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ABSTRACT OF THE DISSERTATION 

KCNQ1/KCNE1 Interaction in the Cardiac IKs Channel and its Physiological Consequences 

by 

Jiajing Xu 

Doctor of Philosophy in Biomedical Engineering 

Washington University in St. Louis, 2018 

Professor Yoram Rudy, Chair 

Dynamic conformational changes of ion channel proteins during activation gating determine 

their function as carriers of current. The relationship between these molecular movements and 

channel function over the physiological timescale of the action potential (AP) has not been fully 

established due to limitations of existing techniques.  We constructed a library of possible cardiac 

IKs protein conformations and applied a combination of protein segmentation and energy 

linearization to study this relationship computationally. Simulations reproduced the effects of the 

beta-subunit (KCNE1) on the alpha-subunit (KCNQ1) dynamics and function, observed in 

experiments. Mechanistically, KCNE1 increased the probability of “visiting” conducting pore 

conformations on activation trajectories, thereby increasing IKs current. KCNE1 slowed IKs 

activation by impeding the voltage sensor (VS) movement and reducing its coupling to pore 

opening. Conformational changes along activation trajectories determined that the S4-S5 linker 

(S4S5L) plays an important role in these modulatory effects by KCNE1. Integration of these 

molecular structure-based IKs dynamics into a model of human cardiac ventricular myocyte, 

revealed that KCNQ1-KCNE1 interaction is essential for normal AP repolarization.  
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Chapter 1 Introduction 

1.1. History of IKs Channel Discovery 

Electrical activity plays an essential role in the 

functioning of cardiac cells; the cyclic changes of 

membrane potential of myocytes underlie their repetitive 

and periodic excitation and contraction. This voltage 

cycle, so called action potential (AP), could be roughly 

divided into depolarization (the ‘upstroke’), plateau, 

repolarization and resting phases (denoted as phase 1 to 4, 

respectively). Each phase is supported and controlled by 

a network of various ion channels, pumps and other 

membrane transport proteins. During the repolarization 

process, the membrane potential of a myocyte drops from 

positive values back to its resting negative value and 

finally terminates the cardiac AP. When the ventricular 

myocardium starts to repolarize and how fast it 

repolarizes, that is, the shape and duration of phase 2 and 

3 of its AP, is reflected in the QT interval on the electrocardiogram (ECG). Repolarization during 

phase 3 is mainly determined by three potassium currents, which constitute the “repolarization 

capacity” – the fast and slow delayed rectifier currents, IKr and IKs (shown in Figure 1.1), and the 

time-independent potassium current, IK1 [Luo 1994]. Defects in these currents lead to cardiac 

Figure 1.1, top: Action potential 

and IKs during the AP; bottom: 

Macroscopic currents of 

KCNQ1 with or without KCNE1 

co-expressed [Jespersen 2005]. 
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arrhythmias presenting a prolonged QT interval in patients’ ECG signal (Long QT or LQT 

syndrome). Among them, IKs is the main current that increases at fast heart rates to shorten the 

AP duration (APD), and is subject to β-adrenergic regulation [Terrenoire 2005]. IKs is also 

important for AP restitution during premature beats [O'Hara 2011].    

In 1996, a potassium pore-forming protein was found to be the major component (α-subunit) 

of the ion channel carrying the IKs current and to be responsible for the human LQT syndrome 

type1 (LQT1) [Wang 1999, Yang 1997]. Thus, this protein was initially called KvLQT1, but later 

named KCNQ1 or Kv7.1 based on the Gene Nomenclature (http://www.genenames.org/). The 

primary translated KCNQ1 subunit consists of 676 residues forming six transmembrane domains 

and a pore loop with a typical potassium-channel pore-signature sequence (TIGYG), as shown in 

Figure 1.2. Four KCNQ1 proteins assemble to form a functional channel. As a voltage-dependent 

ion channel, the voltage sensor of KCNQ1 is located at the S4 segment. The S4-S5 linker (S4S5L) 

also affects activation gating, while the inactivation process is carried by the S5 helix and the pore 

loop. Inactivation is a C-terminus dependent process, known as C-type inactivation. When the 

membrane undergoes depolarization, the voltage-gated KCNQ1 channel produces a relatively fast 

activating and deactivating potassium current compared to the IKs current, under the same voltage 

protocol [Jespersen 2005].  

Later, the KCNQ1 subunits were found to be tightly regulated by auxiliary proteins (β-

subunits, KCNE1) and other accessory factors in the human heart. Co-expression of KCNQ1 with 

KCNE1 subunits is required to generate the IKs current in cardiac cells. KCNE1, composed of 129 

residues, is a relatively small protein containing only one transmembrane segment (Figure 1.2). In 

its presence, the macroscopic potassium flux through the KCNQ1/KCNE1 complex (that is, the 

IKs channel) shows a significant increase in its amplitude, slower activation and deactivation 
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processes, a removal of inactivation, and a positive shift in the voltage dependence of channel 

activation (shown in Figure 1.1) [Barhanin 1996, Sanguinetti 1996]. Mutations in the KCNE1 

subunits can also cause defects in IKs channel function, leading to type-5 LQT syndrome (LQT5, 

corresponding to LQT1 caused by KCNQ1 mutations). 

1.2. Recent findings of IKs channel Studies 

The pore-forming subunit (KCNQ1) is homologous to Kv1.2, for which a crystal structure has 

been resolved [Long 2007]. The structure of the accessory subunit (KCNE1) has been determined 

Figure 1.2, Sequence of KCNQ1 (top) and KCNE1 (bottom) residues included in the 

construction of KCNQ1 and IKs structures in this simulation study. Other residues of the 

protein have been omitted and marked in the figure by a dashed line. Alpha helices are shaded. 

Residues with dihedral angles that were varied to construct the structural library are listed in 

red. The protein segments that comprise these structural components are shown in the color-

coded cartoon on the bottom; VSL: S1-S4 and S4S5L, Pore: S5-S6 and the proximal C-

terminus. 
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using nuclear magnetic resonance spectroscopy (NMR) [Kang 2008]. These determined structures 

provided a starting template for constructing the structure of the transmembrane domain of IKs in 

this study. A molecular model of the KCNQ1/KCNE1 channel complex was constructed by Kang 

and his co-workers using Rosetta-Dock program in 2008. By docking the KCNE1 transmembrane 

segment in the space between the pore domain and the voltage sensing domains from adjacent 

KCNQ1 subunits, they provided an approximation of the KCNE1 docking site in the KCNQ1 

channel. Their research also sketched the conformational change of the channel complex between 

the open and closed states. A crystal structure of S6-Helix A-Helix B clamped with calmodulin 

(CaM) [Sachyani 2014] and a recently published cryo-EM structure of the KCNQ1/CaM complex 

[Sun 2017] provided additional structural information on the cytosolic domain of IKs.  

Like other voltage-gated potassium channels [Papazian 1995], the positively charged S4 

segment of KCNQ1 moves up (toward the extracellular space) across the membrane in response 

to depolarization. Experimental studies suggested that S4S5L also plays an important role in IKs 

gating [Choveau 2011, Labro 2011, Lvov 2010, Sun 2017]. Experiments have shown that KCNE1 

slows the activation of IKs and increases its macroscopic current but there is no consensus about 

the structure-based mechanisms of these effects. These studies concluded that KCNE1 slows 

KCNQ1 activation either by slowing the S4 movement [Ruscic 2013] or by suppressing the 

coupling between the voltage sensor (VS) movement and pore opening [Osteen 2010, Barro-Soria 

2014].  

