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1. INTRODUCTION

We present an efficient algorithm for PAC-learning a broad class of geometric concepts over
%4 for fixed d against arbitrary distributions. More specifically, given a set 7 of s halfspaces,
associate a boolean indicator function [;(.}), with each ¢ € T, such that, for an arbitrary
point z = (z1,...,24) in R%, L;(z) = 1 if and only if = € ¢. The concept class, C4, that we
study consists of all concepts formed by any boolean function over I,,..., I, fort; € T
where 7 is any set of s halfspaces. In other words, C? consists of all boolean labelings of the
O(s%) subspaces created by any s halfspaces. (See Figure 1 for an illustration.) While the
time complexity of our algorithm has exponential dependence on d, the sample complexity
is polynomialin d and s.

The concept class we study is more general than any geometric concept class known to be
PAC-learnable. Special cases of our main theorem result in learning algorithms for several
new geometric concept classes. For example, the concept class defined by the parity function
over the indicator variables of s hyperspaces is learnable by our algorithm. While we consider
geometric concepts defined by halfspaces, any polyhedron (not necessarily convex) defined
by f faces can be formed by combining f halfspaces. Thus our algorithm can also learn any
boolean combination of a polynomial number of polyhedra each with a polynomial number
of faces. Even further, our results can be easily extended to efficiently learn any boolean
combination of a polynomial number of concepts selected from any concept class C over R4
given that the VC-dimension of € has dependence only on d (and is thus constant for any
constant d), and there is a polynomial time algorithm to determine if there is a concept from
C consistent with a given set of labeled examples. Standard techniques cannot be applied to
learn many such complex geometric concepts and, in fact, prior to this work no algorithms
were known for these problems.

In addition to presenting a polynomial time algorithm to learn C¢ (for d constant), we
present a variation of our algorithm that can tolerate random noise in the labels for any noise
rate strictly less than 1/2. This variation takes advantage of the noise tolerance inherent in
the statistical (SQ) model [Kearns 1993]. Finally we present a generalization of the standard
e-net result of Haussler and Welzl [1987] and apply it to give an aliernative noise-tolerant

algorithm for d = 2 based on geometric subdivisions.

2. LIMITATIONS OF THE STANDARD COVERING TECHNIQUE

Considerable work has been done on learning geometric concepts in the PAC model. To
illustrate the key technique used in most of this work consider the problem of learning unions

of s halfspaces in d-dimensional space for any constant d [Blumer et al. 1989; Baum 1990a;



Fig. 1. A target concept from (132 formed from the three halfspaces a, b, and ¢. For any point z in the
lightly shaded region I4(z} = Iy(x} = I and I.(z) = 0. Likewise, for any point 2’ in the darkly shaded
region Iy(z') = Iy{z') = I-(2') = 1. The boolean function over Iy, Iy, I that is illustrated in this figure is
the parity function. Namely x is a positive point exactly when an odd number of the indicator functions
are I for #. Observe that a positive point in the darkly shaded region cannot be separated from all negative

points by a single hyperplane.

Brénnimann and Goodrich 1994j'. The standard Occam algorithm draws a sufficiently
large sample S of m points (where m is chosen to satisfy the bound of Blumer, Ehrenfeucht,
Haussler, and Warmuth [1989]) and then finds a hypothesis consistent with the sample by
formulating a set covering problem. For the learning problem, one first generates a set F of
halfspaces such that each possible partition of the points in S into two sets by a halfspace
is realized. Then the learner initializes the hypothesis i to be the always false hypothesis,
and P to be all positive points from S. Then the learner repeats the following step until
P =10

Find a halfspace f € F consistent with all of the negative examples in S and the
maximum number of examples from P. Replace A by h U f and remove from P

the points correctly classified by f.

Since the target concept gives a covering of size s, it follows that the greedy set covering
algorithm [Chvatal 1979} produces a cover of size O(sIn|P|) = O(slgm). Thus the repre-
sentation size of the final hypothesis is sub-linear in m as required by the result of Blumer,
Ehrenfeucht, Haussler, and Warmuth [1989].

To see a fundamental limitation of the standard technicque, consider the geometric concept
shown in Figure 1. Notice that there is no hyperplane that separates a positive point in the
darkly shaded region from all negative points. Thus for this situation no covering of the
form used above is possible.

This standard covering technique can be applied to learn unions (and intersections) of

base classes, C, other than halfspaces. However, for a concept class C, |F| has an exponential

1By a dual argument everything discussed applies to intersections of halfspaces,
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dependence on the VC-dimension of C. Thus, this approach yields a polynomial time algo-
rithm only when the VC-dimension of C is constant. Blumer, Ehrenfeucht, Haussler, and
Warmuth [1989] prove that this set covering approach can be used to efficiently PAC-learn
the union (or intersection) of concepts from a base class C given that the VC-dimension of
C is constant and there is a polynomial time algorithm to determine if there is a concept
from C consistent with a given set of points. Qur technique introduced here, generalizes this
standard technique by allowing us to learn classes defined by arbitrary boolean combinations
of concepts from C versus just intersections or unions.

If one tries to apply the standard technique to boolean combinations more general than
union or intersection then the fundamental problem illustrated in Figure 1 returns. Al-
though for some base classes, such as axis-aligned boxes, any single positive example can be
separated from all the negative regions by a box — it is essential to argue that there exists
a covering whose size is sub-linear in m. When learning a union it is easily seen that each of
the s concepts in C used to form the target concept correctly classify all negative examples.
Thus those s concepts form a covering. However, when we consider more complex geometric
concepts (i.e. concepts for which the combination of the indicator functions is not simply
a union or intersection), a small covering of this form may not exist. Thus the standard
techniques cannot be applied. As another example illustrating the limitations of the known
techniques, consider the class defined by the union of a polynomial number of convex poly-
hedra each with a polynomial number of faces. Here the standard technique would fail to
give an algorithm whose time complexity is polynomial in the total number of faces in the
polyhedra defining the target concept because the V(-dimension of a polyhedron depends
on the number of faces.

