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Chapter 1

Introduction

This dissertation is mainly concerned with the study of the Strong Factorial Conjecture,

a new and exciting problem first introduced by van den Essen and Edo in [13]. The conjecture

is concerned with the following map, which was introduced in [33].

Definition 1.1 (Factorial Map). For any ring R and variables T1, . . . , Tm, let

L : R [T1, . . . , Tm]→ R be the R-linear map defined by L (
∏m

i=1 T
αi
i ) =

∏m
i=1 αi!.

In [33] van den Essen, Wright, and Zhao formulated the Factorial Conjecture after

noticing a curious connection between the map L and Zhao’s own Image Conjecture (see

Chapter 2 for more information).

Conjeture 1.2 (Factorial Conjecture (FC)). Let m ≥ 1 be an integer and suppose F ∈

C [T1, . . . , Tm] is such that L (F n) = 0 for all n ≥ 1. Then F = 0.

To somebody coming across it for the first time, the Factorial Conjecutre might look

simple; either it is easy to prove or a counterexample shouldn’t be too hard to find. However

no proof or counterexample has yet to be discovered. The authors of [33] succeeded in

showing that the conjecture holds in some very special cases, and in particular, they proved

it for the univariate polynomial ring C[T ] (cf. [33, Theorem 4.9]). The problem remains

open for all m > 1.
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Recently, in [13], Edo and Essen introduced the Strong Factorial Conjecture, after notic-

ing a connection between the factorial map and a conjecture of Furter (see Chapter 2 for

more information):

Conjeture 1.3 (Strong Factorial Conjecture (SFC)). Let m ≥ 1, F ∈ C [T1, . . . , Tm] \ {0}

and let N (F ) be the number of of monomials that appear in F with nonzero coefficient. Then

for any n ≥ 1 there exists 0 ≤ i ≤ N (F )− 1 such that L (F n+i) 6= 0.

The conjecture asserts that if F 6= 0 then amongst any N (F ) consecutive powers of F

there should be at least one that is mapped, under L, to some nonzero complex number. Once

again, no proof or counterexample has been given. Indeed, less is known about the Strong

Factorial Conjecture than its weaker counterpart; it is not even known whether it holds for

m = 1. The results of this disseration show that the conjecture holds in many special cases,

some of which extend previously known results about the weak Factorial Conjecture found

in [33]. We also give many partial results in which we etablish that for particular choices of

n the condition L (F n+i) = 0 for 0 ≤ i ≤ N (F )− 1 implies F = 0.

In order to study Conjecture 1.3 we view the condition L (F n) = 0 as a diophantine

equation in the coefficients of F . As a result, the conjecture leads us to the problem of

determining the incompatibility of a finite collection of certain homogeneous diophantine

equations. In order to obtain the positive results that are contained in this thesis we have

made use of two well known techniques that have been used to study the common zeroes of

polynomials: the resultant and the Newton Polygon (see Chapter 2 for more details).

The thesis is organized as follows:

• In Chapter 2 we introduce notations and conventions used throughout the disertation

as well as provide a historical background for the Strong Factorial Conjecture. We also

cover the necessary backround material.

• In Chapter 3 we present new evidence for the SFC by proving it in several special

instances.
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Chapter 2

Preliminaries

In this chapter we introduce notations and conventions that will be used throughout the

dissertation, we motivate the study of the Strong Factorial Conjecture, and we give the

necessary background required to understand the proofs of the main results.

2.1 Notation

Throughout this thesis we will make use of the following notation and conventions (all rings

are assumed to be commutative and unital):

• For any ring R we denote by R∗ the group of units of R.

• Given a prime integer p we denote by Fp the finite field of p elements.

• If I is an ideal of R and a ∈ R then we denote by a the image of a under the natural

quotient map R→ R/I.

• For any ring R and any positive integer m we denote by R[m] the ring R [T1, . . . , Tm]

of polynomials in m variables. We also set T = (T1, . . . , Tm).

• Given α = (α1, . . . , αm) ∈ Nm we set |α| =
∑m

i=1 αi. We also set α! =
∏m

i=1 αi!.

• Given α ∈ Nm we denote by
(|α|
α

)
the multinomial coefficient. That is,

(|α|
α

)
=
|α|!
α!

.
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• For any H = (H1, . . . , Hm) ∈
(
R[m]

)m
and any α ∈ N we write Hα to denote the

product
∏m

i=1H
αi
i .

• If G = (G1, . . . , Gm) is another element of
(
R[m]

)m
then we write HG to denote the

m-tuple obtained by componentwise multiplication, i.e., HG = (H1G1, . . . , HmGm).

• We denote by L the factorial map which was defined in Definition 1.1.

• Given F ∈ R[m] we denote by N (F ) the number of monomials that appear in F with

a nonzero coefficient (as in Conjecture 1.3).

• Given a subset S ⊂ R[m] we set ZR(S) = {λ ∈ Rm : F (λ) = 0 for all F ∈ S}.

2.2 Background and Motivation

The study of the Strong Factorial Conjecture, which is interesting by itself, is motivated

by some important problems in Affine Algebraic Geometry: the Jacbobian, Vanishing,

Image, and Rigidity conjectures.

A polynomial map is a map F = (F1, . . . , Fm) : Cm → Cm where each Fi ∈ C[m]. The

map F is said to be invertible if there exists a polynomial map G = (G1, . . . , Gm) such that

Gi(F ) = Ti for each i. If F is an invertible polynomial map then the determinant of the

Jacobian matrix

(
∂Fi
∂Tj

)
is a nonzero constant. The Jacobian Conjecture, first posed by

Ott-Heinrich Keller in 1939, asserts that the converse is true.

Conjeture 2.1 (Jacobian Conjecture (JC)). Let F be a polynomial map of Cm. If the

determinant of JF is a nonzero constant then F is invertible.

Despite intense research by mathematicians, the conjecture remains open for all m ≥ 2. The

interested reader should see [3] and [32] for more history and known results on the Jacobian

conjecture.

One of the earliest breakthroughs on the JC is the so called cubic homogeneous reduction,

discovered by Bass, Connell, and Wright [3] and independently by Jagžev [23]. The reduction
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asserts that in order to prove the JC it suffices to consider polynomial maps of the form

F = T − H where each component Hi of H is a cubic homogeneous polynomial. During

the past twelve years, some remarkable breakthroughs have been made on the JC. First,

de Bondt and van den Essen [9] and Meng [25] independently discovered that in order to

prove or disprove the JC it suffices to consider only symmetric polynomial maps. That

is, it suffices to consider only polynomial maps of the form F = T − ∇P where P ∈ C[m]

and ∇P =

(
∂P

∂T1

, . . . ,
∂P

∂Tm

)
is the gradient of P . Combining this with the classic cubic

homogeneous reduction, one may further assume that P is homogeneous of degree four. In

this case the condition det JF ∈ C∗ implies that J(∇P ) is nilpotent.

Based on the symmetric reduction, Zhao formulated the following vanishing conjecture

for the Laplacian ∆ =
∑m

i=0

∂2

∂T 2
i

in [35] and showed that it is equivalent to the JC:

Conjeture 2.2 (Vanishing Conjecture VC). If P ∈ C[m] is homogeneous and such that

∆n (P n) = 0 for all n ≥ 1 then ∆n (P n+1) = 0 for all n >> 0.

In particular, Zhao showed that the condition ∆n (P n) = 0 for all n ≥ 1 is equivalent to the

nilpotency of J(∇(P )) and he also showed that the condition ∆n (P n+1) = 0 for all n >> 0

is equivalent to the invertibility of the polynomial map F = T −∇P .

More recently, inspired by a conjecture of Mathieu (see [24]) that closely resembles his

own VC, Zhao introduced the concept of a Mathieu subspace in [36] and using this concept

formulated the Image conjecture.

Definition 2.3. Let K be a field, and R a commutative K-algebra. A K-vector subspace

M of R is a Mathieu subspace if the following property holds: If f ∈ R and fn ∈ M for

all positive n then for any g ∈ R fng ∈M for all but finitely many n.

Let R and K be as in the definition above. Let (a1, . . . , am) be a sequence of elements of R

and consider them commuting differential operatorsDi =
∂

∂Ti
−ai. Set ImD =

∑m
i=1DiR

[m].

Finally, recall that a sequence (a1, . . . , am) is called a regular sequence in R if a1 is a

nonzero divisor of R and for each i ai is a nonzero divisor in R/ (a1, . . . , ai−1).
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Conjeture 2.4 (Image Conjecture IC). If (a1, . . . , am) is a regular sequence in R then ImD

is a Mathieu subspace of R[m]

Van den Essen, Wright and Zhao proved the IC in the case K = Fp [33, Theorem 2.2]. In

the characteristic zero case, some partial results are known for the special case m = 1 (see

[33], and more recently, [34]).

Zhao also formulated the following specific version of the IC in [36]. Let Z = (Z1, . . . , Zm)

be another sequence of m variables that commutes with T = (T1, . . . , Tm). Set R = C[Z]

and consider the set of commuting differential operators Di = Zi −
∂

∂Ti
, 1 ≤ i ≤ m on the

polynomial ring R[m]. Finally, set ImD =
∑m

i=0DiC[Z, T ].

Conjeture 2.5 (Special Image Conjecture SIC). ImD is a Mathieu subspace of C[Z, T ].

In [36] it is shown that if the above conjecture is true for all m ≥ 1 then the JC is true for

all m ≥ 1. In fact, it was shown that the in order to prove the Jacobian conjecture it suffices

to consider the image conjecture for a certain subset of polynomials F ∈ R[m].

Theorem 2.6 ([36], Theorem 3.6). The following two statements are equivalent:

1. For any m ≥ 1 and homogeneous P (T ) ∈ C[m] of degree 4, the SIC holds for

F (Z, T ) =

(
m∑
i=0

Z2
i

)
P (T )

2. JC holds for all m ≥ 1.

To see how the SIC relates to the FC define the C-linear map E : R[m] → C[m] by setting

E
(
ZαT β

)
=

(
m∏
i=1

∂αi

∂Tαii

)(
T β
)

where α, β ∈ Nm. Then:

Theorem 2.7 ([36], Theorem 3.1). ImD = ker E
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So in order to determine whether ImD is Mathieu subspace, one has to consider polyno-

mials F ∈ R[m] such that

E (F n) = 0, for all n ≥ 1 (2.1)

In order to study condition (2.1) the authors [33] defined a multi-grading on R[m] that would

be preserved under E . Specifically, they defined the multi-degree of a monomial ZαT β to be

β − α ∈ Zm. Since C[m] can be viewed as a subring of R[m] this multi-grading restricts to a

multigrading on C[m]. Obviously, the multi-degree is preserved under E .

In order that ker E form a Mathieu subspace it is necessary that the multi-degree (0, . . . , 0)

part of ker E also form a Mathieu subspace. It was observed in [33] that any element of R[m]

having multi-degree (0, . . . , 0) belongs to A = C [U1, . . . , Um] where Ui = ZiTi, 1 ≤ i ≤ m.

Setting U = (U1, . . . , Um) one easily calculates E (Uα) = α!. Thus, the restriction of E to

A is precisely the factorial map L. So if the IC is true, then kerL is necessarily a Mathieu

subspace. The FC is a stronger assertion of this necessity.

We end this section by discussing how the Rigidity conjecture of Furter, formulated in

[20], motivated the SFC. Before we can do that, we need to recall some facts from Affine

Algebraic Geometry. Let K be a field and denote by GAm(K) the group of polynomial

automorphisms in two variables. Two subgroups of GAm(K) that are of interest are as

follows:

1. The affine group Afm(K) is the subgroup consisting of invertible polynomial maps

F = (F1, . . . , Fm) where deg (Fi) = 1 for 1 ≤ i ≤ m.

