Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-97-23

1997-01-01

An Error Control Scheme for Large-Scale Multicast Applications

Christos Papadopoulos, Guru Parulkar, and George Varghese

Retransmission based error control for large scale multicast applications is difficult because of
two main problems: request implosion and lack of local recovery. Existing schemes (SRM,
RMTP, TMTP, LBRRM) have good solutions to request implosion, but only approximate solutions
(e.g., based on scoped multicast) for the local recovery problem. Our scheme achieves finer
grain fault recovery by exploiting new forwarding services that allow us to create a dynamic
hierarchy of receivers. We use a new paradigm, where routers provide a more refined form of
multicasting (that may be useful to other applications), that enables local recovery. The new
services,... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Papadopoulos, Christos; Parulkar, Guru; and Varghese, George, "An Error Control Scheme for Large-Scale
Multicast Applications" Report Number: WUCS-97-23 (1997). All Computer Science and Engineering
Research.

https://openscholarship.wustl.edu/cse_research/439

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/439?utm_source=openscholarship.wustl.edu%2Fcse_research%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/439

An Error Control Scheme for Large-Scale Multicast Applications

Christos Papadopoulos, Guru Parulkar, and George Varghese

Complete Abstract:

Retransmission based error control for large scale multicast applications is difficult because of two main
problems: request implosion and lack of local recovery. Existing schemes (SRM, RMTP, TMTP, LBRRM)
have good solutions to request implosion, but only approximate solutions (e.g., based on scoped
multicast) for the local recovery problem. Our scheme achieves finer grain fault recovery by exploiting
new forwarding services that allow us to create a dynamic hierarchy of receivers. We use a new paradigm,
where routers provide a more refined form of multicasting (that may be useful to other applications), that
enables local recovery. The new services, however, are simple to implement and do not require routers to
examine or store application packets; hence, they do not violate layering. Besides providing good local
recovery, our scheme integrates well with the current IP model, has small recovery latencies (it requires
no back-off delays), produces fewer duplicates than other schemes, and isolates group members from
details of group topology.

https://openscholarship.wustl.edu/cse_research/439?utm_source=openscholarship.wustl.edu%2Fcse_research%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/439?utm_source=openscholarship.wustl.edu%2Fcse_research%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages

An Error Control Scheme for Large-Scale
Multicast Applications

Christos Papadopoulos, Guru Parulkar and
George Varghese

WUCS-97-23

May 1997

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130

This work was supported by NTT, Tektronix, NIH, NEC America,
SWBT, TRI, Samsung and Sun

Page 2

An Error Control Scheme for Large-Scale Multicast

Applications

Christos Papadopoulos
http://dworkin.wustl.edu/~christos/

Guru Parulkar
http:/rwww.arl. wustl.edu/~guri/

George Varghese
hitp:/fdworkin.wustl.edu/~varghese/

ABSTRACT

Retransmission based error control for large scale multicast applications is
difficult because of two main problems: request implosion and lack of local recov-
ery. Existing schemes (SRM, RMTF, TMTP, LBRRM) have good solutions to
request implosion, but only approximate solutions (e.g., based on scoped multi-
cast) for the local recovery problem. Our scheme achieves finer grain fault recov-
ery by exploiting new forwarding services that allow us to create a dynamic
hierarchy of receivers. We use a new paradigm, where routers provide a more
refined form of multicasting (that may be useful to other applications), that enables
local recovery. The new services, however, are simple to implement and do not
require routers fo examine or store application packets; hence, they do not violate
layering. Besides providing good local recovery, our scheme integrates well with
the current IP model, has small recovery latencies (it requires no back-off delays),
produces fewer duplicates than other schemes, and isolates group members from
details of group topology.

1. INTRODUCTION

The exponential growth of the MBONE and other multicast-capable networks has led to the
widespread deployment of multicast applications such as video-conferencing, distributed interac-
tive simulation, and news distribution. Many of these applications require data delivery guaran-
tees not provided by IP Multicast [1]. Thus, we require multicast transport protocols that work on
top of the network multicast service to provide delivery guarantees.

Large scale applications (e.g., DIS, bulk data distribution) complicate the problem. These
applications have large numbers (hundreds or even thousands) of participants who may be distrib-
uted over a wide geographical area (spanning one or more continents). In addition, the highly
dynamic nature of the topology and population poses new, difficult challenges to traditional error

Page 3

control schemes. Such control schemes (e.g., TCP [6]), used primarily in point-to-point applica-
tions, do not scale to meet the demands of large-scale multicast. In schemes like TCP, the receiver
sends an acknowledgment (ACK) to the sender after receiving each uniquely numbered message.
If the same approach is used for multicast, each receiver must individually acknowledge each
message. If the message is lost by a group of receivers, the sender is responsible for deciding
which receivers have lost the message (based on missing ACKs) and retransmitting. Such a
scheme would lead to ACK implosion with a large number of receivers, and also burden the
sender with the problems of loss detection and retransmissions. In an effort to alleviate these
problems, the following evolutionary steps have been proposed thus far:

* A shift has been proposed from sender-based to receiver-based error control schemes {5].
Receiver-based schemes move the responsibility of error detection from the sender to the
receivers. A receiver detects loss when it receives sequence number N while the previous
message received in sequence was M < N - 1. After the receiver detects such a gap (i.e.,
the sequence numbers M + 1,.. N - 1), the receiver sends a request for the missing data.
This paradigm significantly reduces state and processing at the sender. However, for large-
scale multicast applications, we can have request implosion when a large number of
receivers lose a message and each sends a request.

* To further move processing away from the sender, it has been proposed that the effort of
processing requests and sending retransmissions be shared among all members of a group,
not just the sender {2]. This significantly improves scalability; however, it also necessi-
tates mechanisms to prevent duplicates from ill-coordinated members.

» In yet another attempt to improve scalability, it has been proposed that the scope of recov-
ery messages be restricted to the region that suffered loss, thus preventing the whole group
from being pestered by recovery messages from members in loss regions [2, 4, 9]. Pro-
posed techniques include the use of unicast with multicast after a threshold, and limiting
messages to a radius using the time-to-live (TTL) field in the IP header.