Recent experiments lead to two other debates about the IKs channel: (1) Is the gating of IKs 

cooperative or sequential [Meisel 2012]? How is it different with and without KCNE1? (2) Under 

physiological conditions, is the KCNQ1:KCNE1stoichiometry of IKs fixed at 4:2 [Plant 2014] or 
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variable between 4:1 to 4:4 [Murray 2016, Nakajo 2010]? What is the effect of different 

stoichiometries on IKs activation and the AP? 

1.3. From Structure to Function 

Crystallography, NMR and other imaging techniques provided detailed information on ion 

channels molecular structure. However, the information is limited to protein conformations 

‘frozen’ at particular membrane conditions and therefore difficult to relate to kinetic functional 

data from fluorescence, voltage clamp and other experimental recordings. Molecular dynamics 

(MD) simulations have provided insights on possible conformational changes of proteins at pico-

seconds resolution. However, it required extreme non-physiological membrane voltages and 

weeks of computing time for a customized super-computer to simulate a single trajectory of 

conformational changes during 250 micro-seconds gating of a Kv1.2-Kv2.1 chimera [Jensen 

2012]. Clearly, simulation of ion-channel gating at the atomistic scale, over the physiological time 

course of the AP (milliseconds for nerve and muscle; hundreds of milliseconds for the cardiac AP) 

is impossible with direct computing and commonly used MD methods.  

Here, we present a framework for computing conformational changes of an ion channel protein 

over the time scale of activation gating and determine mechanistic relationships between 

conformational changes and electrophysiological function. While it builds on our previous work 

[Nekouzadeh 2008, Nekouzadeh 2011, Nekouzadeh 2016, Silva 2009], it advances it in the 

following major ways that are important for elucidating mechanisms: (1) Simulations are 

conducted on an atomistic scale, at a resolution of <1.0Å and with all molecular details included. 

(2) Tetrameric symmetry of the protein is not assumed. (3) Concerted movement between the four 

VS and cooperativity in activation gating are also not assumed. (4) A much higher number of 

degrees of freedom for molecular movement are considered in the computations. (5) KCNE1 is 
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docked into the KCNQ1 structure and included explicitly in the simulations. This is accomplished 

by generating a large library of possible protein structures, which covers the conformational space 

that the ion channel can occupy during gating, and by dissecting the protein into structural 

segments and linearizing calculations of protein energy. We used the computational approach to 

study mechanisms of KCNQ1-KCNE1 interactions and their effects on IKs activation and the 

human cardiac ventricular AP. We determined the role of specific segments and residues of 

KCNQ1 and KCNE1 during channel gating and identified key residues that influence the 

activation kinetics, with emphasis on the S4S5L that couples the voltage sensor domain of the 

channel to its pore. The computational approach allowed us to integrate across scales, from the 

molecular structure of IKs to the whole-cell AP.  
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Chapter 2 Materials and Methods  

Achieving the objectives of this study required simulation of KCNQ1 and IKs activation based 

on their detailed molecular structures at atomistic scale. Direct computing of the gating movement 

over the relevant time scale (tens of milliseconds) is not possible. To overcome this difficulty, the 

strategy depicted in Figure 2.1 was employed. KCNQ1 and IKs structural libraries were 

constructed and constrained based on biophysical considerations and experimental data. The 

libraries contained more than 1030 conformations and covered the conformational space of possible 

structures during activation gating. The electrostatic energy of each possible conformation was 

computed using the Generalized Born Equation. For the energy computation, the protein was 

divided virtually into structural elements, based on functional role during activation. These 

included VSL - the VS domain coupled to the S4-S5 linker (S4S5L), the pore domain and KCNE1 

(Figures 1.2 and 2.1). Energy was computed for each element and through superposition for the 

entire protein. This approach was motivated by the need to circumvent the (impossible) intense 

computing requirement for direct computation of the entire protein energy for all possible 

conformations. It also allowed us to determine the energy contributions from different elements of 

the protein and their interactions. To simulate the dynamics of KCNQ1 and IKs during activation, 

trajectories were generated in conformation space based on the energy landscape. General 

methodology procedures are described below. 

2.1. Definitions and Properties 

Coordinate system and discretization: A Cartesian coordinate system (Figure 2.1B in the main 

text) was defined in the lipid-water system. The KCNQ1 and KCNE1 templates were aligned with 

these coordinates. The x-y plane slices through the middle of the lipid membrane; the z-axis passes 
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through the center of the KCNQ1 selectivity filter with its positive direction pointing towards the 

extracellular space. To estimate the volume occupied by KCNQ1 and assign non-uniform 

Figure 2.1, (A) Flowchart for simulating channel activation. (B) Diagrams defining structural 

elements of IKs and coordinate system. Linkers with dihedral angles that were varied during 

construction of the structural library are colored red. (C) Top view of a representative 

conformation from the IKs library. Cytosolic domain of the channel is omitted here; a 

complete representative KCNQ1 structure is shown in Figure 2.2. Two KCNE1 subunits 

(brown) are inserted in opposite pockets of the KCNQ1 protein. Two types of voltage sensors 

(VSA and VSB) are distinguished, based on their proximity and interactions with KCNE1; S3 

and S4 (blue) of VSA face KNCE1, S1 and S2 (gray) of VSB  face KCNE1. (D) Side view of the 

same conformation. The alpha carbons of V212, R228 and R243 are shown as red spheres. 

VS, voltage sensor; S4S5L, S4-S5 linker; VSL, VS and S4S5L combined; TM, transmembrane 

segment; Nt, N-terminus; Ct, C-terminus. Color code (for Figures 2.1 and 2.2) is defined in 

the diagram of panel B.  
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dielectric properties to the protein-lipid-water system, the space was discretized into cubical 

elements of dimensions 0.5Å x 0.5Å x 0.5Å. 

Resolution of the structural libraries: Dihedral angles of protein residues were sampled at a 4° 

resolution. The conformational space is discretized uniformly in dihedral angles, but not in 

translation and rotation in the Cartesian coordinate system. Root-mean-square-deviation (RMSD) 

was used to estimate the Cartesian grid size of the library. For every conformation in the library, 

Figure 2.2. Detailed visualization of the IKs structure shown in Figure 2.1 (the structure shown 

in Figure 2.1 is simplified). This is one structure in the library. Left: side view; Right, top: top 

view; Right, bottom: bottom view. Only one docked KCNE1 is shown. The PAG bend on S6 is 

indicated by a red box in the side view. Parts of the structure are displayed as thin lines to 

reveal the center of the protein. Abbreviations and color codes are the same as in Figure 2.1. 



10 

 

the smallest RMSD to all other conformations was between 0.3Å and 0.5Å, identifying a grid size 

(resolution) in this range.  

Background atoms: The backbone atoms of S1, S2, S5, the pore helix and selectivity filter 

were defined as background atoms, assuming that they do not experience significant 

conformational changes during channel activation. These elements were considered static when 

constructing the possible S3-S4, S4S5L and S6 conformations.  

Steric clashes: A conformation was considered to have steric clashes if it contained a non-

bonded pair of atoms with an inter-atom distance smaller than their average van der Waals radii.  

Such conformations were excluded from the library. 

Possible dihedral angle combinations: To generate the different conformations in the library, 

the dihedral angles of the following residue segments were varied: 244-246, 258-259, 317-322 and 

341-345 (Figure 1.2). A combination of dihedral angles in a segment was considered possible if 

no steric clashes occurred between the backbone atoms and Cβ atoms of the segment.  