2. The triangular subgroup BAm (K) is the subgroup generated by polynomial auto-

morphisms of the form F = (F1, . . . , Fm) where Fi = aiXi + Gi with ai ∈ K∗ and

Gi ∈ K [Ti+1, . . . , Tm] for 1 ≤ i ≤ m.

The classical Jung-van der Kulk Theorem (see [32]) asserts that GA2 is generated by BA2

and Af2. Moreover, it gives the structure of GA2 as the amalgamated product of the two

subgroups along their intersection. Given F ∈ GA2 the polydegree (or multidegree) of F is
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the sequence of degrees of the triangular automorphisms used in the decomposition of F as

a product of triangular and affine automorphisms. The length of F is then the number of

triangular automorphisms used in the decomposition. The concept of polydegree and length

was first defined in [16] and separately in [17].

In [31], the the group GA2 was endowed with the structure of an infinite-dimensional

algebraic variety. Then in [18], it was shown that the length of a plane polynomial automor-

phism is lower semicontinuous with respect to the Zarisky topology of GA2(K). A partial

order � was also introduced in [18] to describe the closure of the set of plane polynomial

automorphisms having fixed polydegree d ∈ Nl
+, l ≥ 1. It was also conjectured that the

closure of the set Gd of polynomials having polydegree d is the union of all Ge where e � d

(cf. [18]). However, in [12] it was shown that the conjecture is false in general, and in

particular, a counter example for polydegree d of length three was provided. The conjecture

for polydegree of length two remains open (cf. [19] or[11]).

Recently, Furter introduced the Rigidity Conjecture (see [20]):

Conjeture 2.8 (Rigidity Conjecture RC). Let a(x) ∈ C[x] be a univarite polynomial of

degree at most m+ 1 such that a(x) ≡ x mod x2. If m consecutive coefficients of the formal

inverse a−1(x) vanish then a(x) = x.

He then showed, remarkably, that the RC implies the length two polydegree conjecture.

As of now, the RC is has only been resolved in the cases m = 1 and m = 2 (see [13]).

In [13] , van den Essen and Edo posed the SFC after noticing the following connection

with the RC: Given a univariate polynomial of the form a(x) = x (1− λ1x) · · · (1− λmx)

with each λi ∈ C the coefficient of xn in the formal inverse a−1(x) is equal to L (F n) / (n!)m+1

where F = (
∏m

i=1 Ti) (λ1T1 + · · ·+ λmTm). Using this equality they proved the following:

Theorem 2.9 ([13], Theorem 2.25(d)). The following statements are equivalent:

1. Every polynomial of the form F = (
∏m

i=1 Ti) (λ1T1 + · · ·+ λmTm) with each λi ∈ C

satisfies the SFC
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2. The RC holds for all m′ ≤ m

2.3 First Observations

In this section we collect some useful initial observations about the SFC, some of which

will be refered to later on in the dissertation. We begin by noting that the SFC holds for

F = λM where λ ∈ C and M is a monomial in C[m], since L (F n) = 0 obviously implies

λ = 0. In [13] it was shown that the SFC fails to hold in finite characteristic. For this,

consider F = T1 − T2. Then F n =
∑n

k=0

(
n
k

)
(−1)kT n−k1 T k2 for all n ≥ 1. It now follows

that L (F n) = n!
∑n

k=0(−1)k. So L (F n) = n! whenever n is even, and is zero otherwise. If

char R = 2 then L (F n) = 0 whenever n is even, and is therefore equal to zero for all n ≥ 1.

The previous calculation also shows that the FC fails in finite characteristic as well.

Let σ ∈ Sm be a permutation of the set {T1, . . . , Tm} and extend σ to an automorphism

σ̃ of the C-algebra C[m]. For any α ∈ Nm it is easy to see that L (σ̃ (Tα)) = α! = L (Tα). It

follows that L (σ̃ (F )) = L(F ) for all F ∈ C[m].

The factorial map L is not multiplicative in general. For example take F = T1 · T1 and

observe that L (F 2) = 2 6= 1 = L (T1)2. Nonetheless L(FG) = L(F )L(G) whenever F,G ∈

C[m] are two polynomials such that there exists an I ⊂ {1, . . . ,m} such that F ∈ C [Ti : i ∈ I]

and G ∈ C [Ti : i /∈ I].

Our final observation is that the factorial image L (F n) can be realized via an integration

formula. Let T = (T1, . . . , Tm) and let α = (α1, . . . , αm) ∈ Nm. The following multi-variable

formula can easily be proven using induction (integration by parts is needed to prove the

base case): ∫
Dm

Tαe−|T |dT = α!

In the above formula dT =
∏m

i=1 dTi andDm denotes the non-negativem-tant T1 ≥ 0, . . . , Tm ≥

9



0 in Rm. It follows that for F ∈ C[m], L(F ) can be realized as

L(F ) =

∫
Dm

F (T )e−|T |dT (2.2)

Let 〈·, ·〉 denote the Hermitian inner product defined on C[m] by

〈F,G〉 =

∫
Dm

F (T )G(T )e−|T |dT (2.3)

We note that this restricts to a positive definite form on R[m]. In particular, we have

L (F 2n) = 〈F n, F n〉 for all n ≥ 1 and for all F ∈ R[m]. Moreover, L (F 2n) > 0 for all

n ≥ 1 if F ∈ R[m] and F 6= 0. This observation produces the following easy to prove

proposition:

Proposition 2.10. The Strong Factorial Conjecture holds for all F ∈ R[m]

We also have the following corollary, which we will invoke in Section 3 of Chapter 3 to

prove the SFC in some very special cases.

Corollary 2.11. Let F ∈ C[m]. If L (F 2n) = 0 for some n ≥ 1 then F ∈ C[m] \ R[m].

2.4 Diophantine Equations Arising from the SFC

In this section we fix an integer d ≥ 2 and monomials M1, . . . ,Md ∈ C[m]. Given

λ = (λ1, . . . , λd) ∈ Cd we consider the polynomial F =
∑d

i=1 λiMi. If we set

M = (M1, . . . ,Md) then for any n ≥ 1 we have:

L (F n) = L

 ∑
α∈Nd,|α|=n

(
n

α

)
Mαλα


=

∑
α∈Nd,|α|=n

(
n

α

)
L (Mα)λα (2.4)
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Let x = (x1, . . . , xm) be m commuting variables. The above formula leads us to define, for

each n ≥ 1, a polynomial fn(x) given by

fn(x) =
∑

α∈Nd,|α|=n

(
n

α

)
L (Mα)xα (2.5)

Note that fn(x) ∈ Z[x] is homogeneous of degree n and that fn(λ) = L (F n). More-

over L (F n) = 0 if and only if λ is a solution to the homogeneous diophantine equa-

tion fn(x) = 0. Thus the Strong Factorial Conjecture for the polynomial F asserts that

ZC
({
fn(x), . . . , fn+N (F )−1(x)

})
= {(0, . . . , 0)} for all n ≥ 1. Therefore we can view the

Strong Factorial Conjecture as an assertion about the incompatibility of certain systems of

homogeneous diophantine equations.

Let I ⊂ Q[d] be the ideal generated by
{
fn(x), . . . , fn+N (F )−1(x)

}
. By the Nullstellensatz,

ZC(I) ⊃ {(0, . . . , 0)} if and only if
√
I ⊂ (x1, . . . , xd), which, in turn, happens if and only

ZQ(I) ⊃ {(0, . . . , 0)} where Q denotes the algebraic closure of Q. This observation leads

to the following remark, which appeared in [33] and was used by the authors to resolve

several instances of the weak factorial conjecture. While we have not used this particular

observation to produce evidence for the strong factorial conjecture, we still make use of the

theory of valuations in this dissertation, and therefore think it is worth mentioning.

Remark 2.12 (Extension of primes). Given λ = (λ1, . . . , λd) ∈ Q
d

there exists an l ∈ Z

such that λi is integral over Z [1/l] for 1 ≤ i ≤ d. Note that Z [1/l] is a localization of a

Dedekind domain, and therefore it is also a Dedekind domain. Letting O be the integral

closure of Z [1/l] in Q (λ1, . . . , λm) we observe that Q [λ1, . . . , λd] has a dedekind extension in

Q that is integral over Z[1/l]. All but finitely many primes p ∈ Z (specifically, those primes

not dividing l) extend to a proper ideal of Z [1/l]. For such a prime p we can choose a prime

ideal p ⊂ O lying over p. Since O is Dedekind, p gives a discrete valuation of Q (λ1, . . . , λm).

Since p lies over p the valuation will be positive at p. Thus, for all but finitely primes, there

is a (not necessarily unique) discrete valuation on O that is positive at p.
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2.5 Univariate Resultant

In Section 3 of Chapter 3 we study the case F = λ1M1 + λ2M2 where λ1, λ2 ∈ C∗ and

M1,M2 are monomials in C[m]. As we shall see in that section, we can assume, without

loss of generality, that λ1 = 1 or λ2 = 1. Taking the approach outlined in the previous

section, resolving the strong factorial conjecture for F ∈ C[m] a sum of two monomials boils

to showing that two univariate polynomials (note that N (F ) = 2) have no common zeroes.

One way of determining whether two univariate polynomials have any common factors (or

zeroes) is to compute their resultant, which we will describe now.

Let k be a field and let f, g ∈ k[x] be polynomials of degree m > 0 and n > 0, respectively.

Write the polynomials in the form

f = amx
m + ·+ a0

g = bnx
n + · · ·+ b0

(2.6)

For any l > 0 let Sl denote the k-vector space of polynomials of degree at most l. The

Sylvester matrix of f and g, denoted by Syl(f, g, x), is the matrix of the linear trans-

formation Sn−1

⊕
Sm−1 → Sm+n−1 defined by (A,B) → Af + Bg with respect to the or-

dered bases {(xn−1, 0) , . . . , (1, 0), (0, xm−1) , . . . , (0, 1)} and {xm+n−1, . . . , 1}. For example, if

f = 1 + 2x+ 3x2 and g = x+ 3x3 then

Syl(f, g, x) =



3 0 0 3 0

2 3 0 0 3

1 2 3 1 0

0 1 2 0 1

0 0 1 0 0


The resultant of f and g with respect to x, denoted Res(f, g, x) is the determinant of

the Sylvester matrix. If c ∈ k∗ then Res(f, c, x) := cm. The following is well known; see, for
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example, [8, Proposition 5.8]:

Proposition 2.13. The resultant Res(f, g, x) = 0 if and only if f and g have a common

factor in k[x]. Thus, f and g have a common zero in k if and only if the resultant is zero.

Here is another formula for the resultant of f and g. A proof can be found in [21].

Proposition 2.14. Let f, g ∈ k[x] be as in (2.6). If α1, . . . , αm ∈ k are the roots of f

and β1, . . . , βn ∈ k are the roots of g then the resultant of f and g is given by the formula

Res(f, g, x) = anmb
m
n

∏
i,j

(αi − βj).

Finally, we have the following useful facts about the resultant. These are all well known

and can be found in [21] or [8].

Proposition 2.15. The resultant satisfies the following:

(i) Res(f, g, x) = (−1)mn Res(g, f, x)

(ii) Suppose m ≥ n. Write f = qg + r for some polynomials r and q with deg(r) = s < n.

Then Res(f, g, x) = bm−sn Res(r, g, x)

(iii) Res(xl, g, x) = g(0)l for all l ≥ 1.