The above are important steps towards achieving scalability in large-scale multicast applica-
tions. Indeed, with these steps large-scale multicast can potentially achieve better reliability (since
more refransmission points are available), and lower average latency (since lost data can often be
recovered from a nearby neighbor) compared to unicast. Moreover, performance will actually
improve as the group gets larger. However, a closer examination reveals that the adoption of the
above steps introduces several new important problems absent from unicast error control. We
enumerate five such problems:

1. Request implosion: the problem that occurs when the loss of a packet triggers simultaneous
requests from a large number of receivers, overwhelming the sender and/or other receivers.

2. Duplicate replies: the problem that occurs when many endpoints multicast the same reply
in response to a request.

3. Recovery latency: the latency experienced by a member from the instant a loss is detected
until a reply is received.

4. Recovery isolation (or exposure): if a loss affects only a small number of receivers and the
sender multicasts the reply to the entire group, then recovery is not isolated to the members

Page 4

experiencing the fault. The repair of a local fault should ideally stay local. Exposure can be
quantified by comparing the number of messages used for repair to the size of the area
affected by the loss.

5. Adaptability to dynamic membership changes: a measure of how the efficiency (in terms
of loss of service, duplicate messages and added latency) of error recovery is affected by
changes in the group topology and membership.

The currently proposed solutions [2, 3, 4, 9] do not perform well with respect to all the met-
rics listed above. Randomized backoff schemes like SRM have problems with local recovery, and
reduce duplicates at the expense of latency. Static hierarchical schemes like RMTP do not adapt
well to membership changes. Dynamic hierarchical schemes like TMTP provide only an approxi-
mate form of local recovery.

A key obstacle in these earlier schemes appears to be the difficulty in obtaining information
about topology. Some knowledge of topology is useful for multicast error control in order to
locate an endpoint which is willing to retransmit, and contain replies within the region that lost
the original transmission. Topology information, however, is maintained by the routers and is not
easily accessible to endpoints. Involving the routers in error recovery has been dismissed as a vio-
lation of the end-to-end argument [7], and not scalable. Current solutions either maintain topology
information without any help from the routers, or impose their own static topology.

‘We have designed, simulated and are implementing in NetBSD Unix a multicast error control
scheme that addresses the five problems enumerated above, and offers improvements on the per-
formance offered by existing schemes. Our scheme follows a new paradigm, where routers offer a
small set of new forwarding services to the members of a multicast group. Applications develop
error control schemes that can leverage off these new services to provide reliability. The services,
however, do not impose a specific error control scheme. The implementation of these services at
the routers eliminates the need for endpoints to learn about group topology. Additionally, it allows
easy access to topology information, which leads to an efficient implementation. These forward-
ing services are conceptually simple, and while they do require some changes at the routers, they
do not violate the end-to-end argument, and merge well with IP routing and group management
protocols. In return, the presence of these services enables the implementation of scalable multi-
cast error control schemes that overcome the five problems listed earlier,

This paper is structured as follows. In Section 2, we summarize related work. In Section 3, we
present an overview of our scheme and in Section 4, we present the mechanisms in more detail. In
Section 3, we discuss some limitations of our scheme, ways to overcome them, and some optimi-
zations. In Section 6, we present our results. Finally, in Section 7, we present our conclusions.

2. RELATED WORK

Most of the proposed solutions for large-scale multicast error control fall into one of two
major categories: randomized backoff schemes or hierarchical schemes. Hierarchical schemes
can be further subdivided into schemes which employ a static or dynamic hierarchy. We briefly
discuss these schemes and compare their performance with our scheme in Table 1.

Page 5

2.1 Randomized Backoff Schemes

An important solution to the implosion problem is the Scalable Reliable Multicast (SRM)
scheme. SRM attempts to compute a dynamic leader (requestor) for each group of nodes that
detect a gap and attempts to compute a dynamic leader (replier) among the group of nodes that
have a copy of the missing data. The leader election is done per message by using a combination
of distance tiebreakers (e.g., the closest node to the site of the fault should request) and random
tiebreakers in case of equal distances. The dynamic leader election is actually implemented using
randomized backoff timers; the dependence on distance is achieved by making the timer value
depend on the propagation delay from the sender to the receiver.

SRM performs well in suppressing requests but slightly worse in suppressing replies. How-
ever, SRM has the following disadvantages (Table 1):

* The backoff delay for requests is set to some multiple of the unicast delay to the sender.
Thus, on average, recovery delay will be higher than unicast.

* The randomization only ensures a unique requestor or replier with a certain probability, In
topologies where the distance based tiebreaker is ineffective (e.g., a star), an unfortunate
tradeoff must be made. Using large random numbers can make the probability of a unique
requestor or replier high but increase the recovery latency; using small random numbers
can make latency small but increase the probability of duplicates.

» The “multicast to everyone” approach provides excellent fault tolerance, but also exposes
recovery to all members of the multicast group. This situation is compounded if multiple
requestors and repliers are elected.

* A new receiver joining the group must measure the propagation delay to every existing
receiver in the group in case the new receiver is elected as a replier. Also, if adaptive tim-
ers are used, several request-reply rounds are needed before timers stabilize.

Simulation results on random topologies with fixed timer values show that SRM typically
requires about 3 times the unicast round-trip delay to recover a lost packet and produces around 2
- 10 duplicates in the process. Using adaptive timers reduces the number of duplicates after the
timers are tuned. To avoid multicasting all messages to all members, SRM proposes the use of the
TTL field in the IP header to limit the scope of recovery messages. However, this approach limits
the scope of messages within a radius, while losses affect a subtree. Thus, it still allows duplicates
to reach other regions, as shown in Figure 1.

A receiver

A replier
o router

Loss ~—=

Figure 1: Limiting the reply scope using TTL does not provide good isolation

Page 6

Another option to provide local recovery is to create separate local recovery groups for
requests and replies. Creating a group dynamically for every loss is too costly and slow; therefore,
it is better to precompute such groups for each loss region, or create them on demand as the group
topology changes. However, creating a new group is a slow process and requires prune messages
to propagate throughout the entire network. In groups with highly dynamic membership, such a
scheme will incur significant overhead.

2.2 Hierarchical Schemes

In hierarchical schemes, members are organized in a tree hierarchy. Each member is assigned
a parent and zero or more children. Request implosion is controlled by allowing requests from
children to their parents only. Duplicate replies are reduced by either unicasting from parents to
children or multicasting after some threshold of requests is exceeded. Parent discovery is a crucial
step in hierarchical schemes. Static schemes fix the parent/children allocation at start-up.
Dynamic schemes allow members to reorganize themselves as the group topology changes. Thus,
dynamic schemes are more “exible but require more complex parent discovery mechanisms.