2.2. Generation of an initial structure for construction of the 

KCNQ1 and IKs structural libraries 

An initial structure of the KCNQ1 transmembrane domain was constructed as a homology 

model to the crystal structure of the Kv1.2-Kv2.1 chimera (PDB: 2R9R) [Long 2007] except for 

the S6 segment, which was based on the crystal structure of KcsA (PDB: 3EFF). The S6 of Kv1.2 

contains a PVP motif, which is absent in both KcsA and KCNQ1. S6 was extended with Helix A, 

which together with Helix B were clamped by calmodulin (PDB: 4V0C) [Sachyani 2014]. The 

distal C-terminus beyond Helix B and the N-terminus of KCNQ1 were not included, as there is no 

evidence for direct interactions between these segments and the VSL or the gating region of the 

pore domain. The transmembrane segment of KCNE1, with the residues extending its two termini, 
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was constructed from the NMR-determined structure (PDB: 2K21) [Kang 2008]. The initial 

structures for KCNQ1 and KCNE1 were inserted into a lipid membrane surrounded by water and 

then refined by molecular dynamics (MD) simulations. The relevant software packages are listed 

in Table 2.1.  

The KCNQ1 initial structure was aligned with a coordinate system referenced to the membrane 

(Figure 2.1B). Structural elements were determined by the secondary structure of the protein. 

Skeletons (backbone atoms) of secondary-structure segments (Figure 1.2) were assumed to be 

rigid. Dihedral angles of KCNQ1 residues 258-259 (red in Figure 1.2 and red for all residues 

mentioned below) were varied to yield structures with different conformations of S4S5L relative 

to the N-terminus of S5. S4 structures with different translations and rotations were generated for 

each S4S5L structure by varying dihedral angles of residues 244-246. S3 was connected to S4 with 

a short 4-residue linker and had a very limited movement relative to S4 (<1.0Å). The pore 

conformation library was constructed by first computing S6 structures with different dihedral 

angles of KCNQ1 residues 317-322 and 341-345 and then aligning the proximal C-terminal 

segments to each S6. The final KCNQ1 library was determined after removal of structures with 

steric clashes (details in Supplement). To generate an IKs structural library, two transmembrane 

segments of KCNE1 were docked into the KCNQ1 protein in spaces suggested by the experiments; 

their position was then refined by side-chain packing for each KCNQ1 conformation. Note that 

the complete protein library was constructed as a combination of VSL and pore libraries. The four 

VSL and S6 segments of the pore were not assumed symmetric. One structure from the library is 

shown as an example; Figure 2.1 shows the transmembrane domain only and Figure 2.2 includes 

the proximal cytosolic domain. Detailed procedures are provided in the sections below. 
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Table 2.1.  Software used in the process of constructing the structural templates for KCNQ1 and 

KCNE1 

Tool Application Version Website 

Clustal 

W/X 

Sequence comparison between KCNQ1 and 

Kv1.2, Kv2.1, KcsA 

2.1 www.clustal.org 

Modeller 

Construction of KCNQ1 homology model 

from crystal structures 

9.13 salilab.org/modeller/ 

PyMol 

Visualization of constructed conformations; 

Alignment and connection of S6 and 

HelixA of KCNQ1 

1.3 

(edu) 

www.pymol.org 

NAMD 

Refinement and equilibration of constructed 

structures of KCNQ1 and KCNE1 

2.9 

www.ks.uiuc.edu/Res

earch/namd/ 

. 

2.3. KCNQ1 Structural Library  

2.3.1. Pore Library 

The S6-HelixA complex was structured as a long alpha helix from Trp323 to Glu385 (Figures 

1.2 and 2.2). A bend was located at Pro343-Ala344-Gly345 (PAG) as these residues were aligned 

to the PVP bending site in the homologous Kv1.2 structure [Smith 2007]. Conformations of the 

N-terminal section of S6 (S6N, residues 323-342) were generated by varying dihedral angles of 

residues 317-322, starting from the fixed end of the selectivity filter at Gly316. The constraints 

listed below were applied to exclude impossible conformations from the pore library: 

(a) Steric clashes between atoms in residues 317-322 cannot occur. 

http://www.clustal.org/
http://www.pymol.org/
http://www.ks.uiuc.edu/Research/namd/
http://www.ks.uiuc.edu/Research/namd/


13 

 

(b) S6N should be located within the pore region, bounded by the four S5 helices; its C-

terminal end should point towards the cytosolic space.  

(c) There should be no steric clashes between S6N and the background atoms. 

Each possible S6N conformation was extended with the C-terminal section of S6 (S6C) through 

PAG. The dihedral angles of PAG were varied over a range for which the secondary structure of 

S6 remained a continuous alpha helix, but with different degrees of bending and different 

orientations of its C-terminal end. Each conformation in the pore library was a tetramer, formed 

by four S6 segments (S6N-PAG-S6C) with the HelixA-HelixB-Calmodulin (HelixA-HelixB-

CaM) motif aligned to each S6 based on the KCNQ1 template. The four S6 segments of the pore 

were not assumed symmetric. Criteria for determining the possibility of a pore conformation were 

as follows: 

(d) The following steric clashes cannot occur:  

I. Between atoms in PAG and Ala341-Leu342 preceding Pro343.   

II. Between the backbone atoms in S6-HelixA-HelixB-CaM from different subunits. 

III. Between the backbone atoms in S6-HelixA-HelixB-CaM and the background atoms. 

(e) All four CaM must be in the cytosolic space (z of every atom < -20.0 Å). 

(f) It must be possible to connect the distal C-terminal segment of KCNQ1, HelixC, to the end 

of HelixB with a five-residue linker without steric clashes between CaM and Helix C; four 

Helix C segments form a coiled-coil in the cytosolic space beneath the HelixA-HelixB 

tetramer. 

(g) The side-chains of S1, S2, S5, S6 and HelixA-HelixB should be well packed within the 

tetramer structure.  
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(h) A conformation can be reached from the starting conformation through small (<1.0Å) 

conformational changes. 

The flexibility of the 6-residue linker preceding S6N leads to a number of S6N conformations with 

RMSD smaller than 0.5Å between conformations. Assuming that S6N only serves to stabilize the 

pore structure and plays a less important role than S6C in gating, any group of conformations with 

S6N within 1.0Å RMSD and S6C within 0.5Å RMSD were merged into a single conformation. 

The final pore library contained 615,946 conformations with a grid size of 0.5Å~1.0Å. The 

pore diameter of each conformation (Dpore) was estimated as the smallest distance between the 

same atoms in S6 from opposite subunits. Assuming that a pore with a larger diameter is associated 

with greater probability of conducting ions, the probability for a conformation to be in a conducting 

state, Pc, was computed as 

𝑃𝑐 =
1

2
(
2

√𝜋
∫ 𝑒−𝑥

2
𝑑𝑥

2(𝐷𝑝𝑜𝑟𝑒−𝐷𝐾)

0

+ 1)        (2.1) 

where DK is the size of a hydrated potassium ion (~6.6 Å). The probability is 0 when Dpore < 5.0 

Å and the conformation is always conducting when Dpore > 8.0 Å. 

2.3.2. Voltage Sensor and S4-S5 Linker (VSL) Library  

We define the VSL element in the KCNQ1 library to include S3-S4 of the VS domain and the 

S4S5L. The S4S5L conformation space was sampled by varying the dihedral angles of His258-

Arg259 (HR) preceding the fixed N-terminal end of S5. The S4 conformations were then generated 

by varying the dihedral angles of Gln244-Gly245-Gly246 (QGG) connected to each S4S5L 

(Figure 2.3). Movement of the S3 helix relative to S4 was limited by the short linker connecting 

them; this movement was permitted in order to prevent steric clashes, but was restricted to 1.0Å 

RMSD. Unlike the S6 segments from different subunits, which make direct contact, the VSL 
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segments of different subunits are separated by the background atoms in S1, S2 and S5. The 

following criteria were used to examine whether conformations of VSL are acceptable:  

(a) Steric clashes between atoms in QGG and HR cannot occur (Figure 2.3).  