There are several important contributions of this paper. First, we give an algorithm
to learn C¢ in the PAC model®. Our work introduces a new learning technique that uses
the following novel, though simple, application of set covering. Presented with a labeled
sample of points we know that any positively labeled point must be separated from all
negatively labeled points by some subset of the hyperplanes corresponding to the halfspaces
defining the target concept. We construct from the sample a complete bipartite graph
by adding an edge between every pair of points {z4,z_) where z is positive and z_ is

negative. The edges in this graph form the set & to be covered. The family of subsets

2While we use CZ to illustrate our technique, the result generalizes to any boolean combination of a polyno-
mial number of concepts selected from any concept class C over RY given that the VC-dimension of € depends
only on d {and thus is constant for d constant}, and there is a polynomial time algorithm to determine if

there is a concept from C consistent with a given set of labeled examples.
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of I{ is comprised of hyperplanes where a hyperplane covers every edge that it properly
intersects. Since the VO-dimension of a hyperplane is d < I (which is constant for fixed d),
|F| is polynomial in the size of the sample®. By applying a greedy covering technique, we
obtain a set of hyperplanes that separates every pair (..,%.). By using the set covering
algorithm of Brénnimann and Goodrich [1994] (versus the standard greedy covering) we
obtain a cover of size O(sdlg(sd)). Our approach does not have the limitations discussed
above, yet maintains the desirable feature that the sample complexity is polynomial in s and
d. It is only the time complexity that depends exponentially on d. This contrasts recent
results described in Section 4. Furthermore, since the number of different regions in the
target concept could depend exponentially on d, the size of the target concept itself could be
exponential in d. Thus, with the exception of some subclasses of C¢ with polynomially sized
concepts, our algorithm runs in time polynomial in the size of the target. Note, we can use
parallel set covering techniques [Berger et al. 1994] to get our algorithm to run efficiently in
parallel,

A second contribution of our work is the conversion of our basic algorithm to a statistical
query algorithm giving noise tolerance. Due to our covering approach, the statistical queries
we make come from a modified distribution (that we simulate from our given example
source). This modification of the distribution causes the desired accuracy that the learner
must reach to get smaller with each step of the covering. Thus the conversion to a statistical
query algorithm is more complex than that needed with the standard covering approach.

Finally we present a generalization of the standard e-net result of Haussler and Welzl [1987]
and apply it to give an alternative noise-tolerant algorithm for d = 2 based on geometric

subdivisions.

3. PRELIMINARIES

The learning model we use in this work is the probably approzimately correct (PAC) model of
Valiant [1984]. In this model, the learner is presented with examples, chosen randomly from
instance space A’ according to unknown probability distribution P. Let f be an unknown
target function from known concept class C. The learner must return a hypothesis h that
classifies at least (1 —¢) of X consistent with f, with probability at least (1—4), where € and
& are given constants. That is, with high probability, the hypothesis must correctly classify

3 Applying a result from Blumer, Ehrenfeucht, Haussler, and Warmuth [1989] gives that for classes € with
finite VC-dimension and a polynomial time consistency algorithm, the elements of F can be listed in poly-
nomial time. While this result applies for C%, in Section 5 we describe a more efficient approach based on a

geometric duality argument.



6

most of the instances (by weight under distribution D). We now describe several relevant
resulis relating learnability and the Vapnik-Chervonenkis (VC) dimension, an important
complexity measure.

The paper of Blumer, Ehrenfeucht, Haussler, and Warmuth [1989] identifies a combina-
torial parameter of a class of hypotheses called the Vapnik-Chervonenkis (VC) dimension,
which originated in the paper of Vapnik and Chervonenkis [1971]. The VC-dimension char-
acterizes the sample size required in order to have enough information for accurate gener-
alization. The VC dimension of concept class C (which we denote VCD(C)) is the size of a
largest set § C X such that any subset of S is of the form 5N C, for some C € C, or oo if
such sets can be arbitrarily large.

The results of Blumer et al. give a sufficient condition for a prediction algorithm to
generalize successfully from example data, in terms of the VC dimension. Namely, they

prove the following result.

THEOREM 1. ([Blumer et al. 1989]) Let A be a learning algorithm for concept class C that
has hypothesis space H. Let d be the VC-dimension of H. Any concept f € H consistent
with a sample of size max (2log #, 8 log 12} will have error at most ¢ with probability at

least 1 — 6.

Furthermore, Ehrenfeucht and Haussler [1989] prove that any concept class C of VC dimen-
sion d must use 2 (Llogl + £} examples in the worst case.

One drawback with the above approach is that the hypothesis must be drawn from a fixed
hypothesis class #. In particular, the complexity of the hypothesis class cannot depend
on the size of the sample. However, when using a set covering approach the size of the
hypothesis often depends on the size of the sample. Blumer, Ehrenfencht, Haussler, and
Warmuth [1987, 1989] show that finding a hypothesis whose size is sublinear in the sample
size is sufficient to guarantee polynomial PAC learnability. Let ’Hf,m be the hypothesis space
used by algerithm A for a target of complexity s and sample size m. More formally, we say
that algorithm A is an Occam Algorithm for concept class C if there exists a polynomial
p#(s) and a constant @, 0 € @ < 1, such that for all s,m > 1, the VC dimension of ’Hf‘,m is

at most p(s)m*®.

THEOREM 2. ([Blumer et al. 1989]) Let A be a learning algorithm for concept class C that
has hypothesis space ’HsA.m' If the VO dimension of ’H‘::m is at most p(s)(lgm)* for some
polynomial p(s) > 2 and £ > 1, then A is @ PAC-learning algorithm for C using sample size¢

£ £4-1 £+1
m = max (% lg %, 2 Ep(s) (lg 8(2¢ + 23 p(s)) ) .
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The basic PAC model assume that the examples given to the learner are drawn randomly
from D and labeled correctly based on the target concept. In this work we also consider
a variant of the PAC model in which the labeled examples that the learner receives are
corrupted by random classification noise {Angluin and Laird 1988]. In this noise model, each
example is still drawn at random from D. However, with probability # (where 0 < n < 1/2
is called the noise rate), the learner receives the incorrect label, and with probability 1 — 7,
the learner receives the correct label. Thus the example drawn is labeled incorrectly, at
random, with probability 7. In the malicious classification noise model [Sloan 1988], each
example is still drawn at random from D. Here, with probability # an adversary can select
the label. In the malicious noise model [Valiant 1985], with probability 5 the adversary can
provide an example and label of its choice.

