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ABSTRACT OF THE DISSERTATION

Biosensing by “Growing” Antennas and Error-correcting Codes

by

Mingquan Yuan
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Professor Shantanu Chakrabartty, Chair

Food-borne disease outbreaks not only cause numerous fatalities every year but also contribute

to significant economic losses. While end-to-end supply chain monitoring can be one of the

keys to preventing these outbreaks, screening every food product in the supply chain is not

feasible considering the sheer volume and prohibitive test costs. Fortunately, two converging

economic trends promise to make this end-to-end supply chain monitoring possible. The first

trend is that passive radio-frequency identification (RFID) tags and quick response (QR)

codes are now widely accepted for food packaging. The second trend is that smartphones

are now equipped with the capability to interrogate RFID tags or to decode QR codes.

Together, they have opened up the possibility of monitoring food quality by endowing these

tags and error-correcting codes with the capability to detect pathogenic contaminants. This

dissertation investigates a biosensing paradigm of “growing” transducer structures, such as

RFID tags and QR codes, which is triggered only when analytes of interest are present in

the sample. This transducer growth or self-assembly process relies on a silver enhancement

technique through which silver ions reduce into metallic form in the presence of a target

analyte, which in turn leads to changes in electrical or optical properties. By exploiting this,

we first demonstrate two remote biosensor platforms, a RFID tag-based biosensor and a QR

code-based biosensor, respectively. For the RFID-based biosensor, a chain of silver-shelled

xv



particles is assembled during the analyte detection process, which directly modulates the

antenna’s effective impedance, and hence leads to an improvement in the tag’s reflection

efficiency. For the QR code-based biosensor, the operating principle relies on the optical

absorption changes resulting from silver enhancement. The target detection process assembles

an invalid code-word into a valid QR code. This self-assembly sensing approach should

produce few false positives since it is a process which transits from a high entropy state

(disassembled transducer) to a low entropy state (assembled transducer). While there can be

numerous states of a disassembled transducer structure, there are only a few configurations

representing the assembled transducer state. Given that there are no active power sources

on the RFID tag or the QR code, it is challenging for the proposed biosensors to perform

sample acquisition and pre-processing since they are envisioned to be embedded inside food

packages eventually. Paper-based microfluidics have been explored and integrated on the

biosensors to provide a self-powered approach for reagent sampling and processing. One

use case is to trigger target detection remotely by an end consumer. Thermal absorption

properties of graphite have been exploited such that the end user can initiate the process of

analyte sampling in paper-based biosensors by shining a beam of light on the sensor.

xvi



Chapter 1

Introduction

1.1 Motivation

According to Centers for Disease Control and Prevention (CDC), every year in the United

States, food-borne diseases sicken 48,000,000 people (roughly 1 in 6), causing 128,000 of

them to be hospitalized, and killing 3,000 [9]. Beyond the fatalities, there are also huge

losses related to medical care and food product recalls. The United States Department

of Agriculture (USDA) estimates an annual medical care cost of $15.6 billion is caused

by food-borne illnesses due to 15 major pathogens [8, 16, 34]. More recent research [78]

estimates that an average national cost of $55.5 billion in the United States is directly related

to food-borne illness. Other costs of food-borne illness come from product recalls. In 2011,

the Grocery Manufacturers Association (GMA) surveyed 36 food companies, and found that

more than half had experienced a product recall in the past five years [6]. According to the

same survey, the average direct cost for a food product recall in the United States was $10

1
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Figure 1.1: Illustration of end-to-end monitoring of food quality in a supply chain where RFID
based and QR code based biosensors can be wirelessly interrogated at different locations of
the supply chain.

million, which does not include indirect costs, such as lawsuits, loss of reputation, and sales

losses.

End-to-end supply chain monitoring can be one of the keys to preventing these food-borne

disease outbreaks and product recalls. However, practically speaking, it is infeasible to test

and analyze all food samples at every point in the supply chain, for at least three reasons: 1)

Traditional laboratory testing is time consuming (ranging from hours to days) and expensive.

2) The task of screening every product becomes impractical for the sheer volume of products

that passes through the supply chain. 3) Food is typically enclosed in a package, where as

traditional testing requires direct access to the sample analyte.

Fortunately, two converging economic trends promise to make end-to-end supply chain

monitoring possible. The first trend is that passive radio-frequency identification (RFID) tags

and quick response (QR) codes are now very widely accepted for food packaging (as shown in

Fig. 1.1). For instance, Walmart has required its top 100 suppliers to use RFID for tagging

cases and pallets of goods since January 2005 [84]. In the meantime, the price of passive RFID

tags has fallen by orders of magnitude when compared to the cost of packaging materials over

the last decade (less than $0.10 per tag) [4, 108]. As a result, it is now economically viable

2



to embed or attach a passive tag to every package of a food item. The second trend, also

illustrated in Fig. 1.1, is that the new generation of smartphones have been equipped with

capabilities such as interrogating RFID tags or decoding QR codes and uploading scanned

information to the cloud. These two converging economic trends make end-to-end supply

chain monitoring possible through crowdsourcing the process of scanning RFID tags and

product codes to consumers. Given the rapid penetration of smartphones in the consumer

market, RFID tags or QR codes can be interrogated at different segments of the supply

chain, from the food source all the way to the market shelves. Thus, an integrated platform

combining a biosensing mechanism for detecting contaminants with inexpensive passive RFID

tags or QR codes could be an attractive technology to continuously and wirelessly monitor

the quality of a food product in a supply chain. The missing part is the technical ability to

reliably detect pathogens or contaminants in food samples using passive RFID tag or QR

code. Considering the fact that these passive devices do not have access to continuous power

sources, it is challenging to design them to perform sample analyte acquisition, pre-processing

and analysis. This dissertation will begin to address these challenges.

1.2 Contributions

Key contributions of this dissertation are summarized as follows:

1. Target detection process assembles sensor structures. At the core of our proposed

RFID based biosensing approach is to assemble a chain of the RF antennas directly

with silver enhancement in the presence of target analyte. The impedance matching

between the antenna and silicon chip (or equivalently, the antenna’s reflection efficiency)

is improved by this self-assembling detection process. While there can be numerous

states of a disassembled antenna, there are only a few configurations that represent an

3



assembled and tuned antenna. Therefore, it is highly unlikely that random environmental

processes could produce a low-entropy state of a tuned antenna, and hence the process

of antenna self-assembly should produce fewer false positives than widely reported

detuning approaches. Similarly, the operating principle of the QR code based biosensor

described in this dissertation is also to “grow” parts of code-word structures at a

controlled rate through self-assembly using silver enhancement. Different from taking

advantage of an electrical property change due to silver enhancement in the RFID based

biosensor design, the QR code based biosensor relies on an optical absorption change in

specific areas of the code-word, also due to silver enhancement. Except for this slight

difference, both share the same spirit which is to construct a complete sensor structure

based on target analyte detection, which should yield lower false positives and higher

reliability. To the best of my knowledge, this is the first reported study that describes

the design of biosensors that “grow” transducer structures based on self-assembly which

is triggered only when the target pathogens are present in the sample.

2. Self-powered continuous biosensing based on integration of paper-based microfluidics.

For many applications, there exists a need to monitor the quality of the product at every

point of the supply chain so as to detect and track the source of food-borne pathogen

contamination. Given that there are no active sources of power on a passive RFID tag

or a QR code for acquiring and processing the sample, it is challenging for the proposed

biosensor to perform sample acquisition and pre-processing since they are envisioned

to be embedded inside food packages eventually. In this dissertation, paper-based

microfluidics have been explored and integrated on the two types of biosensors to

sample the analyte and direct it into regions where portions of the transducer structure

could self-assemble. As a result, self-powered monitoring of product quality in a supply

chain is envisioned to be possible by integrating paper-based microfluidics.
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3. Remote activation of analyte sampling based on light absorption. In a conventional

sampling process, the reagent is physically applied (using a pipette or a dipstick) to

the sensing region. While this sampling approach is convenient for cases when the

analyte can be directly accessed, it is impractical where the analyte is packaged or

sealed. This scenario routinely occurs in the food and medicinal supply chains, where

the samples are packaged and shipped in sealed containers. As a result, there is a need

to monitor the product quality without opening the package. In this study, we use

light as a trigger signal to remotely activate the analyte sampling. A graphite layer

patterned as a light-absorbing material efficiently converts the light into heat. The

resulting change in temperature due to infrared absorption leads to a thermal gradient

that then exerts a diffusive force driving the analyte toward the regions of self-assembly.

The working principle has been verified in this dissertation, where we demonstrate a

higher sample flow rate due to light induced thermal gradients.

1.3 Organization of the dissertation

This dissertation shows that remote biosensing for end-to-end supply chain monitoring is

possible by “growing” parts of transducer structures (RF antennas or QR code-words). The

remainder of this dissertation addresses several key challenges achieving this goal and is

organized as follows:

Chapter 2 In this chapter we first briefly describe the process of silver enhancement, then

consider the first-order approximation of received signal strength and finite-element

model used for simulating the RFID biosensor. This chapter also describes the model

for and simulation of a ratiometric RFID configuration used for compensation and

calibration. Two proof-of-concept applications of the proposed technique (detection of
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IgG in rabbit serum, and detection of moisture in a sample) are demonstrated in this

chapter to verify the proposed sensing approach. The chapter ends with a summary

and discussion of future research directions.

The contents of this chapter are largely based on papers [96, 99, 101] co-authored with

Dr. Evangelyn C. Alocilja, Dr. Premjeet Chahal and Dr. Shantanu Chakrabartty.

Chapter 3 In this chapter we introduce the operating principle of the proposed QR code

based biosensor, including the basics of a QR code and QR code self-assembly via silver

enhancement. The materials and methods used to prepare the QR code biosensor and the

experimental setup are then described. Four different substrates, including regular copy

paper, Whatman filter paper, nitrocellulose membrane and lab synthesized bacterial

cellulose, are used for the QR code biosensor prototype fabrication. Measurements

obtained using the fabricated biosensor prototypes are included in this chapter as well.

This chapter is mainly based on papers [103, 105] co-authored with Dr. Shantanu

Chakrabartty, Dr. Qisheng Jiang, Dr. Keng-Ku Liu and Dr. Srikanth Singamaneni.

Chapter 4 Because the biosensor is envisioned to be integrated inside the food package, a

self-powered approach that can sample and process the reagent and control its flow

over time is necessary. This chapter mainly extends the work described in Chapter 2

and Chapter 3 by integrating paper-based microfluidics on RFID based and QR code

based biosensors to enable self-powered acquisition and pre-processing of samples to

the sensing regions. We also show the materials and methods used to integrate the

paper-based microfluidics channels on the RFID based biosensor and the QR code based

biosensor. This chapter also includes measurements obtained using both fabricated

biosensor prototypes. It ends with a summary and discussion of possible future work.
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The contents of this chapter are mainly based on a paper [95] co-authored with Dr.

Evangelyn C. Alocilja and Dr. Shantanu Chakrabartty and a paper [105] co-authored

with Dr. Shantanu Chakrabartty, Dr. Keng-Ku Liu and Dr. Srikanth Singamaneni.

Chapter 5 In this chapter we exploit graphite’s thermal absorption properties to drive the

process of analyte sampling in paper-based biosensors, which could potentially enable

an end user to remotely trigger the sensing process. Our proposed operating principle

is first described in this chapter, and is then followed with the methods used to prepare

the prototype. The experimental setup and related measurements are also included.

This chapter is based on the papers [103, 104] co-authored with Dr. Shantanu

Chakrabartty, Dr. Keng-Ku Liu and Dr. Srikanth Singamaneni.

Chapter 6 In this chapter, we propose to construct a colorimetric XNOR biomolecular

logic gate for multi-analyte detection. The two target analytes represent two inputs to

the XNOR gate. The absence (or presence) of the target analyte defines logic input 0

(or 1). The proposed hypothetical operating principle is described in detail, which is

then followed with experiments designed to verify this hypothesis. According to the

experiment results, it does not work out as expected due to an invalid key assumption

made at early stage. Some reflections have also been included in this chapter.

Chapter 7 This chapter summarizes the dissertation and concludes with some potential

future directions.
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Chapter 2

Wireless Biosensing by

Self-assembling RFID Antennas

In this chapter, we present a silver-enhancement technique for self-assembling radio-frequency

(RF) antennas and demonstrate its application for remote biosensing. When target analytes

or pathogens are present in a sample the silver-enhancement process self-assembles a chain

of micro-monopole antennas. As the size of the silver-enhanced particles grows, the chain

of micro-antenna segments bridge together to complete a macro-antenna structure. The

change in the electrical impedance across the bridge modulates the reflection properties of

the antenna at a desired frequency. We have used this principle to model, optimize and

design a ratiometric mode 915 MHz radio-frequency identification (RFID) based biosensor

which uses relative received signal strength indicator (RSSI) to measure and detect different

concentration levels of target analytes. We have validated the proof-of-concept for detecting

two types of analytes: (a) IgG in rabbit serum at concentration levels ranging from 20 ng

to 60 ng; and (b) moisture in a sample at volumes ranging from 5µl to 40µl. A significant

advantage of the proposed biosensor is that the concentration level of target analytes or

8



pathogens can be remotely interrogated in a concealed, packaged or in a bio-hazardous

environment, where direct electrical or optical measurement is considered to be impractical.

2.1 Introduction

RFID technology is attractive for biosensing applications because the sensors can be wirelessly

interrogated when operating in a concealed, packaged or in a bio-hazardous environment

where direct measurement is not considered to be practical. The scenario is specifically

relevant for monitoring a product supply-chain (shown in Fig. 2.1) where the use of passive

RFID tagging technology is becoming more wide-spread [3, 75]. Integrating biosensing

capabilities with passive RFID tags ensures that the sensors are low-cost and because these

sensor-tags operate without batteries, their shelf-life is comparable to the products being

monitored. To date most RFID based biosensors operate on a unifying principle which is

to modulate the electrical impedance seen at the terminals of an RFID antenna [10]. The

modulation then changes the RF reflection properties of the tag which can then be measured

remotely using an RFID reader. For example, RFID based humidity sensors reported in [12,

38, 80] integrate a layer of water absorbing material on the surface of the tag. Moisture

absorption on the layer changes the dielectric constant of the layer which in turn changes the

effective impedance of the RFID antenna and hence its reflection properties [12, 38, 80]. The

principle has also been used for detecting bio-analytes and bio-markers. For instance, in [17]

a molecular imprinted polymer (MIP) based passive RFID sensor was reported for detecting

histamines in spoiled fish. Another example is a split-ring resonator (SRR) based RFID

biosensor which was reported in [49, 50] and used for detecting prostrate-specific antigen

(PSA), a prostrate cancer bio-marker.
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Reference tag

L2

RFID 

writer/reader

Sensor tag

L1

Figure 2.1: Illustration of the RFID tag integrated inside a package and being interrogated
by an RFID reader (bluetooth reader shown). Data from the RFID reader can be retrieved
by a laptop or using a smartphone via a bluetooth connection.

In this chapter, we propose an alternative concept for implementing a RFID based biosensor.

Based on the presence of different concentration levels of target analytes, the structure of the

antenna changes leading to the change in the antenna’s reflection properties. At the core of

this method is a silver-enhancement process that self-assembles parts of the RFID antenna in

the presence of target analytes. Compared to conventional approaches, the proposed method

has several advantages:

1. This approach can be easily integrated with existing commercial off-the-shelf RFID tags

because it is generally easier to modify the large surface area spanned by the antenna

rather than manipulating the microscale silicon die hosting the RFID electronics.

2. Because of the large surface area, different parts of the antenna could be functionalized

with different types of detection probes, implying that the proposed approach could be

easily extended for multi-analyte detection.
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3. Because the effective length of the antenna could be directly modified, the proposed

approach could be used to obtain a quantitative estimate of the analyte concentration

without the need for additional peripheral measurement system.

4. the silver-enhancement process is materially compatible with conventional silver-ink

based printable RFID tags and can be extended to flexible substrates.

This chapter is organized as follows: In section 2.2 we briefly describe the process of silver

enhancement followed by section 2.3 which describes the finite-element model used for

simulating the RFID biosensor. Section 2.3 also describes the model and simulation of a

ratiometric RFID configuration used for compensation and calibration purposes. Section 2.4

describes two proof-of-concept applications of the proposed technique: detection of IgG in

rabbit serum and detection of moisture in a sample. Section 2.5 presents a discussion of the

proposed method highlighting its limitations and challenges. Section 2.6 then concludes this

chapter with discussions about the future research directions.

2.2 Operating principle of silver enhancement

The proposed RFID biosensor is based on the physics of silver-enhancement [61, 62] and is

illustrated in Fig. 2.2. Gold nanoparticles conjugated with target bioreceptors (for example

antibodies shown in Fig. 2.2) or embedded inside a matrix, are first immobilized between two

conductive electrodes as shown in Fig. 2.2(a) and the corresponding micrograph. Note that

the gold nanoparticles are not large enough to electrically bridge the separated electrodes.

