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ABSTRACT OF THE THESIS

An Empirical Analysis on Point-wise Machine Learning Techniques Using

Regression Trees for Web-search Ranking.

by

Ananth Mohan

Master of Science in Computer Science

Washington University in St. Louis, 2010

Research Advisor: Dr. Kilian Weinberger

Learning how to rank a set of objects relative to an user defined query has received

much interest in the machine learning community during the past decade. In fact,

there have been two recent competitions hosted by internationally prominent search

companies to encourage research on ranking web site documents. Recent literature on

learning to rank has focused on three approaches: point-wise, pair-wise, and list-wise.

Many different kinds of classifiers, including boosted decision trees, neural networks,

and SVMs have proven successful in the field. This thesis surveys traditional point-

wise techniques that use regression trees for web-search ranking. The thesis contains

empirical studies on Random Forests and Gradient Boosted Decision Trees, with novel

augmentations to them on real world data sets. We also analyze how these point-wise

techniques perform on new areas of research for web-search ranking: transfer learning

and feature-cost aware models.
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Chapter 1

Introduction

1.1 Background

Learning to rank has received much interest in the machine learning community dur-

ing the past decade. The learning to rank problem builds a model which is used

to rank or order a set of objects relative to their relevance or importance to an

user defined query. This construct has proven useful in many fields such as Infor-

mation Retrieval [22], advertisements [18], social networking [9], and collaborative

filtering [35]. There are two ranking paradigms, dynamic ranking and static ranking.

Dynamic ranking orders objects relative to their importance to a specific query; the

relation between an object and a query may be developed in real-time. Static rank-

ing evaluates objects based on criteria that is independent of a query [28], such as

PageRank [25] and click rate. Applying dynamic ranking (often called just ranking)

to Web-search data sets in order to power web search engines has garnered much

academic and industrial interest. In fact, in recent years there have been two open

contents to promote research in the field of ranking web-search data sets; they were

hosted by Yahoo and Yandex.

The past decade has seen three main approaches to web-search ranking: point-wise,

pair-wise, and list-wise. Point-wise algorithms such as McRank [21] and Pranking [13]

predict the exact relevance of a document by minimizing the regression error. Pairwise

approaches such as RankBoost [14], FRank [32], and GBRank [38] learn a classifier

that best predicts if one document is more relevant than another document. List-wise

approaches tend to iteratively optimize any performance measure; these approaches

include BoltzRank [34], AdaRank [36], PermuRank [37], and SoftRank [31]. Most of
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these algorithms implement Gradient Boosted Regression Trees, which has arguably

been the most popular learning technique for web-search ranking. However regres-

sion trees are not the exclusive learners; support vector machines [8], and neural

networks [6] have also proven capable of significant performance.

However, recent areas of research have not solely focused on strict ranking perfor-

mance. One area of interest is to increase ranking accuracy on one data set by

learning from a different but related data set; this is called transfer learning. Current

models train on the two models independently. In this case, potential knowlege from

the bigger set is realized. One approach is to transfer knowledge from outdated and

out of domain samples [12], another is to learn from unlabeled data [17]. In the con-

text of web-search ranking, the data sets may come from two different but culturally

similar countries. The recent Learning to Rank Challenge competition hosted by Ya-

hoo was setup with precisely these two types of data sets. The other area of interest

is to increase performance on real issues that effect production of web-search ranking.

We look at ways of incorporating costs of the features (or attributes) into the model

that learns to rank. Since many features of web-search documents are expensive to

acquire (such as PageRank and bounce rate), the goal is to produce a model that

is cost-efficient yet accurate. The cost of a decision tree can further be reduced by

injecting early exits which weed out the lowest ranked data points efficiently [7].

This thesis provides a survey on techniques that use regression trees for web-search

ranking. It will only focus on point-wise algorithms. The survey will provide empirical

evidence that shows the performance of point-wise algorithms on two real world web-

search ranking data sets, provided by the research teams at Yahoo and Microsoft.

Traditional algorithms and novel augmentations to those algorithms will be explored.

This thesis will also touch on how point-wise algorithms perform in regards to the new

areas of research in the field that was previously mentioned. The goal of this thesis

is to show empirical proof of the validity of point-wise learning classifiers relative to

each other in terms of ranking accuracy and efficiency in aspects at test time.
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1.2 Previous Work

Using point-wise algorithms for web-search ranking dates back to the early 2000’s.

AltaVista (now integrated into Yahoo) was one of the early pioneers of using gradient

boosting in this field. Gradient boosting has since evolved to the other approaches

listed, as well as to minimize more complex loss functions [39]. Recently, Burges et.

al proposed treating point-wise regression as a multi-class classification problem [21];

they suggest that this framework leads to better ranking results. We ran experiments

of our own to validate their claims. Recently, there have been attempts at combining

two point-wise technique, Random Forests and Gradient Boosted Regression Trees,

for better performance at ranking. One such way is BagBoost, which was one of the

winners of the recent Yahoo Learning to Rank Competition1. However the imple-

menters note that it takes an unrealistically long time to train its model. Another

winner of the Yahoo competition combined the results of Random Forest and GBRT

with linear regression 1. Note that our own Random Forest and GBRT algorithm,

IGBRT, and the two mentioned were all developed independently during the same

time period.

1.3 Contributions

The main contributions of this thesis are as follows:

• We survey traditional point-wise algorithms and augmentations to them that

are applied to ranking; this is done by showing empirical performance data on

real world web-search ranking data sets.

• We investigate uses of point-wise algorithms for current topics of interest: trans-

fer learning and feature-cost aware ranking models.

1See top competitor’s presentation slides at http://learningtorankchallenge.yahoo.com/workshop.php

3



1.4 Thesis Outline

The thesis is organized as follows:

In the rest of Chapter 1, the notation and setup that will be used throughout the thesis

are explained. Decision trees are reviewed and the data sets used for the experiments

are introduced. We briefly mention the metrics which are used to analyze the accuracy

of the ranking models.

In Chapter 2, two traditional point-wise machine learning techniques are analyzed.

The first is Random Forests; we show that this technique can serve as a powerful

alternative to the commercially proven algorithm - gradient boosted regression trees.

We use Random Forests to explore the best way of handling missing features. Then

we explore Gradient Boosting Regression Trees. As this is the most popular technique

for web search ranking, it will serve as a base line for the other experiments. We intro-

duce two novel modifications to GBRT, k-Stochastic GBRT and Norm k-Stochastic

GBRT. kSGBRT results in great run-time speeds and accuracy. We introduce a

novel algorithm: Initialized Gradient Boosted Regression Trees. This technique uses

Random Forest as a starting point and boosts to reduce the resultant residuals.

In Chapter 3, it is shown how these traditional regression based techniques can be

transformed into a classification problem for even better results. These involve “scor-

ing” the four different classification problems. We show that the scoring method that

is equivalent to Expected Relevance gives the best results.

In Chapter 4, the performance of all the techniques on the Yahoo and Microsoft

ranking data sets are summarized. They are summarized in one large table so it is

easy to see how conclusions were drawn. Our point-wise algorithms are also compared

against an open-source pair-wise learner and published LETOR benchmarks.

In Chapter 5, we look at ways point-wise techniques can contribute to transfer learn-

ing. We experiment with knowledge transfer by increasing the size of a data set by

populating it with candidate data points from another data set. We also add features

to the smaller set from a model trained on the larger.

4



In Chapter 6, cost based decision trees are analyzed. Factoring in the cost of features

into the model which learns to rank is a new area of research. We take into account

the feature costs by injecting them into the loss function which the decision tree

minimizes at each node. We analyze how well traditional point-wise techniques fit

this new model in regards to three binary metrics.

In Chapter 7, we review the contributions and implications of this thesis. We indicate

in what areas further research would benefit this field of study.

1.5 Notation and Setup

We will treat web-search ranking (WSR) as a plain regression problem: given an

input variable, compute a real-valued output. The input to the classifier consists of

two parts, a training set and one or more test sets. These sets contain a list of inputs,

or data points. The classifier builds a model from the data points in the training set.

The purpose of the classifier is to best guess the labels of the data points in the test

sets by learning from the training set.

A data point in WSR are query-document pairs. A document xi is a list of f features

(also called attributes). We assume each feature j is described by a real-valued num-

ber: xi[j] ∈ Rf . It is common to view the individual documents xi as a vector on some

high dimensional space. These documents are matched with a query qi ∈ R. In the

context of WSR, documents represent a web-site or url, and queries serve as an iden-

tifier for some user defined search string. The label yi indicates some relation of docu-

ment xi to the query qi. The labels are contained in a strict range, yi ∈ {0, 1, 2, 3, 4}.
The labels in the context of WSR indicate how relevant the document is to the query.

A label of 4 indicates ”very relevant” and 0 indicates ”not relevant”. These labels

are typically humanly assigned to the query-document pairs. All together, the input

to the classifier are n data points D = {(x1, q1, y1), . . . , (xn, qn, yn)}. Note that the

labels for the test data are not known, by convention these are assigned to −1.

Point-wise algorithms do not optimize over the queries. That is, we assume all

the data points belong to the same query. Then the notation can be simplified

to D = {(x1, y1), . . . , (xn, yn)}. While the data sets being used do contain multiple

5



queries, ignoring them does not change any of the algorithms. This works because the

relationship between an url and query is integrated into the features. For example,

one feature may indicate how often the query string occurs in the url.

1.6 Decision and Regression Trees

The regression trees used in the algorithms are implemented following a modified

CART (Classification and Regression Trees) [3] algorithm. It builds a regression tree

that minimizes the squared-loss of the labels at each branch (or node) of the tree.

We denote D to be the subset of data points on which the classifier h is trained on.

This squared loss of the labels at a node (also referred to as the impurity of a node)

in the tree is denoted as:

I(D = {(x1, y1), · · · , (xn, yn)}) =
n∑
i=1

(yi − ȳ)2 for ȳ =
1

n

n∑
i=1

y2i (1.1)

At the start, all of the data is sent to the root node. Each node in the tree partitions

the data D in that node into two groups DL ⊂ D and DR ⊂ D such that DL∪DR = D

and DL ∩DR = ∅. The data is partitioned by choosing a feature f and split value v.

Given these two values, the partitions are formed:

DL = {(xi, yi) ∈ D : xi[f ] ≤ v} (1.2)

and

DR = {(xi, yi) ∈ D : xi[f ] > v} (1.3)

The feature f and value v are chosen such that the total loss I(DL) + I(DR) is

minimized. The algorithm recursively repeats on the two children nodes which contain

DL and DR until either of two base cases are met: 1) depth of the node reached a

terminal limit; 2) cardinality of the labels yi in D is 1. Computing the split point

v for a feature f which minimizes the total squared loss can be computed efficiently

with dynamic programming; the pseudocode is in Appendix A.
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Each node of the decision tree picks uniformly at random k features to consider

splitting on. We will use the terms decision tree and regression tree interchangeably.