To obtain a noise-tolerant algorithm we use the stafistical query model [Kearns 1993;
Decatur 1993; Aslam and Decatur 1993; Aslam and Decatur 1995]. In this model, rather
than sampling labeled examples, the learner requests the value of various statistics on the
distribution from an oracle. A statistical query oracle returns the probability, within some
additive constant, that some predicate is true relative to the distribution. The particular
queries we use are known as relative statistical queries [Aslam and Decatur 1995]. These
take the form rel-sTaTp (x, i, ) where x is a predicate over labeled cxamples drawn from
D, p is the relative error bound, and # is the threshold. For target function f, let P, =
Prp[x(z, f(z)) = 1]. If P, < 8 then rel-sTATp(x, p, ) may return L. If 1 is not returned,
then rel-sTATp (X, 1, §) must return an estimate P, such that P (1—p) < P, < P (14 p).
The learner may also request unlabeled examples. Aslam and Decatur [1995] have shown
that all relative error SQ algorithms are robust against random classification noise for any
noise rate < 1/2. They have also shown that relative error SQ algorithms are robust
against small amounts of malicious errors.

Let Z be the set of integers. Let § = (y1,...,y4) denote the d dimension variables and
& = (21,...,®4) denote an element of [0, 1]¢, the instance space. Let @ = (ay,...,aq) be
a vector where a; € £. A d-dimensional Ayperplane is {§f | @-§ = b} for some b € Z.
A d-dimensional halfspace is {§f | & - § > b} where = € {>,>,<,<} and b is a constant.
Let H be a finite set of hyperplanes in {0, 1]%. The arrangement A(H) is the decomposition
of {0, 1]¢ into features of dimension k, 0 < k < d. We define a region as a d-dimensional
feature in A(H). For each set S of sample points, we say that two hyperplanes p; and p;

are equivalent if the partition of S imposed by p; is identical to the partition of § imposed

by p;.
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An instance of the set covering problem is a ground set I/ and a family F of subsets of
U such that [J reF f = U. A solution is a smallest cardinality subset G of F such that
Ugeg 9 =Y. The greedy approximation algorithm [Chvatal 1979] for this problem has a

ratio bound of In|i/| + 1 on the size of the approximation.

4. PREVIOUS WORK

In this section we highlight some of the relevant learning results for geometric concepts.
There have been many results for the classes of unions and intersections of halfspaces. Blum
and Rivest [1989] show that there does not exist an efficient proper? learning algorithm for
unions of s halfspaces, unless EP = N P. (That is, any such algorithm must have exponential
dependence on 4.) They also give an algorithm to PAC-learn the xor of two halfspaces
by transforming the examples so that positive and negative points are linearly separable.
Baum [1990a] gives an algorithm that efficiently learns a union of s halfspaces in constant
dimensional space. Blumer, Ehrenfeucht, Haussler, and Warmuth [1989] give a similar resuls.
Both algorithms return hypotheses containing O(slg m) halfspaces where m is the size of the
sample. Brénnimann and Goodrich [1994] present a set covering algorithm that allows them
to return a hypothesis containing O(dslg(ds)) halfspaces. Baum gives efficient algorithms
for learning several classes with infinite VC-dimension (such as convex polyhedral sets)
under uniform distributions [Baum 1990b]. Haussler [1989] also gives distribution specific
algorithms for several classes of functions. Bshouty, Goldman, and Mathias [1995] have given
noise-tolerant algorithms for several geometric classes. In particular, they studied C¢ against
the product distribution and a restricted version of this class, in which the hyperplanes have
slopes from a set of r known slopes, against arbitrary distributions. They also considered
a non-linear geometric class against the product distribution. All of these algorithms have
time and sample complexity exponential in the number of dimensions.

The learnability of unions of axis-parallel boxes has also been considered. Blumer et al.
present an algorithm to PAC-learn an s-fold union of boxes in £¢ by drawing a sufficiently
large sample of size m = poly (%,Ig %,s,d), and then performing a greedy covering over
the at most (%)% boxes defined by the sample. Thus for d constant this algorithm runs
in polynomial time. Long and Warmuth [1990] present an algorithm te PAC-learn this
same class by again drawing a sufficiently large sample and constructing a hypothesis that

consists of at most s(2d)® boxes consistent with the sample. Thus both the time and sample
1
3

this yields an efficient PAC algorithm. We note that either of these PAC algorithms can

complexity of their algorithm depend polynomially on s, d*, 2, and lg %. So for s constant

1A learning algorithm is proper if all hypotheses come from the concept class.
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be applied to the class | J,, Box{ giving efficient PAC algorithms for this class for either d
constant or s constant.

Finally, under a variation of the PAC model (with some added restrictions) in which
membership queries can be made, Baum [1991] gives an algorithm that PAC-learns the
union of s halfspaces in $* in time polynomial in s, n. Recently, Kwek and Pitt [1996)
give a result in the standard PAC-model with membership queries to learn the union of s
halfspaces in ®” in time polynomial in s, n, and a parameter that characterizes the number
of bits of accuracy with which the target hyperplanes are specified.

Also, Frazier, Goldman, Mishra, and Pitt [1994] have given an algorithm to PAC-learn
the s-fold union of boxes in E% for which each box is entirely contained within the positive
quadrant and contains the origin. Their algorithm learns this subclass of general unions of
boxes in time polynomialin both s and d. In the algorithmms presented here, no membership
queries are used and there are no parameters needed that relate to the number of bits of
precision to specify the hyperplanes defining the target. However, we require that d be
constant.