(iv) If h ∈ k[x] then Res(fh, g, x) = Res(f, g, x) · Res(h, g, x)

(v) If λ ∈ k∗ then Res(f(λx), g(λx), x) = λmn Res(f, g, x)

2.6 Newton Polygon

In this section we describe the Newton Polygon method and collect all the results pertaining

to it that are relevant for this dissertation. The polygon originated in the work of Newton in

1676 (see [4, p. 372]), and was later revived by Puisseux in 1850 [30]. It was used by Newton

(and later Puisseux) to prove the following theorem, which nowadays is often referred to as

the Newton-Puisseux Theorem: If K is an algebraically closed field and the characteristic
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of K does not divide the degree of f(x) ∈ K((t))[x] where K((t)) is the field of Laurent series

in the variable t, then f(x) factors into a product of linear factors involving fractional power

series in t. In short, the slope of the segments of the Newton Polygon of f(x) determine the

possible exponents that appear in the fractional power series (see [2] or [6] for more details).

The Newton Polygon was eventually developed in a more general setting, and made

appearences in the work of Hensel [22] and Dumas [10]. In the general setting, the Newton

Polygon provides valuative and combinatorial information about the roots of a polynomial

f(x) ∈ K[x] where K is a non-archimedean valued field (see below for definition). As a

result, the Newton Polygon has many applications to the area of polynomial factorization.

For example, it has been used by Dumas [10], Filaseta [15], and Filaseta and Lam [14] to

obtain irreducibility criteria for rational polynomials of a certain form.

In this disseration we use the Newton Polygon to study the Strong Factorial conjecture

for polynomials F that are the sum of two monomials. As was mentioned in Section 2 of this

chapter, systems of Diophantine equations naturally arise in the study of the conjecture.

When F is a sum of two monomials we are led to consider the common solutions of a

system of two diophantine equations in one variable. By using the information provided by

the Newton Polygon we can determine in some very special cases that the polynomials in

question have no common solutions over the complex numbers.

Our main source of information regarding the Newton Polygon has been the paper by

Mott [27] and the book by Neukirch [28].

Let (K, ν) be a non-archimedean valued field. That is, ν : K → R ∪ {∞} satisfying the

following properties:

1. ν(0) :=∞

2. ν(xy) = ν(x) + ν(y) for all x, y ∈ K

3. ν(x+ y) ≥ min {ν(x), ν(y)} with equality if ν(x) 6= ν(y)
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Example 2.16. Fix a prime p ∈ Z. For any q ∈ Q∗ there exists integers a, b, n ∈ Z with

p - ab such that q = a
b
pn. Define νp : Q → Z by setting νp(q) = n. Then νp is a non-

archimedean valuation. The function νp is often referred to as the “p-adic valuation” or

“p-adic order”.

Let f =
n∑
i=1

aix
i ∈ K[x] where ana0 6= 0. The Newton Polygon, Nν(f(x)), of f is the

lower convex hull of the set of points {(i, ν (ai)) : 0 ≤ i ≤ n} ⊂ R2. In other words, Nν(f(x)

is a union of edges E1, E2, . . . , Et, increasing in slope from left to right, and connecting

(0, ν(a0)) to (n, ν(an)). Moreover, each point (i, ν(ai)), where 1 ≤ i ≤ n, lies on or above

the edges E1, . . . , Et.

If (i, νp (ai)) and (j, νp (aj)) where i < j are end points of an edge of Np(f(x)) then the

difference νp(aj) − νp(ai) is called the height of the edge and the length j − i is called the

width of the edge. The height is allowed to be zero or negative, while the width is always

positive. If E1, . . . , Et are the edges of the polygon with heights h1, . . . , ht, and widths

w1, . . . , wt, respectively, then:

h1 + h2 + . . .+ ht = ν (an)− ν (a0)

w1 + w2 + . . .+ wt = n

Example 2.17. Set K = Q and let ν = ν2 be thel 2-adic valuation on Q that was defined

in Example 2.16. The Newton Polygon for f(x) = x9 − 2x4 + 4x2 − 8 relative to the 2-adic

valuation consists of two edges connecting (0, 3), (4, 1), and (9, 0).

Suppose L/K is an algebraic extension. It is well known (cf. [28, Chapter 2, Section 8])

that ν may be extended to a (not necessarily uniqure) valuation ν̃ on L (there is a unique

extension when K is complete with respect to the ν-adic topology; see [28, Theorem 4.8]).

The central property of the Newton Polygon for a given polynomial f(x) is that the slopes

of its edges give the ν̃-values of its roots.
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Figure 2.1: The 2-adic Newton Polygon of f(x) = x9 − 2x4 + 4x2 − 8

Proposition 2.18. Let f(x) =
∑n

k=0 aix
i, ana0 6= 0, be a polynomial over the field K, ν a

non-archimedean valuation of K, and ν̃ an extension to the splitting field L of f . Suppose

(i, ai) , (j, aj) , i < j are endpoints of some edge E of Nν(f(x)). If m is the slope of E then

f(x) has precisely j − i roots α1, . . . , αj−i ∈ L of value

ν̃ (α1) = · · · = ν̃ (αj−i) = −m

Proof. See the proof of Propoisition 6.4 in[28]

One useful consequence of Proposition 2.18 is the following:

Corollary 2.19. If for two non constant polynomials f(x), g(x) ∈ K[x], the Newton polygons

Nν(f(x)) and Nν(g(x)) have no edges with the same slope, then f(x) and g(x) have no

common factors. In particular, f(x) and g(x) have no common roots over K.

Since this dissertation is more concerned with integer polynomials we spend the rest of

the section discussing the case K = Q. We would like to remark that the following results

hold in more general settings (specifically, when K is equipped with a discrete valuation).

We fix a prime p ∈ Z and set ν = νp where νp is the p-adic valuation defined in Example

2.16. Before giving the next proposition let us recall how one extends ν to L when L is a

finite extension of Q. Let O be the integral closure of Z in L. Choose a prime p ⊆ O lying

over p. Denote by νp the discrete valuation of L associated to p. If q ∈ Q∗ then νp(q) = eν(q)

where e = e (p|p) is the ramification index. Define ν̃ by setting ν̃(α) = νp(α)/e for all α ∈ L.
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One easily sees that ν̃ is a valuation on L extending ν. Note that ν̃ is possibly Q-valued.

Proposition 2.20. Let f(x) =
∑n

i=0 aix
i ∈ Q[x] with ana0 6= 0, and suppose that Nν(f(x))

consists of t edges having widths w1, . . . , wt and heights h1, . . . , ht. Furthermore, let si =

gcd (hi, wi) and set di = wi/si. If h(x) ∈ Q[x] is an irreducible factor of f(x) then

deg(h(x)) =
∑t

i=1 aidi where 0 ≤ ai ≤ si for each i.

Proof. Let L be the splitting field of f(x) over Q, ν̃ an extension of ν to L, and let h(x) ∈ Q[x]

be an irreducible factor of f(x). If α ∈ L is a root of h(x) then α is also a root of f(x)

and therefore ν̃(α) = −hi/wi for some i by Proposition 2.18. So if E is an edge of Nν(h(x))

having width w and height h then h/w = hi/wi for some i. Moreover, w ≤ wi, otherwise

f(x) would have more than wi roots in L having ν̃-value −hi/wi, violating the previous

proposition. Now writing hi/wi in lowest terms we can conclude that di divides w. Set

ai = w/di and observe that ai ≤ si since w ≤ wi. Since deg(h(x)) is equal to the sum of

widths of the edges of Nν(h(x)) we see that deg(h(x)) =
∑t

i=1 aidi where ai = 0 if h(x) has

no roots of value −hi/wi.

Corollary 2.21. Let f(x), wi, hi, si, and di be as in Proposition 2.20. Set d = gcd (d1, . . . , dt).

If h(x) ∈ Q[x] is an irreducible factor of f(x) then d | deg(h(x)).

The following corollary was first proved by Dumas [10]. We would like to note that it can

be used to prove Eisenstein’s criteria, and therefore should be thought of as a generalization

thereof.

Corollary 2.22. Let f(x) =
∑n

i=0 aix
i ∈ Q[x] with ana0 6= 0. If gcd (ν (an) , n) = 1 and

ν (ai) ≥ ν (an) i/n for each 1 ≤ i ≤ n, then f(x) is irreducible over Q[x].

Proof. The inequality ν (ai) ≥ ν (an) i/n implies that Nν(f(x)) consists of a single edge with

slope ν (an) /n. Since the gcd (ν (an) , n) = 1 the d in the previous corollary is equal to n.

So f(x) is irreducible.
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Chapter 3

Main Results

In this chapter we present new evidence in support of the SFC by proving it in several special

instances. First, we show that powers of linear forms satisfy the conjecture. Additionally,

we prove it for all linear polynomials. In Section 2 we consider polynomials that are sums of

prime powers of variables while in Section 3 we study polynomials that are the sum of two

monomials. Lastly, we show one particular instance of how one can build new examples of

polynomials that satisfy the SFC using known examples.

3.1 Linear Polynomials

In this section we consider the following polynomial:

G =
m∑
i=1

λiTi (3.1)

where λi ∈ C, 1 ≤ i ≤ m. In [33] it was shown that Gr satisfies the FC. We extend this

result by showing that Gr satisfies the SFC (see Theorem 3.3). We also show that λ0 + G

satisfies the SFC (see Theorem 3.7).

Let x = (x1, . . . , xm) be m commuting variables. The following two families of polyno-

mials will be of use to us.
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Definition 3.1. Let K be a field. The complete homogeneous symmetric polynomial

hn(x) of degree n ≥ 0 is defined by

hn(x) =
∑

α∈Nm, |α|=n

xα

When n = 0 it should be understood that h0(x) = 1.

Definition 3.2. Let K be a field. For 1 ≤ k ≤ m the kth elementary symmetric

polynomial in m variables over K is given by

ek(x) =
∑

1≤i1<···<ik≤m

m∏
j=1

x
ij
j

When k = 0 we set e0(x) = 1.

The polynomials hn(x) and ek(x) are related to each other in the following way: Let U be

an indeterminate and set P (U) =
m∏
i=1

(1− xiU) ∈ (K[x])[U ]. Then P (U) has a mulitplicative

inverse belonging to K[x][[U ]] (since its constant coefficient is equal to 1). Furthermore, we

have

P (U) =
m∑
k=0

(−1)kek(x)Uk (3.2)

P (U)−1 =
∞∑
n=0

hn(x)Un (3.3)

From the equality P (U)P (U)−1 = 1 one obtains the following relation which holds for all

n ≥ 1 (with the caveat hn = 0 for n < 0).

m∑
k=0

(−1)kekhn−k = 0 (3.4)

Theorem 3.3. Let G be given as in (3.1), and set F = Gr where r ≥ 1. If there exists

n ≥ 1 such that L (F n+i) = 0 for each i ∈ {0, 1, . . . ,m− 1} then F = 0.
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Proof. For any n > 0 we have Gn =
∑
|α|=n

(
n
α

)
Tαλα. Thus

L (Gn) =
∑
|α|=n

(
n

α

)
α!λα

= n!
∑
|α|=n

λα

= n!hn(λ) (3.5)

Returning to F = Gr we see that L (F n) = L (Gnr) = 0 implies hnr(λ) = 0. Therefore, to

prove our claim, it suffices to show that the polynomials hnr(x), h(n+1)r(x) . . . , h(n+m−1)r(x)

have no nontrivial common zeroes for all n ≥ 1. This is the content of Proposition 3.4.

Proposition 3.4. Let K be any field. For every n, r ≥ 1 the set of polynomials

{hir : n ≤ i ≤ n+m− 1} have no nontrivial common zeroes.

Proof. Fix integers n ≥ 1. Set A = K[x] and let P (U) be the polynomial defined in (3.2).

Additionally, given λ ∈ Km and H(U) ∈ A[[U ]] let Hλ(U) = evλ(H(U)), where evλ : A→ K

is the evaluation at λ extended to A[[U ]] in the obvious way.

