CaCl-2 0.03 2.69 −0.29 −0.02 3.36 −0.42
CaCl-3 0.00 3.52 −0.42 −0.02 2.76 −0.35
KP-1 0.10 −0.87 0.20 0.00 0.26 −0.03
KP-2 0.08 −1.36 0.25 0.00 0.29 −0.03
KP-3 0.05 −2.13 0.31 0.00 −1.44 0.18
KP-4 0.01 −3.16 0.40 0.00 −5.62 0.71

residual I-value errors being 2.36% and 2.61% for the JSIR-BVM method and the image-

based HS method, respectively. On the other hand, the tissue-specific parameterization

would result in up to more than 10% of residual I-value errors, with the RMS of 4.84% and

6.19% for the JSIR-BVM method and the image-based HS method, respectively.

6.3.2 SPR modeling error

Table 6.4 shows the intrinsic modeling errors for the JSIR-BVM method and the image-based

HS method using theoretically computed CT numbers and BVM component weights. The

two methods show comparable modeling accuracy for proton stopping powers of all of the

test samples. The recovered electron densities and proton stopping powers are all within

0.2% and 0.8% of the ground truths, respectively. The RMS of SPR modeling error is 0.3%

and 0.4% for the JSIR-BVM method and the image-based HS method, respectively.
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6.4 Estimation of photon linear attenuation coefficients

Figure 6.6 shows the estimation errors of the photon linear attenuation coefficients recon-

structed by the JSIR-BVM method for each test sample within an ROI of 24 mm diameter.

Generally, the mean estimation errors decrease with the increasing photon energies. For all

samples in both phantom settings, the JSIR-BVM method achieves absolute mean errors of

less than 4% for photon energies down to 25 keV. The absolute mean estimation errors for

photon energies higher than 50 keV are all less than 1%. The mean predictions are similar

for the same sample within the two phantoms of different sizes. The difference is within 1%

for photon energies as low as 25 keV.

The 1σ intervals are all within ±2% of the reference values for attenuation coefficients of

E ≥ 50 keV. For lower photon energies, both the mean errors and the standard deviations

become larger. For material with relatively low Zeff (i.e., alcohols and acetone in our experi-

ment), the standard deviation is as much as 7% for the photon energy of 25 keV. This result

can be explained by the lack of detected low-energy photons.

6.5 Estimation of proton SPR and WEPL

Figure 6.7 and Figure 6.8 shows the SPR images of the head and body phantoms, respec-

tively, reconstructed by the JSIR-BVM method and the image-based HS method. For each

test sample, the estimates of ρe, I-value, and SPR were evaluated for an ROI of 24 mm

diameter and were compared to the ground truth computed from the known compositions

and densities. The mean and standard deviation of the estimation errors were computed for

each test sample. Additionally, WEPL was computed from the predicted SPR images for
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Figure 6.6: The mean estimation error of the linear attenuation coefficients estimated by the
JSIR-BVM method for each sample in the head phantom (blue, dashed lines) and the body
phantom (red, solid lines). The dotted lines indicate the corresponding standard deviations.
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Figure 6.7: The SPR images of the head phantom reconstructed by (a) the JSIR-BVM
method and (b) the image-based HS method.

Figure 6.8: The SPR images of the body phantom reconstructed by (a) the JSIR-BVM
method and (b) the image-based HS method.
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parallel beams from all directions (150 parallel beams with width of 1 mm for every degree).

The differences between the WEPLs predicted from the two methods were compared.

Figure 6.9 and Figure 6.10 compare statistics of the estimation errors of the JSIR-BVM

method and the image-based HS method for each test sample in the two phantom arrange-

ments.

For the JSIR-BVM method, the mean errors of the estimated electron density and proton

SPR are within 0.6% and 0.7% of the theoretically computed ground truth shown in Table 6.1,

respectively, for all test samples in both phantom settings, and the mean errors of estimated

I-values are all within 1.1% of the modeling residuals. The RMS of the mean estimation

errors for electron density and proton SPR are 0.20% and 0.35%, respectively. The accuracy

of the JSIR-BVM method on the two different phantom sizes is comparable. The RMS of

the mean SPR estimation errors for all test samples in the head and body phantoms are

0.33% and 0.37%, respectively.

In contrast, the image-based HS method exhibits RMS of mean errors of 2.35% and 2.50%

for electron density and proton SPR, respectively. The RMS of mean SPR errors for the

head and body phantoms are 2.96% and 1.93%, respectively. The image-based method

overestimates the electron density for all bony tissue surrogates, which is mainly due to the

dependence of CT numbers in the separately reconstructed images on phantom size caused

by residual beam hardening effects as shown by the simulation results in Chapter 5. The

ρe estimation errors can be as much as 5.2% for bony samples in the head phantom, while

the maximum ρe error is 2.8% for the larger body phantom. The larger error on the smaller

head phantom is mainly due to the larger size-difference between the head phantom (215 mm

in diameter) and the calibration phantom (330 mm in diameter). The overestimation of ρe

is the dominant contributor to the overestimation of SPR values up to 5.9% and 3.1% in
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Figure 6.9: Mean estimation errors of (a) electron density, (b) mean excitation energy, and
(c) proton SPR for all scanned samples in two phantoms of different sizes.
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Figure 6.10: Standard deviation (1σ) of estimation errors of (a) electron density, (b) mean
excitation energy, and (c) proton SPR for all scanned samples in two phantoms of different
sizes.
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Figure 6.11: The distribution of discrepancy of WEPLs computed from the SPR image
estimated by the image-based HS methods versus those estimated by the JSIR-BVM method
for (a) the head phantom and (b) the body phantom.

the head and body phantoms, respectively. The largest difference between the mean I-value

estimation error and the modeling residual is 6.6% for the image-based HS method.