Our implementation of CART takes three parameters:

1. A set of data points S. A subset D ⊂ S will be used to build the tree, the rest

will be used to get predictions on. Passing all of the data to the tree (rather

than only the training set) eliminates the need to keep the trees in memory,

which is not neccessary for our evaluation studies.

2. A number k that indicates how many features to consider when making a split.

3. A number d that indicates the maximum depth of the tree; d = 1 indicates a

tree with only one node, and d =∞ is a full tree.

Given these three parameters, our implementation of Cart considers all classifiers h

of depth exactly d and split value k and returns one that approximately minimizes

the loss function in equation 1.4.

Lh(D) =

|D|∑
xi,yi∈D

(h(xi)− yi)2 (1.4)

Our CART trees do not prune after building.

A single decision tree classifier is referred to as h(·). A single decision tree is usually

not a powerful enough predictive model. Instead, algorithms that use ensembles of

trees tend to generalize much better to the validation and training sets. A classifier

that is built of many trees is denoted as H(·).

1.7 Data Sets

We used two real world data sets to evaluate our algorithms. One set of data sets

is from the Yahoo Learning to Rank Challenge competition 2. The other is from

2available at http://learningtorankchallenge.yahoo.com.
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Yahoo LTRC MSLR MQ2007 Folds
TRAIN Set 1 Set 2 F1 F2 F3 F4 F5

# Features 700 700 136 136 136 136 136
# Documents 473134 34815 723412 716683 719111 718768 722602

# Queries 19944 1266 6000 6000 6000 6000 6000
Avg # Doc per Query 22.723 26.5 119.569 118.447 118.852 118.795 119.434

% Features Missing 0.68178 0.67399 0.37228 0.37331 0.37263 0.37163 0.37282

TEST Set 1 Set 2 F1 F2 F3 F4 F5
# Documents 165660 103174 241521 241988 239093 242331 235259

# Queries 6983 3798 2000 2000 2000 2000 2000
Avg # Doc per Query 22.723 26.165 119.761 119.994 118.547 120.167 116.6295

% Features Missing 0.68113 0.67378 0.37368 0.36901 0.37578 0.37204 0.37215

Table 1.1: Statistics of the Yahoo Competition and Microsoft LETOR data sets.

the MQ2007 LETOR data sets, provided by Microsoft 3. The LETOR data sets are

well known in the community and have many public baselines to compare with. The

statistics of these two data sets are shown in table 1. The distributions of labels on

the data sets are shown in Figure 1.1. Note that the size of the LETOR data sets are

much larger than the two Yahoo data sets, and that the majority of documents are

irrelevant - we denote irrelevant as having label 0, 1, or 2.

The Yahoo Learning to Rank Challenge (Yahoo LTRC) data comprises of two data

sets; Yahoo Set 1 is much larger than Yahoo Set 2. Our implementation of Cart

has not been extensively fine tuned and profiled, so running experiments on all of

Yahoo Set 1 and the LETOR sets take a prohibitively long amount of time. To

accommodate for this, some of the illustrative experiments runs ran on either Yahoo

Set 2 or a subset of Set 1 that is of the same size of Set 2. It will be indicated when

the subset of Set 1 was used. The Microsoft data comprises of five folds on a single

data set. Each of the five folds, and both yahoo data sets, are partitioned into three

splits: a train split, validation split, and test split.

The Yahoo data sets were used in a 2010 web search ranking competition. This com-

petition helps us show that point-wise algorithms can prove competitive against more

complicated pairwise and list-wise algorithms. The two data sets in the competition

represent data from different countries. This setup is good for running experiments

on transfer learning.

3available at http://research.microsoft.com/en-us/um/beijing/projects/letor/.
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(a) Yahoo Set 1

(b) Yahoo Set 2 (c) Each Microsoft LETOR fold

Figure 1.1: Grade distribution on data sets.

1.8 Performance Metrics

There are three metrics we will judge our algorithms by: Root Mean Squared Error

(RMSE), Normalized Discounted Cumulative Gain (NDCG) [19], and Expected Re-

ciprocal Rank (ERR) [11]. Suppose the true labels of each data point xi is yi, and

the predicted label by a classifier is h(xi).

RMSE is the simplest metric. We use it because it is a very common and well

understood measurement of error. In our case it evaluates to

RMSE =
1

n

√√√√ n∑
i=1

(h(xi)− yi)2. (1.5)

RMSE encapsulates how far off on average a prediction is; lower RMSE scores indicate

a better learner.
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NDCG and ERR take into account the ranking or relative ordering of the documents

rather than the classifier’s strict output value. The top documents contribute more

to the score; in most ranking contexts, correctly ranking the top ten documents is

much more important than correctly ranking the last ten. We denote the ordering

of documents xi from classifier h by πh; if a classifier h ranks the fourth document

as the second most relevant, then πh(2) = 4. For point-wise algorithms, the ranking

is calculated by simply sorting the documents xi by h(xi) in descending order. The

documents grouped within the same query are ranked and measured by NDCG and

ERR; the final value is the averaged query score. NDCG and ERR encapsulate how

well a classifier’s ranking is to the true or best ranking; higher NDCG and ERR scores

indicate a better learner.

The NDCG of a query is defined as

NDCGπ =
1

Z

m∑
i=1

2yπ(i) − 1

log(1 + i)
(1.6)

with Z being the normalizing factor - the score of the best ordering. We use the

NDCG@10, which only scores the top ten documents (i.e m = 10). If a query has no

relevant documents, it is by default given a NDCG score of 1
2
.

The Expected Reciprocal Rank for the ordering of a query with m documents is

defined as

ERRπ =
m∑
i=1

1

i
R(yπ(i))

i−1∏
j=1

(1−R(yπ(j))) (1.7)

with R(y) = 2y−1
16

. ERR models the expected payoff: the probability that a web-

surfer is satisfied with document j is probability s/he is not satisfied with documents

1, 2...j − 1 and satsified with document j = R(yπ(j)). As such, summing up the

discounted payoff of each of the m documents then averaging calculates the expected

payoff. ERR applies a stronger discount factor to documents lower on the ranking

list, so it is not necessary to insert in a cutoff point like with NDCG.
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Chapter 2

Traditional Point-wise Algorithms

There are two point-wise algorithms that have proven successful particularly in the

field of web-search ranking: Random Forests [5] and Gradient Boosted Regression

Trees [16]. In fact, all of the top placed teams in the recent Yahoo Learning to Rank

Competition used variants of either of these two algorithms with Decision Trees4.

Despite the fact that Random Forests have been used by some competitors in the

competition, there have not been many research papers using Random Forests for

Learning to Rank. We will analyze how Random Forests compares against Gradi-

ent Boosting, and show augmentations to the GBRT algorithm that increases perfor-

mance. Then we introduce an algorithm that combines Random Forests and Gradient

Boosted Regression Trees.

2.1 Random Forest

Random Forests (RF) combine two ideas to make a strong classifier: bagging [4] and

sampling features.

Bagging (ie Bootstrap Aggregating) averages together many different decision trees.

The average of a set of decision trees is a set of predictions, where each prediction

is the average predicted value from each of the decision trees. When bagging, each

of the decision tree gets a randomly chosen list of n = |D| data points to train on.

These data points are sampled uniformly from D with replacement, so each classifier

is slightly different as it is trained on a sample of a common data set. Doing this

4see competition proceedings at http://learningtorankchallenge.yahoo.com/workshop.php.
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Algorithm 1 Random Forests

1: Input: data set D = {(x1, y1), . . . , (xn, yn)}
Parameters: Sample amt 0 < K ≤ f , Number of trees M

2: for t = 1 to M do
3: Dt ⊆ D # Sample with replacement, |Dt| = |D|.
4: ht = Cart(Dt,K,∞) # Build full (d = ∞) Cart with K ≤ f randomly chosen features at

each split.
5: end for
6: h(·) = 1

M

∑M
t=1 ht(·).

reduces variance and helps against the problem of over-fitting to the training set.

The more trees that are averaged, the better the final classifier will be. After a

certain point, averaging more trees will not significantly increase accuracy since the

predictions will converge to some value.

Sampling features adds an additional controlled layer of variance to bagging. At each

node of the decision tree, only k uniformly randomly features are chosen to consider

splitting on. Each decision tree is built to full (i.e. without a depth limit). The

algorithm for Random Forests is shown in Algorithm 1. Note that the construction

of each regression tree is independent of the others, making this algorithm easily

parallelized; the algorithm scales very well as the number of processors increases.

For RF we simply set k = 0.1f . Performing cross validation on the Yahoo data sets

yielded optimal k values close to this rule of thumb.

2.2 Treating Missing Features

Table 1.1 Shows that web-search ranking data sets are filled with missing features.

There could be several reasons why the value of a feature may be missing: the feature

has been computed yet, it is not applicable for the document, computations timed

out, became outdated, etc. There is not much literature on how is best to handle

these missing features. We explore different ways to handle these missing features:

the missing features can either be ignored, or a value can be guessed for the missing

feature. We explore six different approaches:

1. Fill in missing features with 0 (or −∞).

12



2. Fill in missing features with 1 (or +∞).

3. Fill in missing features with the mean value of that feature .

4. Fill in missing features with the median value of that feature.

5. Iteratively predict the missing features.

6. Ignore the missing feature and make a 3-way split in the node.

The values of the features on the Yahoo and LETOR data sets have been normalized

to be between 0 and 1, exclusive. Thus setting a feature to 0 effectively always falls

into the left subtree. Similarly setting it to 1 always falls into the right subtree.

The mean and median values are calculated for each feature that has a value. That

calculated value is substituted in for each missing feature.

We can also build a model to predict the missing values. A model is built from the

known features, to predict a particular missing feature. All the features are predicted

with this model. Once this is done, the predicted features can be integrated into the

model. This new model then predicts the original missing features, and the predictions

are again integrated in to a new model. This process repeats until convergence; the

predictions for the features do not changed significantly during consecutive iterations.

The pseudo-code for applying this technique is shown in in Algorithm 2.