Suppose r = 1, and fix n ≥ 1. Equation (3.4) implies the following: If λ is a common root

of hi for n ≤ i ≤ n + m − 1 then hi(λ) = 0 for all i ≥ n. Thus Pλ(U) ∈ (K[U ])∗ = K∗. In

particular, this implies that ek(λ) = 0 for 1 ≤ k ≤ m. Since em(λ) = 0 it follows that λi = 0.

By using induction on m we see that ek(λ) = 0, 1 ≤ k ≤ m if and only if λ = (0, . . . , 0).

This proves our claim for r = 1.

Now suppose r > 1. First, we will show that the set {hkr : k ≥ 1} satisfies a recursive

formula similar to the one found in Equation (3.4). For each 0 ≤ i ≤ r − 1 let Bi =∑
k≥0

hkr+i(x)T nr ∈ A [[U r]]. It follows from Equation (3.3) that

P (U)−1 = B0 +B1U + · · ·+Br−1U
r−1.

Next, we define Q(U) =
m∏
i=1

(1− xriU r) ∈ A [U r]. A straightforward calculation then shows
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that

Q(U)/P (U) =
m∏
i=1

(
r−1∑
j=0

xjiU
j

)
∈ A[U ]

Furthermore deg(Q(U)/P (U) = mr −m.

Write Q(U)/P (U) = Q0 +Q1U + · · ·+Qr−1U
r−1 for some Q0, Q1, . . . , Qr−1 ∈ A[U r]. We

now have the following equality:

r−1∑
j=0

QBjU
j = Q(U)/P (U) =

r−1∑
j=0

QjU
j ∈ A[U ] (3.6)

Since QBj, Qj all lie in A[[U r]] for 0 ≤ j ≤ r − 1 there is neither cancellation amongst the

summands of the left hand side of (3.6) nor is there cancellation amongst the summands

of the right hand side, and therefore QBj = Qj ∈ A [U r] for each j. Expanding Q(U) we

obtain Q(U) =
∑m

j=0(−1)jej(x
r)U jr. Write Q0 = q0 + q1U

r + · · ·+ qlU
lr for some qj ∈ K[x],

and some l ∈ N. Note that lr ≤ deg(Q(U)/P (U)) = mr −m implies that l < m. Equating

Q0 to QB0 yields the following recursive relation which holds for all k ≥ 1:

hkr − e1 (xr)hkr−k + · · ·+ (−1)mem (xr)hkr−mr =

 qk k ≤ l

0 k > l
(3.7)

Now suppose λ is a common root of {hir : n ≤ i ≤ n+m− 1}. Equation (3.7) implies

that hkr(λ) = 0 for all k ≥ n + m > l, and as a result (B0)λ ∈ K[U ]. Note that (B0)λ 6= 0

since it has constant coefficient equal to one. Finally, we consider the equality

Qλ = Qλ

(
P−1
λ Pλ

)
=
(
Qλ (B0)λ + · · ·+Qλ (Br−1)λ U

r−1
)
Pλ

Recall that there is no cancellation amongst the summands of

Qλ (B0)λ + · · ·+Qλ (Br−1)λ U
r−1
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and hence the sum has degree at least the degree of Qλ (B0)λ. Since (B0)λ is a nonzero

polynomial it follows that the above sum has degree at least the degree of Qλ. This shows

that the degree of Pλ is equal to zero, i.e., Pλ = 1. So once again ek(λ) = 0 for 1 ≤ k ≤ m,

and hence λ = (0, . . . , 0).

Remark 3.5. The problem of describing the subsets A ⊂ N+ of size m such that the set of

polynomials ha(x) with a ∈ A has no common nontrivial zeroes was considered by Conca,

Krattenthaler, and Watanabe in [7]. Proposition 3.4 is a new example of such a subset A.

In addition to proving SFC for linear forms, Proposition 3.4 also yields the following

corrollary.

Corollary 3.6. Let K be any field, P (U) ∈ K[U ] \ K a polynomial with constant term 1,

deg(P ) = m ≥ 1, and let P−1(U) = 1 + a1U + a2U
2 + · · · be its multiplicative inverse in the

power series ring K[[U ]]. For each n, r ≥ 1 there exists 0 ≤ i ≤ m− 1 such that a(n+i)r 6= 0.

Proof. We write K for the algebraic closure of K. Suppose P (U) is nonconstant with con-

stant term 1, and let m = deg(P ). Since the constant term of P is equal to 1 there

exists λ ∈ K
m \ {(0, . . . , 0)} such that P (U) =

∏m
j=1 (1− λjU). It now follows that

P−1(U) =
∑∞

i=0 hi(λ)U i, and therefore ai = hi(λ). Now apply the previous proposition

to conclude that for all n ≥ 1 there is some integer i ∈ [n, n+m− 1] such that ai 6= 0.

We conclude this section with the following result.

Theorem 3.7. Let G be as in (3.1) and set F = λ0 +G where λ0 ∈ C. If there exists n ≥ 1

such that L (F n+i) = 0 for each i ∈ {0, 1, . . . ,m− 1} then F = 0.

Proof. If λ0 = 0 then we are done by Theorem 3.3. So we assume λ0 6= 0. Set fn = L (F n) /n!,
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n ≥ 1, and let λ = (λ1, . . . , λm). Using Equation (3.5) we calculate fn:

fn =
n∑
k=0

1

k!(n− k)!
L
(
Gn−k)λk0

=
n∑
k=0

(n− k)!

k!(n− k)!
hn−k(λ)λk0

=
n∑
k=0

1

k!
hn−k(λ)λk0

Note that N (F ) = m + 1, and so we must show that one of fn, . . . , fn+m is not zero for all

n ≥ 1. Fix n ≥ 1 and let g =
∑m

k=0(−1)kek(λ)fn+m−k and write g =
∑n+m

k=0 gkλ
k
0. Then

gk =
1

k!

m∑
j=0

(−1)jej(λ)hn+m−k−j(λ), 0 ≤ k ≤ n+m

Using Equation (3.4) we obtain gk = 0 for 0 ≤ k ≤ n + m − 1 and gn+m = 1. Thus

g = λn+m
0 /(n + m)! 6= 0. Since g is a C-linear combination of fn, . . . , fn+m it follows that

one of fn, . . . , fn+m is not zero.

3.2 Sums of Prime Powers

In this section we fix a prime p ∈ Z. Let λ = (λ1, . . . , λm) ∈ Cm, β = (β1, . . . , βm) ∈ (N+)m

and consider the polynomial

G(T ) = λ1T
pβ1
1 + λ2T

pβ2
2 + · · ·+ λmT

pβm
m (3.8)

Recall that given f ∈ Z[m] we denote by f the image of f in F[m]
p under the canonical map.

The following two lemmas will be important in the proofs that follow.

Lemma 3.8. If k and l are positive integers then
(
plk
)
!/
(
pkak!

)
∈ Z where

a = (pl − 1)/(p− 1). Moreover,
(
plk
)
!/
(
pkak!

)
≡ (−1)ka mod p.
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Proof. We first consider the case l = 1. Set Q(t) =
∏p−1

i=1 (pt− i). Then

(pk)! = pkQ(k)(pk − p)Q(k − 1) · · · pQ(1)

=
k∏
j=1

pj ·
k∏
j=1

Q(j)

= pkk!
k∏
j=1

Q(j) (3.9)

So (pk)!/
(
pkk!

)
=
∏k

j=1Q(j) ∈ Z. Clearly, Q(j) ≡ (−1)p−1(p− 1)! mod p for all integers j.

Noting (−1)p−1 ≡ 1 mod p for any prime and appealing to Wilson’s Theorem we see that

Q(j) ≡ −1 mod p for all integers j. Thus
∏k

j=1Q(j) ≡ (−1)k mod p which is what we

wanted to show.

For the general case we define P (n) =
∏n

j=1 Q(j) where n ∈ Z. We also set kj = pl−jk,

1 ≤ j ≤ l. Applying the l = 1 case we obtain

(kj)! = (pkj+1)! = pkj+1kj+1!P (kj+1) , 0 ≤ j ≤ l − 1 (3.10)

It follows from Equation (3.10) that

(
plk
)
! = p

∑l
j=1 kjkl!

l∏
j=1

P (kj)

Now kl = k and
∑l

j=1 kj = k
∑l

j=1 p
l−j = ka, and therefore

(
plk
)
!/
(
pkak!

)
=
∏l

j=1 P (kj)

is an integer. Finally, since P (kj) ≡ (−1)kj mod p it follows that
∏l

j=1 P (kj) ≡ (−1)ka

mod p.

Lemma 3.9. Suppose I is a proper homogeneous ideal of Z[m]. If ZFp(I) = {(0, . . . , 0)} then

ZQ(I) = {(0, . . . , 0)}.

Proof. By the Projective Nullstellensatz we must show that I
⊗

ZQ contains all monomials

of degree d for d >> 0. Let Vd ⊂ Z[m] be the Z-module of d-forms. Let Id be the Z-module
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of d-forms belonging to I, i.e, Id = Vd ∩ I. Note that Id and Vd are finitely generated.

Furthermore, we have that Z[m] =
∞⊕
d=0

Vd and I =
∞⊕
d=0

Id. Since ZFp(I) = {(0, . . . , 0)} it

follows from the Nullstellensatz that

Vd = Id + pVd d >> 0 (3.11)

Now let S = Z \ (p), and denote by m the maximal ideal of the local ring S−1Z. Localizing

(3.11) at (p) yields S−1Vd = S−1Id + mS−1Vd for d >> 0. Thus, S−1Vd = S−1Id for

d >> 0 by Nakayamas Lemma. Since Vd
⊗

Q is a further localization of S−1Vd we obtain

Vd
⊗

Q = Id
⊗

Q for d >> 0.

Theorem 3.10. Let G be as in (3.8) and set F = Gr, r ≥ 1. If there exists n ≥ 1 such that

L (F n+i) = 0 for 0 ≤ i ≤ m− 1 then F = 0.

Proof. Given γ = (γ1, . . . , γm) ∈ Zm set pγ = (pγ1 , . . . , pγm). For any n > 0 we have

Gn =
∑
|α|=n

(
n
α

)
T p

βαλα where pβα =
(
pβ1α1, . . . , p

βmαm
)
. Thus:

L (Gn)

n!
=
∑
|α|=n

(
pβα

)
!

α!
λα

Let x = (x1, . . . , xm) be m commuting variables. For each n > 0 define

fn(x) =
∑
|α|=n

(
pβα

)
!

α!
xα

Then the λ ∈ Cm for which L (Gn) = 0 are exactly the zeroes of fn(x). Let In be the

homogeneous ideal of Z[x] generated by
{
f(n+i)r(x) : 0 ≤ i ≤ n+m− 1

}
. Our claim will be

proven if we can show that ZC(In) = {(0, . . . , 0)} for each n > 0.

Using Lemma 3.8 we know that
(
pβjαj

)
! = pαjbjαj!Cαj where bj =

(
pβj − 1

)
/(p− 1) and
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Cαj is an integer congruent modulo p to (−1)αjbj . So if we set γα = (α1b1, . . . , αmbm) then

(
pβα

)
! = p|γα|α!Cα (3.12)

where Cα =
∏m

j=1 Cαj . Since each Cαj ≡ (−1)αjbj mod p it follows that Cα ≡ (−1)|γα|

mod p.

Let β̃ = (b1, . . . , bm), x̃ = (−p)−β̃x, and for each n > 0 define gn(x) = fn (x̃). If Jn is

the homogeneous ideal of Z[x] genearted by
{
g(n+i)r(x) : 0 ≤ i ≤ n+m− 1

}
then ZC (Jn) =

{(0, . . . , 0)} if and only if ZC (In) = {(0, . . . , 0)}. We will show the former. Let us first

simplify the expression for gn. Using Equation (3.12) we calculate

gn(x) =
∑
|α|=n

(
pβα

)
!