The JSIR-BVM method also achieves much smaller random errors in SPR values within

homogeneous regions. The standard deviation of the SPR estimates is approximately 4-fold

to 6-fold less than those of the image-based HS methods for comparable or higher image

resolution.

Figure 6.11 compares the difference between the WEPL computed by the two methods. The

relative discrepancy was computed as

∆ = 100%× WEPLJSIR-BVM −WEPLimage-HS

WEPLJSIR-BVM

. (6.9)

The means of absolute discrepancies in WEPL are 0.54% and 1.02% for the head and body

phantoms, respectively.
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Most of the WEPL values in the body phantom computed from the image-based HS method

are larger than those computed from the JSIR-BVM methods, which is consistent with the

result that the image-based method overestimates SPRs for all test samples in the body

phantom (as shown in Figure 6.9). For the head phantom, there are two peaks of the

difference between the two methods, which is due to the overestimation of SPR for bony

tissue surrogates and underestimation for alcohols.

6.6 Discussion

6.6.1 Comparison with previous studies

The experimental results show that the proposed JSIR-BVM method is able to achieve

accurate proton SPR estimation for various materials and different object sizes from the

DECT measurement data. The JSIR-BVM method achieves 0.35% RMS accuracy for all test

samples and both phantom settings, which is comparable to the theoretical SPR modeling

error. The JSIR-BVM method also achieves more than 4-fold reduction in SPR image noise

compared to the image-based method for slightly higher spatial resolution.

On the other hand, although the image-based method can be easily implemented using

the scanner-reconstructed images, it would be vulnerable to uncertainties in the scanner-

reconstructed CT numbers. Because of the ill-conditioning of the DECT decomposition

problem, the random noise and the residual beam hardening effects in the CT images are

amplified in the predicted SPR images. The residual beam-hardening effect in separately re-

constructed images leads to size- and position-dependence of the reconstructed CT numbers

and therefore introduces uncertainties into predicted SPR values [21]. Our implementation

of the image-based method overestimates the electron densities and SPRs for the higher
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Zeff materials when the test object is much smaller than the calibration phantom, which

is consistent with the previous simulation results in Chapter 5. In realistic CT systems,

the imperfection of the beam-hardening correction (e.g., the reconstructed HU of a homo-

geneous water phantom may not uniformly be zero) and other data preprocessing steps also

contribute to the CT number variations. Additionally, uncertainties of known compositions

and densities of tissue substitutes used in the calibration process may also impact the perfor-

mance of calibration-based methods. Therefore, for calibration-based methods an accurate

determination of density and elemental composition of the calibration phantom should be

performed at least once prior to calibration scans to mitigate such uncertainties.

It should be noted that the performance of all DECT methods depends on the scanning

protocol. Our experiment used the 90 kVp and 140 kVp energy-pair, which is the maximum

spectral separation available on the Philips Brilliance Big Bore CT scanner. Garcia et

al. [18] presented a 1.9% absolute-mean error on electron density for an 80 kVp and 140 kVp

spectrum-pair and a relatively small size-difference, which is similar to our result on the body

phantom. Several studies have shown that a larger spectrum separation, which is generally

realized via additional 0.4 − 0.8 mm Sn filters for the high-energy beam, reduces the ill-

conditioning of the DECT decomposition problem and improves the estimation accuracy of

both image- and sinogram-based methods [26,63,104]. Hünemohr et al. [71] and Almeida et

al. [104] showed the estimation error on electron density of their test samples are all within

1.2% for an 80 kVp and 140 kVp/Sn energy-pair. Li et al. [21] showed that under the largest

achievable spectrum separation among current commercial DECT scanners (i.e., 80 kVp

and 150 kVp/Sn energy-pair), the CT number variations in similar head- and body-sized

phantoms can cause 0.9% and 1.8% SPR uncertainties for soft and bony tissues, respectively.
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6.6.2 SPR estimation uncertainty of the JSIR-BVM method

As stated in Section 5.6, the overall uncertainty of the estimated SPR are mainly from two

sources:

1. The SPR modeling uncertainty, i.e., the estimation error of electron density, mean ex-

citation energy, and SPR from the BVM model using the theoretical BVM component

weights, (c∗1, c∗2), which are computed as in Section 3.4;

2. The image formation uncertainty, i.e., the uncertainties in the reconstructed BVM

component weights from experimental DECT measurements when compared to the

theoretical BVM component weights.

These two uncertainty sources are independent of each other and therefore can be considered

separately.

The SPR modeling uncertainty has been investigated in Chapter 5, and the results show that

the BVM maintains good theoretical modeling accuracy over a wide range of component

variations of typical human tissues. It should be noted that throughout this dissertation,

we neglect the approximation errors of the reference SPR value computed by the Bethe

equation and the reference I-value computed by the Bragg additivity rule, because these

approximation errors are not directly related to CT-based approaches.

On the other hand, the uncertainty of the BVM component weights due to the image for-

mation process also leads to uncertainty in the SPR. By combining (1.15), (3.2), (3.3), and

(6.7), the estimation of SPR of the phantom materials can be equivalently rewritten in terms
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of the BVM component weights as

SPR =
Sp
Sp,w

=


1.056 c1 + 0.973 c2 for rc ≥ 0.75,

1.033 c1 + 1.154 c2 for rc < 0.75.

(6.10)

Without loss of generality, we write

SPR = ν1c1 + ν2c2 , (6.11)

where ν1 and ν2 are the corresponding coefficients.