This state corresponds to an open-circuit state where practically no DC current flows between

the two electrodes. When a silver-enhancement solution comprising of Ag ions (I) and

hydroquinone (photographic developing solution) is applied between the electrodes, gold

nanoparticles are exposed to the silver-enhancement solution. In the presence of reducing
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Figure 2.2: Illustration of three stages of the silver-enhancement process: (a) before the silver
enhancement solution applied, the electrodes are electrically isolated; (b) during the silver
enhancement process, the silver ions get reduced to form metallic silver; (c) the path between
the two electrodes are electrically bridged and more silver ions are reduced.

agent hydroquinone, the silver ions reduce into metallic silver on the surface of the gold

nanoparticles. During this reaction, the gold nanoparticle acts as a catalyst and facilitates

further reduction of silver ions. As more silver ions are reduced, a chain of gold nanoparticle

cored silver micromonopole antennas self-assembles in between the electrodes as shown in

Fig. 2.2(b). As a result, noticeable current can flow between the two electrodes due to

displacement currents or due to electron hopping and tunneling. This constitutes a sub-

threshold state where the conductive bridge between the electrodes still has not completely

formed. With the progression of time and in the presence of more analytes, more silver ions

gets reduced and in the limit the chain of micromonopole antennas gets completely bridged

as shown in Fig. 2.2(c). Electrons can now freely flow when a potential difference is applied

across the two electrodes.

A relationship between the time of silver enhancement process and the size of self-assembled

silver particles is shown in Fig. 2.3. When sufficient silver enhancement solution is present,

the increase of the particle size is monotonic and almost linear with respect to the time of

silver enhancement process. In [62] we reported that the conductance measured between the

electrodes after the silver enhancement process is monotonic with respect to the concentration

of the target analyte. Details of the experimental results can be found in [61, 62] and have
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Figure 2.3: Relationship showing the size of reduced silver particles and the total silver
enhancement duration.

been omitted for the sake of brevity. The change in conductance could potentially change

the reflectance property of the self-assembled RF antenna which can then be used to infer

the concentration of the target analyte. Therefore, the starting point of our simulation would

be to determine the effect of antenna’s reflection properties due to change in conductance

because of silver-enhancement.

2.3 Modeling and analysis

2.3.1 Received signal strength first-order approximation

Since the interrogation of the RFID biosensor relies on detecting changes in the reflection

properties of the RFID antenna, Friis transmission equation can be used to understand the

relationship between the power received at the sensor’s antenna Pr and the power of the

interrogation signal Pt. The relationship can be expressed as:
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Pr

Pt

= GtGr

(
λ

4πL

)2

(2.1)

where Gt and Gr are the respective gains of the reader and sensor antennas, λ is the wavelength

of the RF signal, and L is the distance between the reader and the tag. The power transfered

to the tag electronics, Pic, and the reflected power received at the reader, Preader, can be

expressed using equations (2.2) and (2.3) as:

Pic = Pr(1− Γ1) (2.2)

Preader = PicGtGr

(
λ

4πL

)2

(1− Γ2) (2.3)

where Γ1 and Γ2 are input and output reflection coefficients, respectively. For the sake of

simplicity we will assume that the two reflection coefficients are equal:

Γ1 = Γ2 = Γ (2.4)

which leads to the reflected power received at the reader as:

Preader = Pt

[
GtGr

(
λ

4πL

)2
]2

(1− Γ)2 (2.5)

Equation (2.5) shows that the received power Preader can be used to infer the magnitude of

the reflection coefficient. To eliminate the non-relevant terms in equation (2.5), a control

tag is used which is co-located with the sensor tag. Thus, the terms Pt, Gt, Gr, λ and L are
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Figure 2.4: (a) Finite-element model of resistance loaded ALN-9640 RFID tag, the gap
formed is for resistance loading; (b) Simulated S11 at 915MHz for different conductance values
of the gap material and gap sizes; (c) Simulated S11 as a function of frequency for different
conductances of the gap material and for the gap length of 0.2mm.

common to both the tags. Thus, the ratio of the power received from the sensor tag and the

power received from the control tag can be expressed as:

P s
reader

P c
reader

=
(1− Γs)

2

(1− Γc)2
(2.6)

where P s
reader, Γs, P c

reader and Γc denote the received power and reflection coefficients for the

sensor tag and the control tag, respectively.
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2.3.2 Finite-element modeling

Equation (2.6) only represents a generic first-order relationship between the reflected power

and a tag antenna. To obtain results more specific to a particular type of antenna and

tag configuration, we resort to finite-element simulations of the antenna’s radiated power.

For this study we chose an antenna configuration corresponding to commercial ALN-9640

915MHz RFID tag [2], which is shown in Fig. 2.4(a). The antenna is constructed using

Aluminum and a gap is introduced in the antenna (marked by yellow in Fig. 2.4(a)) where the

silver-enhancement based sensor could be integrated. For this study we have assumed that

the sensor can be modeled using a material whose conductivity changes based on the degree of

silver-enhancement as described previously. For the sake of symmetry, the silver-enhancement

was integrated on both sides of the antenna and the RF reflection properties of the structure

was modeled using HFSS.

The reflection coefficient Γ in equation (2.6) can then be estimated using the antenna’s

scattering parameter S11 [46]. Fig. 2.4(b) shows the relationship between the simulated S11

at 915MHz and different values of conductances for the material in the gap. The results

show that lower value of reflection coefficients (S11) can be reached when the material has

a conductance equal to that of aluminum, due to superior impedance matching. As the

conductance of the material reduces, the impedance mismatch increases the magnitude of

S11. This trend is observed for different gap lengths (shown in Fig. 2.4(b)), except that for

smaller gap length, the change in S11 occurs at lower conductances. This study shows that

the changes in reflection properties can be used to detect two orders of change in conductance.

Fig. 2.4(c) shows the frequency characteristics of the antenna for different values of material

conductances as compared to the control (or reference) tag which does not have any gap.
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Figure 2.5: Using multi-access capability of Gen-2 UHF RFID protocol for ratiometric RSSI
measurement.

The results clearly show a change in the scattering parameter plot (also show in the polar

plot in the inset) due to impedance loading of the antenna.

2.3.3 Loading effect of control tag and ratiometric readout

In the next set of simulation studies, we evaluated the loading effect of the control tag on the

sensor antenna. As was described in section 2.3.1, the control tag has the similar antenna

structure and co-located with the sensor tag for ratiometric compensation. Note that the

current RFID standards like the Gen-2 UHF standard support multi-access capability where

different tags (with different identification codes) can be interrogated separately using a

random back-off algorithm [20]. The protocol is illustrated in Fig. 2.5 where the reader first

pings both the tags (state (a)) in its neighborhood. Then, both the tags respond to the

ping (state (b)) and the reader then detect a collision (state (c)). The reader then instructs

the tags to respond after a random delay (state (d)) after which each of the tags respond

separately (state (e) and (f)).
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(a) Located on the same plane (b) Stacked vertically

(c) Oriented 90o with respect to each other

Figure 2.6: Simulated S11 for a ratiometric readout comprising of a sensor tag (shown in
green) and calibration tag (shown in orange) placed in different orientations: (a) both tags
located in the same place; (b) both tags stacked vertically; and (c) tags oriented 90o with
respect to each other. (D denotes the distance between the sensor antenna and the control
antenna, G denotes the gap length)
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Thus, even though the tags are co-located, a reader can measure the RSSI for each of the

tags. For our simulations we have assumed that only one of the tags respond at a time and

the effect of the non-responsive tag is to affect the antenna loading characteristics. Fig. 2.6

shows the simulation results for three configurations of tag placements: (a) when both the

tags are located on the same plane; (b) when the tags are vertically stacked; and (c) when the

tags are oriented 90o with respect to each other. For all the simulations the distance between

the two antennas D and the gap length G were varied along with the conductance of the gap

material. In cases (a) and (b) the coupling effect can be clearly seen in the S11 plot (inset)

which show multiple resonant peaks, peak broadening and a shift in the resonance frequencies.

However, if the S11 is measured at 915MHz, the response is still monotonic with respect to

the conductance of the gap material. However, from a practical point of view configuration

(a) and (b) might be problematic because for both cases the reader sensitivity could be

significantly reduced due to the degradation in the quality factor. For the configuration shown

in (c), both the S11 response and the conductance characteristics are minimally affected.

Thus, this configuration will be used for our proof-of-concept experiments.

2.4 Proof-of-concept applications

We apply the proposed RFID sensing for two proof-of-concept applications: (a) detection

of IgG in a sample; and (b) detection of moisture in a sample. The functionalization and

modification of the antenna gap is shown in Fig. 2.7 for both the applications. For all

the experiments, commercial passive EPC Gen 2 UHF RFID tags manufactured by Alien

Technologies have been used.
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Figure 2.7: Working principle of the silver-enhancement process for dipole antenna based
biosensor and humidity sensor: (a) IgG detection: (I) top view of the biosensor structure
with one gap on each side covered with NC membrane; (II) cross-sectional view of the
antenna gap with gold nanoparticle conjugated anti-rabbit IgG forming a sandwich structure
before silver-enhancement; (III) cross-sectional view after the gap is bridged using silver-
enhancement; (IV) top view of 915MHz COTS dipole antenna based RFID biosensor structure.
(b) Moisture detection: (V) top view of the biosensor structure with one gap on each side;
(VI) cross-sectional view of the antenna gap with gold nanoparticle conjugated anti-rabbit
IgG immobilized on NC membrane before silver-enhancement; (VII) cross-sectional view after
the gap is bridged after DI water is applied to facilitate the silver-enhancement; (VIII) top
view of 915MHz COTS dipole antenna based RFID humidity sensor structure.
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2.4.1 IgG detection

Operating principle

The working principle of the proposed RFID biosensor for IgG detection is shown in Fig. 2.7(a).

The tag antenna with a gap on each side is first glued to a plastic backing material as shown

in Fig. 2.7 (I). The gap is then covered by a nitrocellulose (NC) membrane with the NC

side facing the aluminum antenna. Then target specific antibodies (aIgG) are immobilized

on the surface of NC membrane. When a solution of the conjugates of the target and the

secondary antibody (in this case IgG and gold nanoparticle conjugated anti-IgG (aIgG-

AuNP)), IgG-aIgG-AuNP, is applied from the side of the NC membrane, the conjugates

move to the surface of NC membrane due to capillary forces. In this regard, the process

of conjugation and hybridization with the immobilized antibodies is similar to that of a

lateral-flow immunoassay [60] and the details about fabrication of the application pad and the

conjugate pad can be found in [89] and has been omitted here for the sake of brevity. Due to

antibody-antigen hybridization, a sandwich structure (aIgG-IgG-aIgG-AuNP) is formed and

is shown in Fig. 2.7 (II). The excess unbonded sandwich conjugates are washed away from the

NC membrane due to capillary force. The remaining aIgG-IgG-aIgG-AuNP conjugates are

now detected using the silver-enhancement of the RFID antenna as described in section 2.2.

Materials and methods

Silver Enhancement Kit for Proteins and Nucleic Acids was obtained from Ted Pella (Redding,

CA, USA). Anti-Rabbit IgG (whole molecule) conjugated with gold nanoparticles produced

in goat (product number: G7402), anti-rabbit IgG antibody produced in goat (product

number: R2004) and IgG from rabbit serum (product number: I5006) were purchased from

Sigma-Aldrich (St Louis, MO, USA). Glutaraldehyde and Methanol were also obtained from
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Sigma- Aldrich (St Louis, MO, USA). Nitrocellulose (NC) membrane with flow rate of 135

sec/4cm was purchased from Millipore (Billerica, MA, USA). Deionized (DI) water used in

the experiment was obtained through Millipore water purification systems (Billerica, MA,

USA). Passive 915 MHz UHF RFID tags (ALN 9640) were purchased from atlasRFID store

(Birmingham, AL, USA). Scanfob Ultra-BB2 Wireless GEN2 UHF RFID Reader/Writer

(Cedar Park, TX, USA) was used as detector in the experiment. All experiments were carried

out in a certified Biological Safety Level II laboratory.

The NC membrane was cut into small pieces, washed with DI water three times and dried for

30min. Then NC membrane is immersed in 10% (v/v) methanol for 45min and left dry for

30min in air. After that, it is washed with 0.5% (v/v) glutaraldehyde solution and dried in

air for 60min. Anti-IgG (R2004, primary antibody used in this experiment) is then applied

on NC membrane, which is sealed with parafilm in petri dish and incubated at 37◦C for 1

hour. Then NC membrane is washed with DI water for 3 times and air dried for 1h. Until

now, the pretreatment of NC membrane is done and ready to use.

Each side of the dipole antenna is cut to form a small gap. The dipole antenna is attached to

the plastic substrate with double-sided tape. The NC membranes are then attached to the

surface of antenna with tape to cover each of the gaps. Then the conjugates of the target

and secondary antibody (IgG-aIgG-AuNP) are applied on two gaps of antenna from the side

edges of the NC membranes. The reagent volumes used for different antennas are 2µl, 4µl

and 6µl, separately. Then, the dipole antennas are sealed with parafilm in the petri dish and

incubated at 37◦C for 1 hour. The NC membranes are then washed 3 times with DI water and

dried in the drier box. Silver-enhancement solution is prepared by mixing the initiator and

enhancer with volume ratio of 1:1. The NC membrane is then immersed in silver-enhancement

solution. To facilitate the silver ions reduction, the silver-enhancement reaction is taken place

in 37◦C for 25min instead of room temperature. After the silver-enhancement process, the
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NC membrane is washed with DI water, dried and ready to be read by 915MHz Scanfob

Ultra-BB2 reader.

2.4.2 Humidity detection

Principle, materials and methods

The working principle of the RFID biosensor for humidity detection is shown in Fig. 2.7(b).

The principle is similar to that of IgG detection and is based on the principle of silver-

enhancement technique that can electrically bridge the split RFID dipole antenna parts.

However, the difference is that the silver-enhancement solution is applied in a dried form.

Silver-enhancement kit was purchased from the vendor in two separate forms (named as

initiator and enhancer) and in liquid forms. The initiator and enhancer were dried and

crystallized separately in a dark environment. The procedure of the NC membrane treatment

is similar to that of the procedure described in the previous section. The NC membrane is

also cut into small pieces, washed with DI water three times and dried. It is then treated 10%

(v/v) methanol for 45 min and dried for 30min. 0.5% (v/v) glutaraldehyde solution is used

to treat NC membrane, which is dried in air for 60 min. The difference from the procedure

described for IgG detection is that the gold nanoparticle conjugated anti-IgG (aIgG-AuNP)

is now immobilized on the NC membrane. aIgG-AuNP is applied on NC membrane, which is

sealed with parafilm in petri dish and incubated at 37◦C for 1 hour. Then it is washed with

DI water and dried for 1h.

Each side of the RFID dipole antenna (ALN-9640) is cut to form a small electrically insulated

gap of dimensions 0.4mm. The pretreated NC membranes are glued to the surface of antenna

with tape. Two gaps of the dipole antenna are covered by aIgG-AuNP immobilized NC

membranes with nitrocellulose side facing the aluminum antenna. On the other side of the
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RFID dipole antenna (plastic substrate side of the RFID antenna), a reservoir is affixed right

on each gap with J-B KwikWeld super glue, shown in Fig. 2.7 (V) and (VI). The reservoir

here works as a container for the storage of silver-enhancement powder. After 4 hours’ super

glue curing time, the powder of silver enhancer (with ratio of initiator and enhancer of 1:1) is

filled into the reservoir. The basic humidity sensor’s operation principle is similar to that of

the biosensor described previously in this paper. When the humidity sensor is exposed to

the water, the dry silver-enhancement powder gets dissolved and liquid silver-enhancement

solution is regenerated. As the silver-enhancement solution diffuses through the NC membrane

silver ions are reduced into metallic silver on the surface of gold nanoparticles. Similar to

the self-assembly principle described in section 2.2, the reduced silver electrically bridges the

antenna gap, as shown in Fig. 2.7 (VII).

2.5 Measurement results

The complete schematic RFID based detection and measurement system is shown in Fig. 2.1.

The system includes a 915 MHz RFID writer/reader (Scanfob Ultra-BB2) which can interfaces

with a laptop with cable or smart phone via bluetooth connection for data analysis and

display. The formation of micro-antennas in the gap can effectively bridge the two split

dipole antenna parts, which modulates the length of the dipole antenna. As a result, different

concentration of target analytes can be quantified based on the RFID interrogation distance

under the same power emitted from the RFID writer/reader. An unmodified 915 MHz dipole

antenna (same structure as our experimental implemented biosensor dipole but without any

treatment) is interrogated by the RFID writer/reader as a calibration source. Note that this

procedure of using an COTS RFID reader is more practical for use in the field rather than

probing the feed-points of the antenna and measuring its effective S11. Also, the antenna

is loaded by the tag’s chipset (which is an active element) and therefore using a network
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analyzer to measure S11 may not serve as an accurate indicator of the power reflected by the

tag. The farthest distances of the biosensor and the calibration tag that can be interrogated

by RFID reader are denoted as L1 and L2, respectively. All the measured maximum detection

distances of the biosensor (L1) are normalized with regards to that of the calibration dipole

antenna (L2).