Recall that decision trees typically have two splits at a node (DL for data points

xi[f ] ≤ v, and DR for data points xi[f ] > v). We experiment with adding another

split to make a three-way split; the additional node contains data points DM whose

value is missing for the chosen feature. We denote missing features as having the

value -1:

DM = {(xi, yi) ∈ D : xi[f ] = −1} (2.1)

The results on the two Yahoo data sets are summarized in Table 2.1. The table shows

that splitting three ways or predicting the missing features does not work well for web-

search data. Predictions were performed separately on the training and validation

sets on Yahoo Set 2; it was not run on the test set of Set 2 or any of Set 1 because the

data sets were large enough that the algorithm took a prohibitively long to converge,

given our implementation of decision trees. The table also shows that substituting 0

13



Algorithm 2 Predict Missing Features

Input: data set D = {(x1, y1), . . . , (xn, yn)}
Parameters: Sample amt 0 < K ≤ f , Number of trees M
Require: Denote document i is missing feature F by xi[f ] = −1
M ← {(i, f) : xi[f ] = −1∀i, f} # record which documents xi has feature f missing for all features
repeat

for F = 1 to f do
for i = 1 to n do
x̂i ← {j|xi[j] 6= −1} # record which features aren’t missing for document i

end for
c← x̂0 ∩ x̂1 ∩ ... ∩ x̂n # get set of features that every document has in common
for i = 1 to n do
x̄i ← [xi[k]|k ∈ c] # reduce feature vector to only known features

end for
H(·)← RF ({(x̄i, xi[F ])∀i|xi[F ] 6= −1}, k,M,∞) # Build model on all known features where
label is value of feature F
for i = 1 to n do

if (i, F ) ∈M then
xi[F ] ← H(xi) # Use model to predict feature F on documents with x[F] originally
missing

end if
end for

end for
until convergence # quit when H does not change during subsequent iterations

for missing values tends to yield the best performance. Experiments on the Microsoft

LETOR data sets gave similar results. Based on this conclusion, substituting missing

values for 0 is the approach we have taken for the remainder of the experiments.

2.3 Gradient Boosted Regression Trees

Gradient Boosted Regression Trees (GBRT) is another Machine Learning technique

that has proven to be very powerful in the field of web-search ranking. All of the

top competitors in the Yahoo Learning to Rank Challenge competition used some

variation of GBRT . Similar to Random Forests, GBRT builds a classifier based on

many decision trees. But unlike RF which can build many full trees (d = ∞) in

parallel, GBRT builds many small trees incrementally with high bias. These weak

learners are optimized to iteratively reduce the training rmse error. The classifier is

not the average prediction as with Random Forests; instead it is the total (ie sum)

prediction, while taking into account a learning rate.
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Y! Set 1 Valid Test
approach RMSE NDCG ERR RMSE NDCG ERR

0 0.76236 0.77136 0.4575 0.74791 0.77733 0.46304
1 0.76311 0.77147 0.4574 0.74979 0.77643 0.46247

mean 0.77634 0.769 0.45553 0.78517 0.77026 0.45989
median 0.7853 0.76638 0.45522 0.79631 0.76899 0.45955

3-way split 0.76433 0.77005 0.45694 0.75089 0.77515 0.46241

Y! Set 2 Valid Test
0 0.62621 0.77620 0.45062 0.63529 0.77447 0.46194
1 0.62643 0.77494 0.45087 0.63612 0.77232 0.46187

mean 0.63039 0.77408 0.45062 0.64761 0.77386 0.46207
median 0.63933 0.77076 0.45020 0.65247 0.77207 0.46198

3-way split 0.63162 0.76966 0.44958 0.64066 0.76755 0.45911
predict 0.65470 0.75560 0.44497 0.76598 0.70330 0.43697

Table 2.1: Comparison of various methods to treat missing values on the Yahoo data sets.

We denote the boosted classifier by T which is comprised of many weak learners

hi. Suppose we have a loss function L(T (x1)...T (xn)) which reaches its minimum if

T (xi) = yi for all xi. Each successive tree hi+1 is built to reduce the regression error

of the previous trees T =
∑|T |

i=1 αhi.

We use the loss function:

L = L(T (x1)...T (xn)) =
1

2

|T |∑
xi,yi∈T

(T (xi)− yi)2 (2.2)

GBRT updates the instance space x1...xn with an approximated gradient step in

equation 2.3. Here α denotes the learning rate.

T (xi)← T (xi)− α
∂L

∂T (xi)
(2.3)

Let the gradient ∂L
∂T (xi)

by denoted as ri. To take the gradient step, the weak learner

h added to T must be the tree that minimizes:

ht ≈ argmin
h

n∑
i=1

(h(xi)− ri)2 (2.4)
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Algorithm 3 Gradient Boosted Regression Trees (Squared Loss)

Input: data set D = {(x1, y1), . . . , (xn, yn)}, Parameters: α, MB , d
Initialization: ri = yi for i = 1 to n
for t = 1 to MB do
Tt ← Cart((x1, r1), . . . , (xn, rn), f, d) #Build Cart of depth d, with all f features and targets
{ri}
for i = 1 to n do
ri ← ri − αTt(xi) #Update the residual of each sample xi.

end for
end for
H(·) = α

∑MB

t=1 Tt(·). #Combine the Regression Trees T1, . . . , TM .

Our implementation of GBRT uses the Cart algorithm to find the regression tree ht

in each iteration. The pseudocode for the GBRT is described in Algorithm 3. In

essence, each regression tree is build to model the residuals of the classifier, which is

ri = yi − T (xi). The GBRT algorithm has three parameters:

1. Depth d to control the strength of the weak learners.

2. Learning rate α which controls the magnitude of each gradient step.

3. Iterations or trees MB which dictates how many gradient steps to perform.

We used trees with depth d = 4 (8 terminal nodes), which has been shown to work

well for boosting [29]. The number of iterations (or trees in the classifier) MB and

learning rate α are picked using cross validation. After a certain amount of boosting

iterations, the classifier starts to over-fit to the training data or accuracy converges

for the testing set. For the learning rate, smaller values of α tend to provide better

accuracy but will require more trees. We found MB = 1000 to be a good amount for

Yahoo Set 2.

Figure 2.1 shows how Random Forests compares to Gradient Boosted Regression

Trees with various learning rates. The bold black line represents Random Forests.

For RF we chose the parameters MF = 10000 and K = 70. Regardless of the learning

rate, Random Forests always performed better than GBRT in regards to each metric.

We do not expect lower learning rates to show significantly different behavior, and

larger learning rates would just over-fit quicker. Note that because of its highly

parallel nature, Random Forests can be computed much faster than GBRT (as shown
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Figure 2.1: Results of GBRT compared to Random Forests on the Yahoo Set 2.

in Table 4). This figure helps show that Random Forest can be a strong alternative

to GBRT.

2.3.1 Stochastic GBRT

Soon after Gradient Boosted Decision Trees was published, the inventor published

a minor modification to the algorithm which reportedly offered a significant accu-

racy increase. This algorithm is called Stocastic Gradient Boosted Decision Trees [?]

(SGBDT/SGBRT). Similiar to Random Forests, SGBRT incorporates randomization

as an integral part to the classifier. With GBRT, each classifier h is trained on a the

full training set D. In SGBRT, each classifier h is trained on a random subsample of

the training data, Ds ⊂ D. The data is subsampled without replacement. We denote

the sample rate as s; s = 0.2 indicates each tree in SGBRT sampled 20% from the

training set.

Training on a subset of the data obviously leads to training-time boost, but it has

been shown that it also increases accuracy. Friedman indicated that a sample rate

17



s = 0.40 had the best results on the data sets tested. Table ?? shows how SGBRT

performed on Yahoo Set 2 with various sampling rates. The table shows that s = .50

performed the best on the test set, but lower sampling rates still had competitive

results. In fact, s = 0.20 performed better than GBRT (s = 1.00).

Yahoo LTRC Set 2 Val Yahoo LTRC Set 2 Test
S RMSE ERR NDCG RMSE ERR NDCG

0.10 0.63237 0.45054 0.76886 0.64067 0.45856 0.76602
0.20 0.63082 0.45109 0.77042 0.64085 0.45908 0.76525
0.30 0.63130 0.44962 0.76857 0.63998 0.45800 0.76562
0.40 0.63085 0.45104 0.77011 0.64035 0.45791 0.76640
0.50 0.63149 0.45022 0.77010 0.63971 0.45732 0.76660
0.60 0.63499 0.44943 0.76761 0.64490 0.45742 0.76223
0.70 0.63455 0.44981 0.76813 0.64506 0.45639 0.76153
0.80 0.63533 0.44796 0.76670 0.64408 0.45681 0.76230
0.90 0.63296 0.44909 0.76771 0.64370 0.45717 0.76355
1.00 0.63202 0.45042 0.77188 0.64068 0.45670 0.76495

Table 2.2: Performance of SGBRT on Yahoo Set 2.

2.3.2 k-Stochastic GBRT

Here we introduce k-Stochastic Gradient Boosted Regression Trees (kSGBRT), a

novel approach to Gradient Boosting. Traditionally, boosted classifiers evaluate all

f features to split on, and chooses the feature that reduces a loss function; usually

entropy for decision trees [26], and squared loss for regression trees. With kSGBRT,

each weak classifier only evaluates k randomly chosen features at each split point.

There are two intuitive advantages for not evaluating every feature:

1. Faster training time.

2. Helps overcome myopic nature of CART algorithm.

The majority of of the computations involved for constructing a decision trees lies

in finding the best feature and value to split each node on. Certainly if less features

are considered, it takes less time to build the tree. The relation between the running

time for various k values are shown in Table 2.3. Another aspect kSGBRT improves
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on is myopia. Due to relations of attributes (or features), the best way to split on

a node for the most information gain may depend on more than one feature. Since

most decision tree algorithms only consider splitting on one attribute at a time, the

algorithm is myopic if there are such interactions between the attributes [20]. Only

considering a subset of features at each split can help utilize any intrinsic relations

between attributes. An example for which greedy splits results in a sub-optimal tree

is the XOR setup.

These incentives would not be worth it if kSGBRT significantly reduced accuracy.

Figure 2.2 shows how kSGBRT with various low k values compares against GBRT

with a strong step size. The black line represents GBRT, ie k = f = 700; the other

lines have relatively low k values. The lowest k value k = 20 which considers ≈ 3%

of the features, lags behind GBRT only in regards to NDCG. Yet k = 20 and all the

other SGBRT configurations performs well in regards to ERR.

These plots also show that k-stochastic boosting helps prevent against over-fitting.

Notice that after M = 500, GBRT starts to over-fit in regards to NDCG and ERR.

As the accuracy for GBRT goes down, the accuracy for k ≥ 40 remains relatively

constant. This is possibly explained by the myopic nature of GBRT.
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Figure 2.2: Results of kSGBRT on Yahoo Set 2 with various k values.
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Table 2.3 compares the running time and accuracy of kSGBRT to GBRT. The runs

only used one processor. The accuracy numbers reported on the test set are picked in

correlation to the highest validation score for each metric. kSGBRT with K = 100,

which uses approximately 14% of the features, had the best results on the test set.