Recall that since | J,, Box¢ generalizes DNF, a polynomial-time algorithm for arbitrary d
and s would solve the problem of learning DNF. Observe that the class considered by Frazier
et al. is a generalization of the class of DNF formulas in which all variables only appear
negated. Bshouty, Chen, and Homer [1994] give PAC algorithm to learn the discretized
version of R-linear geometric concepts with random classification notse.

There has been substantial work on exactly learning using equivalence queries (and in
some cases also membership queries) unions of boxes [Chen and Homer 1994; Goldberg
et al. 1993] and other more complex discretized geometric concepts [Bshouty, Chen, and
Homer 1994; Bshouty, Goldberg, Goldman, and Mathias 1994]. While most such work
assumes that there are a constant number of dimensions, recently Auer, Kwel, Maass, and
Warmuth [1996] gave a polynomial time algorithm that is robust against noise to learn the
class of depth two linear threshold circuits with a polynomial number of variables given that

the input gates have constant fan-in.

5. PAC-LEARNING (¢

In this section we present an algorithm for learning ¢ using a set covering approach. As
before we use s to denote the number of hyperplanes defining the target concept. We note
that the algorithm we present in this section has polynomial sample complexity. The time
used by this algorithm has an exponential dependence on d. In Section 6 we convert this

algorithm to an algorithm in the relative statistical query model.
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5.1 Our Algorithm

We begin by discussing the algorithm at a high level. We first draw a labeled sample S of

1.1 ds/. ds\®

In Coroliary 4, we show that this sample complexity can be improved. (For ease of exposition

size

we assume that the learner knows s. If s is unknown standard doubling techniques can be
applied.) We then create a complete bipartite graph on this sample, treating the sample
points as vertices, by introducing a I-dimensional edge for each +/— pair in the sample.
That is, for each positively labeled point we add edges connecting it to every negatively
labeled point. This yields a graph with O(m?) edges. We then perform a set covering of
the edges in this graph using (d — 1)-dimensional hyperplanes.

We say that an edge is covered by a hyperplane if the hyperplane intersects the relative
interior of the edge. We will describe shortly our choice of the set F of covering hyper-
planes, which ensures that F contains a subset of s hyperplanes that separate every +/—
pair in the sample. The set covering problem, however, is NP-complete, and so we use a
greedy approximation algorithm [Johnson 1974; Lovész 1975; Chvatal 1979}, which gives an
approximation ratic bound of Q(lg m) for our application. The set of hyperplanes returned
by the set covering algorithm partitions the space into O((slgm)?) regions. Since the algo-
rithm separates each +/— pair by some hyperplane(s), the label for each region containing
sample points is easily determined: all of the points in the region are identically labeled.
Any region not containing any sample points can be labeled arbitrarily.

This set of hyperplanes returned by the set covering algorithm, along with the region
labels, forms our hypothesis. Since the hypothesis has size that is polynomial in the size
of the target and sublinear in the size of the sample, the algorithm is an Occam algorithm,
which by Theorem 2, is a PAC algorithm for this class. What remains is to show that we
can guarantee that the set of candidate hyperplanes we use for the greedy covering contains
a subset of s hyperplanes that separate every +/— pair in the sample.

We now argue that we can construct an appropriate set of candidate hyperplanes. (Recall
that the results of Blumer, Ehrenfeucht, Haussler, and Warmuth [1989] allow us to build F
in the more general setting where the VC-dimension of the class € from which we combine
concepts is constant and there is a polynomial time algorithm to determine if there is a
concept from C consistent with a given set of points.) A hyperplane partitions the set S of
sample points into three subsets: one set on the hyperplane and one sei, on each side of the

hyperplane. We call two hyperplanes equivalent with respect fo S if they induce an identical
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Fig. 2. A 2-dimensional primal space (left) and its 2-dimensional dual space (right).

partition of 5. To ensure that our set cover problem has an optimal solution of size at
most 5, we want our collection of hyperplanes to include at least one hyperplane equivalent
to each hyperplane in the target concept. For this purpose, we pick one representative
hyperplane from each equivalence class. To achieve this goal we use a geometric duality
argument (see, for example, Edelsbrunner [1987]). Each point p in our original or primal
space is mapped into a hyperplane g(p) in the dual space, and each hyperplane ¢ in the
primal space is mapped to a point g'(¢) in the dual space. Note that ¢’ is the inverse of g
and the mappings maintain relative position. That is, if point p is above hyperplane ¢ in
the primal space then point ¢’(¢) is above hyperplane g(p) in the dual space. (See Figure 2.)
Thus each equivalence class is represented by the interior of a (d — k)-dimensional face of
the arrangement A consisting of dual hyperplanes g(p}, p € 5, where % is the number of
points of S on a hyperplane in the equivalence class. The ceniroid of a finite set of points
is simply the arithmetic mean of the points and is known to be within the convex hull of
the points. Since every feature of A is convex, the centroid of a feature in .4 yields an
appropriate hyperplane in the primal space. Therefore, the number of those equivalence
classes is at most O(m?) and the representative for each can be listed (and thus placed in
F) in polynomial time.

Since F contains s hyperplanes consistent with the target concept, the greedy set covering
algorithm is guaranteed to return a hypothesis of size O(slgm). In the next section we

analyze this algorithm.

5.2 Analysis

In this section we prove the following result.

THEOREM 3. There ezists an algorithm that PAC-learns C%. The algorithm draws a

1.1 ds ds\?

sample of size
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LEBARN-C(s, ¢, §):
Draw labeled sample § of size
m=0(Lig}+ & (1g4)°)
Create if by adding edge for every +/— pairin S
Feo
Create a geometric dual space containing a hyperplane
for each pointin S
Calculate centroid «v of each feature in the dual space
F = Fu{g'(n)}
h + greedy covering of I{ using &
For each region p € h
If pn S 5% @ then [abel p according to §
Else label p arbitrarily
Return &

Fig. 3. Pseudocode for the algorithm to learn €,

and uses time polynomial inm?, s, 1/e and 1/5. The hypothesis returned contains O(slgm)

hyperplanes.