2.5.1 IgG detection results

Fig. 2.8(a) shows the normalized detection length of dipole antenna biosensor when different

amount of IgG-aIgG-AuNP conjugates (ranging from 0µl to 6µl) are used. For the biosensor

when no IgG-aIgG-AuNP conjugates are applied (equivalent to the situation that no target

analyte is detected), the normalized detection length is only around 12% to that of the

calibration dipole antenna. When each side of the antenna is cut to form a small gap,

the input impedance of it is changed, which causes the RFID tag operating with lower

efficiency. Under the same power emitted from the RFID writer, it can only be sensed in

a much shorter distance compared to the original unmodified dipole antenna. For dipole

antenna with certain amount of IgG-aIgG-AuNP conjugates applied, both the controlled

(without silver-enhancement) and the experimental (with silver-enhancement) were run. The

measured results are monotonic with respect to the different volumes of IgG-aIgG-AuNP

conjugates applied, shown in Fig. 2.8(a). In this proof-of-concept study, a minimum amount

of target analytes which can be differentiated from the control experiment was 26.9ng. The

signal-to-noise threshold levels pre-programmed on the COTS RFID reader determines this

lower-limit of detection for this study. When the gap of the dipole antenna is completely

electrically bridged by the micro-antennas, the RFID antenna’s reflection properties is mainly

determined by the host dipole structure. The detection length of the biosensor gets saturated

in the range between 64% to 77% when a high target concentration (53.8ng in this paper)
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Figure 2.8: (a) Normalized maximum detection length of dipole antenna biosensors with regard
to that of the calibration antenna when different volumes of IgG are applied; (b)Normalized
maximum detection length of dipole antenna humidity sensor with regard to that of the
calibration antenna when different volumes of DI water and oil are applied.
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is applied. Even if more target conjugates are applied to the biosensor, it will not improve

the bridging quality (impedance matching) and also will not contribute to the increase of

detection length.

2.5.2 Humidity detection results

Fig. 2.8(b) shows the normalized maximum detection range when different volumes of DI

water (ranging from 5µl to 40µl) are applied. There is an obvious increase in the detection

length when water is applied to the humidity sensor compared to that without DI water

applied. For the dipole antenna without the presence of DI water, the maximum normalized

detection length is around 12% to 15% with respect to that of the calibration antenna. The

minimum amount of DI water applied to the humidity sensor in this experiment is 5µl and

the detection range increased to 19.89% of that of the calibration antenna which is nearly

doubled compared with the detection length without DI water applied. It indicates that the

gap between the separated antenna parts starts to be bridged by the silver-enhancement.

The measured detection range shows a nearly monotonic relationship with respect to the

volume of DI water. The detection length of the humidity sensor stops to monotonously

increase when the volume of applied DI water reaches 25µl and keeps stable at the value

between 40% and 45%. It is because silver-enhancement process has completely bridged the

gaps of the dipole antenna and the response of the RFID tag is mainly determined by the

host dipole structure. Vegetable oil (with volumes ranging from 5µl to 40µl) is applied to the

humidity sensor as control experiment. Fig. 2.8(b) shows that normalized detection range

does not vary much (at a value between 13% and 16%) when different volumes of vegetable

oil is applied. The measurements show that the applied vegetable oil will not contribute

to the increase of the humidity sensor’s detection length since it cannot facilitate the silver

deposition which modifies the input impedance of the RFID dipole antenna.
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2.6 Summary and discussion

In this chapter we presented a novel approach for designing RFID based biosensors which

used self-assembly of the tag antenna using a silver-enhancement technique. The silver-

enhancement approach self-assembles a chain of micro-antennas (gold nanoparticle cored

silver shelled particles) based on target analytes. The growth of these micro-antennas changes

the input impedance of the RFID dipole antenna which ultimately modifies the reflection

properties of the RFID tag. The change in reflection properties can be detected and measured

using a COTS RFID reader. In this chapter, we have also proposed a ratiometric approach

for robust measurement of the reflected signal strength. The optimal configuration uses

two co-located tags that are oriented 90o with respect to each other and minimizes mutual

antenna loading. The approach has been applied and demonstrated for two proof-of-concept

applications: (a) detection of IgG in a sample; and (b) detection of humidity in a sample.

The measured results show that the ratiometric measurement can not only be used to detect

target analytes but also to measure their concentration levels within a certain range. The

challenge for the proposed sensor and will form part of the future research is the integration

of sample acquisition interface (like microfluidics or lateral-flow structures) with the product

package being monitored. The future work will also explore the end to end multi-physics

simulation of the proposed concept that combines the physics of analyte-receptor interactions

with the physics of silver-enhancement and the physics of antenna propagation.
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Chapter 3

Wireless Biosensing by

Self-assembling QR codes

This chapter extends our previous work on silver enhancement based self-assembling structures

for designing reliable, self-powered biosensors with forward error correcting (FEC) capability.

At the core of the proposed approach is to self-assemble an invalid quick response (QR) code

into a valid QR code that can be optically scanned using a smart-phone in the presence of

target analyte based on silver enhancement. The scanned information is first decoded to

obtain the location of a web-server which further processes the self-assembled QR image to

determine the concentration of target analytes. To choose an appropriate paper substrate to

print and self-assemble the QR code, we have explored four different substrates that includes

regular printing paper, Whatman filter paper, nitrocellulose membrane and lab synthesized

bacterial cellulose. We report that out of the four substrates bacterial cellulose outperforms

the others in terms of probe (gold nanorods) and ink retention capability. The patterning

of the QR code on the substrate has been achieved using a combination of low-cost ink-jet
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printing and a regular ballpoint dispensing pen. In this chapter the proof-of-concept detection

using prototypes of QR encoded FEC biosensors has been demonstrated.

3.1 Introduction

The last decade has seen significant proliferation of smart-phones into the consumer market

and across different parts of the world [26]. Not only are these mobile devices equipped

with multi-modal communication (voice and data) capabilities, they are also equipped with

different sensing capabilities as well. For instance, by using the images acquired from phone’s

integrated camera and by applying different image processing algorithms, the smart-phone

can be used for different optical sensing applications ranging from mobile microscopes [51,

81], heart-rate monitors [29, 47] and environmental sensing [5, 79].

Another application of optical sensing that is the use of smart-phones to scan quick-response

(QR) codes as shown in Fig. 3.1. A QR code for instance could encode the location of a

web-server from which the product specific information (e.g. active ingredients, side-effects

and consumer ratings) could be retrieved. In the area of biosensors, QR codes have been

mainly used to encode product information. For instance, in [77] Kubota used a QR code

to describe the specifications of an electrochemical paper-based p-nitrophenol biosensor.

Similarly, in [22] QR code was used to encode platform and patient information on a lateral

flow immunochromatographic sensor for detecting human immunodeficiency virus (HIV) and

measuring prostate-specific antigen (PSA). In this case a Google glass was used to scan

the code and retrieve the data from the cloud server. In [67] Zharnikov reported a method

to pattern a 29×29 QR code using nanoparticles transferred using an ultra-thin hydrogel

template. However, the patterning technique was not integrated with the underlying process

of biosensing.
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Figure 3.1: Framework of a forward error-correcting biosensor specific to the proposed
self-assembled QR code. A smart-phone is used for scanning and decoding the code and
determining the presence or absence of target contaminants.

However, if the information encoded by a QR code could also reflect the concentration levels

of target analytes in a product, then by using a smart-phone the consumer could determine

the freshness of a perishable product like milk (as shown in Fig. 3.1) before purchase. This

ability could therefore be useful for preventing food-borne disease outbreaks and product

recalls like the 2015 Listeria outbreak due to contaminated ice-cream [68]. The QR code also

provides a platform to integrate the concept of forward error-correcting biosensors [59] where

the process of biosensing could be combined with error-correcting codes to achieve a higher

reliability and throughput in analyte detection. In this FEC framework the biosensor is

modeled as a communication channel where the conversion of the binding event between the

analyte with its biological receptor (e.g. antibody or aptamer) is considered to be noisy [43].

Therefore, by using a channel encoder comprising of different spatial and logical bioreceptor

patterns [43], the effects of channel noise could be potentially mitigated. As an example,
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a low-density parity check type encoder constructed using antibody based logic gates was

reported in [31].

For this work, we propose the QR code as a bio-encoder, as shown in Fig. 3.2, and the

smart-phone as the decoder or measurement device. The QR bio-encoder is constructed by

overlaying an unassembled QR code over a paper-based microfluidics assay that samples

and directs the analyte into regions of the QR code that could self-assemble. In this work

self-assembly is achieved using a silver-enhancement process which is triggered only when

target analytes are present in the sample, which results in the change in optical absorption in

specific regions of the QR code. This chapter builds upon our previous work in the area of

silver-enhancement [61, 62, 97, 98, 100, 102] where we had demonstrated self-assembly of

radio-frequency (RF) antenna structures and for implementing conductance based biosensors.

In these previous studies, silver-enhancement procedure was used to amplify and measure

the concentration of gold-nanoparticles which was shown to be equivalent to measuring the

concentration levels of the target analytes. In this chapter we show that the QR decoding

process can also measure the concentration levels of immobilized gold-nanoparticles with the

assumption (based on our prior work) that this ability can easily translate to measuring the

concentration levels of target analytes as well.

This chapter is organized as follows: Section 3.2 briefly introduces the basics of a QR code

and self-assembly sensing principle using QR code. Materials and methods used to prepare

the biosensor and the experimental setup have been introduced in Section 3.3. Four dif-

ferent substrates, including regular printing paper, Whatman filter paper, nitrocellulose

membrane and lab synthesized bacterial cellulose, are used for the QR code biosensor

prototype fabrication. Section 3.4 presents measurements obtained using the fabricated

biosensor prototypes, and Section 3.5 concludes the chapter with discussions of future work.
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Figure 3.2: Principle of the proposed QR code self-assembly and decoding process: (a)
different parts of a QR code; (b) decoding procedure where any assembled QR is successfully
decoded if the code-word lies within the decoding radius; and examples of a QR code that
can be (c) successfully decoded; and (d) cannot be decoded.

3.2 Principle of operation

3.2.1 Operating principle of QR code biosensor

QR code is a two-dimensional barcode which was developed to enhance the data encoding

capacity per unit area compared to a traditional barcode [32]. Since its inception for use in

tracking automobile parts, QR codes have now been widely adopted in commercial tracking,

entertainment, ticketing and labeling applications. While several references can be found in

literature describing the theory and decoding of QR codes [11, 44, 83, 91], for the sake of

completeness we briefly describe the structure of the code without too much emphasis on

different variants and versions of the code. Typically, four kinds of data, namely numeric,

alphanumeric, byte/binary, and kanji, can be encoded and stored in the QR code.
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As an example, Fig. 3.2(a) shows a version 1 (21×21 pixels) QR code encoding the word

“POSITIVE”. The reader can readily verify this by using the QR decoder app on their

smart-phone. The position detection pattern (highlighted by a blue square in Fig. 3.2(a))

located at the three of the four corners are used for alignment, such that a QR code scanner

can normalize and calibrate for any image scaling or misalignment. Format information

(shown in Fig. 3.2(a)) contains the error correction rate and mask pattern of a QR code.

This information is read first to determine the “strength of error-correction” before the code

is decoded. The timing pattern helps the decoder to detect the position of each cell in the

QR code. Data encoding and decoding use a Reed-Solomon error correction algorithm that

can correct for corruption in parts of the scanned QR code. Like any FEC code, a QR code

can embody different strengths of error correction (Low-7%, Medium-15%, Quartile-25%

and High-30%) by trading-off data storage capacity. For example, in Fig. 3.2(a) the area

marked in yellow encodes the error correction level “L”, which implies that the code can be

reliably decoded even if approximately 7% of the data is corrupted or damaged. We will

exploit this error-correcting capability in the proposed FEC biosensor where parts of the QR

code-word will self-assemble and become decodable based on the presence of target analytes

in the sample.

This FEC process illustrated in Fig. 3.2 where a valid QR image (image that can be

successfully decoded) is visualized as a vector (A) in a high-dimensional space (illustrated

in three dimensions in Fig. 3.2(b)). The decoding radius in Fig. 3.2(b) quantifies the error-

correcting capability of the QR code. Any vector that differs from the valid QR code (A)

by a certain degree (for instance Hamming distance or Euclidean distance) but lies within

the hyper-sphere can be successfully decoded and any vector that lies outside cannot be

decoded. This is illustrated in Fig. 3.2 which shows two examples of assembled QR codes (B

and C) that differ from each other regions that is highlighted. The QR code B lies within
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the decoding radius and can therefore be successfully decoded whereas the code-word C lies

outside the radius and hence cannot be decoded. In the proposed FEC biosensor, the sensing

process (or the process of growing or assembling the QR code) follows a trajectory starting

from an unassembled QR codeword like C to an assembled codeword like B, if and only if

target analytes are present. Also illustrated in Fig. 3.2 is that the decoding distance between

the assembled QR codeword and the perfect QR codeword can be used to determine the

concentration of the target analyte.

3.2.2 Self-assembly and analyte detection based on silver enhance-

ment

Silver-enhancement based analyte detection relies on the formation of a sandwich structure

comprising of primary probes (e.g. antibodies), target and gold nanorod (AuNR) conjugated

secondary probe, as illustrated in Fig. 3.3(a). In our previous work [61, 62] we have described

the mechanism of the sandwich formation for different substrates and for detecting different

target analytes which we briefly summarize in this section. The AuNR conjugated secondary

probes first hybridize with their target analytes which then bind with the primary probes

that are immobilized on specific locations on a substrate (e.g. silicon or nitrocellulose paper).

Any unbounded secondary probes are washed away leaving the sandwich structure (labeled

by AuNR) intact. Because the dimensions of AuNRs are in a scale of nanometers, they are

not large enough to be optically visible or electrically detectable. Therefore, in literature a

silver-enhancement procedure is used to stain the gold labels (nanoparticles or nanorods) and

measure its concentration [24, 73].

When a silver enhancement solution (comprising of silver ions (Ag+) and hydroquinone, a

photographic developing solution) is applied, silver ions start reducing into metallic silver on
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Figure 3.3: Analyte detection using silver-enhancement: (a) sandwich structure labeled
using AuNR and before the process of silver-enhancement; (b) SEM image of nitrocellulose
membrane surface; (c) after the silver-enhancement process, the silver ions reduces on the
AuNR; (d) SEM image showing silver ions were reduced on the surface of AuNRs and grow
the particle in size with silver-enhancement; (e) and (f) summarize previous experimental
results showing that the growth of silver-particles leads to a change in conductance which is
proportional to the concentration level of mouse and rabbit IgG [61].
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the surface of the gold. This process is completely self-powered by the chemical activation

energy and does not require any external biasing. Also, during this process, gold serves as a

catalyst and facilitate further reduction of silver-ions. As time progresses, more silver ions are

reduced and a chain of AuNRs cored silver micro-structures assemble, as shown in Fig. 3.3(c).

This results in an equivalent increase in conductance (as shown in Fig. 3.3(e) and (f)) which

can be measured to determine the concentration of the captured targets. In [97, 102], we

have used the silver-enhancement principle to grow radio-frequency antennas in different

antenna patterns. In this work we use the silver-enhancement principle to grow parts of

a QR code that can be optically scanned. When sufficient silver enhancement solution is

present, the increase of the particle size is monotonic [62] with respect to the time, which

reduces the intensity of the scattered light. Thus, the regions where the silver-enhancement

successfully occurs become darker. Note that besides silver enhancement, gold solution can

also be reduced and deposited on the gold nanorod surface, and works in a similar way as

the process of silver-enhancement. However, the time-scale for gold-enhancement is much

longer than silver-enhancement, the relative change in intensity is much lower and the cost of

using gold as an enhancer is much higher than silver.

To understand how the silver-enhancement can be combined with a QR code, consider the

modified QR code shown in Fig. 3.2(c) which is the same QR code as the one shown in

Fig.3.2(a). The only difference is that five black squares have been reduced in intensity to

gray. This simulates the condition when different concentrations of analytes lead to different

degrees of staining. The code in Fig. 3.2(c) can still be decoded (in this case with WeChat

App on iPhone 6) and the reader can verify this using his/her smart-phone. However, when

these five black modules/squares are completely removed from the code , as shown in Fig.

3.2(d), the code can not be decoded by a smart-phone because the code-word lies outside the

decoding radius, as shown in Fig. 3.2(b).
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(a) (b) (c) (d)

Figure 3.4: Experiment showing different stages of QR self-assembly: (a) an example of QR
code printed on a white paper (information encoded in this QR code: Adaptive Integrated
Microsystems Laboratory http://aimlab.seas.wustl.edu/); (b) the same QR code printed on a
plastic substrate using AuNR ink; (c) the plastic substrate after 20 min of silver-enhancement;
and (d) information in the QR code decoded with a smart-phone app.

3.2.3 Developing ink-jet printed QR code with silver enhancement

We verified the process of encoding and decoding QR codes self-assembled using the silver-

enhancement process in the following experiment. QR code in Fig. 3.4(a) was ink-jet printed

on the mesoporous polyethylene substrate using AuNR solution as ink and was developed

with silver enhancement solution, as shown in Fig. 3.4. Before loading the cartridge filled

with the AuNR solution to print the QR code, the printer head was purged by printing

the MIS purge document using aqueous inkjet vehicle. Around 10-20 pages were printed

by selecting “Heavyweight Matte paper” and “Best Photo” in the printer preferences until

pigment disappeared. Then the cartridge filled with AuNR solution was loaded. Another

5 pages (or more) of the MIS purge document were printed on Heavyweight Matte paper

and Best Photo using AuNR ink until the ink appeared consistent. Then the mesoporous

substrate was loaded and the QR code was printed. After the QR code printed on the

substrate dries up, the code is not visible as shown in Fig. 3.4(b). This is because the

size of the AuNR is in nanometer. The mesoporous substrate was then treated with silver
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enhancement solution (composing of the initiator and enhancer with volume ratio of 1:1).

After a 20 min development process, more and more silver ions get reduced on the surface

of AuNR. The size of the particle gets increased from nanometer scale to micrometer scale.