By applying the law of uncertainty propagation [105, 106], the Type A or Type B image-

formation uncertainty of SPR, σSPR, can be written as

σ2
SPR =

[
ν1 ν2

]
Σc

ν1

ν2

 , (6.12)

where

Σc =

 σ2
c1

cov(c1, c2)

cov(c1, c2) σ2
c2

 (6.13)

is the uncertainty covariance matrix of the reconstructed BVM component weights.

There are two major sources of the image formation uncertainty: the first one is the noise

and errors presented in the measurement data, and the second one is the inaccuracy of the

CT forward data modeling, i.e., the inaccuracy of the forward-model parameters listed in

Section 6.2.
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Table 6.5: Bias and standard deviation of the estimated SPR due to the image-formation
process in the experiment.

Material
Head phantom Body phantom

∆SPR

SPR
(%) σSPR

SPR
(%) ∆SPR

SPR
(%) σSPR

SPR
(%)

Water −0.30 0.40 −0.19 0.99
Acetone −0.12 0.53 0.00 1.45
Ethanol 0.08 0.51 0.11 1.15
n-Propanol −0.27 0.47 −0.38 1.13
n-Butanol −0.00 0.48 0.23 1.10
CaCl-1 0.19 0.34 0.49 0.85
CaCl-2 −0.09 0.34 −0.04 0.80
CaCl-3 −0.13 0.34 −0.14 0.81
KP-1 0.12 0.34 0.26 0.82
KP-2 −0.09 0.32 0.08 0.81
KP-3 −0.06 0.32 −0.17 0.75
KP-4 −0.13 0.31 −0.32 0.63

A full analysis of the Type B image formation uncertainty requires knowledge of uncertain-

ties associated with x-ray source spectra and scattered radiation, which are not currently

available and will be addressed in future work. Insight into the impact of Type B uncertain-

ties on estimated SPR can be gained by examining the bias of the reconstructed values for

several ROIs. For each ROI, the Type B uncertainties lead to uncertainties in the bias of

the reconstructed BVM component weights, and through (6.12) into uncertainties in SPR.

Denote the bias of reconstructed BVM component weights by ∆ci = c̄i − c∗i , where c∗i is

the theoretical BVM weight of a single phantom material and c̄i is the reconstructed BVM

component weights averaged over the corresponding ROI of the material. The bias values

of BVM component weights for all ROIs in the head and body phantoms are shown in

Figure 6.12. The bias in SPR can be found simply as

∆SPR = ν1∆c1 + ν2∆c2 . (6.14)

As shown in Table 6.5, ∆SPR is less than 0.5% for all ROIs in both phantoms.
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Figure 6.12: The bias of reconstructed BVM component weights relative to the theoretical
values for each of the 12 ROIs in the (a) head and (b) body phantom.
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Figure 6.13: The one standard deviation ellipse corresponding to the covariance matrix for
each of the 12 ROIs in the (a) head and (b) body phantom.
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To estimate Type A image formation uncertainties in our experiment, the covariance matrix

of reconstructed BVM component weights is computed for each of the phantom inserts as

Σc =
1

N

∑
x∈R

 (c1(x)− c̄1)2 (c1(x)− c̄1)(c2(x)− c̄2)

(c1(x)− c̄1)(c2(x)− c̄2) (c2(x)− c̄2)2

 , (6.15)

where R is the ROI of a single material and N is the number of pixels in the ROI. Figure 6.13

graphically illustrates the covariance matrices of all phantom insert ROIs in the head and

body phantoms in terms of the one-standard-deviation ellipses.4 Note that the covariance

matrix of BVM component weights would depend on the scanned object and the regulariza-

tion in the reconstruction, while the covariance matrices of different materials and different

locations in the same object are similar. The result indicates the Type A uncertainties of the

two BVM component weights at the same image location exhibit high negative correlation.

Evaluating (6.12) yields Type A image formation uncertainties around 0.4% and 1.0% for

test samples in head and body phantoms, respectively (shown in Table 6.5).

4The one-standard-deviation ellipse is parameterized as
[
c1 − c̄1 c2 − c̄2

]
Σ−1

c

[
c1 − c̄1

c2 − c̄2

]
= 1 .
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Chapter 7

Conclusions and future work

In this dissertation, we implemented and evaluated a novel DECT approach for proton

SPR mapping based on a JSIR algorithm. We integrated both CT image reconstruction

and proton stopping power mapping under the same framework of a linear, separable BVM

for material characterization. By taking advantage of an accurate polychromatic CT data

model and a model-based DECT statistical reconstruction algorithm, the proposed JSIR-

BVM method achieves much better accuracy and precision on proton SPR estimation when

compared with image- and sinogram-domain decomposition methods in both simulation and

experimental settings. To our knowledge, our method is the first application of a statistical

reconstruction algorithm that operates simultaneously on two DECT sinograms extracted

from a clinical scanner for mapping proton stopping power. The result suggests that the

JSIR-BVM method has the potential for better SPR prediction in clinical settings.

We also explored the convergence of the image reconstruction algorithm used in the JSIR-

BVM method. We analyzed the major reasons for the slow convergence of the original DE-

AM algorithm and proposed modified algorithms to deal with these issues. The modified

algorithm achieves approximately the same convergence as the SE-AM algorithm and can

be combined with other acceleration strategies that are developed for the SE-AM algorithm.
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The result ensures the modified reconstruction algorithm feasible to be further implemented

in clinical settings.

To make this study more general and clinically applicable, there are also several problems

to be considered in future work.

For all evaluations presented in this dissertation, the reference SPRs of the test samples,

which were computed from the known densities and elemental compositions, served as the

ground truth. As stated in Section 1.2.4, the impact of the approximating error of the

theoretical computation was not addressed in this study because it does not differ between

different CT-based approaches. Experimental evaluation that utilizes the directly measured

SPRs will be carried out in future work.