α!

(
(−p)−β̃x

)α
=
∑
|α|=n

(−1)|γα|
(
pβα

)
!

p|γα|α!
xα

=
∑
|α|=n

(−1)|γα|
p|γα|α!Cα
p|γα|α!

xα

=
∑
|α|=n

(−1)|γα|Cαx
α (3.13)

Since Cα ≡ (−1)|γα| mod p it follows that gn(x) ≡
∑
|α|=n x

α = hn(x). In particular, we

have Jn =
〈
hnr, . . . , h(n+m−1)r

〉
. It follows from Proposition 3.4 that ZF p

(
Jn
)

= {(0, . . . , 0)}

and hence ZC (Jn) = {(0, . . . , 0)} by Lemma 3.9.

We end this section with the following partial result.

Proposition 3.11. Let p > m be a prime integer, and let F = λ0 + G where G is given in

3.8. If L (F n+j) = 0 for some n < p−m and 0 ≤ j ≤ m then F = 0.
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Proof. Note N (F ) = m+ 1. For n > 0 we have

L (F n) =
n∑
k=0

(
n

k

)
L
(
Gn−k)λk0

Let y and x = (x1, . . . , xm) be indeterminates. For each l > 0 define

gl(x) =
∑
|α|=l

(
l

α

)(
pβα

)
!

α!
xα

fl(y, x) =
1

l!

l∑
k=0

(
l

k

)
gl−k

(
(−p)−β̃x

)
yk

where β̃ = (p − 1)−1
(
pβ1 − 1, . . . , pβm − 1

)
. Note that l!fl

(
λ0, (−p)β̃λ

)
= L

(
F l
)

for all

l ≥ 0. So our claim will be proven if we can show that fn, . . . , fn+m have no common

nontrivial solutions over C.

It follows from Lemma 3.8 and the proof of the previous theorem that gl

(
(−p)−β̃x

)
/l! ∈

Z[x] and gl

(
p−β̃x

)
/l! ≡ hl(x) mod p where hn(x) is defined in 3.1. Therefore

fn+j(y, x) ≡
n+j∑
k=0

1

k!
hn+j−k(x)yk mod p

for 0 ≤ j ≤ m. Since n+m < p it follows that k! 6≡ 0 mod p for all 0 ≤ k ≤ n+m and so

1/k! ∈ Fp, and so the above sum makes sense in Fp[x]. Appealing to the proof of Theorem

3.7 we obtain the following:

fn+m(y, x)− e1(x)fn+m−1(y, x) + · · ·+ (−1)mem(x)fn(y, x) =
yn+m

(n+m)!

If (λ0, λ) ∈ Fm+1

p is a common root of fn, . . . , fn+m then λ0 = 0 by the above equal-

ity. So 0 = fn+j (λ0, λ) = hn+j (λ) and therefore λ = (0 . . . , 0) by Proposition 3.4. Thus

fn, . . . , fn+m have no nontrivial common zeroes in Fp and therefore fn, . . . , fn+m have no

common zeroes over C by Lemma 3.9.
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3.3 Sum of Two Monomials

Throughout this section x will denote a single variable, rather than a vector of variables.

In this section we study the SFC in the case F is of the form λ1M1 + λ2M2 where M1 and

M2 are monomials. In order to show that the SFC holds for F 6= 0 we must show that

one of L (F n) , L (F n) is nonzero for all n ≥ 2. Since the SFC holds for monomials we may

assume that λ1, λ2 6= 0. Furthermore, since L (F n) is homogeneous in λ1, λ2 we may assume,

without loss of generality, that λ1 = 1. For each n ≥ 0 we define the following polynomial:

fn(x) =
n∑
k=0

(
n

k

)
L
(
Mn−k

1 Mk
2

)
xk. (3.14)

Then fn (λ2) = L (F n). It follows that the SFC holds for F if and only if fn(x), fn−1(x)

have no common zeroes for all n ≥ 2.

One way to attack the problem is to use Zeilberger’s algorithm (see [29]) to find a re-

currence relation between fn(x) and fn−1(x). The algorithm has been implemented in both

Mathematica and Maple. For example, after downloading the fastZeil package (cf. [1]) for

Mathematica, the command

Zb [ Binomial [ n , k ] (2 k ) ! xˆk ,{ k , 0 , n} , n ] :

SumCert i f i ca te [%]

will produce a recurrence relation for the polynomials fn(x) =
n∑
k=0

(
n
k

)
(2k)!xk. In some special

cases, the relation obtained by Zeilberger’s algorithm can be used in a very straightforward

manner to show that fn and fn−1 have no common zeroes.

Proposition 3.12. For all n ≥ 2 the polynomials fn(x) and fn−1(x) have no common zeroes

in the following cases:

1. F = 1 + λT1

2. F = T 2
1 + λT1
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3. F = T 3
1 + λT 2

1

4. F = T 2
1 + λT1T2

5. F = T 3
1 + λT 2

1 T2

Proof. We proceed case by case.

1. In this case we have F n =
n∑
k=0

(
n
k

)
T k1 λ

k which gives fn(x) =
n∑
k=0

n!
(n−k)!

xk. Using Zeil-

berger’s lgorithm we obtain the relation: fn(x) = nxfn−1(x)+1. If λ ∈ C is a common

root of fn and fn−1 then 1 = 0 which is a contradiction.

2. In this case we have F n =
∑n

k=0

(
n
k

)
T 2n−k

1 λk which gives fn(x) =
n∑
k=0

(
n
k

)
(2n − k)!xk.

Using Zeilberger’s We have the following relation:

fn(x)− 2n(2n− 1)fn−1(x)− n(n− 1)x2fn−2(x) = 0

Suppose λ ∈ C is a common root of fn and fn−1. Since fl(0) 6= 0 for all l ∈ N

follows that fn−2(λ) = 0. Changing n to n− 1, . . . , 2 in the above recurrence relation

shows that λ is a root of fn, fn−1, . . . , f0. But f0 is a nonzero constant and we get a

contradiction.

3. In this case we have F n =
n∑
k=0

T 3n−k
1 λk which gives fn(x) =

n∑
k=0

(
n
k

)
(3n − k)!xk. Zeil-

berger’s algorithm produces the relation:

(x− 9n+ 12)fn(x)− pn(x)fn−1(x) + qn(x)fn−2(x) = 0

where

pn(x) = x3 − 3(3n− 2)x2 + (27n2 − 27n+ 6)x− (243n3 − 567n2 + 378n− 72)
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and

qn(x) = 2(2n− 3)n(n− 1)x3(x− 3(3n− 1))

Suppose λ is a common root of fn and fn−1. Then qn(λ) = 0 or fn−2(λ) = 0. If

qn(λ) = 0 then λ = 0 or λ = 3(3n − 1). Since fl(0) 6= 0 for all l, λ cannot be equal

to zero. Since n or n − 1 is even it follows from Corollary 2.11 that λ ∈ C \ R and

therefore λ 6= 3(3n−1). So fn−2(λ) = 0. Replacing n with n−1, . . . , 2 in the recurrence

relation and repeating the same argument as before shows that fl(λ) = 0 for 0 ≤ l ≤ n.

However, f0 is a nonzero constant and we get a contradiction.

4. In this case we have F n =
∑n

k=0

(
n
k

)
T 2n−k

1 T k2 λ
k which gives fn(x) =

n∑
k=0

n!
(n−k)!

(2n−k)!xk.

Using Zeilberger’s algorithm we obtain the relation: (x− 1)fn(x)−n2x2fn−1 = n(2n−

1)!(x− 2). If λ is a common root of fn and fn−1 then λ = 2. But this impossible since

fn(2) > 0 for all n.

5. In this case we have F n =
∑n

k=0

(
n
k

)
T 3n−k

1 T k2 λ
k which gives fn(x) =

n∑
k=0

n!
(n−k)!

(3n−k)!xk.

Using Zeilberger’s algorithm we obtain the relation: (x−1)2fn(x)−2n2(2n−1)x3fn−1 =

(3n− 2)!npn(x) where pn(x) = (4n− 2)x2 − 5(3n− 1)x+ 3(3n− 1). If λ is a common

root of fn and fn−1 then λ is also a root of pn. The discriminant of pn is equal to

81n2 − 30n + 1 which is positive for all n > 0. Therefore λ ∈ R∗. Since n or n − 1 is

even this would contradict Corollary 2.11. So fn and fn−1 have no common zeroes.

Let us now turn our attention to F = Tm1 (λ1 + λ2T1) where λ1, λ2 ∈ C∗. From the above

Proposition we know that F satisfies the SFC for m = 0, 1, 2. Once again assuming λ1 = 1

we have the following partial result for the general case.

Proposition 3.13. Let F = Tm1 (1 + λT1) where m ≥ 3. If m - ((n− 1)!)n then L (F n) 6= 0

or L (F n−1) 6= 0.
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Proof. We have F n =
∑n

k=0

(
n
k

)
T nm+k

1 λk and so L (F n) =
n∑
k=0

(
n
k

)
(nm + k)!λk. For each

n ≥ 0 define a polynomial fn(x) by setting fn(x) =
n∑
k=0

(
n
k

)(nm+ k)!

(nm)!
xk. We have fn(λ) =

L (F n) /(nm)!. Note that fn(x) ∈ Z[x]. Introduce a new variable t and for each k > 0 define

Qn,k(t) =
k∏
j=1

(nt + j). For each n > 0 we define a bivariate polynomial Fn(t, x) ∈ Z[t, x] by

setting

Fn(t, x) = 1 +
n∑
k=1

(
n

k

)
Qn,k(t)x

k.

Observe that Fn(m,x) = fn(x). For each n ≥ 2 we wish to compute the resultant of Fn(t, x)

and Fn−1(t, x) with respect to the variable x. It is for this reason we define, for each n ≥ 2,

the polynomial Rn(t) = Res (Fn(t, x), Fn−1(t, x), x). It follows from the definition of the

resultant that Rn(t) ∈ Z[t]. Also, since Fn(m,x) = fn(x) it follows from the determinant

formula for the resultant that Rn(m) = Res (fn, fn−1). So using Proposition 2.13 we see that

F satisfies the SFC if and only if Rn(m) 6= 0 for all n ≥ 2.

Let pn(t) = (nt+ 1) and let R = Z[t]. Since pn is linear and primitive it is an irreducible

elmement of the ring R, which is a UFD. Observe that pn does not divide the constant

coefficient of Fn(t, x) when regarded as an element of R[x]. Also, pn(t) divides the coefficients

of Qn,k for 1 ≤ k ≤ n, but p2
n - Qn,n. Thus, by applying Eisensteins criteria to the reciprocal

polynomial F ∗n(t, x) = xnFn (t, 1/x) we see that Fn(t, x) is an irreducible element of R[t].

Thus Fn(t, x) and Fn−1(t, x) have no common factor over Q(t) by Gauss’s Lemma. So it

follows from Proposition 2.13 that Rn(t) 6= 0.

Since Rn(t) ∈ Z[t] \ {0} we know that Rn(m) 6= 0 if m - Rn(0). Therefore we calculate

Rn(0). Since the determinant commutes with the evaluation map we have

Rn(0) = det (Syl (Fn(0, x), Fn−1(0, x))). Now Qn,k(0) = k! and so Fn(0, x) =
n∑
k=0

n!

(n− k)!
xk.