The area on the substrate where is originally printed with AuNR can be visually seen in

black, as shown in Fig. 3.4(c). Then the substrate was rinsed with DI water gently to remove

the remaining silver enhancement solution and stop the process of silver enhancement. The

developed code can then be decoded with QR code scanner, as illustrated in Fig. 3.4(d). It

should be noted in Fig. 3.4(c) that the area where no AuNR is printed gets darker after silver

enhancement compared to that in Fig. 3.4(b). It is because the AuNR solution printed on

the mesoporous is not firmly captured by the substrate. Once the substrate is treated with

silver enhancement solution for development, some of those AuNRs are washed away from

their original spots and are captured again in other spots by the substrate. These AuNRs

also participate in the silver enhancement process since they are also exposed to the solution,

which turns the substrate darker. Fortunately, due to the error-correcting capability (15% of

codewords can be restored in this case), the QR code can still be correctly decoded.

3.3 QR code biosensor prototype on different substrates

Whitman filter-paper [19, 66] or nitrocellulose [13, 14] have been extensively used as paper

substrates for biosensors in the literatures. In this work we have explored the use of bacterial

cellulose (BC) as the substrate to fabricate the QR code biosensor. BC is a biocompatible

and bioactive material that has been approved by the US Food and Drug Administration

(FDA) for the usage in clinical indications [1]. As a substrate BC is attractive due to its

open nanoporous structure, simple surface chemistry, excellent mechanical properties, low

cost and scalable synthesis [45, 92]. Even under vigorous mechanical agitation and harsh

chemical conditions, bacterial cellulose still exhibits excellent stability. These features of BC
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have been previously used for designing flexible Surface Enhanced Raman Scattering (SERS)

substrate which shows ideal capabilities for bacteria collection [86]. In this chapter, we show

that BC also demonstrate excellent ink retention capability that ensures the printed QR code

is stable when subjected to liquid analytes.

3.3.1 Materials and methods

Materials and apparatus

Gold chloride (HAuCl4), Hexadecyltrimethylammonium bromide (CTAB), sodium boro-

hydride (NaBH4), silver nitrate (AgNO3), ascorbic acid and silver enhancement kit were

purchased from Sigma-Aldrich (St. Louis, MO, USA). Nitrocellulose (NC) membranes with

flow-time (measure of flow rate) of 135sec/4cm was purchased from Millipore (Billerica, MA,

USA). Deionized (DI) water used in the experiment was obtained through Millipore water

purification systems (Billerica, MA, USA). An EPSON stylus C88+ ink-jet printer was used

to print the QR code. The printing substrate, aqueous inkjet vehicle, the empty cartridge

and aqueous inkjet vehicle were purchased from Novacentrix (Austin, TX, USA). Paper mate

profile retractable ballpoint pens were bought from Amazon.com, Inc. All the chemicals were

used as received without further purification. The experiments were carried out in a certified

Biological Safety Level II laboratory.

Synthesis of AuNRs

AuNRs were synthesized by using seed-mediated method [27, 37]. Seed solution was synthe-

sized by adding 0.6 ml of an ice-cold NaBH4 (10 mM) solution into 10 ml of HAuCl4 (0.25

mM) and CTAB (0.1 M) solution under vigorous stirring at room temperature. The color of

the seed solution changed from yellow to brown. Growth solution was prepared by mixing 5
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Figure 3.5: Optical extinction spectrum of AuNR verifying the dimensions of the nanorods
(inset: TEM image of AuNR).

ml HAuCl4 (10 mM), 95 ml CTAB (0.1 M), 1 ml AgNO3 (10 mM) and 0.55 ml ascorbic acid

(0.1 M), consecutively. The solution was homogenized by gentle shaking. To the resulting

colorless solution, 0.12 ml of freshly prepared seed solution was added and kept undisturbed

in the dark for 14h. Prior to use, the AuNR solution was centrifuged twice at 8000 rpm for

10 min to remove excess CTAB and re-dispersed in DI water. UV-Vis extinction spectrum

was measured using Shimadzu UV-1800 UV-Vis spectrophotometer and shown in Fig. 3.5.

The extinction spectrum of AuNR exhibits two characteristic bands at 510 nm and 794 nm,

which corresponding to the transverse and longitudinal plasmon resonances, respectively. The

length and diameter of AuNR were respectively measured to be 58.7±4.5 nm and 14.5±1.0

nm using Transmission electron microscopy (TEM) (inset in Fig. 3.5). TEM image was

collected using a JEOL JEM-2100F field emission microscopy.
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Figure 3.6: Schematic illustration bacterial cellulose growth process: (a)-(c) schematic
illustration showing bacterial paper synthesis process; (d) photo of synthesized bacterial
cellulose.

Synthesis of bacterial cellulose

Fig. 3.6 shows the schematic illustration of bacterial cellulose fabrication process. Glu-

conacetobacter hansenii (ATCC 53582) was cultured in test tubes containing 16 ml of #1765

medium at 30◦C under shaking at 250 rpm. The #1765 medium is composed of 2 % (w/v)

glucose, 0.5 % (w/v) yeast extract, 0.5 % (w/v) peptone, 0.27 % (w/v) disodium phosphate,

and 0.5 % (w/v) citric acid. Bacterial culture solution (incubated 3 days) was added to the

medium to make a total 7 ml solution. The solution was subsequently transferred to petri

dish and incubated at room temperature without disturbance as shown in Fig. 3.6(a). After

5 days, a thin film of bacterial cellulose was formed. For purification, the film was harvested

from the petri dish and washed in a 500 ml of 0.1 M NaOH aqueous solution under boiling

condition for 2 h. The obtained bacterial cellulose hydrogel (schematic illustrated in Fig.

3.6(b)) was then dialyzed in DI water for 2 days. The purified bacterial cellulose hydrogel

was then air dried. Photo of the as synthesized bacterial cellulose is shown in Fig. 3.6(d).
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Figure 3.7: Schematic illustration showing QR code biosensor fabrication procedure: (a) print
the predefined QR code (invalid) on the substrate with normal black ink; (b) AuNR ink filled
in the gel pen and dispensed on the self-assembling region; (c) schematic diagram showing
AuNR ink drops on the pen tip surface (inset: SEM image of top view of the pen tip).

3.3.2 QR biosensor prototype fabrication

The invalid or unassembled QR code is firstly printed on the substrate using EPSON C88+

printer with normal black ink, as shown in Fig. 3.7(a). We have used four different substrates

in this paper, including regular printing paper, Whatman filter paper, nitrocellulose membrane

and lab synthesized bacterial cellulose. Once the printed QR code patterns are dried, AuNR

ink is dispensed in the self-assembling regions where the five black modules have been

intentionally removed (Fig. 3.7(b)). To dispense the AuNR ink in the self-assembling region

more efficiently, ink-jet printing technique has been tried and reported in our previous work

[105]. Unfortunately, it’s found that direct dispensing of AuNR ink in the enhancement

regions is not consistent for different concentration levels due to the physical properties of

the AuNR ink (e.g. viscosity, surface tension) is not optimized for EPSON C88+ printer.

In this work, we resorted to a low cost calligraphy method using a regular gel pen to dispense

the AuNR ink on the QR assembly regions directly, as shown in Fig. 3.7(b). Similar procedure

using a regular ballpoint pen to dispense AuNR solution was reported in our previous work [87,
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88]. The original ink in the pen’s refill container is pushed out using nitrogen gun after

the tip and refill are separated. The gel pen refill and the tip are cleaned with ethanol by

sonication for 2 days in a centrifuge tube. The ethanol is replaced every 3 hours until the

color of ethanol doesn’t change (no more ink gets dissolved in ethanol). Both the pen’s refill

container and the pen tip are dried with nitrogen gun. The AuNR solution is then injected

into the cleaned gel pen refill and the pen is ready to dispense the AuNR ink solution in the

QR assembling regions (Fig. 3.7(b) and (c)). Inset shows the top view of the pen tip.

3.4 Measurement results

3.4.1 Silver enhancement on different paper substrates

We have compared the process of self-assembly by calligraphing text (in this case“AIM LAB”)

with AuNR ink and developing it using silver enhancement technique on different substrates

in the following experiment. Four different substrate materials – printing paper, Whatman

filter paper, nitrocellulose membrane and bacterial cellulose – have been used and compared

in this experiment. Same text has been patterned on these four substrates with AuNR at

same concentration level and developed with silver enhancement solution as time progresses,

as shown in Fig. 3.8. Before silver enhancement, text on four different samples are nearly

invisible (Fig. 3.8 (a1), (b1), (c1) and (d1)) because AuNRs are in a dimension scale of

nanometers and are too small to be visibly observed. After silver enhancement the printing

paper substrate turns into dark quickly in 4 minutes, which makes the text unrecognizable,

as shown in Fig. 3.8(a3). It is mainly because the chemical reagents contained in printer

paper binder also facilitate silver reduction.
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Figure 3.8: Text calligraphed on four different substrates using AuNRs ink and developed
with silver enhancement: (a1)-(a3) regular printing paper, before SE, 2min and 4 min after
SE, separately; (b1)-(b3) Whatman filter paper, before SE, 2min and 7min after SE; (c1)-(c3)
nitrocellulose membrane, before SE, 2min and 7min after SE; (d1)-(d3) bacterial cellulose,
before SE, 2min and 7min after SE.

Better results have been obtained on the other three substrates due to much less self-contained

impurities. For instance, Whatman filter paper is only comprised of super-refined cellulose

fibers. Calligraphed text on this substrate is legible after 7 minutes’ silver enhancement

(Fig. 3.8(b3)). However, during this process the applied silver enhancement solution spreads

out and evaporates very quickly due to porous surface feature of filter paper. As a result,

continuously adding silver enhancement solution on the filter paper is necessary to provide

sufficient reagent to facilitate further silver deposition.
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Similarly, nitrocellulose membrane is also highly porous (pore size in micrometers). As a

result, continuously applying silver enhancement solution on the calligraphed text is necessary

to promote further silver reduction. Although the text is legible after 7 minutes’ silver

enhancement on nitrocellulose membrane, part of the AuNRs are dispersed away from their

original spots by the applied silver enhancement solution and they have also undergone silver

enhancement process. As a result, the color of the adjacent area of the text becomes blotted

and reduces the legibility of the text.

AuNR text on bacterial cellulose substrate is developed and remain clear and legible after 7

minutes’ silver enhancement. Different from above mentioned substrates, bacterial cellulose

could retain silver enhancement solution in the spot where it is originally applied since it is

has a much smaller pore size (in nanometer scale). One time silver enhancement application

is sufficient to develop the calligraphed text on the substrate. Note that there is a noticeable

black line surrounding the silver enhancement solution drop after 7 minutes’ development as

shown in Fig. 3.8(d3) which is known as “coffee ring effect” [18, 35, 106]. Because of different

evaporation rates across the silver enhancement solution drop, solution evaporated on the

edge is replenished by the liquid from the interior. In this way, some AuNRs dispensed on

the surface of the bacterial cellulose that are not firmly captured by the substrate surface

are dispersed to the edge. In the meantime, these AuNRs are also exposed to the silver

enhancement solution, and have undergone silver enhancement process.

The AuNRs retention capabilities of four different substrates have also been examined. The

substrates are first immersed in the AuNRs solution with same concentration over night.

Then they are gently rinsed with DI water and air dried. Surface morphologies before and

after silver enhancement have been compared with SEM examination for different substrates,

as shown in Fig. 3.9. AuNRs can be uniformly captured on the surface of Whatman filter

paper, nitrocellulose and bacterial cellulose. With silver enhancement, metallic silver clusters
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Figure 3.9: SEM images showing AuNRs before and after 15 minutes’ silver enhancement on
different substrates (a1-a2: printing paper; b1-b2: Whatman filter paper; c1-c2: nitrocellulose;
d1-d2: bacterial cellulose).
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have been formed on both printing paper and nitrocellulose substrates. Compared to other

three cellulose substrates, the ultrafine nanoscale network feature of bacterial cellulose (shown

in Fig. 3.9(d1) and (d2)) anchors the AuNR cored silver shelled particles in its 3D network,

and hence provides higher retention capability.

3.4.2 QR code self-assembly on different substrates

Self-assembling process of the proposed FEC biosensor prototype have also been validated

on these four substrates as shown in Fig. 3.10. AuNRs solution with concentration of

4.13×10−9 M has been dispensed onto prototypes’ self-assembling regions using a low cost

calligraphy method as described in section (3.3.2). Self-assembling process occurs once the

silver enhancement solution is applied to the regions where AuNRs have been patterned.

However, in the case of printing paper not only AuNRs but also other chemical binders

facilitate the silver ion reduction. As a result, silver deposition occurs in the region of

substrate wherever exposed to the silver enhancement reagent, which makes the QR code

undecodable in less than 4 minutes as shown in Fig. 3.10(a3).

Although good text development result has been achieved on filter paper as shown in

Fig. 3.8(b), filter substrate of the prototype gets yellow in the self-assembling process

(Fig. 3.10(b2) and (b3)). The QR code deviates from a valid QR code, lies outside of the

decoding radius and becomes a invalid code-word ultimately. This is because impurities

contained in ink (used to print QR code) get dissolved in silver enhancement solution and

have been dispersed off their original spots as silver enhancement solution spread out on the

porous filter paper. As time progresses, more ink impurities get accumulated in the regions

where black QR code modules are not printed. Silver ions get reduced and accumulates in

those regions, which acts as the noise and corrupts the QR code ultimately. Same thing
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Figure 3.10: QR code biosensor prototype using: (a1)-(a3) printing paper, before SE, 2min
and 4min after SE, separately; (b1)-(b3) filter paper, before SE, 5min and 15min after SE;
(c1)-(c3)nitrocellulose membrane, before SE, 5min and 15min after SE; (d1)-(d3) bacterial
cellulose, before SE, 5min and 15min after SE.
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occurs on the nitrocellulose membrane based QR code biosensor prototype also because of its

porous feature, as shown in Fig. 3.10(c1)-(c3).

Besides bacterial cellulose’s high particle retention capability due to its ultrafine nanoscale

network, it also has advantages over previous substrates: 1) there’s no impurities contained

in the substrate can facilitate the silver enhancement; 2) it is not as porous as filter paper

and nitrocellulose paper so that the applied silver enhancement solution can be retained in

the spot where it is originally applied. Fig. 3.10(d3) shows the self-assembled FEC sensor

using bacterial cellulose substrate after 15 minutes’ self-assembling. The modules where

AuNRs were dispensed have been successfully developed and in the meantime keep their

neighborhood area intact. “Coffee ring effect” observed in Fig. 3.8(d3) persists in this case,

as shown in Fig. 3.10(d3). Fortunately, due to the error correction capabilities embedded in

the QR codes encoding process, it has little effect on the decoding process. QR code can

be successfully decoded with a standard smart-phone and readers can verify this using their

own smart-phones.

3.4.3 Quantitative measurement using QR codes

We also verified whether the proposed sensing approach could be used to infer the concentration

levels of target analytes. Three dilution levels (1:1, 1:3 and 1:9) of AuNR solution at the

concentration of 4.13×10−9 M were prepared and dispensed in the self-assembling regions

of QR code on bacterial cellulose. The time used to successfully decode the QR code after

the silver-enhancement solution applied was measured for different dilution levels. Each

measurement was repeated three times and the relative error-bars were also shown in Fig. 3.11.

As it can be seen from Fig. 3.11, the QR code detection time, or assembly time increases

monotonically with respect to the AuNR dilution levels, thus demonstrating the use of QR

decoding for measuring concentration levels of target analytes.
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Figure 3.11: Time measured to assemble the valid QR code using silver enhancement for
different concentration levels of AuNR solution on the bacterial cellulose substrate.

3.5 Summary and discussion

In this chapter a QR encoded FEC biosensor which is based on self-assembly with silver

enhancement technique is demonstrated. The silver enhancement process self-assembles

segments of a QR code that can be scanned and decoded using a standard smart-phone.

Similar to our previously reported approach for self-assembling RF antennas, this method can

also be viewed as a process that transitions from a high-entropy state (random codeword) to

a low-entropy state (valid QR codeword) which is opposite to the effect due to environmental

artifacts. Thus, we believe that similar to the spirit of FEC biosensing principle the proposed

method should yield lower false-positives and higher reliability.

We have compared four paper-based substrates for printing and assembling QR codes which

includes regular printing paper, Whatman filter paper, nitrocellulose membrane and lab

synthesized bacterial cellulose. Among these four different substrates, lab synthesized bacterial
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cellulose outperforms the other three. Although “coffee ring effect” occurs after the silver

enhancement process, the assembled QR code can be correctly decoded due to the FEC

capabilities embodied in the encoding process of the QR code. It also has been shown in the

paper that QR code self-assembling time can be used to infer the target analyte concentration

levels.

Based on the QR based decoding, there are two use cases for the proposed biosensor in

real-world applications. In the first use case, a consumer triggers the sampling of the analyte

using a capillary channel (a dipstick configuration) and then waits for the result of silver-

enhancement. Our measurement results show that the detection time will provide an estimate

of the concentration of the target analyte which then could be used as a contamination flag.