In the implemented reconstruction algorithm, the regularization parameters were selected as

a trade-off between image noise and image resolution. The selection of the parameters ensures

the spatial resolution of the images reconstructed by the regularized DE-AM algorithm

is comparable to or slightly higher than the FBP-reconstructed images in the completing

methods for typical soft tissue contrast in a piecewise uniform phantom. Optimization of

the regularization parameters for different regions of patient body should be addressed in

future work.

In the presented experimental phantom study, the scattered radiation was restricted by nar-

row collimation available on the clinical scanner and was not taken into consideration. Under

relatively wide collimation, unaccounted scatter may cause artifacts in the reconstructed im-

ages, which can compromise the performance of quantitative DECT. There is ongoing work

in investigating the impact and correction of the scattered radiation contamination based

on determining the scattered radiation via both Monte Carlo simulation and a beam-block

measurement on the scanner.
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Towards the application of the proposed method on patient data, a more comprehensive anal-

ysis of the SPR estimation uncertainty should be addressed in the future. Such uncertainty

analysis requires the quantification of the uncertainties of those quantities required in the

JSIR-BVM methods, among which two major ones are the scattered radiation contamination

and the equivalent spectrum modeling. To learn about the impact of the uncertainties re-

lated to spectrum modeling, one potential way is to study the variation of the experimentally

measured transmission data for various materials that are representative of typical tissues.
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Appendix A

Reference human tissue properties

This appendix summarizes the compositions of reference human tissues used in the present

study, which are taken from [91–93]. The mass densities, electron densities, mean excitation

energies (computed via the Bragg additivity rule), and the mass fraction of six major elements

are listed. Other elements include Na, Mg, S, Cl, K, Fe and I (only appears in thyroid).

Table A.1: Radiological properties and elemental compositions of reference soft tissues.

Tissue
ρ

(g/mL)
ρe/ρe,w

I
(eV)

Elemental mass Fraction
H C N O P Ca other

adipose 1 0.97 0.97 66.3 11.2 51.7 1.3 35.5 0.3
adipose 2 0.95 0.95 64.8 11.4 59.8 0.7 27.8 0.3
adipose 3 0.93 0.93 63.2 11.6 68.1 0.2 19.8 0.3
adrenal grand 1.03 1.02 71.2 10.6 28.4 2.6 57.8 0.1 0.5
aorta 1.05 1.04 75.2 9.9 14.7 4.2 69.8 0.4 0.4 0.6
bladder, empty 1.04 1.03 75.0 10.5 9.6 2.6 76.1 0.2 1.0
bladder, filled 1.03 1.03 75.7 10.8 3.5 1.5 83.0 0.1 1.1
bladder, urine 1.02 1.02 75.9 11.0 0.5 1.0 86.2 0.1 1.2
blood, erythrocytes 1.09 1.07 74.8 9.5 19.0 5.9 64.6 0.1 0.9
blood, vessels 1.05 1.04 75.1 9.9 14.7 4.2 69.9 0.4 0.9
blood, whole 1.06 1.05 75.2 10.2 11.0 3.3 74.5 0.1 0.9
brain 1.04 1.03 73.9 10.7 14.5 2.2 71.2 0.4 1.0
brain, CSF 1.01 1.01 75.8 11.1 88.0 0.9
brain, gray matter 1.04 1.04 74.8 10.7 9.5 1.8 76.7 0.3 1.0
brain, white matter 1.04 1.03 73.1 10.6 19.4 2.5 66.1 0.4 1.0
breasts 0.97 0.97 66.6 11.1 51.0 1.5 36.1 0.3
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(continued)

Tissue
ρ

(g/mL)
ρe/ρe,w

I
(eV)

