Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-97-22

1997-01-01

An Algorithm for Message Delivery in a Micromobility
Environment

Amy L. Murphy, Gruia-Catalin Roman, and George Varghese

With recent advances in wireless communication and the ubiquity of laptops, mobile computing
has become an important research area. An essential problem in mobile computing is the
delivery of a message from a source to either a single mobile node, unicast, or to a group of
mobile nodes, multicast. Standard solutions proposed for macromobility (Mobile IP) and
micromobility (cellular phones) for the unicast problem rely on tracking the mobile node.
Tracking solutions scale badly when mobile nodes move frequently, and do not generalize well
to multicast delivery. Our paper proposes a new message delivery algorithm for micromobility
based on... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Murphy, Amy L.; Roman, Gruia-Catalin; and Varghese, George, "An Algorithm for Message Delivery in a
Micromobility Environment" Report Number: WUCS-97-22 (1997). All Computer Science and Engineering
Research.

https://openscholarship.wustl.edu/cse_research/438

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F438&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F438&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F438&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F438&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F438&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F438&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F438&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/438?utm_source=openscholarship.wustl.edu%2Fcse_research%2F438&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/438

An Algorithm for Message Delivery in a Micromobility Environment

Amy L. Murphy, Gruia-Catalin Roman, and George Varghese

Complete Abstract:

With recent advances in wireless communication and the ubiquity of laptops, mobile computing has
become an important research area. An essential problem in mobile computing is the delivery of a
message from a source to either a single mobile node, unicast, or to a group of mobile nodes, multicast.
Standard solutions proposed for macromobility (Mobile IP) and micromobility (cellular phones) for the
unicast problem rely on tracking the mobile node. Tracking solutions scale badly when mobile nodes
move frequently, and do not generalize well to multicast delivery. Our paper proposes a new message
delivery algorithm for micromobility based on a modification of classical snapshot algorithms. Our
algorithm requires no tracking, provides stronger guarantees than existing protocols in micromobility, and
generalizes easily to multicasting. Besides a particular solution to the delivery problem, our approach
offers a new strategy for transferring established results from distributed computing to mobile
computing. The general idea is to treat mobile nodes as messages that roam across the fixed network
structure and to leverage off existing distributed algorithms that compute information about messages.

https://openscholarship.wustl.edu/cse_research/438?utm_source=openscholarship.wustl.edu%2Fcse_research%2F438&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/438?utm_source=openscholarship.wustl.edu%2Fcse_research%2F438&utm_medium=PDF&utm_campaign=PDFCoverPages

& Washington

WASHINGTON » UNIVERSITY + IN+ ST+ LOUIS

School of Engineering & Applied Science

An Algorithm for Message Delivery in a Micromobility
Environment

Amy L. Muarphy
Gruia-Catalin Roman
George Varghese

WUCS-97-22

28 April 1997

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

An Algorithm for Message Delivery in A Micromobility Environment

Amy L. Murphy, Gruia-Catzalin Roman, and George Varghese
Washington University, St. Louis

Abstract

With recent advances in wireless communication and the ubiquity of laptops, mobile computing has become
an important research area. An essential problem in mobile computing is the delivery of a message from a
source to either a single mobile node, wnicast, or to a group of mobile nodes, multicast. Standard solutions
proposed for macromobility (Mobile IP) and micromobility (cellular phones) for the unicast problem rely on
tracking the mobile node. Tracking solutions scale badly when mobile nodes move frequently, and do not
generalize well to multicast delivery. Our paper proposes a new message delivery algorithm for micromobility
based on a modification of classical snapshot algorithms. Qur algorithm requires no tracking, provides stronger
gnarantees than existing protocols in micromobility, and generalizes easily to maulticasting. DBesides a
particular solution to the delivery problem, our approach offers a new strategy for transferring established
results from distributed computing to mobile computing. The general idea is to treat mobile nodes as
messages that roam across the fixed network structure and to leverage off existing distributed algorithms that
compute information about messages,

1. Introduction

Mobile computing reflects a prevailing societal and technological trend towards ubiquitous access to
computational and communication resources. Wireless technology and the decreasing size of computer
components allow users to travel within the office building, from office to home, and around the country with
the computer at their side. These types of movement lead to two approaches to the issues of mobility based on
the spatial and time granularity of movement, The literature has referred to these styles as micromobility and
macromobility.

In macromobility, the user moves slowly among large networks. This is analogous to a user taking
their laptop computer from 2 local network at work to a local network at home. It is assumed that this
movement is relatively infrequent, and often involves complete disconnection from network resources for a
ength of time. Micromobility models the movement of a user within a single network, or a tightly clustered
group of networks. This is similar to the mobile telephone model in which a2 user participating in a phone
conversation moves among support centers without losing the connection. In micromobility, the uvser is
allowed to move any number of times, but the rate of movement must be slow enough to allow for the
handover to complete. QOtherwise, the telephone conversation will be lost,

Both disconnected operation and connected operation are goals for systems with mobile components.
In disconnected operation [7], rules must be devised for handling disconnection, allowing changes while
disconnected, and reintegration of changes upon reattachment. For connected operation [12], [8], [9], there
must be a mechanistn to get messages to the mobile components while they are connected. There are two
main approaches to solving this problem: tracking and search.

In tracking, the location of the mobile unit is known at all times, and therefore a route to the unit
exists. In Mobile IP, this is accomplished by the mobile unit registering its new location with a home agent,
and having the home agent forward any messages for that mobile unit to the new location. Although Mobile IP
is well accepted among the proponents of the Internet partially due to its incremental deployment, other
approaches propose changing the routers to adapt to the movement of the mobile uniis and effectively
intercept packets en route to the home agent and direct them toward the mobile unit itself [11]. Because these
approaches involve fundamental changes to the routers, this is more popular as a solution within corporations
developing the technology.

1 The work of the first two authors is supported in part by the National Science Foundation under Grant No.
CCR-9217751. The work of the third author was supported in part by an ONR Young Investigator Award. Any
opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do
not necessarily reflect the views of the National Science Foundation or the Office of Naval Research.