(b) The N-terminal end of S4 should be higher than its C-terminal end in the z direction and 

the tilting angle of S4 from the z-axis should be smaller than 60° (S3-S4 is parallel to the 

membrane for tilting angles greater than 60°).  

(c) The shortest distance between atoms in S1-S2 to atoms in S3-S4 of the same subunit should 

be smaller than 10.0Å (for a distance beyond 10.0Å, S3-S4 is no longer packed with S1-

S2 and the interactions between charged residues on S2 and S4 are weak).  

Figure 2.3, Ramachandran plots of the residues with dihedral angles that were varied to 

construct the VSL library; the VSL is shown in the bottom right panel as S1-S2 in grey and S3-

S4-S4S5L in blue (see also Figure 2.1D). In the Ramachandran plots, light blue marks the 

initial possible dihedral angles subject to constraint (a) in Section 2.3.2. Dark blue marks the 

final region of possible structures after application of constraints (b) to (f) in Section 2.3.2. VS, 

voltage sensor; QGG, Gln244-Gly245-Gly246; HR, His258-Arg259; other abbreviations and 

color codes are the same as in Figure 2.1. 
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(d) The side-chains in a VSL conformation should be well packed within the conformation and 

with the static S5 segments. In application of this constraint, S1, S2 and S3 were released 

and allowed to move within 1.0Å RMSD to prevent steric clashes.  

(e) For a given VSL conformation, there should be more than 0.1% conformations in the pore 

library that do not have steric clashes with the VSL. 

(f) The conformation could be reached from the starting conformation through small (<1.0Å) 

conformational changes. 

The final VSL library included 11,547,630 conformations. The mean z value of the Cα atoms of 

Arg228 in S4 and Val212 in S3 was calculated to represent the translation of the VS across the 

membrane. The rotation angle of VS about the z-axis (ω) was computed using the vector from Cα 

of Val212 to Cα of Arg228. The angle between the vector from Cα of Arg243 to Cα of Arg228 and 

the z-axis was used to compute the VS tilt (γ). 

2.3.3. The KCNQ1 Tetramer Library  

A complete KCNQ1 conformation was composed of four VSL domains and one pore. Each of 

the four VSL domains could assume any conformation from the VSL library. The pore was not 

permitted to have steric clashes with any of the VSL domains. There were more than 1030 possible 

KCNQ1 structures.  To avoid storing all tetramer structures, only a correlation vector was 

calculated and stored. This vector indicated all conformations in the pore library that could 

assemble with a given VSL conformation. A subset of the complete KCNQ1 library was chosen 

as a sample set with four symmetric VSL domains in the tetramer and a coarse grid (2.0Å~3.0Å 

RMSD compared to 0.3Å~0.5Å for the full library). This subset was selected to cover the full 

range of VSL translations and rotations and the entire range of pore diameters in the complete 

library. 
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2.4. IKs Structural Library 

The space occupied by KCNQ1 was estimated using the sample set of the KCNQ1 library in 

the coarse-grid discretized space. A volume element was considered occupied by a KCNQ1 

conformation if it was located within the van der Waals radius of one atom in the conformation. 

In the initial docking procedure, KCNE1 was allowed to dock in a volume element that was 

occupied by less than 90% of KCNQ1 structures in the sample library. The KCNQ1 

transmembrane domain creates four pockets between adjacent voltage sensor domains (Figure 2.4; 

brown stars). Two KCNE1 transmembrane segments were docked into two opposite pockets in a 

KCNQ1 conformation to construct IKs.  

Starting with NMR data (PDB: 2K21) [Kang 2008, Sahu 2014, Sahu 2015], the template for 

the transmembrane segment of KCNE1 was refined in a membrane-water box by a NAMD 

simulation [Phillips 2005]. The potential docking positions and orientations of KCNE1 in the 

system were generated by shifting the template to different positions in the x-y plane with various 

degrees of rotations about the z-axis and of tilting angles from the z-axis (Figure 2.5). The grid of 

translations was 0.5 Å. The grid of rotations was 15° from 0 to 345° and tilting was from 0 to 30° 

at 5° increments.  The library of possible KCNE1 structures was limited by the available docking 

volume estimated in Figure 2.4. This resulted in 7,448 acceptable conformations. For each KCNQ1 

conformation, the docking site of KCNE1 was then refined by imposing the following constraints:  

(a) Steric clashes between backbone atoms of KCNE1 and KCNQ1 cannot occur. 

(b) Interacting KCNE1-KCNQ1 residues (Table 2.2) should be located sufficiently close (< 

12.0 Å between their Cα atoms). 
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(c) Side chains of the KCNE1-KCNQ1 protein should be well packed for the selected KCNE1 

conformation.  

Figure 2.4, Probability of volume occupation by KCNQ1. A KCNQ1 structure is shown in the 

center as reference. Each panel shows an x-y plane at a different height z. Brown stars indicate 

docking pockets for KCNE1. In the initial step of the docking procedure, the volume with 

probability less than 0.9 of occupation by KCNQ1 was considered available for KCNE1 

docking. 
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Table 2.2. KCNE1 residues that interact with KCNQ1 residues based on experimental data 

KCNE1 residues KCNQ1 residues Experiment  

Gly40/Lys41 Ile145 adjacent to S1 C-terminus Cys substitution [Wang 2011] 

Lys41/Leu42 Ile145; Val324 (S6) Cys substitution [Chung 2009] 

Phe54/Gly55 Cys331 (S6) Cys substitution [Tapper 2011] 

Thr58 Phe339 (S6) Ala scanning [Strutz-Seebohm 2011] 

Thr58 Phe340 (S6) Double mutation [Panaghie 2008] 

Thr58 Ala341 (S6) Double mutation [Mikuni 2011] 

His73/Ser74 Ile257 (S4-S5 linker) Cys substitution [Lvov 2010] 

 

2.5. Electrostatic 

Energies  

The KCNQ1 or IKs conformations 

were inserted into a 140Å x 140Å x 

140Å lipid-water box. The center of the 

membrane (POPE) was aligned to the x-

y plane at z = 0. A PIP2 molecule was 

docked at the lipid-water interface near 

S4S5L. An energy component analysis 

of a coarse-grid sample KCNQ1 library (40,490 conformations) equilibrated by NAMD was 

conducted to validate the assumption [Rudy 2006] that electrostatic interactions play a dominant 

role during channel gating, even at zero membrane voltage (Figure 2.6A). The electrostatic energy 

Figure 2.5, Translation (red arrows) and rotation 

of KCNE1 (brown) in the coordinate system 

shown on the right. Blue scale shows KCNQ1 

occupation at z = 4. 
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of each conformation in the library was computed using the Generalized Born equation [Still 1990, 

Im 2003],   

𝐸𝐺𝐵 =
−1

2
(
1

𝜀𝑝
−
1

𝜀𝑤
)∑

𝑞𝑖𝑞𝑗

√𝑟𝑖𝑗
2 + 𝛼𝑖𝛼𝑗𝑒𝑥𝑝(−𝑟𝑖𝑗

2 4𝛼𝑖𝛼𝑗⁄ )𝑖,𝑗

        (2.2) 

where the dielectric constant of the protein and membrane εp = 2.0, the dielectric constant of water 