The second use case, which is more challenging is that the embedded biosensor continuously

samples the analyte and updates the QR code. In this case the key challenges lie in the

packaging of the biosensor and accurately controlling the flow of different reagents so that its

operation matches the shelf-life of the product. Another challenge is to reproduce the quality

of the biosensor and reduce its production cost when fabricated in large volumes. To address

this issue the research focus will be to investigate inexpensive approaches for developing

silver-enhancement reagents and to investigate reliable dispensing of the AuNR ink and other

reagents using the inkject printing technique. Future work will also focus on enhancing

the shelf-life of the biosensing platform and on optimizing the amount of reagent used for

analysis. Also, future work will focus on leveraging cloud-based computation and data-fusion

capabilities to improve the reliability of detection and to provide updated feedback to the

end user.
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Chapter 4

Sample Acquisition with Paper-based

Microfluidics

Although in Chapter 2 and Chapter 3 we have verified the proof-of-concept biosensor

prototypes (RFID based and QR code based) which can be used for bio-molecule detection

by self-assembling part of transducer strucutres (RF antennas or QR code-words) using a

silver enhancement technique. Both of these biosensors require a direct access to the sample

analyte, which would be a issue in the scenario when the samples to be analyzed are concealed.

The scenario routinely occurs in food and medicinal supply-chain where the samples are

packaged and shipped in sealed containers. Hence a self-powered approach that can sample

and process the reagent, and control its flow is necessary. In this chapter, we will probe the

use of paper-based microfluidics for self-powered reagent delivering and processing. We will

investigate to integrate paper-based microfluidics channels on both passive RFID and QR

code based biosensors for silver enhancement reagent delivering.
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4.1 Introduction

Paper based microfluidics devices, also known as “lab on paper”, is an active area of research

because it provides a simple, low-cost platform to analyze liquid samples in the field. Examples

of such platform include biological assays that can detect and measure different concentration

levels of Salmonella [40, 76], glucose [71, 94], cholesterol [70] and protease[90]. The principle

underlying all these paper-based platforms is to immobilize protein-based reactive elements

(enzymes, antibodies, aptamers, peptides or DNA) on paper in conjunction with a transducer

that converts the binding of the target analyte with the protein into a measurable signal.

Broadly these devices can be categorized into four classes based on their detection method [54]:

a) colorimetric detection [40]; b) electrochemical (EC) detection [70, 71]; c) chemiluminescence

(CL) detection [94] and d) electrochemiluminescence (ECL) detection [63]. Colorimetric

method is useful when a yes/no answer (target present or absent) is sufficient, whereas the

EC method is used when a high detection sensitivity is required. The CL and ECL methods

have not been widely used for paper-based biosensors since they require a optical-shield for

read-out.

Irrespective of their read-out methods, all these techniques require a direct access to the

biosensor (optically or electrically), and hence cannot be used under scenarios when the

samples to be analyzed are concealed. The scenario routinely occurs in food and medicinal

supply-chain where the samples are packaged and shipped in sealed containers. For such

applications there exists a need to monitor the quality of the product at every point of

the supply-chain (without opening the package) so as to prevent and track the source of

any contamination due to food-borne pathogens. Hence a self-powered approach that can

sample and process the reagent, and control its flow is necessary. In this chapter paper-based

microfluidics channels have been intergrated on the RFID based biosensor and QR code
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based biosensor reported in chapter 2 and 3 to control the process of sample acquisition and

silver enhancement in a passive manner.

4.2 Integration of paper-based microfluidics on RFID

biosensor

In this section, we first show that paper-based microfluidics can be used for low-cost and

self-powered sample acquisition, sample flow and sample mixing. Second, we show that

the microfluidic network can be integrated with a low-cost, ink-jet printed antennas on a

plastic substrate. Third we demonstrate a proof-of-concept detection using an integrated

commercial RFID tag compliant with the Gen-2 ultra-high-frequency (UHF) standard. The

basic principle of self-powered assembly and the growth of RF antenna elements has been

described in chapter 2 and is omitted here for the sake of brevity.

4.2.1 Integration with paper-based microfluidics

Principle of operation

One of the focus of this section is to show that the principle of RF antenna self-assembly can

be integrated with paper-based microfluidics by selecting the regions where silver-enhancement

could occur. Most of the paper-based microfluidics devices are fabricated by patterning

hydrophilic channels and hydrophobic barriers on cellulose-based paper membranes, such as

cellulose chromatography papers [85] and cellulose filter paper [55]. In this paper, we have

used nitrocellulose membranes (manufactured by Millipore) as our microfluidics substrate

due to its high antibody binding capacity and consistent pore size [74]. This is important

because the length of the microfluidic channels is determined by the degree of penetration of
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Figure 4.1: Concept of integrating the principle of silver enhancement with paper-based
microfluidics.

the liquid through the porous nitrocellulose membrane, which is approximately modeled by

the Washburn’s equation [55] as:

L =

√
γRcosθ

2η
t (4.1)

where L is the liquid penetration distance in the paper, R is the average radius of pore size, γ

is the surface tension of the liquid, η is the liquid viscosity and t is the time of the penetration.

Both the parameters L and t have been used to optimize the size of the microfluidic channels

as discussed in section 4.2.3. Also for the sake of reliability, in this paper we have avoided

the use of photolithography and wax printing to form reagent channels. Instead we have

resorted to laser cutting to create different shapes that can function as liquid channels. Note

that laser-ablation will typically burn the walls of the nitro-cellulose membrane. However, we

only cut the 4mil plastic backing on the nitrocellulose membrane (both HF13504XSS and

HF18004XSS). We carefully adjusted the power/current and the cutting speed of the Full

Spectrum Laser LLC MLE-40 to make sure the membrane is not over burned. After this
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laser pre-treatment, a razor blade is used to cut through the desired shape along the lines

created by the laser cutting on the plastic substrate. The flow of the reagents through the

channel is self-powered through capillary force of the membrane and the rate of the flow is

controlled by changing the channel width. This can be used to control the rate of flow of the

silver-enhancement solution as illustrated in Fig. 4.1. The region where silver enhancement

occurs is the area (depicted by the labeled black box) where the two nitrocellulose membranes

face each other. When the silver enhancement solution is applied to the application pad,

it diffuses through the nitrocellulose channel to the adsorption pad and in the process it

interacts with the gold-nanoparticles located in the target area.

Integration of paper-based microfluidics on RFID tag

A visualization of a complete RFID antenna with an integrated microfluidic platform is shown

in Fig. 4.2 where a dipole antenna structure is printed on the mesoporous substrate as shown

in Fig. 4.3. We will refer to the side of the substrate where the antenna is printed as the

“front side” and the opposite side that does not contain printed antenna will be referred to as

the “back side”. Two small apertures are created on the polyethylene substrate on two sides

of the gap, labeled as “SE aperture” in Fig. 4.2(b). These two SE apertures provide a path

for the silver enhancement reagent to flow from the back side of the substrate. The antenna

gap is covered with a nitrocellulose membrane (“AuNP Pad”) with the nitrocellulose side

facing the gap on the front side. The “SE Pad” and “Adsorption Pad” are then attached

on the back side of the substrate with the nitrocellulose side facing the SE apertures, as

shown in Fig. 4.2(b). These three pads serve as reservoirs which control the flow of the liquid

reagent through the nitrocellulose channels.

Target specific antibodies, anti-IgG in this case, are then immobilized on the AuNP Pad

where faces the gap of the ink-jet printed antenna. Similar to the operation principle of the
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(a) Schematic of the self-powered microfluidics RFID biosensor
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Figure 4.2: Assembly and integration of microfluidics channels within the RFID biosensor.

lateral-flow immunoassay method [89], the target analyte, IgG in this case, first conjugates

with the gold nanoparticle labeled anti-IgG to form a partial sandwich structure (IgG-aIgG-

AuNP). When the partial sandwich conjugate is applied to the AuNP Pad, it flows along the

nitrocellulose membrane due to its capillary force. Due to antibody-antigen hybridization, a

complete sandwich structure, aIgG-IgG-aIgG-AuNP, can be formed when the partial sandwich

structured target analytes flow into the area where target specific aIgG is immobilized. The

state of the antenna gap region after the formation of sandwich structure is similar to that

shown in Fig. 2.2(a), where the gap is electrically insulated since the gold nanoparticle size is

not sufficient large to electrically bridge the split antenna segments. When silver enhancement

solution is applied to the SE Pad, it moves through the nitrocellulose channel to the AuNP

pad and then adsorption pad through SE apertures. Once the sandwich structure is exposed
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Figure 4.3: Ink-jet printed dipole antenna samples using conductive ink with EPSON C88+
printer. From top to bottom: ALN-9634 tag, ALN-9640 tag and UPM Raflatac Short Dipole.

to the silver enhancement solution, silver ions reduction process occurs. As time progresses,

more and more silver ions get reduced on the surface of the gold nanoparticles, as a result of

which the size of the shell grows and ultimately electrically bridges the antenna gap (similar

to the state that shown in Fig. 2.2(c)). The assembly of silver micro-monopole antennas in

between the antenna gap tunes the effective length of the ink-jet printed antenna.

4.2.2 Materials and methods

Materials

Silver Enhancement Kit, anti-rabbit IgG conjugated with gold nanoparticles, anti-rabbit IgG,

IgG, Glutaraldehyde and Methanol were were all purchased from Sigma-Aldrich (St. Louis,

MO, USA). Nitrocellulose (NC) membranes with flow rate of 135sec/4cm and 180sec/4cm

were purchased from Millipore (Billerica, MA, USA). Deionized (DI) water used in the

experiment was obtained through Millipore water purification systems (Billerica, MA, USA).
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Figure 4.4: Nitrocellulose membrane pads cut using a Full Spectrum Laser MLE-40 system.
From left to right: SE Pad, AuNP Pad and Adsorption Pad.

The chipset attached to the ink-jet printed antenna was removed from EPC Gen 2 ALN-9640

tag which was purchased from Alien Technology (San Jose, CA, USA). MLE-40 laser system

from Full Spectrum Laser (Las Vegas, NV, USA) was used for nitrocellulose membrane pads

cutting. An EPSON stylus C88+ ink-jet printer was used to print the antenna structure.

The printing substrate and the JS-B25P silver ink were purchased from Novacentrix (Austin,

TX, USA). Scanfob Ultra-BB2 Wireless GEN2 UHF RFID Reader/Writer (Cedar Park, TX,

USA) was used for remote interrogation and measurements. All the experiments were carried

out in a certified Biological Safety Level II laboratory.

Procedure

The nitrocellulose membrane was cut into the desired shapes to form SE pad, AuNP pad

and Adsorption pad using the MLE-40 laser according to the shapes shown in Fig. 4.4.

Finite-element simulation was used to optimize dipole antenna structure layout to match

the impedance of the antenna and the ALN-9640 RFID tag chip. Details of the antenna

optimization is provided in [64] and is omitted here for the sake of brevity. The antenna with

80µm gap was ink-jet printed using EPSON C88+ printer and JS-B25P silver conductive

ink on the mesoporous substrate. After antennas have been printed they are annealed in

the oven at a temperature of 70◦C for 1 hour. This process facilitated the evaporation of
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Figure 4.5: Photos of the front side and back side of the sensor prototype.

solvent contained in the silver conductive ink and it created a uniform conductance across

the antenna structure. The ALN-9640 tag chip was removed from the original tag and was

attached to the printed antenna using tape, as shown in Fig. 4.5.

Using the procedure described in [102], anti-IgG was immobilized on the nitrocellulose surface

of AuNP pad where faces the printed antenna gap. Two SE apertures with a dimension of

around 1.0mm×1.5mm were created on two sides of the gap on the mesoporous substrate

as shown in Fig. 4.5. The AuNP pad was then attached to the antenna using the tape.

The two SE apertures were created to provide a path for the silver enhancement solution

to flow from SE pad that was attached on the back side of the substrate. The SE pad and

the adsorption pad were attached to antenna such that their end-points covered the two SE

apertures, separately, as shown in Fig. 4.5(b). The sequential operation of sample processing
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can be controlled by the adjusting the length of the flow channel and the pore size of the

NC membrane. For instance, silver enhancement procedure requires mixing of the initiator

and the enhancer solution in a volume ratio of 1:1. The silver enhancement solution then

flows to the end-point of the SE pad (beneath the SE aperture) which is then drawn by

the AuNP pad through SE aperture and then by the adsorption pad if sufficient reagent is

provided. During this process, the aIgG-IgG-aIgG-AuNP sandwich structure is exposed to

the silver-enhancement solution. Silver ions start to get reduced into metallic silver on the

surface of the gold nanoparticles, in the process of which the split segments of the ink-jet

printed antenna are being bridged given sufficient time and target analyte. Once this silver

micro-monopole antennas’ self-assembling process has been finished, the response of the

sensor tag was measured using the 915MHz Scanfob Ultra-BB2 reader. The RFID reader can

interface with a laptop through cable or a smartphone through bluetooth for data analysis

and display.

4.2.3 Measurement results

Ink-jet printed gap using silver ink

In this work, we use ink-jet printing method to print the antenna with gap instead of manually

creating the gap on an existing tag [100, 102]. This ensures uniformity of the gap and the

procedure can be scaled across many samples. Besides, simulation results in [102] show that

a smaller gap length can result in a high sensitivity of the biosensor in the situation when

the gap conductance is relatively low. Even though the gap between the electrodes can be

bridged by silver micro-monopole antenna chain as shown in Fig. 2.2(c), the conductance is

not as high as that of bulk silver. To improve the sensor’s sensitivity, a small gap is therefore

preferred. Due to the offset of printer nozzle and the nature that the silver ink is in liquid

62



(a)

(b) (c)

(d) (e)

Figure 4.6: (a) Photo of silver ink printed gaps with different sizes on the mesoporous
substrate using EPSON C88+ printer (sizes of gaps from top to bottom: 120µm, 100µm,
80µm and 60µm); (b), (c), (d) and (e) are the microscope photos of the actual printed gaps
at layout sizes of 60µm, 80µm, 100µm and 120µm, respectively.
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Figure 4.7: Comparison of the gap length drawn in layout with the gap length that are
printed.

form, the length of actual printed gap is smaller than that drawn in the layout software. To

examine the minimum gap length that can be ink-jet printed, a set of gaps at different sizes

(ranging from 60 to 120µm at a increasing step of 20µm) are printed using EPSON C88+

printer as shown in Fig. 4.6(a). Microscope photos of the printed gaps of different lengths

are shown in Fig. 4.6(b) to Fig. 4.6(e). With the microscope examination of printed gaps,

most of the electrodes of the gaps drawn in a length of 60µm in the layout are electrically

shorted as shown in Fig. 4.6(b). A high yield of the printed gaps without ink overlap can be

achieved for the gaps drawn at a size equal or larger than 80µm (Fig. 4.6(c) to Fig. 4.6(e)). A

comparison of the lengths of actual printed gaps and the lengths drawn in the layout software

is shown in Fig. 4.7. The lengths of printed gaps are 10µm to 30µm smaller than that drawn

in the layout. In the implementation of the self-powered micro-fluidics sensor, the antenna

with the gap length of 80µm is ink-jet printed and used.
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Silver enhancement reagent flow rate

The liquid flow speed on the nitrocellulose membrane needs to be optimized since it controls

how fast the adsorption pad can absorb the silver enhancement solution and how fast the

SE pad can transport the liquid. However, accurate measurement of liquid flow-rate in a

nitrocellulose membrane is difficult as the rate decays exponentially with respect to the

distance [74]. A more common method used to measure the capillary flow is the time needed

for the liquid to move and fill completely a membrane of a given length. The pads used for

silver enhancement solution flow rate testing are cut into the shapes shown in Fig. 4.8(a)

using MLE-40 laser system. The round reagent application end-point has a dimension of 6mm

in radius. The rectangular liquid flowing areas are 40mm in length and have different widths

ranging from 1mm to 2.5mm. During the flow rate measurement 120µL silver enhancement

reagent solution was applied to the reagent application pad using pipette pump. Two dif-

ferent flow rate membranes (HF13504XSS and HF18004XSS) are tested, separately, and

the measured silver enhancement reagent flow rate are shown in Fig. 4.8(b). The detailed

parameters and materials of the three pads (SE pad, AuNP pad and adsorption pad) which

are used in the implementation of the sensor are listed in the Table 4.1. To note that in the

experiment when the silver enhancement solution was applied onto the SE pad with a smaller

width, it took a longer time for the reagent to pass through the SE aperture to reach AuNP

pad. Our explanation for this phenomena is that if a narrow SE pad is used to guide the

silver enhancement reagent to AuNP pad it need more time to aggregate the same amount of

the solution at the end-point to pass through the SE aperture and then reach the adsorption

pad. This feature can be used to change the monitoring duration by changing the pad width.
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Figure 4.8: (a) Nitrocellulose membrane pads of different widths cut using Full Spectrum
Laser LLC (MLE-40) for silver enhancement solution flow speed measurement; (b) Flow
speed of HF13504XSS and HF18004XSS membrane pads at different widths (1mm, 1.5mm,
2.0mm and 2.5mm).

Table 4.1: Materials and Parameters of Three Pads

SE Pad AuNP Pad Adsorption Pad
Membrane HF13504XSS HF18004XSS HF13504XSS

Width (mm) 2.0 1.5 2.0
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(a) 1min (b) 5min (c) 10min

(d) 15min (e) 20min (f) 25min

Figure 4.9: Demonstration showing that the adsorption pad can continuously absorb the
silver enhancement solution during the micro-monopole antenna growth. (a) to (f) show
the area covered by absorbing silver enhancement solution after 1min, 5min, 10min, 15min,
20min and 25min separately after the solution path has been formed. The dark dashed lines
show the boundaries between the area where silver enhancement reagent front has occupied
and where it hasn’t.