Since degx Fn(0, x) = n for each n ≥ 1 it follows that Rn(0) = Res (Fn(0, x), Fn−1(0, x)) for

each n ≥ 2. Next, a straightforward calculation shows that Fn(0, x) = nxFn−1(0, x) + 1. It
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now follows from part (ii) of Proposition 2.15 that

Rn(0) = Res (Fn(0, x), Fn−1(0, x)) = ((n− 1)!)n Res (1, Fn−1(0, x)) = ((n− 1)!)n .

So Rn(0) 6= 0 if m - ((n− 1)!)n

In the above proof the idea was to express the resultant of fn and fn−1 as a polynomial

in m. This transforms the problem into one about deciding whether m is an integer root of

this polynomial. Below, we list Rn(t) for small values of n:

R2(t) = (t+ 1)2

R3(t) = (t+ 1)2(8 + 44t+ 69t2 + 22t3 + t4)

R4(t) = (t+ 1)2(1296 + 19872t+ 122328t2 + 385184t3 + 655289t4

+ 586650t5 + 251751t6 + 47580t7 + 3543t8 + 106t9 + t10)

The first thing we notice is that each coefficient is positive. Further computations with

the computer suggest that this is true in general. However, we have been unsuccessful at

effectively computing Rn(t) in general. The only other information we know about Rn(t) is

its degree and its leading coefficient. If in the Sylvester matrix of Fn and Fn−1 we replace

each Qn,k(t) and Qn−1,k(t) with their leading terms then the determinant of the resulting

matrix will give the leading term (assuming the determinant is nonzero). Looking at the

entries of the resulting matrix we see that its determinant is equal to the resultant of the

polynomials
n∑
k=0

(
n
k

)
(nt)kxk and

n−1∑
k=0

(
n−1
k

)
((n− 1)t)kxk, which factor as (1 + ntx)n and (1 + (n− 1)tx)n−1, respectively. Note

that these polynomials have roots belonging to the field Q(t). So using the product formula

for the resultant (see Proposition 2.14) one can calculate the leading term LT (Rn(t)) of
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Rn(t) as follows:

LT (Rn(t)) = Res
(
(1 + ntx)n, (1 + (n− 1)tx)n−1

)
= (nt)n−1((n− 1)t)n

(
− 1

nt
+

1

(n− 1)t

)n(n−1)

= (n(n− 1)n(n−1)tn(n−1)

(
t

t(n(n− 1)

)n(n−1)

= tn(n−1)

Even though we have not succeded in computing Rn(t) the method can be used on other

special instances of F = λ1M1 + λ2M2 to obtain results similar to Proposition 3.13. Of

course, the following results rely on our abilitiy to compute the constant coefficient of the

determinant of A where A is a square matrix with entries belonging to Z[t].

Proposition 3.14. Let F = Tm1 (T2 + λT1T3) where m > 0. If m - (n!)n−1 then L (F n) 6= 0

or L (F n−1) 6= 0.

Proof. Suppose n > 0. We have F n =
∑n

k=0

(
n
k

)
T nm+k

1 T n−k2 T k3 λ
k which gives

L (F n) =
n∑
k=0

(
n

k

)
(n− k)!k!(nm+ k)!λk

= n!
n∑
k=0

(nm+ k)!λk

We define fn(x) =
∑n

k=0(nm + k)!xk and Fn(t, x) = 1 +
∑n

k=1Qn,k(t)x
k where Qn,k was

defined in the proof of Proposition 3.13. Note fn(λ) = 0 if and only if L (F n) = 0. Also

Fn(m,x) = fn(x)/(nm)!. Now, like in the proof of the previous proposition, set Rn(t) =

Res (Fn, Fn−1, x). Then Rn(0) = Res (gn(x), gn−1(x), x) where gn(x) =
∑n

k=0 k!xk. Since

gn = gn−1 + n!xn it follows from Proposition 2.15 (iii) that

Rn(0) = Res (n!xn, gn−1, x) = (n!)n−1.
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If m - (n!)n−1 then Rn(m) 6= 0 and therefore fn and fn−1 have no common zeroes.

Proposition 3.15. Let F = (T1T2)m (T1 + λT2) where m > 0. If l, n > 0 are such that

gcd(l + 1, n+ 1) = 1 and if m - (l!)n(n!)l then L (F n) 6= 0 or L
(
F l
)
6= 0.

Proof. Suppose n, l > 0 satisfy the hypothesis. For any s ≥ 0 we have

F s =
s∑

k=0

(
s

k

)
T sm+s−k

1 T sm+k
2 λk

and therefore

L (F s) =
s∑

k=0

(
s

k

)
(sm+ k)!(sm+ s− k)!λk.

Let Qs,k(t) be the polynomial defined in the proof of Proposition 3.13 and for each s ≥ 0

define Fs(t, x) =
s∑

k=0

(
s
k

)
Qs,k(t)Qs,s−k(t)x

k (here we define Qs,0 = 1). Then Fs(m,λ) =

L (F s) /((nm)!)2. If we set R(t) = Res (Fn(t, x), Fl(t, x), x) then R(m) = Res (fn, fl, x).

Now R(0) = Res (gn(x), gl(x), x) where

gs(x) =
s∑

k=0

(
s

k

)
k!(s− k)!xk

= s!
s∑

k=0

xk

Using the definition of the resultant we see that R(0) = (n!)l(l!)n Res (gn(x)/n!, gl(x)/l!).

Denote each gs(x)/s! by hs(x). We claim that Res (ha(x), hb(x), x) = 1 whenever gcd(a +

1, b+1) = 1. Note that a or b is even since gcd(a+1, b+1) = 1, and therefore Res (ha, hb, x) =

Res (hb, ha, x).We proceed by induction on a + b. The base case a + b = 1 holds because

g0 = 1 and therefore Res (1, g1, x) = 1. Now suppose a+ b = d ≥ 2 and assume the claim is

true for all pairs (a′, b′) satisfying gcd((a′ + 1, b′ + 1) = 1 and n′ +m′ < d.

Without loss of generality we may assume a > b. Write a + 1 = q(b + 1) + r for some
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positive integers q, r with r ≤ b+ 1. Now it is not too hard too see that

ha(x) =
(
1 + xb+1 + · · ·+ x(q−1)(b+1)

)
hb(x) + xq(b+1)hr−1(x)

Setting P = xq(m+1)hr−1(x) and appealing to Proposition 2.15 we conclude that

Res (ha, hb) = Res (P, hn)

= Res
(
xq(b+1, hb

)
Res (hr−1, hb)

= Res (hr−1, hb)

Since gcd(a + 1, b + 1) = 1 it follows that gcd(b + 1, r) = 1. Since a + r < d the result now

follows from by the inductive hypothesis.

Since gcd(n+ 1, l + 1) = 1 we can conclude that

R(0) = (n!)l(l!)n Res (gn(x)/n!, gl(x)/l!) = (n!)l(l!)n.

Since m - (n!)n−1 it follows that R(m) 6= 0 and therefore L (F n) 6= 0 or L
(
F l
)
6= 0.

Remark 3.16. Let us briefly return to the situation of F = Tm1 (1 + λT1). In order to show

that F satisfied the SFC one needs to show that fn(x) and fn−1(x) have no common zeroes

where

fl(x) =
l∑

k=0

(
l

k

)
(lm+ k)!

(lm)!
xk.

Fix an n > 0. By Dirchlet’s prime number theorem we know that nm+1 is prime for infinitely

many m. For such m we can show, using Eisensteins criteria, that fn(x) is irreducible over

Q and therefore fn(x) and fn−1 have no common zeroes over C. It is also straightforward to

show that fn(x) - fn+1(x) which implies fn and fn+1 have no common zeroes as well. We can

also fix m, and applying the same theorems, conclude that fn is irreducible for infinitely many

m. The same arguments can also be applied to F = Tm1 (T2 + λT1T3). So there is ample
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evidence that both these polynomials satisfy the conjecture. The main reason we cannot

resolve it in either of those two cases comes down to the fact that we cannot effectively

compute the resultant Rn(t). What’s interesting is that computer experiments suggest that

Rn(t) is a stable polynomial, i.e., the complex zeroes of Rn(t) lie in the left half plane. If this

were so, then the coefficients of Rn(t) would all be positive (since Rn(0) > 0 ), and therefore

Rn(m) 6= 0. Stable polynomials are of great interest in general, and criteria for determining

the stability of polynomials with real coefficients exits; however, we our attempts at utilizing

these techniques have yet to succeed.

For the rest of the chapter we will focus our efforts on the special case F = 1 + λTm1

where m > 0. We have F n =
∑n

k=0

(
n
k

)
(mk)!λk, and so we are interested in determining

whether fn(x) and fn−1(x) have common zeroes, where

fn(x) =
n∑
k=0

(
n

k

)
(mk)!xk (3.15)

The first observation we would like to make is: if n > 0 then fn - fn+1 over Q[x]. Indeed,

if q(x)fn(x) = fn+1 then q(x) = ax + 1 where a = (mn + m)!/(mn)! ∈ Z. As a result we

would have (n+ 1)m! = (mn+m)!/(mn)! +n(m!), i.e. m! = (mn+m)!/(mn)!. But the last

equality is true if and only if m = 0, a contradiction.

By studying the Newton polygon of fn(x) we can determine values of m and n for

which fn and fn−1 have no common zeroes. When m = 2 we solve the case completely.

Given a prime p, we denote by νp the p-adic valuation. Given k ∈ N expand k in base p:

k = a0 + a1p+ . . .+ atp
t. Set sk = a0 + · · ·+ at. The following formulas are well known:

νp(k!) =
∞∑
j=1

⌊
k

pj

⌋
=
k − sk
p− 1

(3.16)

Proposition 3.17. Suppose n = apr where p is prime, r > 0 and ma < p. Then any
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irreducible factor of fn(x) over Q has degree divisible by pr.

Proof. We will show that Np (fn(x)) consists of a single edge. We do this by showing that

νp
((
n
k

)
(mk)!

)
≥ k

n
νp((mn)!) for each 0 < k < n. Using (3.16) we compute νp ((mn)!) =

ma(pr−1)
p−1

Next, if 0 < k < n then

νp((n− k)!) =
∞∑
j=1

⌊
apr − k
pj

⌋

=
r∑
j=1

⌊
apr − k
pj

⌋

= νp ((apr)!) +
r∑
j=1

⌊
−k
pj

⌋

In the second line, the sum stops at j = r because 0 < n− k < n < pr+1. Now

νp(k!) +
r∑
j=1

⌊
−k
pj

⌋
=

r∑
j=1

{⌊
k

pj

⌋
+

⌊
−k
pj

⌋}

If
k

pj
∈ Z then

⌊
k
pj

⌋
+
⌊
−k
pj

⌋
= 0. Otherwise

⌊
k
pj

⌋
+
⌊
−k
pj

⌋
= −1. It follows that

νp(k!) +
∑r

j=1

⌊
−k
pj

⌋
= νp(k)− r, and thus

νp

((
n

k

))
= νp(n!)− (νp((n− k)! + νp(k!))

= νp(n!)−

(
νp(n!) + νp(k!) +

r∑
j=1

⌊
−k
pj

⌋)

= r − νp(k)
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We now consider the quantity
k

n
νp(mn!):

k

n
νp((mn)!) =

k

apr
ma (pr − 1)

p− 1

=
mk

pr
(
pr−1 + · · ·+ p+ 1

)
=
mk

p
+ · · ·+ mk

pr

For 1 ≤ j ≤ r write
mk

pi
=
⌊
mk
pi

⌋
+aj where 0 ≤ aj < 1. Observe that aj = 0 if and only if pj -

mk. But m < p and so pj - mk if and only if pj - k. Thus
∑r

j=1

mk

pj
<

r∑
j=1

⌊
mk

pj

⌊
+ r− νp(k).