Proor. We first show that the stated sample complexity is sufficient. Since the size
of the covering is Oslgm), the final hypothesis is the boolean combination of O(slgm)
hyperplanes. The VC dimension of a single hyperplane in d-dimensional space is easily shown
to be d + 1. Thus, by the results of Blumer, Ehrenfeucht, Haussler, and Warmuth [1989],
the VC dimension of the hypothesis class is at most O{dslgmlg(slgm)) = O (ds(lgm)?).
Thus by applying Theorem 2 [Blumer et al.] we get thai the stated sample size suffices.

We now argue that the running time of this algorithm is polynomial in m?, s, 1/¢ and
1/8. We first note that drawing a sample of size m requires O(m) time. The algorithm then
creates a complete bipartite graph on the sample, which takes O(m?) time since the graph
has O(m?®) edges. Creating the arrangement .4 of the dual hyperplanes requires O{m9) time.
The total complexity of the arrangement, counting cells of all dimensions ¢, for § < i < d,
is also O(m?).

Next we examine the time required to create F. As described above, to build F we work
in the dual space. We must find an interior point of each (d — k)-dimensional feature. If
there are no interior points, as for a one-dimensional object, then a point on the boundary
of the feature is sufficient. Note that when we construct the arrangement A we calculate
the vertices of all of the features. Thus, we have the convex hull of each feature and can

calculate the centroid in constant time. Therefore, since there are O(m?) features of which
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we must find the centroid, each requiring constant time, the time required to construct
is O(m?). Note that this is also the number of hyperplanes in F. (We can calculate the
centroids of the features as A is being constructed without changing asymptotically the time
required for this operation, rendering the separate calculation of the centroids unnecessary.)

The time complexity of the greedy set covering algorithm is O(3" .+ |2}, where |p| is the

size of the set p (that is, the number of edges of our bipartite gra.phpintersected by p). Since
the family F has O(m9) sets, and |p| = O(m?), for all p € F, the set covering algorithm
runs in time O(m?%?), and produces a hypothesis containing O(slgm) hyperplanes. The
set covering is the dominant step in our learning algorithm, and since m is polynomial in s,

d, 1/¢ and 1/8, the theorem has been esiablished. O

Replacing the standard greedy set covering algorithm with one due to Brénnimann and
Goodrich [1994] we obtain the following result. (Note that here the complexity of the
hypothesis class does not depend on the sample size m. Thus instead of using an Occam

algorithm as above, we can apply Theorem 1 [Blumer et al]).

CoOROLLARY 4. There exists an algorithm that PAC-learns C2. The algorithm draws a

sample of size
1.1 sd?log®(sd), 1
and uses time polynomial inm®, 5%, 1/¢ and 1/4 to return a hypothesis containing O(sd 1g(sd))

hyperplanes.

Finally, by applying Lemma 3.2.2 from Blumer et al. instead of using the geometric

duality construction to build F we get the following generalization.

CoRoLLARY 5. LetC be a concept class over R? for which ven(C) has dependence only on
d, and for which there is a polynomial time algorithm to determine if there is a concept from
C consistent with a set of labeled examples. Then there exisis an PAC-learning algorithm for
the concept class defined by the boolean combination of any s concepts from C. The sample
complezity of the algorithm is polynomial in s, d, 1/¢, and 1/8, and the time complexity of
the algorithm is polynomial in s, 1/¢, and 1/4.

Note that the sample complexity of our algorithm is polynomial in all of the relevant
parameters, including d. It is only the time complexity that has an exponential dependence
on d. We also note that it is not necessary for the algorithm to label every region of the
hypothesis. We label only those regions containing sample points. Since all other regions
can be labeled arbitrarily, we leave them unlabeled and supply an arbitrary classification

for a point in one of these regions when required. Thus, our hypothesis has size polynomial
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is s and d. In the next section we present a statistical query version of this algorithm that

is robust against random classification noise for any noise rate 7 < 1/2.

6. PAC-LEARNING C¢ WITH NOISY DATA

In this section we extend our algorithm of the previous section to allow random classification
noise of any rate n < 1/2. We do this by converting our algorithm to one in the relative error
SQ mode]. As in the noise-free case, we form a set F of hyperplanes for the covering. In
the covering stage, the goal is to ensure that there is a very small probability that a random
positive and random negative point are not, separated by a hyperplane in our covering. Since
the provided labels are unreliable, we use a statistical query (which can tolerate labeling
noise) to estimate the probability p that a random positive and negative point are not
yet separated. Given a hypothesis A, let the +/— error of h, denoted E,;_(h), be the
probability that a randomly drawn positive point and a randomly drawn negative point
are in the same region of the hypothesis. Our goal is thus to reduce E,;. (k) by adding
additional hyperplanes from F to h. Then we can use statistical queries to determine the
classification for each region in k. Because the error measure, Ey,_(h} we are reducing (by
adding hyperplanes to &) is different from the probability that a randomly selected point is
misclassified, we can not just use the standard method of transforming a set covering based

algorithin into a SQ algorithm.

6.1 A Noise-tolerant Algorithm

Before describing our algorithm we give some definitions. Let h denote the hypothesis of
the learning algorithm and r denote the number of regions in k. Let D be the probability
distribution on R9. We define D’ to be the filtered distribution producing the pair {x.q,2_},
where . is a random positive example drawn according to D and z_ is a random negative
example drawn according to D. We call {24, z_}) a +/— pair.