Elemental mass Fraction
H C N O P Ca other

mammary gland 1 0.99 0.99 66.9 10.9 50.6 2.3 35.8 0.1 0.3
mammary gland 2 1.02 1.01 70.3 10.6 33.2 3.0 52.7 0.1 0.4
mammary gland 3 1.06 1.05 74.0 10.2 15.8 3.7 69.8 0.1 0.4
cell nucleus 1.00 0.99 75.5 10.6 9.0 3.2 74.2 2.6 0.4
connective tissue 1.12 1.10 74.7 9.4 20.7 6.2 62.2 1.5
eye lens 1.07 1.05 74.3 9.6 19.5 5.7 64.6 0.1 0.5
eyes 1.02 1.02 75.0 10.7 6.9 1.7 80.3 0.1 0.3
gallbladder bile 1.03 1.03 75.2 10.8 6.1 0.1 82.2 0.8
GI tract contents 1.03 1.02 73.9 1.0 22.2 2.2 64.4 0.2 0.1 0.9
small intestine 1.03 1.02 74.3 10.6 11.5 2.2 75.1 0.1 0.5
stomach 1.05 1.04 74.2 10.4 13.9 2.9 72.1 0.1 0.6
heart 1 1.05 1.04 73.8 10.3 17.5 3.1 68.1 0.2 0.8
heart 2 1.05 1.04 74.3 10.4 13.9 2.9 71.8 0.2 0.8
heart 3 1.05 1.04 75.0 10.4 10.3 2.7 75.6 0.2 0.8
heart, blood filled 1.06 1.05 74.8 10.3 12.1 3.2 73.4 0.1 0.9
kidney 1 1.05 1.04 74.3 10.2 16.0 3.4 69.3 0.2 0.1 0.8
kidney 2 1.05 1.04 74.7 10.3 13.2 3.0 72.4 0.2 0.1 0.8
kidney 3 1.05 1.04 75.0 10.4 10.6 2.7 75.2 0.2 0.1 0.8
liver 1 1.05 1.04 74.4 10.3 15.6 2.7 70.1 0.3 1.0
liver 2 1.06 1.05 74.8 10.2 13.9 3.0 71.6 0.3 1.0
liver 3 1.07 1.06 75.2 10.1 12.6 3.3 72.7 0.3 1.0
lung, deflated 0.26 0.26 75.2 10.3 10.5 3.1 74.9 0.2 1.0
lung, inflated 1.05 1.04 75.2 10.3 10.5 3.1 74.9 0.2 1.0
lung, parenchyma 1.05 1.04 75.3 10.3 10.1 2.9 75.5 0.2 1.0
lymph 1.03 1.03 75.5 10.8 4.1 1.1 83.2 0.8
miscellaneous glands 1.05 1.04 74.9 10.5 10.0 2.3 76.3 0.1 0.8
muscle skeletal 1 1.05 1.04 74.3 10.1 17.1 3.6 68.1 0.2 0.9
muscle skeletal 2 1.05 1.04 74.6 10.2 14.3 3.4 71.0 0.2 0.9
muscle skeletal 3 1.05 1.04 75.3 10.2 11.2 3.0 74.5 0.2 0.9
ovary 1.05 1.04 75.0 10.5 9.3 2.4 76.8 0.2 0.8
pancreas 1.04 1.03 73.4 10.6 16.9 2.2 69.4 0.2 0.7
prostate 1.04 1.03 75.0 10.5 8.9 2.5 77.4 0.1 0.6
cartilage 1.10 1.08 78.0 9.6 9.9 2.2 74.4 2.2 1.7
marrow, red 1.03 1.02 69.2 10.5 41.4 3.4 43.9 0.2 0.6
marrow, yellow 0.98 0.98 63.9 11.5 64.4 0.7 23.1 0.3
skin 1 1.09 1.08 72.8 10.0 25.0 4.6 59.4 0.1 0.9
skin 2 1.09 1.08 73.7 10.0 20.4 4.2 64.5 0.1 0.8
skin 3 1.09 1.08 74.4 10.1 15.8 3.7 69.5 0.1 0.8
spleen 1.06 1.05 75.0 10.3 11.3 3.2 74.1 0.3 0.8
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(continued)

Tissue
ρ

(g/mL)
ρe/ρe,w

I
(eV)

Elemental mass Fraction
H C N O P Ca other

testis 1.04 1.03 74.7 10.6 9.9 2.0 76.6 0.1 0.8
thyroid 1.05 1.04 74.7 10.4 11.9 2.4 74.5 0.1 0.7
trachea 1.06 1.05 75.0 10.1 13.9 3.3 71.3 0.4 1.0

Table A.2: Radiological properties and elemental compositions of reference bony tissues.

Tissue
ρ

(g/mL)
ρe/ρe,w

I
(eV)

Elemental mass Fraction
H C N O P Ca other

cortical bone 1.92 1.78 112.0 3.4 15.5 4.2 43.5 10.3 22.5 0.6
spongiosa 1.18 1.15 78.4 8.5 40.4 2.8 36.7 3.4 7.4 0.8
femur 1.33 1.28 87.0 7.0 34.5 2.8 36.8 5.5 12.9 0.5

– total bone 1.42 1.35 90.5 6.3 33.3 2.9 36.2 6.6 14.3 0.4
– conical troch. 1.36 1.31 86.9 6.9 36.6 2.7 34.7 5.9 12.8 0.4
– cylindrical shaft 1.75 1.64 105.5 4.2 20.4 3.8 41.5 9.3 20.2 0.6
– spherical head 1.33 1.28 85.7 7.1 37.9 2.6 34.2 5.6 12.2 0.4
– whole specimen 1.43 1.36 90.6 6.3 33.1 2.9 36.3 6.6 14.4 0.4

humerus
– total bone 1.46 1.39 92.5 6.0 31.4 3.1 36.9 7.0 15.2 0.4
– cylindrical shaft 1.49 1.41 93.9 5.8 30.1 3.2 37.4 7.2 15.8 0.5
– spherical head 1.33 1.28 85.7 7.1 37.9 2.6 34.2 5.6 12.2 0.4
– whole specimen 1.39 1.33 88.3 6.7 35.2 2.8 35.2 6.2 13.5 0.4

clavicle (M) 1.46 1.39 92.5 6.0 31.3 3.1 37.0 7.0 15.2 0.4
sternum (M) 1.25 1.21 82.4 7.8 31.6 3.7 43.8 4.0 8.5 0.6
cranium 1.61 1.52 100.0 5.0 21.2 4.0 43.5 8.1 17.6 0.6
mandible 1.68 1.58 102.7 4.6 19.9 4.1 43.5 8.6 18.7 0.6
innominate (F) 1.46 1.39 93.2 6.0 25.0 3.9 43.5 6.6 14.3 0.7
innominate (M) 1.41 1.35 91.1 6.3 26.2 3.9 43.6 6.1 13.2 0.7
sacrum (F) 1.39 1.33 89.6 6.6 27.1 3.8 43.5 5.8 12.5 0.7
sacrum (M) 1.29 1.24 84.6 7.4 30.2 3.7 43.8 4.5 9.8 0.6
rib (M)

– 10th 1.52 1.44 95.9 5.6 23.5 4.0 43.4 7.2 15.6 0.7
– 2nd/6th 1.41 1.35 90.7 6.4 26.3 3.9 43.6 6.0 13.1 0.7

vertebral (M)
– C4 ex. 1.42 1.36 91.2 6.3 26.1 3.9 43.6 6.1 13.3 0.7
– C4 in. 1.38 1.32 89.8 6.6 24.3 3.7 47.1 5.7 11.9 0.7
– D6/L3 ex. 1.33 1.28 87.0 7.0 28.7 3.8 43.7 5.1 11.1 0.6
– D6/L3 in. 1.30 1.25 85.8 7.3 26.5 3.6 47.3 4.8 9.8 0.7
– whole column 1.33 1.28 87.0 7.1 25.8 3.6 47.2 5.1 10.5 0.7
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Appendix B

Alternating minimization (AM)

algorithm

This appendix summarizes the AM algorithm that is originally described in [41] and [42].

