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Markets or platforms assemble multiple selfishly-motivated and strategic agents. The out-

comes of such agent interactions depend heavily on the rules, regulations, and norms of the

platform, as well as the information available to agents. This thesis investigates the design

and analysis of mechanisms and information structures through the “computational lens” in

both static and dynamic settings. It both addresses the outcome of single platforms and fills

a gap in the study of the dynamics of multiple platform interactions.

In static market settings, we are particularly interested in the role of information, because

mechanisms are harder to change than the information available to participants. We ap-

proach information design through specific examples, i.e., matching markets and auction

markets. First, in matching markets, we study the situation where the matching is preceded

by a costly interviewing stage in which firms acquire information about the qualities of can-

didates. We focus on the impact of the signals of quality available prior to the interviewing

stage. We show that more “commonality” in the quality of information can be harmful,

yielding fewer matches. Second, in auction markets, we design an information environment
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for revenue enhancement in a sealed-bid second price auction. Much of the previous litera-

ture has focused on signal design in settings where bidders are symmetrically informed, or

on the design of optimal mechanisms under fixed information structures. Here, we provide

new theoretical insights for complex situations like corporate mergers, where the sender of

the signal has the opportunity to communicate in different ways to different receivers.

Next, in dynamic markets, we focus on two dimensions: (1) the effects of different market-

clearing rules on market outcomes and (2) the dynamics of multiple platform interactions.

Considering both dimensions, we investigate two important real-world dynamic markets:

kidney exchange and financial markets. Specifically, in kidney exchange, we analyze the

performance of different market-clearing algorithms and design a competing-market model

to quantify the social welfare loss caused by market competition and exchange fragmenta-

tion. Here, we present the first analysis of equilibrium behavior in these dynamic competing

matching market systems, from the viewpoints of both agents and markets. To improve

the performance of kidney exchange in terms of both social welfare and individual utility,

we analyze the benefit of convincing directed donation pairs to participate in paired kidney

exchange, measured in terms of long-term graft survival. We provide the first empirical

evidence that including compatible pairs dramatically benefits both social welfare and indi-

vidual outcomes.

For financial markets, in the debate over high frequency trading, the frequent call (Call)

mechanism has recently received considerable attention as a proposal for replacing the con-

tinuous double auction (CDA) mechanisms that currently run most financial markets. We

examine agents’ profit under CDA and frequent call auctions in a dynamic environment. We

design an agent-based model to study the competition between these two market policies

xiii



and show that CALL markets can drive trade away from CDAs. The results help to inform

this very important debate.
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Chapter 1

Introduction

Markets or platforms assemble multiple selfishly-motivated, strategic agents. The outcomes

of such agents’ interactions depend heavily on how the market is designed, which involve

the rules of the platform as well as the information available to the agents. Poorly designed

platforms and information environments suffer from unexpected and undesirable results,

for example, agent manipulation (the scandal of badminton at the 2012 Summer Olympics

- Women’s doubles 1, where eight players were found guilty of “not using best efforts” by

playing to lose matches in order to manipulate the draw for the knockout stage), unnecessary

expense of human effort and equipment, social welfare loss (high-frequency trading arms

race [27]), and so on.

This thesis studies mechanisms and information structures of markets through the “compu-

tational lens.” We investigate problems for both static settings and dynamic settings. In

a static setting, agents and items arrive at the market and are matched at the same time,

then the market disappears (examples include matching medical residents to hospitals and

1https://en.wikipedia.org/wiki/Badminton_at_the_2012_Summer_Olympics_%E2%80%
93_Women%27s_doubles

1
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matching students to schools). In a dynamic setting, agents (or both agents and items) ar-

rive and depart over time in a persistent market (for example, kidney exchange or financial

exchange (NYSE, Nasdaq)). Further, we address the design and analysis of mechanisms and

information structures on the outcome of single platforms, as well as the dynamics of multi-

ple platform interaction. Using multiple approaches, including computational game theory,

multi-agent simulation, and empirical game analysis, this thesis provides insights for impor-

tant real-world domains like kidney exchange and financial markets, and also methodological

advances in modeling complex and dynamic agent interaction environments.

The rest of this chapter introduces the background of this thesis for each part and overviews

the structure and high-level contributions of the thesis.

1.1 Static Markets and Information Design

Traditionally, researchers and policymakers have studied platforms where agents interact for

economic or social purposes to inform mechanism and market design. One specific goal is

to provide a descriptive model of how the rules that the platform imposes on intermediate

interactions between the agents affect individual and social outcomes. However, one can

also then use these models to guide the design of these platforms to achieve certain social or

commercial goals. This is the focus of the field of market design, which can be thought of as

“microeconomic engineering” and has clearly become one of the key areas where economics,

computer science, and operations research intersect [82]. In most of the literature on mech-

anism design, the model assumes that agents’ information is given, and then searches for

rules of the game that yield desired outcomes. However, there has recently been considerable

interest in the parallel problem of designing the information environment that agents will
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encounter [35, 77]. This paradigm is clearly applicable in many scenarios of interest to AI

researchers, including online advertising and internet marketplaces. This line of research is

motivated by asymmetric information, where some relevant information is available to only

one side of the market. For example, the seminal job market signaling model of Michael

Spence [132] considers how the employers try to infer the quality of candidates from observ-

able characteristics. In systems with entrenched mechanisms that are unlikely to change,

manipulating information available to agents (employers in Spence’s model), and thus affect-

ing the outcomes of the mechanism becomes more valuable, especially when the valuations or

preferences of agents are unknown or noisy. In this thesis, we investigate the role and design

of information in both matching markets (Chapter 2 [40]) and auction markets (Chapter

3 [96]) in static settings.

1.1.1 Matching Markets and the Role of Information

Matching markets have a long history of study in economics, operations research, and other

areas, which focus on who gets what. In 1962, Gale and Shapley published their pioneering

paper on college admissions and marriage [59], and since then a large theoretical literature

has grown from this paper. Matching can be one-sided, i.e., allocating indivisible items

among agents, where the items do not have preferences but the agents do. Alternatively, it

can be two-sided, i.e., agents from two different sides, such as firms and workers, and they

cannot just choose, but also have to be chosen.

In standard matching mechanisms, ordinal preference/priority rankings are submitted by

the participants to represent their individual choice, and often this is sufficient to induce
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desirable or stable outcomes. While there has been much work on the theory and applica-

tions of matching, the literature has typically assumed that agents know their preferences

before the mechanism is run.2 Recently, there have been papers that try to relax this strin-

gent assumption [30, 38, 90]. This work can be divided into two main categories: one-shot

settings and repeated match settings. In one-shot settings, agents come into the matching

setting with unknown (or partially known) true preferences, but can learn more through a

costly information acquisition (interviewing) stage before the actual matching happens (for

example, academic job markets). In repeated matching settings, the “match” is not final,

but conveys information to participants on quality (for example, the matching between task

requesters and contractors in crowdsourcing platforms [75], or potential mates in a dating

market [38]). In this thesis, we focus on the former, one-shot settings.

We are motivated by labor markets. In most labor markets, employers interview potential

employees before offering them positions. The interview is an information acquisition stage,

where both employers and employees can learn more about their true preferences. Lee and

Schwartz [91] proposed what may be the first model of matching with an interviewing stage,

in which they ask about the employer’s decision of whom to interview, given that interviews

are costly and all employers and workers on either side of the market are ex-ante identical.

Another recent piece of work on interviewing is that of Rastegari et al., who look at the

problem of minimizing the number of interviews while guaranteeing stability and proposer-

optimality; they assume that agents have correct partial orderings and use interviewing to

refine and complete these partial orderings [121]. Our research is motivated by their models,

but the main issue we investigate is different. We consider the role of information ahead of

the interview process.

2There are many interesting variants where agents know their own preferences, but don’t know the
preferences of others [125], or where the mechanism does not wish to elicit complete preference information
[49], that we will not consider in detail here.
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Consider the matching process that academic departments go through when interviewing and

hiring faculty candidates. Typically, departments have a budget, say they can interview three

or four candidates for a position. They start off the process by receiving a noisy signal about

their preferences over candidates – CVs, letters of recommendation, and word-of-mouth can

yield much information about candidates, but not nearly as much as an in-person interview.

Once they have received these noisy signals, each department chooses which candidates to

interview to further form their true preferences. Following Lee and Schwartz, after all the

interviews have taken place, we can model the matching process as Gale-Shapley matching

with departments submitting ranked lists of the candidates they interviewed. While this

ignores some frictions (like exploding offers [41, 99]) that can be important, those are likely

to be a second-order effect compared with the choice of candidates to interview.

We study the effects of prior information signals that can be incorporated into firms’ inter-

viewing decisions and seek to illuminate how information influences the preference learning

and matching process. We are interested in both the overall efficiency of market outcomes

and distributional differences in expected outcomes. We show that more commonality in the

quality signals can be harmful, yielding fewer matches as some firms make the same mistakes

in choosing whom to interview. Relatively high and medium quality candidates are most

likely to suffer lower match probabilities. The effect can be mitigated when firms use “more

rational” interviewing strategies, or through the availability of private signals of candidate

quality to the firms.
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1.1.2 Auction Markets and Information Design

The other particular domain where manipulating information is interesting is in auctions

with signaling, which have been studied extensively in both economics and computer sci-

ence. Auction itself is one of the oldest ideas of selling and spans many different domains.

For example, Christie’s, founded in 1744 and Sotheby’s, founded in 1766, use them to sell

art. Governments use auctions to sell treasury bills, spectrum, or oil leases. Auction theory

was initiated in the seminal 1961 article by William Vickrey [141], which is the first game-

theoretic analysis of auctions, and then developed by researchers including Wilson, Clarke,

Groves, Milgrom, Weber, Myerson, Maskin, and Riley [15]. There are many different ways

of defining auctions, and they promote different kinds of behavior among bidders. Particu-

larly, this thesis analyzes the type called sealed-bid auctions (i.e., static settings) for single

items, where all bidders simultaneously submit sealed bids to the auctioneer, ideally without

knowing their opponents’ bids. The auctioneer unseals the bids and determines a winner,

usually the highest bidder. The three most commonly studied sealed-bid formats are:

• First-price sealed-bid auctions. The terminology reflects the original format for such

auctions, where the highest bidder wins the object and pays the value of her bid.

• Second-price sealed-bid auctions, also called Vickrey auctions. The highest bidder wins

the object and pays the value of the second-highest bid.

• All pay auctions. The highest bidder will be awarded the item and every bidder pays

her bid.

The underlying assumption of auction models is that each bidder has an intrinsic value for the

item being auctioned and she is willing to purchase the item up to this value. The bidders
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can share a common value, which we refer it as common value auctions, but the bidders

may have different information about the item’s value; for example, the value of an oil-lease

depends on how much oil is under the ground, but bidders may have their own experts to

estimate the amount. In contrast, in private value auctions, each bidder’s private valuation

of the item is different and independent of peer’s valuations. A key feature of auctions is

the presence of asymmetric information, where one side, either the buyer or seller, may have

better information than the other. Because both sellers and bidders are trying to maximize

their utility, signaling begins to play an important role.

The theory of signaling begins with the groundbreaking work of Michael Spence [132] as we

mentioned in the beginning of this section, which considers how the employers try to infer

the quality of candidates from observable characteristics. Since then, auctions with signaling

have been studied in several different contexts. Much of the literature assumes that agents

are symmetric with respect to the information they receive about the value of the item,

in the sense that the bidders’ signals are drawn from the same distribution. For example,

the seminal “Linkage Principal” of Milgrom and Weber [107] states that fully and publicly

announcing all information available to the seller is the expected-revenue-maximizing policy

in common value auctions. Somewhat less is known about auctions with asymmetrically

informed bidders, and most of that literature has focused on understanding how information

asymmetries affect revenue rather than on the design of the optimal signal structure. There

has also been a line of work on so-called “deliberative auctions” [24, 88] in AI domain,

where agents have the opportunity to acquire information about valuations before entering

a bidding process. Most of this literature focuses on strategic choices by the bidders and

how this affects equilibrium outcomes of the auction.
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Recently, a popular strand of research has considered the power of signaling in the so-called

persuasion model. Kamenica and Gentzkow [77] consider the problem of designing the

optimal information environment for the case between one self-interested agent (“sender”)

and one decision-maker (“receiver”), where both of them are rational Bayesians. The sender

can design the information structure or signal structure to release information about the

state of the world to receiver before the receiver makes her choice.

In this thesis, we analyze the signal design of a sealed-bid second price auction as a persuasion

game. As usual, the winner is the bidder who submitted the highest bid (with ties broken

equiprobably in either direction), but pays to the seller the second highest bid. The bidders

and seller share the same common prior on the underlying state of the item. Before the

bidding stage, the seller can provide a (noisy) signal to each bidder based on the state

of the world. She commits to a signaling strategy in advance, which can be asymmetric

for each bidder, and the resultant structure becomes common knowledge. We explore the

following two auction games: (1) a basic common-value auction model, where the value of the

item is determined either by a single attribute or by two independent attributes when each

bidder can receive information from exactly one of the attributes; (2) an interdependent-

value auction, where the valuation for each bidder is decided by a common value attribute

and a private attribute. We show that in the common-value auction settings, there is no

benefit to the auctioneer in terms of expected revenue from sharing information with the

bidders, although there are effects on the distribution of revenues. In an interdependent-

value model with mixed private- and common-value components, however, we show that

asymmetric, information-revealing signals can increase revenue.
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Our model contributes to the growing literature on Bayesian persuasion with multiple re-

ceivers; this literature usually focuses on public signals [50, e.g.] or symmetric signal struc-

tures [39, e.g.]. Our model is applicable to complex situations where the sender of the signal

has the opportunity to communicate in different ways to different receivers. This can hap-

pen in situations like corporate mergers [19, 123], where targets (sellers or signal senders in

our case) have to communicate with potential acquirers (the signal receivers). It is known

that targets often inflate their output [64] or themselves may not be aware of their value

to an acquirer due to the complexity and intangible characteristics which cannot be easily

observed [81].

1.2 Dynamic Markets and Platform Competition

Instead of static settings as we discussed above, many real-world market problems are dy-

namic, with agents (or both agents and items) arriving and departing over time in a persistent

market. Dynamic markets in a single market have been explored in many domain-specific

applications. We can still consider the categories of one-sided markets and two-sided markets

as we did for the static settings. For example, famous public housing assignment problem,

which tries to assign scarce public housing to low income households [1,78,79,92]; cadaveric

organ allocation, which matches cadaveric organs to patients based on their medical charac-

teristics [20,133,150], and general barter markets like kidney exchange [48]. These examples

are in the area of one-sided markets, where only one side (the agents) has preferences over the

other (the items). There are also many applications in two-sided markets, and examples of

such markets are myriad: online dating (e.g., Match.com and OkCupid) [21]; rideshare, like
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Didi Chuxing and Uber [71]; and financial or commodity markets (e.g., NYSE and Nasdaq),

where we have buy orders and sell orders.

In dynamic markets, the planner needs to select a subset of acceptable transactions at any

point in time. Thus, the natural question is, what kind of algorithm to use for matching?

There is greate debate about this in this area across different domains [4,11,13,17,142,143].

In this part of our research, we investigate the role of matching algorithms or market-clearing

rules in helping inform the debate; Particularly, we focus on two extreme but representative

cases: greedy policy, which attempts to match each entering agent immediately; and patient

or batch policy, which allows agents to accumulate in the market.

Furthermore, many dynamic applications, like rideshare services, universities, and organ

exchanges, involve multiple clearing houses that compete to attract participants, and they

may share overlapping pools of agents. These platforms may be self-interested: their eventual

goal is to survive in the competitive environment and optimize their profit. The interactions

of markets or platforms are understudied by literature, especially in the area of general barter

exchange or in the context of matching markets. Accordingly, we focus on quantifying the

social welfare and on capturing individual equilibrium behaviors of both agents and markets

in the multi-market competition environment. Overall, this part of the thesis can be applied

to many important real-world domains, two important examples are (1) kidney exchange

and (2) financial markets.
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1.2.1 Kidney Exchange

According to the National Kidney Foundation3, in the last few years, more than 100,000

patients have been waiting for a kidney transplant in the US. In 2014, which is the latest

year we have data, about only 17,000 transplants were conducted, and close to one-third of

those were from living donors. One major issue with living-donor transplantation is that

willing donors must be medically compatible with the patient. Unfortunately, due to ABO

blood-type incompatibility and positive crossmatches, some pairs are incompatible. One

idea proposed decades ago is to have incompatible pairs enter a kidney exchange [120].

A kidney exchange allows patients who suffer from terminal kidney failure, and have been

lucky enough to find a willing but incompatible kidney donor, to swap donors. Apparently, a

kidney exchange is a dynamic matching market, where the patient-donor pairs (i.e., agents)

arrive gradually over time. They stay in the market until they find a compatible pair unless

the patients’ situation deteriorates so that kidney transplants are no longer feasible, in

which case the agent leaves the market. Ünver [139] was the first to address dynamic kidney

exchange, with recent follow-up work by Ashlagi et al. [13] and Anderson et al. [6]. All three

papers look at matching policies that aim to maximize (discounted) social welfare (i.e., the

sum of expected utility). Particularly relevant to real-world kidney exchanges are batching

policies, where a market clearing occurs at a fixed interval; several theoretical and empirical

explorations of this class of policy have been performed [6,8,13,16]. Learning policies are also

designed based on different data distributions or use potential data distribution to inform

myopia algorithms [12,33,45,46,48].

3https://www.kidney.org/news/newsroom/factsheets/Organ-Donation-and-
Transplantation-Stats
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Kidney Exchange and Market Fragmentation

While paired kidney donation of this kind has had success in the United States, a raft of

coordination problems and exchange fragmentation has prevented it from accounting for a

truly significant fraction of transplants. In practice, kidney exchange accounts or only 10%−

12% of living donations. The interaction of multiple competing kidney exchanges—a problem

that is especially relevant in the US now, and, as kidney exchanges move to international

swapping, will soon become relevant worldwide—is little reviewed in the literature, and we

seek to fill the gap. In this part of the thesis, we make two contributions:

We address market fragmentation and quantify the social welfare loss directly in these com-

peting markets (Chapter 4) [37]. In the United States, multiple fielded kidney exchanges

exist, and patient-donor pairs are entered simultaneously into one or more of these markets,

based on geographical location, travel preferences, home transplant center preferences, or

other logistical reasons. Individual kidney exchange clearinghouses have the incentive to

compete on the number of matches performed within their specific pools. We explore the

effect of competition between exchanges with different matching policies on global social

welfare in the context of the number of matched patients.

We formalize a two-market model where agents enter one market or both markets stochas-

tically; they can then be matched to other agents who have joined the same market or

both markets. The markets adhere to different matching policies, with one matching greed-

ily (Greedy market) and the other building market thickness through a policy of patience

(Patient market). From both theoretical support and experimental evidence, we show that

market fragmentation caused by the competition leads to worse global loss than a single

market.
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We then provide the first analysis of equilibrium behavior in this competing market (Chapter

5) [98]. Akbarpour et al. [4] show that platforms may maximize the number of transplants

achieved by being patient (Patient policy) instead of trying to match new pairs immediately

(Greedy policy). The intuition is that waiting helps the market become thicker. Thus,

Patient market is actually more socially preferable. However, any given individual almost

certainly seeks to maximize her own utility instead of considering the social welfare of the

market. Now we approach this market competition problem from a game-theoretic point of

view—under what circumstance and which type of agents have the incentive to participate

in Patient or Greedy market? Similarly, because markets seek to maximize their own utility

at a potential cost to overall social welfare, how should they adapt their matching rates?

We utilize the above two-market model, and first allow agents to strategically choose a

market, given the knowledge of their own criticality. Our model considers two types of

agents in terms of criticality, short-lived and long-lived. An agent receives zero utility if

she perishes. If she is matched, she receives a utility of 1, discounted at rate δ. Thus,

the market choice is actually a tradeoff between matching probability and utility. That is,

entering a Patient market gives an agent a higher matching probability but lower utility as

the patient’s situation deteriorates during waiting; in contrast, immediate matching from a

Greedy market provides a higher utility but may lower the probability of matching since the

market is not thick enough.

Second, we prescribe agency to the markets themselves, allowing them to choose overall

matching policies (defined by the frequency at which they decide to match) strategically to

maximize their overall utility. In this case, the agents are stochastic in their choice to join

one or the other market or to enter both markets. We quantify via best response dynamics

the social welfare loss of this competitive marketplace under a variety of initial conditions
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and compare that loss to the lower bound provided by a single market running an optimal

matching policy.

Our work is among the first to study strategic issues in market/platform competition in the

context of matching markets. Matching markets of the kind we study here are quite distinct

from markets for securities or for other kinds of products, because in our setting the value of a

matching is idiosyncratic (to the pair matched) and utility is nontransferable [28]. Therefore

the standard price mechanism is unavailable as one of the levers available to the platforms

or the agents to change outcomes, and the matching policy becomes of central importance.

These restrictions (no money changing hands and nontransferable utility) are necessary for

modeling domains like kidney exchange (where exchanging money is prohibited by law and

utility can be a function of waiting time as well as kidney quality, although in this part we

focus on a model for the former), or dating (where it would be considered problematic for a

dating app to pay users to go on dates with certain other members).

Our work applies techniques from computational game theory to studying platform compe-

tition in the context of dynamic matching markets. An established model of matching due

to Akbarpour et al. [4] has found that greedy matching (making matches as soon as they

are possible) can lead to worse social outcomes. If one defines social loss in terms of the

additive inverse of the waiting-time discounted number of matched pairs, then adopting a

Greedy strategy can result in exponentially worse loss than a Patient strategy for sufficiently

low discount rates. We extended that model to quantify the costs of market fragmentation

when greedy and patient markets compete. The central insight in both cases is that thinner

markets lead to fewer (or poorer quality) matches. In this thesis, we show that the thinness

problem actually gets worse when either agents are strategic about market entry or mar-

kets are strategic about choosing matching frequency/cadence. The existence of greedy and

14



patient alternatives can lead to patients with privation information about their type into

separating equilibria that further fragment markets, leaving everyone worse off than if there

were a single monopolist market (even if that market were greedy rather than patient!).

The presence of another market that could be greedy can lead a market to choose a greedy

matching policy, even when it would have been better off choosing a patient policy if it were

a monopolist.

The above results are not merely theoretical concerns. In the United States, for example,

two of the largest kidney exchanges are the National Kidney Registry (NKR) and the United

Network for Organ Sharing (UNOS). NKR matches in an essentially greedy fashion. UNOS

started by matching once per month, then moved to twice per month, then weekly, and

now 2+ times per week, in part to reduce the “failure rate” caused by competition with the

fast-matching NKR. We see this behavior replicated in our model, and can quantify social

welfare loss as well. Combinations of analytic and simulation results of this nature have set

policy in kidney exchanges before (e.g., [47] and [48] have set parts of UNOS policy), and

our model could help inform this debate.

Utility Design and Incorporating Compatible Pairs in Kidney Exchange

To improve the performance of kidney exchange, instead of solving the market fragmentation

problem directly, one proposal for transplanting more recipients from incompatible pairs has

been to incorporate compatible pairs into exchanges. This idea was first proposed by Gentry

et al [61], but it has not been studied much. Part of the reason is that it is very tough to

come up a reason or a quantitive measure for the compatible pairs to participate in a kidney

exchange instead of just transplanting directly with their compatible donors. The recent

development of new metrics for the quality of a living donor transplant [104] presents an
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opportunity to reassess the possible benefits in the context of realistic models of compatible

pair behavior, while also evaluating benefits in terms of both additional transplants made

possible and improved outcomes from transplants. Further, it is reasonable to believe that

compatible pairs may be more willing to enter exchanges if (1) their waiting times are kept

low, and (2) they have a more precise idea of the potential benefit to doing so.

In this part of the thesis (Chapter 6), our main contributions are two-fold: (1) We first present

a framework for studying kidney exchange in a weighted or cardinal utility setting, which can

directly present how much benefit a compatible pair can receive in terms of long-time graft

survival; (2) Then we use this framework to estimate the benefit of including compatible

pairs in kidney exchange. Using data from Barnes Jewish Hospital in St. Louis, Missouri,

we develop a novel simulator that generates realistic distributions of graft survival (based

on the recent introduction of the Living Kidney Donor Profile Index [104]) and combine this

with a well-known compatibility simulator [127] in a manner that is faithful to data on real

arriving pairs. We use our simulator across different matching mechanisms to estimate both

the increased numbers of transplants of incompatible pairs (almost doubling the number

transplanted) and the improved match quality for recipients in compatible pairs (increasing

expected graft survival by between 1 and 2 years). Our results are robust across several

different exchange sizes in the static setting, in dynamic settings where compatible pairs

must be immediately matched, and across assumptions about incompatible to compatible

pair ratios. The results are also promising for hard-to-match subpopulations, including blood

group O recipients and highly sensitized patients.
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1.2.2 High-frequency Trading and Competition Between Finan-

cial Exchanges

Another interesting line of dynamic markets is financial markets. Most modern financial

exchanges operate using the continuous double auction (CDA) mechanism, a greedy fashion

mechanism, which in principle allows for trading in continuous time, at least to within our

measurement and implementation capabilities [58]. In this kind of market, agents submit

bids, or limit orders, which represent the maximum price at which they would like to buy, or

the minimum price at which they would like to sell. Outstanding orders are maintained in

two priority queues: one for bids (the buy orderbook) and one for asks (the sell orderbook).

Bids and asks are prioritized first by price and second by time. When a new order comes in,

it is added to the corresponding order book. A trade is executed immediately if the highest

bid exceeds or is equal to the lowest ask. The execution involves the orders at the top of the

bid and ask queues, at the price of the older of the two orders involved.

In the last two decades, The existence of this continuous time feature has led to the develop-

ment of the phenomenon called High-frequency trading. Essentially people are competing to

get to market a little bit quicker than someone else, because having small of time advantage

can make a big difference. With companies keeping investing in faster infrastructure for

trading, and events like the “flash crash” of May 2010, high frequency trading (HFT) has

become an increasingly debated topic in both the media and policy spheres [93]. Proponents

claim that high-frequency trading improves liquidity and price discovery. Improved liquidity

means lower transaction costs for average investors, while better price discovery serves the

social information aggregation and dissemination role of market prices [26, 106]. However,

there is increasing evidence that at least one form of high frequency trading, namely latency

arbitrage, has reached a point of socially diminishing returns. Budish et al demonstrate
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this both empirically and through a simple model: empirically, they show that correlations

between virtually identical assets being traded in different markets break down at very small

timescales, while they are essentially perfect at larger timescales [27]. Correlation breakdown

can almost be thought of as a law of physics – there is no natural force tying the assets or

markets together, so there is no way to make them actually move simultaneously. What is

problematic is the “arms race” this creates to extract the maximum profit from squeezing

this reaction time down as much as possible. Budish et al. show that this is not only socially

inefficient, it can actually create thinner markets. Along similar lines, Wah and Wellman

build a model where an asset is traded on two markets, and there is an infinitely fast la-

tency arbitrageur present. They show how the presence of the arbitrageur can hurt social

welfare [143]. Both sets of authors recommend frequent batch auctions as a market structure

that could replace CDAs, since the minimum time period between trades is specified, and

there is no benefit to being faster than that.

An important question for the possible use of frequent batch (or call) auctions is how they

would work in the presence of existing CDA markets. Competition between exchanges or

platforms that try to attract trade is a vast topic, and there is evidence in many domains

that platforms with better welfare properties assuming that there is only one platform is

considered at a time may not be able to capture enough of the market for these properties

to become evident when they face competition from other platforms. For example, as what

we showed in living-donor paired kidney exchange, even though exchanges that wait to build

thickness may be socially preferable, exchanges that match greedily can make them non-

viable. Therefore, even though they may have desirable welfare properties, could call auction

based markets actually take volume away from CDA markets if both existed simultaneously?