Finally, mk < pr+1 since ma < p and therefore
r∑
j=1

⌊
mk

pj

⌋
= νp((mk)!).

We have shown thatNp (fn) consists of a single edge connecting (0, 0) to (n,ma (pr−1 + · · ·+ 1)).

The gcd of the height and width is equal to a and therefore any nontrivial irreducible factor

of fn(x) has degree equal to ipr for some 1 ≤ i ≤ a by Corollary 2.20.

Corollary 3.18. If m < p then fn is irreducible over Q[x] when n = pr for any positive r.

Moreover, fn and fn−1 have no common zeroes. The same is true for fn and fn+1.

Proof. That fn is irreducible follows from the previous proposition. Since Q[x] is a PID and

since fn is irreducible, fn and fn−1 have no common roots. Since fn does not divide fn+1

they do not have any common roots either.

Suppose m = pr and set b =
pr − 1

p− 1
. Then νp ((prk)!) = kb+ νp(k!) by 3.8. This leads us

to consider the polynomials gn(x) = fn
(
x/pb

)
for two reasons:

1. fn and fn−1 have a common zero if and only if gn and gn−1 have a common zero.

2. νp

((
n
k

) (prk)!
pkb

)
= νp

(
n!

(n−k)!

)
and so gn has the same Newton polygon as

∑n
k=0

n!
(n−k)!

xk

Reason two is important because we can calculate the Newton polygon of
∑n

k=0
n!

(n−k)!
xk, and

hence we can calculate the Newton polygon of gn.
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Proposition 3.19. Let n ≥ 1 be given and write n = a1p
n1 + a2p

n2 + · · · + atp
nt where

0 < a1, a2, . . . , at ≤ p − 1 and 0 ≤ n1 < n2 < · · · < nt. Set x0 = 0 and for 1 ≤ s ≤ t

set xs = a1p
n1 + · · · + asp

ns. The x-coordinates of the vertices of Np (gn(x)) are located at

xs, 0 ≤ s ≤ t. If 1 ≤ s ≤ t then the slope of the sth edge is given by ms = pns−1
pns (p−1)

.

Proof. We write ν = νp. From the observations above we know that the coefficient of xk

has the same p-adic value as
n!

(n− k)!
. Since multiplying gn by a constant has the effect

of shifting the polygon up or down, we may assume that the coefficients are in fact 1
(n−k)!

.

Using Equation (3.16) we calculate that

ν ((n− xs)!) =
n− xs − (as+1 + · · ·+ at)

p− 1

and therefore the slope of the line segment connecting the (xs−1,−ν ((n− xs−1)!)) to

(xs,−ν ((n− xs)!)) is equal to

xs − xs1 − as
(xs − xs−1) (p− 1)

=
pns − 1

pns(p− 1)
.

Since n1 < n2 < · · · < nt it follows that m1 < m2 < · · · < mt. So all that remains to show

is that (x,−ν((n− x)!)) lies on or above the edges connecting these points for each integer

1 ≤ x ≤ n that is not equal to some xs. Choose 1 ≤ s ≤ t so that xs−1 < x < xs. It follows

that n−xs < n−x < n−xs−1. Set ∆x = xs−x, and observe that n−xs−1 = n−xs +asp
ns

implies ∆x < asp
ns , and therefore the base p expansion of ∆x has no nonzero digit past the

pns-place. Since ns < ns+1 and since n − xs = as+1p
ns+1 + · · · + pntt it now follows that the

base p expansion of n− x is obtained by concatenating the base p expansions of n− xs and

∆x. Using Equation (3.16), one can obtain that ν((n− x)!) = ν ((n− xs)!) + ν((∆x)!)

Finally, the slope between the points (x,−ν((n − x)!)) and (xs,−ν ((n− xs)!)) is equal
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to

−ν ((n− xs)!) + ν((n− x)!)

∆x
=
ν((∆x)!)

∆x

=
∆x− s∆x

∆x(p− 1)

We claim that
∆x− s∆x

∆x(p− 1)
< ms, or equivalently, pns (∆x− s∆x) < ∆x (pns − 1). To prove

this inequality, it suffices to show that ∆x < s∆xp
ns , and this follows easily from the fact

∆x = b0 + b1p + · · · + bnsp
ns for some 0 ≤ b0, b1, . . . , bns ≤ p − 1. From this, one can

conclude that (x,−ν((n − x)!)) lies above the line connecting (xs−1,−ν ((n− xs−1)!)) to

(xs,−ν ((n− xs)!)).

Corollary 3.20. Let n ≥ 1 and suppose m = pr for some prime p and r ≥ 1. Then:

1. If n is divisible by p then the degree of any irreducible factor of fn is divisible by pν(n).

2. If n = pl for some l > 0 then fn is irreducible. Thus fn has no roots in common with

fn−1 and it has no roots in common with fn+1

3. If n = plqk where l, k > 0 and q is a prime satisfying pr+l < q then fn is irreducible.

Thus fn has no roots in common with fn−1 and it has no roots in common with

Proof. 1. In Proposition 3.19 we computed the slopes of the Newton polygon of fn. The

denominator of each slope (in lowest terms) is equal to ps where s ≥ νp(n). If g(x) is

an irreducible factor of fn then pνp(n) | deg(g(x)) by 2.21

2. If n = pr then Np (fn(x)) consists of a single edge by Proposition 3.19. The slope of

this edge is equal to pr−1
pr(p−1)

= 1+p+···+pr−1

pr
. So pr divides the denominator of the slope in

lowest terms, and therefore fn is irreducible by Corollary 2.22. The second statement

follows from the fact that fn is irreducible and from the fact that fn - fn+1.

3. Let g(x) be an irreducible factor of fn(x). Then pr | deg (g(x)) by (1). Furthermore,

n satisfies the hypothesis of 3.17 and therefore ql | deg (g(x)). We conclude that
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n | deg(g(x)) and so fn is irreducible. The second statement follows easily.

The main result of the section is the following.

Theorem 3.21. Let F (T ) = λ1 + λ2T
2. Then F satisfies the SFC.

Proof. We may once again assume λ1 = 1. Let fn(x) be the polynomials given in (3.15)

where m = 2 and let gn(x) = fn(x/2). In order to prove our claim we must show that gn(x)

and gn−1(x) have no common roots for each n ≥ 1. Following the usual convention (cf. [26]

or [5]) we define for each non-negative integer k the double factorial (2k − 1)!! by setting

(2k − 1)!! =

 1 k = 0∏k
j=1(2j − 1) k ≥ 1

(3.17)

We also set bn,k = n!/(n− k)! for 0 ≤ k ≤ n. We then have

gn(x) =
n∑
k=0

(2k − 1)!!bn,kx
k (3.18)

for each n ≥ 1. Note that g2 and g3 are irreducible by Corollary 3.20. So we assume n ≥ 5.

We will prove the following claim:

Claim 1. For each 1 ≤ j < n/2 there exists a rational polynomial

rj(x) = Aj(x) + 22jbn,2j+1x
jgn−(2j+1)(x)

belonging to (gn, gn−1) such that the following holds:

1. deg (Aj) = j − 1

2. The 2-adic values of the coefficient of xk in Aj(x) are positive if 0 ≤ k ≤ j − 2. The

2-adic value of the coefficient of xj−1 is equal to 0. In particular, Aj(x) 6= 0.
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Asuming Claim 1 holds, let us prove the theorem. Suppose n is even and set j = (n/2)−1.

Then 2j = n− 2, 2j + 1 = n− 1 and n− (2j + 1) = 1 which yields

rj(x) = Aj(x) + 2n−2bn,n−1x
jg1(x)

= Aj(x) + 2n−2n!xj(1 + x)

= Aj(x) + 2n−2n!
(
xj + xj+1

)
(3.19)

where g1 was calculated using Equation (3.18). In order to show that gn and gn−1 have

no common roots it suffices to show that rj(x) has no roots in common with gn since rj ∈

(gn, gn−1). The fact that the 2-adic value of rj(0) is positive includes the possibility that

ν2 (rj(0)) = ∞, i.e. rj(0) = 0. So let us first assume rj(0) 6= 0. From the claim, we know

that the coefficient of xk in Aj(x) has positive 2-adic value if 0 ≤ k ≤ j − 2 while the

2-adic valuation of the coefficient of xj−1 is precisely zero. Since the 2-adic value of 2n−2n!

is clearly positive it follows that (j − 1, 0) is a vertex of Nν2 (rj). Moreover, any edge to the

left of the vertical line x = j − 1 has negative slope. Using Equation (3.19) we see that the

only edge of the Newton Polygon of rj having positive slope connects the point (j − 1, 0) to

(j + 1, n− 2 + ν2(n!), and it has slope equal to (n− 2 + ν2(n!))/2 > 1 (since n ≥ 5). On the

other hand the slopes of Nν2 (gn(x)) belong to the half open interval [0, 1) by Proposition

3.19. Therefore gn(x) and rj(x) have no common zeroes by Corollary 2.19.

Now assume that rj(0) = 0. Choose 1 ≤ j ≤ j − 2 such that xk | rj(x) but xk+1 - rj(x).

Since gn(0) 6= 0 we need only show that gn(x) and sj(x) = rj(x)/xk have no common roots.

The argument used above also works for sj(x). This time, any edge of Nν2 (sj(x)) to left of

the vertical line x = j − 1 − k has non positive slope, while the only edge of postive slope

connecting (j − 1− k, 0) to (j + 1− k, n− 2 + ν2(n!)) has slope greater than one. Therefore

gn(x) and sj(x) have no common zeroes by Corollary 2.19

Now suppose n is odd, and set j = (n−1)/2. A similar calculation to the one done above
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shows that

rj(x) = Aj(x) + 2n−1n!xj

Once again, in order to prove the theorem, it suffices to show that rj and gn have no roots in

common. Assume Aj(0 6= 0. Condition (2) from the claim shows that Nν2 (rj(x)) has only

one edge of positive slope. This edge, which connects (j−1, 0) to (j, n−1+ν2(n!), has slope

greater than 1. So once again the Newton polygon of gn does not have any edges with slopes

in common with that of rj(x) and therefore the two polynomials have no common zeroes by

Corollary 2.19. If Aj(0) = 0 we consider sj(x) = rj(x)/xk where 1 ≤ k ≤ j − 2 is chosen

so that xk | rj(x) but xk+1 - rj(x). The same argument shows that Nν2 (sj(x)) has only one

edge of positive slope, and that this slope is greater than one. Therefore gn(x) and sj(x)

have no common zeroes.

Let us now prove the claim using induction on j. For the base case we will construct

r1(x) and r2(x). Then in the inductive step, we will show how rj+1(x) can be obtained from

rj(x) and rj−1(x) assuming those polynomials exist.

We first consider the case j = 1. The leading coefficient of gn(x) is (2n − 1)!!n! while

the leading coefficient of gn−1(x) is equal to (2n − 3)!!(n − 1)!. We therefore set r̃1(x) =

fn(x)− (2n− 1)nxfn−1(x). First of all, observe that

(2n− 1)nxfn−1(x) =
n−1∑
k=0

(2k − 1)!!(2n− 1)n
(n− 1)!

(n− 1− k)!
xk+1

=
n∑
k=1

(2k − 3)!!(2n− 1)n
(n− 1)!