εw = 80.0, i and j are the indices of atoms in the protein, qi and qj are the charges, rij is the distance 

between the atoms and αi and αj are the effective Born radii of the atoms. To overcome the intense 

computation requirement for computing the Born radii of all atoms in each conformation, a test 

was performed on the coarse-grid sample KCNQ1 library. The Born radii of atoms in the entire 

protein vary by less than 4.6% over the sample set, except for atoms on S3, S4 and S4S5L which 

could vary by 8.9% (Figure 2.6B). This larger variation could be caused by significant shifts of 

the S3, S4 and S4S5L between the membrane and water phases. However, the effective Born radii 

of atoms in different conformations were similar if their z coordinates were similar. Thus, to 

calculate the electrostatic energy for the entire library, the effective Born radius for an atom in S3, 

S4 and S4S5L at a certain z was assigned its value in a conformation of the sample set with the 

closest z position (the difference in z was always smaller than 0.2Å). The mean values across the 

sample set were used to approximate the effective radii of all the other atoms. The electrostatic 

energy of a KCNQ1 conformation in the membrane-water environment was computed with one 

equilibrated membrane-water box selected from the sample set with the smallest RMSD to the 

target. Calculations for the IKs sample library provided effective radii that were different from 

those for the KCNQ1 library, but with a similar variation across the library. The radii for KCNE1 
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atoms do not vary by more than 4.0% and the mean values for the sample library were used. The 

non-linear term α in equation (2.2) was a constant or obtained from a lookup table.  

To improve the computation efficiency of the Generalized Born equation for the large 

conformation library, the complete protein structure was considered as an assembly of different 

domains: VSL, Pore and KCNE1 (Figure 2.7). Using the linearized Born equation, the total Born 

energy, EGB, could be computed using superposition of individual contributions as 

𝐸𝐺𝐵 =∑𝐸𝑖
𝑖

+
1

2
∑𝐸𝑖,𝑗
𝑖≠𝑗

        (2.3) 

Figure 2.6, (A) Variance of energy components in conformations across a coarse-grid library 

subset, in a lipid-water box: bond, angle, dihedral (dihed), improper, electrostatic (elec) and 

van der Waals (VdW) interactions. All the components are aligned to their median values and 

the range across the library (5% to 95% of maximum) is depicted by the black bars. Note the 

dominant contribution from electrostatic energy and significant contribution from van der 

Waals energy. (B) Top: Mean effective Born radii of KCNQ1 atoms estimated in the library 

subset. Bottom: Deviations of estimated radii across the subset. Note the relatively large 

deviations for atoms in S3, S4 and S4S5L compared to all other atoms of the protein. 
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where Ei is the Born energy of element i and Ei,j is the interaction term between two elements.  

Interactions between opposite chains were neglected due to the large distance between them.  

At a membrane voltage Vm, the total protein energy of a conformation, Eelec, was calculated as  

𝐸𝑒𝑙𝑒𝑐 = 𝐸𝐺𝐵 +∑𝐸𝑣,𝑖
𝑖

        (2.4) 

where Ev,i is the energy of atom i in the electric field created by the voltage Vm across the 

membrane  

𝐸𝑣,𝑖 =

{
 
 
 

 
 
 0, 𝑧𝑖 ←

1

2
𝑧𝑚

−𝑞𝑖∫
𝑉𝑚
𝑧𝑚
𝑑𝑧

𝑧𝑖

−1
2
𝑧𝑚

, −
1

2
𝑧𝑚 ≤ 𝑧𝑖 ≤

1

2
𝑧𝑚

−𝑞𝑖∫
𝑉𝑚
𝑧𝑚
𝑑𝑧

1
2
𝑧𝑚

−1
2
𝑧𝑚

, 𝑧𝑖 >
1

2
𝑧𝑚

        (2.5) 

and the thickness of the membrane zm = 30.0 Å. 

Note that all-atom van der Waals interactions were also incorporated in the total energy to 

compute the trajectories below.  

Figure 2.7, Schematics identifying the structural components to which the protein was divided 

for library construction and energy computations; the arrows indicate electrostatic interactions 

that were included in energy computations in addition to the self-energy contribution of each 

component. The protein segments that comprise these structural components are shown in the 

color-coded cartoon in Figures 1.2 and 2.1. 
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2.6. Trajectories of Conformational Changes During Activation 

Conformational changes of the KCNQ1 or IKs protein during activation were simulated by its 

movement in conformational space across the conformation library, driven by a gradient on the 

electrostatic energy landscape [Silva 2009]. With assumption of a Boltzmann distribution, the 

probability of being with a conformation Ci at time t was calculated by Smoluchowski equation 

[Ansari 2000] as 

𝜕𝑝(𝐶𝑖, 𝑡)

𝜕𝑡
=∑𝑘(𝑖|𝑗)𝑝(𝐶𝑗 , 𝑡)

𝑗≠𝑖

− 𝑝(𝐶𝑖, 𝑡)∑𝑘(𝑗|𝑖)

𝑗≠𝑖

        (2.6) 

where the rate constant, k(i|j), for making a transition from Ci to Cj within the time step (Δt) is 

defined by 

𝑘(𝑖|𝑗, 𝛥𝑡) = 𝑒−(𝐸𝑒𝑙𝑒𝑐,𝑖−𝐸𝑒𝑙𝑒𝑐,𝑗+𝐹
(𝐶𝑖→𝐶𝑗,∆𝑡)) 2𝑘𝐵𝑇⁄

        (2.7) 

where Eelec,i is the electrostatic energy of conformation Ci calculated by equation (2.4), kB is the 

Boltzmann constant (0.001987 kcal/(mol·K)) and temperature T = 298.15K (25°C). To include the 

resistance of the environment to significant movement of the protein, a friction term [Nekouzadeh 

2011] was introduced in the calculation as 

𝐹(𝐶𝑖 → 𝐶𝑗 , ∆𝑡) = 𝑓
𝑚𝑝𝑅𝑀𝑆𝐷𝐶𝑖→𝐶𝑗

∆𝑡
        (2.8) 

where mp is the mass of the protein (124.50 kg/mol for KCNQ1 and 132.53 kg/mol for IKs), 

𝑅𝑀𝑆𝐷𝐶𝑖→𝐶𝑗  is the root mean square deviation between the two conformations and the empirical 

friction constant f = 3.5160×10-12 kcal·s/(kg·Å). Starting conformations were randomly chosen 

from the structural library of KCNQ1 or IKs. The following conformations were chosen by a 

random walk process, with conformations weighted by equation (2.6). Conformations far away 
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structurally from the previous conformation (𝑅𝑀𝑆𝐷𝐶𝑖→𝐶𝑗 > 5.0Å) were neglected due to the small 

probability.  

The following protocol was used to activate the channel: after 18 seconds at holding potential 

of -80mV, the membrane potential was changed to voltages from -140mV to +100mV in steps of 

20mV and held for more than 10 seconds. 2000 trajectories of KCNQ1 or IKs were generated to 

simulate the conformational changes of 2000 independent channels during each protocol. The 

macroscopic (ensemble) behavior of KCNQ1 and IKs was calculated as the average values of z, 

ω, γ, Dpore and Pc over 2000 trajectories. The time dependence of macroscopic activation traces 

was characterized using a double-exponential-component analysis. The time step Δt in equation 

(2.6) was scaled to 0.3695 ns based on the ratio between the estimated fast time constant and that 

measured in experiments [Nakajo 2014].  