The Reliable Multicast Transport Protocol (RMTP) [4] is an example of a static hierarchical
scheme. The source multicasts data to all receivers, but only a few Designated Receivers (DRs)
return acknowledgments. Losses in RMTP are recovered from DRs. Retransmissions are either
unicast or multicast depending on how many requests were received. This, however, is a crude
solution because it performs well only at the extremes (if there are too many or very few losses).
Otherwise, it incurs significant overhead, either in terms of network traffic or exposure. The Log-
Based Receiver-reliable Multicast (LBRRM) [3] is another example of a static hierarchical
scheme, aimed at distributed interactive simulation (DIS) applications. LBRRM uses a primary
logging server and a static hierarchy of secondary logging servers which log all transmitted data.
Data is multicast from the source to all logging servers and all receivers; however, only the pri-
mary logging server returns acknowledgments to the source. The receivers request lost data from
the secondary logging servers; in turn, the secondary logging servers request any lost data from
the primary logging server. Similar to RMTP, retransmissions in LBRRM are either unicast or
multicast, or multicast based on a threshold. Both RMTP and LBRRM are based on a static hier-
archy and thus require explicit set-up of DRs or logging servers before new regions can be added
to the group.

The Tree-based Multicast Transport Protocol (TMTP) [9] is an example of a scheme using a
dynamic hierarchy. In TMTP, every region has a Domain Manager (DM). When a DM joins a
group, it searches for a parent using an expanding ring search. During the search, the new DM
repeatedly broadcasts a “SEARCH_FOR_PARENT” request by increasing the time-to-live (TTL)
value. When one or more DMs respond, the new DM selects the closest DM as its parent. Thus,
the DMs form a dynamic hierarchical control tree. Each endpoint maintains the hop distance to its
DM, and each DM maintains the hop distance to its farthest child. These values are used to set the
TTL field on requests and replies to limit their scope. To further limit request implosion at the
DMs, TMTP uses randomized backoff for requests, which, however, increases latency.

In summary, static hierarchical schemes like RMTP and LBRRM do not adapt to rapid mem-
bership changes or changes in topology. Dynamic hierarchical schemes like TMTP rely on an
approximate method (expanding ring search using the TTL field) to discover parents and send

Page 7

replies. Thus, it suffers from the same exposure problems illustrated in Figure 1. The use of
expanding ring search for parent selection in TMTP can lead to other forms of suboptimality, as
well. For example, the parent chosen by a receiver R can be downstream, with respect to the
source of receiver R. This can increase recovery latency compared to an optimal choice of parent.

Table 1 compares our scheme to SRM and hierarchical schemes with respect to the five met-
rics described above. All schemes do well in suppressing request implosion; TMTP and SRM do
well in suppressing duplicate replies. All schemes except LBRRM require higher than unicast
latency. Most schemes have poor isolation and, at best, are only fair in adapting to dynamic topol-
ogy changes. In contrast, our scheme is as good as any existing scheme in request and reply sup-
pression, but excels in latency, isolation (bringing exposure down from 2" to n, as shown in Table
2), and adaptability to topology changes. We now proceed to give more details.

Table 1: Comparison between Error Control Schemes

Request Reply Recovery Recovery Adaptability to
Scheme
suppression | suppression Latency Isolation dynamic changes
SRM good fair higher than none, or fair: needs propa-
unicast approximate gation delay and
timer adaptation
RMTP good poor, unless | higher than uni- | poor, unless none
very little or cast very little or
extreme loss extreme loss
LBRRM good poor, unless | lower than uni- | poor, unless none
very little or | cast, on average | very little or
extreme loss extreme loss
T™MTP good excellent: | higher than uni- | approximate fair: needs parent
single reply cast search
OUR good excellent: lower than uni- very good: excellent: responds
SCHEME single reply cast visible within | instantly to group
a subtree only changes

3. SOLUTION OVERVIEW

In a multicast environment, loss of a packet in the network results in failure to deliver a copy
of the packet to all receivers located in the subtree rooted at the branch sprigging from the point of
loss, as shown in Figure 2(a). A natural solution to recover the packet is the following (Fig. 2(b)):

1. the receiver directly below the loss sends a request to the receiver immediately above the
loss

2. the receiver immediately above the loss multicasts the lost packet to the affected branch.

Note that both steps require some knowledge of topology. We claim that this solution is opti-
mal because, (a) only one request and only one reply are generated, (b) replies are visible only
within the affected branch, and (c) requests and replies traverse the shortest possible distance. We
attempt to duplicale these steps in our scheme. Since topology information is required, we turn to

Page 8

the network for help. Routers, with their knowledge of topology, are the ideal candidates to pro-
vide services to navigate a request upstream until a willing replier is found and multicast replies to
the subtree that experienced loss.

Source Source / turning point O Router
2\ Receiver

(b) Recovery

Figure 2: Recovery steps with topology knowledge

It is important to note that such services can be implemented without requiring routers to be
aware of error recovery. Routers do not have to keep any state, like sequence numbers, or provide
any guarantees to endpoints using the services. Routers simply provide the means for receivers to
reach other receivers in a manner that happens to be useful for error recovery. Receivers are free
to build their own recovery mechanisms on top of these services. We believe that such services do
not violate the end-to-end argument if they are pure forwarding services and do not require packet
examination. Moreover, we believe that adding such services to the network is justified if they
result in more efficient error recovery than currently proposed schemes (provided they do not
introduce unacceptable overhead in the network).

In order to provide the above services, we introduce three new concepts. First, we use routing
to calculate a leader, called a replier, for each subtree. We use the replier to respond to requests
made by other endnodes in the replier subtree, thus creating a hierarchy. Second, we use routing to
define a turning point. A turning point is the point in the topology (Fig 2) at which a request mov-
ing upstream is moved downward towards the replier. When a replier sends a retransmission, the
retransmission moves up the multicast tree until it reaches the turning point, The router at the
turning point performs a directed multicast to multicast the retransmission to the subtree defined
by the turning point. We use these three concepts (electing repliers, defining turning points, and
using directed multicast for retransmissions) to closely approximate the optimal recovery scenario
depicted in Figure 2.