In search solutions, the location of the mobile unit is not kept anywhere in the system. Therefore, in
order to get a message to the mobile unit, the sender must either broadcast a search request to locate the
mobile unit, then forward the message along the same path that the search message took to that location, or
the sender can simply broadcast a copy of the message. The first mechanism has been suggested for ad hoc
mobility [6] where there is no infrastructure to route packets along. This approach takes advantage of the
natural broadcasting nature of mobile communication such as radio to execute a broadcasting protocol to any
neighboring mobile units within range. This kind of route discovery is useful in moderately changing
environments where a route to a mobile unit is viable long enough for both route discovery and message
delivery,

Another problem being addressed in the mobility community is that of multicast. In the context of
Mobile IP and macromobility, two possible approaches are available. The mobile unit can register to receive
muiticast packets through its home agent, in which case, the home agent must encapsulate every multicast
message and unicast it to the foreign location of the mobile unit. Alternately, the mobile unit can join the
multicast group at a local multicast router on the subnet it is visiting. This assumes the local subnet supports
nmiticast. Because many multicast protocols rely on the address of the sender to properly forward messages
along a multicast tree, corresponding changes must be made in order for the mobile unit to send to a multicast
group address.

This approach works for macromobility, however our focus is micromobility. Work by Acharya and
Badrinath [1] describes an algorithm for reliable muiticast which takes a centralized control approach, keeps
messages alive at all mobile support centers until termination, and requires the sender to know all the
recipients of the multicast. In many cases throughout the Internet, reliability is not necessary, and the source
of a multicast message either does not want to know or cannot know the recipients of the multicast. It is
generally accepted that if the number of recipients is large, the sender does not want to sacrifice the resources
to maintain such a large and dynamic list. This is one of the assumptions in DVMRP and other standard
multicast protocols. After presenting our algorithm, we will return to the issue of multicast and show how our
approach generalizes to multicast.

In general, our work focuses on message delivery in a micromobility environment using a form of
search through broadcast. We assume a fixed structure similar to that of the mobile telephone system with
fixed base stations broadcasting messages to mobile units, mobile support centers coordinating the base
stations, and mobile units moving within a region of space within range of the base stations. Our approach
adapts the Chandy and Lamport algorithm for global snapshots in a distributed system to message delivery in a
mobile environment. In the next section, we show that simple broadcasting to mobile units can fail and we
present our approach using the UNITY notation. In section 3, we present the advantages we gain from using
the established work of the global snapshot and provide a proof outline based on the program from the previous
section. Section 4 is a reality check in which we examine our approach in detail identifying some of its
potential shortcomings and our solutions. In section 5 we show possible exlensions to our approach including
route discovery and multicast, and section 6 provides some conclusions and future directions.

2. Problem Motivation

The problem we are interested in is the delivery of messages to a mobile unit in & network of fixed
mobile support centers (MSCs) and radio base stations (RBSs). For simplicity, we will assume each MSC
controls only one RBS, and all MSCs whose radio base stations are neighbors have a fixed communication
channel between them. For example, in Figure 1, each cell represents a single (MSC, RBS) pair, and the
MSCs of all neighboring cells are connected by a fixed network. A mobile unit can send and receive
messages from only one RBS at a time, and only when it is in the cell associated with that RBS.

A common broadcasting scheme in this setting is to construct a spanning tree over the MSCs and send
the message along this tree. In Figure 1, a spanning tree is indicated by the solid lines. For this example,
suppose a mobile node is located at cell 1, near the border of cell 2. Suppose cell 2 initiates the message to
be delivered to the mobile unit. Following the proposed spanming tree breadcast, MSC, has RBS, broadcast
the message locally, then forwards the message on the two outgoing links of the spanning tree. After sending
the message successfully, MSC, deletes its copy of the message. The MSCs down stream behave in a similar
manner, broadcasting locally, forwarding the message to their children, and finally deleting their copy of the
message. If the mobile unit does not move out of cell 1, it will receive a copy of the message when it is
broadcast by RBS,. However, because the mobile unit is on the border between cell 1 and cell 2, it is possible
for a handover to be initiated and for the mobile unit to lose contact with RBS, and pick up communication
with RBS,. If this handover occurs after RBS, deletes its copy of the message and before RBS, broadcasts its
copy of the message, the mobile unit will not receive the message even though it was connected to the
nelwork during the entire broadcast lifetime of the message. Although in reality messages travel through the

network much faster than a mobile unit can travel through space, because a basic handover requires very little
time to complete, and the length of the path along the spanning tree for the two cells m is moving between
could be longer to traverse than for the handover to complete, it is reasonable for a simple broadcast
mechanism such as this to fail in this kind of circumstance.

N
(T3

Therefore, we propose an alternative broadcast algorithm which guarantees the mobile agent in the
above circumstance will receive a copy of the message. Our solution is based on the classical notion of a
snapshot from distributed computing, in particular, our algorithm is based on the original Chandy-Lamport
snapshot algorithm [3].

Before moving on to our solution to message delivery, we must digress into some of the details of the
general snapshot algorithm. A snapshot algorithm is typically executed over a graph consisting of processors
and communication channels connecting these processors. The goal of the snapshot is to record a consistent
state which is possible in an execution of the running computation. Nodes communicate via message passing
along the channels. The state of the system consists of the values of the registers and memory at the
processors and any messages in transit between the nodes. For example, a simple snapshot algorithm can
freeze computation at all processors, record the state of the processors and the location of all messages, then
restart the computation. ‘This is impractical in most distributed settings, but it gives the intuitive notion of the
results of a snapshot algorithm.

Although snapshot algorithms were developed to detect stable properties such as termination or
deadlock by creating and analyzing a consistent view of the distributed state, minor adjustments allow them to
perform announcement delivery in the dynamic, mobile environment. A traditional global snapshot is a
collection of the local snapshots for the individual processing nodes consisting of the local state plus all
messages in fransit to that node. In general, distributed snapshot algorithms proceed across a network by
passing the knowledge that the snapshot is occurring to neighboring nodes via control messages. Every
message appears exactly once in the global snapshot either on a channel or at a node.