Our algorithm first draws an unlabeled sample S, of size m,. As in the noise-free algo-
rithm we create a family of hyperplanes, F, producing all possible behaviors of m,. Let
X1 be the predicate “z; and z_ are in same region of h” and let y2 be the predicate “cy
and z_ are separated by hyperplane p”. We perform the following loop at most ¢ times
(we derive ¢ in Section 6.2). We first use the rel-sTAT oracle to estimate P, = E;,_(h).
Thus, by the definition of the rel-STAT oracle, the estimate f’xl returned (if not L) by

rel-STATp: (1, 1/2, Ie“az-:_1) satisfies

PXl SPDQS PX

1t

2|
b | o
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Since we exit the repeat loop if f’xl < ft—"":'-—l')" it follows that in this case Py, < 213X1 < rfﬁ

Likewise, if .L is returned then, by definition, P, < tfﬁ Thus if we exit the repeat loop
after less than ¢ executions then E ;_(h) < E‘ag‘-f-‘f

e, > WE-FT)— then we continue the repeat loop and thus select the next hyperplane
to add to our hypothesis. To achieve this, for each candidate hyperplane in F we call
rel-STATp (xl A Xz, 1/2,;1—3—(—;5+—1)) which estimates the probability that adding the given
hyperplane to & would create a hypothesis 4’ that seperates a random pair (z,z_) that
was not separated by h. We then add to h the hyperplane p € F for which the highest
estimate was returned. In Section 6.2, we prove that ¢ = max {(3sd)*/?,3sIn %} rounds are
sufficient to ensure that By, _(h) = Py, < '(Eag-"f-"i")‘ Thus after at most ¢ repetitions of the
repeat loop we are guaranteed that P, < (7.%_‘—5 As we will show, it then follows that if
the regions in h are labeled appropriately (i.e. based on the majority of the weight), the
classification error of i will be at most /2.

Notice that fewer than ¢ covering rounds are used if the +/— error becomes sufficiently
low. If we did not stop at this point then the threshold for the statistical query to estimate
Py, Ax. would need to be too small. Note that as long as the positive and negative weight
in D is greater than /2 it is also easy to see that D’ can be efficiently simulated. For ease
of exposition, we have not explicitly included a test to see if the positive or negative weight
in D is too small.

Finally, for each region p of h, we use statistical queries of the form rel-staTp((z €
pand f(z) =1),1/4,1/2} to determine the label of p as given by the majority of the weight
in p. Pseudocode for the entire statistical query algorithm appears in Figure 4.

In the next section we derive the sample complexity and the bound, ¢, on the number of

hyperplanes added to the hypothesis. We also examine the time complexity of this algorithm.

6.2 Analysis
In this section we prove the following theorem.

THEOREM 6. There exists an algorithm to PAC-learn C? in the presence of random clas-
stfication noise with a rate % — v (v > 0), with time and sample complexity polynomial in
s, 1/e and 1/ for fized d.

The repeat loop of our algorithm is executed at most ¢ times. Thus, ¢ is an upper bound
on the number of hyperplanes added to the hypothesis. This gives us that the maximum
number of regions in the hypothesis is » < t? + 1. Before proving the main result of this
section, we first derive the value for {. To distinguish the standard error measure from

Eyj_(R), we refer to the probability that a randomly drawn point is misclassified by the



LeAaN-NoisY-C2(s, ¢, §):
Draw unlabeled sample Sy, of size
16(t%+1 48(td41
my = BEED | (2(d+ 1)¢1g(3) 1g BEA 4 g g)
Create set of candidates, F, as in the noise {ree case
h=0
Repeat f times

If rel-STATps {x1, 1/2,&-1-) >

Pmaz = argmax,er {rei-STAT-D: (x1 Axe,1/2, 4s(te+1) ) }
h 4+ hUpmas
F - F - {Pma:r:}
Else exit the repeat loop
For each region p of h
If rel-staTp(xs,1/4,1/2) > 1/2
Label p positive
Else
Label p negative
Return A

Fig. 4. Our noise-tolerant algorithm for €Y. Recall that ¢ = max {(3sd)3/2,3s1n %}, x1 is the predicate
“ry aend T are in same region of h” and x2 is the predicate “xy and z_ separated by hyperplane p™.
x3 is the predicate “c € p and f(=) = 1", Let {z4,%-} denote a pair of examples where x4 is a random

positive example and x_ is a random negative example, each drawn according to D. Recall that D' ocutputs
{zy,z_).

hypothesis as the classtfication error, denoted E¢(h). Since the metric used during the
greedy covering is 24 /_(h), we must relate this to the classification error so we can ensure

that when the algorithm halts Eqx(h) <e.

LEMMA 1. Suppose Ec(h) > ¢. Then the E;_(h) > w where v ts the number of

regions in h.

Proor. We use Py to denote the total weight of positive instances and P_ the total
weight of negative instances under distribution P. We use 2 € D to denote an instance z
drawn at random from D. Our goal is to express Ey,_(h) in terms of ¢ for Ec(h) > e.
To achieve this goal we take the summation over all regions ¢ (for 1 < i < 7) of & of the
+/— error due to region ¢. Notice that the +/— error due to region 7 is the probability

that a random positive example is in reglon 7 times the probability that a random negative
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example is in region 4. Thus we have that E,,_(h)

=3 Precole € l5(s) = 1) - Preco(e € if(z) = 0)

S
_ i Pregp(z€iA f(z)=1) ‘ Pryep{z€in flz)=0)
= P+ 2

>4Zp,n, 46(1—6)
i=1

B Z P+ (1-Py) P +)
where the last step is shown using Lagrange multipliers. Note that p; and n; are simply

notation for the probabilities in the numerators of lne 2. O

Therefore, we know that if Bo(h) > £, then Ey_ () > #(<2U=(/2) _ 2602(/2) pyyg
if By _(h) < —e(—l-#n then Ec(h) < §. Observe that since the number of regions in
the hypothesis increases with each hyperplane added, the value of Ey;_(h} that must be

obtained decreases with each hyperplane added to the hypothesis.

OBSERVATION 1. Let ¢ represent the classification error of hypothesis h. Then Ey;_(h) <
e{l—¢) <e.