Wah et al have engaged this question using empirical game theoretic analysis [142]. They

develop a model where the environment is populated by fast (HFT) and slow (non-HFT)
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traders. They argue that a frequent call market in the wild could attract sufficient volume

for viability from two perspectives: first, in equilibrium, welfare of slow traders is generally

higher in the call market, where they are relatively protected from sniping and adverse

selection, and second, fast traders are willing to follow the slow traders to either market,

including to the call market, so it could serve as a basin of attraction. Wah et al.’s model

does not consider traders who have a preference for immediacy, and it also restrict traders

to choose a single market and then do not allow traders to move. While their results are

quite promising, we seek to build a richer model that combines aspects of classic financial

market microstructure models and agent-based models that are known to replicate important

properties of order books.

Another line of literature relates to the Trading Agent Competition Market Design Com-

petition (CAT) [111]. In this competition, participants aim to design better mechanisms to

maximize a score (a combination of profit, market share and transaction success rate) when

traders are drawn from a known population of different types. CAT gives a general view

of competition among different markets, but we focus on a comparison of two more specific

market mechanisms and how they influence the social welfare of traders.

In this part of the thesis (Chapter 7 [95]), we contribute to this nascent literature by de-

veloping an agent-based model of competition between a Call market and a CDA market.

Agent-based modeling seeks to fill the hole in simple stylized models which may not represent

agent behavior in sufficiently complex manners to really capture the essence of the important

phenomena. The last two decades have seen substantial work on agent-based modeling of

financial markets, using both sophisticated [32,52,57,114] and simple [56,80,89] trader mod-

els in the population. Our model is as parsimonious as possible while attempting to capture

the essential relevant behaviors that are important to understanding the behavior of these
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markets. As such, it follows the basic structure of classic models of market microstructure

such as those of Glosten and Milgrom [66] and of Kyle [85]. In these models, there are

informed traders, who possess superior information and trade in search of profit, liquidity

(or background) traders, who trade for exogenous reasons (e.g. retirement funds that receive

cash and need to track indices, or investors liquidating portfolios in retirement or in order

to buy a house, say) and demand immediacy, and market makers, who may be employed in

order to facilitate price discovery and trade execution.

We show that there is a strong tendency for the Call market to absorb a significant fraction

of trade under most equilibrium and approximate-equilibrium conditions. These equilib-

ria typically lead to significantly higher welfare for the background traders, an important

measure of social value, than the operation of an isolated CDA market.

1.3 Contributions and Structure of the Thesis

Part I of the thesis studies static markets and information design, which consists of Chapter

2 and Chapter 3.

Chapter 2 addresses the role of information in matching markets. We study two-sided

matching markets where the matching is preceded by a costly interviewing stage in which

firms acquire information about the qualities of candidates. Our focus is on the impact of the

signals of quality available prior to the interviewing stage. Equilibrium interviewing decisions

are hard to characterize in complex models with differentiated quality, so we use a mixture of

simulation, numerical, and empirical game theoretic analysis to analyze social outcomes. We

show that more commonality in the quality signals can be harmful, yielding fewer matches
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as some firms make the same mistakes in choosing whom to interview. Relatively high and

medium quality candidates are most likely to suffer lower match probabilities. The effect

can be mitigated when firms use “more rational” interviewing strategies, or through the

availability of private signals of candidate quality to the firms.

Chapter 3 investigates the information design in auction markets. We consider the problem

of designing the information environment for revenue maximization in a sealed-bid second

price auction with two bidders. Much of the prior literature has focused on signal design in

settings where bidders are symmetrically informed, or on the design of optimal mechanisms

under fixed information structures. We study common- and interdependent-value settings

where the mechanism is fixed (a second-price auction), but the auctioneer controls the signal

structure for sellers. We show that in a standard common-value auction setting, there is no

benefit to the auctioneer in terms of expected revenue from sharing information with the

bidders, although there are effects on the distribution of revenues. In an interdependent-

value model with mixed private- and common-value components, however, we show that

asymmetric, information revealing signals can increase revenue.

Part II of the thesis contributes to dynamic markets and platform interactions or competi-

tions, and consists of Chapter 4, Chapter 5, Chapter 6, and Chapter 7. Chapter 4, Chapter

5 and Chapter 6 focus on kidney exchange, and 7 studies financial markets.

Chapter 4 and Chapter 5 investigate dynamic matching market competition. While dy-

namic matching markets are usually modeled in isolation, assuming that every agent to be

matched enters that market, in many real-world settings there exist rival matching markets

with overlapping pools of agents. We extend the framework of dynamic matching due to

Akbarpour et al. [4] to characterize outcomes in cases where two such rival matching mar-

kets compete with each other. One market matches quickly, while the other builds market

21



thickness by matching slowly. We give an analytic bound on the loss—the expected fraction

of unmatched vertices—of this two-market environment relative to one in which all agents

enter either one market or the other, and numerically quantify its exact loss, demonstrating

that rival markets increase overall loss compared to a single market that builds thickness.

We then look at two competing kidney exchanges, where patients with end-stage renal failure

swap willing but incompatible donors, and show that matching with rival barter exchanges

performs qualitatively the same as matching with rival matching markets—that is, rival

markets increase the global loss. We also provide the first analysis of equilibrium behavior

in dynamic competing matching market systems—first from the points of view of individual

participants when market policies are fixed, and then from the points of view of markets

when agents are stochastic.

To improve the performance of kidney exchange in terms of both social welfare and individual

utility, Chapter 6 analyzes the benefit of convincing directed donation pairs to participate in

paired kidney exchange. This possibility has been relatively understudied by literature. Pos-

sibly, incorporation of compatible pairs in exchanges has not taken off because the potential

benefits to recipients in compatible pairs have been pooly qualified. The recent introduction

of the Living Donor Kidney Profile Index (LKDPI), which can be transformed into an ex-

pected survival time for the graft, presents an opportunity to better estimate the potential

benefits, and to present compatible pairs with a compelling medical reason to participate in

an exchange rather than proceeding with a direct donation. Using data from Barnes Jewish

Hospital, we develop a novel simulator for LKDPIs that generates realistic distributions of

graft survival, and we combine this with a well-known compatibility simulator in a manner

that is faithful to data on real arriving pairs. We use our simulator across different matching

mechanisms to estimate both the increased numbers of transplants of incompatible pairs
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(almost doubling the number transplanted) as well as the improved match quality for recip-

ients in compatible pairs (increasing expected graft survival by between 1 and 2 years). Our

results are robust across several different exchange sizes in the static setting, dynamic set-

tings where compatible pairs must be immediately matched, and across assumptions about

incompatible to compatible pair ratios. The results are also promising for hard-to-match

subpopulations, including blood group O recipients and highly sensitized patients.

Chapter 7 studies dynamic markets from the view of financial markets. In the debate over

high-frequency trading, the frequent call (Call) mechanism has recently received considerable

attention as a proposal for replacing the continuous double auction (CDA) mechanisms that

currently run most financial markets. We examine agents’ profit under CDA and frequent

call auctions in a dynamic environment. Another natural question, which has begun to spur

the development of new models, is the effect of competition between platforms that use these

two different mechanisms when agents can strategize over platform choice. We contribute

to this nascent literature by developing an agent-based model of competition between a

Call market and a CDA market. Our model incorporates patient informed traders (both

high-frequency and not) who are willing to wait for order execution at their preferred price

and impatient background traders who demand immediate execution. We show that there

is a strong tendency for the Call market to absorb a significant fraction of trade under

most equilibrium and approximate-equilibrium conditions. These equilibria typically lead

to significantly higher welfare for the background traders, an important measure of social

value, than the operation of an isolated CDA market.
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Chapter 2

Matching Markets and the Role of

Information

In this chapter, we investigate the role of information in matching markets. Specifically, we

focus on labor markets with interviewing. In most labor markets, employers interview po-

tential employees before offering them positions. The interview is an information acquisition

stage, where both employers and employees can learn more about their true preferences. Lee

and Schwartz proposed what may be the first model of matching with an interviewing stage,

where employers first simultaneously choose a subset of workers to interview, and then, in

a second stage, submit preferences to a (Gale-Shapley) matching algorithm that then forms

the matching [90]. An interview is a precondition for a possible matching to be formed be-

tween an employer and a worker. The basic question that Lee and Schwartz ask is about the

employer’s decision of whom to interview, given that interviews are costly and all employers

and workers on either side of the market are ex ante identical. The main complexity is then

that the marginal benefit of interviewing a worker goes down as her number of other inter-

views goes up. The major result is that in symmetric equilibria (where each employer and
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worker has the same number of interviews), the number of agents matched goes up in the

overlap, a measure characterizing the number of common interview partners among agents.

In this chapter, we follow Lee and Schwartz’s model but consider a different issue. we are

interested in situations where firms and workers are of different qualities instead of ex ante

identical, and some quality signals are available prior to the interviewing stage. We study

the effects of prior information signals that can be incorporated into firms’ interviewing deci-

sions. We are interested in both the overall efficiency of market outcomes and distributional

differences in expected outcomes.

In order to elucidate these issues, we look at a stylized model where there is a universally

shared, common knowledge ranking of all firms, and there is a “true” universally shared

ranking of all candidates, but this true ranking is not known – instead, firms receive different

signals of candidates’ rankings or qualities. If the true ranking were known to everyone,

there would be only one stable matching, the assortative one, and any rational interviewing

process would lead to the stable outcome in the matching stage. When signals of quality or

ranking are noisy, firms must reason both about the true quality of candidates and about

strategic issues in deciding whom to interview. This can lead to inefficiencies, where some

candidates andfirms do not end up getting matched whereas they would have with better

information; these inefficiencies may fall disproportionately on some portion of the population

of candidates and firms.

We are particularly interested in the roles of common and private information on aggregate

and distributional outcomes in such matching markets. Common signals are shared across

firms – for example, the quality of a CV, number of publications, LinkedIn endorsements,

or public contributions to open source projects, can all be thought of as common signals

of varying precision. A private signal is, as the name suggests, private to a particular
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firm. Private signals can be generated through phone screens, preliminary interviews, etc.

We assume that common and private signals are conditionally independent given the true

ranking or value of the candidate. The central question of this chapter is the effect of

the relative precision of common signals and private signals on market outcomes. While

a perfect common signal would reduce the problem to one with known rankings of both

firms and candidates (and lead to the assortative matching and no inefficiencies under any

reasonable model), our main finding is that the presence of a strong, but imperfect, common

signal in addition to existing private signals can actually have significant negative effects,

with fewer matchings occurring than with a private signal alone. The burden of this is

typically borne by the candidates who are ranked relatively high (but not in the highest

echelon). The mechanism is interesting – when these candidates end up with a common

signal that is “too high”, they interview at firms that are ranked too high for their actual

quality. The firms that are closer to their true range choose not to interview them, but when

these candidates’ true qualities are revealed, they often don’t get offers from the places that

did interview them.

In this chapter, we start from introducing the formal matching model and the various models

of quality signals that we consider. All the interviewing strategies we develop are predicated

on the posterior belief of each firm after receiving the common signal and the private signal

of employee qualities, so in Section 2.2 we describe the inference procedures necessary to

compute these posterior beliefs. In Section 2.3, we analyze matching outcomes when all firms

use the heuristic interviewing strategy of interviewing applicants “around” their own rank.

Section 2.4 develops more sophisticated strategies in a sequential setting, and examines the

distributional and aggregate effects on matching outcomes when firms use these strategies.
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2.1 Model

There are n workers and n firms, represented by the sets W = {w1, ..., wn} and F =

{f1, ..., fn}. The matching market operates in two stages, following the model of Lee and

Schwarz [90]. In the first stage, each firm selects k workers (or candidates) to interview;

this decision is made on the basis of information present in the signals received by firms

(described below). During the interview process, the true ranking of the set of candidates

that is interviewed is revealed to each firm. The second stage can then be thought of as a

Gale-Shapley matching where each firm submits a ranked list of the candidates it interviewed

(others are unacceptable), and each candidate submits a ranked list of firms.

2.1.1 Signals and Preferences

All workers know their preference rankings over employers with certainty. We assume that

the workers all have exactly the same preferences over potential employers (for example, all

workers rank departments solely on the basis of the US News and World Report program

ranking).4 Further, there exists a universal “true” ranking of all the workers as well, but

this ranking is unobserved. Employers receive a private signal of their preferences as well as

a common signal. In this chapter we consider two possibilities:

1. Random-utility models: wi has a true value vi (which is drawn from a normal

distribution). fj’s private signal is a vector sj = (s1, s2, . . . sn). Each si, 1 ≤ i ≤ n is a

noisy realization of the true value of vi. We consider two noise distributions, Gaussian

and uniform. For Gaussian noise, si ∼ N (vi, σp), where N (vi, σp) denotes the Gaussian

4Because of this, who proposes in the second stage becomes irrelevant for the rest of this chapter, since
either side proposing would yield the same outcome.
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density function with mean vi and standard deviation σp. σp is constant for all i. For

uniform noise, si ∼ U(vi − bp, vi + bp), where U(vi − bp, vi + bp) denotes the uniform

distribution with support on [vi− bp, vi + bp]. bp is also constant for all i. The common

signal, received by all employers, is a single vector zC = (z1, z2, . . . zn). Similar to the

realizations for the private signal, the realizations for the common signal are also noisy,

with zi ∼ N (vi, σC) in the case of Gaussian noise and zi ∼ U(vi − bC , vi + bC) in the

case of uniform noise.

2. Mallows model: We can also directly consider signals over the ranking space, instead

of the value space. The Mallows model [103] is a distance-based model, which defines

the probability of a permutation according to its distance to a modal permutation

[101]. Following Lu and Boutilier’s description of its form, we say that each employer’s

private signal is a ranking Γj sampled from the distribution which assigns P (Γj|Γ, φp) =

1
Z
φp

d(Γj ,Γ), where Γ is the modal ranking (which in our case is the true ranking), φp ∈

(0, 1] is a dispersion parameter such that the smaller φp is, the more the distribution will

be concentrated around the modal ranking, d is a distance function between rankings

(in our case the classic Kendall tau distance which counts the pairwise disagreements

between the two rankings), and Z is a normalizing factor. The common signal, ΓC is

sampled from a Mallows model with the same modal ranking Γ and a possibly different

dispersion parameter φC .

In both cases, we assume common knowledge of all the relevant parameters of the distribu-

tions; the only unknowns are the true values or rankings. Note that in all cases, if the true

rankings were known, the only stable matching is assortative, with the best worker getting

matched to the top employer, the second-best to the second-best, and so on.
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2.2 Inference

In order to describe interviewing strategies and outcomes, we first need to specify appro-

priate inference techniques for firms to compute posteriors given the private and common

signals they receive. We denote posterior density functions on values of workers as fv(·). In

both the random utility and Mallows models, it is computationally difficult to perform full

Bayesian reasoning over the whole space of possible posterior rankings, so we assume that

firms compute the single most likely posterior ranking from the common and private signals

(defined explicitly below in either case), which we denote as Γ̃j, and use this single ranking

for interviewing decisions.

2.2.1 Inference in the random utility models

The main ideas for combining different signals in the random utility models follow from those

developed by MacQueen [102]. Given fj’s private signal sj = (s1, s2, . . . , sn), and common

signal zC = (z1, z2, . . . zn), the posterior on wi’s value vi is given by Bayes’ rule:

fv(vi|si, zi) =
fv(si|vi)fv(zi|vi)fv(vi)∫ +∞

−∞ fv(si|vi)fv(zi|vi)fv(vi)dvi
.

When the noise is Gaussian, vi ∼ N (µ, σ), si ∼ N (vi, σp) and zi ∼ N (vi, σC). Thus, the

expected value of vi is

E(vi|si, zi) =

si
σp2

+ zi
σC2 + µ

σ2

1
σp2

+ 1
σC2 + 1

σ2

.
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When the noise is uniformly distributed, vi ∼ N (µ, σ), si ∼ U(vi − bp, vi + bp), and zi ∼

U(vi − bC , vi + bC). The expected value vi is

E(vi|si, zi) =

∫
D

vif(vi)∫
D
f(vi)dvi

dvi,

where D is the intersection of [si−bp, si+bp] and [zi−bC , zi+bC ]. In both cases, the posterior

ranking Γ̃j is found by sorting the E(vi|si, zi) in descending order.

2.2.2 Inference in the Mallows model

For inference in the Mallows model, we use an algorithm based on the one devised by Qin et

al [117] in the coset-permutation distance based stagewise (CPS) model (which is equivalent

to the Mallows model using the Kendall tau distance). Here we describe their model in

terms of our problem (our exposition below follows theirs, adapted to our domain). W

is the set to be ranked. A ranking π is a bijection from W to itself; π(i) denotes the

rank of wi and π−1(i) denotes the worker assigned to position i. The bracket alternative

notation is also used to represent a permutation, i.e., π = 〈π−1(1), . . . , π−1(n)〉. Let Sn

denote the symmetric group of order n (a non-Abelian group under composition). The right

coset Sn−kπ = {rπ|r ∈ Sn−k} is a subset of permutations whose top-k objects are exactly

the same as in π (here Sn−k denotes the subgroup of Sn consisting of all permutations

whose first k positions are fixed: Sn−k = {π ∈ Sn|π(i) = wi, ∀i = 1, ..., k}). The coset-

permutation distance is a measure of the average distance between the permutations in the

coset and the reference permutation. Given a permutation distance d (we use the Kendall

tau distance), the coset-permutation distance d̂ from a coset Sn−kπ to a target permutation

r is d̂(Sn−kπ, r) = 1
|Sn−kπ|

∑
τ∈Sn−kπ d(τ, r), where |Sn−kπ| is the number of permutations in
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set Sn−kπ. The CPS model defines the probability of a permutation π conditioned on a

dispersion parameter φ ∈ (0, 1] and a reference permutation r as,

P (π|r, φ) =
n∏
k=1

φd̂(Sn−kπ,r)∑n
j=k φ

d̂(Sn−k(π,k,j),r)
,

where Sn−k(π, k, j) denotes the right coset including all the permutations that rank workers

π−1(1), ..., πk−1(k − 1) and π−1(j) in the top k positions respectively. When the coset-

permutation distance in the CPS model is induced by the Kendall tau distance, the CPS

model is mathematically equivalent to the Mallows model defined with the Kendall tau

distance.

We apply the sequential inference algorithm (shown as Algorithm 1) of [117] to get a single

posterior ranking Γ̃j. This algorithm approximates the single highest probability posterior

ranking conditioned on the input rankings. The algorithm decomposes the inference into n

steps. At the kth step, it selects worker wi who minimizes the coset-permutation distance,

∑
m

(− ln(φm))d̂(Sn−1(〈Γ̃j
−1

(1), ..., Γ̃j
−1

(k − 1), wi〉),Πm),

and puts this worker at the kth position.

2.3 Market Outcomes With a Simple Interviewing Strat-

egy

We first examine outcomes in a market where firms all use the same simple and intuitive

interviewing strategy. They each compute their posterior ranking based on the available
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ALGORITHM 1: Sequential Inference for Posterior Ranking (from [117])

Input: : W , input rankings Π where Π1 is the private signal, Π2 is the common signal, and
parameters φ where φ1 is the private signal dispersion parameter and φ2 is the common
signal dispersion parameter.

Output: the final ranking Γ̃j .

Γ̃j
−1

(1) = arg minwi∈W
∑

m(− ln(φm))d̂(Sn−1(〈wi〉),Πm);

Remove worker Γ̃j
−1

(1) from set W ;
repeat

Γ̃j
−1

(k) = arg minwi∈W
∑

m(− ln(φm))d̂(Sn−1(〈Γ̃j
−1

(1), ..., Γ̃j
−1

(k − 1), wi〉),Πm);

Remove worker Γ̃j
−1

(k) from set W ;

until W = ∅;

signals, and then interview the k candidates who are ranked “around” the firms own rank-

ing. So, suppose k = 5, then the firm ranked number 11 will interview the candidates it

ranks in positions 9 through 13. Firms at the top and bottom of the firm rankings adjust

their interview set downwards and upwards respectively (so, the top three ranked firms all

interview candidates 1-5, and the bottom three all interview candidates 26-30, although the

particular candidates occupying these ranking positions can be different for each firm, since

they may be based on a posterior computed using private information).

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

σ
C

 | σ
p
 = 1

#
 u

n
m

a
tc

h
e
d

 

 

Common signal and private signal

Private signal only

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b
C

 | b
p
 = 1

#
 u

n
m

a
tc

h
e
d

 

 

Common signal and private signal

Private signal only

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

φ
C

 | φ
p
 = 0.6

#
 u

n
m

a
tc

h
e
d

 

 

Common signal and private signal

Private signal only

Figure 2.1: Simulation results with 30 employers, 30 workers and an interview budget of 5 for each
firm. The graphs show the average number of agents left unmatched (Y axis) versus a decreasing
function of the precision of the common signal (σC for Gaussian noise (left), bC for uniform noise
(middle), and φC for the Mallows model (right)), holding the precision of private signals fixed.
The dashed line shows the number that are left unmatched when there is no common signal.
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Figure 2.2: The probability that the candidate of a particular rank is matched when firms have
access to both a common signal and a private signal. Left: Gaussian noise (σC = 0.6, σp = 0.5),
Center: Uniform noise (bC = 0.6, bp = 0.5), Right: Mallows model (φC = 0.7, φp = 0.6).

In order to study market outcomes, we run 50000 simulations for each of the random utility

and Mallows models; each simulation is of a market with 30 firms and 30 workers, each

with interview budget 5. In each run, we hold the private signal parameters fixed, which

are σp, bp in the random utility models and φp in the Mallows model, and vary the common

signal parameters, which are σC , bC in the random utility models and φC in the Mallows

model.

2.3.1 Analysis

Based on the observation that the only stable matching if true preferences were known is

the assortative matching, and that adding a common signal gives everyone more information

about the true ranking, one would assume that adding the common signal always leads to

more agents being matched. At the extreme, this is obvious – suppose the common signal

had no noise and contained perfect information. Then the rational inference is just to use

that signal. In this case, the assortative match would occur for sure.

But it turns out that, as the signal becomes less precise, the number of unmatched agents

goes up sharply, and quickly exceeds the expected number of unmatched agents when no
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Figure 2.3: The average number of agents left unmatched when firms have access to only a single
common signal. The X axis in each graph is a decreasing function of the precision of the common
signal. Left: Gaussian noise, Center: Uniform noise, Right: Mallows model.

common signal is present! Surprisingly, on the candidates’ side, the candidates who are less

likely to get matched are actually the higher ranked ones (except for the very top ranked

ones) (see Figures 2.1 and 2.2). The typical case for such a candidate being left unmatched is

when the candidate gets a common signal that is too high. Then the candidate interviews at

firms that are ranked too high for their actual quality. The firms that are closer to their true

range choose not to interview them, but when these candidates’ true qualities are revealed,

they often don’t get offers from the places that did interview them. The truth-revealing

nature of the interview phase means that it can be disadvantageous to “place too high” in

the first (interview selection) stage. These effects are even more extreme when there is only

a single, common signal available to the firms for all candidates (see Figures 2.3 and 2.4).

In order to gain a little more insight into this process, we look at a simpler example.

2.3.2 The Case of 4 Firms and 4 Workers

In order to investigate further, we look at a simpler case, with only four employers and four

workers, and a slightly different interviewing strategy – in this case, employers interview the

3 candidates ranked from their rank down (so Employer 2 would interview the candidates it
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Figure 2.4: The probability that the candidate of a particular rank is matched when firms have
access to only a single common signal. Left: Gaussian noise (σC = 0.6), Center: Uniform noise
(bC = 1), Right: Mallows model (φC = 0.6).

ranks from 2-4). We focus in this part on only the Mallows model. These changes do not

affect any of the results substantially, but allow us to obtain exact numerical results, rather

than simulation results, and the simpler model yields insight into the basic properties of the

larger markets above. With only 4 firms and 4 candidates, we can find the exact probability

that each candidate, ranked from 1-4, is left unmatched by breaking the probability up into

components. For example, for Candidate 2 to remain unmatched, it must be the case that

(1) Candidate 1 was interviewed by Employer 1, and, (2) Candidate 2 was not interviewed

by any of Employers 2-4. This is because, once a candidate is interviewed, their true ranking

is revealed, so if Candidate 2 interviewed with any of Employers 2, 3, or 4 (and Candidate

1 went to Employer 1), then Candidate 2 would be the highest ranked for any of those

Employers and would match with them. But for Candidate 2 to not be interviewed by

Employers 2-4, they must all have ranked her as the top candidate based on the private and

common signals they received.

These probabilities can all be efficiently exactly computed in the Mallows model. Figure

2.5 shows the probabilities that each of the candidates gets matched. Interestingly, the

probability of candidate 2 being matched is lower than the probabilities of candidates 3 and

4 being matched. The effect is stronger with just a common signal (left graph), and the
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Figure 2.5: Left: The probabilities that each of candidates 1-4 is matched with a single common
signal (dashed red line), and with both common and private signals (solid blue line). Right: The
probability that candidate 2 is left unmatched as a function of φC (the common signal becomes
less accurate as φC increases), holding φp fixed.

probability that candidate 2 remains unmatched decreases as the strength of the common

signal declines with respect to the strength of the private signal (right graph). This helps

us understand the mechanism at play. In a more coordinated environment, as created by

a common signal, the correlation between employers’ estimates of a workers desirability is

higher. Thus, it is more likely that several employers all make the mistake of thinking a

particular worker is too good or too bad for them.5 In fact, when there is only a common

signal, the probability of Candidate 2 being matched in the 4 agent model drops to less than

0.8 with φC = 0.5. When opinions are more independent, as is the case when the private

signal is stronger, it is less likely that someone will fall through the cracks in this manner.

Therefore, more homogeneity of opinion, with even a little bit of noise, can create worse

outcomes!

5For example, suppose a middle-ranked candidate gets early “buzz” on the job market, he may not get
interviews from departments actually ranked in his vicinity because they think he is out of reach, but may
not get offers once he is interviewed by higher ranked places and they realize he isn’t quite at their level.
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2.4 Alternative Interviewing Strategies

The results in the previous section apply to one simple strategy, albeit one, which, anecdo-

tally, is often used in practice. A natural question is whether the inefficiencies we document

are a result of irrational interviewing strategies, rather than an inherent feature of the types

of signals available to agents. Therefore, in this section we analyze more sophisticated inter-

viewing strategies, using the basic idea of empirical game theoretic analysis [76,147].

The fundamental strategic decision faced by a firm is to choose a set of k candidates to

interview. Game-theoretically, an (ex-ante) Bayes-Nash equilibrium would be one where each

firm would not change the set of candidates it chose to interview, given the strategies of other

firms, and the information available to them prior to the interview stage. Unfortunately,

this game is very complex to analyze – even the set of strategies available to one firm is

combinatorial (
(
n
k

)
). Therefore, we restrict our attention to a manageable set of strategies:

each firm can decide on any set of k contiguously ranked candidates (in its posterior private

ranking). So, say firm i has posterior ranking Γ̃i, then when it uses strategy Ti, uniquely

identified by some integer m, it interviews the candidates ranked from m to m + k − 1 in

Γ̃i. This includes the “interview around my own rank” strategy discussed in Section 4 as a

special case with m = i− (k− 1)/2, and also allows firms to shoot higher or lower than their

own ranking.