To translate this into the mobile setting, the nodes in a distributed computation directly correspond to
the mobile support centers and radio base stations of mobility. The messages recorded by the global snapshot
correspond to the mobile units. Finally, the messages being delivered to the mobile units are carried on the
snapshot control messages. Therefore, in the mobile setting, a local snapshot contains information about the
mobile units in current communication with the base station, as well as the mobile units in transit to that node.
Every mobile unit appears exactly once either at a node or on a channel. Because of the way various snapshot
algorithms work, and the mobility inherent in the system, by the time the snapshot is analyzed to locate the
destination mobile unit, any message sent directly to that location may miss the mobile unit. For this reason,
the computation of the snapshot itself must be modified to perform message delivery. Specifically, we note
that because each mobile unit must appear only once in the global snapshot, and the message can only be
delivered once, the base station that records the destination mobile unit is responsible for delivering the
message. More simply stated, recording a mobile unit is equivalent to message delivery.

Throughout this paper, we have chosen the Chandy-Lamport algorithm for global snapshots. In the
environment for this algorithm, FIFO channels are assumed between all processing nodes. For the remainder
of this section we will assume a single directional, FIFQ channels along which both messages and mobile
units move. In section 4, however, we will relax this model by proposing reasonable additions to the handover
protocol to allow reality to model this FIFO channel. Further, mobile movement is characterized by a mobile
unit moving into a channel. Also for the purposes of explanation we will eliminate the RBS from the model,
but again, in section 4 we will bring it back with slight modifications.

Figure 1. Cell based broadcast.

Program SnapDeliver

declare

Chan() : array [Channels] of Queve[mobile U messagel;
MobileAtMSC, MessageAMSC : array[MSCs] of Boolean;
InChanFlush : array[Channels] of Boolean;

notified: array [MSCs] of Boolean;

found : Boolean;

flushed : array[Channels] of Boolean;

location : MSCs v Channels;

inifially

assign

end

{0 xy:(&y) e Channels :: ;X is the initial location of the message

)
(@

MessageAtMSC(x), notified (x), MobileAIMSC(x) = (X=X,), (x=%,), (location=x)
[InChanFlush{x,y), flushed{x,y) = false, false
O if the mobile unit is at the initial location of the message, delivery is complete
found = {location=x)
[1 :set up initial channel state based on mobile unit location and message location

ChanQ(x,y) = enqueune(g,mobile) if locations=(x,y) A x#X,
Il ChanQ(x,y) = enqueue{enqueue(e,mobile) message) if location=(x,y) A x=X,
I} ChanQ(x,y) = enqueve(emessage) if location#{x,y) A X=X
It ChanQ(x,y) = € if location#(x,y) A X£X,

%Y ! (%,y) & Channels ::

:(Stmt 1) Duplicate message arrives at a MSC.

InChanFlush(x,y), £lushed (x, y), ChanQ(x,y) = true, true, tail.ChanQ(x,y)
if head.ChanQ(x,y)=message A Message AtMSC(y)

]

;(Stmi 2) New message prapagates on all outgoing channels.

{ Il : head.ChanQ(x,y)=message A ~Message AIMSC(y) ::
found = true if MobileAMSC(y)
I MessageAIMSC(y), InChanFlush(x,y), flushed (x,y) = true, true, true
I {llu:(yu) € Channels :: ChanQ(y,u) := enqueue(ChanQ(y,u),message)
I ChanQ(x,y), notified(y) := tai.ChanQ{x,y), true)

]

s(Stmt 3} Mobile unit arrives at @ MSC with no delivery,

location, ChanQ(x,y), MobileAIMSC(y) = v, tail.ChanQ(x,y), true

if head.ChanQ(x,y)=mobile » (InChanFlush(x,y) v —~Message AtMSC(y))
|

;(Stmt 4) Mobile unit arrives at a MSC with delivery
found, location, ChanQ(x,y), MobileAIMSC(Y) = txue, v, tail.ChanQ(x,y), true
if head.ChanQ(x,y)=mobile A ~InChanFlush(x,y) A Message AtMSC(y)

J(Stmt 5) Mobile unit moves from a MSC to a channel
location, ChanQ(x,y), MobileAIMSC(x) = ({x,y)., enqueue{ChanQ(x,y), mobile), false
if Mobile AIMSC(x)

;(Stimt 6) Local snapshot complete at a MSC and all traces of message removed
(I:{¥ u:(@y) e Channels :: InChanFlush(u,y)) ::

Message AtMSC(y) := false

I (llu: (my) e Channels :: InChanFlush(u,y) := false })

Figure 2. Snapshot Delivery Program for FIFO Channels

N -announcemant L]
O wagant
¥ y y
loeation=(x,y} ~ location=(x.y} ~ location={xy) ~ location®(x,y} A
X#Xo X=X X=Xo X#X0

Figure 3. All possible initializations of a channel(x,y) with the message locaticn x,,

Because we are modeling message delivery, we assume the snapshot is initiated at the original
location of the message, a single MSC. In general, snapshot algorithms proceed across a network by passing
the knowledge that the snapshot is occurring to neighboring MSCs. We append to this knowledge the actunal
message. When the message arrives at a MS8C, it is stored and the local snapshot begins. As the snapshot
proceeds, the MSC waltches for the destination mobile unit to arrive. If the local snapshot completes without
recording the destination mobile unit as part of its state, the MSC deletes its copy of the message, assured that
the destination mobile unit will appear in some other MSC's local snapshot. However, if the destination MSC
is part of the snapshot, either in communication or on an incoming channel, this MSC is responsible for
delivery. Once the message has been delivered, it can be deleted from the MSC. In this manner, as the local
snapshots complete, the message copies are removed from the MSCs, meeting the requirement that no copies
remain in the system.