2.7. Macroscopic IKs Current During the Action Potential in Whole-

Cell Model 

The voltage dependence and time constants of the macroscopic Pc traces were integrated into 

a human ventricular myocyte model [O'Hara 2011] to simulate the effects of KCNQ1-KCNE1 

interaction on the action potential. In [O'Hara 2011], IKs is formulated as 

𝐼𝐾𝑠 = 𝐺𝐾𝑠̅̅ ̅̅ ̅ ∙

(

 
 
1 +

0.6

1 + (
3.8 × 10−5

[𝐶𝑎2+]𝑖
)
1.4

)

 
 
∙ 𝑥𝑠1 ∙ 𝑥𝑠2 ∙ (𝑉 − 𝐸𝐾𝑠)        (2.9) 

and used to compute current during the AP. To introduce results from the structural simulations, 

the activation gates (xS1 and xS2) were recalculated using the magnitudes and time constants of the 
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Pc trajectories at different voltages. For KCNQ1, steady state values and time constants for xS1 

and xS2 were computed as  

𝑥𝑠1,∞ = 𝑥𝑠2,∞ =
1

1 + 𝑒−(𝑉+11.79) 15.93⁄
        (2.10) 

𝜏𝑠1 = 346.5 +
1

0.001908 × 𝑒(𝑉−85.43) 77.44⁄ + 0.01812 × 𝑒−(𝑉+146.1) 39.79⁄
        (2.11) 

𝜏𝑠2 =
1

0.01129 × 𝑒(𝑉−91.05) 80⁄ + 0.05978 × 𝑒−(𝑉+85.84) 25.44⁄
        (2.12) 

And the equations for IKs were  

𝑥𝑠1,∞ = 𝑥𝑠2,∞ =
1

1 + 𝑒−(𝑉−15.05) 19.72⁄
        (2.13) 

𝜏𝑠1 = 712.6 +
1

0.001 × 𝑒(𝑉−96.93) 49.61⁄ + 0.001029 × 𝑒−(𝑉+168.4) 209.3⁄
        (2.14) 

𝜏𝑠2 =
1

0.002757 × 𝑒(𝑉−96.29) 80⁄ + 0.05744 × 𝑒−(𝑉+82.33) 20⁄
        (2.15) 

The maximum conductance of IKs, 𝐺𝐾𝑠̅̅ ̅̅ ̅ , was estimated at 0.0399mS/µF using an AP-clamp 

protocol, so that the total charge carried by IKs in one cycle (CL = 1000ms) was the same as in 

the O’Hara model. For KCNQ1, 𝐺𝐾𝑠̅̅ ̅̅ ̅, was adjusted to 0.0060mS/µF through multiplication by the 

ratio between its maximum open probability (maximum Pc) and that of IKs. Isoproterenol (ISO) 

effect on IKs was incorporated by multiplying 𝐺𝐾𝑠̅̅ ̅̅ ̅ by a factor of 3 [Heijman 2011]. 
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Chapter 3 Results and Discussion  

3.1. Structural Properties of the Conformation Space 

To study the dynamic conformational changes of the transmembrane domain of KCNQ1 

during channel activation, we constructed an all-atom structural library of this domain with the 

proximal C-terminal segments attached. Following elimination of structures through application 

Figure 3.1, (A) Selected KCNQ1 conformations from the structural library with VS from low z 

to high z (left to right). Only one KCNQ1 subunit is shown; S3-S4 and S4S5L are in blue. (B) 

Two KCNQ1 conformations with different rotation angles of VS on the x-y planes (top view) 

are shown, with their selectivity filters aligned. (C) Distribution of VSL conformations across 

the structural library, shown with three structural parameters. Top to bottom: VS z position 

(translation); rotation of VS about its own z axis (ω); tilting of VS relative to z axis (γ). The y-

axis is number of conformations.  
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of spatial constraints and minimization of van der Waals energies, the library retains 11,547,630 

VSL conformations and 615,946 pore conformations, which amounts to more than 1030 possible 

KCNQ1 structures.  In the library, the spatial range of the S1-S2 panel is limited to 2Å. The S3-

S4 paddle can translocate 22.01Å in the z direction across the membrane, rotate about the z-axis 

(ω) within a range of 79.08° and tilt (γ) relative to the z-axis from 0 to 32.24° (Figure 3.1). The C-

terminal half of S6, together with the proximal cytosolic domain, can swing around an axis through 

the center of the pore, allowing the pore diameter to change over a range from 0 to 15.85Å (Figure 

3.2). The library includes conformations of Helix A-Helix B-Calmodulin that occupy a volume 

consistent with (less than 0.3% difference) from that in a recently published cryo-EM structure of 

KCNQ1 [Sun 2017]. When VSL locates at high z positions (H-VSL, top panel in Figure 3.3A), 

considered an activated state of the voltage sensor, it is possible to have structures with open or 

closed pore conformations. It is not necessary that all four VSLs be activated for the pore to be 

open; a subset of permissible open pore conformations have VSLs at low z positions (L-VSL, 

bottom panel in Figure 3.3A). Thus, the KCNQ1 channel can have a conducting (open) pore with 

some or even all voltage sensors at low positions. Importantly, some combinations of four H-VSLs 

can assemble with up to 68% of the open pore conformations without steric clashes, compared to 

only 18% for four L-VSLs. This results in a greater probability for the channel to be in a conducting 

state when more VSLs are at high positions.  

3.2. Effect of Membrane Potential 

Based on computed energy landscapes of the structural library, the VSLs favor different 

clusters of conformations at different membrane potentials, consistent with experimental 

observations [Zaydman 2014]. At resting potentials (−80mV in Figure 3.3B), VSLs reside 
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preferentially at low z positions, where R228 and R231 on S4 can form salt bridges with E160 on 

S2, and R237 on S4 is close to E170 on S2 (L-VSL). Following depolarization (+60mV in Figure 

3.3B), there is an increased probability for VSLs to translocate in the positive z direction, to 

conformations where R237 is closer to E160 (H-VSL). Hence, at depolarized potentials there is 

greater probability for VSLs to be in the activated state and for the pore to be open (conducting). 

Figure 3.2, Conformational space of pore-forming S6-HelixA segments and relationship 

between S6-HelixA conformations and pore diameter. Labels are color coded to structures. (A) 

Bottom view of two superimposed KCNQ1 conformations with the same VSL but different pores. 

The pore conformation in light green has a diameter smaller than that in dark green. The 

dashed arrow between two S6-HelixA structures shows the conformational space of the pore 

domain for the particular VSL conformation shown (blue). Only one CaM and one Helix B are 

shown with thin lines, to indicate the entire spatial occupation by the cytosolic domain of one 

KCNQ1 subunit.  Red box approximates the x-y box of panel B. (B) Possible locations of the C-

terminal tail of S6-HelixA of one KCNQ1 subunit in the x-y plane and associated pore diameter 

(Dpore, green color scale). The direction out of the paper is towards the cytosolic medium. (C) 

Distribution of pore conformations across the structural library, shown with Dpore. Two 

structures with different pore domains are shown as examples. 
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Note that the energetically favored z positions of VSL at resting and depolarized potentials are less 

than 12Å apart. This distance is much smaller than the permissible range of 22Å (space unoccupied 

by other protein segments); it is consistent with the range predicted experimentally for the voltage 

sensor movement of Kv1.2 [Tombola 2005]. In addition to the z translocation, the energy 

landscape indicates that VSLs favor conformations with different ω-rotation at different voltages 

(Figure 3.3B).  