Which of these strategies is best? One simplification in analyzing which strategy is best

for firm i to follow arises from the observation that firm i’s best strategy depends only on

the choices of the firms ranked above i. Since firm rankings are all common and common

knowledge, firm i will always get its pick over any firm that is ranked lower. Since a Gale-

Shapley mechanism is used in the second stage, firm i will get the candidate that it likes
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the most among the candidates it interviews who do not effectively receive an offer from a

higher ranked firm.

The determination of firm strategies is iterative. Firm 1 should always interview the top k

candidates in Γ̃1. Given the strategies being used by all firms ranked above it, firm i can

run Monte Carlo simulations of outcomes for all strategies it can use, and pick the one that

yields the highest utility or highest rank on average.6 Importantly, note that the choice of

firm i’s strategy has no effect on the utilities being achieved by any of the strategies of the

firms ranked above it, because those firms would always be able to get any candidate they

interview before firm i could, by virtue of being higher ranked. Therefore, the choice of

strategies by all firms is (approximately, because of the simulation) an equilibrium given the

restricted range of strategies available to the firms.

2.4.1 Effects of common and private signals on strategies

First, we turn to understanding what kinds of interviewing behavior result as a choice of the

intelligent strategy selection method above. Figure 2.6 shows what happens when there is

only a common signal, and firms do not receive any private signals. The first row is for the

case where the common signal is perfect information (σC = 0). The top k firms all interview

the top k candidates, and every firm thereafter moves one candidate down. As σC increases,

an increasingly zig-zag behavior in choice of strategy becomes apparent. As there is more

uncertainty in the actual qualities of candidates, there can be more benefit to lower-ranked

firms in interviewing higher-ranked sets of candidates, because the probability that they will

not match with a higher-ranked firm increases. Of course, this tradeoff is governed by how

6Here, we focus on minimizing the average rank of the candidate the firm is matched to. The “average
rank” when the firm is left unmatched can be important, but our results are qualitatively similar across
many choices.
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Figure 2.6: Strategies when firms have only a single common signal. Noise in the common signal
is increasing as we move down the rows (σC = 0, 5, 10, 20 respectively). The left column shows the
average rank of the candidate each firm is matched to, the center column shows the average rank
of the firm each candidate is matched to, and the right column shows the strategy employed by
each firm.
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many interviews they already have, so once one firm jumps up (like firm 14 in the second row

of the figure), there is less benefit to the next firm of also jumping that high, thus yielding

the zig-zag behavior. Note that, despite this, the average ranks of candidates that firms are

matched to are monotonically increasing in firm rank (and vice versa), as we would expect

in equilibrium from the fact that firms all have to choose from the same set of strategies, so

a lower-ranked firm cannot do better than a higher ranked one in expectation and still have

an equilibrium.

The behavior with both common and private signals (Figure 2.7) is different. In some cases,

the zig-zag behavior of the strategy still manifests itself, but less so as σC increases. With a

high σC compared with σp, the difference in private signals is strong enough that interviewing

mostly based on the private signal is the best strategy, providing enough differentiation in

the sets being interviewed.

2.4.2 Effects of complex strategies on matching outcomes

Can “more rational” interviewing strategies resolve some of the inefficiency in terms of the

number of participants left unmatched? Figure 2.8 shows the average number left unmatched

as a function of the strength of the common signal. In addition to the “interview around my

own rank” strategy of Section 4, we include the empirically determined strategies Ti, with

three different values for the “penalty” rank assigned to a firm when it is unmatched: 31, 50,

and 100. With only common signals, when the penalty is high enough, the better strategies,

do, in fact, reduce the number left unmatched. However, with both common and private

signals, the more complex strategies actually lead to a greater number of agents being left

unmatched. This indicates that the greater complexity in strategy selection does not have
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Figure 2.7: Strategies when firms have access to both a common signal and a private signal.
Noise in the common signal is increasing as we move down the rows (σC = 0.01, 5.01, 10.01, 20.01
respectively). As in Figure 2.7, the left column shows the average rank of the candidate each firm
is matched to, the center column shows the average rank of the firm each candidate is matched to,
and the right column shows the strategy employed by each firm.
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much societal benefit when private signals are available, but could be beneficial when there

are only common signals available.
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Figure 2.8: Number of agents left unmatched when firms use more sophisticated interviewing
strategies with only a common signal (left) and common and private signals (right).

2.5 Discussion

In two-sided matching, firms want to hire the best candidate they can. Complications

arise because of the tradeoff between quality and “gettability”, and the fact that the game

takes place in two stages, interviewing and matching. Our model focuses on capturing

the essence of these phenomena. We are particularly interested in the role of information,

because mechanisms are harder to change than the information available to participants.

In addition to the “common signals” of applicant quality, many job markets allow firms to

gather higher quality private signals in advance of making very costly interviewing decisions

through phone screens or convention interviews. The main result of this chapter is that

inefficiencies that arise through the use of simple, but anecdotally common, interviewing
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strategies (like interviewing around your own rank), can be alleviated by either the use of

more sophisticated interviewing strategies or the use of additional private information. Given

the complexities of picking interviewing strategies and the sensitivity to others’ choices,

institutional encouragement to participants to acquire diverse private signals may be more

robust.
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Chapter 3

Auction Markets and Information

Design

In an auction game, assume a fixed mechanism; can the seller expect to make more revenue

if the bidders are more or less informed than the “baseline”? In this chapter, we investigate

the revenue-enhancement information design problem in the classic second-price auctions. In

a second price, or Vickrey, auction, bidders are asked to submit sealed bids. The bidder who

submits the highest bid is awarded the object, and pays the amount of the second highest

bid. In particular, we explore the following two auction games: (1) a basic common-value

auction model, where the value of the item is determined either by a single attribute or by

two independent attributes when each bidder can receive information from exactly one of

the attributes; (2) an interdependent-value auction, where the valuation for each bidder is

decided by a common value attribute and a private attribute.

We show that in the common-value auction settings, there is no benefit to the auctioneer

in terms of expected revenue from sharing information with the bidders, although there are

effects on the distribution of revenues. In an interdependent-value model with mixed private-

44



and common-value components, however, we show that asymmetric, information-revealing

signals can increase revenue.

Our model is applicable to complex situations where the sender of the signal has the oppor-

tunity to communicate in different ways to different receivers. This can happen in situations

like corporate mergers [19, 123], where targets (sellers or signal senders in our case) have to

communicate with potential acquirers (the signal receivers). It is known that targets often

inflate their output [64] or themselves may not be aware of their value to an acquirer due to

the complexity and intangible characteristics which cannot be easily observed [81].

We position this work in the persuasion literature [77, 122], where a sender strategically

reveals information through signals. Much of this literature focuses on the design of the op-

timal signaling scheme [63,113]. While this is tractable in some cases, for example with costly

signals and a single receiver [62], or when a single buyer is signaling to a single monopolist

seller [128], the problem of optimal signal design is not always even computationally, leave

alone analytically, tractable [50, 149]. Therefore, the demonstration of a revenue-enhancing

signal structure in the game with multiple receivers that we demonstrate here is significant,

even if the particular structure we find is not the optimal one.

3.1 Common Value Auctions

We begin by considering a single-item auction with two risk-neutral bidders (agents) i ∈

{1, 2} and a seller. Both bidders value the object identically: the item has a common value

of v ∈ R+ to the two bidders. The realization of v is not observed by either the seller or the

bidders. v depends on an underlying state of the world w ∈ Ω. Without loss of generality,
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we assume that the item’s value is 0 when w’s quality is Bad (B) and 1 when w’s quality is

Good (G), and the common prior is represented by P (G) = x, x ∈ [0, 1]. Before bidding, each

bidder receives a conditionally independent low (L), or high (H) signal from seller without

cost, si ∈ {H,L}.

P [s1 = H|G] = p1 P [s1 = L|B] = q1

P [s2 = H|G] = p2 P [s2 = L|B] = q2

where si is agent i’s signal and all signals have accuracy of pi, qi ∈ [1/2, 1]. Thus, a high

(low) signal suggests a good (bad) value of the item.

Following prior literature, we make some assumptions.

Assumption 1 Seller cannot distort or conceal information once the signal realization is

known. [77].

Assumption 2 Bidders play only weakly undominated strategies. [24]

The first assumption allows us to abstract from the incentive compatibility issues, while the

second helps rule out implausible or uninteresting equilibria.

In the game, the seller decides the signal structure S with the goal of maximizing her expected

revenue R and the bidders submit their bids based on their private signals si. The seller runs

a two-player second-price sealed-bid (SPSB) auction. Define bids−i(si) as the bid of bidder

i given she receives signal si and the other bidder receives signal s−i. The seller can either

reveal the realization of the signal privately to the corresponding bidder, or reveal it publicly.

Here we show the analysis of private revelation, as public revelation follows similarly.
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Proposition 1 If the seller reveals the realization of the signal privately to the corresponding

bidder, a unique symmetric equilibrium exists. Each agent bids her expected value conditioned

on her opponent’s signal being equal to her own,

bidL(L) = E[v|s1 = L, s2 = L]

= P (G|s1 = L, s2 = L)

=
(1− p1)(1− p2)x

(1− p1)(1− p2)x+ q1q2(1− x)
,

bidH(H) = E[v|s1 = H, s2 = H]

= P (G|s1 = H, s2 = H)

=
p1p2x

p1p2x+ (1− q1)(1− q2)(1− x)
.

Proof The proof of this proposition is similar to prior work of Hausch [73] and of Brinkman,

Wellman, and Page [24]. Assumption 2 (that bidders play only weakly undomainated

strategies) restricts an agent with a Low signal to bid between E[v|si = L, s−i = L] and

E[v|si = L, s−i = H], and one with a High signal to bid between E[v|si = H, s−i = L] and

E[v|si = H, s−i = H]. To see that the proposed strategy in proposition 1 is the only sym-

metric equilibrium, we begin by assuming that there exists a symmetric strategy that, when

receiving signal L, the Bidder 1 bids x1 and the Bidder 2 bids x2, and when receiving signal

H, Bidder 1 bids y1 and Bidder 2 bids y2. Suppose x1 ≥ x2, then Bidder 1 will be strictly

better off by deviating to E[v|si = L, s−i = L] when receiving an L signal, since bidding x1

could result in negative utility (E[v|si = L, s−i = L] − x2) if Bidder 2 also receives an L

signal. Similarly, if y1 ≥ y2, Bidder 2 has incentive to switch to E[v|si = H, s−i = H] when

receiving an H signal to achieve higher expected utility. Thus, the equilibrium bids above

constitute the only symmetric equilibrium. �
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Equilibrium selection It is well known that the second-price common-value auction gen-

erally has many equilibria [3, 73, 84, and so on]. Assumption 2 helps us to rule out all

dominated bids. In this game, suppose that Bidder 1 obeys the strategy in Proposition 1.

Bidder 2, conditional on receiving signal L bids b ∈ (bidL(L),E[v|s1 = H, s2 = L]] and,

conditional on receiving signal H, bids bidH(H). These strategies are still Nash equilibria.

Thus, Nash equilibrium provides no prediction about revenue beyond an upper bound on the

full surplus. For this chapter’s purpose, therefore, we only focus on symmetric equilibrium

bidding strategies.

In a common value auction, the seller’s expected revenue R is the expected value E[v] of the

item, minus the sum of the two bidders’ utilities. When each bidder observes a private signal

only, we can treat each bidder independently and minimize the utility of each bidder.

Theorem 1 If each bidder observes her own private signal, the optimal signal structure for

the seller in terms of revenue is p1 = p2 = 1, q1, q2 ∈ [1/2, 1], or p1 = p2 = q1 = q2 = 1/2,

where maxR = E[v].

Proof For revenue maximization, we can treat the two-bidder second-price sealed-bid auc-

tion as a three-player, constant-sum game. The revenue

R = E[v]− E[u1]− E[u2]. (3.1)
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E[ui] is Bidder i’s expected utility and R is maximized when E[u1] = E[u2] = 0, where

E[u1] = p(s1 = H, s2 = L)(E[v|s1 = H, s2 = L]− bidL(L))

= p1(1− p2)x− p(s1 = H, s2 = L)bidL(L),

E[u2] = p(s1 = L, s2 = H)(E[v|s1 = L, s2 = H]− bidL(L))

= (1− p1)p2x− p(s1 = L, s2 = H)bidL(L),

which gives us

p1 = p2 = 1, q1, q2 ∈ [
1

2
, 1],∀x ∈ [0, 1],

or

p1 = p2 = q1 = q2 =
1

2
,∀x ∈ [0, 1],

or

p1, p2, q1, q2 ∈ [
1

2
, 1],when x = 1.

When p1 = p2 = q1 = q2 = 1, the seller always reveals complete information, thus the

expected revenue R is also E[v]. �

We can see that there is a wide range of signal structures that achieve the maximum revenue

in equilibrium, and none of these is better than a policy of revealing no information at all.

Another natural question to ask concerns the distribution of revenues to the seller under

different signal structures. It is relatively easy to compute the variance of the revenue

var(R) = (bidL(L)− bidH(H))2(1− P (HH))P (HH) (3.2)

Clearly var(R) is minimized at q1 = q2 = 0.5. Figure 3.1 shows some illustrative examples

of the standard deviation of revenue.
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Figure 3.1: Standard deviations of revenue for different revenue-maximizing signal structures in
the simple common-value model. While each of these signal structures achieves the same revenue,
the risk profiles are substantially different.

3.1.1 Adding an Intermediate Value

Brinkman et al. [24] study a common-value auction setting with intermediate values, which

serves as a model for studying signal acquisition by bidders. They motivate this setting

with an example of the auction of extraction rights for some resources (say oil and gas)

on a specified plot of land. The value to energy companies of these rights depends on the

unknown amounts of extractable resources. The question of optimal signaling is motivated

in this example by the fact that the government can reveal information about one or both

of the specific resources to each energy company. Now the item can take on three possible

values, {0, g, 1} with g ∈ [0, 1]. The underlying state w which decides the value of the item

now has two attributes, w = (w1, w2). Each attribute is associated with signals potentially

observed by the respective agents. Each bidder can request one signal with no cost. Here

we study a variant where the seller can decide which attribute to signal to each bidder and

what the corresponding signal structure should be.
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Each attribute is still either Good (G) or Bad (B), where P (wj = G) = x ∈ [0, 1], j ∈ {1, 2}.

The realization of each signal is also High (H) or Low (L). The signal structure can be

represented as (sji ∈ {H,L}):

P [sj1 = H|wj = G] = p1 P [sj1 = L|wj = B] = q1

P [sj2 = H|wj = G] = p2 P [sj2 = L|wj = B] = q2

where j ∈ {1, 2} and sji is Bidder i’s signal from attribute j. All signals have accuracy of

pi, qi ∈ [1/2, 1].

The value of the good is 0 if neither attribute is G, 1 if both are G, and g ∈ [0, 1] if only one

is G.

v =



0, if
∑
j

I{wj = G} = 0

g, if
∑
j

I{wj = G} = 1

1, if
∑
j

I{wj = G} = 2

Figure 3.2 shows the decision flow in this game. The seller’s goal is to maximize her expected

revenue R. The signal structure and the seller’s choice of which attribute to signal to each

bidder are both common knowledge.

First, we observe that it must again be the case that the seller’s revenue is maximized when

revealing no information even in this intermediate value setting, since it can still be modeled

as a three-player, constant-sum game, and Equation (3.1) holds. What can we say about

signal structures that achieve this revenue? Again, we analyze private revelation.
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Seller
Choose the attribute
and decide the signal
structure for Bidder 1

Choose the attribute
and decide the signal
structure for Bidder 2

Bidder 1 Bidder 2

Observe signal
and opponent’s
signal structure

Observe signal
and opponent’s
signal structure

Bid Bid

Second-price sealed-bid auction

Figure 3.2: The intermediate-value model. Dashed lines mean that the bidder knows the structure
of the signal that the other bidder receives, but not the specific realization.

Theorem 2 In the intermediate value model, (1) if the seller sends signals of different

attributes to the two buyers, there is only one signal structure, ∀g, x ∈ [0, 1], p1 = p2 =

q1 = q2 = 1/2 (equivalent to sending no information) that achieves the maximum possible

revenue; (2) if the seller sends signals of the same attribute to both buyers, for ∀g, x ∈ [0, 1],

there are a number of signal structures that achieve the maximum possible revenue: p1 =

p2 = 1, q1, q2 ∈ [1/2, 1] or p1 = p2 = q1 = q2 = 1/2.

Proof The seller’s revenue still follows Equation (3.1). To maximize R, E[u1] = E[u2] = 0.

- Sending signals of the same attribute:
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The unique symmetric equilibrium bidding strategy is that each bidder bids her ex-

pected value conditioned on her opponent’s signal being equal to her own,

bidL(L) = E(v|sji = L, sj−i = L),

bidH(H) = E(v|sji = H, sj−i = H).

We denote P (sji = H, sj−i = L) by P (HL),

E[ui] = P (HL)(E(v|sji = H, sj−i = L)− bidL(L)).

Thus, to maximize R

E(v|sji = H, sj−i = L) = bidL(L). (3.3)

The solution of Equation (3.3) is

p1 = p2 = q1 = q2 =
1

2
, ∀g, x ∈ [0, 1],

or

p1 = p2 = 1, q1, q2 ∈ [
1

2
, 1],∀g, x ∈ [0, 1],

or

p1, p2, q1, q2 ∈ [
1

2
, 1],when x = 1,∀g ∈ [0, 1].

When p1 = p2 = q1 = q2 = 1, the seller reveals perfect information, thus the expected

revenue R is also E[v].

- Sending signals of different attributes:

As the signal accuracy between different attribute is identical, the equilibrium biding

strategy is same as above, that is to bid the expected valuation conditioned on the
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opponent observing the same signal value. Denote bid−s−i(si) as the bid of Bidder i

given she receives si and the other bidder observes the signal of the other attribute

and receives signal s−i ,

bid−L(L) = E(v|sji = L, s−j−i = L),

bid−H(H) = E(v|sji = H, s−j−i = H).

We simplify P (sji = H, s−j−i = L) by P (H,L),

E = [ui] = P (H,L)(E(v|sji = H, s−j−i = L)− bid−L(L)).

Thus, to maximize R,

E(v|sji = H, s−j−i = L) = bid−L(L). (3.4)

Solving Equation (3.4) we get,

p1 = p2 = q1 = q2 =
1

2
, ∀g, x ∈ [0, 1].

�

It is again easy to show that var(R) is minimized at q1 = q2 = 0.5.

Discussion Brinkman et al. [24] analyze this problem from the perspective of the bidders.

In their model, the signal structure is fixed and restricted to the symmetric information case

(p1 = p2 = q1 = q2). They show that when the two attributes are sufficiently complementary,
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that is g → 0, and the signals are noisy, the agents choose to observe the same attribute.

When the signal accuracy is high, or the two signals are substitutable g → 1, the agents

choose to observe different attributes. Our result above demonstrates that, from the seller’s

perspective, sending no information can always maximize seller’s expected revenue. The

seller can also achieve the maximum possible revenue by sending information on the same

attribute to both bidders. The corresponding signal structure shows that the bidders always

know the item is bad if they see a low signal, but they have uncertainty when they see a

high signal.

3.2 An Interdependent Value Auction

We now move to a setting with an unambiguously positive result for the seller. We consider

a classic situation in corporate mergers. A firm (target) can generate synergies if acquired by

another firm (bidder) [19]. The source of this synergy may include management, economies

of scale, technological matches, tax savings, etc. A sketch of the game is shown in Figure

3.3. The target’s quality can be either good or bad, which is unknown to the market and

the bidders at the time of bidding. The bidders’ types can be high or low tech, privately

known to each bidder. The ability of a bidder to generate synergies can be either high or low,

which is unknown to the market and to the bidders, but may be discovered by the target

(since the target is willing to invest in discovering this prior to making it known that it is

open to acquisition). If the type of a bidder is high tech, as long as the ability of the bidder

to generate synergies is high, it can get high value (α > 1) no matter the target’s quality.

However, if the type of a bidder is low tech, only when both the ability of the bidder to

generate synergies is high and the quality of the target is good, can it get medium value (1).
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Target Firm

Good/Bad
quality (w0)

High/low
synergy (w1)

High/low
synergy (w2)

Bidder I
High/Low
tech (t1)

Bidder II
High/Low
tech (t2)

v1 v2

Figure 3.3: A sketch of the interdependent value setting.

3.2.1 Model

We first extend the common-value model of Brinkman et al to this situation. The item’s value

still depends on an underlying state w, which now has three attributes w = (w0, w1, w2). The

common attribute w0 can affect the valuation of both bidders (quality of the target firm),

and the private attributes w1 and w2 only affect each bidder’s own valuation respectively

(idiosyncratic synergies). Each attribute takes quality Good (G) or Bad (B) as above. For

simplicity, we assume P (wj = G) = x ∈ [0, 1], j ∈ {0, 1, 2} (this assumption can be easily

removed and all results hold). The seller sends a signal of the quality of either common or

private attribute wj to each bidder. The realization of each signal is also High (H) or Low

(L). The signal structure is (sji ∈ {H,L})

P [sj1 = H|wj = G] = p1, P [sj1 = L|wj = B] = q1,

P [sj2 = H|wj = G] = p2, P [sj2 = L|wj = B] = q2.
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All signals have accuracy of pi, qi ∈ [1/2, 1]. Once the signal structure is decided, it becomes

common knowledge. The seller can choose to either reveal realizations publicly or privately.

The bidders can be of two types, ti ∈ {tl, th}. The bidders will be of either type with

probability P (ti = tl) = P (ti = th) = 1
2
. If the bidder is type th (high tech firm), then

her valuation is only dependent on her private attribute, that is wi = G with value α > 1

(pure strategy Nash equilibrium is not guaranteed if α = 1) and wi = B with value 0. If the

bidder is type tl (low tech firm), her valuation is dependent on both common and private

attributes: the bidder’s value is 0 if both the common and her private attribute are B, and

1 if both are G. Formally,

i ∈ {1, 2}

vi(w0, wi, ti = tl) =

 1, if w0 = G,wi = G,

0, else,

vi(w0, wi, ti = th) =

 α, if wi = G,

0, else,

where P (ti = tl) = 1
2
.

3.2.2 Analysis

Before the game, the seller needs to decide which attribute she wants to signal to each bidder

and whether the realization of the signal is public or private. The seller still provides one

signal to each bidder, but the realization of that signal can be public. The complete results

characterizing the best possible revenue impact and the corresponding signal structure based
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on seller’s strategy is shown in Figure 3.1. The main results to note are that there are two

signal structures that are revenue enhancing.

When we allow one bidder (w.lo.g. Bidder 2) to observe a signal of her private attribute

while the other bidder receives a private signal of the common attribute (case 9), there exists

a revenue-enhancing signal structure. In equilibrium, a bidder of type th always bids her

expected value given the signal realization of private attribute if she receives one. If Bidder

1 is type tl she bids her expected value given the signal realization she observes. If Bidder 2

is type tl, if she observes a low signal, her bid falls in the range [E[v|s0
1 = L, s2

2 = L],E[v|s0
1 =

H, s2
2 = L]] under Assumption 2 and also needs to be smaller than Bidder 1’s expected

value given Bidder 1 observes a low signal E[v|s0
1 = L]; if she observes a high signal, from

Assumption 2 her bid falls in the range [E[v|s0
1 = L, s2

2 = H],E[v|s0
1 = H, s2

2 = H]], and

also needs to be greater than bidder 1’s expected value given Bidder 1 observes a high signal

E[v|s0
1 = H].

Now, suppose the seller chooses signal structure p1 ∈ [0.5, 1], p2 = 1, q1 = 1, q2 = 0.5. If

Bidder 1 observes a high signal, she knows with certainty that the common attribute is

good, and is uncertain otherwise. Bidder 2 knows that her private attribute is bad if she

observes a low signal, and is uncertain otherwise. Combined with the observation about

bid ranges above, it now becomes a simple matter of algebra to show that the expected

revenue is greater than that which is achieved when the seller reveals no information or full

information, yielding the following theorem:

Theorem 3 Privately revealing the realization of the common attribute signal to one bidder

and privately revealing the realization of the private attribute signal to the other bidder, the
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seller’s expected revenue at p1 ∈ [0.5, 1], p2 = 1, q1 = 1, q2 = 0.5 is always better than that

she can achieve when revealing no information or full information.

Proof Without loss of generality, we assume Bidder 1 receives a private signal of the common

attribute while Bidder 2 observes a signal of her private attribute.

If Bidder 1 is type th, she bids bid1
th

= αx since she only receives a signal of the common

value. If Bidder 1 is type tl, sice the private attribute of Bidder 2 does not influence the value

of Bidder 1, if she observes a low signal, she bids bid1
tl
(L) = E[v|s0

1 = L]; if she observes a

high signal, she bids bid1
th

(L) = E[v|s0
1 = H].

If Bidder 2 is type th, she bids her expected value given the signal realization of the private

attribute bid2
th

= E(v|s2
2). If Bidder 2 is type tl, if she observes a low signal, her equilibrium

bid falls in the range

bid2
tl
(L) ∈ [E[v|s0

1 = L, s2
2 = L],E[v|s0

1 = H, s2
2 = L]],

and bid2
tl
(L) ≤ E[v|s0

1 = L]

under Assumption 2; if she observes a high signal, from Assumption 2, her equilibrium bid

falls in the range

bid2
tl
(H) ∈ [E[v|s0

1 = L, s2
2 = H],E[v|s0

1 = H, s2
2 = H]],

and bid2
tl
(H) ≥ E[v|s0

1 = H].

Considering the lower bound of the revenue, we choose the minimum bid under all cases.

We separate the revenue into the following four parts,
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1. t1 = tl and t2 = tl, where we have P (t1 = tl, t2 = tl) = 1
4
:

R1 =P (s0
1 = H)P (s2

2 = H)E[v|s0
1 = H]

+ P (s0
1 = H)P (s2

2 = L)E[v|s0
1 = L, s2

2 = L]

+ P (s0
1 = L)P (s2

2 = H)E[v|s0
1 = L]

+ P (s0
1 = L)P (s2

2 = L)E[v|s0
1 = L, s2

2 = L];

2. t1 = tl and t2 = th, where we have P (t1 = tl, t2 = th) = 1
4
:

R2 =P (s0
1 = H)P (s2

2 = H)

min(E[v|s0
1 = H],E(v|s2

2 = H))

+ P (s0
1 = H)P (s2

2 = L)

min(E[v|s0
1 = H],E(v|s2

2 = L))

+ P (s0
1 = L)P (s2

2 = H)

min(E[v|s0
1 = L],E(v|s2

2 = H))

+ P (s0
1 = L)P (s2

2 = L)

min(E[v|s0
1 = L],E(v|s2

2 = L));

3. t1 = th and t2 = tl, where we have P (t1 = th, t2 = tl) = 1
4
:

R3 =P (s2
2 = H) max(E[v|s0

1 = L, s2
2 = H],E[v|s0

1 = H])

+ P (s2
2 = L)E[v|s0

1 = L, s2
2 = L];
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Case c1 pr1 c2 pr2
Revenue
impact

Maximizing
structure

Remarks

1 no no no no − −
2 no yes no no ↓ no information unique eq
3 no yes no yes ↓ no information unique eq
4 publicly no no no − any unique eq
5 publicly no publicly no − any unique eq

6 publicly no no yes ↓ private signal
no information

unique eq

7 publicly no privately no ↓ lower bound maximized
at no information

multiple eqs

8 privately no no no ↓ lower bound maximized
at no information

multiple eqs

9 privately no no yes ↑ lower bound better
than no information

multiple eqs

10 privately no privately no ↑ p1 = 1, p2 = 1,
q1 = 1, q2 = 0.5

unique symmetric eq

Table 3.1: Best possible revenue impacts and corresponding signal structures in the interdependent
value setting. ci indicates signaling the common attribute to Bidder i and pri indicates signaling
the private attribute to Bidder i. For the common attribute, “publicly” means the realization of
the signal can be observed by all bidders and “privately” means the realization of the signal can
only be observed by the corresponding bidder. Since private values are independent, whether that
signal is revealed publicly or privately makes no difference. Note that the order of the two bidders
is arbitrary, but the existence of the asymmetry is not.