Let e; be the value £, ,_(h) after the ith hyperplane has been added to the hypothesis.
By the construction of F and the fact that m, was chosen (based on the bounds of [Blumer
et al. 1989]) so that, with probability at least 1 — §/3, any hypothesis consistent with
Sy (if we knew the correct labels) would have error at most ;{(—ﬁil—), we know that with
probability at least 1 — §/3, there exist s hyperplanes in JF, that when properly oriented to
form halfspaces, generate a hypothesis with classification error at most W?i_l)‘ Thus, there
exist s hyperplanes in F that have +/— error at most #}i—l}. By an averaging argument,

when selecting the 7th hyperplane to add, there exists a p € F such that

Pp = Pris, -_)ep((p separates 2 and &) A (z4 and z_ are not separated by h))

3 1
> (e — sy -
Since we stay in the repeat loop only if ¢; > ﬁ we know that Pp > (Fﬁf - Wﬁi_l)) % =
—qs(tﬁﬁ}. Thus, we let # = —43(354-1)
no estimates when P, < @ (since, in this case, p is not an optimal choice). We can now solve

for ¢.

for the statistical queries to estimate P, since we need

LeMma 2. Let i be the meximum number of iterations of the greedy covering algorithm
(thus, the mazimum number of hyperplanes in h). Choosing t = maz {(3sd)%?,3s1n &}
suffices to ensure that B4y (h) < 55, and thus, Bc(h) < 5.
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Proor. Let 15p represent the estimate of P, obtained from the SQ oracle. Since we use

a relative error bound of 1/2,
- 3e 1
>{ej— —} —.
Fp2 (’3‘ A0t + 1)) 2s
Thus for pmaz, L > (e,- - E'('E%'f'i?i')') 2. Thus since we use a relative error bound of 1/2,

Pmaz
1t follows that

- 2 3¢ 1
> e (PO LI I
Fomas 2 Fpmes 3 (e‘ 1+ 1)) 3s

Therefore, e:37 < & — (e,' — 3@%—:7)) 31; Solving this recurrence yields e; < (1 — 31_3)3 -+

Zﬁ%%f)_' To ensure that Ec(h) < 5 it suffices to select ¢ such that

¢ £ £
(1__1_) L3¢ S2.:(1 2):25(1 2).
3s 4{t4 + 1) r t1+1

Since 2¢ (1 — £) > ¢ it suffices to let

1_i t+ 3¢ <€
3s 44 +1) — 4417

It can be shown that ¢ = max {(3sd)¥2,3s1n £} is sufficient provided that s > 4 and d > 2.

We note that increasing to 2 the exponent on the first term is sufficient to ensure a valid

value for ¢ for smaller values of s and 4. O
We are now ready to prove the main result of this section.

Proor THEOREM 6. The confidence and accuracy parameters are allocated in the fol-
lowing way. We use §/3 when drawing sample Sy and §/3 in the filtering used to create D’
(with probability > 1 — §/3 the filtering does not take too long). This leaves §/3 for the
simulations of the statistical queries from the PAC example oracle. This gives a total prob-
ability of failure of §. For the accuracy bound, recall that by Lemma 2, and the observation
that we exit the repeat loop prematurely only if E,;_ (k) < Fz-f-_l’ it follows that once the
regions of h are labeled appropriately Ec(h) < /2.

For each region of A a statistical query is performed to determine its classification. Since
Ec(h) < €/2 when the labels are picked based on the majority of the weight in the region,
for each region we must have that either Py, < ¢/2 or P, > 1 — ¢/2. Without loss of
generality we assume that 0 < ¢ < 1/2, Then we have that either P, < 1/4 or P, > 3/4.
If Py, €£1/4, then an < 5/16 < 1/2 and thus the region is correctly classified as negative.
Likewise, if Py, > 3/4, then P, > 9/16 > 1/3 and thus the region is correctly classified

as positive. Finally, if L is returned then P,, < 1/2 and thus the correct classification of

negative is given.
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We now argue that the time and sample complexity are polynomial in the stated param-

eters. Since h can be viewed as a boolean combination of at most
t = max {(3sd)3/2,3.s In %}

halfspaces (obtained by arbitrarily orienting each of the hyperplanes), the veD(#) is at
most 2(d+ 1}t 1g(3t) (by [Blumer et al. 1989]). After substituting the above values for € and
8, my = ﬁ(t;eill . (VCD (H)lg ﬂ%"'—li +1g —gv) is sufficient to ensure a hypothesis consistent
with the sample has error greater than Wt?fi-_i) with probability at most §/3.

Finally, we consider the time complexity of this algorithm. By the argument presented in
the proof of Theorem 3, it takes O((my)?) fime to construct candidate set . Simulating
each statistical query, in the PAC model, requires polynomial time since for all statistical
queries made 1/p and 1/8 are polynomial in s, 1/¢, and 1/4.

For each of the ¢ rounds of the covering we perform O(m?) statistical queries to select the
hyperplane to add to k. Finally, we must label each of the regions in k. There are r = #1441
regions, each requiring a statistical query. Thus, the total time required by this algorithm

is polynomial. O

7. A PLANAR SUBDIVISION APPROACH

In the case d = 2, we explore a method of recursively subdividing the plane. In this approach
for learning C? (d = 2) with malicious classification noise of rate  — v (for v > 0), the
learner takes mg = poly(1/e,1/4,1/, 5) labeled examples A according to a distribution D.
The learner subdivides the space in the following manner. Given that the points are in
general position (namely, no three points are collinear), there exist two lines that divides
the points info four groups of equal size [Willard 1982]. We build the subdivision by finding
such a pair of lines, and then we recursively apply the same technique (independently) to
each of the four regions obtained until there are only ¢ points in each region. Thus after
log, m division we obtain m polyhedra of at most log, rn sides where each contains exactly
g points. Furthermore, since each of the s lines defining the target concept can intersect at
most three of the four regions created, the number of polyhedra intersected by a single line
is at most 3'984™ = m'°8s3 = m* where o = log, 3 < 0.8.