It is surprising that GBRT (i.e. the run that used all the features, k = 700) did not

outperform kSGBRT in regards to any of the metrics on the test set for ERR, even

when GBRT performed best on validation. This shows that GBRT and kSGBRT

perform on par with one another.

Not only does kSGBRT provide good results compared to traditional GBRT, it also

takes much less time to train. However, the training time does not scale proportionally

to k. We attribute this to amount of I/O the boosting algorithm requires.

Run-Time Yahoo LTRC Set 2 Val Yahoo LTRC Set 2 Test
K (mins) RMSE ERR NDCG RMSE ERR NDCG
10 65 0.63304 0.45072 0.76926 0.64289 0.45841 0.76280
20 76 0.63159 0.44860 0.76835 0.64168 0.45754 0.76249
40 97 0.63229 0.45051 0.76838 0.64139 0.45718 0.76488
60 117 0.63105 0.44913 0.76892 0.64139 0.45868 0.76624
80 131 0.63161 0.44878 0.76915 0.64101 0.45857 0.76461
100 153 0.63124 0.45050 0.76903 0.63987 0.45933 0.76501
120 173 0.63066 0.45050 0.77082 0.64077 0.45719 0.76413
140 187 0.62968 0.45110 0.77122 0.63926 0.45914 0.76717
160 206 0.63159 0.45146 0.76985 0.64082 0.45793 0.76540
700 456 0.63202 0.45042 0.77188 0.64068 0.45670 0.76495

Table 2.3: Run-Times and Performance of kSGBRT using one processor.

2.3.3 Averaged k-Stochastic GBRT

Here we discuss averaging or several runs of k-stochastic boosted classifiers. Remem-

ber that Random Forests function on the ideas of bagging and feature sampling.

Sampling the features serves to control the variation of each decision tree. We can

interpret the k value for kSGBRT to serve the same purpose. Bagging does not fit

into the context of kSGBRT as the training data is not sampled. However, we can

still average together many runs with the same k value. We denote the number of

runs to be averaged as b. The weak law of large numbers says that this classifier
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Run-Time Yahoo LTRC Set 2 Val Yahoo LTRC Set 2 Test
K B (mins) RMSE ERR NDCG RMSE ERR NDCG
10 1 61 0.63503 0.44884 0.76693 0.64558 0.45729 0.76237
10 2 96 0.63142 0.44902 0.76791 0.64015 0.45892 0.76519
10 5 198 0.63026 0.45062 0.77049 0.63915 0.45971 0.76664
10 10 359 0.62977 0.45183 0.77081 0.63850 0.46043 0.76795
10 20 677 0.62930 0.45151 0.77207 0.63826 0.46052 0.76856
10 40 1326 0.62924 0.45170 0.77279 0.63806 0.46014 0.76818
10 80 2546 0.63095 0.45051 0.77078 0.64044 0.46032 0.76682
10 100 3535 0.63217 0.44936 0.76969 0.64182 0.46063 0.76653
20 1 67 0.63151 0.44917 0.76852 0.64120 0.45851 0.76469
20 2 119 0.63086 0.45091 0.77013 0.63953 0.45963 0.76612
20 5 241 0.62927 0.45098 0.77135 0.63804 0.46001 0.76823
20 10 438 0.62875 0.45091 0.77262 0.63754 0.46005 0.76758
20 20 828 0.62863 0.45157 0.77253 0.63728 0.46043 0.76843
20 40 1565 0.62847 0.45188 0.77296 0.63743 0.46023 0.76793
20 80 3135 0.63029 0.45010 0.77122 0.64011 0.46096 0.76669
20 100 3839 0.63131 0.44956 0.77022 0.64120 0.46054 0.76580
40 1 96 0.63172 0.44918 0.76694 0.64112 0.45747 0.76562
40 2 158 0.62961 0.45116 0.77147 0.63914 0.45872 0.76725
40 5 326 0.62809 0.45195 0.77240 0.63738 0.45935 0.76852
40 10 592 0.62837 0.45191 0.77175 0.63670 0.45983 0.76843
40 20 1105 0.62804 0.45228 0.77308 0.63675 0.45960 0.76907
40 40 2141 0.62851 0.45135 0.77192 0.63779 0.45984 0.76837
40 80 4234 0.63108 0.44966 0.77056 0.64112 0.46071 0.76731
40 100 5623 0.63219 0.44942 0.77018 0.64239 0.46048 0.76668
700 0.63202 0.45042 0.77188 0.64068 0.45670 0.76495

Table 2.4: Avg kSGBRT with various k and b.

that is the average of b classifiers with small variations will converge to the expected

value as b → ∞. We call this classifier that averages many runs of kSGBRT as Avg

kSGBRT.

Table 2.4 summarizes the run-times and accuracy for Norm kSGBRT on Yahoo Set

2. The configurations of the runs were b = {1, 2, 5, 10, 20, 40, 80, 100} and k =

{10, 20, 40}. The run-times reported are using one processor. We observed that

averaging 5 or more times b ≥ 5 tends to have significantly better performance than

b < 5. The table shows that k = 40, b = 20 performed the best; and that setting

outperformed GBRT and kSGBRT.
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2.4 Initialized Gradient Boosted Regression Trees

We propose another novel augmentation to GBRT, called Initialized Gradient Boosted

Regression Trees (IGBRT). The traditional GBRT algorithm does not initialize the

initial classifier to any useful value: T (xi) = 0. Since our loss function from 2.2 is

concave, the gradient steps will step towards the global minimum, regardless of what

each T (xi) starts off as. However, our gradient step procedure only approximates the

gradient step. A true gradient step entails a very small learning rate, which requires

an impractical amount of iterations or trees to reach the convergent global minimum.

For a ”smart“ starting point, IGBRT initializes the GBRT classifier with the results

of Random Forests. There are a couple of reasons why Random Forests would be a

good starting point:

1. RF has been shown to be an accurate classifier.

2. RF parallelizes well and as such does not require much time to train, given

adequate resources.

3. RF is resistant against over-fitting; increasing the iterations M will not lower

performance.

4. RF in a sense only has one true parameter (k), which can be set using a rule of

thumb. As such RF does not require any parameter tuning.

The only change to the GBRT algorithm is what the initial boosted classifier predicts

T (xi). We set each T (xi) to be the prediction of Random Forests for the data point

xi. We let k = 10%f , which is k = 70 for the Yahoo data sets. The pseudocode for

IGBRT is shown in Algorithm 4.

Figure 2.3 shows how IGBRT (initialized with RF,MF = 10000) compares to Random

Forests on Yahoo Set 2. The bold black line represents Random Forests. Remember

that on this data set, Random Forests have been shown to outperform all settings

of GBRT. The various traces are IGBRT initialized with the Random Forest output.

The figure shows that IGBRT with any configuration outperforms Random Forests in

regards to RMSE, and NDCG. For ERR, there is a brief range for α = 0.1 where RF

performs better; this may indicate that the learning rate is too strong for the ERR
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Algorithm 4 Initialized Gradient Boosted Regression Trees (Squared Loss)

Input: data set D = {(x1, y1), . . . , (xn, yn)}, Parameters: α, M , d, KRF , MRF

F ← RandomForests(D,KRF ,MRF )
Initialization: ri = yi − F (xi) for i = 1 to n
for t = 1 to M do
Tt ← Cart({(x1, r1), . . . , (xn, rn)}, f, d) #Build Cart of depth d, with all f features, and targets
{ri}
for i = 1 to n do
ri ← ri − αTt(xi) #Update the residual of each sample xi.

end for
end for
H(·) = F (·)+α

∑T
t=1 Tt(·). #Combine the Regression Trees T1, . . . , TM with the Random Forests

F .

metric. However outside that range for α = 0.1, and any range for NDCG, IGBRT

beats RF.
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Figure 2.3: Results of IGBRT on Yahoo Set 2 with various learning rates.
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Chapter 3

Classification Paradigm for

Regression Algorithms

The algorithms thus far have used regression to calculate the relevance of a document.

Recently is has been shown that approximating the relevance of a document using

classification can lead to even better performance [21]. We follow their procedures to

see if we can produce similar results on the Yahoo Challenge and Microsoft LETOR

data sets. Note that it has been proven that both the ERR error [24] and NDCG

error [21] is bounded by the classification error. Thus the classification error (number

of misclassified documents) can be used as a surrogate loss function to minimize.

3.1 Description

Remember that in the web-search ranking setup, labels have relevances yi ∈ {0, 1, 2, 3, 4}.
The algorithms so far have learned a regressor to approximate the relevance: T (xi) ≈
yi. In a classification setting, we wish to learn the probability that a document xi is

of a certain class, P (yi = c). We denote this as Pc(xi), for c ∈ {0, 1, 2, 3, 4}. Given

these 5 probabilities, a final score Si can be describe the relative relevance of the

document:

Si =
5∑
c=0

Pc(xi) ∗ F (c) (3.1)

with F (c) being a function that weights relevance c. Using F (c) = c becomes Ex-

pected Relevance. Since ERR and NDCG only evaluate the ordering of the data

points, any monotone increasing function of F (c) can be used.
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Algorithm 5 Gradient Boosted Regression Trees Using Classification

Input: data set D = {(x1, y1), . . . , (xn, yn)}, Parameters: α, M , d, W
Initialization: ri,c = (yi ≤ c) for i = 1 to n, c = 0 to 4
for t = 1 to M do

for c = 0 to 4 do
Tt,c ← Cart((x1, r1,c), . . . , (xn, rn,c), f, d) #Build Cart of depth d, with all f features and
targets {ri}
for i = 1 to n do
ri,c ← ri,c − αTt,c(xi) #Update the residual of each sample xi.

end for
end for

end for
Pc(·) = α

∑T
t=1 Tt,c(·). # Pc(·) models if the relevance of a doc. is less than c

H(·) = α
∑4

c=0W [c] ∗ (Pc(·) − Pc−1(·)). # Subtract the cumulative probabilities to get actual
probabilities, multiply them by a weight vector W

To calculate each Pc(xi) value, the inventors of this technique take advantage of the

natural ordering of the relevance labels and generate four binary classification prob-

lems. Each binary problem c predicts whether or not the relevance of document xi

is less than or equal to c. We denote a classifier which models this cumulative prob-

ability P (yi ≤ c) as Tc(·). This effectively makes four binary classification problems,

where the labels have been transformed to 0 or 1; the output of the classifier can be

interpreted as the probability the label is 1. Given these four cumulative probabilities,

the original probabilities Pc(xi) can be computed:

Prob(yi = c) = Pc(xi) = Prob(yi ≤ c)− Prob(yi ≤ c− 1) (3.2)

Pc(xi) = Tc(xi)− Tc−1(xi) (3.3)

with T4(·) = 1 and T−1(·) = 0. Algorithm 5 shows the pseudocode for gradient

boosting with classification. The main change is that four classifiers need to be

trained, each with the labels ri,c = yi ≤ c. Given the predictions from these classifiers

which represent the cumulative probabilities, the actual probabilities can be extracted.