The notation used in this appendix is defined in Section 1.3.

The polychromatic CT data are modeled as

Qj(y) = I0,j(y)
∑
E

ψj(y, E) exp
(
−
∑
x

h(y|x)
∑
i

µi(E)ci(x)
)

+ γj(y) , (B.1)

where i ∈ {1, 2} and j ∈ {L,H} for the DECT data modeled by the BVM.

Note that the generalized forward CT data model given above is not limited to the dual-

energy, two-bases case used in the proposed JSIR-SPR method. The model can be reduced

into monochromatic and polychromatic single-energy cases, or be extended to multi-energy

or multi-bases cases. The AM algorithms for all model categories are summarized below in

the generalized form.
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B.1 AM algorithm

Based on the Poisson statistics, the MLE problem is formulated as minimization of the

following I-divergence,

g(c) = dI (d ‖ Q) =
∑
j

∑
y

(
dj(y) ln

dj(y)

Qj(y)
− dj(y) +Qj(y)

)
, (B.2)

subject to the nonnegativity constraint ci(x) ≥ 0.

Definition B.1. The exponential family E is the set

E =

{
q : qj(y, E) = I0,j(y)ψj(y, E) exp

(
−
∑
x

h(y|x)
∑
i

µi(E)ci(x)
)

for E > 0 ,

qj(y, 0) = γj(y)

}
.

The exponential family E defines the CT forward data model, where

Qj(y) =
∑
E≥0

qj(y, E) . (B.3)

A dummy energy value E = 0 is included to account for the background events. Without

loss of generality, in the following all summations over E are assumed to include the dummy

variable E = 0 with µi(0) = 0 for all i.

Definition B.2. The linear family L(d) is the set

L(d) =

{
p : pj(y, E) ≥ 0,

∑
E

pj(y, E) = dj(y)

}
.
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Lemma B.1. The I-divergence (B.2)

dI (d ‖ Q) ≤ dI (p ‖ q) ∀p ∈ L(d) , (B.4)

where

dI (p ‖ q) =
∑
j

∑
y

∑
E

(
pj(y, E) ln

pj(y, E)

qj(y, E)
− pj(y, E) + qj(y, E)

)
. (B.5)

The equality holds if and only if

pj(y, E) = dj(y)
qj(y, E)∑
E′ qj(y, E ′)

. (B.6)

To prove this lemma, a Lagrange multiplier ν is introduced to enforce the equality of p ∈

L(d) to get the Lagrangian

L =
∑
j

∑
y

∑
E

(
pj(y, E) ln

pj(y, E)

qj(y, E)
− pj(y, E) + qj(y, E)

)

+
∑
j

∑
y

νj(y)

(
dj(y)−

∑
E

pj(y, E)

)
.

(B.7)

Minimizing over pj(y, E) and solving for ν to enforce equality yields (B.6). Substituting the

result back into the I-divergence yields the equality in the Lemma statement.

For an estimate of q denoted q̂ with corresponding estimate ĉ, let

p̂ = argmin
p∈L(d)

dI (p ‖ q̂) , (B.8)

which is given in closed form as (B.6).
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Then original objective function (B.2) is upper-bounded by a surrogate function as

g(c) ≤
∑
j

∑
y

∑
E

[
p̂j(y, E) ln

p̂j(y, E)

qj(y, E)
− p̂j(y, E) + qj(y, E)

]
=
∑
j

∑
y

∑
E

[
− p̂j(y, E) ln

(
qj(y, E)

)
+ qj(y, E)

]
+ C

=
∑
j

∑
y

∑
E

[
−p̂j(y, E)

(
−
∑
x

h(y|x)
∑
i

µi(E)ci(x)
)

+ qj(y, E)

]
+ C

=
∑
j

∑
y

∑
E

[
p̂j(y, E)

(∑
x

h(y|x)
∑
i

µi(E)ci(x)

)

+ q̂j(y, E) exp

(
−
∑
x

h(y|x)
∑
i

µi(E)
(
ci(x)− ĉi(x)

))]
+ C

= gsur(c : ĉ) ,

(B.9)

where the constant C is independent of c. Moreover, the surrogate function has the same

function value and gradient as the original function at c = ĉ, i.e.,

gsur(c : ĉ)
∣∣
c=ĉ

= g(c)
∣∣
c=ĉ

, (B.10)

∇gsur(c : ĉ)
∣∣
c=ĉ

= ∇g(c)
∣∣
c=ĉ

. (B.11)

Because the original objective function g(c) is upper-bounded by the surrogate function

gsur(c : ĉ), any update that decreases gsur(c : ĉ) essentially ensures decrease of g(c).

The alternative minimization of the surrogate function may also be considered in another

way as a double minimization problem formulated as

min
q∈E

min
p∈L(d)

dI (p ‖ q) . (B.12)

The algorithm alternates between the estimation of p ∈ L(d) and q ∈ E .