It is important to quickly see why these three ideas help our scheme do well with respect to all
five measures described in the introduction and in Table 1. The use of a replier hierarchy prevents
request implosion. Duplicate replies are eliminated by allowing only one replier to respond. Qur
scheme has near-optimal recovery latency, which is typically much smaller than the delay to uni-
cast a retransmission from the source, because backoff delays are not needed and replies come
from nearby repliers. (Note that in SRMJ2], although replies can also come from any nearby end-
node, the backoff delays are set proportional to the distance from the source; thus, recovery laten-
cies are comparable or larger than the corresponding unicast delay). The use of turning points and
directed multicast help isolate recovery to the subtree affected by the fault. Finally, membership

Page 9

and topology changes are easily adapted to by routers as group membership changes by calculat-
ing new multicast frees and repliers for each subtree, if needed, without endnode involvement.

We now present an overview of these three major steps before providing more details in Sec-
tions 4 and 5. We first describe how repliers are selected and how requests are routed to them;
then we describe how turning points are precisely defined and computed; finally, we describe how
replies are locally multicast by the replier using a directed multicast.

3.1 Adding a Replier to Each Router

To help in locating a suitable replier, every router on the multicast tree selects one of its links
as the replier link (similar to routing, a router only needs to maintain the next hop leading to a
replier, not the actual replier address). Each router selects a replier from its downstream links; the
only exceptions are routers with only one downstream link, which select the upstream link as the
replier link, and the router adjacent to the source, which selects the source link as its replier link.
A router can easily distinguish between upstream and downstream links by examining the infor-
mation maintained by the multicast routing protocol’.

An example of repliers-to-routers assignment is depicted in Figure 3. To aid in replier selec-

sz TEplier link

& replier

Figure 3: Replier assignment to routers

tion, receivers who are willing to act as repliers notify the routers when they join or refresh their
membership in the multicast group; that is, along with the join or refresh message, a receiver indi-
cates its willingness to act as a replier. Whenever its replier state changes (e.g., as a result of a
membership change), the router propagates the change upstream so that internal routers can
update their replier links. Thus, the maintenance of replier state incurs minimal overhead and is
automatically updated as the group membership changes.

3.2 Step 1: Sending Requests

After all repliers are in place, sending a request proceeds as follows: a receiver after detecting
a loss (e.g., a gap), sends a request to the router. Routers forward all incoming requests to the
replier link, except for the request arriving on the replier link, which is forwarded upstream. Thus,
a router forwards at most one request upstream (reducing request implosion), and requests travel
upstream only until they reach the next replier (ensuring isolation). These operations are shown in

1. Most popular multicast routing protocols, including DVMRP and MOSPF, maintain a (upstream link,
downstream links) mapping, which is vsed in routing multicast packets.

Page 10

Figure 4(a). In the figure, loss occurs on the link between R1 and R2 (marked with an “X"). End-

A receiver
A receiver/replier

meme tagged link
(rgglier link)

® Router

Figure 4: Request - Reply operations for multicast error recovery

points E1 through E7 detect the loss and send requests. Then, the following events take place:

* E7 sends a request, which R2 forwards to R1 because E7 lies on R2’s replier link.

* E1 sends a request which is forwarded by R3 to E2. Similarly, requests from E3 and E5
are forwarded to B4 and E6 by R4 and RS.

* The request from E2 is forwarded to R2, because E2 is on R3’s replier link, Similatly, the
requests from E4 and E6 are also forwarded to R2.

* R2 forwards requests from E2, E4 and E6, to E7.
* The request from E7 reaches R1, which forwards it towards E8. E8 has the requested data.

At this point a request has reached an endpoint, which has the data and is willing to retransmit.

3.3 Step 2: The Turning Point

This is an important concept in our scheme. We define the turning point in the request’s path
towards the replier as the router which forwards the request to a replier. For this to happen, the
request must arrive at the router on a downstream link other than the replier link. Thus, in the pre-
vious figure, the turning point for the request sent by E7 is R1, and the turning point for the
requests sent by E2, E4 and E6, is R2. When a request passes through its turning point, the router
inserts into the request the router’s address and the identifier for the link on which the request
arrived. Other routers on the path to the replier do not change this information. Thus, requests
traveling downstream carry their turning point with them. The reason why will become clear
shortly.

3.4 Step 3: Sending Replies using Directed Multicast

If a replier receives a request but does not have the requested data, the replier ignores the
request since it must have sent a similar request of its own. If a replier receives a request and has
the requested data, the replier retransmits the data using directed multicast. To do so, the replier
creates a reply containing the data and the link identifier carried in the request. The replier then

Page 11

unicasts the reply to the router at the turning point. When the router receives the unicast, it
extracts the data and multicasts it on the specified link. This process is depicted in Figure 4(b).
Assume that E8 has just received a request from E7. Then:

* E8 creates a multicast message containing the reply. E8 encapsulates the message in a uni-
cast message and sends it to R1 (the request’s turning point).

* R1 decapsulates the multicast message and multicasts it on the link leading to R2.

* From that point on, all downstream routers and endpoints treat the reply as a regular mul-
ticast message coming from the source.

It should be clear from Figure 4 that the turning point is the root of the subtree which has lost
the requested data. Thus, establishing the turning point before multicasting a reply is a crucial step
in containing replies to the loss region and allows our scheme to achieve very good isolation.

4. PROTOCOL DESCRIPTION

The previous section has given an overview of the recovery steps in our scheme. In this sec-
tion, we describe the mechanisms of our scheme in detail, We list the state, control messages, and
actions taken by the routers and the endpoints to establish and maintain the replier state, and send
requests and replies. Finally we discuss some limitations of the scheme.

4.1 Establishing Replier State

In this subsection we describe how repliers are established and maintained by the routers. We
begin by outlining the state required at each router to maintain a replier; then we list the control
messages used to build this state and the router actions for each control message.

4.2 Router state

Following the IP multicast model, the router replier state is soft state to ensure robustness. The
state is required per sender, per multicast group and consists of the following:

+ the upstream link

* alist of downstream links

« the replier link

* the cost to reach the current replier (e.g., hop count or current replier loss)
» A timer to age replier entries

Note that the state that needs to be added to the routers is significantly less than the above. The
upstream and downstream links are already maintained by the routing protocol. The timer (used
to age and eventually expire replier entries that have not been refreshed) is similar (or may be the
same) to the timer used by the group membership protocol. Thus, the replier link and cost are the
only new items. The purpose of cost is to capture differences between multiple potential repliers,
so that the best one can be selected.The cost may be the loss rate experienced by the current
replier so that the most reliable replier is selected, or the router-replier distance so that the closest
replier is selected.