Measurements using an integrated prototype

The operation of a fully integrated RFID biosensor was verified where the nitrocellulose

pads enabled acquisition of the liquid sample acquisition, sample mixing and sample flow

to areas where micro-monopole antennas can self-assemble only when target analytes are

present. For the fabricated prototypes, the adsorption pad was designed to have a sufficiently

large surface area and volume such that it is able to continuously absorb silver enhancement

solution diffusing from the SE pad and to facilitate continuous evaporation of the reagent to

self-power the diffusion process.

67



Fig. 4.9 shows a set of photos illustrating a complete process of growing the antenna as the

silver-enhancement solution flows through the microfluidic channels. Fig. 4.9(a) was taken 1

min after the silver enhancement solution was applied through the SE aperture and reached

adsorption pad. It can be seen that the silver micro-monopole antennas start to assemble

but are not large enough to bridge the antenna gap. The dashed black line on adsorption

pad highlights the boundary where the silver enhancement solution filled the pad. It can be

seen in Fig. 4.9(a) to Fig. 4.9(f) that as time progresses the absorption pad fills up. After 25

minutes, the gap is fully bridged with AuNP cored silver shelled micro-monopole antennas

and the split segments of the printed dipole antenna are now electrically bridged. It can be

also be seen in Fig. 4.9(f) that even when the split antenna segments are bridged, the silver

enhancement reagent hasn’t filled up the volume of the adsorption pad, which indicates the

adsorption pad is still capable to absorb more of the incoming reagent.

Experiments using 915MHz RFID reader

The process of bridging the antenna (leading to change in the effective length of the dipole) can

be detected wirelessly using an COTS RFID reader. For calibration purposes an unmodified

915MHz dipole antenna (identical structure as the biosensor dipole but without gap) was

also integrated with the biosensor. All interrogation measurements from the biosensors (L1)

were normalized with respect to the measurement obtained from the calibration dipole (L2).

To minimize the mutual loading the sensor tag and the calibration tag were placed next to

each other and a ratiometric readout technique was used [102].

The preliminary results that compare the normalized detection range under two situations

(shown in Fig. 4.10): silver enhancement does not occur when the target analyte is absent;

silver enhancement process grows the antenna, which bridges the split ink-jet printed dipole

antenna. In the first case, the measured farthest interrogation distance is only 23.5% with
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Figure 4.10: Measured results validating the proof-of-concept RFID biosensor.

respect to that of the calibration tag. For the second case that with silver enhancement,

the measured maximum interrogation distance increases to 64.6% with respect to that of

the calibration antenna. It validates the proof-of-concept of integration of paper based

microfluidics in self-powered self-assembled RFID biosensor.

4.3 Integration of paper-based microfluidics on QR code

biosensor

A paper-based microfluidics channel also has been integrated on the QR code biosensor

underneath the substrate for acquiring, mixing and flowing the sample to areas on the

substrate where different parts of the code can self-assemble in presence of immobilized gold

nanorods.
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4.3.1 Integration with paper-based microfluidics

Paper-based microfluidics is used for sampling and directing the flow of analytes to the regions

of the QR code that can self-assemble. In this work we have used nitrocellulose membranes

(manufactured by Millipore) as our microfluidics substrate due to its high bioreceptor (e.g.

antibodies) binding capacity and consistent pore size [74]. When the silver enhancement

solution is applied to the application pad, it diffuses through the nitrocellulose channel to

the adsorption pad and in the process it interacts with the gold nanorods immobilized in the

target area. For the proposed QR code, target specific primary probes could be immobilized

in the specific regions of the code, for instance the highlighted region shown in Fig. 3.2(d).

Similar to the operation principle of the lateral-flow immunoassay [89], target specific analyte

will first conjugate with the AuNR labeled secondary probe to form a partial sandwich

structure. When the partial sandwich conjugate diffuses to the regions where the primary

probes are immobilized, a complete sandwich structure will be formed. Thus, the state of

the QR code after the formation of the sandwich structure will be similar to that shown

in Fig.3.2(d) because the AuNR cannot be detected by the QR code reader/scanner. After

silver-enhancement based staining the color of the target region will change and depending on

the concentration of the AuNR could make the QR code decodable (as shown in Fig. 3.2(c)).

4.3.2 Materials and methods

Materials and apparatus

Gold chloride (HAuCl4), Hexadecyltrimethylammonium bromide (CTAB), sodium boro-

hydride (NaBH4), silver nitrate (AgNO3), ascorbic acid and silver enhancement kit were

purchased from Sigma-Aldrich (St. Louis, MO, USA). Nitrocellulose (NC) membranes with
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flow-time (measure of flow rate) of 135sec/4cm was purchased from Millipore (Billerica, MA,

USA). Deionized (DI) water used in the experiment was obtained through Millipore water

purification systems (Billerica, MA, USA). An EPSON stylus C88+ ink-jet printer was used

to print the QR code. The printing substrate, aqueous inkjet vehicle, the empty cartridge

and aqueous inkjet vehicle were purchased from Novacentrix (Austin, TX, USA). Paper mate

profile retractable ballpoint pens were bought from Amazon.com, Inc. All the chemicals were

used as received without further purification. The experiments were carried out in a certified

Biological Safety Level II laboratory.

Synthesis of gold nanorods

Gold nanorods were synthesized by using seed-mediated method [27, 37]. Seed solution was

synthesized by adding 0.6 ml of an ice-cold NaBH4 (10 mM) solution into 10 ml of HAuCl4

(0.25 mM) and CTAB (0.1 M) solution under vigorous stirring at room temperature. The

color of the seed solution changed from yellow to brown. Growth solution was prepared by

mixing 5 ml HAuCl4 (10 mM), 95 ml CTAB (0.1 M), 1 ml AgNO3 (10 mM) and 0.55 ml

ascorbic acid (0.1 M), consecutively. The solution was homogenized by gentle shaking. To

the resulting colorless solution, 0.12ml of freshly prepared seed solution was added and kept

undisturbed in the dark for 14h. Prior to use, the AuNR solution was centrifuged twice at

8000 rpm for 10 min to remove excess CTAB and re-dispersed in nanopure water. UV-Vis

extinction spectra were measured using Shimadzu UV-1800 UV-Vis spectrophotometer and

shown in Fig. 4.11. The extinction spectrum of AuNR exhibits two characteristic bands at

510 nm and 784 nm each corresponding to the transverse and longitudinal plasmon resonances.

These represent unique signatures for a nanorod with a specific length and diameter. The

length and diameter of AuNR were respectively measured to be 52.6 ± 4.4 nm and 13.1 ±
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50nm

Figure 4.11: Optical extinction spectrum of AuNR verifying the dimensions of the nanorods
(inset: TEM image of AuNR).

0.8 nm using Transmission electron microscopy (TEM) (inset in Fig. 4.11). TEM image was

collected using a JEOL JEM-2100F field emission microscopy.

Since the focus of this part is the integration of QR code with silver-enhancement based

self-assembly, we will skip the process of forming the sandwich structure as shown in Fig. 3.3

and directly pattern gold nanorods at different concentration levels. If we can detect and

measure different concentration levels of AuNR, we should be able to extend the approach

towards detecting different concentration levels of target analyte based on our previously

reported approaches [97, 98, 102].

QR code biosensor prototype fabrication

Fig. 4.12 illustrates the fabrication procedure for the QR code FEC biosensor. QR code

shown in Fig. 3.2(c) was first ink-jet printed on both the mesoporous polyethylene substrate

and the plain printing paper (this will be used after step shown in Fig. 4.12(c)) with EPSON
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Figure 4.12: Illustration of QR code FEC biosensor fabrication procedure: (a) QR code
printed on the mesoporous substrate using normal ink; (b) The plastic substrate in the gray
colored square dots area removed; (c) NC membrane is attached on the back side of the QR
code; (d) AuNR ink is printed on the yellow area.

C88+ printer using normal black ink as shown in Fig. 4.12(a). The five gray squares can

be distinguished from other black squares. Disposable Miltex Scalpel #11 blade is used to

cut through the plastic substrate along the edges of those five gray modules to remove them

from the substrate to form three open windows on the substrate as shown in Fig. 4.12(b).

Nitrocellulose membrane with desired shape is attached on the back side of the substrate

using transparent tape with nitrocellulose side facing the open windows created in the last

step (Fig. 4.12(c)).
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Then the single biosensor piece is aligned to the alignment marks on the letter sized printing

paper which is printed in the first step and is fixed using transparent tape. For better

alignment we used a transparent PET instead of an opaque substrate for printing and

fabrication. When the QR code is printed on the transparent substrate, the biosensor can

be aligned to the QR code which is printed on a plain printing paper. We can then adjust

the position of biosensor by matching the alignment pattern of the QR code on the PET

substrate to the alignment pattern of the QR code on the white paper.

The black ink cartridge is replaced with the one filled with aqueous inkjet vehicle. The

printer was first initialized (to ensure uniform printing of AuNR patterns) using the procedure

described in the previous section. The printing paper (with biosensor attached) is loaded

in the printer, and the yellow bar area (shown in Fig. 4.12(d)) which covers the three open

windows is printed with AuNR solution. The ink-jet printed AuNRs are captured by the

porous nitrocellulose surface. The AuNR printing is a self-alignment process, which only

allows the AuNR solution printed in the area facing to the open windows of the substrate to

be captured by the nitrocellulose. All the rest ink-jet printed AuNR solution is printed on the

surface of the plastic substrate, which improves the yield because normally the commercial

printer (e.g. EPSON C88+ we used in our experiment) is not able to provide a very precise

alignment for multiple loadings of a single sheet of paper.

Silver enhancement solution is then applied in the “Application pad” of the NC membrane

shown in Fig. 4.12(d) and the solution will flow all the way down to the “Adsorption pad”

due to the capillary force of the membrane. During this process, the AuNR is exposed to

the silver enhancement solution. Silver ions start to get reduced into metallic silver on the

surface of the AuNR, which will result in a visible color changing from white to brown or

even black. Note that the Adsorption pad is designed to have a sufficiently large surface area
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Figure 4.13: (a) AuNR solution printed on the nitrocellulose membrane where faces to the
open windows on the substrate before silver enhancement solution applied; (b), (c), (d) and
(e) show the color changes of the NC membrane with silver enhancement for 5min, 10min,
20min and 25min, respectively; (f) AuNR on NC membrane after silver enhancement; (g)
AuNR captured on the NC membrane before silver enhancement.

so that it can continuously absorb silver enhancement solution diffusing from the application

pad and to facilitate continuous evaporation of the reagent to self-power the diffusion process.

4.3.3 Measurement results

The fabricated biosensor prototype is shown in Fig. 4.13(a)-(e). AuNR is ink-jet printed on

the NC membrane surface where faces to the open windows on the plastic substrate created

by disposable scalpel. As it can be seen in Fig. 4.13(a), the printed AuNR is not visible

and hence the QR code is not decodable. Fig. 4.13(b) to Fig. 4.13(e) shows a set of photos

illustrating the process of silver enhancement as the QR code assembles. The color change

can be visually observed even in just 5min after silver enhancement. In this set of photos

the color turns into brown (even black) as time progresses. The word “POSITIVE” can be

correctly decoded after 20 minutes’ silver enhancement (Fig. 4.13(d)), which the reader can

verify by using the QR code scanner on their smart-phones.
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The process of silver-enhancement has been verified through an SEM analysis of the enhance-

ment region as shown in Fig. 4.13(g) and Fig. 4.13(f), where the scans were obtained after

30 minutes of enhancement time. The SEM images were obtained using a FEI Nova 2300

Field Emission SEM at an accelerating voltage of 5 kV. The porous surface texture feature

of the nitrocellulose membrane provides strong AuNR capturing capability as shown in the

inset in Fig.4.13(g).

Quantitative measurement using QR codes

In the next set of experiments we verified if the procedure of QR decoding could be used

to infer the concentration level of target analytes. Since in our previous papers we have

already demonstrated that measuring the concentration of gold nanoparticle labels to the

concentration of target analytes, in this experiment we only measure the concentration levels

of immobilized AuNR. We found that direct dispensing of AuNR ink in the enhancement

regions is not consistent for different concentration levels. The printer was unable to dispense

equal amount of ink for different printing cycles. The primary reasons could be: 1) unequal

distances between the tip of the printer head and the surface of the PET substrate and the

nitrocellulose membrane creates different printing areas; and 2) the physical properties of the

AuNR (e.g. viscosity, surface tension) is not optimized for the hybrid substrate.

Due these limitations, we resorted to calligraph the AuNR ink on the QR assembly regions

using a regular ballpoint pen [87, 88]. Fig. 4.14(b) shows the retractable ballpoint pen (from

PaperMate) that was used and the inset shows the SEM graph of the pen’s dispensing tip.

The original ink in the pen’s refill container was pushed out using nitrogen gun after the

tip and the refill are separated. Then the ballpoint pen refill and the tip are cleaned with

ethanol by sonication for 2 days in a centrifuge tube. The ethanol was replaced every 3
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(c)

(a) (b)

Figure 4.14: Experiments to measure different AuNR concentration levels using the example
(a) assembled QR code; where the AuNR ink is dispensed using a (b) retractable ballpoint
pen with an SEM image of the tip; (c) time measured to assemble the QR code using silver
enhancement for different concentration levels of AuNR solution (Inset shows the sensing
region before and after QR segments assembled).
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hours. Different dilution levels (1:2 to 1:10) of AuNR solution were prepared and the AuNR

concentration level was confirmed using ultra-voilet (UV) measurement [57, 69] according to:

A = εbC (4.2)

where A is absorption, ε is extinction coefficient, b is the light path in the UV-cuvette, and C

is molar concentration of nanoparticle solution. The concentration of AuNRs was determined

from the optical extinction of colloidal suspension of AuNR. Extinction coefficient ε of AuNR

is about 3×109 M−1cm−1. The extinction of 20× diluted AuNR solution in our study is 2.0,

light path is 1 cm, so the molar concentration of AuNR solution (20× diluted) is 6.7×10−10

M. The diluted AuNR solution was injected into the cleaned ballpoint pen refill and the pen

was then used for writing and dispensing the AuNR ink in the QR assembly regions.

The time to successfully decode the QR code after the silver-enhancement solution was applied

was measured for different dilution levels. Each measurement was repeated three times and

the relative error-bars are also shown in Fig. 4.14(c). As it can be seen from Fig. 4.14(c), the

QR code detection time, or assembly time increases monotonically with respect to the AuNR

dilution levels, thus demonstrating the use of QR decoding for measuring concentration levels

of target analytes.

4.4 Summary and discussion

In this chapter, paper-based microfluidics channels have been integrated with RFID based

biosensor (described in Chapter 2) and QR code based biosensor (described in Chapter 3).

These paper-based microfluidics channels are used for acquiring, mixing and flowing the

sample to areas on the substrate where different parts of the transducer can self-assemble in
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presence of target analyte (immobilized gold nanorods in this case). For the RFID based

biosensor, instead of using COTS RFID tags, we demonstrated a low-cost ink-jet printing

method that can be used to precisely control the gap length and hence the flow of the silver-

enhancement reagent. Nitrocellulose pads were designed, patterned with laser-ablation and

integrated on the antenna for sample acquisition, mixing and guiding, serving as reservoirs.

The adsorption pad could be designed to be sufficiently large (in volume) to ensure the

silver-enhancement solution has enough time to spread and evaporate. Thus the operation of

the integrated biosensor is completely self-powered.

There are two use cases for the proposed biosensors (RFID based and QR code based) in

real-world applications. In the first use case, a consumer triggers the sampling of the analyte

using a capillary channel (a dipstick configuration) and then waits for the result of silver-

enhancement. Our measurement results show that the detection time will provide an estimate

of the concentration of the target analyte which then could be used as a contamination flag.

The second use case, which is more challenging is that the embedded biosensor continuously

samples the analyte and updates the QR code. In this case the key challenges lie in the

packaging of the biosensor and accurately controlling the flow of different reagents so that its

operation matches the shelf-life of the product.

Future work will focus on enhancing the shelf-life of the biosensing platform and on optimizing

the amount of reagent used for analysis. Note that for different types of targets and mediums

being analyzed (e.g. milk or blood plasma), the parameters of the microfluidic channels (pore

size, gap length and channel length) have to be appropriately optimized. So we envision

that while the operational principle of the biosensing platform could remain unchanged, the

structure of the platform will be different for each use case. Another challenge is to reproduce

the quality of the biosensor and reduce its production cost when fabricated in large volumes.

To address this issue the research focus will be to investigate inexpensive approaches for
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developing silver-enhancement reagents and to investigate reliable dispensing of the AuNR ink

and other reagents using the inkject printing technique. Leveraging cloud-based computation

and data-fusion capabilities to improve the reliability of detection and to provide updated

feedback to the end user could also be part of the future work.
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Chapter 5

Analyte Sampling Powered by Light

Absorption

In this chapter we exploit graphite’s thermal absorption properties to drive the process of

analyte sampling in paper-based biosensors. Graphite structures can be easily patterned or

drawn on paper using a standard pencil and selective heating of the patterned layers can be

remotely achieved using a light source. The resulting thermal gradient manifests itself as

concentration gradients across the paper substrate which then triggers the flow of analyte

to the selective areas. In this chapter we have validated this hypothesis using a prototype

made out of a low-cost filter paper substrate and a 300mW 808nm remote infrared laser

source. Compared to a control paper substrate, we show an increase in temperature by more

than 70◦C (from 50◦C to 120◦C) in areas where the graphite is patterned. As a result the

proposed prototype is also shown to demonstrate a higher sample-flow rate compared to the

control. We anticipate that the proposed remote triggering of sample acquisition would be

useful for different variants of paper-based biosensors that need to be integrated inside the

food-package.
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Figure 5.1: Different components of a QR code biosensor that can be integrated on a liquid
package and the sample acquisition could be triggered using a smart-phone based light source.