4. t1 = th and t2 = th, P (t1 = th, t2 = th) = 1
4
:

R4 =P (s2
2 = H) min(αx,E(v|s2

2 = H))

+ P (s2
2 = L) min(αx,E(v|s2

2 = L)).

The expected revenue is R = 0.25(R1 + R2 + R3 + R4). By simple algebra, we find that

the proposed signal structure achieves better revenue than either no information or full

information. �
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An interesting observation about this signal structure is that, while the signal structure

conveys more information to Bidder 1, her utility is actually lower compared with when

there is no information. Bidder 2’s utility improves.

Finally, we see what happens if the seller signals the common attribute to each bidder

privately (case 10 in Figure 3.1). In this situation, the equilibrium bidding strategy for th

type bidder is to bid her expected value regardless of the signal she receives and for tl type

bidder is to bid her expected value conditioned on the other bidder observing same signal.

It is easy to show that the signal structure p1 = p2 = 1, q1 = 1, q2 = 0.5, results in higher

expected revenue than when the seller conveys no information or full information.

Theorem 4 When revealing the signal realization of the common attribute privately to each

bidder, the seller’s revenue is higher at signal structures p1 = p2 = 1, q1 = 1, q2 = 0.5, or

p1 = p2 = 1, q1 = 0.5, q2 = 1, than when revealing no information or full information.

Proof Since the private attribute of each bidder does not affect the value to the other bidder,

if ti = tl, the equilibrium strategy of bidder i is the same as in Proposition 1.
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bidiL(L) = E(v|s0
i = L, s0

−i = L)

= v(w0 = G,wi = G)

P (w0 = G|s0
i = L, s0

−i = L)P (wi = G)

+ v(w0 = G,wi = B)

P (w0 = G|s0
i = L, s0

−i = L)P (wi = B)

+ v(w0 = B,wi = G)

P (w0 = B|s0
i = L, s0

−i = L)P (wi = G)

+ v(w0 = B,wi = B)

P (w0 = B|s0
i = L, s0

−i = L)P (wi = B)

=
(1− p1)(1− p2)x2

(1− p1)(1− p2)x+ q1q2(1− x)
,

bidiH(H) =E(v|s0
i = H, s0

−i = H)

=
p1p2x

2

p1p2x+ (1− q1)(1− q2)(1− x)
.

If ti = th, the bidder’s payoff is only related to the relative private attribute, so the equilib-

rium bidding strategy is always

bidith = αx.

We break the revenue up into the following four parts,
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1. t1 = tl and t2 = tl, where we have P (t1 = tl, t2 = tl) = 1
4
:

R1 = P (s0
1 = H, s0

2 = H)bidiH(H)

+ (1− P (s0
1 = H, s0

2 = H))bidiL(L);

2. t1 = tl and t2 = th, where we have P (t1 = tl, t2 = th) = 1
4
:

As α > 1, αx > bidH(H);

R2 = P (s0
1 = H)bid1

H(H) + P (s0
1 = L)bid1

L(L);

3. t1 = th and t2 = tl, where we have P (t1 = th, t2 = tl) = 1
4
:

R3 = P (s0
2 = H)bid1

H(H) + P (s0
2 = L)bid2

L(L);

4. t1 = th and t2 = th, P (t1 = th, t2 = th) = 1
4
:

R4 = αx.

Thus, the expected revenue is R = 1
4
(R1 +R2 +R3 +R4). By simple algebra, we can find that

the signal structure p1 = p2 = 1, q1 = 1, q2 = 0.5 yields higher revenue than no information

or full information, and the revenue increase is from R3. �

Consider signal structure p1 = p2 = 1, q1 = 1, q2 = 0.5 (the other one is symmetric). Bidder

1 always has perfect information. If Bidder 2 receives a low signal, she is certain w0 is bad;

however, she is uncertain when she gets a high signal. Surprisingly, although Bidder 1 has

perfect information, her expected utility is actually lower than that of Bidder 2. It is easy

64



to see that if both bidders are tl types or th types, then the expected utility of each bidder is

zero. The interesting case is when one bidder is a th type, and the other one is a tl type. In

this situation, the bidder with imperfect information is more likely to receive a high signal

than the bidder with perfect information; therefore, in expectation, the perfect information

bidder will pay more (since it is a second price auction), hurting her utility.

3.3 Conclusion

The key point in the emerging signaling literature in information economics and computer

science is to study what can be achieved through information design, or persuasion, when

the mechanism is already fixed. We demonstrate the range of possible outcomes that can

be achieved through different signaling schemes in common value auction, and show that

the uninformative scheme has the lowest risk among those that extract full surplus. While

different signal structures may not help improve revenue in second-price sealed bid common

value auctions, there are natural auction models, like the interdependent value model for

corporate takeovers we present, in which the optimal design of signal structures can be

revenue enhancing.

3.4 Related Work

This part of chapter is related to several literatures. Broadly, this chapter fits into a growing

line of literature in AI on how the information environment available to agents influences

market outcomes as we address in this thesis. In Chapter 2, we model the effects of common
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and private signals about quality in matching with interviews. Hajaj and Sarne [70] exam-

ine how e-commerce platforms can gain from information withholding policies. Chhabra et

al. [31] study the welfare effects of competition between information providers with different

levels of information quality. Rabinovich et al [118] present an efficient model for security as-

set assignment which combines both Stackelberg security games and the Bayesian Persuasion

model.

The literature on auctions with signaling, as mentioned earlier, typically analyzes symmetric

information structures, where there are few positive results in terms of revenue enhance-

ments. In addition to the literature from economics cited above, recent work in algorithmic

economics that assumes symmetric information disclosure includes that of Emek et al [51]

as well as Bro Miltersen and Sheffet [25], both of which study second-price auctions of mul-

tiple indivisible goods and consider hiding information by clustering. Guo and Deligkas [68]

single-item second-price auctions where the item is characterized by a set of attributes and

the auctioneer decides whether to hide a subset of attributes.

When we move to asymmetric information, most early work considers the case in which one

bidder is perfectly informed about the value of the item, while the other bidders are entirely

uninformed [108,148]. Milgrom and Weber [108] show that reducing information asymmetries

can increase the seller’s expected revenue in a two-bidder first-price common value auction

where one bidder is perfectly information and the other bidder is entirely uninformed. Goeree

and Offerman [67] also consider public information disclosure in common value auctions, in

which the common value is an average of i.i.d. private values (signals) of all bidders. They

also conclude that seller’s public information disclosure can raises efficiency and seller’s

revenues. Hausch [73], however, through a simple example in a first price common value

auction, shows that reducing information asymmetry may decrease the seller’s expected
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revenue when the better-informed bidder is neither strictly better-informed nor perfectly

informed.

Syrgkanis et al [134] consider common value hybrid auctions where the payment is a weighted

average of the highest and second-highest bids. They show that public revelation of an

additional signal to both bidders may decrease the auctioneer’s revenue, different from [107].

Parreiras [116] consider continuous signal spaces and also show that second price auction

revenue-dominates first price auction. In both of these papers, the seller does not control

the information structure for both bidders.

There are also several recent papers considering this question from the optimal mechanism

design perspective [18, 42, 129], rather than assuming a fixed structure for the mechanism

and analyzing the question of optimal signaling given the mechanism. Very recent work

of Alkoby et al [5] analyzes signaling by a third party information provider under a fixed

mechanism.

Also related is the literature on deliberative auctions. Deliberation covers any actions that

update an agent’s belief. In the study of deliberative auctions, research has thus far focused

on either the perspective of bidders (receivers) or on optimal mechanism design. Larson

and Sandholm [86, 87] provide a very general model for costly information gathering in

auctions. They show that under costly deliberation, bidders perform strategic deliberation

in equilibrium in most standard auction settings (Vickrey, English, Dutch, first price and

VCG). Thompson and Leyton-Brown [135] investigate deliberation strategies for second price

auctions where agents have independent private values (IPV) and the impact of agents’

strategies on seller’s revenue. They perform equilibrium analysis for (1) deliberation with

costs, (2) free, but time-limited deliberation. They further show that, in the IPV deliberative-

agent setting, the only dominant-strategy mechanism is a sequential posted price auction, in
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which bidders are sequentially given a posted-price, take-it-or-leave-it offer until the good is

sold [136]. Celis et al [29] provide an efficient mechanism in IPV deliberative-agent setting to

obtain revenue within a small constant factor of the maximum possible revenue. Brinkman

et al [24] show that the dependence structures among agents’ signals of the value of the item

they are bidding on can produce qualitatively different equilibrium outcomes of the auction.

This literature also typically does not focus on the optimal design of the signal structure

from the perspective of the seller.
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Chapter 4

Competing Dynamic Matching

Markets

From this chapter, we explore dynamic markets. We focus on the dynamics of multiple

platform interactions. Specifically, we formalize a two-market model where agents enter

one market or both markets; they can then be matched to other agents who have joined

the same market or both markets. The markets adhere to different matching policies, with

one matching greedily and the other building market thickness through a policy of patience

(patient market). We provide an analytic lower bound on the loss, or the expected fraction of

vertices who enter and leave the pool without finding a match, of the two-market model and

show that it is higher than running a single “patient” market. We also provide a quantitative

method for determining the loss of the two-market model.

Our work draws motivation from kidney exchange, an instantiation of barter exchange where

patients paired with willing but medically incompatible donors swap those donors with other

patients. In the United States, multiple fielded kidney exchanges exist, and patient-donor

pairs are entered simultaneously into one or more of these markets, based on geographical

location, travel preferences, home transplant center preferences, or other logistical reasons.
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Individual kidney exchange clearinghouses have incentive to compete on number of matches

performed within their specific pools; yet, fragmenting the market across multiple exchanges

operating under different matching policies may lower global welfare. In this chapter, we

provide the first theoretical and experimental evidence on dynamic kidney exchange graphs

showing that this may indeed be the case.

4.1 Kidney Exchange Model

Here, we start from describing the basics of kidney exchange. A kidney exchange can be

represented as a directed compatibility graph G = (V,E). Each vertex in the graph is a

patient-donor pair in the pool. A directed edge e is constructed from vertex vi to vertex

vj if the patient vj is compatible with the donor kidney of vi. Edges exist or do not exist

due to medical characteristics (most importantly blood type, tissue antibodies and antigens)

of the patient and the donor. There may also be other logistical constraints, but those are

not relevant for our work here. In this pool, the donor of vertex vi is willing to give her

kidney if and only if the patient of vi receives a kidney. A weight we can be assigned to

an edge e. The weight typically has been used in the literature to represent the priority of

a transplantation (and therefore the utility to the system in some senses). We also use it

to represent the match quality when recipient vj receives vi’s donor kidney (this part will

be discussed in Chapter 6). In this graph, a sequence of transplants occurs when several

vertices form a cycle c. A k-cycle refers to a cycle with exactly k pairs. In this thesis, we

only consider 2-cycles and 3-cycles, as is typical in fielded kidney exchange (incorporating

cycles longer than 3 offers limited benefit given logistical constraints). Fielded exchanges
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also gain from chains, where an altruist donor without a paired patient enters the pool and

start a directed path of transplants. We do not include chains here.

A matching M is therefore a set of disjoint cycles in the compatibility graph G. The cycles

must be disjoint because no donor can give more than one of her kidneys (some recent work

explores multi-donor donation [54,55] but we do not consider this here). Given a pre-defined

utility function u : M → R and the set of all legal matchings M, we are trying to find a

matching which maximizes u,

M∗ ∈ arg ma
M∈M

u(M).

Kidney exchanges typically find the maximum weighted cycle cover, formally,

u(M) =
∑
c∈M

∑
e∈c

we.

In this thesis, we consider two objectives, the number of matches (effectively we = 1,∀e),

and expected total graft survival (where we is defined as the expected graft survival for the

recipient in edge e).

An integer programming (IP) solver is usually used to find the optimal solution [2,12,33,45].

We use the position-indexed chain-edge formulation (PICEF) [45] method to find the optimal

solution when doing two-&three-cycle swap if necessary.

4.2 Greedy and Patient Exchanges

So far we have described a static matching market, in which all patient-donor pairs are

presented, and the market only needs to make a one-time matching decision. However,
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in practice, patient-donor pairs dynamically join and leave the market. In this thesis, we

consider a stylized model of dynamic kidney exchange following the description of Akbarpour

et al. [4]. More specifically, an exchange is running in the continuous-time interval [0, T ], with

agents arriving according to a Poisson process with rate parameter m ≥ 1. The exchange

determines whether potential bilateral transactions between agents are either acceptable or

unacceptable. The probability of an acceptable transaction existing between any pair of

distinct agents is defined as d/m, 0 ≤ d ≤ m, and is independent of any other pair of agents

in the market. Each agent a remains in the market for a sojourn s(a) drawn independently

from an exponential distribution with rate parameter λ = 1; the agent becomes critical

immediately before her sojourn ends, and this criticality is known to the exchange. An

agent leaves either upon being matched successfully by the exchange or upon becoming

critical and remaining unmatched, at which point she perishes.

At any time t ≥ 0, the network of acceptable transactions among agents forms a random

graph Gt = (At, Et), where the agents in the exchange at time t form the vertex set At, and

the acceptable transactions between agents forms the edge set Et. We assume A0 = ∅. Let

Ant denote the set of agents who enter the exchange at time t, such that with probability 1,

|Ant | ≤ 1 for any t ≥ 0. Finally, let A = ∪t≤TAnt .

Akbarpour et al. [4] present a parameterized space of online matching policies, with a focus

specifically on two: Patient and Greedy. (In the next section, we will present a novel

model of two overlapping exchanges, one running the Patient policy and the other running

the Greedy policy.) As described above, vertex arrivals are treated as a continuous-time

stochastic process. These policies behave as follows.

Greedy. The Greedy matching algorithm attempts to match each entering agent immedi-

ately by selecting one of its neighbors (if a neighbor exists at the time of entry) uniformly at
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random. One obvious consequence of this is that the remaining graph of unmatched agents

at any instant is always empty. We refer to a market running this policy as the Greedy

market or simply Greedy for the rest of the thesis.

Patient. The Patient matching algorithm attempts to match each agent only at the instant

she becomes critical. As with Greedy, if a critical agent has multiple neighbors, only one is

selected uniformly at random. We refer to a market running the Patient policy as a Patient

market or simply Patient when appropriate.

If the random graph model is Erdős-Rényi [53] when not considering arrivals, departures, and

matching, then the remaining graph at any instant is also Erdős-Rényi with parameter d/m;

furthermore, d is the average degree of the agents. Both the Patient and Greedy policies

maintain this observation.

The main result of Akbarpour et al. [4] is that waiting to thicken the market can be sub-

stantially more important than increasing the speed of transactions. Formally, the Patient

exchange dramatically reduces the number of agents who perish (and thus leave the exchange

without finding a match) compared to the Greedy exchange.

In the Akbarpour et al. [4] paper, an agent a receives zero utility if she perishes, or u(a) = 0.

If she is matched, she receives a utility of 1 discounted at rate δ, or u(a) = e−δs(a). In this

work, we focus on the special case of δ = 0 in this paper (i.e., we only consider whether or

not an agent is matched), and leave the δ 6= 0 case for future research. Let ALG(T ) := {a ∈

A : a is matched by ALG by time T}. Then, in this model, the loss of an algorithm ALG is

defined as the ratio of the expected number of perished agents to the expected size of A, as

shown in Equation 4.1.

L(ALG) =
E[|A−ALG(T )−AT |]

E(|A|)
=
E[|A−ALG(T )−AT |]

mT
(4.1)
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At any time t ∈ [0, T ], let Zg,t, Zp,t represent the size of the pools under the Greedy and

Patient matcing policies, respectively. Then, Akbarpour et al. [4] proved that the Markov

chain on Z·,t has a unique stationary distribution under either of those policies. Furthermore,

let πg, πp : N → R+ be the unique stationary distribution of the Markov chain on Zg,t, Zp,t,

respectively, and let ξg := EZg∼πg [Zg], ξp := EZp∼πp [Zp] be the expected size of the pool under

the stationary distribution under Greedy and Patient. Then, the following observations can

be made.

Loss of Greedy. If a Greedy exchange is run for a sufficiently long time, then L(Greedy) ≈
ξg
m

. The intuition here is that the Greedy pool is (almost) always an empty graph. Equa-

tion (4.2) formalizes the loss.

L(Greedy) =
1

mT
E
[∫ T

0

Zg,tdt

]
=

1

mT

∫ T

0

E [Zg,t] dt (4.2)

Loss of Patient. If a Patient exchange is run for a sufficiently long time, at any point

in time it is an Erdős-Rényi random graph. So once an agent becomes critical, she has no

acceptable transaction with probability (1 − d/m)Zp,t−1. Thus, L(Patient) ≈ ξp(1−d/m)ξp−1

m
.

Equation (4.3) formalizes the loss of a Patient market.

L(Patient) =
1

mT
E
[∫ T

0

Zp,t(1− d/m)Zp,t−1dt

]
=

1

mT

∫ T

0

E
[
Zp,t(1− d/m)Zp,t−1

]
dt

(4.3)
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4.3 Overlapping exchanges

The key result of Akbarpour et al. [4] is that a greedy dynamic matching market leads to

significantly lower global social welfare than a patient matching market with full knowledge

of criticality. The central question of this chapter is what happens in a situation where a

greedy exchange and a patient exchange exist simultaneously and compete with each other

to match some shared portion of the population. Agents in this overlapping subset of the

population join both exchanges simultaneously and accept the first match offer from either

of the constituent exchanges.

Drawing on Section 4.2, we model this in a similar stochastic, continuous-time framework as

follows. Agents arrive at the Competing market (a model for the whole system, incorporating

both the Greedy and Patient exchanges) at some rate m according to a Poisson process. For

each agent, the probability of entering both the Greedy exchange and the Patient exchange

is γ, the probability of entering the Greedy exchange alone is (1−γ)α, and the probability of

entering the Patient exchange alone is (1−γ)(1−α), where γ, α ∈ [0, 1]. The probability that

a bilateral transaction between each pair of agents is acceptable remains d/m, conditioned on

both agents being mutually “visible” to an exchange. The agents’ rates of perishing, received

utility for being (un)matched, and other settings are otherwise the same as in Section 4.2.

We analyze the Competing market as three separate evolving pools:

Greedyc is the pool consisting of agents who enter the Greedy exchange only (with proba-

bility α(1− γ)).

Patientc is the pool consisting of agents who enter the Patient exchange only (with proba-

bility (1− α)(1− γ)).
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Bothc is the pool consisting of agents who enter both exchanges (with probability γ).

We use Ẑg,t, Ẑp,t and Ẑb,t to denote the size of Greedyc, Patientc and Bothc, respectively, at

any time t. Similar to an exchange running a single Greedy or Patient matching policy, the

Markov chain on Ẑ·,t also has a unique stationary distribution. Let π̂· : N → R+ be the

unique stationary distribution of the Markov chain on Ẑ·,t, and let ξ̂· := EẐ·∼π̂· [Ẑ·] be the

expected size of the pool under the stationary distribution. Using this, we will define the loss

of Greedyc, L̂(Greedyc), the loss of Patientc, L̂(Patientc), and the loss of Bothc, L̂(Bothc).

First, note that the graph formed by the agents in Greedyc is empty, so the loss—as in

Equation (4.2)—can be approximated by L̂(Greedyc) ≈
ξ̂g
m

.

Next, we consider the agents in Bothc. If an edge exists between an agent in Bothc and an

existing agent in Greedyc or another agent in Bothc, she will be matched immediately by the

Greedy exchange (and thus does not contribute to the loss). Similar to the Greedyc case,

at any point in time t, the Bothc pool is an empty graph; thus, any unmatched agents who

become critical in Bothc will only be matched to agents in Patientc. Thus, these leftover

agents in Bothc have no acceptable transactions with probability (1 − d/m)Ẑp,t . Since each

agent becomes critical with rate 1, letting Competing market run for a sufficiently long time

results in L̂(Bothc) ≈ ξ̂b(1−d/m)ξ̂p

m
, where ξ̂b, ξ̂p are the previously defined expected sizes of

Bothc and Patientc.

Finally, we consider the Patientc pool. At any time t, the agents who remain in Patientc

potentially have acceptable transactions with only the agents in Bothc and the agents in

Patientc. Hence, in Ẑp,t, once an agent is critical, she has no acceptable transactions with

probability (1 − d/m)Ẑp,t+Ẑb,t−1. Similarly, each agent becomes critical with rate 1; thus,

76



if we allow the Competing market a sufficiently long execution window, L̂(Patientc) ≈
ξ̂p(1−d/m)ξ̂p+ξ̂b−1

m
.

Because the three pools of agents—Greedyc, Patientc, and Bothc—are disjoint (although

they may be connected via possible transactions in the ways listed above), we can define the

total loss of the Competing market as follows.

L(Competing) ≈ ξ̂g + ξ̂p(1− d/m)ξ̂p+ξ̂b−1 + ξ̂b(1− d/m)ξ̂p

m
. (4.4)

A more precise version of Equation (4.4) follow as Equation (4.5); we will make use of this

form in Section 4.5.

L(Competing) =
1

mT
E
[∫ T

0

Ẑp,t(1− d/m)Ẑp,t+Ẑb,t−1

+ Ẑb,t(1− d/m)Ẑp,t + Ẑg,tdt

]
=

1

mT

∫ T

0

E
[
Ẑp,t(1− d/m)Ẑp,t+Ẑb,t−1

+ Ẑb,t(1− d/m)Ẑp,t + Ẑg,t
]
dt

(4.5)

Unfortunately, we do not have a closed form expression for the stationary distribution or the

expected size of the pool under the stationary distribution. We note that each of ξ̂g, ξ̂p, and

ξ̂b can be approximated well using Monte Carlo simulations—thus, Equation (4.4) can be

solved numerically. We do this in Section 4.5.1 for two parameterizations of the rival market

setting.
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4.4 A bound on total loss

While we do not have a closed form for the exact expected loss of the Competing market

as described by Equation (4.4), we can provide bounds on the overall loss. In this section,

we give one such bound for the global loss under the constraint that Greedyc is more likely

to receive agents than the overlapping Bothc exchange. Formally, this occurs when γ ≤ 0.5

and α ≥ γ
1−γ . We also impose some loose requirements on the arrival rate of vertices to

the exchange and the probability of an acceptable transaction existing between two agents;

intuitively, the exchange cannot be “too small” or “too sparse,” which we formalize below.

Under these assumptions, we use the bound to prove Theorem 5, which states that a single

Patient market outperforms the Competing market.

Theorem 5 Assume γ ≤ 0.5, m > 10d, and α(1− γ) ≥ max
{
γ, 1

2
e−d/2(1 + 3d)

}
. Then, as

m→∞ and T →∞, almost surely

L(Competing) > L(Patient).

Proof We prove the theorem by giving a lower bound on L̂(Greedyc), the loss of only the

greedy portion of the Competing market. In our model, the fraction of agents entering only

the Greedyc side of the market is α(1 − γ); for notational simplicity, we use x := α(1 − γ)

in this proof. Similarly, the fraction of agents entering Bothc is γ; again, for notational

simplicity, we use y := γ throughout this proof.

As before, let Ẑg,t be the size of Greedyc at any t ∈ [0, T ], and τ̂ the expected size of the

Greedyc pool. Similarly, let Ẑb,t be the size of Bothc at any t ∈ [0, T ], and η̂ the expected
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size of the Bothc pool. That is,

τ̂ := E
t∼unif[0,T ]

[
Ẑg,t

]
and η̂ := E

t∼unif[0,T ]

[
Ẑb,t

]
.

By assumption, α(1− γ) ≥ γ; that is, the arrival rate of Greedyc is greater than or equal to

the arrival rate of Bothc. In this case, τ̂ ≥ η̂; the Greedy matching policy removes verties

from both Bothc and Greedyc, while the Patient matching policy removes vertices from

only Bothc, which means the matching rate for Bothc is greater than the matching rate for

Greedyc.

From Akbarpour et al. [4], we know the expected rate of perishing of the individual Greedy

exchange is equal to the pool size because the Greedy matching policy does not react to

the criticality of an agent at any time t in its pool and each critical agent will perish with

probability 1. Therefore, we can draw directly on Equation (4.2) to write

L̂(Greedyc) =
1

xmT
E[

∫ T

t=0

dt Ẑg,t] =
τ̂

xm
. (4.6)

We know x and m, so lower bounding τ̂ will result in an analytic lower bound on L̂(Greedyc).

Following the ideas of Akbarpour et al. [4], we do this by lower bounding the probability

that an agent a does not ever have an acceptable transaction for the duration of her sojourn

s(a). Because these agents cannot be matched by any matching policy, this directly gives

a lower bound on L̂(Greedyc). Toward this end, fix an agent a ∈ A who enters Greedyc

at time t0 ∈ unif[0, T ] and draws a sojourn s(a) = t. Let fsa(t) be the probability density

function at t of s(a). Then we can write the probability that a will never have a neighbor
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(i.e., possible match) as

P [N(a) = ∅] =

∫ ∞
t=0

fsa(t)E
[
(1− d/m)Ẑg,t0+Ẑb,t0

]
E
[
(1− d/m)|AG

n
t0,t0+t

+ABnt0,t0+t
|
]
dt,

where AGn
t0,t0+t (resp. ABn

t0,t0+t) denotes the set of agents who enter Greedyc (resp. Bothc)

in time interval [t0, t0 + t]. The first expectation captures the probability that agent a has

no matching at the moment of entry and the second expectation considers the probability

that no new agents that can match with a arrive during her sojourn.

Using Jensen’s inequality, we have

P [N(a) = ∅] ≥
∫ ∞
t=0

e−t(1− d/m)E[Ẑg,t0+Ẑb,t0 ]

(1− d/m)E[|AGnt0,t+t0+ABnt0,t+t0
|]dt

=

∫ ∞
t=0

e−t(1− d/m)τ̂+η̂(1− d/m)(x+y)mtdt.

From the assumptions in the theorem statement, d
m
< 1

10
, so 1− d/m ≥ e−d/m−d

2/m2
. Also,

as described earlier, τ̂ ≥ η̂ (when γ ≤ 0.5 and α ≥ γ
1−γ , as assumed). Therefore,

L̂(Greedyc) ≥ P [N(a) = ∅]

≥ e−(τ̂+η̂)(d/m+d2/m2)

×
∫ ∞
t=0

e−t−(x+y)td−(x+y)td2/mdt

≥ 1− (τ̂ + η̂)(1 + d/m)d/m

1 + (x+ y)d+ (x+ y)d2/m

≥ 1− 2τ̂(1 + d/m)d/m

1 + (x+ y)d+ (x+ y)d2/m
,

(4.7)
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where the third inequality is obtained from the fact that e−z ≥ 1 − z when z ≥ 0, here

z = (τ̂ + η̂)(d/m+ d2/m2).

Combining Equation (4.6) and Equation (4.7),

L̂(Greedyc) =
τ̂

xm
≥ 1− 2τ̂(1 + d/m)d/m

1 + (x+ y)d+ (x+ y)d2/m
,

which gives us a lower bound for τ̂ ,

τ̂ ≥ xm

1 + (3x+ y)d+ (3x+ y)d2/m
.