Then the final prediction is a weighting of the actual probabilities.

3.2 Scoring Functions

We explored three fixed scoring functions:
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1. F (c) = c (Expected Relevance)

2. F (c) = c2

3. F (c) = 2c

These three scoring functions are compared in Table 3.1. The classifier used was

Random Forests with k = 70 and MF = 1000. Intuitively, one may think the scoring

methods 2c and c2 would work better than the Expected Relevance as they place

higher importance on labels with high relevance, and NDCG and ERR are effected

the most by the top relevant documents. However, the Expected Relevance scoring

scheme worked the best on every metric on both data sets. Note that since the

other scoring methods distort the predicted label in favor of widening the relevance

gaps, the RMSE (ie classification error) metric is not comparable across these scoring

functions.

Scoring Yahoo LTRC Set 2 Val Yahoo LTRC Set 2 Test
Function RMSE ERR NDCG RMSE ERR NDCG
F (c) = c 0.62900 0.45245 0.77631 0.63736 0.46113 0.77157
F (c) = c2 1.67218 0.44724 0.76118 1.71985 0.45884 0.75979
F (c) = 2c 2.00306 0.44620 0.76131 2.03567 0.45884 0.76069

Scoring Yahoo LTRC Set 1 Val Yahoo LTRC Set 1 Test
Function RMSE ERR NDCG RMSE ERR NDCG
F (c) = c 0.76318 0.45679 0.77175 0.74884 0.46280 0.77705
F (c) = c2 2.03004 0.45639 0.76672 2.04136 0.46219 0.77204
F (c) = 2c 2.28912 0.45633 0.76594 2.29483 0.46174 0.77178

Table 3.1: Comparing various scoring functions for classification.

Note that output of F (c) = c is just the product of two row vectors, one of them

having fixed values and the other representing the 5 cumulative probabilities. When

Expected Relevance is used, the scoring function Si becomes

Si =
4∑
c=0

c ∗ Pc(xi) (3.4)

This can be viewed as multiplying the vector containing the cumulative probabilities

with certain weights:
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Si =
4∑
c=0

c ∗ Pc(xi)

=
4∑
c=0

c ∗ (Tc(xi)− Tc−1(xi))

= 0(T0(xi)− 0) + 1(T1(xi)− T0(xi)) + 2(T2(xi)− T1(xi)) + 3(T3(xi)− T2(xi)) +

4(T4(xi)− T3(xi))

= −1T0(xi) +−1T1(xi) +−1T2(xi) +−1T3(xi) + 4

Thus the score for expected relevance can be viewed as the product of two vectors:

Si = wThi (3.5)

with

wT =
[
−1 −1 −1 −1 4

]
(3.6)

and

hT
i =

[
T0(xi) T1(xi) T2(xi) T3(xi) 1

]
(3.7)

Given this framework, the weight vector w that minimizes the squared error from a

training set

Error =
n∑
i=1

(wThi − yi)2 (3.8)

can be calculated simply by performing Ordinary Least Squares. Ordinary Least

Squares solves for the unknown parameters in a linear regression model by reducing

the squared error. We solved for this weight vector using the data points in the

training and validations sets on the Yahoo data sets with Random Forests (k =

70,MF = 1000); they are shown in Table 3.2. Surprisingly, the derived weight vectors

which minimize the classification error on the training and validation sets yield very

similar weights to Expected Relevance.
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Yahoo Set input OLS derived weight vector
1 Training [-1.1660 -1.2503 -1.1383 -1.0671 4.4104]
1 Validation [-1.1701 -0.9857 -1.0417 -1.0594 4.1269]
1 Training+Val [-1.1528 -1.1804 -1.0710 -1.0577 4.2854]
2 Training [-1.1793 -1.2658 -1.2370 -0.9097 4.3323]
2 Validation [-1.1753 -1.2546 -1.2212 -0.9157 4.3151]
2 Training+Val [-1.1926 -1.0391 -0.9726 -1.1955 4.2854]

Expected Relevance [-1 -1 -1 -1 4]

Table 3.2: Weight Vectors for classification derived from OLS on various data sets.

Table 3.3 compares the accuracy results using the scores from weight vectors calcu-

lated by OLS on training and/or validation sets against Expected Relevance.

Weight Yahoo LTRC Set 2 Val Yahoo LTRC Set 2 Test
Vector RMSE ERR NDCG RMSE ERR NDCG

Expected Relevance 0.62900 0.45245 0.77631 0.63736 0.46113 0.77157
OLS on training 0.63144 0.45205 0.77572 0.63972 0.46115 0.77136

OLS on validation 0.62772 0.45238 0.77653 0.63585 0.46112 0.77258
OLS on training+val 0.62911 0.45232 0.77612 0.63727 0.46123 0.77144

Weight Yahoo LTRC Set 1 Val Yahoo LTRC Set 1 Test
Vector RMSE ERR NDCG RMSE ERR NDCG

Expected Relevance 0.76318 0.45679 0.77175 0.74884 0.46280 0.77705
OLS on training 0.76463 0.45659 0.77151 0.75028 0.46275 0.77675

OLS on validation 0.76102 0.45669 0.77138 0.74670 0.46269 0.77696
OLS on training+val 0.76417 0.45663 0.77150 0.74981 0.46278 0.77676

Table 3.3: Expected Relevance vs Ordinary Least Squares.

On Yahoo Set 2, the best performer in regards to each metric varies. Only the scoring

function from OLS using the training set did not perform the best in regards to any

metric. The scores are for the most part very similar; the performance gains from

choosing a scoring scheme other than Expected Relevance may not be significant.

On Set 1, Expected Relevance scores the best on every metric except RMSE. This is

to be expected as OLS by definition chooses the weight vector which minimizes the

squared regression error, and thus the RMSE. Remember that is has been proven that

the ERR and NDCG is bounded by the classification error. However the results indi-

cate that reducing the RMSE (ie the classification error) by Ordinary Least Squares

will not consistently increase ERR or NDCG. In this case, the derived weight vectors

could be overfitting to the input data.
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We can conclude from these experiments that Expected Relevance is a very good

scoring scheme for translated the probabilities P (yi = c) into a predicted class. Given

the class probabilities (or class cumulative probabilities), doing anything fancier than

Expected Relevance is not likely to reap significant rewards.

30



Chapter 4

Performance Results

This chapter analyzes the run-time performance and accuracy results of the experi-

ments that have been described.

4.1 Run-Time

Table 4.1 summarizes the training times of Random Forests (MF = 1000, 10000),

GBRT (MB = 1000), and IGBRT (initialized with RF, MF = 10000 and boosted

for MB = 500 iterations). They were run on the Yahoo Set 2 data set, using a Intel

Xeon L5520 @ 2.227 GHz computer. The implementations were parallelized; each

algorithm used p = 8 processors. Random Forests has each of the eight processors

build dM/8e trees. GBRT splits the features into partitions and then each processor

can independently calculate the loss for splitting on df/8e features.

With M is fixed, Random Forests runs much faster than GBRT. When MRF =

10000 = 10MB (which is was the parameter for our final classifiers), Random Forests

takes slightly longer to train than GBRT. But remember that, when using rules of

thumb, Random Forests does not require any parameter sweeping. GBRT on the

other hand, may require several runs to find an acceptable MB and d. Classifica-

tion algorithms tend run around four times longer than their respective regression

algorithms; this is to be expected as the classification paradigm converts the regres-

sion problem into four binary classification problems (which ofcourse can be run in

parallel).
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Running Time RF RF GBRT I-GBRT

Iterations M 10000 1000 1000 10000/500

Regression 130m 16m 103m 181m
Classification 768m 77m 388m 842m

Table 4.1: Run-Times for training the learners.

All of the learners can be trained on Yahoo Set 2 using one computer on a single

day. However, our implementation takes much longer for Yahoo Set 1 and the five

Microsoft LETOR Folds.

4.2 Accuracy

Table 4.2 shows how all of the algorithms (Random Forests, Gradient Boosted De-

cision Trees, and Initialized Gradient Boosted Regression Trees) compare with one

another. Performance of a pairwise technique, SVMrank, is also included on the Ya-

hoo data sets. Public LETOR baselines using other algorithms are shown in Table

4.3, these scores are of NDCG@10, the same metric that has been used through out

this thesis.

For Random Forest, we chose parameters M = 10000 and k = 0.1f . For GBRT, we

used 1000 trees with a learning rate α = 0.1. We chose a strong learning rate because

given our implementation of decision trees, smaller learning rates would have to run

for a prohibitively long amount of time on the large data sets Yahoo Set 1 and the

five Microsoft folds. For IGBRT, we initialized from the output of Random Forests,

then boosted for 500 additional iterations with the same parameters as described for

Random Forest and GBRT individually. For SGBRT, we picked s = 0.20 for all the

data sets. k-SGBRT uses k = 0.1f . For Norm k-SGBRT, the same k value was used,

with b = 20 for the Yahoo Set 2, and b = 10 for the rest. Because it takes a very

long time for the Norm k-SGBRT runs to finish, we chose a stronger step size for it,

α = 0.2. The same settings were used for regression and classification. For SVMrank

we trained with the parameter c = 1 (calculated quickly with cross validation), which

indicates the trade-off between the margin and training error.
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The three point-wise algorithms were evaluated using both the traditional regression

framework and the relatively newly introduced classification framework. The algo-

rithms were ran on the Yahoo data sets and five Microsoft Learning to Rank data sets.

Recall their statistics from Table 1.1. Each of the respective learners were trained on

the training set, and evaluated on the validation and test sets. The best metrics on

the validation data sets are reported. The parameters on the test set are from chosen

from the parameters that performed the best on its respective validation set.

The table shows the following trends:

1. Random Forests can outperform GBRT.

2. IGBRT reliably outperformed RF.

3. Classification tended to outperform Regression.

4. IGBRT performed the best on most of the data sets.

In regards to NDCG, Random Forests(R) performed better than GBRT(R) in four of

the seven data sets. With classification, Random Forests(C) only performed better

on three of the data sets. So the classification paradigm seems to work better for

GBRT than RF. With ERR, Random Forests performed much better than GBRT

only under the classification setting; with regression RF outperformed GBRT on

only three of the seven data sets. Even so, these results show that Random Forests

can be a good alternative to GBRT for web-search ranking, especially when using

classification. Random Forests have not been a focus of study on recent research for

learning to rank in the past decade 5; these results show that further research on

Random Forests for Learning to Rank warrants some merit.