Page 12

Since replier state is maintained on a per sender basis, it is possible that in the worst case a
router may have to select a replier for every sender in a multicast group. However, we expect that
in reality many receivers will advertise that they are willing to act as repliers for several (or
maybe all) senders. A router can then select a single replier for all senders who share the same
upstream link, further reducing the required replier state.

4.2.1 Control messages

Two types of control messages are required to create and maintain the replier state. Both may
be combined with existing group membership protocol messages eliminating the need to create
new messages.

* “Wani_to_be_replier” message: This message is sent periodically to the routers by
receivers who are willing to act as repliers. With these messages, the receivers advertise a
cost to help the router select the replier with the least cost.

* “Replier_gone” message: this message is sent by receivers who are leaving a multicast
group, but only if they were advertising “Want_to_be_replier” messages while participat-
ing in the group.

4.2.2 Router actions
The above messages trigger the following actions at the router:

“Want_to_be_Replier” message:
» The router notes the link the message came from.

+ The router examines the cost advertised by the message.
» If the new cost is higher than the current cost, the message is ignored.

» If the message came from the replier link and the new cost is equal to the stored cost, the
router refreshes the replier expiration timer.

» If the new cost is less than the current cost, the old cost is discarded and the new value is
stored. If the link the message was received on is different than the current replier link, the
router updates its replier link. The replier expiration timer is then reset.

“Replier_gone” message:

» If the message did not come from the router’s replier link, the message is discarded; other-
wise, the router clears its replier field (replier is now upstream),

Whenever a router’s replier state changes, the router propagates the change to the upstream
routers, which repeat the same operations. Thus, replier state propagates to all routers on the mul-
ticast tree. As an optimization, it is beneficial (but not required) that routers cache the next best
replier link so they can instantly switch to the cached link if the current replier leaves the group or
fails.

Note that a router is not required to store the replier’s address because a replier does not have
to be notified when it is selected by a router. Similarly, upstream routers do not have to notify

Page 13

downstream routers if they select them as part of the replier path. This saves complexity and state,
and allows routers the “exibility of switching repliers at will,

The mechanism for selecting repliers can be easily integrated with the group membership pro-
tocol (e.g., IGMP) so that the replier state is created while the group is being formed. For exam-
ple, when a member joins or refreshes its membership in a group, it may also refresh its replier
status with the same message. Thus, very little work is needed for creating and maintaining the
replier state. In return, the replier state is updated instantly as the group grows or shrinks.

4.3 Sending Retransmission Requests

When a loss occurs, receivers must send a request which the routers will deliver to an
upstream replier. To do so, we create a new type of control message to camry retransmission
requests, which is examined by every router in its path. The new control message is called
“Forward_to_replier” message. Routers identify this control message via a hop-by-hop option
in the multicast header.

We describe the function of these messages with the following example. We assume that some
form of gap-based loss detection is used. When a receiver detects loss, the receiver immediately
creates a retransmission request containing the sequence numbers of the lost packets, which is
inserted into the body of a “Forward_to_replier” message. The control information of the mes-
sage contains two items. The first item is the <source, multicast address> for the group. This
information is required to identify the appropriate source tree when routing the message to a
replier. The second control item is a <router address, link identifier> entry, used to mark the turn-
ing point. This entry is initially empty. A header option is then added to force routers to examine
the packet, and the control message is multicast to the group in the normal fashion.

4.3.1 Handling of “Forward_to_replier” messages at the routers

Upon reception of a “Forward_to_replier” message, a router examines the control information
to determine what actions are required. If the router has no knowledge of the multicast group, the
message is silently discarded. Otherwise, the router performs the following actions, depicted in
Figure 5:

* If the message came from a downstream link and either (a) the router has no replier link,
or (b) the message came from the replier link, then the router forwards the message on the
upstream link leaving the control information unchanged.

« If the message came from a downstream link other than the replier link, then this is the
turning point. The router fills in the <router addr, link id> fields and forwards the message
on the replier link.

* If the message came from the upstream link and (a) the <router addr, link id> fields are not
empty, and (b) a replier link exists, the router forwards the message to the replier link
unchanged. If the <router addr, link id> fields are empty, the message is silently discarded.
If no replier link exists, the router signals an error (some upstream router erroneously
thinks that this path leads to a replier).

Page 14

Looking at Figure 5, requests from a receiver first follow path (a) until they reach the turning
point. At this point the router performs action (b), filling in the <router addr, link id> fields and
forwarding the message towards the replier. Finally, downstream routers on the path to the replier
perform action (c) until the message reaches the replier.

Areceiver
add router address
grcpiicr + link id
¥
@ (b)

Figure 5: Router actions for “Forward_to_Replies” messages

Requests must currently be examined by all routers along their path due to their non-standard
forwarding. However, we believe that integrating the request processing in the fast path of a
router is feasible because the overhead for forwarding these messages is very low. The only addi-
tional state required on top of the normal routing state is the replier link. This state may be added
to the routing state so that it is readily available once the routing lookup is performed. The
remaining operations require on the order of 10 instructions or less. Only the router at the turning
point has to actually touch the header, which may be done in another 10 instructions or so.

4.4 Sending Replies

The above description shows how a request reaches a replier. If the replier wants to respond, it
uses a new service called directed multicast to deliver the data to the appropriate subtree. We
describe this process next.

The directed multicast service is a crucial element in maintaining isolation. It allows a host to
ask a router to perform a subtree multicast on behalf of the host. A directed multicast consists of
two parts: a unicast from the replier to the router, and a subsequent multicast by the router on one
of the router’s links. Thus, a directed multicast reaches only receivers in the subtree routed at a
downstream link of a router. To perform a directed multicast, the replier creates a multicast
packet, encapsulates it in a unicast packet and sends it to the router. In the unicast, the replier
specifies which of the router’s links the packet should be multicast. The router decapsulates the

Page 15

packet, performs some validity checks (described below) and multicasts it on the requested link.

Figure 6: Host performing a Directed Multicast

A directed multicast can be summarized as follows:

1. A replier receives a “Forward_to_replier” message, which contains a retransmission
request and the turning point information.

2. The replier scans its buffers for the requested data. If the data is not found, the request is
ignored.

3. If the data is found, the replier creates a multicast packet containing the reply. The multi-
cast packet is then unicast to the router at the turning point.

4. The router decapsulates the multicast packet and checks the validity of the group and link
specified in the message. If the checks succeed, the router multicasts the packet on the
specified downstream link,

Note that in a directed multicast only the roufer at the turning point performs operations
beyond normal forwarding. The overhead incurred by these operations, however, is comparable to
the overhead required to forward a regular multicast packet.