Figure 3.3, (A) Two KCNQ1 conformations selected from the library with VSL at high z (top, 

H-VSL) and low z (bottom, L-VSL). Dashed lines mark the membrane boundaries. (B) Energy 

landscapes for VSL in KCNQ1 across the structural library at -80mV (bottom) and +60mV 

(top). Arrows indicate the corresponding z positions for each representative conformation in 

panel A on the energy landscape. There is lower energy (hence preferred residency) in low z 

and small ω at -80mV, and high z and large ω at +60mV (dark blue). (C) Difference energy 

landscape (IKs ‒ KCNQ1) at +60mV reveals preferential residency in high z and large ω 

conformations of IKs compared to KCNQ1. (D) VSL trajectories in z coordinate for KCNQ1 

(blue) and IKs (brown), during step depolarization (shown on top).  
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To simulate KCNQ1 activation gating, we computed trajectories of conformational changes in 

response to membrane depolarization to different voltages. When the membrane is depolarized to 

+60mV, 1.7% to 2.1% of the KCNQ1 channels became activated with high VSL conformations 

and large pore diameter (+60mV trace in Figures 3.4A and 3.5). The trajectories maintained tight 

coupling between VSLs and pore, a property that underlies KCNQ1 fast activation without 

substantial delay. The average z position of VSLs and open probability of the channel (Pc) share 

a similar voltage dependence (Figure 3.6A, top) and the fast and slow time constants of Pc follow 

the time constants of VSL translocation in the z direction (Figure 3.6B). This behavior, indicative 

of a tight VSL-pore coupling in KCNQ1 channels, is consistent with voltage-sensor fluorescence 

experiments [Osteen 2010, Nakajo 2014].  

3.3. Modulation of KCNQ1 Activation Gating by Co-assembly with 

KCNE1 

A stoichiometry of 4KCNQ1:2KCNE1 is considered the physiological stoichiometry of IKs 

[Plant 2014]. The structural library of IKs was generated by inserting into each tetrameric KCNQ1 

conformation two KCNE1 subunits in opposite positions (Figure 2.1C). Docking of KCNE1 does 

not eliminate any possible conformations in the KCNQ1 library, as the single-spanning 

transmembrane helix of KCNE1 occupies less space than the empty pocket between the voltage 

sensors from two adjacent KCNQ1 subunits (Figures 2.4 and 2.5). However, charges carried by 

KCNE1 residues change the electrostatic energy landscape of KCNQ1 (Figures 3.3 and Figure 

3.7) and consequently the steady-state z-position, ω-rotation and γ-tilt of VSL at resting and 

depolarized potentials (Figures 3.4, 3.5 and 3.7). KCNE1 makes H-VSLs energetically more 

favorable at depolarized voltages, so that IKs achieves a higher average z of VSL and a larger open 
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Figure 3.4, (A) Conformational changes of KCNQ1 (left) and IKs (right) in response to a 

depolarizing step (protocol on top). Traces show VSL z position (top) and estimated probability 

for the channel to be in a conducting state (Pc, bottom). The stochasticity of conformational 

changes is reflected in the fluctuations of Pc. Experimental recordings of these currents, for a 

similar protocol, are shown in the framed panel (right [Nakajo 2014]). Note the 5-times greater 

magnitude of computed IKs Pc and of recorded IKs compared to KCNQ1 (shown with different 

scales). The simulated delayed activation of IKs (arrow in the IKs Pc panel) reproduces the 

delay in the recorded IKs current (arrow in the framed panel). (B) Macroscopic currents during 

a human ventricular AP [O'Hara 2011] paced at two rates: top panels CL = 300ms, bottom 

panels CL = 1000ms. Left panels: KCNQ1. Middle panels: IKs without ISO. Right panels: IKs 

with ISO. The currents are computed using the Pc of panel A, which, in turn, is computed from 

the protein structural changes during activation. Note current accumulation with ISO at fast 

rate (arrow in the top right panel). Traces in the framed inset are reproduced from [Nakajo 

2014]. ISO, isoproterenol. 
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probability compared to KCNQ1. The computed Pc traces (Figure 3.4; note different scales of 

panels) for IKs are 5 times larger than for KCNQ1, as observed in experiments [Sanguinetti 1996, 

Osteen 2010, Nakajo 2014, Barro-Soria 2014]. However, conformational changes of IKs are 

slower to reach steady state (Figure 3.4). The co-expression of KCNE1 with KCNQ1 separates the 

voltage and time dependence of VSL z translation from that of pore opening (Figure 3.6), reducing 

Figure 3.5, Conformational changes of KCNQ1 (left) and IKs (right) in response to the 

depolarization protocol shown on top. Only 40mV steps are shown for clarity. The four rows 

show (top to bottom) average changes of VSL in z-translation (zVS), ω-rotation (ωVS), z-

translation of S4S5L (zLk) and pore diameter (Dpore). At a depolarized membrane voltage, 

steady-state zVS and zLk are higher for IKs than KCNQ1, and ωVS is smaller. Dpore is large for 

IKs. These conformational changes are significantly slower for IKs compared to KCNQ1. 
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the coupling between these two motions. The simulations (Figure 3.6) reproduce experimental 

measurements [Osteen 2010, Nakajo 2014], except at low membrane voltages (Vm = −60mV and 

−40mV for τZ,VS of KCNQ1 and Vm = 20mV and 40mV for τPc of IKs) for which the 

experimentally recorded signals are too small to separate multiple temporal components. 

Comparison between the simulated KCNQ1 and IKs trajectories shows that at resting membrane 

potentials, VSLs of IKs reside at lower z positions at steady state, but translocate to higher z upon 

Figure 3.6, Quantitative comparison between simulations (line traces) and experimental 

recordings (symbols) for the protocol in Figures 3.4 and 3.5. (A) Normalized voltage 

dependence of VS z translation (dashed line) and conducting-state probability of the channel 

(Pc, solid line) of KCNQ1 (top, blue) and IKs (bottom, brown). Note separation of z and Pc 

voltage dependence in IKs but not KCNQ1. (B) Time constants of z (left) and Pc (right) for the 

same protocol; light or dark color represents fast or slow time constant, respectively. Note the 

different τPc scale in the bottom right panel, reflecting a large increase of the fast time constant 

(slowing) for pore opening in IKs, compared to KCNQ1. Experimental recordings are from 

[Nakajo 2014]; empty circles are fluorescent signals of voltage sensor movement; filled circles 

are recorded macroscopic current. 
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Figure 3.7. Differences between two types of VSLs in IKs in terms of energy landscapes and 

conformational changes during activation. (A) Electrostatic energy landscapes of VSA (left) 

and VSB (right) at -80mV (top) and +60mV (bottom). VSA and VSB share preference for similar 

conformations at the resting and depolarized potentials, with minor differences. (B) Difference 

energy landscape between VSA (left) or VSB (right) and KCNQ1 at +60mV. Both VSA and VSB 

have greater preference for high-z VSL conformations (H-VSL) than VS of KCNQ1.  (C) VSL 

trajectories in z (top), ω (middle) and γ (bottom) dimensions for VSL of KCNQ1 (blue), VSA 

(brown) and VSB (red) upon a step depolarization (shown on top). KCNE1 changes the 

electrostatic energy landscapes of VSA and VSB in different ways, leading to different 

trajectories. At +60mV, H-VSL is more preferred in the VSA library (area pointed to by the red 

arrow in panel B, left) and the VSA trajectory achieves a higher z position at steady state 

compared to KCNQ1. In contrast, the VSB trajectory starts at a lower z and reaches a similar 

z to KCNQ1. The reduced probability for H-VSL in the VSB library is due to another preferred 

cluster of structures with L-VSL that compete with the energetically favored H-VSL (indicated 

by the red arrow in panel B, right). H-VSL and L-VSL are defined in the text. 
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depolarization. This prolongs the time to steady-state following depolarization of IKs compared to 

KCNQ1. However, more IKs channels accumulate in conformations with larger pore diameters at 

a depolarized steady state (Figure 3.8), accounting for the larger IKs macroscopic current 

compared to KCNQ1, recorded in experiments.  