‘We capture the essence of our solution in the form of a UNITY program shown in Figure 2. UNITY [4]
provides a state transition model for concurrent programming in which progress and safety properties can be
cleanly defined and proven from the program text. We utilize the UNITY proof logic in the next section where
we formally verify the correctness of the algorithm. In the UNITY program, each channel is defined as an
element of an array, Chan{, of message queues. (See the declare section consisting of Pascal-like
declarations.) The queues are restricted to holding only messages and mobile units. Actually, since we are
interested in the behavior of the algorithm solely with respect to a particular mobile unit and one message
assumed to be destined for it, these are the only two kinds of messages that can appear anywhere in the
system, ie., the channel queue can contain only the constants message and mobile. The state of the individual
MSCs is captured by three arrays: MobileAtMSC is indexed by MSC identifiers and holds a boolean value
which is true whenever the mobile unit is present at that MSC and false otherwise; MessageAtMSC is defined
in the same manner but denotes the fact that the MSC is holding a copy of the message; finally, InChanFlush,
indexed by chammels, allows a MSC to keep track of which channels have been flushed. Basically,
InChanFlush will be used to indicate that a local snapshot of the channel is complete,

In addition to these algorithm variables, we include in the declare section several auxiliary variables.
For easy discrimination, they appear in the courier font and in lower case. These variables do not affect the
execution of the program, but are convenient to have when constructing the proofs. The array notified,
indexed by MSC identifiers, records the fact that a MSC has seen the message. The variable £ound becomes
true when the message is delivered to the mobile unit, while location records the identity of the last
channel or MSC to receive the mobile unit.

Constraints on the range of acceptable initial values for the program variables are stated by a set of
equations appearing in the initially section of the program. Most initial valies are straightforward. We place
the message at an arbitrary MSC, x,. This MSC is marked as holding the message, i.e., MessageAtMSC is
true for MSC x, and in no other place; notified is initialized accordingly. The contents of the channels are
initialized according to the location of the mobile unit (reflected by the arbitrary initial value for location)
and X, as shown in Figure 3. If the mobile unit is at the MSC x,, i.e., the mobile unit is at the location where
the message was dropped off, the message is delivered to start with (found is initialized to true).

The algorithm appears in the assign section of the program. It consists of a set of multiple conditional
assignment statements which are selected for execution one at a time subject to a weak fairness assumption.
All executions are assumed to be infinite with finite executions being characterized by the fact that they reach
a fixed point. Before continning our discussions of the algorithm we need to take a brief detour and explain
the notation we use. Individual statements are written either in terms of matching lists of variables and
expressions subject to the same condition as in

y=y,xifx<y
which sorts the values of x and y or by using the parallel bar construction as in the equivalent formulation

x=yifx<ylly=xifx<y

The box symbol is used as a separator between assignment statements. The only unusual notation is a very
general three-part construct used, among many other purposes, to build both composite statements and sets of
statements. For instance,

{[i: 1=i<N :: Ali]:=0)
defines a set of statements that zero the elements of the array A, one for each value of i in the range ! to N,
while

(li: 1<i<N :: Afi] .= 0)
constructs one composiie statement which performs the same task in a single atomic step.

Let us consider next the actions performed by the algorithm. Each of the statements can be seen in
the diagrams of Figure 4. When the messape arrives at a MSC, by definition, the channel it arrived on
becomes flushed. If the MSC was already marked, i.e. holding a copy of the message, when the new message
amrived, no further action is taken (Stmt 1). This is one of the cases where redelivery to a stationary mobile
unit must be avoided. However, if the MSC was not previously marked, the arrival of the message iriggers a
delivery to the mobile unit when the Iatter is in communication with the MSC, and a dispersion of the
message on all outgoing channels (Stmt 2). Through this fanning out of the message and the conneclivity
assumptions, every MS(C eventually processes one message from every incoming channel. When a mobile
unit arrives at a MSC, the MSC must determine whether or not to attempt to deliver the message. Trivially, if
the MSC does not have a copy of the message, the decision not to deliver is made (Stmt 3a), However, if the
MSC is marked and the mobile unit arrives on a flushed channel, it is known that the mobile unit has already
received a copy of the message, and we must not redeliver it (Stmt 3b). This will be proven in the next
section. If the MSC is marked and the mobile unit arrives on an unflushed channel, delivery is attempted
{Stmt 4).

before - \|§ :!§
ushad flush uthed
after
flushed flushed flushed
I =message
.mﬁﬁm mobite \g)
O=non-notlf_ied
mebile urit Stmt 1 Stmt 2 Stmt 3 Stmt 4 Stmt 5 Stmt 6

Figure 4. State transition associated with each program statement.

The processing of a mobile unit from the head of a channel models mobile unit movement from a
chanmel to a MSC., We must also allow movement from a MSC to a channel. We add one statement to the
program allowing a mobile unit which is located at a MSC to move onto any of its outgoing channels (Stmt 5).
Because of the weak faimess provided by UNITY, the statement is eventually selected and the mobile unit
moves on, thus modeling its random movement. In most real situations, the movement will be controlled by a
user, however this could be coded into the program as a predefined path for the mobile unit to follow. Again,
for simplicity, we focus on random movement.

The final statement of the program addresses the requirement that no trace of the message remain in
the system when the algorithm terminates (Stmt 6). To do this, the message must be deleted from every
MSC, and the channels must return to their original, unflushed, state. We use the local snapshot property of
global snapshots to detect this. When the local snapshot terminates, all incoming channels are flushed, and
the final statement is enabled for execution, and when it is selected, the cleanup is completed.

3. Proof Outline

In Section 3, we presented a global snapshot algorithm modified to perform message delivery in a
maobile system. Because the approach is based on a well understood algorithm from distributed computing, we
can adopt the proven properties from the distributed computing environment into the mobile environment.
Three main properties are proven for the Chandy-Lamport distributed snapshot: there is no residual storage in

the system at some point after the algorithm begins execution, every message is recorded once, and no
message is recorded more than once. We translate these properties directly into the mobile environment
stating that (A) eventually there is no residual storage in the system at some point after the algorithm begins
execution, (B) the message is delivered to the intended recipient, and (C) the message is delivered only once.
In this section, we will present a proof outline for these properties based on the UNITY program presented in
the previous section.

3.1 No Residual Storage

To show that eventually all information concerning the message is removed from the system, we
prove that from the initial conditions, the program will eventually reach a state where there are no messages at
any MSCs, there are no messages in any channels, and the channel variable reverses to its original cleared
value. This can be capiured by the following leads-to property:

INIT — {(Vn,m:: ~MessageAIMSC(n) A —messagee ChanQ(n,m) A —InChanFlush(n,m)) (A)

In addition, we must show that the right hand side is stable. In other words, once all the system variables have
been cleared, the algorithm does not become active again. Stability is proven directly from the program text.
Because messages are not generated within the program, once all copies of the message are gone, there will
never be any more messages in any channels or at any MSCs.