In the rare case when a replier receives a retransmission request after its buffers have been
purged, the replier should not discard the request but forward it to the next replier with a new
“Forward_to_replier” message. This time, however, the turning point information should be cop-
ied from the original request instead of being left empty. If the router at the turning point finds
these fields non-empty, the router forwards the request to the replier without changing the turning
point information. Thus, the new replier sends a directed multicast to the original turning point,
preserving isolation.

Directed multicast may be used to preserve isolation even when only the original sender is
allowed to retransmit (e.g., for security reasons, or to reduce the buffering and processing require-
ments at the receivers). To do so, repliers unicast the request to the original sender, including the
turning point information. The sender subsequently performs a directed multicast to the router at
the turning point.

4.5 Source Spoofing

Some routing protocols (e.g., DVMRP) create a separate multicast tree for each sender. With
such protocols, the multicast reply resulting from a directed multicast must contain the original
sender’s address as the source address, otherwise it will not reach the appropriate receivers. To

Page 16

avoid this problem, we allow repliers to use the original source’s address in the multicast packet
(i.e., perform “source spoofing”). However, to allow receivers to distinguish spoofed from real
packets, routers ensure that spoofed packets are marked and include the replier’s address in the
message. Thus, source spoofing poses no additional security concerns since the real sender can
always be identified by the recipient. Source spoofing is unnecessary with routing protocols that
create shared trees.

4.6 Limitations

Under certain conditions, our scheme may generate some duplicate requests, and may deliver
retransmissions to endpoints that do not need them. In this subsection, we describe when this hap-
pens and how these problems can be mitigated.

4.6.1 Duplicate data packets

Since there is always one replier in our scheme, a receiver will only receive one reply; thus, in
our scheme, there are no duplicate replies. It is possible, however, that a receiver may receive a
reply it does not need, as a result of recovery initiated by other receivers. We will refer to these
packets as duplicates.

An example where duplicates are created is depicted in Figure 7. In this example, a packet is

sends reply o

rephier 1 £
sends request

Figure 7: Loss on replier path causes duplicate messages

lost on the path between R1 and replier 1. Replier 1 sends a request which reaches replier 2. In
response to the request, replier 2 sends a directed multicast to R2, which multicasts the reply on
the downstream link leading to R1. The reply reaches all of R1’s downstream links, causing dupli-
cates on the subtree routed at R3.

Even though this problem does not inhibit recovery, it may lead to the “crying baby problem,”
where excessive loss experienced in one branch causes duplicates at a large number of other
receivers. We deal with this problem by using the cost field to select a replier that advertises the
least loss. For example, R1 will select a replier from the right-hand-side branch if this branch
experiences less loss, even though the replier on the left-hand-side branch may be closer.

4.6.2 Duplicate Requests

Recall that a router forwards at most one request on its upstream link. Thus, the maximum
number of requests a replier can receive is typically bounded by the number of downstream links
of the router at the turning point. However, it is conceivable that in some pathological cases where

Page 17

many routers have selected the same replier, the replier may receive a potentially large number of
requests (Figure 8). Here a large number of neighboring routers (shaded) have selected the same

~ """ o5 occurs above the replier path

Figure 8: Duplicate requests

replier (also shaded), forming a long replier path. Every request reaching a router on the replier
path is now forwarded to the same replier, making the number of requests at the replier propor-
tional to the sum of the downstream links of all the routers on the replier path.

We believe that such pathological scenarios are rare. However, the problem can be solved by
modifying the “Want_to_be_replier” messages to carry the sum of the children of all routers on
the replier path. At each hop, a router adds the number of its children (minus the replier link) to
the sum. If the sum exceeds some threshold, the next upstream router is forced to select a different
replier link, thus shortening the replier path. The threshold is specified by the replier, allowing the
replier to control the maximum number of requests it can receive.

5. FURTHER DETAILS

In this section, we discuss additional issues that have been glossed over in the previous sec-
tions. We specify how our scheme generalizes to LANS, especially those containing multiple
receivers. We discuss lost retransmissions and requests, and other failure modes. Finally, we show
how we can prevent request implosion on the replier link for routers with a large number of links,

5.1 Selecting Repliers in a LAN

For simplicity, the previons sections have assumed that only one receiver resides at each
router link. This, of course, is not always true. In cases where routers are connected to a LAN,
receivers on the LAN run a simple election algorithm to select a replier. The election takes place
without any involvement from routers. Receivers use local multicast (i.e., a multicast with the
TTL value set to 1) for the election. The first receiver on the LAN becomes the replier; new
receivers check for a replier by sending a local multicast, If a replier exists, it responds with
another local multicast. When the replier leaves the group, it sends a local multicast announcing
its departure, which triggers the remaining receivers to elect a new replier.

Page 18

Once a replier is elected, it periodically multicasts a “Want_to_be_replier” message. Remain-
ing receivers monitor the replier to ensure that it is alive. The router does not need to know which
receiver is currently acting as the replier. When a request arrives, the router delivers the request to
all receivers via a local multicast, but only the replier responds.

When receivers on a LAN detect loss, they use a back-off scheme to delay sending requests to
the replier. The replier multicasts its request immediately, which cancels other receivers’ requests.
If loss was internal to the LAN, the replier repairs the loss with a local multicast. However, if loss
was specific to the replier, the replier’s request will cause a duplicate to arrive on the LAN.

5.2 Dealing with Loss of Requests and Replies

Recovery may fail if a retransmission request is lost before it reaches a replier, or if a reply is
lost before it reaches a receiver. To detect lost requests and replies, receivers set a timeout after
sending a request, and resend the request if no reply is received when the timeout expires. Receiv-
ers detect a retransmission failure as follows:

* After sending a request, each receiver sets a timeout proportional to its distance to the
sender.

= If the reply arrives before the timer expires, the timer is cancelled.

« If the timer expires before a reply is received, another request is sent and a new timeout is
set; the process repeats up to a specified maximum number of attempts.