Thus, as m→∞, we get,

L̂(Greedyc) ≥
1

1 + (3x+ y)d+ (3x+ y)d2/m

≥ 1

1 + 3d
.

We are interested in bounding the total loss of the Competing market, which is L(Competing) =

xL̂(Greedyc) + (1− α)(1− γ)L̂(Patientc) + yL̂(Bothc). By definition, both L̂(Patientc) ≥ 0

and L̂(Bothc) ≥ 0, and by Equation (), L̂(Greedyc) ≥ 1
1+3d

. Thus,

L(Competing) ≥ x

1 + 3d
.

Akbarpour et al. [4] showed that running an individual Patient market results in exponen-

tially small loss L(Patient) < 1
2
e−d/2. Thus, as T,m→∞, we can get,

L(Competing) > L(Patient). (4.8)
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We note that the result of Theorem 5 holds for only a section of the possible parameterizations

of a Competing market—specifically, when γ ≤ 0.5 and α ≥ γ
1−γ . In the next section, we will

give numerical results showing that this result—that the loss of the Competing market is

greater than the loss of an individual Patient exchange—appears to hold for a vastly larger

space of values of γ and α. Indeed, experimentally, we will see that the loss of the Competing

market is sometimes greater than the loss of an individual Greedy exchange, which itself is

substantially greater than the loss of an individual Patient exchange.

4.5 Experimental validation

In this section, we provide experimental validation of the theoretical results presented in

Sections 4.3 and 4.4. Section 4.5.1 quantifies the loss due to competing markets as described

by Equation (4.4), while Section 4.5.2 expands the model to kidney exchange and draws from

realistic data to quantify the loss of competing kidney exchange clearinghouses.

4.5.1 Dynamic matching

In Section 4.3, we gave a method for computing the expected loss due to competing markets

as Equation (4.4); however, we were unable to derive closed forms for the expected size of

the competing, patient, and greedy pools (ξ̂b, ξ̂p, and ξ̂g, respectively) under the stationary

distribution. These quantities can be estimated using Monte Carlo simulation for different

entrance rates m. We do that now.
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Figures 4.1 and 4.2 simulate agents entering the Greedyc, Bothc, and Patientc markets ac-

cording to a Poisson process with rate parameter m = 1000 and remaining for a sojourn

drawn from an exponential distribution with rate parameter λ = 1. An agent chooses to

enter Bothc with probability γ, only Greedyc with probability α(1 − γ), and only Patientc

with probability (1 − α)(1 − γ), as in the theory above. We vary α ∈ {0, 0.1, . . . , 1} and

γ ∈ {0, 0.1, . . . , 1}, and plot the global loss realized for each of these parameter settings.
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Figure 4.1: Average loss (y-axis) as the overlap between markets γ increases (x-axis), with entrance
rate parameter m = 1000 and d = 20, for different values of α. The loss of individual Patient and
Greedy markets are shown as thick black and thick dashed bars, respectively.

Immediately obvious is that running a single Patient market results in dramatically less loss

than competing markets, for all different values of α and γ. Furthermore, we see that the loss

of a single Greedy market is also dramatically higher than the loss of a single Patient market,

as predicted by Akbarpour et al. [4]. Indeed, from Equation (4.3) we would expect the single

Patient market to have essentially zero loss, so these experiments show that adding in a rival

Greedyc market increases loss. In fact, as the left side of Figure 4.1 and the right side of

Figure 4.2 show, it is the case that if the markets do not overlap substantially (i.e., γ is low)
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Figure 4.2: Average loss (y-axis) as the probability α of entering Patientc or Greedyc changes (x-
axis), with entrance rate parameter m = 1000 and d = 20, for different values of the market overlap
γ. The loss of individual Patient and Greedy markets are shown as thick black and thick dashed
bars, respectively.

and agents are more likely to enter the greedy side of the market (i.e., α is near 1), then the

loss of the competing market is worse than running a single Greedy market! This is due in

part to the decrease in market thickness on the Patientc side of the market—a behavior we

will see exacerbated below and in the kidney exchange experiments of Section 4.5.2.

Figure 4.3 decreases the rate parameter of the entrance Poisson process to m = 100, while

holding the probability of an acceptable transaction between two agents at that of Figures 4.1

and 4.2 (so d = 2, leading to 2/100 = 2%). With fewer participants in the market overall,

all the qualitative results of the m = 1000 markets above are amplified. The individual

Greedy market’s loss is now 5.9% worse than the individual Patient market (as opposed to

3.3% in the m = 1000 case); both individual markets’ losses are substantially higher as well.

Similarly, the parameter settings for which the competing market scenario has higher loss
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than either individual market are much broader than the m = 1000 case, which is a product

of market thinness.

0 0.2 0.4 0.6 0.8 1

γ

0.15

0.20

0.25

0.30

0.35

0.40

A
ve

ra
ge

Lo
ss

Matching, m=100, λ=1
Patient
Greedy
α = 0.0

α = 0.1

α = 0.3

α = 0.5

α = 0.7

α = 0.9

0 0.2 0.4 0.6 0.8 1

α

0.15

0.20

0.25

0.30

0.35

0.40

A
ve

ra
ge

Lo
ss

Matching, m=100, λ=1
Patient
Greedy
γ = 0.0

γ = 0.1

γ = 0.3

γ = 0.5

γ = 0.7

γ = 0.9

Figure 4.3: Average loss as the probability α of entering Patientc or Greedyc (top) or the overlap
between the two markets γ (bottom) changes, with entrance rate parameter m = 100 and d = 2.
The loss of individual Patient and Greedy markets are shown as thick black and thick dashed bars,
respectively.
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4.5.2 Dynamic kidney exchange

In this section, we expand our matching model to one of barter exchange, where agents

endowed with items participate in directed, cyclic swaps of size greater than or equal to

two. One recently-fielded barter application is kidney exchange, where patients with kidney

failure swap their willing but incompatible organ donors with other patients. We focus on

that application here. Dynamic barter exchange generalizes the matching model presented

above, so we would not expect the earlier theoretical results to adhere exactly. Interestingly,

as we show in Sections 4.5.2 and 4.5.2, the qualitative ranking of matching policy loss (with a

patient market outperforming a greedy market, both of which outperform two rival markets)

remains.

This section’s experiments draw from two kidney exchange compatibility graph distributions.

One distribution, which we call Saidman, was designed to mimic the characteristics of a

nationwide exchange in the United States in steady state [127]. Yet, kidney exchange is still

a nascent concept in the US, so fielded exchange pools do not adhere to this model. With

this in mind, we also include results performed on a dynamic pool generator that mimics

the United Network for Organ Sharing (UNOS) nationwide exchange, drawing data from

the first 193 match runs of that exchange. We label the distribution derived from this as

UNOS.

Formally, we represent a kidney exchange pool with n patient-donor pairs as a directed

compatibility graph G = (V,E), such that a directed edge exists from patient-donor pair

vi ∈ V to patient-donor pair vj ∈ V if the donor at vi can give a kidney to the patient

at vj. Edges exist or do not exist due to the medical characteristics (blood type, tissue

type, relation, and many others) of the patient and potential donor, as well as a variety of
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logistical constraints. Our generators take care of these details; for more information on how

edge existence checking is done in the Saidman and UNOS distributions, see Saidman et

al. [127] or Dickerson and Sandholm [48], respectively. Importantly, under either distribution,

there is no longer a costant probability “d/m” of an acceptable transaction existing between

any two agents.

Vertices arrive via a Poisson process with rate parameter m = 100 and depart according

to an exponential clock with rate parameter λ = 1 as before, and choose to enter either

exchange or both with the previously-defined probabilities γ and α. However, a “match”

now only occurs when a vertex forms either a 2-cycle or 3-cycle with one or two other

vertices, respectively.7 Section 4.5.2 performs experiments on 2-cycles alone, which adheres

more closely to the theoretical setting above (2-cycles can be viewed as a single undirected

edge between two vertices), while Section 4.5.2 expands this to both 2- and 3-cycles.

Kidney exchange with 2-cycles only

We now present results for dynamic matching under competing Patientc and Greedyc kidney

exchanges, both of which use only 2-cycles. Figure 4.4 and Figure 4.5 show losses incurred

in our parameterized market when run on Saidman-generated and UNOS-generated pools,

respectively.

While the barter exchange environment under either the Saidman or UNOS distribu-

tions clearly breaks the structural properties of the stationary distribution of the underlying

7In fielded kidney exchange, cycles longer than some short cap L (e.g., L = 3 at the UNOS exchange and
many others) are typically infeasible to perform due to logistical constraints, and thus are not allowed. We
adhere to that constraint here. Fielded exchanges also realize gains from chains, where a donor without a
paired patient enters the pool and triggers a directed path of transplants through the compatibility pool.
We do not include chains in this work.
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Figure 4.4: Average loss under various values of γ and α for the Saidman distribution with 2-cycles
only.
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Figure 4.5: Average loss under various values of γ and α for the UNOS distribution with 2-cycles
only.

Markov process used in our theoretical results, the qualitative results of these experiments

align with the traditional dynamic matching results of Section 4.5.1. The overall loss real-

ized by UNOS is substantially higher than that realized by Saidman because, in general,
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UNOS-generated graphs are more sparse than those from the Saidman family. Similarly,

in either distribution there exist “highly-sensitized” vertex types that are extremely unlikely

to find a match with another randomly selected vertex, and thus almost certainly create

loss. Indeed, both Figure 4.4 and 4.5 exhibit higher loss than the similarly-parameterized

Figure 4.3 of Section 4.5.1.

Kidney exchange with both 2- and 3-cycles

We now extend our experiments to allow for “matches” that include both 2- and 3-cycles.

Unlike Section 4.5.1 or 4.5.2, where a matched edge was chosen uniformly at random from

the set of all acceptable transactions between a distinguished vertex and its neighbors, in

these results we may wish to distinguish a potential match from others (for example, by

choosing a 3-cycle before a 2-cycle, as the former results in a larger myopic decrease in

the market’s loss). Thus, given a set of possible 2- and 3-cycle matches, we consider two

matching policies: Uniform selects a cycle at random from the set of possible matches,

regardless of cycle cardinality, while Uniform3 selects a 3-cycle randomly (if one exists),

otherwise a random 2-cycle.

Figures 4.6 and 4.7 show results for the Saidman and UNOS distributions, respectively,

under the Uniform match selection policy. Intuitively, one might expect the loss of a

matching policy run in the 2- and 3-cycle case to be less than the same policy run in the

2-cycle case alone, as the set of possible matches weakly increases in the former case. We

see this behavior when comparing the Saidman results of Figure 4.6 to the earlier 2-cycle-

only Saidman results of Figure 4.4, witnessing a drop in global loss of around 4% for any

parameter setting. We see a similar decrease in loss when comparing the new UNOS results

of Figure 4.7 to those in the 2-cycle case shown in Figure 4.5.
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Figure 4.6: Average loss under various values of γ and α for the Saidman distribution with both
2- and 3-cycles, under the Uniform matching policy.
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Figure 4.7: Average loss under various values of γ and α for the UNOS distribution with both 2-
and 3-cycles, under the Uniform matching policy.

We now consider the Uniform3 matching policy, which would likely be closer to how a

fielded exchange would act. Figures 4.8 and 4.9 show results for the Saidman and UNOS

families of compatibility graphs, respectively. The loss of the individual Patient market
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does not change in either distribution, which is likely a byproduct of the thicker markets

induced by its match cadence. Curiously, the loss of the individual Greedy market drops

dramatically—to around the Patient loss in the UNOS case, and below Patient in the Said-

man case. This large drop in Greedy loss is likely due in part to Greedy now “poaching”

larger 3-cycles from the leftover market from which the Patient policy draws. The other

qualitative results of earlier sections are repeated, with rival markets hurting global loss

relative to either individual market for nearly all settings of γ and α.
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Figure 4.8: Average loss under various values of γ and α for the Saidman distribution with both
2- and 3-cycles, under the Uniform3 matching policy.

4.6 Discussion

Our main goal is to study the impact of competition between exchanges in a dynamic match-

ing setting. In this chapter, we extended the recent dynamic matching model of Akbarpour

et al. [4] to two rival matching markets with overlapping pools. Specifically, we formalized a

two-market model where agents enter one market or both markets; they can then potentially
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Figure 4.9: Average loss under various values of γ and α for the UNOS distribution with both 2-
and 3-cycles, under the Uniform3 matching policy.

be matched to other agents who have joined the same market or both markets. The markets,

called Greedy and Patient, adhere to different matching policies. We provided an analytic

lower bound on the loss of the two-market model and showed that it is higher than running

a single Patient market. We also provided a quantitative method for determining the loss

of the two-market model. We supported these theoretical results with extensive simulation.

We also looked at competing kidney exchanges, and provided (to our knowledge) the first

experimental quantification of the loss in global welfare in a setting with two clearinghouses

using realistic kidney exchange data drawn from a generator due to Saidman et al. [127] and

another based on the United Network for Organ Sharing (UNOS) program.

We see competing dynamic matching markets as fertile ground for future research, with a

trove of both theoretical and practical questions to answer. First, the model of Akbarpour et

al. [4] discounts the utility of a match by the time the matching agent has already waited in

the pool; this is well motivated in a variety of settings, including kidney exchange. Our results
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in this chapter assume a discount factor of zero, so it would be valuable to consider the impact

on discounted loss for non-zero cases. Second, in our model the choice of market to enter is

exogenously determined for each agent. In reality, agents with different levels of knowledge,

wealth, etc. may make strategic decisions on which markets to enter. Thus, one could

approach this dynamic matching problem from a game-theoretic point of view. Similarly,

taking network effects (where more popular exchanges have an easier time attracting agents,

lower operating costs, higher probabilities of two agents forming an acceptable transaction,

and other advantages) into account would make these models more applicable to many real-

world settings. Finally, we only looked at two overlapping markets; generalizing this to any

number of overlapping markets would also be of interest.

In terms of barter exchange and, specifically, kidney exchange, the question of how clearing-

houses interact is a timely one. In the United States and, eventually, elsewhere, multi-center

and single-center exchange clearinghouses are already competing, each drawing from some

(often overlapping) subset of the full set of patient-donor pairs available. Indeed, the dy-

namic barter exchange problem in a single market is still not fully understood (barring very

promising recent work due to Anderson et al. [6]). We saw in Section 4.5.2 that including

3-cycles in the matching process results in lower loss, even when two markets overlap, com-

pared to including only 2-cycles (a result that has been shown repeatedly in the static [124]

and dynamic [6] single clearinghouse setting), so extending the theoretical underpinnings

of our framework to a more general setting would be of great value. Finally, it is curious

that the Uniform3 policy had such a large effect on the loss of the individual Patient and

Greedy exchanges compared to the Uniform policy; further exploration of different match-

ing policies (including those that use a strong prior to consider possible future states of the

pool when matching now) would be helpful in making policy recommendations to fielded

exchanges.
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Chapter 5

Equilibrium Behavior in Competing

Dynamic Matching Markets

Built on the two-market model of Chapter 4, this chapter addresses questions about the

equilibrium behavior of competing dynamic matching market systems. Instead of using

stochastic participants and fixed policies, we now consider the strategic behaviors: first from

the points of view of individual participants when market policies are fixed, and then from

the points of view of markets when agents are stochastic.

First, we analyze models where individual market participants have agency. These partici-

pants can be of different types (short-lived or long-lived) and may choose entrance into the

market system such that their individual utility is maximized. Different types of agents may

have different preferences, and we analyze equilibrium behavior in both continuous (Sec-

tion 5.2) and discrete (Section 5.3) time settings. We show that even with just two types

of agents, strategic market choice can induce market fragmentation—while there are some

pooling equilibria where all strategic agents choose the same market (which is socially prefer-

able), separating equilibria become significantly more likely, as the proportion of agents who
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are assigned to a particular market increases (these agents may be constrained by geog-

raphy or cost, for example), and with short-lived agents choosing the patient market and

long-lived agents the greedy market. This is because the patient market is typically thicker,

giving a higher probability of matching during an agent’s sojourn, and short-lived agents

suffer less penalty because the market attempts to match them sooner relative to arrival.

Unfortunately, the fragmentation comes at significant social cost in reduced thickness.

Second, in Section 5.4, we prescribe agency to the markets themselves, allowing them to

choose overall matching policies (defined by the frequency at which they decide to match)

strategically to maximize their overall utility. In this case, the agents are stochastic in their

choice to join one or the other market, or to enter both markets. We quantify via best

response dynamics the social welfare loss of this competitive marketplace under a variety

of initial conditions, and compare that loss to the lower bound provided by a single market

running an optimal matching policy.

Overall, our results demonstrate the serious concern of a “race to the bottom” when multi-

ple matching markets compete. This is due to both fragmentation and the choice of socially

suboptimal matching policies by individual markets. When agents choose markets strate-

gically, differences in their types and utilities can lead to preferences for one or the other

markets and induce separating equilibria and fragmented markets. Even when agents do

not have market choice, if markets can choose their matching policies, individual markets

may be incentivized to match as early as possible an inefficient fraction of the time in the

race to match more agents. The intersection of differential impact on different types and

competing matching platforms raises important ethical issues in allocation and regulation.

Such discussions can be informed by our models. Further, our models can also provide the

foundation for future models that consider situations where both agents and markets can be
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strategic. Section 5.5 concludes with some recommendations for policymakers derived from

our results.

5.1 Preliminaries

We still follows Greedy polices and Patient polices as we discussed in Chapter 4. Besides,

the market can also choose a clearing rule that interpolates between the Patient and Greedy

clearing rules (the so-called Patient(α) clearing rule), which allows tuning of the matching

rate. Specifically, a market matching with the Patient(α) strategy draws an exponential

random variable Cv with rate parameter 1/α for each vertex v. If vertex v entering at time t

becomes critical at time tc < t+Cv, she matches at tc, as in the Patient matching algorithm.

Otherwise the vertex matches at time t + Cv. Note that when α → 0 we will have Cv
p→ 0,

which corresponds to a Greedy matching algorithm.

5.1.1 Model I: Strategic Agents

Our first model considers two types of agents in terms of length of life, short-lived and

long-lived. Short-lived agents come into the markets with a length of life Ts and long-lived

agents have a length of life Tl, where Ts < Tl. Each agent (who is aware of her own

type) decides which market to enter upon arrival. A fraction θ of agents are short-lived

and the remaining 1 − θ fraction are long-lived. We allow a φ fraction of random-choice

agents (random agents) to choose either market with 0.5 probability. The remaining 1 − φ

fraction of agents are strategic. For these models, we restrict attention to models in which

one Greedy and one Patient market compete. The action space for agents is the market
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choice, B = {Greedy, Patient}. We want to analyze the equilibrium strategies of strategic

agents given the setting of θ and φ. Here, the market choice becomes a tradeoff between

matching probability and utility. That is, entering a Patient market may give an agent a

higher matching probability but lower utility as the agent has a higher expected sojourn

time; in contrast, immediate matching from a Greedy market provides a higher utility but

may lower the probability of matching since the market is not thick enough.

We investigate the behavior of strategic agents in the two-market Model I in both contin-

uous time (Section 5.2) and discrete time (Section 5.3) models.

5.1.2 Model II: Strategic Markets

Our second, complementary, direction is to model the situation where agent behaviors are

stochastic, but markets themselves make strategic decisions. We define each market’s utility

as the aggregate utility of the (non-strategic) agents it matches (it is reasonable to assume

that the market can capture some fraction of this utility). We follow the model in Section 4.3

for assigning agents to one or both of the two competing markets. A γ1 fraction of agents are

assigned to both markets; the market which successfully matches the agent first will receive

utility from the match. The remaining agents are only assigned to one market: a γ2 fraction

enter the first market, while a 1− γ2 fraction enter the second market.

The action chosen by a market is its choice of market-clearing rule, parameterized by the

matching rate α described above. The market-clearing rule choice involves a tradeoff: if

Market 1 chooses a fast matching rate, it will match more agents assigned to both markets,

but will match fewer agents which are only assigned to Market 1. The relative market sizes,
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Shared Notation

p Probability of potential transaction existing between two agents
T Number of time periods the markets operate
k Exponential rate of Poisson process entering market

Model I Notation Model II Notation

δ Discount rate used by short- & long-lived agents M{1,2} Strategic market 1 (2)
a A short- or long-lived agent γ1 Probability a vertex enters both markets
s(a) The sojourn time of agent a γ2 Probability a vertex enters M1 only

u The utility function of a discounting agent α
{1,2}
t Exponential rate parameter for matching

T{s,l} The length of life of a short-(long-)lived agent rate in market M1 (M2) at time t
θ Fraction of short-lived agents d Exponential rate parameter for criticality
φ Fraction of random-choice agents TR Time between updates of clearing rates
mg,e Pr. acceptable transaction when entering Greedy (Patient) u{M1,M2} Utility function of strategic market M{1,2}
m{g,p},s Pr. acceptable transaction staying in Greedy (Patient)
mp,c Pr. of acceptable transaction when critical in Patient
Λp,t Number of agents critical at time t in Patient market in the

discrete model, or rate of perishing in the continuous model
Z{g,p},t Size of Greedy (Patient) market at time t
U{s,l},{g,p} Expected utility of short- (long-)lived agents

choosing Greedy (Patient) market

Table 5.1: Variable definitions in Chapter 5.

parameterized by γ1 and γ2 are factors in the optimal choice. We investigate equilibrium

behavior via simulation of two markets in Model II in Section 5.4.

5.2 Strategic Agents in Continuous Time

We consider two markets operating simultaneously, one Greedy and one Patient. For sim-

plicity, we assume that lengths of life Ts and Tl for short-lived and long-lived agents are

constants that are fixed across the same type of agents.8

The markets run in the continuous-time interval [0, T ]. Agents arrive according to a Poisson

process with rate parameter k ≥ 1 (k = 100 in our simulations). The type of each arriving

agent is stochastic; with probability θ, the arriving agent is a short-lived type; and with

8We also ran experiments where Ts and Tl are sampled from two exponential distributions with different
rate parameters λs and λl, truncated so that Ts < 1 and Tl ≥ 1. The results were qualitatively very similar
to the case where Ts and Tl are constants.
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probability 1− θ, she is a long-lived type. Parameter φ controls whether an agent is random

or strategic, that is, with probability φ, she is a random agent and w.p. 1 − φ she is a

strategic agent. Upon arrival, the agent needs to decide which market to enter. Random

agents choose a market uniformly at random and strategic agents choose a market based on

comparing the expected utilities of entering each market.

We first consider agents entering the Greedy market. As the Greedy market matches agents

immediately upon entry, the probability of an agent having acceptable transactions imme-

diately after entering at any time t is mg,e(t) = (1 − (1 − p)Zg,t−1), where Zg,t represents

the size of the pool under the Greedy matching policy at time t. To be noticed, t here is

an infinitesimal time. Since entry occurs stochastically in continuous time, only one agent

enters exactly at time t. Therefore, as long as there exist any acceptable transactions, the

entering agent will be matched immediately. Once the moment of entry has passed, an agent

can only be matched at the point in time when some other agent enters the market. The

probability of an agent who was not matched at entry having an acceptable transaction at

the time of entry of some other agent is mg,s(t) = (1−(1−p)Zg,t−1)
Zg,t−1

. Denote the probability of an

agent entering the Greedy market at any point in time t as P [Entrytg]. Thus, the expected

utility of an agent for choosing the Greedy market Utype,g(t) at time t given she knows her

type is

Utype,g(t) =mg,e(t) +
∫ Ttype
0 P [Entrytg ]

mg,s(t+ s(a))e−δs(a)ds(a),

(5.1)

where type ∈ {short, long}.

Now consider agents entering the Patient market. The Patient market attempts to match

agents at the instant they become critical. The probability of an agent having acceptable

transactions during their stay (before perishing) at any time t is mp,s(t) = Λp,t
(1−(1−p)Zp,t−1)

Zp,t−1
,
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where Λp,t is the rate of perishing in the Patient market and Zp,t is the size of the pool

under the Patient matching policy at time t. The probability of an agent having acceptable

transactions at the instant she becomes critical is mp,c(t) = (1 − (1 − p)Zp,t−1). Denote the

probability that some agent in the Patient market becomes critical at any time t as P [Exittp].

The expected utility of an agent for choosing patient market Utype,p(t) at time t given her

type is

Utype,p(t) =
∫ Ttype−ε
0 P [Exittp]mp,s(t+ s(a))

e−δs(a)ds(a) +mp,c(t+ Ttype)e
−δTtype ,

(5.2)

where ε is an infinitesimal amount of time right before an agent perishes and type ∈

{short, long}.

(a)

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

E
x
p
ec

te
d
 u

ti
li

ty

 = 0.4

Competing

Greedy

Patient

(b) (c)

Figure 5.1: Results of continuous market for p = 0.02, δ = 0.05, Ts = 2, Tl = 3. Long:Greedy
(Short:Greedy) and Long:Patient (Short:Patient) show the expected utility of a strategic long-type
(short-type) agent if she chooses Greedy and Patient respectively.

Equations (1) and (2) clarify the tradeoffs agents face. In general, while the patient market

may give a higher probability of finding a match, the fact that an agent typically has to

wait longer diminishes her expected utility. Since agents start with the same utility and it

diminishes at the same rate, this means that short-lived agents will have a relatively higher

preference for the Patient market compared with long-lived agents (who have to wait longer

until the point in time when they are most likely to get matched, the time of criticality, in
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the patient market). Since there are positive externalities to entering a market and making it

thicker, we may expect that the market-choice game may have both pooling and separating

equilibria, where either both types of agents enter one market or short-lived agents enter the

Patient market while long-lived agents enter the Greedy market.

Since the equations above do not admit closed-form solutions, we use empirical game-

theoretic analysis to find equilibria in the game with strategic market-choice for each type.

The strategy space is B = {Greedy, Patient}. For different values of θ and φ, we compute

the utilities of strategic short-lived and long-lived agents if they choose the Greedy market

or the Patient market respectively using Monte Carlo simulations holding the strategies of

the other agents fixed, and ascertain whether or not pooling or separating equilibria exist in

different regions of the θ, φ space. As conjectured, we do see an overall pattern of pooling

and separating equilibria in different regions. Figure 5.1a shows an example of the results

when the fraction of random agents is φ = 0.4. These results can be broken up into three

regions: The red region represents pooling equilibria where both long-type and short-type

strategic agents choose the Greedy market; long-lived and random agents are the majority

in this region, thus the Greedy market can be thick enough.9 The yellow region represents

pooling equilibria where both types choose the Patient market; in this range of settings, we

have more short-lived agents and the Greedy market is not thick enough as the short-lived

agents perish too soon.10 In the blue region, we find a separating equilibrium exists: strate-

gic short-lived types choose the Patient market (Us,p > Us,g) and long-lived types choose the

Greedy market (Ul,g > Ul,p).

9Note that, in this region, both types of agents choosing the Patient market is also an equilibrium, albeit
one with overall lower social welfare.

10Similarly, in this region, both types of agents choosing the Greedy market is also an equilibrium, lower
in social welfare than the Patient pooling equilibrium.
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Figure 5.1b shows overall social welfare in the Competing system with a single Greedy market

and a single Patient market under different settings of θ when the fraction of random agents

φ = 0.4. We can see the market fragmentation caused by competition, separating equilibria

(θ ∈ [0.4, 0.6]), lowers the social welfare when compared to a single market. This pattern

holds across the whole range of φ.