Progress is proven using tramsitivity and several simpler properties. The first step in proving the
property A involves showing that from the initial conditions, the program reaches a state where all MSCs have
received a copy of the message and have therefore been notified of its existence; hence the use of the
auxiliary variable notified which becomes true when the message arrives at the MSC and is never set back
to false. Once all MSCs have been notified, we examine the channels. It is possible for a notified MSC to
have multiple incoming channels and have only received the message on a subset of those channels. In order
to clear the network, we must show that a copy of the message arrives on all incoming channels. This property
is tracked on a per channel basis using the boolean variable £1ushed. Therefore, the second step in the proof
shows that once all MSCs are notified, eventnally all channels will be flushed. The stability of
notified allows us to include all MSCs notified in the right hand side. The final stage of the proof uses the
notified status of all MSCs and the £1lushed status of all channels to prove that the copy of the message
at all MSCs is deleted, the channels do not have copies of the message, and all channel variables have been
reset,

INIT — {Vn:notified(n)) (A.1)
{(Vn:notified(n)) — (Vnm:inotified(n) A £lushed(n,m)) (A.2)
(Vnm:notified(n) A flushed(n,m)} (A.3)

- (Vn,m:: -MessageAtMSC(n) A —InChanFlush(n,m) A —messagee ChanQ(n,m))

To show that eventually all MSCs are notified (A.1), we introduce a metric to count the number of
MSCs which have not yet been notified. In the initial configuration, only the MSC originating the message
has a copy, a copy is enquened on all outgoing channels of that MSC, and the metric is initialized to the total
number of MSCs minus one. We can show that from this point, the metric decreases to zero. If the metric is
greater than zero, by the connectivity of the graph, there must be a channel from a notified to an unnotified
MSC and there must be a message on that channel. We then show that the metric decreases either by some
message in another region of the graph being processed by an unnotified MSC, or the identified message
moving to the head of the channel and being processed by the previously unnotified MSC, implicitly
decreasing the number of unnotified MSCs. We iteratively apply this reasoning to show that eventually all
MSCs are notified and the metric has decreased to zero.

To show that once all the MSCs are notified, ail channels will eventually be flushed (A.2), we use a
similar mechanism as above. We introduce a metric to count the number of channels which have not been
flushed and show it decreases to zero. As before, we note that because all MSCs are notified, any channel ¢
which has not been flushed must be between two notified MSCs, and in this case there must be a copy of the
message on <. The metric either decreases by some other channel ¢’ being flushed, or the identified message
arriving at the head of ¢ and being processed. Because both aunxiliary variables £lushed and notified are
stable, we have shown that eventually all channels are flushed and all MSCs remain notified.

Proving the final progress property involves examining each MSC and its incoming channels. First,
we note the difference between the auxiliary variable flushed and the concrete variable InChanFlush.
When the message arrives from a channel, both variables are set to true. The primary difference is that
InChanFlush is set back to false when the channel’s destination MSC is cleared, while filushed remains
true. This allows us to reason about channels which have been traversed by the message, but have been reset.

This is valuable because the left hand side of A.3 only states that all channels have, in the past, had
InChanFlush set to true but nothing about the current value of InChanFlush. We know that if InChanFlush is
false but f1lushed is true, then the destination MSC has been cleared, and all other incoming channels have
been cleared. This can be shown to be stable. However, if InChanFlush is true and flushed is true, then all
other incoming channels must be in the same state, and the message must be at the MSC. These properties
enable Stmt 6 of the program which, when executed, will clear the MSCs and channels. This reasoning can
be carried out at all MSCs of the system and eventually the message copies will be removed from MSCs and
channels, and all InChanFlush variables will be reset to false.

3.2 Eventual Message Delivery

The next property we must prove is that the message is eventually delivered, i.e., the auxiliary
variable found is eventually set to true:

INIT — £found (B)
Property B can be proven by using transitivity and conjunction from the following properties:

INIT — {(Vn:notified(n)) (B.1)

(Vo:notified(n) A found) — found (B.2)

{¥n::notified(n) A ~found) — found (B.3)

B.1 was proved earlier in A.l, property B.2 is a consequence of the implication, and B.3 remains to be
proven. To prove this property, we must consider the possible locations for a mobile unit which has not been
found. If all MSCs are notified, it must be true that the unfound mobile unit is on an unflushed channel, and
the mobile unit is ahead of the message, i.e., the following invariant holds:

inv(Vo:notified(n) A ~found) (B.3.1)
= (In,m:: mobilee ChanQ(n,m) A ~flushed(n,m) A mobile.preceeds.anne ChanQ(n,m))

where mobile.preceeds.anne ChanQ(n,m) denotes the fact that, if both the message and the mobile unit are in
the channel, the mobile unit is closer to the head of channel (n,m). If only the mobile unit is in the channel,
this predicate is true by definition. Invariant B.3.1 can be combined with B.3 to give an equivalent property
that the right hand side of B.3.1 leads to the mobile unit being found. Because the mobile unit is in front of the
message, the mobile unit arrives at the MSC before the channel is flushed, and a message copy must still be
at the MSC. Therefore, when the mobile unit moves onto the MSC, delivery must occur.