153



Lemma B.2. (Convex decomposition lemma) Suppose that f is a convex function defined

on a convex cone D ⊂ Rn. Given τ k ∈ D,

f

(∑
k

τ k

)
≤
∑
k

rkf

(
1

rk
τ k

)
(B.13)

for all r ∈ P = {r : rk ≥ 0,
∑

i rk = 1}. If f is strictly convex, equality holds if and only if

1
rk
τ k = τ is independent of k.

The proof follows Jensen’s inequality,

f
(
E[τ ]

)
≤ E

[
f(τ )

]
. (B.14)

Moreover, by adding a dummy variable τ 0 = 0, (B.13) becomes

f

(∑
k

τ k

)
= f

(
0 +

∑
k

τ k

)
≤ r0f (0) +

∑
k

rkf

(
1

rk
τ k

)
, (B.15)

where the constant r0f (0) is independent of τ k’s and the constraint is relaxed as
∑

k rk ≤ 1.

The alternative surrogate function gsur(c : ĉ) is convex over c. Applying the convex decom-

position lemma (Lemma B.2) yields

gsur(c : ĉ) ≤
∑
j

∑
y

∑
E

∑
i

∑
x

[
p̂j(y, E)h(y|x)µi(E)ci(x)

+ q̂j(y, E)r(x, i|y, E) exp

(
−h(y|x)µi(E)

r(x, i|y, E)

(
ci(x)− ĉi(x)

))]
+ C ,

(B.16)

for all r(x, i|y, E) ≥ 0 such that

∑
x

∑
i

r(x, i|y, E) ≤ 1 ∀(y, E) . (B.17)
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Note that minor extension of the convex decomposition lemma leads to a different C in the

equation. For simplicity, we denote C as all constants that are independent of c.

To derive a minimization algorithm, let

r(x, i|y, E) =
h(y|x)µi(E)

z(i, x)
, (B.18)

where z(i, x) is usually called the auxiliary variable. One choice of z(i, x) that satisfy the

constraint (B.17) is given by

z(i, x) = z0 =

(
max
y

∑
x′

h(y|x′)

)(
max
E

∑
i′

µi′(E)

)
. (B.19)

The resulting decoupled surrogate function is

g(c) ≤ gsur(c : ĉ)

≤
∑
j

∑
y

∑
E

∑
i

∑
x

[
p̂j(y, E)h(y|x)µi(E)ci(x)

+ q̂j(y, E)
h(y|x)µi(E)

z(i, x)
exp

(
− z(i, x)

(
ci(x)− ĉi(x)

))]
+ C

=
∑
i

∑
x

[(∑
y

h(y|x)
∑
j

∑
E

p̂j(y, E)µi(E)

)
ci(x)

+
1

z(i, x)

(∑
y

h(y|x)
∑
j

∑
E

q̂j(y, E)µi(E)

)
exp

(
− z(i, x)

(
ci(x)− ĉi(x)

))]
+ C

= g̃sur(c : ĉ) ,

(B.20)
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The decoupled surrogate function g̃sur(c : ĉ) is separable for each ci(x), i.e.,

g̃sur(c : ĉ) =
∑
i

∑
x

g̃sur
i,x (ci(x) : ĉi(x)) . (B.21)

Each g̃sur
i,x can be minimized over ci(x) in closed form as

ci(x) = max

(
ĉi(x)− 1

z(i, x)
ln

∑
y h(y|x)

∑
j

∑
E p̂j(y, E)µi(E)∑

y h(y|x)
∑

j

∑
E q̂j(y, E)µi(E)

, 0

)
. (B.22)

In summary, at iteration k of the alternating minimization algorithm, the original objective

function g(c) is decomposed at the current estimate ĉ(k) and the surrogate function g̃sur(c :

ĉ(k)) is minimized in parallel to get the new estimate ĉ(k+1).
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The pseudo-code of the algorithm is shown below.

Algorithm 3: AM algorithm

Pre-compute z(i, x) =

(
max
y

∑
x′ h(y|x′)

)(
max
E

∑
i′ µi′(E)

)
∀(i, x)

Initialize ĉ
(0)
i (x)

for k = 0, 1, 2, . . . do

foreach y, j, E do

q̂
(k)
j (y, E) = I0,j(y)ψj(y, E) exp

(
−
∑

x h(y|x)
∑

i µi(E)c
(k)
i (x)

)
p̂

(k)
j (y, E) = dj(y)

q̂
(k)
j (y,E)∑

E′ q̂
(k)
j (y,E′)

end

foreach i, x do

b̃
(k)
i (x) =

∑
y h(y|x)

∑
j

∑
E p̂

(k)
j (y, E)µi(E)

b̂
(k)
i (x) =

∑
y h(y|x)

∑
j

∑
E q̂

(k)
j (y, E)µi(E)

ĉ
(k+1)
i (x) = max

(
ĉ

(k)
i (x)− 1

z(i,x)
ln

b̃
(k)
i (x)

b̂
(k)
i (x)

, 0

)
end

end

B.2 Regularized AM algorithm

To trade off the image smoothness and data fitting, a spatial penalty function is employed

in the objective function, which is formulated as

R(c) =
∑
i

∑
x

∑
x′∈N (x)

wx,x′φ
(
ci(x)− ci(x′)

)
, (B.23)

where N (x) is the neighborhood of x and wx,x′ is the spatial weighting for pixel-pair (x, x′).