Finally Figure 5.1c shows the range of separating and pooling equilibria as a function of

φ, the proportion of random agents. As the proportion of random agents increases, the

portion of the θ domain covered by separating equilibria increases, since the thicknesses of

the two markets are determined almost entirely exogenously, and the main consideration

is an optimization of utility rather than equilibrium considerations of what other strategic

agents are doing.

5.3 Strategic Agents in Discrete Time

While the model of Section 5.2 uses essentially the same models of utility as prior work,

we are restricted by the lack of analytical tractability. We now consider a discrete time

version of Model I that captures the same basic intuitions and can be used more directly

in modeling strategic market choice. We believe this model is more amenable for further

work on these questions. Now, agents enter the market in “batches”, that is, k ≥ 1 agents

enter the Competing market at each time step t. Short-lived agents live for Ts time steps

and long-lived agents live for Tl time steps (Tl > Ts), where Ts and Tl are fixed constants

for each type. At each time step t, each market operates as follows: o1: agents enter → o2:

market clears → o3: agents perish. Random agents choose a market to enter uniformly at
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random and strategic agents choose a market based on comparing the expected utilities of

entering each market.

We first analyze the utility of agents choosing the Greedy market. As the Greedy policy

will match agents immediately after they enter the market, the probability of an agent

having acceptable transactions immediately after entering is mg,e(t) = (1 − (1 − p)Zg,t−1),

where Zg,t represents the size of the pool under the Greedy matching policy at time t. The

market will run a maximum matching algorithm at each time step during o2 as k ≥ 1 agents

enter the market at the same time. This means that agents may be unmatched even if

they have potential acceptable transactions. We define the probability of being matched in

the maximum matching given the agent has acceptable transactions as χg(t) in the Greedy

market at time t. The probability of an agent having acceptable transactions when they stay

in the market (that is, not at their time-step of entry) at time t is mg,s(t) = (1− (1− p)kg,t),

where kg,t is the number of agents entering to the Greedy pool at time t. Thus, the expected

utility of an agent for choosing Greedy market Utype,g at time t given she knows her type is

Utype,g(t) = mg,e(t)χg(t) + (1−mg,e(t)χg(t))[
e−δmg,s(t+ 1)χg(t+ 1)+

∑Ttype−1

s(a)=2
e−δs(a)mg,s(t+ s(a))χg(t+ s(a))

∏s(a)−1
j=1 (1−mg,s(t+ j)χg(t+ j)

]
,

(5.3)

where type ∈ {short, long} and Ttype ≥ 3. We have two special cases, where

Utype,g(t) = mg,e(t)χg(t) when Ttype = 1;

and

Utype,g(t) = mg,e(t)χg(t) + (1−mg,e(t)χg(t))mg,s(t+ 1)χg(t+ 1)e−δ when Ttype = 2.
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We next consider the expected utility of agents choosing the Patient market. The Patient

market will match agents only at the instant they become critical. The probability of an

agent having acceptable transactions when they stay in the Patient market at each time

step t is mp,s(t) = (1 − (1 − p)Λp,t), where Λp,t is the number of agents becoming critical

in the Patient market at time t. As there may be more than one agent becoming critical

at each time t, the Patient market will also run a maximum matching at o2. We define

the probability of being matched in the maximum matching given the agent has acceptable

transactions as χp(t). The probability of an agent having acceptable transactions when she

is critical is mp,c(t) = (1− (1− p)Zp,t−1), where Zp,t is the size of the pool under the Patient

matching policy at time t. Thus, the expected utility of an agent for choosing Patient market

Utype,p at time t given she knows her type is

Utype,p(t) = mp,s(t)χp(t)+[∑Ttype−2

s(a)=1
e−δs(a)mp,s(t+ s(a))χp(t+ s(a))

∏s(a)−1
j=0 (1−mp,s(t+ j)χp(t+ j))

]
+

∏Ttype−2

j=0 (1−mp,s(t+ j)χp(t+ j))

mp,c(t+ Ttype − 1)χp(t+ Ttype − 1)e−δ(Ttype−1),

(5.4)

where type ∈ {short, long} and Ttype ≥ 3. We also have two special cases, where

Utype,p(t) = mp,c(t)xp(t) when Ttype = 1;

and

Utype,p(t) = mp,s(t)χp(t) + (1−mp,s(t)χp(t))mp,c(t+ 1)χp(t+ 1)e−δ when Ttype = 2.
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At any time t ∈ [0, T ], Zg,t, Zp,t represent the sizes of the pools under the Greedy and Patient

matching policies, respectively. The Markov chain on Z·,t has a unique stationary distribution

under either of those policies. Let πg, πp : N → R+ be the unique stationary distributions

of the Markov chain on Zg,t, Zp,t, respectively, and let ξg := EZg∼πg [Zg], ξp := EZp∼πp [Zp] be

the expected sizes of the pool under the stationary distribution under Greedy and Patient.

After mixing, we represent the expected sizes of the pools at any time as ξg, ξp respectively.

Similarly, kg,t,Λp,t, χg(t) and χp(t) also can be represented by expected values kg,Λp, χg and

χp. We use Monte Carlo simulations to estimate ξg, ξp, kg,Λp, χg and χp respectively. This

then allows us to numerically compute the expected utilities in Equation (5.3) and (5.4) and

derive the equilibria for different parameter settings.

Figure 5.2 shows an example of the results when the fraction of short-lived agents is φ = 0.4.

The results are qualitatively very similar to those from the continuous-time model, but the

additional analytical tractability of the model presented here makes it promising for future

development of models of competing markets.
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Figure 5.2: Results of discrete market for p = 0.02, δ = 0.05, Ts = 2, Tl = 3. Long:Greedy
(Short:Greedy) and Long:Patient (Short:Patient) show the expected utility of a strategic long-type
(short-type) agent if she chooses Greedy and Patient respectively.
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5.4 Strategic Markets

In the previous two sections, we assumed all markets operated with fixed matching policies,

and strategic agents entered that system in a way that maximized their individual expected

utility. Here, under Model II, we prescribe agency onto the markets themselves, allowing

them to strategically adjust their matching policies under best response dynamics to max-

imize their expected aggregate utility. We investigate equilibrium behavior in this model,

and measure overall social welfare loss relative to a single-market baseline.

5.4.1 Experimental Setup

We are interested in modeling the behavior of a two-market system where the markets

respond to each other under best response dynamics. Formally, at any time period, one

market observes the matching rate of its competitor and then chooses, for the next time

period, its own matching rate that will yield maximum payoff for perpetuity,11 even though

the market will change its best response within a short span of time TR. Best response

dynamics have been shown to mimic many settings where agents operate reactively or with

bounded expertise [146], and can be used in some cases to find equilibria [109].

We simulated the long-term utilities for two markets M1 and M2 with Patient(α1) and

Patient(α2) matching policies, respectively, for (α1, α2) ∈ R≥0 × R≥0, for T = 250 periods,

and 100 trials. We estimated the best response functions BR1 and BR2 for markets M1

and M2, respectively by simulating two markets with overlaps γ1 ∈ {0.1, 0.2, . . . , 0.9} over

a grid of patience parameters α1, α2. As a reminder, higher values of α correspond to more

11For a formal overview of best response dynamics, see, for example, the book by [110].
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Figure 5.3: Simulation results for d = 1, k = 100, p = 0.02. γ2 denotes the fraction of vertices, not in
both markets, that enter only market M1. The red line denotes the loss rate with a single Patient
market. The green triangles denote the loss rate of a (Patient,Patient) equilibrium (an equilib-
rium in essentially all bootstrap samples). The squares denote the loss rate of a (Greedy,Greedy)
equilibrium and the color of squares denotes the proportion of bootstrap samples which reach a
fast matching outcome (defined in §5.4.2) from initial conditions (Greedy,Greedy).

patience—i.e., matching less frequently—and higher values of γ1 indicate higher overlap—

i.e., more agents entering both markets.

We assumed the markets have bounded rationality in their computations of best response

functions. From the set S of all Monte Carlo simulations, we took X = 2500 bootstrap

samples of size n = 50, {S ′i}Xi=1 where S ′i ⊂ S. Each bootstrap sample represents simulations

that a boundedly rational market would run. Thus, given a single bootstrap sample S ′i ⊂ S:

BRi(α
1) = arg max

α2
Es∈S′i [uM2(α

1, α2)]

BRi(α
2) = arg max

α1
Es∈S′i [uM1(α

1, α2)]

Under best response dynamics, the matching rate will now change over time, so we let α1
t

and α2
t denote the matching rates at time t of market M1 and M2, respectively. We iterated

best responses until convergence or cycles occurred over initial conditions of α1
0, α

2
0 values.
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5.4.2 Experimental Results

In general, we observe two main phenomena for the best response dynamics. First, we

observe convergence to the Patient strategy under appropriate initial conditions (α1
0, α

2
0) for

any constituent in the competing market system. Second, for markets with sufficient overlap,

and sufficiently low initial values of (α1, α2), we observe convergence to a (Greedy,Greedy)

equilibrium or (α1, α2) parameters very close to (Greedy,Greedy). No other phenomena

occur in more than 5% of bootstrap samples.

To simplify the description of results, we refer to convergence to (Greedy,Greedy), or cycles

or equilibria involving solely 0 ≤ α{1,2} ≤ 1/100, as fast matching. For the parameter

range chosen for the simulations (specifically d = 1), 0 < α{1,2} ≤ 1/100 rarely impacts the

matching choice. Furthermore, the social welfare for these outcomes only differ by at most

0.3%. We describe the notable effects of the parameter choices on best response dynamics

below.

Market overlap. The impact of the market overlap γ1 on the best response dynamics can

be characterized by the effect on the range of initial matching rates (α1
0, α

2
0) which converged

to a fast matching outcome in “many” bootstrap samples—here, we use a cutoff of 25%.

Figure 5.3 visualizes this behavior for increasing values of market overlap γ1.

When market overlap γ1 ≤ 0.4, less than 0.1% of bootstrap samples converge to a fast matching

outcome for any chosen initial matching rates. This is expected, as with δ = 0, a faster

matching rate increases utility uM1 of M1 primarily when M1 successfully matches an agent

that enters both markets before M2 can. When γ1 ∈ [0.4, 0.8], the range of initial conditions

that converged to a fast matching outcome rose to a peak at or before γ1 = 0.7, then fell off.
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Surprisingly, when γ1 = 0.9, no initial conditions converged to fast matching in more than

4.4% of bootstrap samples.

Market asymmetry. We investigate the impact of γ2, which controls the balance of agents

entering only market M1 (which occurs as γ2 → 1) or market M2 (γ2 → 0). When γ2 ≤ 0.1,

no conditions outside of fast matching converged to fast matching in more than 25% of

samples.

5.4.3 Welfare Loss

We now measure the impact of competition on global social welfare. As with Model I,

we define social welfare as the discounted total number of matches; here, however, we set

δ = 0. As before, we compute the distribution of social welfare for a range of γ1 and γ2 with

respect to our bootstrap samples of Monte Carlo simulations. Figure 5.3 shows social welfare

for outcomes (Patient,Patient) and (Greedy,Greedy)—which approximates the loss rate of

fast matching—as well as the proportion of bootstrap samples that converge to fast matching

from initial conditions (Greedy,Greedy). Note that, just as in Model I, all experimental

outcomes are strictly worse (i.e., result in lower social welfare) than that of a single Patient

market.

As expected, when the overlap γ1 increases, the expected loss rate decreases due to a larger

network of potential matches. However, as γ1 increases, some initial conditions also become

more likely to result in a fast matching outcome. For example, under two equally-sized

markets (γ2 = 0.5), the Greedy loss rate of 26.9% is higher than the loss rate of 24.3% for γ1 =

0.4, where the only outcome that occurs with meaningful probability is (Patient,Patient).

This additional equilibrium occurs in 96.4% of bootstrap samples. The additional overall

109



welfare loss of 4.4%-5.0% incurred by a fast matching outcome for the same initial parameters

is shown in Figure 5.3.

We also observe the effect on social welfare of a thicker market as market asymmetry in-

creases; at its most extreme (γ2 = 0 and γ2 = 1), all vertices are effectively in a single

market. As such, as γ2 moves toward its bounds, again there are stronger network effects on

social welfare.

Welfare losses arise both from matching speed and market fragmentation. As a baseline,

the loss rate that occurs from a single Patient market—one with no competition—under the

same model parameters is 18.2%. As shown in Figure 5.3, all other market conditions result

in greater overall loss. In the succeeding section we explore policy options that could help a

central planner mitigate this loss due to competition.

5.5 Policy Implications & Future Directions

Our results indicate that, left to themselves, matching markets that compete with each

other can cause significant social welfare losses through fragmentation (§5.2 and §5.3) and

suboptimal matching policies (§5.4). Our results are a proof-of-concept support of the “race

to the bottom” seen in many real competing matching market systems. For example, in the

US, multiple kidney exchanges compete over patient-donor pairs and/or hospitals. Two of

the largest US exchanges are the National Kidney Registry (NKR) and the United Network

for Organ Sharing (UNOS). NKR matches in an essentially greedy fashion. UNOS started

by matching once per month, then moved to twice per month, weekly, and now 2+ times

per week in part to reduce the “failure rate” caused by competition with the fast-matching
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NKR. We see this behavior replicated in our model, and can quantify social welfare loss as

well. Combinations of analytic and simulation results of this nature have set policy in kidney

exchanges before (e.g., Dickerson et al [47] and Dickerson and Sandholm [48] have set parts

of UNOS policy), and our model could help inform this debate.

While our research can inform policy discussions, it is important to have a separate conver-

sation about the ethics of different regulatory and policy changes and how these can impact

different populations (for example, by better-serving short-lived patients at the expense of

long-lived ones), and our research is not intended to be prescriptive on those issues. That

said, since we cannot use money directly to match supply and demand in a matching market,

the market/policy designer’s toolkit must consider other options. For example, in kidney

exchange, one could offer increased priority in the future on the deceased-donor waitlist (liv-

ing donor kidney grafts typically survive 10-15 years before another transplant is needed) if

they were to go to a patient market rather than a greedy [14,69,131,138].
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Chapter 6

Modeling Quality in Matching

Markets: The Case of Kidney

Exchange

To improve the performance of kidney exchange for both number of matches and individual

quality, one proposal, which does not rely on the ability of solving market fragmentation or

setting up a national center, has been to incorporate compatible pairs into exchanges.

There is the potential for significant benefit from including directed donation pairs in kidney

exchanges that also include incompatible pairs. The benefit can arise from two fronts: (1) a

significant increase in the number of incompatible donors who find matches; (2) an increase

in the quality of matches, since factors like HLA match [104,127] etc. play a role in expected

graft survival. The main goal of this chapter is to estimate the potential benefits along

both these fronts in a realistic manner. In doing so, we will also contribute to the literature

on matching with cardinal utilities by providing a realistic data-generation mechanism for

cardinal utilities.
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Overall, in this chapter, we model quality in matching markets and investigate the benefits of

incorporating compatible pairs in kidney exchange. We estimate expected survival of a graft

from the recently proposed Living Donor Kidney Profile Index (LKDPI) [104], and use this

as our measure of quality. 12 We impose the basic incentive compatibility constraint that,

for compatible pairs to be transplanted through exchange instead of directly, each recipient

must receive a graft with lower LKDPI, or increased expected survival time, compared with

that of her original donor.

During the years from 2014 to 2016, we were able to obtain data on 184 living donor kidney

transplantations that took place at the transplant center of Barnes-Jewish Hospital (hence-

forth “Center”). Of these 184, 171 were directed donations from a compatible donor to

his/her paired recipient. We obtained complete information that enabled computation of

the LKDPI on 166 of these pairs, which we use to estimate distributions of LKDPI scores

(and hence expected graft survival) within compatible pairs and across pairs. We were able

to obtain complete antibody and antigen data on 121 of these pairs, which enables donor-

recipient compatibility checking.13

The first question we can ask is about the heterogeneity of match qualities across pairs

and the effects of this heterogeneity on the quality of the final matching. At one extreme,

LKDPIs across pairs could be completely independent of the original LKDPIs within the

pairs. This would correspond to maximally heterogeneous match qualities and offer the

highest possible benefits to recipients in compatible pairs of participating in the exchange.

12LKDPI itself is a somewhat complex number to interpret. It is intended to be on the same scale as
the KDPI for cadaveric kidneys, which is a percentile measure. Thus an LKDPI of 10 indicates that the
kidney is comparable to the 10th percentile of cadaveric kidneys in terms of quality (with lower numbers
being better). However, since some living donor kidneys can be better than any cadaveric kidney, LKDPI
values can also be negative.

13We do not have data for the remaining 45 pairs because of a change in the software system, so there is
no selection bias.
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At the other extreme, LKDPIs could be completely determined by the characteristics of

the donor or the recipient in a pair, in which case there would be no social gains from

trade [10]. In reality, LKDPI does take into account various match characteristics (for

example, HLA mismatches and body weight ratios), but where the gains from trade may

fall in the spectrum is an empirical question. Our experiments confirm that the distribution

of match quality (LKDPIs) from “external” donors is far from independent of the match

quality within a compatible pair, and this has significant implications on the possible gains

from trade to the compatible pairs. As a benchmark, we conduct counterfactual tests that

assume no incompatibilities among any of the pairs, and that all 166 pairs participate in

a pareto-improving kidney exchange with 2 and 3 cycle swaps. This improves the average

LKDPI of transplanted kidneys from 37.15 to 25.5, corresponding to about 1.5 years of

expected graft survival. We can estimate the hypothetical benefit if all donor-recipient pair

LKDPIs were independent draws from the same distribution, and we find that the new

average LKDPI achieved would be 2.67, corresponding to more than a 5 year benefit in

terms of expected graft survival. Interestingly, we provide evidence that the variability is

largely driven by characteristics of the donor rather than the recipient, so there could be

benefits from increasing the pool of possible donors, as has recently been suggested [55].

Based on this observation, we argue for the importance of constructing a minimal simulator

that produces realistic LKDPI / match quality values, and describe the construction of such

a simulator, which closely matches the characteristics we observe. Having established the

potential for gains from matching simply among already compatible pairs, we then turn to

estimating impacts in differently-sized populations when both compatible and incompatible

pairs are present using this simulator, paired with the standard Saidman simulator [127]

for generating recipient-donor pairs and compatibilities. These two simulation mechanisms
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together enable us to simulate realistic living donor kidney scenarios of any size with com-

patible and incompatible pairs. We use the simulator to estimate both the increase in the

number of recipients in incompatible pairs who would be matched if compatible pairs par-

ticipated in the exchange, as well as the increase in the expected graft survival for recipients

in compatible pairs that participate in the exchange.

We find that with compatible pairs joining the kidney exchange, the percentage of matched

incompatible pairs almost doubles. For example, with a small pool of 50 donor-recipient

pairs, 74% of incompatible pairs are matched, compared with 39% when the two-&three-cycle

swap is only run within the incompatible pairs. With a large pool of size 600, the percentage

of matched incompatible pairs reaches 91%, compared with 54% if we only run two-&three-

cycle swap within incompatible pairs. These results are similar to those of Gentry [61],

who also estimate that the proportion of incompatible pairs matched can be doubled by

participation of compatible pairs. They focus only on compatible recipients gaining a donor

age benefit. Our methods, combined with the LKDPI, also allow us to estimate the benefits

to recipients in compatible pairs. If the optimizer maximizes expected survival of grafts over

the entire population, there is an increase of 1.4-2.5 years in expected graft survival among

recipients from compatible pairs. If the optimizer instead maximizes number of transplants,

this number is between 0.9 and 1.23 years.

An important practical consideration is likely to be that of waiting time. Compatible pairs

may not be willing to wait even in order to find a potentially better match. Therefore, we

consider a dynamic matching model where the incompatible pool matches either in a greedy

or patient fashion (a la [4]), but the compatible pairs match greedily (from the incompatible

pool if it improves the match for the compatible-pair recipient and directly from donor to

recipient otherwise). Even with this pessimistic restriction, we estimate substantial benefits,
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going from matching 35% of incompatible pairs to 55% for the arrival and departure rates

we examine.

In this dynamic setting, we also look at the effects on two hard-to-match subpopulations,

namely blood group O recipients and highly sensitized patients. We estimate that the positive

impacts on blood group O recipients are more substantial than in the general population

(an increase from 18% to 46%), while those on the highly sensitized population are similar

to the general population (an increase from 24% to 37%).

By bringing quantitative estimates of these benefits into the light, we can inform policy

debates. For example, how much expected benefit would be needed to convince compatible

pairs to enter an exchange? How long would they be willing to wait in a dynamic setting?

These are all questions that can begin to be addressed from the foundation of the models

and simulator we develop in this work.

6.1 Modeling Match Quality

Historically, much work on matching (and welfare economics broadly) has focused on ordinal

preferences rather than cardinal utility [9]. This sidesteps the problem of having to make

interpersonal comparisons of utility, and research has focused on outcomes in terms of ob-

jectives like stability and Pareto optimality [110]. However, with the increasingly important

social roles played by matching mechanisms [43,44,112,126], it is imperative to understand

the outcomes of mechanisms in terms of overall social welfare (however this is defined for a

given application) as well as distributional effects. Doing so necessitates considering specific

models of utility [14,69,94,105].
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There is value in traditional parametric models that are used for utility, and these have

been central to model development. Examples of such models include utilities that decay

exponentially in waiting time [4,7], and random utility models for specific match pairs [38].

However, a common criticism of such models is that it is unclear how general or valuable

results are when the utility model itself is not grounded in reality. In our case, we are

explicitly looking for a realistic model that can be used for decision-making. Further, in

order to convince compatible pairs to enter kidney exchanges, we must be able to quantify the

expected benefit to them in some meaningful manner, therefore, we need an individual model

of match quality that can be reasoned about from the perspectives of agents in the market.

One important consideration that we defer to future work is the waiting cost to agents in

terms of cost and quality of life. For compatible pairs, this is a complex modeling problem

from a practical standpoint, because the baseline waiting time is itself highly variable. The

time from initial workup to transplantation for a compatible pair is at least several months

long because of the barrage of necessary testing, and for part of this time the pair is not

even sure that they will be judged compatible. Therefore, in this chapter we focus on match

quality, and subject our analyses to pessimistic assumptions (greedy dynamic matching), and

various robustness checks (varying pool sizes can proxy for match frequency, for example).14

Quantifying match quality. Transplant surgeons often have to make decisions on whether

a proposed transplant is worthwhile to proceed with. The Kidney Donor Profile Index

(KDPI) was developed as a means of assessing the quality of a cadaveric (deceased donor)

kidney [119]. Recently, the Living Kidney Donor Profile Index (LKDPI) has been proposed

14The question of how to analyze waiting cost from the perspective of the matching market is also complex;
however, one reasonable way to think about it is as costs to the healthcare system. For example, dialysis
costs $70,000-$100,000 per year [74,83,100], and this is a cost that must be borne by some agent (individuals,
private insurance, hospitals, or the government). Incorporating this can be useful when the modeling task is
to assess matching policies and how they change costs over the entire system, rather than from the perspective
of individual agents, hospitals, and so on.
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as an analog for living donations [104]. LKDPI takes into account characteristics of both

the donor and the recipient.

KDPI is a percentile score. For example, a score of 4 implies that the kidney is in the

“top 4%” of cadaveric kidneys. LKDPI is intentionally designed to be on the same scale (as

mentioned in the Introduction, since living donor kidneys can be better than any cadaveric

kidney, the LKDPI often takes negative values as well). Therefore, optimizing for LKDPI,

while a useful proxy, is semantically ill-founded. However, since LKDPI is computed based

on a survival model (Cox regression [34]), one can translate the model to a model of ex-

pected graft survival (or graft half-life), the survival time of the transplanted organ in the

donor [72].15 We have found that an exponential curve fits the graft half-life as a function

of LKDPI almost perfectly (see Figure 6.1), and can thus estimate expected graft survival

as 14.78e−0.01239x where x is the LKDPI. We can use this measure in place of LKDPI where

it is more appropriate.16 Thus the edge weight we in each cycle is defined as the estimated

expected graft survival of the recipient.
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Figure 6.1: An exponential curve fits the graft half-life as a function of LKDPI.

15After graft failure, the donor typically needs another transplant.
16One could also use expected graft survival as input to an expected “Quality Adjusted Life Year”

(QALY) [23,137,140] computation over the lifetime of the recipient.
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6.2 Exchanges between compatible pairs: A single cen-

ter analysis

6.2.1 Data description

Massie et al [104] come up with the LKDPI measure based on several important charac-

teristics for determining graft survival. We gathered de-identified data on all donor and

recipient characteristics that are used in computing LKDPI from all directed living-donor

transplants performed at the center in a three year period (2014-2016). There were 166 such

transplants with complete characteristics for calculating LKDPI and graft survival; 121 of

them also include complete HLA antibody and antigen information. The distribution of each

characteristic is shown in Table 6.1. We also analyze the correlation of every pair of char-

acteristics, shown in Figure 6.2, which serves as a fundamental building block for designing

the simulator in Section 6.3.

6.2.2 Counterfactual analysis within the center

Typically, if a donor and recipient are deemed medically compatible, a directed transplant is

performed, with the donor’s kidney going to the recipient. However, there may be cases where

the match quality is low even if they are compatible, and perhaps the recipient could receive

a better kidney through an exchange; for example, they may be able to receive a kidney from

a younger donor, or avoid an immunologically risky donor/recipient combination, like child

to mother or husband to wife [61]. Such scenarios are hypothetical, and may seem unlikely

at first glance. To validate our conjecture, for these donor-recipient pairs, we computed the

119



Mean s.d.
Donor Age 48.22 12.68
Donor eGFR 98.11 15.08
Donor Systolic BP 124.14 13.11
Donor BMI 27.78 4.46

Recipient Weight (Female) 180.7 42.26
Recipient Weight (Male) 190.34 39.9
Donor Weight (Female) 160.75 30.06
Donor Weight (Male) 200.8 32.8

Donor Sex F: 0.7 M: 0.3
Rec Sex F: 0.35 M: 0.65
Donor African-American Y: 0.05 N: 0.95
Donor Cigarette Use Y: 0.32 N: 0.68
Donor/Rec Related Y: 0.50 N: 0.50

Donor Blood Type O: 0.6, A: 0.3, B: 0.07, AB: 0.03
Rec Blood Type O: 0.46 A: 0.39 B: 0.12 AB: 0.03
Donor/Rec ABO compatible Y: 0.88 N: 0.12

Donor/Rec related Donor/Rec unrelated
Donor/Rec HLA-B Mismatches 0: 0.18, 1: 0.32, 2: 0.5 0: 0.01, 1: 0.1 , 2: 0.89
Donor/Rec HLA-DR Mismatches 0: 0.13, 1: 0.06, 2: 0.81 0: 0.01, 1: 0.06, 2: 0.93

Counterfactual Matrix: all unrelated
Donor/Rec HLA-B Mismatches 0: 0.009, 1: 0.091, 2: 0.9
Donor/Rec HLA-DR Mismatches 0: 0.02, 1: 0.04, 2: 0.94

Table 6.1: Distribution of each characteristic of the center’s data. F/M means Female/Male, Y/N
represents Yes/No, and Rec is a shortening of Recipient.

expected graft survival (EGS) of each pair, and then performed counterfactual simulations to

assess the potential to improve outcomes. The two counterfactual simulations share a Pareto

improvement restriction—no recipient may receive a kidney with a shorter (i.e., worse) EGS

for them than the EGS for them of the kidney from their original paired donor.

Optimal. In the first simulation, we find the best matching, allowing arbitrary length cycles;

this can also be treated as a bipartite matching problem (with the restriction that the

matching must be perfect) between donors on one side and recipients on the other.
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Figure 6.2: Correlation matrix of each pair of characteristics.