5.1 Introduction

Paper-based microfluidics provide an ultra-low cost platform to implement biosensors for

portable point-of-care (POC) diagnostics and on-site detection [93, 94] with applications

ranging from immunoassays [25], urinalysis [66], environmental monitoring [65] to food safety

[40]. In most of these applications, the process of sampling the analyte involves physically

applying the reagent (using a pipette or a dipstick [36]) to the paper substrate. While this

approach is convenient for cases when the analyte can be directly accessed, it is impractical

for cases when the analyte is packaged or sealed. This scenario shows up in medical and

food supply-chain applications (as shown in Fig. 5.1) where there exists a need to monitor

the quality of the product at every point of the supply-chain. However, monitoring at every

point in the product supply-chain could be overwhelming due to the volume and rate of the

products and the due to the detrimental effects of false-positives. We had presented two

wireless monitoring approaches for food supply-chain in the previous chapters: (a) a passive
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Figure 5.2: Principle of QR code self-assembly and biosensing using silver enhancement. (a)
QR code sensor before target detection; (b) primary probes specific to the target analytes
immobilized in the sensing regions; (c) target analytes captured on primary probes; (d) silver
enhancement technique used to assemble the parts of the QR code as shown in (e).

radio frequency identification (RFID) tag based biosensor which can be interrogated with

a standard RFID reader; and (b) a paper-based QR-code biosensor which can be used not

only to encode the product information, but also can be used for encoding and decoding the

process of analyte monitoring. The decoding of both RFID biosensor and QR code biosensor

can be performed using a smart-phone, either by using the in-built RFID read-out capability

or by using the in-built camera. In this manner it was envisioned that end-to-end supply-chain

monitoring could be crowd-sourced to consumers equipped with only a smart-phone, as shown

in Fig. 5.1.

The principle of QR code biosensor based on silver-enhancement self-assembly has been

described in chapter 3 and is summarized here and in Fig. 5.2 for the sake of completeness. A

QR code is a two dimensional bar-code that encodes the product information along with an

in-built error-correcting and alignment capability. When some of the QR code components

are missing (highlighted by white modules in Fig. 5.2(a)), the product information cannot
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be successfully retrieved. In [105] we self-assemble the modules using a process of silver-

enhancement in the sensing regions as shown in Fig. 5.2. Silver enhancement based analyte

detection relies on the formation of a sandwich structure comprising of primary probe (e.g.

antibodies), target analyte and gold nanorod (AuNR) conjugated secondary probe. The

AuNR conjugated secondary probes first hybridize with their target analytes which then bind

with the primary probes that are immobilized in the sensing regions, as shown in Fig. 5.2(c).

Any unbounded secondary probes are washed away leaving the sandwich structure (with

AuNR label) intact. Because the dimensions of AuNRs are in a scale of nanometers, they are

not large enough to be optically visible. When the silver enhancement solution is applied,

silver ions start reducing into metallic silver on the surface of AuNRs, as shown in Fig. 5.2(d).

As time progresses, more silver ions are reduced and deposited, and a chain of AuNRs cored

silver micro-structures assemble. Thus, the regions where the silver-enhancement occurs

become darker, illustrated in Fig. 5.2(e). In this way, an invalid QR codeword (Fig. 5.2(a))

transits into a valid codeword (Fig. 5.2(e)) which can be successfully decoded using a standard

smartphone. We have previously verified in Chapter 3 and Chapter 4 that longer time is

needed to assemble a valid QR code to detect target analyte with low concentration levels.

5.2 Light-triggered analyte sampling principle

In this chapter we use a light-absorbing material to induce thermal gradients across the

microfluidic channel which can be used to remotely trigger the process of analyte sampling.

The operating principle is shown in Fig. 5.3, where microfluidics channel region is surrounded

by hydrophobic material to prevent the analyte sample from leaking. One end of the substrate

is kept in contact with the analyte sample and the heat is applied to the other end where a

graphite-based heating layer is patterned. Graphite can be easily patterned on paper (using

a standard pencil), which follows our previous work on ultra-low-cost fabrication of QR code
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Figure 5.3: Principle of light triggered analyte sampling process.

biosensor, as summarized in Fig. 5.3. The resulting thermal gradient produces an increased

rate of evaporation on one end of the substrate. This in turn produces a concentration

gradient across the substrate which then triggers the flow of analytes to targeted regions.

Analyte detection regions and regions for silver-enhancement self-assembly can be designed

in the channel area where the flow of the target samples can be directed.

5.3 Prototype fabrication

The fabrication process of the proof-of-concept prototype verifying the proposed approach of

sample acquisition process is shown in Fig. 5.4. A regular laboratory Whatman filter paper

with size of 2cm×3.5cm was chosen as the substrate, as shown in Fig.5.4 (a). Microfluidics

channel area was defined by patterning its surrounding area with hydrophobic layer using

Sakura junior artist oil pastels in this case as shown in Fig. 5.4 (b). The substrate was

then heated to a temperature of 125◦C for 1 minute to allow the wax to penetrate through

the filter paper as shown in Fig. 5.4 (c). To prevent the liquid reagent from leaking on the

backside of the channel area, another hydrophobic layer was patterned on the backside of the

device, as shown in Fig. 5.4 (d). The substrate was then heated again to a temperature of

80◦C for 5 seconds (Fig. 5.4 (e)). Optimization of temperature and time is needed to make
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Figure 5.4: Illustration of light triggered reagent sampling prototype fabrication process: (a)
filter paper with desired shape and size; (b) patterned with hydrophobic layer on the surface;
(c) channel formed by heating at 125◦C for 1min; (d) patterned with hydrophobic layer on
back side of channel area to prevent reagent from leaking; (e) heated at 80◦C for 5sec; (f)
graphite layer patterned.

sure that the hydrophobic layer patterned in (d) only penetrates into a very thin layer on

the backside of filter paper. Otherwise, the front side of microfluidics area will be blocked

such that analyte cannot flow freely. The final step is to pattern a graphite layer that can

efficiently absorbs light and convert it into heat on the front side as shown in Fig. 5.4 (f).

Graphite used in our experiment is patterned by rubbing a standard pencil on the filter paper

substrate.

The top view of a fully assembled prototype is shown in Fig. 5.5 (b). The laser system that

is used to heat the graphite layer is shown in Fig. 5.6 which includes laser control unit, laser
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Figure 5.5: Comparison of penetration lengths achieved by the dye solution in prototypes (a)
without and (b) with graphite heating layer, 5 min after the solution was applied.

module and the laser head. 808nm laser is emitted from the laser head and focused on the

heating layer of the microfluidics channel. Distance between the laser head and heating layer

is adjusted so that 300mW IR is received at the heating layer position. Note that IR laser is

used in this experiment for the sake of simplicity of experimental implementation.
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Figure 5.6: Experimental setup showing the infrared laser light source.

5.4 Measurement results

To verify the proposed hypothesis of analyte sampling triggered by light, two microfluidics

channels were fabricated using the method reported in section 5.3. For control only one

of the channels was patterned with a graphite heating layer as shown in Fig. 5.5 (a) and

(b). For the purpose of visualization, a red dye solution was used as a sample analyte. The

surrounding areas which are colored in blue are the patterned hydrophobic layers. In order to

demonstrate the effects of light on the reagent flow rate, 50µL DI water was initially applied

at the bottom area on both (a) and (b). The flow of the water was driven by the capillary

force of the filter paper pores. As a result the water completely fills up the channel as time

progresses. A beam of 300mW 808nm laser was focused on the laser spot area labeled in Fig.

5.5 for both cases (with and without heating layer) to create a concentration gradient. Then,

a 50µL red dye solution is applied at the bottom area of the channel to visualize the effect of

graphite based IR absorption. Photos in Fig. 5.5 are taken 5min after dye solution applied for

both cases. For the microfluidics channel with graphite heating layer, the dye solution front
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Figure 5.7: Thermal images of the devices (a) without and (b) with graphite heating layer,
when exposed to 300mW 808nm laser.

is 4mm ahead of that on the channel without heating layer after 5min. It means dye solution

propagates faster on the microfluidics channel with graphite heating layer. Graphite layer

patterned on filter paper converts light into heat more efficiently, which in turn facilitates

liquid sample evaporation in its adjacent area. A sample concentration gradient is induced

because liquid evaporates faster in the area close to the heating layer as we talked in section

5.1. A higher reagent flow rate is achieved due to this concentration gradient.

Photos in Fig. 5.7 show temperature differences of the laser spot when a beam of 300mW

808nm IR laser is focused on (a) regular Whatman filter paper and (b) filter paper coated

with graphite layer at room temperature. Images are taken using a Fluke Ti100 Uncooled

Microbolometer. A 70◦C temperature increase (from 50◦C to 120◦C) is measured on the

graphite coated filter paper compared to that on the regular filter paper. Measured tempera-

ture on graphite coated filter paper is much higher than boiling point of water at sea level.

It is also shown in Fig. 5.5 (b) where the dashed line labeled as “evaporation boundary”

indicates the water boiling temperature. We refer this distance between this boundary and

89



Figure 5.8: Comparison of dye solution flow-rates without and with graphite heating layer.

the heating layer as “evaporation radius”, as labeled in Fig. 5.3. Water evaporates quickly

once it reaches this boundary as it propagates on the microfluidics channel, which results

in the liquid concentration gradient. The measured dye solution flow rates for cases with

and without heating layer are shown in Fig. 5.8. The prototype with graphite heating layer

provides a higher flow rate for dye solution, which validates our proposed approach.

5.5 Summary and discussion

In this chapter we have proposed a novel approach for automatic analyte sampling which can

be triggered using a light source. The microfluidics sampling channel is formed based on a

low-cost laboratory filter paper using a hydrophobic blocking method. A graphite heating

layer is patterned on one end of the channel and is used for creating thermal gradient and

hence concentration gradients when exposed to a light source. While the proof-of-concept
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operation was demonstrated using a 300mW 808nm laser source in this paper, a more practical

choice would be to use light sources already available on smart-phones. However, the intensity

of the smartphone LED light source might be too weak to trigger analyte sampling using the

current prototype implementation. Fortunately, the following two methods could be used to

boost the efficiency of sampling, which could be part of the future work: (a) engineer heating

material (e.g. nanoparticles [15, 28], metamaterials [33], or polydopamine [39]) with high

absorption characteristics to the smartphone LED light spectrum; or (b) use a lensing scheme

to focus the LED light (e.g. F. Lens [52]) onto the graphite layer.
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Chapter 6

XNOR Biomolecular Logic Gate

Construction

In previous chapters, we have successfully verified a biosensing approach which is to “grow”

parts of an RFID antenna or a QR code-word. Both the RFID-based biosensor and QR

code-based biosensor shown in previous chapters are designed for a single target analyte

detection. One challenge needs to be addressed before deploying them in the field is the

capability of multi-analyte detection since the product can be contaminated by any food-borne

pathogen (or even a combination of them), and people would not know that beforehand.

Although the most straight forward approach is to embed a bunch of biosensors which can

be designed specific to different pathogens on the food product, it would be cumbersome and

expensive since the number of tags or QR codes needed increases proportionally with respect

to the number of analytes of interest. However, if we can build different Boolean logic gates

directly during the target analyte detection process, we can construct more sophisticated

code-word (equivalent to a more advanced circuit) that can be use for multi-analyte detection

using a single RFID tag or a single QR code. In this chapter, we are trying to construct a
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biomolecular XNOR logic gate. A hypothetical operating principle is illustrated in detail,

and we have also designed some experiments to verify this hypothesis.

6.1 Introduction

Rapid progress in the field of bio-molecular logic systems over the last decades provides an

alternate approach for unconventional computation [41]. There is a possibility to break limits

due to silicon based technologies by implementing logic computation system directly with

these fundamental bio-molecular blocks [42]. Researchers have constructed series of relatively

simple Boolean gates (e.g. AND [7, 56], OR [60, 82], NOR [107], and so on). Many more

sophisticated bio-molecular based logic circuits and systems – adder, substractor, multiplexer,

demultiplexer, encoder and decoder to name a few, have also been formed by assembling

these individual fundamental building blocks [21, 53].

Our research group made some efforts by applying forward error correction (FEC) technique to

the biosensor field to improve biosensors’ reliability [58, 61]. FEC is a technique that has been

extensively used to design ultra-reliable communication and storage systems. The basic idea

is to add sufficient redundancy during the encoding process such that decoder can successfully

decipher the transmitted messages using this redundancy even when communication channel

is noisy. In the biosensor settings, channel noise can be attributed to the artifacts, such as

non-specific biomolecular bindings, sensor defects, and environmental artifacts. Biosensor

reliability is crucially important in the sensor design, especially for detecting some specific

pathogens at low concentration levels. For instance, the infectious dose of E. coli O157:H7

for human is less than 10 cells [30]. As more redundant biomolecular circuit elements are

integrated on the biosensor, a higher fault tolerance is expected. Theoretically, a near perfect

reliability can be achieved by adding sufficient FEC capabilities with the biosensors. Liu
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Table 6.1: Truth Table of A XNOR B

Input A Input B A XNOR B
0 0 1
0 1 0
1 0 0
1 1 1

[61] has constructed two fundamental logic gates, AND gate and OR gate, by patterning

different bio-molecular probes in different locations of the biosensor substrate. Significant

improvement in the analyte detection reliability has been demonstrated using a “co-detection”

principle based on the soft-logic circuits using these two logic gates [61]. XOR gates are

useful fundamental logic functions for many circuit modules. For instance, many popular

code, Hamming code as an example, is based on the XOR logic function. Unfortunately,

compared to many others (e.g. AND gate, OR gate), XOR gate is more difficult to construct

using biomolecular interactions. Liu stated in his thesis: “XOR logic may be difficult or even

impossible to achieve in biosensors due to the structure or principle constraints… [58]”.

In this chapter, we proposed a hypothesis that theoretically functions as an XNOR (simply

inverse of XOR) gate in the two-target analytes detection process. We first describe the

proposed operating principle for XNOR gate construction. It is then followed with some

experiments designed to verify this hypothesis. Unfortunately, it is demonstrated that some

key assumptions made at the very early stage are invalid, which make it does not work out

as expected.

94



Adaptive Integrated Microsystems Laboratory!1

dummy capture A

HRP
target Bcapture B

denatured
HRP

target A

(a) A = 0, B = 0

Adaptive Integrated Microsystems Laboratory!1

dummy capture A

HRP
target Bcapture B

denatured
HRP

target A

(b) A = 1, B = 0

Adaptive Integrated Microsystems Laboratory!1

dummy capture A

HRP
target Bcapture B

denatured
HRP

target A

(c) A = 0, B = 1

Adaptive Integrated Microsystems Laboratory!1

dummy capture A

HRP
target Bcapture B

denatured
HRP

target A

(d) A = 1, B = 1

Figure 6.1: Hypothetical operating principle of our proposed XNOR logic gate.

6.2 Hypothetical operating principle

Table 6.1 is the truth table of a two-input version XNOR gate. The table indicates that a 0

output is produced in the case where if and only if one target analyte exists and is detected.

Otherwise, a 1 will be generated if both inputs to the gate are the same. In this proposed

biomolecular logical gate design, the target analytes to be analyzed are the inputs to the

XNOR gate. Logic input 0 is defined as the absence of the target analyte, whereas logic input

1 is the case where target analyte concentration is significantly higher than zero. Output (0

or 1) of XNOR gate is determined by the colorimetric measurement result.

The hypothetical operating principle to construct a XNOR gate is illustrated in Fig. 6.1.

Two target specific primary probes are first immobilized on a substrate which are labeled

as capture A and capture B in Fig. 6.1. Capture A probe binds only to target A. Similarly,

capture B is only specific to target B. The detection principle is similar to the traditional

“sandwich” immunoassay where any unbound materials are washed away. When a solution

of secondary probe is applied, a sandwich structure will be formed in the presence of target
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analyte. Horseradish peroxidase (HRP) is conjugated to the secondary probe as reporter

enzyme in this case.

Except for immobilizing two target specific primary probes on the substrate, a dummy unit, a

gold nanoparticle (AuNP) labeled probe, is also immobilized on the substrate as shown in Fig.

6.1(a). The purpose of adding this dummy unit is to produce a high output in the absence of

both target A and target B (or equivalently, A = 0, B = 0). During colorimetric development,

silver enhancement solution will be first applied followed by the addition of HRP substrate.

In the absence of both target A and target B as shown in Fig. 6.1(a), silver deposition will

occur on the surface of AuNPs due to the silver enhancement process described in Chapter 2

and Chapter 3. It will result in a higher spectrum absorbance as the particle size increases

monotonically with respect to the time, which is considered as a high output (output = 1).

In the case of if and only if one target analyte exists in the sample, either A = 1 and B =

0 (shown in Fig. 6.1(b)) or A = 0 and B = 1 (shown in Fig. 6.1(c)), silver enhancement

solution is also first applied according to previously mentioned detection protocol. Different

from previous case where silver ions are reduced into metallic form on the surface of AuNPs,

we hypothesize silver nitrate will first denature HRP enzyme by disrupting salt bridges in

proteins according to [72]. According to the same literature, an insoluble metal protein salt

is typically generated due to the denaturing reaction between heavy metal salt and protein.