φ(t) is a convex potential function that satisfies φ(t) = φ(−t). The overall objective function
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is given by

greg(c) = g(c) + λR(c) . (B.24)

In the regularization term, the ci(x)’s are coupled and cannot be updated in parallel as in

the unregularized AM algorithm. To derive the regularized AM algorithm, Lemma B.2 is

used to decompose the penalty function as

R(c) =
∑
i

∑
x

∑
x′∈N (x)

wx,x′φ

(
2ci(x)− ĉi(x)− ĉi(x′)

2
+
−2ci(x

′) + ĉi(x) + ĉi(x
′)

2

)

≤
∑
i

∑
x

∑
x′∈N (x)

wx,x′

[
1

2
φ
(

2ci(x)− ĉi(x)− ĉi(x′)
)

+
1

2
φ
(
− 2ci(x

′) + ĉi(x) + ĉi(x
′)
)]

=
∑
i

∑
x

∑
x′∈N (x)

wx,x′

[
1

2
φ
(

2ci(x)− ĉi(x)− ĉi(x′)
)

+
1

2
φ
(

2ci(x
′)− ĉi(x)− ĉi(x′)

)]
=
∑
i

∑
x

∑
x′∈N (x)

wx,x′φ
(

2ci(x)− ĉi(x)− ĉi(x′)
)

= R̃(c : ĉ) .

(B.25)

At each iteration, the algorithm alternatively minimizes the regularized surrogate function

g̃sur, reg(c : ĉ(k)) = g̃sur(c : ĉ(k)) + λR̃(c : ĉ(k)) , (B.26)

which is separable for each individual ci(x).
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The pseudo-code of the regularized AM algorithm is shown below.

Algorithm 4: Regularized AM algorithm

Pre-compute z(i, x) =

(
max
y

∑
x′ h(y|x′)

)(
max
E

∑
i′ µi′(E)

)
∀(i, x)

Initialize ĉ
(0)
i (x)

for k = 0, 1, 2, . . . do

foreach y, j, E do

q̂
(k)
j (y, E) = I0,j(y)ψj(y, E) exp

(
−
∑

x h(y|x)
∑

i µi(E)c
(k)
i (x)

)
p̂

(k)
j (y, E) = dj(y)

q̂
(k)
j (y,E)∑

E′ q̂
(k)
j (y,E′)

end

foreach i, x do

b̃
(k)
i (x) =

∑
y h(y|x)

∑
j

∑
E p̂

(k)
j (y, E)µi(E)

b̂
(k)
i (x) =

∑
y h(y|x)

∑
j

∑
E q̂

(k)
j (y, E)µi(E)

ĉ
(k+1)
i (x) = argmin

τ≥0

[
b̃

(k)
i (x)

(
τ − ĉ(k)

i (x)
)

+
b̂
(k)
i (x)

z(i,x)
exp

(
−z(i, x)

(
τ − ĉ(k)

i (x)
))

+λ
∑

x′∈N (x) wx,zφ
(

2τ − ĉ(k)
i (x)− ĉ(k)

i (x′)
)]

end

end

B.3 Acceleration via ordered subsets

Subset methods [78–82] are range-based decomposition techniques that are widely used in

CT image reconstruction to increase the convergence speed by using a subset of data in each

sub-iteration.

In the ordered subset method, the data are partitioned into M balanced and disjoint subsets.

At the m-th sub-iteration, only the data in the m-th subset are considered in the data-fitting

term. One full iteration is composed of M sub-iterations in sequence in order to cover all the
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data. The acceleration rate is approximately proportional to the number of subsets when

it’s relatively far away from the optimal point. However, there is no converge guarantee.

Empirically, we dynamically changed the number of subsets in each iteration. A larger

number of subsets is used in early iterations to provide faster decrease of the objective

function, while in later iterations, the number of subsets is reduced as the iterations proceed

and finally drops down to 1 in order to get close to the optimal point.

Denote the full data space by Y . Let Ym/M be the m-th subset in the M -subsets partition,

where Y =
M⋃
m=1

Ym/M and Ym/M ∩ Ym′/M = ∅ if m 6= m′ .
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The pseudo code of the regularized AM algorithm with ordered subsets is shown below.

Algorithm 5: Regularized AM algorithm with ordered subsets

Pre-compute z(i, x) =

(
max
y

∑
x′ h(y|x′)

)(
max
E

∑
i′ µi′(E)

)
∀(i, x)

Select {Mk}k=0,1,2,... as the number of subsets for each iteration.

Initialize ĉ
(0,0)
i (x)

for k = 0, 1, 2, . . . do

for m = 0, 1, 2, . . . , (Mk − 1) do

foreach y ∈ Ym/Mk
, j, E do

q̂
(k,m)
j (y, E) = I0,j(y)ψj(y, E) exp

(
−
∑

x h(y|x)
∑

i µi(E)ĉ
(k,m)
i (x)

)
p̂

(k,m)
j (y, E) = dj(y)

q̂
(k,m)
j (y,E)∑

E′ q̂
(k,m)
j (y,E′)

end

foreach i, x do

b̃
(k,m)
i (x) =

∑
y∈Ym/Mk

h(y|x)
∑

j

∑
E p̂

(k,m)
j (y, E)µi(E)

b̂
(k,m)
i (x) =

∑
y∈Ym/Mk

h(y|x)
∑

j

∑
E q̂

(k,m)
j (y, E)µi(E)

ĉ
(k,m+1)
i (x) =

argmin
τ≥0

[
b̃

(k,m)
i (x)

(
τ − ĉ(k,m)

i (x)
)

+
b̂
(k,m)
i (x)

z(i,x)
exp

(
−z(i, x)

(
τ − ĉ(k,m)

i (x)
))

+ λ
Mk

∑
x∈N (x) wx,x′φ

(
2τ − ĉ(k,m)

i (x)− ĉ(k,m)
i (x′)

)]
end

end

foreach i, x do

ĉ
(k+1,0)
i (x) = ĉ

(k,Mk)
i (x)

end

end
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