3.3 Single Delivery

Having shown delivery, it remains to be proven that the message is only delivered one time. To do
this, we count the number of times the found variable is set to true. This is accomplished by incrementing an
auxiliary variable num_deliveries each time delivery occurs. To show multiple deliveries do not occur,
we must prove that the number of deliveries never exceeds one.

inv num_deliveries<1 (<)

Initially this property holds. If num_deliveries is zero, no statement can violate C because a
single statement can only increase num_deliveries by one. Once the message has been delivered and
num_deliveries is one, we focus on the two statements which can increment num_deliveries again:
Stmt 2 and Stmt 4. In Stmt 2, the message arrives at a MSC which has not yet received a copy of the
message. If the mobile unit is present at this MSC, delivery occurs. In Stmt 4, the mobile unit arrives along
an unflushed channel at a MSC with a copy of the message. Therefore, delivery occurs. To show that
multiple delivery is not possible, it is sufficient to show that once found is set to true, neither of the two
conditions described above occurs. This is related to C hecause the definition of num_deliveries gives us
the fact that when the number of deliveries exceeds zero, the found variable must be true. The following
properties capture these statements:

inv found (C.1)
= —(Mobile AtMSC(n) A —MessageAtMSC(n) A head.ChanQ(m,n)=message)
inv found (C.2)

= —(head.ChanQ(n,m)=mobile A —=InChanFlush(n,m) A Message AMSC(m))
inv num_deliveries>{ = found (C.3)

To prove properties C.1 and C.2, we characterize a region of the graph called will-be-notified, and
define it as the set of all MSCs which are —notified, the channels which are ~flushed and do not have
messages on them, and the channel segments between a message and a MSC. Because .1 and C.2 describe
situations where a mobile unit is in this region, a complementary property to C.1 and C.2 is that a found
mobile unit must not be in will-be-notified.

inv found = mobile will-be-notified (C.1.1)

To use this knowledge to prove properties C.1 and C.2, we define a -ath to be a sequence of MSCs
and channels between a mobile unit and the will-be-notified region. We state an invariant that once the
mobile unit is found, there must be a message in all such paths. This message can either be on a channel or at
a MSC.

inv found = (¥p:-athumessagee p) (C.1.2)

This property can be proven from the initial conditions and over each program statement. Using this definition
of a path, it is clear that if the mobile unit is in will-be-notified, then there exists at least one path between the
mobile unit and will-be-notified withont a message on it. This relates to C.1, where the mobile unit is at a
MSC without the message, because a MSC without a message must be in will-be-notified. But if found were
true, then all paths would have a message on them, and there is a trivial path which does not. Therefore,
found cannot be true. In C.2, the mobile unit is on an unflushed channel which is also a part of will-be-
notified. If the mobile unit had not been found, then all paths between the mobile unit and will-be-notified
would have a message on them, but in C.2, the channel the mobile unit is on is a part of will-be-notified, and
the -ath between the mobile unit and the channel it is on does not contain a message. Therefore, C.1 and
C.2 are true.

By combining C.1 and C.2 with C.3, we have the desired result that once the number of deliveries is
set to one (i.e., delivery has been accomplished), the mobile unit is never in a location where it will be
delivered to again. Therefore, found cannot be set to true again, and num_deliveries cannot increase
beyond one.

4. Reality Check

Here we reexamine assumptions we made to show that they are reasonable. The issues we discuss
here are non-FIFO channels, multiple RBSs per MSC, base station connectivity, reliable delivery on links, the
involvement level of M8Cs, and storage requirements.

Non-FIFO Channels; One major objection to using the Chandy-Lamport algorithm is its reliance on
FIFO behavior of channels. More specifically, in section 2, we modeled both the mobile units and the
messages as traveling on the same channel. This seems like an unreasonable assumption given that mobile
units move much more slowly through space than messages move through a fixed network. To further explore
this problem, we most adopt a more specific model of reality and how the FIFQ assumption is broken. Next
we will propose a simple fix and show why the channel models FIFO again. Finally, we will relate this back
to the handover protocol.

One of the American standards for analog cellular communication is AMPS. In AMPS, cellular
telephone tune to only one frequency at a time. This shapes the handover protocol. We adapt this protocol for
use with mobile units and the snapshot algorithm. When the signal from one mobile unit begins to degrade,
the MSC communicating with it on frequency f, sends a message to all bordering cells requesting a signal
strength of F,. After the responses are collected, MSC, selects the strongest signal as coming from the cell the
mobile unit is moving into, MSC,. At this point, a handover begins. Figure 5a shows the stages of the
handover of mobile unit m moving from MSC, to MSC,. First, MSC, sends a handover request to MSC,.
MSC, responds with an available frequency f. Next, MSC, sends a switch message to the mobile unit with the
new frequency. The mobile unit switches to the new frequency and sends a hello to MSC,. Finally, MSC,
sends a handover complete message to MSC,.

By using this approach, we know when a mobile unit is moving between cells, and which cells it is
moving between. We also note that the mobile unit is not involved in the handover until the last moment
when it changes the frequency it is tuned to. Although this is slightly different with digital technologies and
soft handovers, we will leave that discussion for another paper.

The primary problem we face with this handover is the possibility of double delivery of a message to a
mobile unit. This situation arises because it is possible for 2 message to overtake the mobile unit while it is
involved in a handover. An example can be seen in Figure 5b.

10

When MSC, receives a message it broadcasts it to all mobile units in its cell, including m. After this
broadcast, the switch message is sent to m and the message is forwarded to MSC,. When MSC, receives the
message and sees the hello from m, it does not know if the message was sent to m before or after the switch.
Therefore, MSC, must send the message to m, In the example presented, this causes a double delivery to m.

The problem arises becanse instead of having one channel on which both messages and mobile units
travel, we have, in effect, two channels which are not synchronized. One way to synchronize them is to
simulate the switching of the mobile unit on the physical link by sending a packet representing a virtual
mobile unit. The arrival of this virtual mobile unit on the channel indicates to the MSC, whether the mobile
unit switched before or after the broadcasting of the message at MSC,. If MSC, receives the virtual mobile
unit before the hello from the actual mobile unit, MSC, delays the broadcast of the announcement, if any are
pending, until the arrival of m. If the actual mobile unit arrives before the mobile unit, all communication
with m must be delayed until the virtual mobile unit arrives. This is analogous to saying that while the virtual
mobile unit is in the channel, it has not arrived at MSC,. Therefore, the channel has been made FIFO by
simply sending one additional packet on the physical link between the MSCs. Figure 5¢ shows how the virtual
mobile unit affects the delivery. Just as the switch message was sent after the broadcast of the message, the
vinu is sent after the message is put onto the channel,

One possible disadvantage to this solution is that if the mobile unit arrives before the virtual mobile
unit, there is a time when the mobile unit is in communication range of the system, however it is prevented
from communicating because the system views it as being on a channel. Although this is probably unlikely
because as noted previously, messages move along channels faster than even the switch messages that cause
the mobile unit to change location, there is a solution. It is possible to treat the entire handover as being an
atomic transaction. This is equivalent to putting the virtual mobile unit into the handover request. In order to
make the transaction complete, MSC, must not broadcast any messages between the handover request and the
handover complete. This too had its disadvantages, namely the delay in processing of messages at the MSCs.
Therefore, although the first approach adds messages to the system and requires additional processing at
MSC,, it does not prevent broadcasting at either MSC.