IGBRT(R) immediately starts to overfit on Yahoo Set 1, in regards to NDCG. This

shows that IGBRT does not always improve upon RF, so care must be taken when

using this technique. However it did outperform RF on all of the other data sets;

IGBRT did perform the best on six of the seven data sets, in regards to NDCG. With

ERR, GBRT does outperform IGBRT on three of the seven data sets. Norm kSGBRT

5See a large (but not exhaustive) list of papers on Learning to Rank released during the last
decade at http://research.microsoft.com/en-us/um/beijing/projects/letor/paper.aspx.
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with classification, NkSGBRT(C), does not improve over kSGBRT(C) as much as the

regression setting. This can be attributed to the strong step-size we used for Norm

k-SGBRT. SGBRT performed better than k-SGBRT on most of the sets.

Pair-wise and list-wise approaches have become the standard in current learning to

rank models 5. SVMrank is a open-source, pairwise learner that implements support

vector machines. Every point-wise learner we have described performs better than the

pairwise learner SVMrank on six of the seven data sets in regards to both ERR and

NDCG. This helps show that point-wise learners can have comparable performance

to the pair-wise approaches, and possibly list-wise. Unfortunately we were unable to

find any open-source implementations of learning to rank models that use a list-wise

approach.

In the Yahoo Learning to Rank Competition, IGBRT with classification would have

scored eleventh place on Set 1, and with regression would have scored fourth place

on Set 2 6. This is particularly impressive as most of the top competitors used either

the pair-wise or list-wise approach, which tend to learn a classifier that optimizes the

NDCG and/or ERR metrics. The metric that the competition ranked submissions

by was ERR.

Regarding the five LETOR folds, our point-wise algorithms beat all the baselines

shown except for Fold 1. Fold 1 is the only fold where the other approaches are not

completely beaten by the point-wise algorithms. On this fold, RankSVM performed

the best, which IGBRT(C) being the second best performing algorithm.

6See top scoring entries at http://learningtorankchallenge.yahoo.com/leaderboard.php.
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ERR R./ Yahoo LTRC LETOR MQ2007 Folds
method C. Set 1 Set 2 F1 F2 F3 F4 F5
GBRT R 0.45304 0.45670 0.35914 0.35539 0.35579 0.36039 0.37076
SGBRT R 0.45566 0.45859 0.36150 0.35826 0.35225 0.36364 0.37292
kSGBRT R 0.45439 0.45718 0.35747 0.35496 0.35004 0.35088 0.36309

NkSGBRT R 0.46043 0.46026 0.35933 0.35806 0.35352 0.36304 0.37052
RF R 0.46349 0.46212 0.35481 0.35458 0.34775 0.35853 0.36853

I-GBRT R 0.46301 0.46303 0.35787 0.35985 0.35383 0.36491 0.37422
GBRT C 0.45448 0.46008 0.36264 0.36168 0.35990 0.36498 0.37549
SGBRT C 0.45814 0.45982 0.36133 0.36007 0.36009 0.36764 0.37532
kSGBRT C 0.45886 0.46027 0.36005 0.35691 0.35580 0.35052 0.36956

NkSGBRT C 0.45966 0.46062 0.35861 0.35581 0.35265 0.36022 0.36792
RF C 0.46308 0.46200 0.35868 0.35677 0.35003 0.36364 0.37052

I-GBRT C 0.46360 0.46246 0.36232 0.36198 0.35486 0.36744 0.37430

SVMrank 0.43037 0.43175

NDCG R./ Yahoo LTRC LETOR MQ2007 Folds
method C. Set 1 Set 2 F1 F2 F3 F4 F5
GBRT R 0.75215 0.76495 0.47358 0.47414 0.46877 0.47703 0.48105
SGBRT R 0.76174 0.76602 0.47261 0.47477 0.46559 0.47723 0.48180
kSGBRT R 0.75756 0.76488 0.47143 0.46918 0.46463 0.47460 0.47534

NkSGBRT R 0.76843 0.77020 0.47332 0.47643 0.46856 0.47989 0.48403
RF R 0.77799 0.7746 0.46893 0.47505 0.46577 0.47638 0.48427

I-GBRT R 0.77799 0.77633 0.47263 0.48247 0.47242 0.48327 0.49088
GBRT C 0.75470 0.7704 0.47785 0.47877 0.47105 0.48308 0.48783
SGBRT C 0.76735 0.7696 0.47717 0.47722 0.47264 0.48333 0.48678
kSGBRT C 0.76817 0.77154 0.47344 0.47304 0.46795 0.47647 0.48183

NkSGBRT C 0.76875 0.77070 0.47247 0.47397 0.46701 0.47636 0.48013
RF C 0.77768 0.77281 0.47161 0.47602 0.46608 0.47963 0.48335

I-GBRT C 0.77896 0.77499 0.47766 0.48258 0.47268 0.48484 0.48981

SVMrank 0.73475 0.73462

Table 4.2: Performance of the algorithms on the Yahoo and Microsoft web-ranking data sets.

NDCG MSLR MQ2008 Folds
method F1 F2 F3 F4 F5

RankSVM 0.4818 0.4266 0.4461 0.4163 0.4485
ListNet 0.47670 0.42700 0.44780 0.42140 0.44720

AdaRank-NDCG 0.4677 0.4243 0.4416 0.4058 0.4451
AdaRank-MAP 0.4665 0.4217 0.4415 0.4065 0.4311

Table 4.3: Public LETOR baselines.
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Chapter 5

Transfer Learning

The two data sets from the Yahoo LTRC competition represent two different coun-

tries. Previous work has shown that learning on the two sets jointly can have im-

provements in performance [10]. We ran experiments on the two sets individually: the

goal is to transfer knowledge from one data set (the bigger one), to increase ranking

accuracy on the other data set.

We wish to perform better on Set 2, by the help of Set 1. We took two approaches:

1. Use Set 1 to increase the training set of Set 2.

2. Use Set 1 to add features to Set 2.

A machine learning model always performs better if it has more data to train on,

assuming the data is drawn from the same distribution that the model will be tested

on. By definition, Set 1 and Set 2 are from different populations, and thus from

different distributions. We looked at all the documents in Set 1, and compute how

similar they are to those in Set 2. Set 2 is then populated with the most similar

documents from Set 1, and a model is trained on this new data set.

We did so by partitioning Set 1 into five folds. A model is built on four folds of Set

1 and all of Set 2. The documents in Set 1 are assigned the label 0, and documents

in Set 2 assigned 1. The model predicts the labels of the documents in the remaining

fold. The predictions can be interpreted as the probability a document belongs to

the population of Set 2. Note that a Leave-One-Out approach could be used instead

of five folds (which is effectively leave 20% out). Leave-One-Out would lead to more

accurate results, but would take considerably longer to run.
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The top P% of Set 2 candidates from Set 1 are added to Set 2. We then retrain the

model to rank the documents from the validation and test sets of Set 2. The results

are shown in Table 5.1.

Top # Docs. Yahoo LTRC Set 2 Val Yahoo LTRC Set 2 Test
P% Added RMSE ERR NDCG RMSE ERR NDCG
0.0 0 0.62847 0.45042 0.77383 0.63723 0.46133 0.77267
0.1 700 0.62998 0.44921 0.77331 0.63873 0.46078 0.77227
0.2 1400 0.63241 0.44930 0.77310 0.64094 0.46099 0.77147
0.4 2800 0.63599 0.44714 0.77002 0.64530 0.46046 0.77006
0.6 4200 0.64011 0.44596 0.76608 0.64979 0.45840 0.76777
0.8 5600 0.64320 0.44604 0.76608 0.65336 0.45631 0.76548
1.0 7000 0.64499 0.44573 0.76694 0.65568 0.45533 0.76390
5.0 35000 0.65245 0.44343 0.76115 0.66314 0.45375 0.76243
10.0 70000 0.65227 0.44325 0.76216 0.66284 0.45402 0.76263
15.0 105000 0.65215 0.44291 0.76112 0.66280 0.45440 0.76272
20.0 140000 0.65217 0.44362 0.76184 0.66255 0.45429 0.76245
30.0 210000 0.65182 0.44355 0.76355 0.66237 0.45467 0.76267
40.0 280000 0.65140 0.44322 0.76214 0.66201 0.45512 0.76297
50.0 350000 0.65173 0.44484 0.76228 0.66239 0.45508 0.76227
75.0 525000 0.65158 0.44436 0.76319 0.66241 0.45507 0.76201
100.0 700000 0.65157 0.44476 0.76274 0.66224 0.45426 0.76224

Table 5.1: Transfer Learning - Increasing size of Set 2.

The table shows that adding documents to the smaller data set does not help. Even

with only adding a small fraction of the most likely documents, all of the metrics start

to suffer in accuracy. The accuracy continues to drop as more documents are added,

which is to be expected. Note that the base line accuracy (adding no documents

to Set 2) is lower than previously mentioned. This is because the transfer learning

models are trained on only the features that are common to both Set 1 and Set 2. In

this case that is 441 features.

The other approach we took is to add features to the documents of Set 2. Let H(·)
be a model trained on Set 1. For a given document xi in Set 2, we computed ten

possible feature additions:

• Q: H(xi)

• P: P (H(xi) = c) for c ∈ 0, 1, 2, 3, 4

• C: P (H(xi) ≤ c) for c ∈ 0, 1, 2, 3
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Table 5.2 shows the results of adding various combinations of the described features

to Set 2. Adding a single feature, the Q feature, is the only configuration that yields

better results than the baseline. Adding that single feature does not seem to get

significantly better accuracy on the test set.

Added Yahoo LTRC Set 2 Val Yahoo LTRC Set 2 Test
Feature(s) RMSE ERR NDCG RMSE ERR NDCG
baseline 0.62693 0.45035 0.77468 0.63589 0.46210 0.77378

Q 0.62694 0.45094 0.77574 0.63600 0.46227 0.77409
P01234 0.62716 0.45001 0.77529 0.63615 0.46168 0.77351
C0123 0.62704 0.45032 0.77432 0.63609 0.46110 0.77249
Q+P 0.63710 0.44753 0.76575 0.63570 0.46166 0.77321
Q+C 0.63648 0.44856 0.76760 0.63603 0.46195 0.77295

Q+P+C 0.63553 0.44962 0.76967 0.63605 0.46201 0.77348

Table 5.2: Performance changes from adding features.

It is worth noting that the two approaches can be combined: add documents from Set

1 that are most likely from Set 2’s distribution to Set 2, then use a model from Set 1

to add features to the augmented Set 2. Considering that each approach individually

did not yield good results, combining them is not likely to either.
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Chapter 6

Cost-Based Decision Trees

In practice, the features which describe a document are not equally cheap to compute.