We assume that Ag+ involved in the HRP denaturation will cease to function for the silver

deposition. By carefully tuning the amount of silver enhancement reagent to be applied, all

the applied silver nitrate can be consumed due to HRP denaturation. With this assumption

in mind, there will be no positive colorimetric detection results due to silver enhancement

process since there is no excess reagent remaining for silver deposition. In the meantime,

all the HRPs (corresponding to certain amount of the target analyte) are denatured and

lose their enzymatic activity (depicted in gray color in Fig. 6.1). Negative detection result
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(low spectrum absorption value) is then expected due to HRP denaturation. As a result, a

low output (output = 0) can be produced if and only if one target analyte is present in the

sample.

For the case where both target A and target B are present in the sample, two types of sandwich

structures will be formed as shown in Fig. 6.1(d). Detection protocol remain the same and

HRP will also be denatured when silver enhancement reagent is introduced. Fortunately, the

system in this case has twice amount of HRP compared to the scenario with only one target

analyte (shown in Fig. 6.1(b) or Fig. 6.1(c)). Only half HRP will be denatured if the amount

of applied silver enhancement reagent is the same as scenario shown in Fig. 6.1(b) or Fig.

6.1(c). As a result, a high output (output = 1) can be generated due to the remaining half

HRP when its substrate is applied.

6.3 Takeaway and discussions

To verify our proposed hypothesis in section 6.2, we have had lots of discussions and have run

many experiments. For the sake of brevity, some results have been included in the appendix

of this dissertation as supporting information. It can be noticed from the operating principle

described in section 6.2 that one of the keys facilitating our proposed approach is that AgNO3

contained in the silver enhancement reagent will denature HRP. We take this for granted in

our experiment design. Unfortunately, we found out that silver nitrate does not denature HRP

or degrade its enzymatic activity after spending time and efforts on other experiments without

verifying it at the very beginning. It is the direct reason why the proposed bio-molecular

based XNOR gate does not work out as expected.

Measurements in Fig. 6.2 show the effect of silver enhancer of different dilution factors on

colorimetric measurement, and were collected according to a normal KIM-1 ELISA procedure.
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Figure 6.2: Absorbance of the solution at 450nm with respect to different silver enhancer
dilution factors.

Target molecules with a concentration of 0.5 ng/ml were used in the experiment, and no target

molecules were used in the control, shown in Fig. A.2 in Appendix. After adding streptavidin-

HRP at the final step, it was then followed with PBS buffer wash for 3 times and DI water

wash twice. The purpose of DI water washing is to remove salts contained in PBS buffer

which have been proved to have an effect on the experiment outcomes (more information in

Appendix A). All water inside the wells was then removed. A freshly prepared solution mixer,

containing silver enhancer, AuNRs and H2O, has been applied to each well. Silver enhancer

reagent is prepared with different dilution factors ranging from 1.0X to 6,000X (shown in

Fig. A.2 in Appendix). It was followed with applying HRP substrate, tetramethylbenzidine

(TMB), for color development. Spectrum absorbance plot of the solution with respect to

silver enhancer of different dilution factors is shown in Fig. 6.2, and visual assessment photo

is shown in Fig. A.2.
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It is easy to interpret high absorbance values under two extreme scenarios (excess silver

enhancer and excess HRP) as shown in Fig. 6.2. For the case where excess silver enhancer

reagent exists in the the well (1.0X and 5.6X diluted SEA/SEB in Fig. A.2), high absorbance

is due to silver deposition as we described in previous chapters. For the case where silver

enhancement reagent is extremely diluted (5667X diluted SEA/SEB in Fig. A.2), the

developed color is caused by the reaction between HRP and its substrate. The region that

interests us is in between these two extreme cases (dilution factors of 56X and 567X) where

our proposed XNOR gate can operate according to the operating principle introduced in

section 6.2. However, the measured absorbance for the case with target molecules is the

same as that without target molecules, which is circled with dashed line in Fig. 6.2(a). If

the assumption we made is valid, two different absorbance values are then expected. For

the case of normal ELISA with target molecules, part of the applied AgNO3 will be used to

denature HRP. For the control experiment (without target molecules), all the applied AgNO3

will participate in silver reduction due to the absence of target molecules (hence no HRP).

We began to realize that something might be wrong with our assumption after seeing this

experiment result.

Silver nitrate of different concentrations has been applied to HRP to investigate its effect on

HRP activity. 100µl AgNO3 of each concentration (ranging from 2nM to 2mM) was mixed

with 15µl HRP. HRP solution was prepared at a fixed concentration of 1.26nM with DI

H2O. The mixture is then followed by adding HRP substrate, TMB, for color development.

Fig. A.1 (Appendix A) is a photograph showing colorimetric response when AgNO3 of

different concentrations are applied, and no significant difference can be observed from

visual assessment. A measured spectrum absorbance plot with respect to different AgNO3

concentrations is shown in Fig. 6.3. Little changes for the measured absorbance values can

be seen as AgNO3 concentration varies. Even though the concentration of applied AgNO3
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Figure 6.3: Absorbance of the solution at 450nm with respect to different silver nitrate
concentrations showing it effect on colorimetric measurement.

increases from 2nM to 2mM, measured absorbance value remains almost unchanged at around

a value of 2.0. This result demonstrates that silver nitrate does not denature the activity of

HRP, which shows the key assumption made in section 6.2 is invalid.

In the remaining part of this section, I would like to explain how we come up with this

hypothesis without confirming the effect of silver nitrate on HRP directly at very beginning.

First and foremost, it is widely known that protein can be denatured in quite a few ways –

heat, X-ray, acids, alkalies and salts of heavy metals to name a few [72]. Silver nitrate, one of

the heavy metal salts, is reported to readily interact with proteins and denature enzymes [48].

Strong bonds with carboxylate anions of the acidic amino acids or SH groups of cysteine is

formed to disrupt salt bridges in the protein as it is denatured by the heavy metal ions [72].

As a result, we presume HRP will be denatured by silver nitrate at the very early stage since

it is a protein.
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Secondly, with that assumption in mind, we designed a few experiments to verify the

proposed hypothesis. Unfortunately, the collected data from these designed experiments is

very misleading. Although I am not planning to detail each one of them here, it is worth to

point out that among all the factors, the effect of PBS (composed of a variety of salts, such

as NaCl, KCl, Na2HPO4, KH2PO4) has been neglected. It has been found out later that PBS

is one of the most important factor that resulted in many of these misleading results. More

information about this part is included in the Appendix A.

The complication of our experimental system is another reason that we didn’t find it out

earlier, since too many chemical reagents have been involved. It became extremely difficult

to figure out the reason behind everything when the designed system is composed of a variety

of chemical and biological components.
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Chapter 7

Conclusions and Future Work

7.1 Summary

The ultimate goal of this research is to provide an alternative approach for the end-to-end

food supply chain monitoring to prevent food-borne disease outbreaks. In this dissertation

we investigate a wireless biosensing paradigm of “growing” transducer structures which is

triggered only when analytes of interest are present in the sample. At the core of this

self-assembly is a silver enhancement technique where silver ions reduce into metallic form in

the presence of target analyte, which in turn leads to changes in electrical or optical property.

First, we demonstrate an RFID tag based biosensor by exploiting electrical property change

due to silver enhancement. A chain of micromonopole antennas is assembled in the presence

of target analyte during the detection. This self-assembly process directly modulates the

impedance matching between the antenna and the silicon chip of the RFID tag, and hence

results in an improvement antenna’s reflection efficiency. Second, we show a QR code based

biosensor whose operating principle relies on the optical property changes also resulting from
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silver enhancement. Target detection process assembles an invalid QR code into a valid QR

code that can be further decoded with a standard smartphone. Third, since the biosensors

will be embedded inside the food packages and no active power sources are available on

these passive devices, it is challenging for these sensors (RFID based and QR code based) to

reliably perform sample acquisition and pre-process. Paper-based microfluidics have been

explored in this dissertation to provide a self-powered approach for sample processing. Lastly,

graphite’s thermal absorption properties have been explored to drive analyte sampling process

on paper-based biosensors by creating a thermal gradient on the microfluidics channel. Based

on this, one use case is to trigger the analyte detection process remotely by an end user by

shining a beam of light on the biosensor.

7.2 Future directions

Except for the future work related to each theme that has already been pointed out in

reach chapter, I would like to point out some additional future directions that have not be

mentioned:

• Although the integration of paper-based microfluidics with biosensors (for both QR code

based and RFID based) has been shown in this dissertation, all the sensor components

should be packaged or sealed properly because the whole sensor is envisioned to be

embedded inside the food package. In that scenario, the packaged biosensor will have a

direct contact with food. In that sense, the biosensor should be packaged in a way such

that sensor can continuously and slowly sample target analyte. In the meantime, no

waste should leak out from the sensor package. Otherwise, food will get contaminated

by the reagents contained in the biosensor.
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• This dissertation mainly focuses on verifying the concept of analyte detection by

“growing” sensor structures without too much emphasis on the details of target analytes.

In this dissertation, rabbit IgG is used as the model target to verify our proposed sensing

approach. Real pathogenic analyte of interest should be tested using the same sensing

paradigm before deploying them in the field. All the optimizations and calibrations

should also be performed to the specific target analyte accordingly.

• For the sake of simplicity, rabbit IgG has been used as the single model target in this

dissertation to show the proof-of-concept. The capability to detect multiple analytes is

also very important, since food can be contaminated by any food-borne pathogen (or

even a combination of them), and people would not know that beforehand.

• The biosensor should be designed sufficiently robust such that it can survive from harsh

real world operating environment. For instance, it should have a shelf life comparable to

that of the product to be monitored. Another example is that the associated mechanical

vibration in the supply chain should not impair or deteriorate the functionality of the

biosensor.
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Appendix A

Supporting Information: XNOR

Biomolecular Gate Construction

A.1 Effect of AgNO3 on HRP

2nM 20nM 200nM 2uM 20uM 200uM 2mM

Figure A.1: Visual assessment of AgNO3 of different concentrations (ranging from 2nM to
2mM) on HRP activity
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XOR logic gates

Control (Normal ELISA) 

SEA/SEB dilute 1X

SEA/SEB dilute 5.6X

SEA/SEB dilute 56X

SEA/SEB dilute 566X

SEA/SEB dilute 5667X

Control (ELISA without 
Target Molecule) 

SEA/SEB dilute 1X

SEA/SEB dilute 5.6X

SEA/SEB dilute 56X

SEA/SEB dilute 566X

SEA/SEB dilute 5667X

Figure A.2: Visual assessment of the effect of silver enhancer reagent with different dilution
levels on color development.

A.2 Effect of silver enhancement reagent on colorimet-

ric measurement

Measurements in Fig. A.3 and A.4 show the effect of silver enhancement reagent on colori-

metric measurement, and were collected according to a normal KIM-1 ELISA procedure.

Target molecules with a concentration of 0.5 ng/ml were applied to each well. After adding

streptavidin-HRP at the final step, it was then followed with PBS buffer wash for 3 times

and water wash twice. The purpose of DI water washing is to remove salts contained in

PBS buffer which have been proved to have an effect on the experiment outcomes. Then all

water inside the wells has been removed. A freshly prepared solution mixer, containing silver

enhancer, AuNRs and H2O, has been applied to each well. It was followed with applying

HRP substrate, tetramethylbenzidine (TMB), for color development. Measurements shown

in Fig. A.3 and Fig. A.4 were collected 20 minutes after applying TMB.
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Figure A.3: Effect of silver enhancement reagent on colorimetric measurement: (a) absorbance
of the solution at 450nm with respect to different silver enhancer dilution factors; (b)
visual assessment of the effect of silver enhancement with different dilution levels on color
development.
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Figure A.4: Effect of silver enhancement reagent on colorimetric measurement: (a) absorbance
of the solution at 450nm with respect to different silver enhancer dilution factors; (b) photos
showing the effect of silver enhancement with different dilution levels on color development.
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A.3 Effect of AuNR on HRP activity

XOR logic gates
Check whether activity of HRP will be effected by adsorption on AuNRs

(a) (b) (c) (d) (e)

Figure A.5: Visual assessment of effect of AuNR with different concentrations on HRP
activity.

Table A.1: AuNR with different concentrations used in Fig. A.5 to show its effect on
colorimetric assessment

(a) 30µl PBS buffered HRP + 30µl H2O + 10µl Dopamine + 30µl 0.3% H2O2

(b) 30µl PBS buffered HRP + 30µl ext 0.45 AuNRs + 10µl Dopamine + 30µl 0.3% H2O2

(c) 30µl PBS buffered HRP + 30µl ext 0.90 AuNRs + 10µl Dopamine + 30µl 0.3% H2O2

(d) 30µl PBS buffered HRP + 30µl ext 1.34 AuNRs + 10µl Dopamine + 30µl 0.3% H2O2

(e) 30µl PBS buffered HRP + 30µl ext 1.80 AuNRs + 10µl Dopamine + 30µl 0.3% H2O2

A.4 Effect of PBS buffer on colorimetric measurement

[118]



Table A.2: Reagents used in Fig. A.6(a)

Tube 1 30µl HRP + 5µl AuNR + 15µl SE + 5µl Dopamine + 1µl H2O2

Tube 2 15µl HRP + 15µl H2O + 5µl AuNR + 15µl SE + 5µl Dopamine + 1µl H2O2

Tube 3 30µl H2O + 5µl AuNR + 15µl SE + 5µl Dopamine + 1µl H2O2

Table A.3: Reagents used in Fig. A.6(b)

Tube 1 30µl HRP + 5µl AuNR + 15µl SE + 5µl Dopamine + 1µl H2O2

Tube 2 15µl HRP + 15µl PBS + 5µl AuNR + 15µl SE + 5µl Dopamine + 1µl H2O2

Tube 3 30µl PBS + 5µl AuNR + 15µl SE + 5µl Dopamine + 1µl H2O2

Table A.4: Reagents used in Fig. A.7

Tube 1 30µl H2O + 7.5µl SEA + 5µl Dopamine
Tube 2 15µl H2O + 15µl PBS + 7.5µl SEA + 5µl DopamineXOR logic gates

Tube 1: 30ul HRP in PBS, 5ul AuNR
Tube 2: 15ul HRP in PBS, 15ul H2O,  5ul AuNR
Tube 3: 30ul H2O, 5ul AuNR
7.5ul SEA
7.5ul SEB
5ul dopamine solution (Tris buffer)
1ul 3% H2O2

• Only color change in tube 1
• A little white sediments in tube 3

Tube 1: 30ul HRP in PBS, 5ul AuNR
Tube 2: 15ul HRP in PBS, 15ul PBS,  5ul AuNR
Tube 3: 30ul PBS, 5ul AuNR
7.5ul SEA
7.5ul SEB
5ul dopamine solution (Tris buffer)
1ul 3% H2O2

• Color changes in tube 1 and tube 2
• A little white sediments in tube 3

Check effect of PBS on color change (1)

(a)

XOR logic gates

Tube 1: 30ul HRP in PBS, 5ul AuNR
Tube 2: 15ul HRP in PBS, 15ul H2O,  5ul AuNR
Tube 3: 30ul H2O, 5ul AuNR
7.5ul SEA
7.5ul SEB
5ul dopamine solution (Tris buffer)
1ul 3% H2O2

• Only color change in tube 1
• A little white sediments in tube 3

Tube 1: 30ul HRP in PBS, 5ul AuNR
Tube 2: 15ul HRP in PBS, 15ul PBS,  5ul AuNR
Tube 3: 30ul PBS, 5ul AuNR
7.5ul SEA
7.5ul SEB
5ul dopamine solution (Tris buffer)
1ul 3% H2O2

• Color changes in tube 1 and tube 2
• A little white sediments in tube 3

Check effect of PBS on color change (1)

(b)

Figure A.6: Visual assessment showing effect of PBS on color development.XOR logic gates Check effect of PBS on color change (2)

Tube 1: 30ul H2O
Tube 2: 15ul H2O + 15ul PBS
7.5ul SEA

5ul dopamine solution (Tris buffer)

• AgNO3 react with dopamine (verified before)
• Tube 1: Color change into black 

• Tube 2: not very significant change – ANO3 more likely to react with NaCl?

A little white sediments in tube 2

Figure A.7: Black color in tube 1 is due to reaction between dopamine and AgNO3 which is
consumed by Cl− (due to PBS) to generate AgCl in tube 2.
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A.5 Silver nitrate and dopamine
Experiment 1: dopamine (DA) solution + AgNO3

(a): 1µL 100mM AgNO3 added into 100µL dopamine solution
(b): 10µL 100mM AgNO3 added into 100µL dopamine solution

(a) (b)

• Black sediment generated very quickly 
(within 1 secs)

• AgNO3: oxidizing agent
• Dopamine: reducing agent
• Black sediment is a combination of Ag 

particles and poly-dopamine since Ag+

get reduced and DA get oxidized

(a)

Experiment 1: dopamine (DA) solution + AgNO3

(a): 1µL 100mM AgNO3 added into 100µL dopamine solution
(b): 10µL 100mM AgNO3 added into 100µL dopamine solution

(a) (b)

• Black sediment generated very quickly 
(within 1 secs)

• AgNO3: oxidizing agent
• Dopamine: reducing agent
• Black sediment is a combination of Ag 

particles and poly-dopamine since Ag+

get reduced and DA get oxidized

(b)

Figure A.8: Black sediment is generated immediately after adding (a) 1µl and (b) 10µl
100mM AgNO3 into dopamine solution.
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