At this point, we should note that this adaptation of the AMPS model of handover does not allow the
mobile unit to jump past the message in the channel. Therefore, it is not possible for the mobile unit to miss
the message, but only for the message to be delivered twice. Duplicate message processing by the mobile unit
can be eliminated by using sequence numbers on each message and requiring the mobile unit to check this
value before processing, however this requires storage at the mobile units while the techniques presented
above confine the additional processing and storage to the fixed MSCs.

MSCH MSsCc2 m MSCH1 MsC2 m MSC1 Msc2 m
handover handover handover

equest request request

switch(f)

hello) T——] e}
handover l&— | Lswitch(f) ~switeh (f)
| complete— 7 my |
% \

hell
handover handover 4—-’}’

:'Oﬂeﬁ%%_* ‘cws;-
(a) (b) (¢)

Figure 5 &) AMPS-like handover. b) Double delivery example (* indicates message delivery) ¢) Virlual mobile unit, FIFO

Multiple RBSs per MSC: Uniil this point we have only allowed one radio broadcast station for each
support center, however, in today's cellular telephone system, MSCs manage sets of RBSs. For example, in
Figure 1, it is feasible for one MSC to manage all cells shown. Because the algorithm we presented is
intended to be run over the fixed network formed by the MSCs, the handover mechanisms apply only to the

11

movement of a mobile unit from a RBS supported by one MSC to another RBS supported by a different MSC.
The question remains about how to broadcast the message within the cells supported by a single MSC and
maintain the constraints of single delivery and guarantee the single delivery. Because the MSC acts as a
coordinator of the mobile units present at each of the RBSs, it is feasible to run a similar snapshot among the
RBSs, allowing it to terminate before any handovers to other MSCs are permitted. This is a simple solution,
however it shows how this algorithm can be implemented in za layered fashion.

Base station connectivity: Another possible concern with the model we present is the necessity for
physical connections between all MSCs whose cells border one another. This structure is analogous to the
structure in place to route cellular telephones. Therefore, we believe that it is reasonable for physically
adjacent support centers to be connected by physical links.

Reliable delivery on links: The snapshot delivery algorithm assumes that link delivery is reliable.
Most of the Internet uses unreliable links like Ethernets, frame relay, and ATM. The probability of error on
such links may be small but packets are indeed dropped. A possible solution is to add acks for muiticast
messages as is done, for example, in the intelligent flooding algorithm used in Links State Routing in OSI [13]
and OSPF [10]. Another solution is to only provide best-effort service, Since lost messages can lead to
deadlock we need to delete messages after a timeout even if it is still expected along a channel.

Involvement level of MSCs: In every snapshot, every MSC must be involved to guarantee delivery and
termination. In a paper on running distributed computations in a mobile setting [2], the authors warn against
required involvement of all mobile nodes in a computation, especially due to the voluntary disconnection often
associated with mobile computing. Such disconnection is often done 1o conserve power, or in some cases, to
allow disconnected operation. In either case, the mobile unit is not available for participation in the
distributed algorithm. These arguments are important for creating distributed algorithms for mobile computing
environments, however our goal is not to create a global snapshot of the mobile units, but instead to employ
the snapshot technique to a different end, namely message delivery. Additionally, the control messages of the
snapshot are not being run over the mobile units, but rather over the fixed mobile support centers. In order to
guarantee delivery, the mobile unit must be present in the system, however, this is a reasonable assumption
because there is no means to reach a disconnected mobile unit. At this point, it is interesting to note that if
the mobile unit is not present in the system during a delivery attempt, the algorithm will terminate normally,
removing all trace of the message from the system, but without delivery.

Storage requirements: In snapshot delivery, we assume that the MSCs hold a copy of the message for
delivery to the mobile agents for a bounded period of time limited to the duration of the local snapshot. In a
system with bi-directional channels, because the local snapshot terminates when the message arrives on all
incoming channels, a local snapshot can be as short as a single round trip delay between the MSCs. One can
argue that it is not the place of the MSCs to be maintaining copies of messages when their primary purpose is
routing. However, in this case, because no rounting information is being kept about the mobile units, the
system will be required to keep additional state in order to provide delivery guarantees. Therefore, keeping a
copy for a short duration is a reasonable assumption.

5. Extensions

The snapshot delivery algorithm is extendable to perform delivery of multiple messages
simultaneously, delivery to rapidly moving mobile units, route discovery, and multicast. Each of these will be
examined in turn.

Multiple message deliveries: To deliver multiple messages simultaneously using snapshots, we run
several copies of the algorithm in parallel. This is analogous to having each MSC index and store the
incorning messages and maintain separate channel status for each message in the system. This information is
kept until the MSC locally determines it can be cleared. In the worst case, every node must have storage
available for every potential message in the system, as well as maintain channel status with respect to each
message. Although this appears excessive, we maintain that the nature of the snapshot algorithm in a real
setting will not require maximum capacity. In other words, because the MSCs are able to locally determine
when to delete the messages, the nature of the network will determine how long a message is stored at the
MSC.

Rapidly moving mobile units: Another advantage to this algorithm is the ability to operate in rapidly
changing environments with the same delivery guarantees. In Mobile IP, mobile units must remain in one
place long enough to send a message with their new address to their home agent for forwarding purposes, and
remain at that foreign agent long enough for the forwarded messages to arrive. With forwarding enhancements
added to the foreign agents in Mobile IP, the issue is minimized because the former location of a mobile unit
becomes a kind of packet forwarder. However, even with forwarding, if the agent moves too rapidly and the
system is unable to stabilize, forwarded packets will chase the mobile unit around the system without ever

12

being delivered. Because snapshots do not maintain a notion of home or route, movements are immediately
accounted for by the delivery scheme. Similarly, using snapshots for delivery has advantages over ad hoc
methods of route discovery which create a path to the mobile unit with one pass over the system. In rapidly
changing environments, the mobile unit can change location between route discovery and message delivery
cavsing lost messages. The route discovery method is used because the discovery packets are small and
inexpensive to transmit over wireless links while data packeis are comparatively large. This is important
because the nodes use a timeout or cache swapping to delete the routing packets.