Features cost a variable amount to compute, in terms of time, resources needed,

computations involved, etc. For instance, it would be much simpler to compute

the click rate of an url (via a database lookup) than a feature which requires some

computations on the query. The decision trees discussed so far indiscriminately choose

which feature (or attribute) each node will be split on, and assumes all the features

are immediately available. But in certain circumstances, the features of a document

may be extracted only when neccessary. This is the setting of a new area of research

- designing models that are accurate, yet cost-effective [27].

In this section we show how the Random Forests and Gradient Boosted Regression

Trees perform with cost-effectiveness in mind. We do so by adding the cost of the

feature to the impurity function for which the nodes decide how to split partition the

data points. In effect this adds a penalty to the split function for chosing a particular

feature. Harsher penalties are assigned if the feature is expensive to acquire. We

are interested in seeing if this addition of a feature penalty has drastic effects on the

performance of the classifiers.

In this context, we will give the documents binary labels. A label of 1 is referred to

as “relevant”, 0 as “irrelevant”. We treat relevances of 0,1, and 2 as “irrelevant”, 3

and 4 as “relevant”.
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6.1 Incorporating Feature Costs into the

Loss Function

Suppose each feature f has an associated cost to compute, c(f). Recall that the

CART algorithm we are using minimizes the regression error of the two children

nodes, If,v(D) = I(DL) + I(DR). To this we add the cost of the feature, multiplied

by some constant λ:

If,v(D) = I(DL) + I(DR) + λc(f) (6.1)

If λ = 0, then the loss equation is identical to the squared loss as before. We refer to

decision trees which incorporate the feature costs (λ ≥ 0) as cost-aware, and those

which do not (λ = 0) as cost-unaware or cost-oblivious. If λ is very large, then the

choice of feature to split on will be chosen exclusively by its cost, instead of how well

it splits the data points. We use λ ≤ 1, so it will not have a dominating impact on

the loss function. It needs to be ensured that the metric the costs are measured in

is comparable to the total regression loss of the labels. This depends on what values

the labels can take, and the number of documents the model is trained on. We also

assume that the cost of constructing a decision tree is 1, regardlesss of what features

it will use. The primary interest in assigning costs to features, is to have an idea of

how costly it is to classify a single document. The goal is to build a model such that

its accuracy is acceptably high, and its cost to classify a document is acceptably low.

We denote the set of features used by the nodes in a decision tree h as n(h):

n(h) = {f1, f2, · · · , fhf} (6.2)

and then the cost of a decision tree h is total cost of the features use by h:

c(h) =

|n(h)|∑
k=1

c(f) for f ∈ n(h) (6.3)
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and finally the cost to classify a data point xi by a boosted classifierH = h1, h2, · · · , hT
is the average tree cost:

cH(xi) =
1

T

T∑
t=1

c(ht) (6.4)

The trees in this model minimize the loss function in Equation 6.1 with one slight

modification. Once a decision tree in the classifier has used a feature, that feature

becomes free for the subsequent trees to use. So once hi uses feature f , the cost for

f changes to c(f) = 0 for later trees hj, j > i. This is because once a feature has

been computed, it does not need to be recomputed. Suppose a tree in the classifier

decides to split by PageRank. It takes some computation to calculate this value, but

the value only needs to be calculated once. Thus cost of PageRank becomes, in a

sense, ”free to use” for the later trees in the classifier.

As such, the Random Forests algorithm needs to be modified. They can no longer

be made completely in parallel; each tree needs to know which features the previous

trees have used. The algorithm can be changed into a completely stage-wise cascade

like GBRT, having each tree parallelized by the features. Since the full tree is being

made, this will make better use of the processors than GBRT. However, parallelizing

by trees instead of features is still more efficient. A combination of the traditional

Random Forest algorithm with independent trees and the GBRT cascade can be

made, in a way that still achieves good parallelism. Each processor will make one

tree in parallel. They can then communicate which features were used and wait until

all the processors are finished, and continue with the next p trees. There can be some

cost inefficiencies here; in each stage, the trees aren’t aware of which features the

other p− 1 have chosen. We assume the inefficiencies from this is negligible.

One final augmentation we do is injecting early exits into the classifier. Every X

iterations, the bottom Y% of data points are “weeded out” or “frozen”. The data

points are not passed to the subsequent trees to classify. The bottom data points are

the ones that the classifier gives the lowest predictions for. In other words, these data

points that the classifier deems most irrelevant. The intuition is that, the bottom

data points are the ones that are most unlikely to become relevant over time. Thus it

is not needed to pass these data points onto all of the decision trees. After a certain
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amount of iterations, these data points are weeded out from the test sets. Weeding

out data points serves to reduce the overall average cost of classifying a data point.

6.2 Metrics

We introduce two more metrics that are well known for problems with binary labels:

Area Under the ROC Curve (AUC) [2], and Precision.

ROC refers to data points as positive or negative. In our context, positive data points

are those which are relevant (label 0), and negatives are irrelevant data points (label

0). AUC can be interpreted as ”if document x is positive and document y is negative,

what are the chances the predicted label for x is greater that the predicted label of

y.“. An AUC of 100% or 1.0 indicates a perfect classifier; if a classifier predicts x is

more relevant than y, then there is a 100% chance x is actually more relevant than

y. An AUC of 1.002

2
= 0.50 or 50% can always be achieved with random guessing. In

the context of web-search ranking, it makes sense to look at the partial area under

the curve (PAUC). We use PAUC@[0,5] (which is AUC under the first 0% to 5% of

the curve), which indicates a false positive rate of more than 5% cannot be tolerated.

The optimal PAUC@[0,5] score is 0.05 ∗ 1 = 0.05, and a random guessing score with

PUAC@[0,5] is (0.05)2

2
= 0.00125. AUC can be viewed as PUAC@[0,100]. The AUC

can be computing by considering all positive (label 1) and negative (label 0) document

pairs, and returning the percentage of those which have the predicted positive value

greater than the predicted negative value. For PAUC@[i,j], only the pairs of which

the positive example falls into the i’th to j’th percentile are considered.

The other metric, precision, measures how many relevant documents are the top

predictions. We look at the top five documents. The precision of a query for the top

5 documents is defined as

PREC@5π =
1

5

5∑
i=1

yπ(i) (6.5)
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The final PREC@5 score is the averaged PREC@5 query score. The optimal PREC@5

is not neccessarily 1, all queries may not have at least five relevant documents. This

is the case with the data set we ran the experiments on.

The experiments were ran on a subset of Yahoo Set 1. The training, validation, and

test splits have the same sizes as the respective data sets in Yahoo Set 2.

6.3 Results

For RF and GBRT we ran 8 different configurations: λ = 0 and λ = 1 with weed-out

(WO) percentages WO = {0, 5, 10, 20}. The data points are weeded out every 100

iterations/trees. A WO percentage of 0 is the traditional classifier. Weeding out these

data points routinely is also referred to as early exiting; i.e. we place an early exit

every 100 iterations. Note that there are more involved early exiting procedures, as

described by Chapelle et al [7].

We assigned costs to the features by partitioning the features into five groups, and

assigning an exponentially increasing cost value to each group.

6.3.1 Cost-aware Random Forests

First we will analyze cost-aware Random Forests (MF = 2000, k = 70). Figure 6.1

shows how Random Forests performs with the metrics PREC@5, PAUC@[0,5], and

AUC. The three subplots in the figure are using each of the tree metrics, respectively.

Be sure to note that the x-axis in all of the plots represents the average cost classify

a document; it is no longer the number of iterations/trees. Each of these plots will

be analyzed in turn.

We will analyze the PREC@5 plot first. This is the first (top) plot in the figure.

This plot shows that early exiting (another term for weeding out) does not affect

the performance in any significant way. Freezing the predictions of the bottom 20%

documents every 100 iterations has the same precision and cost of never freezing any

documents. It is not surprising that the early exits do not effect the precision, as
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these documents are the most unlikely to be the top 5 relevant documents - which are

the only documents that effect precision. But inserting early exits also does not effect

the cost. This is most likely because, after 100 iterations, all the features which will

be used, have been used. This suggests that Random Forests is not a good classifier

to insert early exits into. The next thing to note in the plot is that the λ = 0 runs

and λ = 1 runs converge to the same precision. This is also surprising; it is intuitive

to think that λ = 0 would result in better accuracy, as it has more freedom in which

to build the model. But with Random Forests, that extra freedom to choose the

more expensive features does not result in better predictions in regards to the top 5

documents. Thus taking into account the feature costs does not hurt the accuracy,

which is exactly one of the attributes which is sought for in a cost-aware model. Not

only do λ = 0 and λ = 1 converge to the same precision, λ = 1 converges much

sooner. On this data set, λ = 1 reaches its peak at about cost=3000, and λ = 1

reaches its peak at around cost=16000. So for the same accuracy, the cost-unaware

model costs more than five times less than the cost-aware model. The final thing to

note: the cost of building a single cost-unaware tree is the more than building the

set of cost-aware trees which give maximum precision. All these observations suggest

that Random Forests can be a good efficient cost-aware model.

The next metric is PAUC@[0,5], measured in the second (middle) plot in the figure.

λ = 1 converges to about 0.008, λ = 0 to a value slightly higher than note. This

is much better than the PAAC@[0,5] value for random guessing (0.00125), but still

much less than the perfect PAUC@[0,5] value 0.05. With this metric, early exiting has

a big impact. Early exiting results in a big drop in performance; it seems in essence to

lower the “accuracy ceiling”, in a manner of speaking. This happens for both λ = 0

and λ = 1. This is most likely due to noise in the data set. Early exits throw away to

most predicted irrelevant documents. However since the accuracy is decreasing, some

of the documents thrown away are actually relevant. Noise in the data set leads the

classifier to believe the documents are irrelevant, and thus the classifier will predict

a certain set of data points wrongly, which is what this metric measures.

The last metric is AUC, measured in the third (bottom) plot in the figure. The AUC

plot shows trends very similar to those discussed in regards to the PREC@5 plot. The

λ = 0 and λ = 1 runs converge to the same accuracy. λ = 1 converges much quicker

and costs about 5 times less than the cost-aware model for the same accuracy. Early
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exiting does not hurt accuracy or decrease cost. But early exiting did hurt accuracy

with PAUC@[0,5]. It does not effect the accuracy for PAUC@[0,100] because the data

points thrown away can still be classified correctly for false positive rates above 5%.

Note that the accuracy converges to a PAUC of about 0.8. The data points which

bring down this score are probably the ones which effect the PAUC@[0,5] metric so

strongly.

6.3.2 Cost-aware Gradient Boosted Regression Trees

For boosting, we used SGBRT: α = 0.1,MB = 1000, k = .1f . Figure 6.2 shows

how Gradient Boosted Decision Trees performs with the same metrics as mentioned

previously, PREC@5, PAUC@[0,5], and AUC.