Note that if some receivers received the first reply, additional recovery attempts will involve
only receivers which have not yet received the reply. This make it very likely that a different
replier will be involved in the next round,

5.3 Dealing with a Replier Failure

The failure of a replier may disrupt recovery for some period of time. Note that a failed replier
will not always cause problems; replier failure becomes problematic only if the failed replier is
located directly above or below the point the data was lost (see Figure 2, earlier). If the failed
replier is located anywhere else, recovery will proceed unaffected. Soft state allows routers to
eventually detect failed repliers. However, detection via soft state may take too long; to enable
fast detection of replier failure, a receiver may do the following:

+ the receiver sends a request explicitly asking the replier to immediately acknowledge its
reception. The receiver sets a timer to wait for the acknowledgment.

» If the timer expires, the receiver sends another request to the router at the turning point,
requesting that a new replier be selected.

While the router is uncertain that a replier exists (for example, after receiving requests from
receivers to switch repliers), the router may switch to a cached replier, or “no replier” (i.e., for-
ward requests upstream), until its replier state is refreshed.

Page 19

5.4 Routers with a Large Number of Links

If a router has a large number of links, the router’s replier may receive a large number of
requests from downstream repliers. To avoid this problem, the router may partition its links into
smaller groups and select a replier for every group, as shown in the example in Figure 9. In this

ROUTER

rep}ier [y Joosem— repiier b

replier € « replier d

Figure 9: Partitioning of the links at a router with a large number of links

example, requests from links in group D go to replier 4, but requests from replier d go to replier c,
requests from replier ¢ go to replier & and so on. Requests from replier a are forwarded upstream.
By partitioning links this way, the maximum number of requests a replier can receive is signifi-
cantly reduced.

6. RESULTS

In this section we evaluate our scheme with respect to the five problems identified in the Intro-
duction, namely request implosion, duplicate replies, latency, exposure and adaptability. Request
implosion is controlled by using the replier hierarchy. The number of duplicate requests a replier
may receive is determined by the sum of the downstream links of each router on a replier path, We
have shown a method to ensure that this sum never exceeds the replier’s threshold of implosion
(see section 4.6.2). There are no duplicate replies in our scheme because there is always only one
replier. We have not yet evaluated the adaptability of our scheme to topology changes; however,
we expect it fo be very good since the replier state changes as group membership changes.

Two problems remain to be investigated in order to justify our claims in Table 1. These are
exposure and latency. We present numeric and simulation results to investigate the performance
of our scheme in terms of exposure and latency.

6.1 Numeric Results: Exposure
We define exposure as:

receivers that received a reply

Exposure =
receivers that should have received the reply

We calculated the exposure in our scheme and compared it to a scheme which does not have
local recovery (like SRM). The exposure depends heavily on the topology of a group because the
topology and the location of loss determine which receivers lost a packet. We chose a binary tree
as our target topology. Exposure was then calculated as follows:

Page 20

» drop a packet on a link at height %

» calculate the resulting exposure due to that fault

* repeat the above until a packet was dropped on all links of height A
* report the average exposure

The results are presented in Table 2. From the table, we see that without local recovery the
exposure increases exponentially as losses move closer to the leaves. In contrast, with the local
recovery offered with our scheme, exposure increases only linearly. Note that recent studies of
losses on the MBONE indicate that most losses tend to occur at the leaves [8].

Table 2: Exposure in SRM and in our scheme with a binary tree topology

Height ?iMpe (cwointi?;ll)t Our Scheme
1 2 1
2 4 1.5
3 8 2
4 16 2.5
h 2h O(h)

6.2 Simulation Results
We created a simulation of our scheme to measure Nuisance and the recovery latency in our
scheme. The nuisance factor is defined as follows:

unwanted replies received by R

Nuisance =
total number of losses

Thus, schemes without local recovery have nuisance = 1. Recall that since in our scheme there
is only one replier, a duplicate in our scheme is an unwanted message received as a result of
recovery in some other part of the tree. Thus, in contrast with exposure, which measures how
many receivers were exposed to recovery in some other region, nuisance measures how often a
receiver is pestered by messages from recovery elsewhere.

In our simulation we simulated the following:

» A single multicast tree with one sender.

* All the router functionality, including replier setup, forwarding messages to repliers, the
turning point and directed multicasts. The cost used by routers to select repliers is cur-

rently the hop distance.

» Gap-based error detection at the receivers (assuming that packets are delivered in FIFO
order by the network). All receivers participate in error recovery.

Page 21

» Loss of original data packets only. Requests, retransmissions, and other control messages
are not lost.

The inputs to the simulation are the topology, link parameters (bandwidth, latency, loss) and
the type of loss to be simulated (random or deterministic). The outputs were the average recovery
latency and the average nuisance. Runs were made on various topologies. Here, we present results
from two types of topologies: binary trees and a WAN-like topology.

6.2.1 Simulations with Binary Trees

Binary trees, although not a very realistic topology, are useful for providing insight to the
behavior of the scheme in a controlled environment. Binary trees actually represent a difficult
case for our scheme because the lack of internal repliers increases the replier paths, which in turn
increases duplicates and latency.

For this set of resuits, we assigned all links identical bandwidth, latency, and loss probability,
A binary tree of height 3 is one example topology used in the simulations and shown in Figure 10.
The replier links are shown in bold. Other trees used in our simulations have similar strocture.

Figure 10: Binary tree of height 3

We simulated our scheme with binary tree topologies of various heights. The results were
obtained as follows: a packet was dropped on a link; the unwanted replies (if any) and recovery
latency were measured at all receivers; a packet was then dropped on a different link and the mea-
surements were repeated until one packet was dropped on every link. The above is equivalent to
the case where each link has equal loss probability. The results were then averaged over all receiv-
ers to calculate the average nuisance and average latency, We report the normalized latency
obtained by dividing the real latency with the RTT between the receiver and the sender.,

Table 3: Nuisance and latency for binary trees

Tree Height Nuisance A‘Zi;:;fg:iz;? ;:‘,]E%cy
3 (8 receivers) 01 0.92
4 (16 receivers) 0.10 0.93
5 (32 receivers) 0.08 0.95
6 (64 receivers) 0.06 0.96

Page 22

Table 3 shows the results of our simulations with different binary trees. The results show that
average latency stays very close to RTT. Nuisance is low, despite the fact that there are no “good”
repliers in these topologies.

It should be clear from previous discussion that adding receivers to the internal routers can
only improve performance in our scheme. The reason is that recovery messages need to travel a
shorter distance and directed multicasts can be more accurately aimed at the loss region. Thus, we
examine what happens next if we add more receivers at the leaves. This better approximates real
topologies, where receivers are typically concentrated at the edges. The simulation is run as
before, with Table 4 showing the results. The original result (2 receivers per leaf router) is taken
directly from Table 3. The table illustrates that adding more receivers at the edges decreases both
nuisance and latency. This was expected, because adding receivers where a replier already exists
does not increase exposure; on the contrary, it allows new receivers to recover quickly and with-
out exposing their recovery to others.