Route discovery: In more moderately changing environments, route discovery can increase efficiency
and decrease overhead. In these situations, the snapshot delivery algorithm can be used to perform route
discovery, When the discovery message from source S located at MSC; arrives at the destination mobile unit
D located at MSC;,, the mobile unit responds with a packet directed toward MSCs with MSCp, and a particular
RBS in its data to identify its location to the source. This assumes that source is also moving relatively
slowly, however a route response message could be sent to § from ID in a similar manner as the route
discovery. All packets sent to D after the discovery should contain MSC, and RBS, and routing along the
fixed network is now possible. Alternately, the snapshot algorithm can be adapted to perform route discovery
in an ad hoc environment. Because there is no fixed network to route along, the discovery packet builds a
sequence of hops in its payload as it traverses the network. When the packel is delivered, the mobile unit
sends a packet to the sender along the reverse of the path shown in the data. This route is then used for future
messages. Because the mobile unit is delivered to only once in the snapshot, only one message will be
returned to the sender, unlike in a more standard broadcast where the sender could receive multiple routes to
the destination due to branching during the broadcast of the discovery packet. The snapshot algorithm
explicitly cleans up when it is locally complete, we provide stronger guarantees than traditional route
discovery which relies on timeouts and cache swapping to complete routes.

Multicast: As stated previously, another concern in the mobility community is multicast. While
Mobile IP addresses ihe issnes of macromobility, and some work has been done on reliable muiticast for
micromobility [1], our algorithm easily extends to perform multicast to all mobile units in the system during
the execution of the snapshot. Without changing the snapshot algorithm, it can be shown that delivery of a
message is altempted to all mobile units in the system before the algorithm terminates. If the message
contains a broadcast or multicast destination address, delivery can be carried out whenever a connection with
the mobile unit accepting those addresses is established. Interestingly, even in broadcast or multicast, the
restriction of single delivery of a message holds. Although this description is concise, the importance of it
should not be lost in its simplicity.

Our modified snapshot algerithm has worst-case overhead of one message per link in each direction to
multicast. By contrast, the algorithm used in IP DVMRP [3] effectively computes a tree. Its overhead is the
number of links in the tree plus the number of links that have endnodes that participate in this multicast.

6. Conclusions

In this paper we presented an algorithm for multicast and unicast delivery of messages to mobile
nodes in a micromobility environment, proved some essential properties, offered evidence of its potential
practical use, and provided additional extensions to make it applicable in multiple settings. In doing so, we
introduced a new kind of approach to the study of mobility, one based on a model whose mechanics are
borrowed directly from the established literature on distributed computing. Treating mobile units as messages
provides an effective means for transferring results from classical distributed algorithms literature to the
emerging field of mobile computing. The next challenge we face is to evaluate the viability of the new
mobile, ie., the range of problems for which the message-as-node abstraction is appropriate.

7. Bibliography

[1] A. Acharya and B, R. Badrinath, “Delivering Multicast Messages in Networks with Mobile Hosts,” 73tk
International Conference on Distributed Computing Systems, New York, pp. , 1993.

[2] B.R. Badrinath, A. Acharya, and T. Imielinski, “Structuring Distributed Algorithms for Mobile Hosts,”
Proceedings of the 14th Intl. Conf. on Distributed Computing Systems, Poznan, Poland, pp. 21-8, 1994.

31 K. M. Chandy and L. Lamport, “Distributed Snapshots: Determining Global States of Distributed
Systems,” ACM Transactions on Computing Systems, vol. 3, no. 1, pp. 63-75, 1985.

[4] K. M. Chandy and I. Misra, Parallel Program Design: A Foundation, Addison-Wesley, 1988.

[5] 8. E. Deering and D. R. Cheriton, “Multicast Routing in Datagram Internetworks and Extended LANs,”
ACM Trans. on Computer Systems, vol. 8, no. 2, pp. 85-110, 1990.

tel
7
[81
(91
[10]
[11]
[12]
[13]

13

D. B. Johnson and D. A. Maltz, “Truly seamless wireless and mobile host networking. Protocols for
adaptive wireless and mobile networking,” IEEE Personal Communications, vol. 3, no. 1, pp. 34-42, 1996.
J. J. Kistler and M. Satyanarayanan, “Disconnected Operation in the Coda File System,” ACM Trans.
Computer Systems, vol. 10, no. 1, pp. 3-25, 1992.

P. Krishna, M. Chatterjee, N. H. Vaidya, and D. K. Pradhan, “A cluster-based approach for routing in ad-
hoc networks,” USENIX Symposium on Mobile and Location-Independent Computing, pp. 136-146, 1995.

S. Kryukova, B. Massingill, and B. Sanders, “Specification and Proof of an Algorithm for Location
Management for Mobile Communication Devices,” International Workshop on Formal Methods for
Parallel Programming: Theory and Applications, Geneva, pp. , 1997.

J. Moy, “OSPE Version 2,” Internet Engincering Task Force, Internet draft March 1994 1994,

A. Myles and D. Skellern, “Comparing Four IP Based Mobile Host Protocols,” Computer Networks and
ISDN Systems, vol. 26, no. , pp. 349-355, 1993.

C. Perkins, “IP Mobility Support,” IETF Network Working Group, Technical Report RFC 2002, October
1996.

H. Zimmerman, “OSl Reference Model -- The ISO Model of Architecture for Open Systems
Interconnection,” IEEE Transactions on Communication, vol. 28, no. , pp. 425-432, 1980.

	An Algorithm for Message Delivery in a Micromobility Environment
	Recommended Citation
	An Algorithm for Message Delivery in a Micromobility Environment

	tmp.1439928365.pdf.Qs9xQ