First we analyze the PREC@5 plot. Here the cost-aware runs (λ = 1) converge much

quicker than the cost-unaware runs (λ = 0). In fact, at their peaks, the cost-aware

runs cost about 6 times less than the cost-aware runs. However, the cost-aware runs

do achieve a slightly higher accuracy than the cost-aware runs. The highest PREC@5

for λ = 1 is around 0.27, while the highest PREC@5 for λ = 0 is closer to 0.28. Both

of these precisions are higher than those achieved by the Random Forests models.

Not only is the accuracy higher, but the cost is cheaper. The peak λ = 1 runs have

a cost around 2000, which is half of the peak cost of the cost-aware Random Forests

runs. Similar to Random Forests, early exiting does not have any effect here. This

is surprising, as freezing a percentage of the documents could have a big impact on

the cost of the classifier. Because of these reasons, it seems that GBRT is a better

cost-aware classifier than Random Forests in regards to precision.

The next metric is PAUC@[0,5]. This plot has a different partition of the models than

the previous plots. Previously, the cost aware and unaware models were divided by

cost; the cost-unaware model would be on the left side of the cost spectrum, and the

cost-aware on the right. With this plot, the models are partitioned by the PAUC value.

The cost-aware model almost always has a lower PAUC@[0,5] value than the cost-

aware model. Like Random Forests, early exiting does does effect this metric, albeit

not as strongly. The baseline run (no early exiting, the red dotted line), has a “ceiling”

higher than the other cost-aware runs that do insert early exits. This is attributed to
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noise in the data set; predicted irrelevant data points are weeded out when they are

actually relevant. For the cost-aware runs, early exiting does have an effect; runs with

higher weed-out percentages have higher accuracy as the cost (i.e. number of trees)

increases. However, this positive effect is unintended. Inserting early exists serve to

lower the average cost to classify a data point. Here it keeps the accuracy steady. It

does so by throwing away data points which otherwise would contribute to over-fitting

as the number of iterations increases. With the PREC@5 metric, the accuracy of the

cost-aware model slowly approaches the accuracy of the cost-unaware model as the

cost increases. That trend does not follow here; the accuracy of the cost-aware model

almost immediately reaches and surpasses the cost-unaware model. This shows that

GBRT may not be a good cost-aware model in regards to PAUC@[0,5]. However,

the peak PAUC@[0,5] value for the cost-aware runs is greater than the cost-aware

Random Forest runs, especially those that have early exits.

The last metric is AUC. This plot has the same trend as the PREC@5 plot; the

accuracy of the λ = 0 runs slowly approach the λ = 1 runs has the cost increases.

In this case the λ = 0 runs surpass the λ = 1 runs. Again early exits have no effect,

for reasons described in the AUC analysis of Random Forest cost-based models. The

cost-aware models start off much more accurate than the cost-unaware models and

convert to around the same value as cost-aware Random Forest models. Even though

they converge to the same value, GBRT does so with much less cost than RF. Cost-

aware GBRT peaks with cost=500; cost-unaware reaches this value at cost=4000. For

Random Forests, the cost-aware models peak at cost=2500, and the cost-aware models

at cost=16000. This shows that GBRT is a better cost-based model than Random

Forests when comparing AUC. However, the cost-unaware model still outperforms

the cost-aware model. This is to be expected, as the cost-unaware model has the

freedom to choose any feature to split on, which can result in “better” decision trees.

6.3.3 RF and SGBRT comparison

Table 6.1 compares RF and SGBRT for cost-effectiveness. The metrics are reported

as they were in Table 4.2. The highest scores from the validation set are reported.

The scores for the test set are from the parameters (i.e. M) that achieved the highest

validation score. The table shows that Random Forests does worse than GBRT in
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regards to each metric. However, cost-aware RF does outperform cost-unaware RF

in regards to precision and AUC. So if one were to use a RF model, it would not hurt

to transition into a cost-aware model.

RF WO Yahoo Set 1S Test
λ % PREC@5\cost PAUC@[0,5]\cost AUC\cost
0 0 0.24893\16045.0 0.00853\17760.0 0.76907\17127.0
0 05 0.24885\15972.1 0.00645\16927.4 0.76668\16885.1
0 10 0.24859\15903.4 0.00524\16173.9 0.76356\16209.5
0 20 0.24765\15777.8 0.00167\14998.0 0.75724\15916.5
1 0 0.25235\5287.0 0.00805\6647.0 0.76955\6183.0
1 05 0.25184\4757.2 0.00582\3637.8 0.76679\5031.4
1 10 0.25175\4573.5 0.00205\2899.7 0.76387\4343.9
1 20 0.24927\3494.8 0.00093\2427.0 0.75933\3631.7

SGBRT WO Yahoo Set 1S Test
λ % PREC@5\cost PAUC@[0,5]\cost AUC\cost
0 00 0.26536\16192.0 0.01067\10315.0 0.79535\14450.0
0 05 0.26587\14703.6 0.01071\8011.5 0.79550\13486.8
0 10 0.26578\13462.0 0.01072\7864.9 0.79603\12613.1
0 20 0.27006\11482.4 0.01063\7571.8 0.79620\11468.8
1 00 0.26133\1297.0 0.00834\1080.0 0.78317\1609.0
1 05 0.26142\969.4 0.00817\617.4 0.78310\1326.0
1 10 0.26099\886.4 0.00789\603.3 0.78192\1332.0
1 20 0.26031\761.1 0.00790\520.0 0.78210\865.4

Table 6.1: Performance of cost-aware classifiers.
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Figure 6.1: Cost-aware Random Forests.
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Figure 6.2: Cost-aware SGBRT.
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Chapter 7

Conclusions

Here we discuss the things that can be learned from the experiments ran. We discuss

in which areas future study would be beneficial.

7.1 Implications

We surveyed the two main point-wise algorithms: Random Forests and GBRT. This

thesis has analyzed how the two algorithms performed with web-search ranking in

mind. Our experiments show empirical evidence that RF tends to work better than

GBRT on real-world data sets. Not only in terms of ranking metrics, but also training

time. kSBRT can be a good alternate to GBRT; it runs faster as is not as prone to

over-fitting. Combining RT and GBRT produces our newly introduced point-wise

algorithm, IGBRT, which performs better than the two individually. Finally, formu-

lating the problem with classification almost always performs better than regression.

We showed that scoring the classification problem with Expected Relevance works

the best. This provides insight on which point-wise algorithms is appropriate for a

problem, given time and accuracy constraints.

None of our experiments for transfer learning proved successful. This shows that

more sophisticated approaches need to be researched, or the data sets provided are

not conducive for transfer learning. Our experiments show that Random Forests and

GBRT can be good cost-aware models by simply adding a penalty for splitting on a

particular feature. GBRT gave better accuracy with regards to cost than Random
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Forests. Unfortunately there are no public baselines/implementations for cost-aware

point-wise or list-wise models to compare to.

Note that the algorithms presented are applicable to any supervised machine learning

problem, even though we analyzed them with web-search ranking in mind.

7.2 Future Work

It has been shown that Random Forests are competitive to GBRT in regards to

both performance and training time. Yet Random Forests has not been a part of

the learning to rank models proposed by the machine learning community. It would

be intriguing to see if Random Forests would still be competitive in a controlled,

real world production setting. We have shown that initializing GBRT with RF gives

great results. In this context GBRT learns the residual error of RF on a data set.

We did not explore other ways of combining these two classifiers, such as learning

a weight for each classifier for a given document. Similarly, Table 4.2 shows that

sometimes regression does perform better than classification. It would be interesting

to further explore the relationship between these regression and binary classification

problems, and if the two can be combined for a classifier that is stronger than the

two individually.

More work needs to be done on Transfer Learning. None of the winning teams on the

Yahoo LTRC competition were able to increase performance on Set 2 by learning from

Set 1. This suggests that more sophisticated techniques need to be researched. There

is a lot of noise in Web-search ranking data sets. Despite the fact that point-wise

ranking aims to minimize the regression error, the data indicates that the RMSE

never even comes close to 0. This became a problem when we ran tests on early

exiting. In Figure 6.1 we show the area under the ROC curve with early exiting. We

originally only allows for 1% false positives, PAUC@[0,1]. However, because of the

noise in the data sets, this metric did not prove to be useful; the false positive rate

had to of been much more relaxed, but this wouldn’t be appropriate in a real world

setting. It would be useful to research if there is any to better handle, or ideally

reduce, the noise in web-search data sets.
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Appendix A

Decision Tree Optimizations

There are several ways to speed up the building of a decision tree. Pre-sorting the

features can help the decision trees scale better for large data sets [30] [23]. The

decision tree data structure can be made over a distributed system to train on a very

large data set which would not fit into local memory [1] [33].

At each node of the tree, the CART algorithm finds the optimal feature f and value

v to split on, such that the total impurity of the data points which fall to the left and

right subtrees is minimal.

Recall the impurity of a set of documents is defined in equation 1.1. This impurity

(ie squared loss) function can be simplified:

I(·) =
n∑
i=1

(yi − ȳ)2

=
n∑
i=1

(y2i − 2ȳyi + ȳ2)

= (
n∑
i=1

y2i )− (2ȳ
n∑
i=1

yi) + (ȳ2
n∑
i=1

1)

= (
n∑
i=1

y2i )− 2nȳ2 + nȳ2

= (
n∑
i=1

y2i )− nȳ2
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If f is fixed, the squared loss for I = I(DL)+I(DR) for each v can be computed using

dynamic programming. Without loss of generality, the only split values v that may

change the value of the loss function are each xi[f ] for i < n. Split values xi[f ]+xi+1[f ]
2

increase the margin and should generalize better.

If we know the squared loss for one v split value, we can easily compute the loss for

the numerically next v value with the help of some auxilary variables.

The psuedocode for calculating the best split point v for a fixed feature f is shown

in Algorithm 6. We assume the data has not been pre-sorted. The best value to

split on for each feature can be calculated in parallel. This offers great speedup for

incremental techniques such as boosting. With Random Forests, the processors are

better used to build the trees in parallel.

Algorithm 6 Compute Best Split Point with D.P.

Input: data set D = {(x1, y1), . . . , (xn, yn)}, feature f
Initialization: ȳL = ȳR = s = r = 0
D ← sorted(D)
for i = 1 to n do
r ← r + yi ∗ yi
r̄ ← r̄ + yi

end for
r̄ ← r̄/n
for i = 1 to n− 1 do
s← s+ yi ∗ yi
r ← s− yi ∗ yi
ȳL ← (i ∗ ȳL + yi)/(i+ 1)
ȳR ← ((n− i) ∗ ȳR − yi)/(n− i− 1)
L← s− ȳL ∗ ȳL
R← r − ȳR ∗ ȳR
Impurity(xi[f ])← L+R

end for
return argmin

v
Impurity(v)
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