Since our sample may not have points in general position, when three or more points lie
on a line then with high probability this line has high weight under the distribution and we
can learn the target function on this line separately (it will just be a union of intervals).
Notice that only a polynomial number of lines can have large weight. Thus with probability

at least 1 — &/2 we can learn all such lines of high weight with a total error of at most ¢/2.
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Each region of the subdivision is labeled according to a majority of the ¢ points in that
region. Since each line intersects at most m® regions, and by the lemma in Appendix B,
each region has distribution at most £ = O(m~!) where O means that we are omitting

log factors. Therefore we need to have sm®& = 0 (;;{i{—_a) < % So it is enough to choose

1
m=0 G) % Notice that the condition that a < 1 is critical. Finally, by applying

Chernoff bounds, given that g =0 (:;5 <Igm -+ lg %)) , with probability at least 1 —§/2,

the label of all non-intersected regions will be correct and thus the total error is at most «.

8. CONCLUDING REMARKS

We have described a simple algorithm for efficiently PAC-learning an extremely general
geometric concept class in constant-dimensional space even when there is a high rate of
random classification noise against an arbitrary unknown distribution. This concept class,
defined by taking boolean combinations of halfspaces, is the most general geometric class
for which we know algorithms to exist. While we consider geometric concepts defined by
halfspaces, any polyhedron (not necessarily convex) defined by f faces can be formed by
combining f halfspaces. Thus our algorithm can also learn any boolean combination of a
polynomial number of polyhedra each with a polynomial number of faces. Even further, our
results can be easily extended to efficiently learn any boolean combination of a polynomial
number of concepts selected from any concept class € given that the VC-dimension of C is
constant (for d constant) and there is a polynomial time algorithm to determine if there is
a concept from C consistent with a given set of poinis.

A nice feature of our noise-tolerant algorithm is that it can take advantage of unlabeled
as well as labeled data which may be of value for some real-life applications, especially when
combined with the simplicity and robustness of the algorithms.

One significant open problem is whether or not an algorithm for €% exists in the query
learning model of Angluin [1988)]. Since in this model the learner is required to achieve exact
identification of the target concept (as opposed to the approximation achieved in the PAC
model), the domain must be discretized. We currently know of no efficient query algorithms

for this class.
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A Generalization of e-nets

Let (X, R) be a range space and D be a distribution on X. We say that a set of points N C X
is an (¢, p)-net if any R € R satisfying Prp[R) > ¢ contains at least p points from N. For a
range space (X,R) with [X| = n points of VC-dimension d, |R| < g(d, n) = Zf:o (1) < né.

LemMa 3. Let (X, R) be a range space of VC-dimension d. Let D be a distribution over
X. Suppose 0 < ¢,8 < 1. Let N be a sequence of points obtained by m random independent

draws from X according to the distribution D, where
2 8042) 800
€ T '

E:
Then N is an (¢, p)-net for X with probability at least 1 — 4.

4
m > max (;lg

PrOOF. We assume the reader is familiar with the standard e-net proof (e.g. See Alon,
Spencer, and Erdds [1992]).

Let W = (z1,..., #2,) be 2m random independent draws from X according to distribution
D. Let N = (x1,...,25) be m points from W and T = (31, . . ., Ym) the other points in W.
Notice that the probability space of N is equivalent to the space in which you just choose
m random independent elements from X according to the distribution D.

For a sequence H = (h,...,h, ), we use [H| = » to denote the length of the sequence H.
For aset A C X, let AN H be the sequence of all elements in the sequence A that are also
in A.

Let R, be the set of all R € R with Prp[K)] > e. Define the following events

A1 =[(3ReR.) |RNN| <]
and
A;=[BReR [RNN|<p and |[RNT|> (em)/2).

O

CLaM 1. Pryyn[As] 2 1Prn[Ay].

ProOOF.
Pr[(VR e RJIRNAN|>p or

|IROT| < (em)/2 |

(3R € Ro)[Ro N N| < p]

Pre(|RoNT| < (em)/2)
Ep[JReN T em
(em}/2  — (em/2)?

Priwn[dz | Ai

IA

IA
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4
= —<
€

b | =

where we use Chebyschev’s inequality.
Now Prw,n{As] = Prwn[A2 A Ai] = Privy[As | A1]Prnfdi] > 3Pry[41]. O

CLamM 2. Pryy n[Az] € g{d, 2m)g(p, 2m)2-™/2,

PROOF. For each R € R, let Ag = [|[RNN| < p and |[RNT}> (em)/2]. Obviously,
A2 = Vgen, Ar. Notice that Ew n[Ag] = Ew[En[Ar|W]]. By fixing the set of examples
W, the event Ap depends only on RNW. This is because (N, T) satisfies Ag if and only if

[RAN|<p and |[RNT]> f—;”-
Therefore if RNW = B/ NW then
(RNT)U(RNN)= (R nTYU(R' N N)

and since N, T are disjoint we have (RNT) = (' NT) and (RN N) = (R N N). Therefore
both Ag and Ap' are the same event. Now notice that the number of diferent events do not

exceed the number of different RN W where R € . This number is
HRNW|R € R} < |Pw(R)| < g{d, 2m).
Now for a fixed W let ¢ = JRN W|. Then

En[AR] = PrnlAn]
= Pr[|RNN|<p and |RNT|> (em)/2]
< Pr[|[RNN|<p and |[RNW|> (em)/2]
< Pr[|RNN|<p | [RAW|> (em)/2]
(D@ + Gt ()2(’1’; + o+ G ()
) (@) +-+ ()
)

< g(p,q)2”™/2 < g(p,2m)27 ™2,

IA

Since this is true for any W we have

Pr{ds] = Bww | \/ ARJ
RER.
< Ew |Bn \/AR} IW]
RER,




A

Ey [EN [Z AR] | W}
RER,
Bw [En [9(d,2m)AR] | W]

< g(d, 2m)g(p, m)2~m/*

IA

Now using claim 1 we have
Prl4:] < 2¢(d, 2m)g(p, 2m)2~ ™2 < &

giving the desire result. O]
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