Two and Three-cycle swap. In the second simulation, we only allow either a direct dona-

tion from the donor to the recipient or through a two- and three -cycle kidney exchange,

to more closely approximate realistic logistical constraints.

We consider two subsets of the data. The “complete” 166-pair subset, assuming no HLA

incompatibilities, and the “restricted” subset of 121 pairs for which we have complete anti-

body/antigen information and can determine all incompatibilities and rule out such trans-

plants. The distribution of EGS and corresponding LKDPI among the real pairs and in the

results of our counterfactual simulations are shown in Figure 6.3. The mean and median

EGS and LKDPIs are given in Tables 6.2 and 6.3 below.

We can see there is a median improvement of 1.93 years of expected graft survival for the

Optimal and 1.38 years for the two-&three-cycle swap (over a median half-life of 10.84 years).

We also see that including compatibility constraints itself does not have a huge effect on the
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Figure 6.3: Distribution of the expected graft survival (left) and LKDPI (right) of the original
matched pairs and matched pairs in the two counterfactual simulations, using 121 subset of real
data with HLA antigens and antibodies from the center over the last three years.
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Figure 6.4: Distribution of the expected graft survival (left) and LKDPI (right) of the original
matched pairs and matched pairs in the two counterfactual simulations, using the 166 full dataset
of real data from the center over the last three years. We can see the distribution is similar to
Figure 6.3.
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Optimal
Two&Three
-cycle Swap

Original

Mean 11.44 10.88 9.80
Median 11.39 10.84 9.46

(a) 121 subset with HLA antigens and antibodies

Optimal
Two&Three
-cycle Swap

Original

Mean 11.58 11.14 9.67
Median 11.67 11.18 9.34

(b) 166 full data without HLA antigens and antibodies

Table 6.2: Mean and median EGS for two counterfactual simulations, compared to reality over the
last three years at the center. Figure (a) shows the 121-subset of data with HLA antigens and
antibodies, and Figure (b) shows the 166-subset assuming no incompatibilities.

Optimal
Two&Three
-cycle Swap

Original

Mean 23.99 27.69 36.10
Median 21 25 36

(a) 121 subset with HLA antigens and antibodies

Optimal
Two&Three
-cycle Swap

Original

Mean 23.46 25.50 37.15
Median 19 22.5 37

(b) 166 full data without HLA antigens and antibodies

Table 6.3: Mean and median LKDPI for two counterfactual simulations, compared to the reality
over the last three years at the center. Figure (a) shows the 121-subset of data with HLA antigens
and antibodies, and Figure (b) shows the 166-subset assuming no incompatibilities.

results (some of the improvement in the larger set is simply due to having a thicker market).

Beyond the specific results, it is surprising to see the high number of transplants that were

performed with LKDPIs above 50, since these indicate that the average cadaveric kidney

would have been better for the recipient, in contrast to the conventional wisdom that living

donor kidneys are always better. The optimized matches from the counterfactual “exchange”
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are much better, with many fewer “bad” matches and many more with LKDPI of 20 or lower,

predictive of excellent outcomes.

6.2.3 Discussion

This is a proof-of-concept for the potential of improving quality of matching. One immediate

question arises from the fact that we are using three years worth of data on recipients and

donors in a static setting; this is obviously unrealistic. However, the main point is to estimate

realistic distributions from data; we can use projections to then analyze differently-sized

static markets (from smaller ones to larger ones that could be realized through regional

pooling or already-functioning national exchanges). We turn to these questions and beyond

in the next section.

6.3 Including compatible pairs in kidney exchanges

In addition to improving match quality, we may also be able to improve the number of

matches by including compatible pairs to thicken the exchange with incompatible pairs. This

could also lower costs for transplant centers by allowing for more internal matches where the

transplant center does not need to go to a regional or national exchange to find a match for

an incompatible pair.17 In order to estimate the possible benefits more systematically over

different possible population sizes, we need to efficiently and correctly simulate LKDPIs over

donor and recipient populations.

17This could have positive and negative effects overall, by perhaps increasing fragmentation, but lowering
costs. However, many centers choose not to participate in broader exchanges much of the time in practice,
for a variety of reasons.
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6.3.1 Determinants of match quality, and design of a Compatibil-

ity+LKDPI simulator

This would be simple if LKDPIs were distributed in a manner that was easy to correctly

estimate, for example, independently, or independently conditional on the LKDPI of the

original compatible pair. Unfortunately, this turns out not to be the case. To get a simple

benchmark of how much this may affect the results, we can simulate different distributions

based on data from the center.

We first build a counterfactual matrix of estimated graft survival based on the original (166-

pair) data by calculating LKDPI values for each of these 166 pairs. We then investigate

the expected graft survival of donor-patient pairs under the Optimal and two-&-three cy-

cle swap matching algorithms when resampling the matrix in different ways. To simulate

independent LKDPIs, we resample individual LKDPIs from the whole matrix. To simu-

late donor-dependent LKDPIs, we shuffle all donors for a given recipient, and to simulate

recipient-dependent LKDPIs, we shuffle all recipients for a given donor. The results are

shown in Table 6.4. The first row shows statistics from the original compatible match-

ing. As we see, most of the methods for generating LKDPIs vastly overestimate the pos-

sible gains, and the evidence is consistent with the observation that the determination of

LKDPI/expected graft survival is largely based on the donor’s characteristics [104]. These

results demonstrate the need for a good simulator.

The central empirical facts that allow us to construct an efficient simulator are analyses of

the joint distributions of variables involved in determining compatibility (PRA and ABO

compatibility, based on the simulator of [127]) and computing LKDPI (See Table 6.1), and

analysis of the possible underlying mechanisms of dependence. In particular, compatibility
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is solely a function of blood type and antibodies, while LKDPI considers many other factors,

most of which have limited relationship to those (Figure 6.2). Since the state of practice

in kidney transplantation has been to always assume that any living donor is excellent (a

practice called into question by our results above), it is unlikely that there is any selection

bias in the characteristics we sample for typical compatible pair arrivals. We first generate

a donor-recipient pair, with all LKDPI-related characteristics generated sequentially in a

manner that respects the data distributions in Table 6.1 and the correlation structure shown

in Figure 6.2. We then generate the PRA (percentage reactive antibodies) and compatibility

based on the Saidman model. Details of our simulator are in Appendix B, Algorithm 3. The

last line of Table 6.4 shows that the simulator produces results very close to the real data.

EGS
original

EGS
2&3 swap

EGS
Optimal

LKDPI
original

LKDPI
2&3 swap

LKDPI
Optimal

Original
166 dataset

9.67 11.14 11.58 37.15 25.50 22.46

Sample from
the whole matrix

9.23 14.40 15.30 40.51 2.67 -2.5

Shuffle all donors
per recipient

9.19 14.16 14.94 40.92 4.11 -0.47

Shuffle all recipients
per donor

9.21 11.74 12.50 40.70 20.6 15.49

Sample from
the simulator

9.38 11.40 11.80 39.21 24.50 20.09

Table 6.4: The EGS and LKDPI comparison of different sampling methods and different market
clearing algorithm.

6.3.2 Experimental results using the LKDPI simulator

We can now use the LKDPI simulator to estimate the benefits in terms of both quality and

quantity of transplants. We study the impact of different optimization objectives (survival

and number of matches) on outcomes for both compatible and incompatible pairs. We
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C-Or Compatible pairs original donation
ENM Expected number of matched pairs
P-I Pool with only incompatible pairs
P-CI Pool with both incompatible and compatible pairs

Maximize EGS Maximize ENM
I-maxSur P-I 2−&3− cycleswap I-MaxNum P-I 2−&3− cycleswap
I-O-MaxSur P-I Optimal I-O-MaxNum P-I Optimal
CI-MaxSur P-CI 2−&3− cycleswap CI-MaxNum P-CI 2−&3− cycleswap
CI-O-MaxSur P-CI Optimal CI-O-MaxNum P-CI Optimal

Table 6.5: Table indexing abbreviations we use corresponding to different optimization objectives,
matching methods, and different subpopulation measurements.

are most interested in the improvement of (1) expected graft survival of compatible pairs

compared with their original donation, since the incentive for compatible pairs to enter is to

seek a better organ for the recipient; (2) the number of matched incompatible pairs compared

with the number when running two-&three-cycle swap only on incompatible pairs. We find

the maximum weighted cycle cover, where the weight can be (1) we = expected graft survival

of recipient, (2) we = 1, (maximizing the number of matched pairs). Table 6.5 summarizes

the possible objectives and the metrics that we measure.

In our experiments, we fix the size of the pool and generate donor-recipient pairs using the

simulator. We find that the sizes of the compatible and incompatible pool are roughly even.

This matches the statistics of the center we have data from. In 2017, 217 compatible pairs

and 181 incompatible pairs registered for initial transplant workups (though only 1/3 of

them ended up having a transplantation procedure in the center).

We then run two-&three-cycle swap under the Pareto improvement restriction, where com-

patible pairs only swap if their expected graft survival increases. Our results for the pro-

portion of incompatible pairs matched for different pool sizes can be summarized as follows

(Figure 6.5 shows more detail):
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Without

compatible

With

compatible

Size of pool: 50 (25+25) 39% 74%

Size of pool: 100 (50+50) 48% 83%

Size of pool: 600 (300+300) 54% 91%

These results are similar to the results of Gentry [61], who also estimate that the proportion

of incompatible pairs matched could be doubled by participation of compatible pairs that

would gain a donor age benefit. From the perspective of compatible pairs, there is a 2.15-

2.61 improvement in expected years of graft survival improvement (for those whose donor

changes) when we maximize expected survival of the whole population, and 1.36-1.63 years

when we maximize the number of matched incompatible pairs.

While the rate of entry of compatible and incompatible pairs may be similar, it is possible

that one or the other population is less likely to go through with a transplant. In order to

study how our results would vary with different assumptions about this, we hold the number

of compatible pairs fixed and vary the number of incompatible pairs. These results can be

seen in Appendix C, and qualitatively still suggest substantial benefits from incorporating

compatible pairs.

6.4 Modeling Dynamic Markets

While different sizes of pools can proxy for different match frequencies, and patience in

matching can improve outcomes [4], there are also good arguments and practical concerns

that favor greedy or frequent matching [7,37]. In particular, it is a reasonable, if pessimistic,
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(a) Maximizing EGS.
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(b) Maximizing number of matched pairs.

Figure 6.5: The comparison between expected graft survival of compatible pairs by participating
two-&three-cycle swap (blue solid line) and their original matching (blue dash line), expected graft
survival of incompatible pairs when compatible pairs participate two-&three-cycle swap (red solid
line) and only within incompatible pairs (red dashed line), and proportion of matched incompatible
pairs when compatible pairs participate two-&three-cycle swap (black solid line) and only within
incompatible pairs (black dashed line), where Figure (a) shows the results of maximizing the ex-
pected graft survival across the whole graph G, and Figure (b) shows the results of maximizing the
number of matched pairs.
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assumption, that compatible pairs would be completely unwilling to wait, and would there-

fore insist on an immediate exchange, or else they would want to go ahead with the direct

donation.

In this section, we build a dynamic model where patient-donor pairs arrive gradually over

time. Incompatible pairs stay in the market until they find an acceptable swap or they perish

(they may leave the market if the patient’s condition deteriorates to the point where kidney

transplants become infeasible, for example). Compatible pairs must either be matched with

an incompatible pair at the moment of arrival, or else the donor gives directly to the recipient

immediately.

Arriving patient-donor pairs are still generated from our simulation model described above.

Pairs arrive at the market according to a Poisson process, with rate parameter m ≥ 1. The

sojourn of an agent is draw from an exponential distribution, with rate parameter λ = 1.

If a compatible pair arrives, all feasible swaps for that pair are considered (where feasibility

means both that compatibility requirements are satisfied and the recipient in the compatible

pair receives a higher-quality kidney match). If there is more than one acceptable swap

the newly entered pair chooses the one with the longest expected graft survival for its own

recipient; ties are broken uniformly at random. Incompatible pairs can be matched either

greedily, in the same manner as above, or using a patient algorithm [4] which waits to match

until the moment an agent is about to perish (with the caveat that incompatible pairs with

possible matches in the incompatible pool are not considered as matches for compatible

pairs).

We again find a substantial benefit in terms of the number of incompatible pairs matched

under either mechanism (from approximately 35% to approximately 55%). Figure 6.6 also

shows that compatible pairs for whom the new mechanism changes the match improve their
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expected graft survival by almost two and a half years. There is some effect of “competition”

– since match quality is largely a function of the donor, and compatible pairs need to receive

good donors in order to participate, the average expected graft survival of those who are

transplanted in the incompatible pool actually goes down; however, the huge increase in the

number of matches more than compensates in terms of the sum total of years of graft life

(where pairs that don’t receive a transplant are assigned an EGS of 0). Therefore, our results

demonstrate that the potential value of incorporating compatible pairs is high even under

pessimistic assumptions about what wait times they would be willing to tolerate.
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Figure 6.6: Comparison of matched proportion of incompatible patients (left) and change in EGS
(right) when running different matching algorithms for the incompatible pool in the dynamic set-
ting.

6.4.1 Fairness considerations: Hard to match types

An important consideration in kidney exchanges is how they may differentially affect different

populations. The populations one often worries about are those who are harder to match.

Therefore, we consider the effects on two groups of hard-to-match patients, those with blood

group O (patients with blood group O have fewer ABO-compatible living donors [65]) and

highly sensitized patients, who are likely to have antibodies to a significant fraction of the
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population. We define highly sensitized patients as those whose PRA is greater than 80%,

constituting approximately 30% of the patient population.

Figure 6.7-left shows that there is a significant improvement for the matched proportion

of incompatible blood type O patients (from 0.18 to 0.46) when incorporating compatible

pairs. Therefore the relative benefit to this group is actually higher than to the rest of the

population. The matched proportion of incompatible highly sensitized patients improves to

37% from 24% when compatible pairs are included, a rate of increase roughly similar to that

in the overall population.
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Figure 6.7: Comparison of matched proportion of incompatible patients of Blood Type O (left)
and high PRA (right) when running different matching algorithms for the incompatible pool in the
dynamic setting.

6.5 Conclusion and Future research

Living donor kidney transplantation has proven to be an important domain for the devel-

opment of matching theory and algorithms. It is becoming increasingly important to study

cardinal utilities in kidney exchange, and we believe this could open up more fertile avenues
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for research. Our main goal in this chapter is to develop the framework and a robust frame-

work for analyzing match quality in models of kidney exchange. Our framework is based on

real donor and recipient data from a major transplant center. We have also used the model

to estimate the benefits, in terms of both quantity and quality of transplants, of including

compatible pairs in kidney exchange. We find that if we were able to induce compatible

pairs to join kidney exchanges, the percentage of matched incompatible pairs would increase

dramatically, and there would also be a substantial increase in expected graft survival for re-

cipients in compatible pairs. Quantifying the potential quantitative benefits of participating

through LKDPI may also make compatible pairs more likely to join.

While our work here is largely in a static setting and a simple dynamic setting, the de-

velopment of our realistic LKDPI simulator allows for the investigation of many different

matching models. Of particular interest will be questions related to matching policy in the

dynamic setting with both compatible and incompatible pairs, incorporating wait times, and

possible systemic effects of including compatible pairs in exchanges, for example, changes in

incentives for centers.
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Chapter 7

Competition Between Financial

Exchanges

In this chapter, we turn our eyes to financial markets and investigate the market competition

in this domain. As we discussed in Section 1.2.2, most modern financial exchanges operate

using the continuous double auction (CDA) mechanism, which is a greedy fashion mechanism.

The existence of this continuous time feature has led to the development of the phenomenon

called High frequency trading in the last two decades. With companies keeping investing in

faster infrastructure for trading and events like the “flash crash” of May 2010, high frequency

trading (HFT) has become an increasingly debated topic in both the media and policy

spheres [93]. There is increasing evidence that at least one form of high frequency trading,

namely latency arbitrage, has reached a point of socially diminishing returns. Frequent batch

auctions is recommended as a market structure that could replace CDAs, since the minimum

time period between trades is specified, and there is no benefit to being faster than that.

In this chapter, we first provide a baseline of social welfare in a single market with high-

frequency traders. We then consider the competition between platforms that employ different

microstructures: one, a continuous double auction, and the other, frequent batch auction.
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We ask: (1) Which of these markets would traders choose? (2) Could the frequent batch

auction market replace the CDA market simply by entering the marketplace of exchanges,

or would it require a regulatory push?

Our key measure of welfare is the price of immediacy – the expected loss suffered by back-

ground traders. This measures the cost that the “average trader” pays in order to execute

transactions. This is a different measure than that of Wah and Wellman [144] or Wah et

al [142], who use surplus. These are both reasonable measures, but surplus is most mean-

ingful in private value models, where some meaning can be attributed to different agents

having different valuations for an asset. Our model follows in a tradition of common value

models, where the asset has a true underlying value, and different traders may have different

estimates of that true value. The existence of background traders in our model provides a

useful proxy for estimating the cost of trading. It is worth noting that this doesn’t mean that

background traders are necessarily losing money – typically such traders would stay in the

market for much longer, and under reasonable models of price appreciation, these “losses”

can be thought of as transaction costs for buy-and-hold type investors.

First, we look at simple models of individual markets and confirm that our model satisfies

the basic intuitions one would expect. Namely, informed traders (in particular, low latency

traders) make more profit (and background traders are consequently made worse off) in

CDA markets than in frequent call markets. A zero-profit market maker (with no specialized

information) can greatly improve the position of background traders, taking away most of

the profit opportunities from informed traders in CDA markets.

Next, we model competition between a CDA market and a frequent call market when in-

formed traders pick which market to place their orders in based simply on which market

is more mispriced with respect to their current belief. We show that the informed traders
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do better overall when they choose to place orders in the market that is more mispriced

from their perspective. We show that, when informed traders are all using this strategy, a

majority of orders flows to the call market, and background traders are better off than in a

single CDA market.

Note that all of the above analysis is not in an equilibrium setting – we assume that all

informed traders use the same strategy. We can use the insights developed in these models

to begin analyzing strategic market choice. We do so by introducing a learning framework,

where informed traders learn a parametric form for the expected profit of choosing to place

an order in a market (and a non-parametric probability of order execution) given the distance

of that market’s “current price” from the trader’s estimate of the true value of a stock. We

show that, when all agents use this learning approach, they converge to an approximate

equilibrium where a majority of trades again flow to the frequent call market.

7.1 Market Model

7.1.1 The CDA and Call Markets

Our model of competing markets consists of two markets, one employing a continuous double

auction (CDA) mechanism and the other one employing a frequent call (CALL) mechanism.

We begin by describing the details of each individual market, which will serve as the foun-

dation for our model of competing markets.

Each market is running in the continuous-time interval [0,T]. A single security is traded

in the market. There is an underlying “true value” process. The initial true value of the
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security v0 is drawn from a Gaussian distribution with mean vinitial and standard deviation

σinitial. Then, the true value jumps according to a Poisson process with rate parameter λjump.

If the true value jumps, the new true value vt is generated from vt ∼ N (vt−dt, σj), where vt−dt

is the price instantaneously before the jump (we restrict vt ≥ 0, so all values are truncated

at 0).

In the CDA market, outstanding orders are maintained in two priority queues: one for bids

(the buy orderbook) and one for asks (the sell orderbook). Bids and asks are prioritized by

price first and time second. When a new order comes in, it is added to the corresponding

order book. A trade is executed if the highest bid exceeds or is equal to the lowest ask. The

execution involves the orders at the top of the bid and ask queues, at the price of the older

of the two orders involved.

The CALL market is similar to that described by Budish et al [27]. It clears in fixed intervals

of time τ (the call interval). At each clearing time, the market collates all of the orders and

computes the aggregate demand and supply functions of all bids and asks, respectively. The

market clears where supply equals demand, with all executions occurring at the same price,

called the market-clearing price. None of the orders are visible to any traders during the

call interval. The market announces the market-clearing price after each clearing (market

announcement). When no order was executed at the last clearing time, if both the buy and

sell orderbooks are not empty, the market announcement will be the mid-point of the highest

bid and lowest ask, otherwise it will be the most recent available market-clearing price. All

untraded orders roll into the next call.
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7.1.2 Valuation model

Each trader has a private valuation for the security (or equivalently for our purposes, a

private signal of the true value). We have two types of traders, informed (IF) traders and

background (BG) traders. Each informed trader IFi receives a private signal of the security

value, wi,t ∼ N (vt̂, σtrader), where vt̂ is the underlying true value of the security at some

time t̂, where t̂ ≤ t, and σtrader is a noise parameter. We define two types of informed

traders, namely, low latency (LL) traders and high latency (HL) traders. High latency

traders have staler information, i.e., wi,t ∼ N (vt−δ, σtrader), and low latency traders observe

information with no delay, thus wi,t ∼ N (vt, σtrader). Background traders do not have any

private information; each arriving background trader wishes to either buy or sell one unit

(with equal probability). They demand immediacy, that is, they want to get their orders

executed as soon as possible, so they are willing to take any market price.

7.1.3 Agent arrival process

There are a fixed number of traders of each type. Informed traders and background traders

both arrive at the market according to separate Poisson processes, with informed traders

arriving with rate λIF and background traders’ arriving with rate λBG. In the event that an

informed trader arrival occurs, a specific IF trader is selected uniformly at random from all

the IF traders to place/replace an order; similarly, if a background trader arrival occurs, a

specific BG trader is selected uniformly at random from all the BG traders to place/replace

an order.
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7.1.4 Agent strategies in individual markets

Each of the informed traders and background traders is only allowed to maintain a single

unit order in the market. When informed and background traders reenter the market, they

can replace existing orders that have not yet been executed. We model informed traders as

using limit orders and background traders as using market orders exclusively.

Informed traders’ strategy: Sindividual We consider trading strategies in the Zero In-

telligence (ZI) family for informed traders. There is a large literature involving ZI strategies,

including some controversy, which we will not rehash here [32, 115]. While ZI strategies are

clearly not the “best” trading strategies in isolation, it is also generally believed that they

model order arrival processes well, and they are a standard method for choosing prices in

complex agent-based market simulations [57, 114]. We first define, in the CDA market,

p∗t,CDA =



(BID t.p) + (ASK t.p)

2
, if BID t and ASK t exist,

the most recent execution price, if any order

book is empty,

where (BID t.p) and (ASK t.p) refer to the price of BID t and ASK t respectively. And in the

CALL market,

p∗t,CALL = the most recent market announcement .

When an informed trader IFi places an order, a limit price is generated from

pi,t ∼ N (p∗t,market, σprice),
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where market ∈ {CDA,CALL}. Based on pi,t and wi,t, the informed trader IFi’s strategy at

time t is as follows,

pi,t


>wi,t, places a unit sell order,

<wi,t, places a unit buy order,

=wi,t, uniformly at random places a unit buy or sell order.

Note that pi,t = wi,t is a zero probability event. If pi,t >(ASK t.p) and the order is a buy

order, then it executes immediately and therefore effectively functions as a market order.

Similarly if pi,t <(BID t.p) and the order is a sell order. We call the strategy above Sindividual.

Background traders’ strategy The background traders choose whether they want to

buy or sell a unit uniformly at random. Once the direction is decided, the order is routed

to the market and handled in a special manner as a market order through a “waiting”

mechanism. The market is aware of the direction of a market order and the fact that this

indicates the trader would like to execute the order at any available market price. However,

market orders are not visible to any other traders in both the CDA and CALL markets, since

they may need to wait for execution if there is no corresponding limit order on the other

side in the CDA market, and at least until the next call in the CALL market.

Market maker’s strategy In the CDA market, we also incorporate a market maker in

some of our experiments. To increase the liquidity of the market, the market maker maintains

a unit buy order and a unit sell order at all times. This market maker is implemented using

the Bayesian market making algorithm (BMM) of Brahma et al [22], with parameters tuned

to maintain near zero-profit. BMM is a learning algorithm that learns from the current bid

and ask prices and the direction of incoming trades, augmented with jump prediction and a
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technique to widen its spread in times of uncertainty. BMM updates its own belief whenever

there is an execution, and it immediately replaces its orders. Our implementation closely

follows that of Brahma et al, except that we only need to use it for unit orders in our model.

7.1.5 CDA and CALL market operation

CDA market operation In the CDA market, BID t and ASK t are based only on orders

from informed traders (and also possibly the market maker). If the order book only has

market orders that are waiting from background traders, the market shows the order book

as empty. The scenario that we want to simulate is that background traders are waiting

in the market to buy or sell; as soon as an unfilled corresponding order becomes available,

they will immediately take the other side of that order. We need to specify the execution

priority in the situation where one side of the market has both market orders and limit orders

from informed traders. In this case it must be that the other side of the market is empty

(note that this never happens with a market maker present), otherwise the market orders

on the first side would have executed. In this situation, we prioritize by time. Procedure 2

illustrates the operation of a CDA market when a new buy order arrives (a sell order arrival

is similar).

CALL market operation The main difference from a standard aggregation mechanism in

our implementation involves the background traders. Background traders would like to buy

or sell at any price, so all the market orders are always at the top of both the sell orderbook

and the buy orderbook in the CALL market. All the market orders in each orderbook are

prioritized by submission time, with earlier submissions having higher priority. At each

clearing time, the market collates all of the orders and computes the aggregate demand
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ALGORITHM 2: CDA market operation when a new buy order arrives

Input: buy orderbook, sell orderbook
1: A new buy order OD1 arrives, (OD1.p) is the price of OD1

2: if not empty(sell orderbook) then
3: if OD1 is a limit order then
4: if (OD1.p) ≥ (ASK t.p) and ASK t comes earlier than any market order then
5: Execution(ASK t, OD1) at (ASK t.p)

(in which case, OD1 is the highest bid and sell orderbook has limit orders from IF
traders or BMM )

6: else
7: if sell orderbook contains market orders then
8: Execution(the oldest market ask, OD1) at (BID t.p)

(in which case, OD1 is the highest bid)
9: end if

10: end if
11: else {OD1 is a market order}
12: if ASK t is available and comes earlier than any market order then
13: Execution(ASK t, OD1) at (ASK t.p)
14: else
15: Execution(the oldest market ask, OD1) at the most recent execution price
16: end if
17: end if
18: end if
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and supply functions of all bids and asks, respectively. The market clears where supply

equals demand, with all executions occurring at the same price, the market-clearing price.

If the market only clears market orders, the market-clearing price is the most recent market

announcement. If only market orders clear on one side of the market, while some limit orders

clear on the other side, the market-clearing price is determined by the side that has limit

orders being cleared. More specifically, if cleared buy orders consist of only market orders

and cleared sell orders include limit orders, the clearing price will be the highest ask of all

the cleared limit orders; if cleared sell orders consist of only market orders and cleared buy

orders include limit orders, the clearing price will be the lowest bid of all the cleared limit

orders. When some limit orders clear on both sides of the market, the clearing price is the

midpoint of the highest ask and lowest bid of all cleared limit orders.

7.2 Competing markets

In the competing markets model, we assume that one CDA market and one CALL market

run simultaneously. A single security is traded in both markets. Thus, there is only one

underlying “true value” process, but the CDA and CALL markets can price the security

differently. The traders choose to place orders in only one market at a time, although they

can switch markets each time they re-enter. Each market is running in the same manner as

when there is an individual market and each trader can maintain only one unit order in the

whole system.
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7.2.1 Agent strategies in competing markets

Informed traders’ strategy On what basis should a trader choose which market to place

an order in? One important factor is the distance between the trader’s belief and p∗t,market,

dmarket
i,t = |wi,t − p∗t,market|, (7.1)

where market ∈ {CDA,CALL}. We call this the belief distance. Comparing dCDA
i,t with

dCALL
i,t , the informed trader IFi can choose one of two strategies. One is to place the order

in the market that has larger dmarket
i,t , SLARGE, and the other is to place the order in the

market that has smaller dmarket
i,t , SSMALL. The tradeoff here is that IFi gets lower probability

of execution but higher profit if she places the order in the market that has larger dmarket
i,t .