Table 4: Nuisance and latency for different receivers per leaf router

3 2 0.11 0.92]
3 3 0.09 0.839
3 4 0.08 0.875
4 2 0.1 0.93
4 3 0.08 0.908
4 4 0.07 0.897
6.2.2 WAN simulation

For our final set of results, we simulate the WAN topology depicted in Figure 11. The topol-
ogy is imaginary, but attempts to capture some elements of a typical WAN. There are 14 routers
and 33 receivers. The selected replier links are shown in bold. If a router’s replier link leads
directly to a receiver, the receiver is shown in bold. The propagation delays between routers are
shown on the links. The propagation delay between any router and a receiver is assumed to be 1
ms, typical of the propagation delay in a LAN. The simulation is performed as before, by drop-
ping one packet on each link, and the results are shown on Table 5. The second row shows how
the performance improves if the source is moved to R3, bringing it closer to the “middle” of the
multicast tree.

Table 5;: WAN

. . . Avg normalized latency
‘WAN: 14 routers, 33 receivers Nuisance (avg latency / RTT)
Source at RO 0.1 0.6

Source at R3 0.04 049

Page 23

It is important to note that the above results were obtained by selecting repliers based on dis-
tance, since we assumed that all links have the same loss probability. In reality, routers will pick
repliers that experience the least loss, so exposure and nuisance will improve significantly.

Figure 11: Imaginary WAN topology

7. CONCLUSIONS

In this paper we have described an error control scheme for large multicast groups, based on a
new set of forwarding services provided by routers. These new services are simple to implement
(can be included in the router’s fast path) and easy to integrate with the current Internet multicast
model, while incurring minimal overhead at the routers. In return, these services allow receivers
to implement efficient and fast error recovery, while maintaining their isolation from the topology
of the group. These services are very general and can be cleanly implemented without exposing
routers to the details of the particular error recovery mechanism used by the receivers.

Our scheme shows significant performance gains compared to other schemes, with respect to
the five metrics outlined in Table 1, as shown in Section 6. The biggest gains are in terms of lower
latency and good isolation. The scheme typically recovers from errors in one round-trip delay or
less. The number of receivers exposed to recovery is reduced from a factor of 2" without local
recovery, to i, where £ is the height of the multicast tree. Even though we did not simulate the
scheme’s adaptability to a changing group topology, we believe that it is very good. The scheme
adapts to a changing group topology very quickly, without requiring heuristics or learning,

We believe that these new services can be useful for other purposes in addition to error con-
trol. For example, members of a group can implement a positive acknowledgment reliable trans-
port service by selecting a fixed set of repliers to collect acks from receivers and avoid the ack
implosion problem. The directed multicast service can also be used by such repliers to deliver
state. Other applications could also use directed multicast to provide a much tighter form of
scoped multicast than what is available today with TTL based scoping.

We are implementing our scheme in the IP Multicast implementation of NetBSD Unix. We
are modifying the multicast routing daemon (mrouted) to support the creation of replier hierar-
chy and the required handling of requests and replies. We are also modifying the endsystems to

Page 24

use these new services. The replier setup messages are integrated with the group membership pro-
tocol (e.g., IGMP). The “Forward_to_replier” and the directed multicast messages are imple-
mented using a hop-by-hop option in the header of multicast packets, so that routers will be
forced to examine them. We will report in detail on the exact changes required in the full version
of this paper,

Routers enhanced with our services may be deployed on the MBONE using a mechanism sim-
ilar to the one used in RSVP [10], utilizing path messages to allow enhanced routers to discover
each other, Note that non-enhanced portions of the multicast tree will also benefit from recovery
performed by the enhanced tree. In addition, it is possible to run a scheme like SRM on the non-
enhanced portion of the tree and our scheme on the enhanced portion. Since our scheme recovers
data in under 1 RTT, it will actually aid SRM request suppression by cancelling requests before
the backoff timer expires. We are in the process of investigating the feasibility of such integration.

REFERENCES
[11 Deering, S., “Host Extensions for IP Multicasting,” RFC 1112, January 1989.

[2] Floyd, S., Jacobson, V., McCanne, S., Zhang, L., Liu, C., “A Reliable Multicast Framework for
Light-weight Sessions and Application Level Framing,” Proc. of ACM Sigcomm 95, pp. 342-
356, September 1995.

[3] Holbreok, H., Singhal, S., Cheriton, D., “Log-Based Receiver-Reliable Multicast for Distributed
Interactive Simulation,” Proceedings of ACM Sigcomm ’95, Vol 25, No. 4, pp. 328-341, October
1995.

[4] Paul, S., Sabnani, X.,. Buskens, R., Muhammad, S., Lin, J., Bhattacharyya, S., “RMTP: A Reliable
Mutlticast Transport Protocol for High-Speed Networks,” Proceedings of the Tenth Annual IEEE
Workshop on Computer Communications, September 1995.

[5] Pingali, S., Towsley, D., Kurose I., “A Comparison of Sender-initiated and Receiver-initiated Reli-
able Multicast Protocols,” SIGMETRICS 94,

[6] Postel, J., “Transmission Control Protocol - Darpa internet Protocol Program Specification,” RFC
793, September, 1981.

[7] Salezer, 1.H., Reed, D.P,, Clark, D.D., “End-to-End Arguments in System Design,” ACM Transac-
tions on Computer Systems, Vol. 2, No. 4, November 1984. pp 277, 288.

[81 Yajnik, M., Kurose, I., Towsley, D., “Packet Loss Correlation in the MBONE Multicast Network:
Experimental Measurements and Markov Chain Models,” Infocom ‘96.

[91 Yavatkar, R., Griffioen, J., Sudan, M., “A Reliable Dissemination Protocol for Interactive Collabo-
rative Applications,” Multimedia *95.

[10] Zhang, L., Braden, B., Estrin, D., Herzoz, S., Jamin, S., “Resource ReSerVation Protocol (RSVP)
Version 1 Functional Specification,” RFC in preparation.

	An Error Control Scheme for Large-Scale Multicast Applications
	Recommended Citation
	An Error Control Scheme for Large-Scale Multicast Applications

	tmp.1439928365.pdf.S0i2i