(n− k)!
xk

=
n∑
k=1

(2k − 3)!!(2n− 1)bn,kx
k
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Now calculating r̃1(x) we have:

r̃1(x) = 1 +
n∑
k=1

((2k − 1)!!− (2n− 1)(2n− 3)!!) bn,kx
k

= 1 +
n∑
k=1

(2k − 3)!!((2k − 1)− (2n− 1))bn,kx
k

= 1 + 2
n−1∑
k=1

(2k − 3)!!(k − n)bn,kx
k

= 1− 2n
n−1∑
k=1

(2k − 3)!!bn−1,kx
k

Note that the leading coefficient of r̃1(x) is equal to −2n!(2n− 5)!!. Next, we reduce the

degree of r̃1(x) by computing (2n− 3)r̃1(x) + 2ngn−1(x):

(2n− 3)r̃1(x) + 2ngn−1(x) = (2n− 3) + 2n+ 2n
n−2∑
k=1

[(2k − 1)!− (2n− 3)(2k − 3)!] bn−1,kx
k

= 4n− 3 + 2n
n−2∑
k=1

(2k − 3)!! [(2k − 1)− (2n− 3)] bn−1,kx
k

= (4n− 3)− 4n(n− 1)
n−2∑
k=1

(2k − 3)!!bn−2,kx
k

= (4n− 3)− 4bn,2

n−2∑
k=1

(2k − 3)!!bn−2,kx
k

We set A1 = 3− 4n and r1(x) = −((2n− 3)r̃1(x) + 2ngn−1(x)) ∈ (gn, gn−1). Note that A1 is

an odd integer, and therefore has 2-adic value equal to zero. If we factor out an x from the
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sum and reindex we find that

r1(x) = A1 + 4bn,2x
n−2∑
k=1

(2(k − 1)− 1)!!
(n− 2)!

(n− 3− (k + 1))!
xk−1

= A1 + 4bn,3x
n−3∑
k=0

(2k − 1)!bn−3,kx
k

= A1 + 4bn,3gn−3(x)

Next, we use r1(x) and gn−1(x) to construct r2(x). We first observe that the leading

coefficient of r2(x) is equal to 4n(2n− 7)!!. Therefore we set

r̃2(x) = 4ngn−1(x)− (2n− 3)(2n− 5)xr1(x)

Note that r̃2(x) ≡ −A1x mod 2 ≡ x mod 2. It follows that

r̃2(x) = Ã2(x) + 4n
n−2∑
k=2

[(2k − 1)!!− (2n− 3)(2n− 5)(2k − 5)!!] bn−1,kx
k (3.20)

where Ã2(x) ∈ Z[x] and Ã2(x) ≡ x mod 2. The difference inside the brackets appearing

in Equation (3.20) can be simplified as (2n − 5)!! [(2k − 1)(2k − 3)− (2n− 3)(2n− 5)] and

simplifying further we find that

(2k − 1)(2k − 3)− (2n− 3)(2n− 5) = (2k − 1) [(2k − 3)− (2n− 5)]

+ (2n− 5)
[
(2k − 1)(2k − 3)

]
= (2k − 2n+ 2) [2k + 2n− 6]

= −4(n− 1− k)(k + n− 3)
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Since (n− 1− k)bn−1,k = (n− 1)bn−2,k it follows that

r̃2(x) = Ã2(x)− 16bn,2

n−2∑
k=2

(2k − 5)!!(k + n− 3)bn−2,kx
k

Next we calculate ˜̃r2(x) = (2n − 7)r̃2(x) + 4(2n − 5)r1(x). Observe that the sum is

congruent modulo 2 to x. Setting C(k) = k + n− 3 we have

˜̃r2(x) = ˜̃A2(x) + 16bn,2

n−3∑
k=2

[(2k − 3)!!(2n− 5)− (2n− 7)(2k − 5)!!C(k)] bn−2,kx
k

= ˜̃A2(x) + 16bn,2

n−3∑
k=2

(2k − 5)!! [(2k − 3)(2n− 5)− (2n− 7)C(k)] bn−2,kx
k

where ˜̃A2(x) is a linear integer polynomial and ˜̃A2(x) ≡ x mod 2. Now setting D(k) =

(2k − 3)(2n− 5)− (2n− 7)C(k) we calculate D(k):

D(k) = (2n− 5) [(2k − 3)− (2n− 7)] + (2n− 7) [(2n− 5)− C(k)]

= (2n− 5)(2k − 2n+ 4) + (2n− 7)(n− 2− k)

= −(n− 2− k)(2n− 3)

Since (n− 2− k)bn−2,k = (n− 2)bn−3,k it follows that

(2n− 7)r̃2(x) + 4(2n− 5)r1(x) = ˜̃A2(x)− 16bn,3(2n− 3)
n−2∑
k=2

(2k − 5)!!bn−3,kx
k

Set A2(x) = − ˜̃A2(x)/(2n− 3) and r2(x) = A2(x) + 16bn,3
∑n−3

k=2(2k − 5)!!bn−3,kx
k. It follows

from above that r2(x) ∈ (gn, gn−1) and that A2(x) is a rational linear polynomial satisfying

condition (2) of the claim above. Moreover, dividing out x2 from the sum and reindexing

gives r2(x) = A2(x) + 16bn,5gn−5(x).

Now assume that rj(x) and rj−1(x) have been constructed for some 2 ≤ j < n
2
− 1. We
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have

rj−1(x) = Aj−1(x) + 4j−1bn,j

n−j∑
k=j−1

(2k − (2j − 1))!!bn−j,kx
k

rj(x) = Aj(x) + 4jbn,j+1

n−j−1∑
k=j

(2k − (2j + 1))!!bn−(j+1),kx
k

Observe that the leading coefficient of rj−1(x) is equal to 4j−1n!(2n− 4j + 1)!! and that the

leading coefficient of rj(x) is equal to 4jn!(2n−4j−3)!!. We set B = (2n−4j+1)(2n−4j−1)

and define r̃j+1(x) = 4rj−1(x)−Bxrj(x). If we let

Ãj+1(x) = 4Aj−1(x) + 4jbn,j
[
bn−j,j−1x

j−1 + bn−j,jx
j
]

+BxAj(x)

then

r̃j+1 = Ãj+1(x) + 4jbn,j

n−j−1∑
k=j+1

[(2k − (2j − 1))!!−B(2k − (2j + 3))!!] bn−j,kx
k

Since B is odd and since the 2-adic valuation of the leading coefficient of Aj(x) is zero

it follows that Ãj+1(x) has degree j and that the 2-adic valuation of its leading coefficient

is zero. Moreover, the other coefficients of Ãj+1(x) are sums of rational numbers having

positive 2-adic valuation, and therefore also have positive 2-adic valuation. Now set C =

(2k − 2j + 1)(2k − 2j − 1) and observe that

C −B = (2k − 2j + 1) [(2k − 2j − 1)− (2n− 4j − 1)]

+ (2n− 4j − 1) [2k − 2j + 1− (2n− 4j + 1)]

= 2(k − (n− j)) [(2k − 2j + 1) + (2n− 4j − 1)]

= −2(n− j − k)(2k + 2n− 6j)

= −4(n− j − k)(k + n− 3j)
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If we set D(k) = k + n− 3j then it follows from above that

r̃j+1 = Ãj+1 + 4jbn,j

n−j−1∑
k=j+1

(2k − 2j − 3)!!(C −B)bn−j,kx
k

= Ãj+1 − 4j+1bn,j+1

n−j−1∑
k=j+1

(2k − 2j − 3)!!D(k)bn−(j+1),kx
k

Next, we set ˜̃rj+1(x) = (2n − 4j − 3)r̃j+1(x) + 4D(n − j − 1)rj(x). If we set ˜̃Aj+1(x) =

(2n− 4j − 3)Ãj+1(x) + 4D(n− j − 1)(Aj(x) + 4jbn,j+1 · bn−j−1,jx
j then

˜̃rj+1 = ˜̃Aj+1(x) + 4j+1bn,j+1

n−j−2∑
k=j+1

(2k − 2j − 3)!!E(k)bn−j−1,kx
k

where E(k) = (2k−2j−1)D(n−j−1)−(2n−4j−3)D(k). Observer that since (2n−4j−3)

is odd and since every coefficient of 4D(n− j − 1)(Aj(x) + 4jbn,j+1 · bn−j−1,jx
j has positive

2-adic valuation the leading coefficient of ˜̃Aj+1(x) has 2 adic valuation equal to zero while

the other coefficients have positive 2-adic valuation. Let us now simplify E(k):

E(k) = D(n− j − 1) [(2k − 2j − 1)− (2n− 4j − 3)] + (2n− 4j − 3) [D(n− j − 1)−D(k)]

= 2(k − (n− (j + 1))D(n− j − 1) + (2n− 4j − 3) [(2n− 4j − 1)− (k + n− 3j)]

= 2(k − (n− (j + 1))D(n− j − 1) + (2n− 4j − 3)(n− (j + 1)− k)

= (k − (n− (j + 1))[2(2n− 4j − 1)− (2n− 4j − 3)]

= −(n− (j + 1)− k)(2n− 4j + 1)

It now follows that

˜̃rj+1 = ˜̃Aj+1(x)− 4j+1(2n− 4j + 1)bn,j+2

n−j−2∑
k=j+1

(2k − 2j − 3)!!bn−(j+2),kx
k
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Finally, we set Aj+1(x) = − ˜̃Aj+1(x)/(2n − 4j + 1) and rj+1(x) = −˜̃rj+1/(2n − 4j + 1). It

follows from above that

rj+1(x) = Aj+1(x) + 4j+1bn,j+2

n−j−2∑
k=j+1

(2k − 2j − 3)!!bn−(j+2),kx
k

= Aj+1(x) + 4j+1bn,2j+3x
j+1

n−(2j+3∑
k=0

(2k − 1)!!bn−(2j+3),kx
k

= Aj+1(x) + 4j+1bn,2j+3x
j+1gn−(2j+3)(x)

Since 2n − 4j + 1 is an odd integer the 2-adic valuations of the coefficients of ˜̃Aj+1(x) are

unaffected when passing to Aj+1(x) and therefore Aj+1(x) satisfies the conditions of the

claim made at the beginning of the proof.

3.4 New Examples from Old

In this final example we detail one way of constructing new examples of polynomials

satisfying the SFC from existing examples. For this, we will make use of the fact that

L(FG) = L(F )L(G) whenever F,G ∈ C[m] are two polynomials such that there exists

an I ⊂ {1, . . . ,m} such that F ∈ C [Ti : i ∈ I] and G ∈ C [Ti : i /∈ I]. Let U1, . . . , Ul be

indeterminates that commute with T1, . . . , Tm. We have the following theorem.

Theorem 3.22. Set U = U1. Suppose F ∈ C[m] := C [T1, . . . , Tm] satisfies the SFC. Then

G = λU + F also satisfies the SFC.

Proof. Let N = N (F ). Then N (G) = N + 1. If we set fn = L (F j) /n! and gn = L (Gn) /n!,
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n ≥ 1, then

gn = L

(
1

n!

n∑
k=0

(
n

k

)
F n−kUkλk

)

=
n∑
k=0

1

(n− k)!k!
L
(
F n−kUk

)
λk

=
n∑
k=0

1

(n− k)!k!
L
(
F n−k)L (Uk

)
λk

=
n∑
k=0

fn−kλ
k

It easily follows from above that

gn = fn + λgn−1 (3.21)

for each n ≥ 1. Now suppose that L (Gn+i) = 0 for some n ≥ 1 and 0 ≤ i ≤ n + N . Then

gn+i = 0 for 0 ≤ i ≤ N . It then follows from Equation (3.21) that fn+i = 0 for 1 ≤ i ≤ N ,

and therefore L (F j) = 0 for n + 1 ≤ j ≤ n + N . Since F satisfies the SFC we must have

F = 0. So G = λU and since L (Gn) = 0 we must have λ = 0.

Corollary 3.23. Suppose L ∈ C[l] := C [U1, . . . , Ul] is a linear form and F ∈ C[m] satisfies

the SFC. Then G = L+ F satisfies the SFC.

Proof. By induction on l and the previous Theorem.
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