We will discuss the effects of these two different strategies in Section 7.3. Strategy 1 shows

a summary of IFi’s strategy in the competing markets. After IFi decides in which market to

place the limit order, she follows Sindividual to decide the direction and price of the order in

the selected market.

ALGORITHM 2: Strategy 1 IFi’s strategy in the competing markets at time t

1: if following SLARGE then

2: dCDA
i,t


>dCALL

i,t ,
places an order at CDA market

following Sindividual

<dCALL
i,t ,

places an order at CALL market

following Sindividual

3: else {following SSMALL}

4: dCDA
i,t


<dCALL

i,t ,
places an order at CDA market

following Sindividual

>dCALL
i,t ,

places an order at CALL market

following Sindividual

5: end if
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Background traders’ strategy When a background trader enters the market to place or

replace a new order, she first compares the price in both markets. For instance, if she wants

to buy, she will compare ASK t and p∗t,CALL (if they are available), and select the market

which has the lower price to place a market order there. If ASK t is not available, that is

the sell orderbook in the CDA market shows as empty, she will place the order in the CALL

market. She follows a similar process for sell orders.

After every market clearing in the CALL market, the background traders check whether their

orders have been executed. If not, and the corresponding order books in the CDA market

are not empty, that is the sell orderbook is not empty if a BG trader wants to buy and the

buy orderbook is not empty if a BG trader wants to sell (here empty means the order books

do not have orders from informed traders – market orders from background traders are not

visible to any trader), the background traders move their existing orders from the CALL

market to the CDA market. In the implementation, the background traders with orders

that did not execute are randomly permuted. Each of them moves their order to the CDA

market in this random order, until there are no corresponding limit orders on the other side

of the market in the CDA. This process is atomic in time.

Strategy 2 shows the overall framework for implementing buy orders for background traders

in the competing markets model. The sell strategies are similar.
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ALGORITHM 2: Strategy 2 The overall framework for implementing the buy orders for back-

ground (BG) traders in the competing markets model

1: t = 0
2: while t ≤ T do
3: An event happens after ∆t
4: t = t+ ∆t
5: if A BG trader arrives in the market then
6: BGi is selected from all BG traders uniformly at random
7: if ASK t is available then
8: if ASK t ¡= p∗t,CALL then
9: BGi places a market order in CDA market

10: else
11: BGi places a market order in CALL market
12: end if
13: else {sell orderbook in CDA market shows as empty}
14: BGi places a market order in CALL market
15: end if
16: end if
17: if CALL market clear then
18: After each market clearing
19: A = {All the BG traders who have buy orders in CALL market}
20: while A is not empty and ASK t is available do
21: Select BGi uniformly at random from A
22: A = A− {BGi}
23: BGi moves her order to the buy orderbook in CDA market, the new order age is

re-generated from the age counter.
24: CDA market clears
25: end while
26: end if
27: end while
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7.3 Simulation results
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Figure 7.1: Comparison of expected per-order (left) and total (right) profit in the competing markets
under the small distance (SSMALL) and large distance strategies (SLARGE). LL-*, HL-* and BG-*
represent low latency, high latency, and background traders respectively. On the left, the first bar
in each group shows the expected per-order profit in the whole competing system, while the second
and third show the contributions of the CDA and CALL markets to that total. On the right, the
stacked bars show total profit, with contributions from each of CDA and CALL shown within in
different shades.

In this section, we simulate four different environments, namely CDA vs CALL competing

markets (competing markets), an individual CDA market (i-CDA market), an individual

CALL market (i-CALL market) and an individual CDA market with BMM (i-CDA-BMM

market). The parameters are set as follows. Each simulation run lasts T = 100, 000 units of

time. The initial true value of the security v0 is drawn from N (vinitial = 50, σinitial = 4). The

true value jump parameter σj = 4.0 and the rate parameter for the jump is λjump = 0.0001,

which means there is a jump every 10000 units of time on average. We have 20 informed

traders, 10 high latency traders and 10 low latency traders, and 20 background traders.

Reentry rates are fixed across the environments, with informed traders arriving in the market

at rate λIF = 2, and background traders entering at rate λBG = 1. In all settings, CALL

markets clear every 1 unit of time, τ = 1. The standard deviation of informed traders’ belief
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is σtrader = 2.0, and the high latency traders’ information delay is δ = 1000 units of time.

The time between jumps is 10000 units of time on average, so high latency traders have

information with no delay a significant fraction of the time, as vt−δ = vt. Following a jump,

high latency traders receive staler information for the next 1000 units of time. The standard

deviation of the distribution from which informed traders draw ZI prices is σprice = 4.0. We

simulate both SLARGE and SSMALL strategies for informed traders.

Across our experiments, we are interested in the total profit, expected per-order profit and

order execution percentage for each trader type. At time T , all shares held by traders are

liquidated at price vT . Unfilled orders are abandoned. The expected per-order profit of each

trader type is total profit divided by the total number of executed and replaced un-traded

orders. In the environment with competing markets, we also calculate the total and expected

per-order profit in CDA market and CALL market separately.

Figure 7.1 shows that the informed traders make higher profit in both per-order and in

total when using SLARGE. The difference are small but statistically significant. Therefore,

we would expect the informed traders to choose SLARGE if given these two options (if they

had to choose one as a group), confirming our intuition that traders gravitate to markets in

which they perceive more mispricing. Because of this, for the rest of our analysis, we use

SLARGE as the strategy for informed traders in the competing markets.

As mentioned in the introduction, one measure of social welfare is the “price of imme-

diacy” which is the loss suffered by background traders. Figure 7.2 shows that, for the

non-competing settings, background traders perform better in the i-CALL market than the

i-CDA market in terms of both the expected per-order (left figure) and total (right figure)

profit (consequently, informed traders have lower profit in the i-CALL market than the i-

CDA market). The i-CDA-BMM market has much higher social welfare, as measured by
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Figure 7.2: The expected per-order (left) and total profit (right) of different types of traders in
the competing markets (*-large), the i-CDA market (*-i-cda), the i-CALL market (*-i-call) and the
i-CDA-BMM market (*-i-cda-bmm).

background trader losses, than both i-CALL and i-CDA markets. This confirms some of

the results of Wah and Wellman [144] in a completely different model and setting. One

possible solution to the problems resulting from HFT may then be to have market-making

agents who are regulated and deployed to perform this specific role in CDAs. They could be

compensated separately for this role. However, (1) there are additional risks associated with

this role [36] and (2) markets have been moving away from having designated specialists

and allowing HFTs and others to fulfil the role of market-makers. Given these practical

realities, it is important to understand how markets can function without them, so we focus

on comparing situations with no market maker.

In the competing markets (first 3 panels of Figure 7.2), we analyze the expected per-order and

total profit in the whole system, and also in the CDA market and CALL market separately.

Similar to running an individual market, the order execution percentage is close to 100

for background traders in the competing markets (shown in Figure 7.3), and so background

traders are not losing out in terms of order execution. Considering expected per-order profit,

background traders do better in the CALL market than the CDA market in the competing

markets (see left figure of Figure 7.2, *-large). Overall, they are doing worse in the CALL
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Figure 7.3: Order execution percentage in the competing markets (*-large), the i-CDA market
(*-i-cda), the i-CALL market (*-i-call) and the i-CDA-BMM (*-i-wmm).

market than the CDA market in the competing system (shown on the right of Figure 7.2,

*-large), but this is because a vast majority of orders are going to the CALL market (see

Figure 7.4), and they lose more money there. In sum, they are doing slightly better in the

competing markets than they do in the i-CDA market in terms of both the expected per-

order and total profit. The better news is that the CALL is absorbing a large fraction of

the orders, driving trade away from the CDA (see Figure 7.4). This is promising, because

if the CALL could absorb all the trades, the BG traders would be better off, as the system

would reduce to the i-CALL market. We note that these results are robust for a wide range

of strategy parameters, information delay and arrival rates.

7.4 Learning traders

The analysis above shows that frequent call markets absorb a large fraction of trade when we

assume that all informed traders use the same strategy. We now use the insights developed
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Figure 7.4: Illustration of proportion of orders entering CDA market vs. CALL market in the
competing markets under SLARGE.

in these models to analyze strategic market choice. In this section, we introduce a learning

framework where informed traders learn a parametric form for the expected profit of choosing

to place an order in a market, and also a non-parametric probability of order execution given

the distance between that market’s price and the trader’s belief (the belief distance defined

previously). We then analyze the behavior of the system with these learning traders.

7.4.1 Learning algorithm

The expected profit πt of an order placed at time t, contingent on its execution, according

to a trader’s belief, is

πt =


wt − execution price, if buy

execution price − wt, if sell

(7.2)

where wt is the trader’s belief about the true value at time t. The trader computes expected

profit assuming her belief is correct. The main idea here is to predict the expected profit
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if the order is placed in a particular market. Traders must learn an estimate of this as a

function of the belief distance. In this chapter, we allow all the traders to learn an expected

profit function that is quadratic in the belief distance. Each learning trader LIFi uses an

online regression algorithm for reinforcement learning based on one developed by Walsh et

al [145]. The form of the learning model is:

ymarket
i,t = Dmarket

i,t Qmarket
i , (7.3)

where ymarket
i,t predicts the expected per-order profit contingent on execution, market =

{CDA,CALL},Dmarket
i,t = [(dmarket

i,t )2, dmarket
i,t , 1] and Qmarket

i contains the weight parameters

of the model for market = {CDA,CALL}. Thus, the predicted expected per-order profit not

contingent on execution is given by

E(ymarket
i,t ) = Pr(exe—dmarket

i,t )Dmarket
i,t Qmarket

i (7.4)

The probability of execution Pr(exe—dmarket
i,t ) is learned non-parametrically by counting suc-

cessful and unsuccessful executions in bins of the belief distance.

The trader uses an ε-greedy algorithm to select a market to trade in along the learning path.

Whenever the trader makes a decision, with probability 1 − ε, she places an order in the

market with higher predicted expected profit, and with probability ε, she randomly picks one

market to place the order (ε = 0.1 in our case). After market selection, the trader chooses a

price based on the ZI strategy Sindividual.
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Figure 7.5: Five example plots of the curves traders learn for profits in the CDA and CALL markets.
Each graph shows the learned curves of 5 traders in one instantiated learning simulation.

7.4.2 Results

Our goal is to use this model of learning traders to investigate two questions: (1) If all

the informed traders use the same learning algorithm, do they converge to (approximate)

equilibrium strategies? (2) Can we characterize any equilibria of the competing markets

system?18 We use an experimental framework similar to Section 7.3. A CALL market and

a CDA market run simultaneously from [0, T ], T = 100, 000. The CALL interval τ = 1.

There are 20 learning informed traders (LIF). These are all low latency traders who observe

information with no delay; therefore wi,t ∼ N (vt, σtrader), where vt is the underlying true value

of the security at time t, and σtrader is the noise parameter. The reentry rate of learning

informed traders is λLIF = 2. There are 20 background traders (with reentry rate λBG = 1)

following Strategy 2. In addition, we also simulate the existence of a pool of fixed informed

traders (FIF) who are committed to a particular market, either CDA or CALL. This is

to ensure that there is some flow of trade in each market – otherwise there are degenerate

equilibrium paths where all traders start off by going to one of the markets, and there is

never incentive to deviate to the other. There are 5 fixed (low-latency) informed traders in

18Note that traders only choose which market to place an order in (albeit as a function of the belief
distances to both markets, so this can be a complex decision space). Once the market is determined, the
choice of price is according to the ZI strategy. The problem becomes exponentially more complex if traders
can strategize over both market choice and price. Over time, traders should learn the expected profit of the
ZI strategy in a market, a useful proxy for the profit potential of that market. It could be interesting to
interact this learning problem with different pricing strategies, but some restriction will always be necessary
to gain any traction.
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each market who place orders following Sindividual. The reentry rate of fixed informed traders

is defined as λFIF. We vary the reentry rate of fixed informed traders λFIF = {1, 0.1, 0.0005}.

Outcomes of the learning process The first question is whether the learning process

followed by the informed traders converges, and, if so, whether the learned representations are

a good approximation to the true profit function. Empirically, we find that the estimates of

QCDA
i ,QCALL

i under different λFIF settings all do converge. Further, each trader’s parameters

converge to very similar ranges (see Figure 7.5). We check whether these parameters are a

good approximation by fixing the parameters of all the traders except one and having them

play strategies using those parameters. For the remaining trader, we flip a coin to determine

the choice of market, and test whether the profit achieved is well-fit by the curve given by

the learned parameters. Figure 7.6 shows that the learning curves of the trader for each

market are very close to the polynomial curves that are best-fit to the profits achieved using

the randomized strategy, confirming both that the quadratic space is a good fit and that the

learned parameters are correct for the environment.

Equilibrium As mentioned above, there are two main questions we would like to engage.

First, since all the traders are converging to a particular set of learned parameters, do these

parameters constitute an equilibrium or an approximate equilibrium (under the specified

space of strategies – i.e., where the strategy is a mapping from dCALL and dCDA to one of the

two markets, which can be specified by the quadratic form of the expected profit function

and the nonparametric probability of execution model)? Is there a profitable deviation (some

other set of parameters that one of the traders could use and increase her profits)?
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Figure 7.6: The learned curve vs. the best fit to realized after-the-fact data for profit as a function
of belief distance in CDA and CALL markets.

To find deviations, we search the parameter space (holding the execution probability model

constant) for this trader using Bayesian Optimization (BO), a powerful framework for opti-

mization of a black-box function or expensive objective function that uses very few function

evaluations [130]. Here, the objective function is the expected profit of a trading strategy

that uses the parameters QCDA
i ,QCALL

i when the other traders are using their learned strate-

gies. Market selection is determined by yCDA
i,t and yCALL

i,t based on Equation (7.4), so the

actual values of QCDA
i and QCALL

i are not important in themselves. The important thing is

how they decide the relation between yCDA
i,t and yCALL

i,t at each prediction. Therefore, based

on the value of parameters of the learned curves from Figure 7.5, we constrain our search

space from [−10,10], as this is enough to represent the relation between predicted profit in

these two markets. We utilize an existing code base for BO [60] to search the space.

Our results show that the learned parameters yield an approximate equilibrium, achieving

between 90-95% (0.91, 0.95, 0.95 for λFIF = .0005, 0.1, 1 respectively) of the profit of the best

response strategy found by BO. In the learned approximate equilibrium, typically above 90%
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of orders are placed in the CALL market. Interestingly, the best response strategy found by

BO always resulted in the deviating trader placing every single order in the call market. So

we then asked whether all informed traders placing all their orders in the call market is an

equilibrium, and found that, except under exceptional conditions, it is (that is, BO returned

a set of parameters for the remaining trader that resulted in that trader placing all its orders

in the CALL market as well). The only condition which we found under which it is not an

equilibrium is when there is very little liquidity from FIF traders in the CDA market, but

still some background traders – in this case the deviating informed trader can essentially

become a price setter and trade with the background traders at whatever prices it chooses.

7.5 Conclusion

We have developed an agent-based model in the tradition of classic microstructure models

to engage the question of whether frequent call markets can drive liquidity away from CDA

markets. If they could do so, this would have the potential to increase welfare both by

reducing transaction costs for average market participants and by reducing the incentive for

firms to engage in the latency “arms race.” Our results are promising. Even in the presence

of impatient background traders who primarily demand immediacy and are willing to pay

for it, we show in both a simple zero-intelligence model, and more sophisticated learning and

equilibrium settings, that call markets have the potential to attract a large fraction of the

order flow. In addition to the policy implications, we believe the modeling approach taken

in this chapter constitutes a useful bridge between classic financial microstructure models

and more complex agent-based models, preserving intuition from the former, while allowing

us to examine richer environments and questions.
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Chapter 8

Conclusion and Future Work

8.1 Conclusions

This thesis addresses the design, analysis, and modeling of mechanisms and information

structures for real-world applications. We provide new and richer models for understanding

static and dynamic markets across different domains, including kidney exchange and financial

markets. We address the outcome of single platforms, as well as fill in gaps in the study

of the dynamics of multiple platform interactions. Within static markets, we show how

the information structure and environment influence the outcomes of matching markets and

auction markets. Because mechanisms are harder to change than the information available

to participants, understanding the effect of information structure becomes valuable. For

dynamic markets, we first provide baselines of different market-clearing rules on market

outcomes. Our main contribution in this part is modeling the dynamics of multiple platform

competition, which is understudied in most of the domains. We focus on social welfare,

as well as the equilibrium behaviors of both individuals and markets in competing-market

systems. Through these efforts, we can make better-grounded policy recommendations for

157



both kidney exchange and financial markets, and help better inform the debates in both

areas.

8.2 Future Work

While we provide suggestions for future work within its domain in each chapter, here I

provide a broader picture of the overall thesis, especially with regard to dynamic matching

markets.

8.2.1 Static Markets

For information design in static markets, we investigated the role of information on aggregate

and distributional outcomes, and also designed revenue enhancement signal structures. In

this thesis, we look at stylized models for both matching markets and auction markets. One

direction is to consider a richer and more complex model. For example, in matching markets,

we study the situation where there is a universally shared, common knowledge ranking of all

firms, and there is a “true” universally shared ranking of all candidates. A natural extension

is to examine situations with more diverse preferences, and where interviews are costly but

not necessarily budgeted (allowing employers to decide strategically how many candidates

to interview). In auction markets, we consider the second-price auction with one seller

and two bidders. This model can be extended to the auction with more bidders, though the

complexity for determining the equilibrium strategies and revenue-enhancing signal structure

will be dramatically increased. Another direction is to investigate what happens when the

market outcome is not decided in a centralized manner (using the Gale-Shapley algorithm
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as above, or in a second-price auction, for example), but must instead take place through

explicit offers and acceptances.

8.2.2 Dynamic Markets

In dynamic markets, we mainly focus on the dynamics of multiple markets’ interaction.

On this front, there are several more issues can be further studied. One is to consider more

complex models which would make these models more applicable to many real-world settings.

For example, in dynamic kidney exchange problem, the future work can take network effects

(where more popular exchanges have an easier time attracting agents, lower operating costs,

higher probabilities of two agents forming an acceptable transaction, and other advantages)

into account. Besides, we look at only two overlapping markets for both kidney exchange

and financial markets; generalizing this to any number of overlapping markets would also be

of interest.

Chapter 6 provides a cardinal utility model. Another important line to study is how to use

this cardinal utility model is to further improve outcomes in kidney exchange in the dynamic

setting. For example, we have done related work which develops a matching algorithm for

kidney exchange with compatible pairs. The algorithm utilizes the estimation of “shadow

survival” (as opposed to the more common shadow prices) by the cardinal utility model and

is mainly based on the online primal-dual technique. A future interesting direction is to

incorporate the waiting time in this kind of utility model. Here, future work can analyze the

relationship between match quality and waiting time to assess whether there is a significant

change in the expected quality of a match as a function of waiting time; and can also predict

the relationship between waiting time and match quality. The transplant center’s utility can
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also be taken into account: the costs of performing local vs. non-local transplants, entering

pairs into kidney exchanges, actual procedure costs (which can vary based on donor and

recipient characteristics), and insurance reimbursements.

A richer strategy space can also be considered. For example, in competing financial markets,

we consider the learning strategies only in quadratic space. One way to release this constraint

is to consider non-parametric strategies using Gaussian process. In dynamic matching mar-

kets, we simplify the strategy by types (short-lived and long-lived), where it is interesting to

study the relation between agent strategies and their criticality.

160



Appendix A

Additional Experiments For

Competing Dynamic Matching

Markets

In this part, we provide additional results supporting the dynamic kidney exchange experi-

ments of Section 4.5.2. Figure A.1 corresponds to the 2-cycle-only experiments of Figures 4.4

and 4.5 in the body of the Chapter 4; instead of varying the market overlap parameter γ

on the x-axis, they vary the probability α of entering either the Greedyc or Patientc market,

while holding γ constant for a variety of values. Similarly, Figure A.2 corresponds to the

2- and 3-cycle Uniform matching policy experiments of Figures 4.6 and 4.7. Finally, Fig-

ure A.3 corresponds to the Uniform3 matching policy results shown in Figures 4.8 and 4.9.
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Figure A.1: 2-cycles-only experiments, paired with Figure 4.4 (left) and Figure 4.5 (right).
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Appendix B

Simulator Details

This part provides the details of the simulator in Section 6.3. Our basic simulation model is

based on the distribution of all relevant recipient and donor characteristics from the data of

the center. The characteristics of each donor-recipient pair are generated from the distribu-

tion of the center’s data (See Table 6.1). We determine compatibility based on the simulator

from Saidman et al [127], which utilizes PRA and ABO compatibility. More specifically,

we first generate a donor-recipient pair, with all LKDPI-related characteristics generated se-

quentially in a manner that respects the data distributions in Table 6.1 and the correlation

structure shown in Figure 6.2. We then generate the PRA (percentage reactive antibodies)

and compatibility based on the Saidman model. The exact details of how we generate the

characteristics can be found in Algorithm 3.
Age(Years) Average Measured GFR (ML/min/1.73m2̂)

20-29 116
30-39 107
40-49 99
50-59 93
60-69 85
70+ 75

Table B.1: Average measured GFR by age in people.
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ALGORITHM 3: Details of Generating Living Donor Pair

Input: Pair ID
Output: A living donor pair
Sample following characteristics based on the distribution of Table 6.1:
Donor Age ∼ N (48.22, 12.68) ;
Donor Sex: P (F ) = 0.7, P (M) = 0.3;
Rec Sex: P (F ) = 0.35, P (M) = 0.65;
Donor eGFR: Table-B.1 based on Donor Age;
Donor SBP Table-B.1 based on Donor eGFR;
Donor Weight: Sample based on Donor Sex;
Rec Weight: Sample based on Recipient Sex;
Donor BMI: 0.0948 (Donor Weight) + 11.387;
Donor/Rec Weight Ratio: Donor Weight/Rec Weight;
Donor Blood Type: Based on Saidman’s simulator ;
Recipient Blood Type: Based on Saidman’s simulator ;
Donor is African American: Based on Donor Blood Type ;
Donor cigarette use: P (Y ) = 0.32, P (N) = 0.68 ;
Donor&Rec Related: Based on Table 6.1;
Check Donor&Rec ABO compatibility;
Donor&Rec HLA-B mismatches and Donor&Rec HLA-DR mismatches: Jointly sample from
Table 6.1 based on whether the pair is related or not;
Donor&Rec isWifePatient: Based on Saidman’s simulator; if the recipient is female and the
donor-recipient pair is unrelated, the probability that the donor is the recipient’s spouse is 0.4897;
Recipient PRA: Based on Saidman’s simulator;
Generate crossmatch incompatibility: Based on PRA and isWifePatient;
Determine compatibility: The pair is compatible if and only if both ABO compatible and a
negative crossmatch.

To note, in this simulator, (1) the estimated GFR (line 5) is generated from Table B.1

which depends on age instead of using the distribution from Table 6.119; (2) The BMI (line

9) is generated based on a regression on data from the transplant center; (3) When we

consider a counterfactual pair, we always assume they are unrelated. (4) HLA-B and HLA-

DR mismatches of a donor-recipient pair are generated based on whether the donor and

recipient are related or not. When we need to decide the HLA-B and HLA-DR mismatches

of a counterfactual pair, we use the distribution from the counterfactual matrix instead of

the distribution from the original dataset.

19See https://www.kidney.org/sites/default/files/docs/12-10-4004 abe faqs aboutgfrrev1b singleb.pdf.
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Appendix C

Varying the Size of the Incompatible

Pair Pool

This appendix provides more experimental results corresponding to Section 6.3.2. While

the rate of entry of compatible and incompatible pairs may be similar, it is possible that

one or the other population is less likely to go through with a transplant. This could result

in different ratios between the sizes of the two pools. In order to study how our results

would vary with different assumptions about this, we hold the number of compatible pairs

fixed and vary the number of incompatible pairs. Both compatible and incompatible pairs

are randomly generated using the population characteristics from Table 6.1 and following

Algorithm 3, where the compatibility is decided by Saidman’s simulator. The number of

compatible pairs we consider are 50, 100, and 200, while the number of incompatible pairs

ranges from 10 to 200.

The performance of incompatible pairs – The number of matched pairs. For in-

compatible pairs, we are primarily interested in the increase in the number of matches when
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Figure C.1: (a) Expected number of matched incompatible pairs under maximizing expected
graft survival (solid lines) and expected number of matched recipients (dash lines) when holding
the number of compatible pairs (CS) as 50, 100, 200; (b) Expected graft survival of incompatible
recipients under maximizing expected graft survival (solid lines) and expected number of matched
recipients (dash lines) when holding the number of compatible pairs (CS) as 50, 100, 200 and
varying the size of incompatible pairs from 10 to 210. Each point in the graph is an average of 500
simulations.

compatible pairs join the pool. Figure C.1a shows the expected number of matched incom-

patible pairs/recipients when maximizing expected graft survival of all cycles (*-MaxSur) and

maximizing the number of matched pairs (we = 1, *-MaxNum). For both objective functions,

the optimal matching will match all the pairs (I/CI-O-MaxSur/MaxNum). In two-&three-

cycle swap, both objective functions achieve similar performance (though *-MaxNum are

slightly better then *-MaxSur). When the market is thick enough (compatible size is 200,

CS=200), the number of matched incompatible pairs is very close to the optimal solution. In

general, for two-&three-cycle swap, the pool with compatible pairs (CI-*) matches far more

incompatible recipients then only running two-&three-cycle swap within the incompatible

pairs (I-*).

–Expected graft survival. We now investigate how expected graft survival of incompatible

pairs changes when compatible pairs join the pool. The results of comparing *-MaxSur and
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*-MaxNum can be found in Figure C.1b. Overall, *-MaxSur (solid lines) has longer expected

graft survival than *-MaxNum (dash lines) as we expect. When compatible pairs participate,

expected graft survival of incompatible pairs is lower than when running two-&three-cycle

swap within incompatible pairs (I-*). Another interesting observation is that the expected

graft survival of incompatible recipients decreases as the number of compatible pairs increases

for both *-MaxSur and *-MaxNum.
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Figure C.2: two-&three-cycle swap : Expected graft survival of compatible recipients under max-
imizing expected graft survival (solid lines) and expected number of matched recipients (dash lines)
when holding the number of compatible pairs (CS) as 50, 100, 200 and varying the size of incom-
patible pairs from 10 to 210.

The performance of compatible pairs – Expected graft survival. Under the Pareto

improvement restriction, the compatible pairs are guaranteed to match with their original

donor at least and they only swap if they can find a better organ for both the Optimal and

two-&three-cycle swap. From Figure C.2a we can see that for both objective functions

(MaxSur and MaxNum), compatible pairs have a substantially longer graft survival for
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participating two-&three-cycle swap (CI-*) than if matched with their original donor (C-

or). The size of the compatible pool does not have major influence on the performance. It

is also obvious that the compatible pairs benefit more when the market clearing algorithm

maximizes the expected graft survival rather than the number of matched pairs. The number

of incompatible pairs who are not matched when maximizing graft survival, but who would

have been matched when maximizing the number of matches, is shown in Figure C.2b.

169



Bibliography
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