To study the effect of KCNE1 on IKs activation during a cardiac ventricular AP, we extracted 

the fast and slow activation time constants τPc (Figure 3.6B) from the structure-based simulations. 

We incorporated these parameters in a human myocyte model [O'Hara 2011], which was paced at 

a cycle length of 300ms (Figure 3.4B). In the absence of KCNE1 (Figure 3.4B, left), the KCNQ1 

current activates at an early phase of the AP and then declines slowly during the plateau. In contrast, 

when KCNE1 is present (Figure 3.4B, right), IKs increases monotonically during the plateau to a 

higher peak amplitude during late plateau and phase-3 repolarization. With this time course, IKs 

Figure 3.8, Steady-state 

residency maps of KCNQ1 

(top, blue) and IKs (middle, 

brown) structures projected 

on the z-Dpore plain of 

configuration space at -80mV 

(left) and +60mV (right). 

Maps in the bottom row show 

the difference between IKs 

and KCNQ1 residency in the 

two upper rows. The arrows 

in the bottom right panel 

indicate the major directions 

of conformation changes 

when the channels are 

depolarized from -80mV to 

+60mV. Dpore, pore diameter. 
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provides a large repolarizing current when it is most effective for AP repolarization. The model 

reproduces the rate adaptation of the AP [O'Hara 2011]; the AP duration (APD) with KCNQ1 is 

232ms at cycle length CL = 1000ms and 196ms at CL = 300ms (ΔAPD = 36ms; 15% shortening), 

with IKs in the absence of β-adrenergic effect APD is 228ms at CL = 1000ms and 182ms at CL = 

300ms (ΔAPD = 46ms; 20% shortening) and with β-adrenergic effect APD is 211ms at CL = 

1000ms and 165ms at CL = 300ms (ΔAPD = 46ms; 22% shortening). As shown below, IKs is 

more effective in APD shortening at fast rate than KCNQ1 due to its slower gating properties.    

3.4. Contribution of Specific Residues and Structural Elements 

during Activation Gating 

The contribution of each protein residue during activation was evaluated by computing the 

energy of its electrostatic interactions with the rest of the protein and its self-energy (Figure 3.9). 

The significant differences of energy contributions by E160 on S2 and by R228 and R237 on S4 

in different structures of the VSL library confirm their dominant role in determining 

conformational changes during activation. KCNE1 does not interact directly with these residues 

but changes their electrostatic environment (Figure 3.10). This modification results in different 

rates of transition between VSL conformations in IKs compared to KCNQ1.  

Co-assembly of two KCNE1 subunits with KCNQ1 divides the four subunits of KCNQ1 into 

two different types, based on the proximity of their VSLs to KCNE1 (Figure 2.1C): the VSLs with 

S3-S4 facing KCNE1 were labeled VSA and those with S1-S2 facing KCNE1 were labeled VSB. 

KCNE1 interacts with charges on VSA and VSB with different distances and therefore changes the 

electrostatic energy landscapes of VSA and VSB differently, which results in different average 

behaviors during membrane depolarization (Figure 3.7). The electrostatic energy contribution of 
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R249 on S4S5L of VSA is affected greatly by presence of KCNE1 (see the next section). KCNE1 

also influences the electrostatic energy contribution of E146 on S1 of VSB, and K41 on KCNE1 

contributes differently in different VSB conformations (Figure 3.9, panels B and C). These results 

indicate an interaction between the N-terminal end of the KCNE1 transmembrane segment and the 

extracellular portion of S1 in VSB, as suggested by experiments [Wang 2011, Xu 2013]. 

Figure 3.9, Energy contributions from residues on VSL and KCNE1. Energy is computed for 

interaction between one residue on one subunit and rest of the protein. Median energy is 

indicated by circle. The bar shows the range of energy over the entire structures in the library. 

(A) Interactions between residues on VSL and KCNQ1 (top) or IKs (bottom). (B) Interactions 

between residues on VSL and KCNE1 of IKs (two configurations, VSA – top and VSB – bottom). 

(C) Interactions between residues on KCNE1 and the two types of VS, VSA – left and VSB – 

right. E1TM: KCNE1 transmembrane helix. 
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Figure 3.10, Energy contributions as function of z translation, from residues on S2 and S4 

without KCNE1 present (KCNQ1 only) and with KCNE1 positioned at different pockets (VSA 

and VSB): E160 on S2 for VSLs at different z levels (zVSL) and R228, R231, R237 on S4 for VSLs 

at different z levels (zRes). 

E160 on S2: The energy minimum locates at a z position where E160 is closest to R231 and 

the interaction between the negatively charged E160 and all positively charged residues on S4 

is maximized. The side chain of E160 could reach a range of z = -2Å to 2Å across the 

membrane. Note that the three curves are superimposed, which indicates that KCNE1 does not 

directly interact with E160. 

R228 on S4: R228 interacts directly with E160 when VSL is at low z and as it moves into the 

water-lipid phase. The small local minimum at zR228 = 10Å is due to the small distance between 

R228 and E146 on S1. Presence of additional negative charges from the N-terminal end of 

KCNE1 transmembrane helix deepens the local minimum in the case of VSA. 

R231 on S4: R231 interacts with E160 at the local minimum z = -1Å. The global minimum for 

R231 at zR231 = 9Å requires an extreme translocation of VSL across the membrane that has 

been rarely reached in the simulations.  

R237 on S4: R237 gets closer to E160 when VSL moves up; it stabilizes the activated-state VSL 

conformation at high z. 
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3.5. Importance of S4S5L in Activation Gating and Coupling 

between VS and Pore 

The calculation of energy contributions from specific residues (Figure 3.9) determines that 

S4S5L plays an important role in IKs activation (box in Figure 3.9B). When the membrane is 

depolarized, S4S5L moves with S4 (Figure 3.5); the time constant of its movement coincides with 

the slow time constant of S4 for both KCNQ1 and IKs (Figure 3.11A). The S4S5L conformational 

space is limited by its connection to the relatively static S5. A relative movement between S4 and 

S4S5L is made possible by the dihedral angles of Gly245-Gly246 (Figure 3.11C), which can 

undergo significant changes due to their small side chains. This enables an initial fast response of 

S4 to membrane depolarization. It then constraints the additional translation of S4 by coupling it 

to the swinging movement of S4S5L about the N-terminal end of S5. KCNE1 slows the S4S5L 

movement and the slow component of S4 movement (zS4S5L and zVS,slow respectively, in Figure 

3.11A). The electrostatic interaction between KCNE1 and R249 of S4S5L on VSA (Figure 3.9B, 

VSA-KCNE1) creates an energy barrier at medium S4S5L z displacement and stabilizes it at 

extreme (low and high) z positions (Figure 3.11B). This impedes the z translation of VSA and 

slows IKs activation compared to KCNQ1. During fast pacing of a cardiac myocyte at short CL, 

the slow S4S5L movement with KCNE1 present could lead to accumulation of channels in 

conformations with high S4S5L displacements and increased probability for an open pore, creating 

an “available reserve” of conducting channels. This provides the basis for a larger repolarizing 

current and shorter APD at fast rate.  

S4S5L plays another important role in coupling VS movement and pore opening. The C-

terminus of S6 swings beneath S4S5L between its close and open conformations (Figure 3.2). 

S4S5L contributes to the electrostatic environment of S6; interactions between S4S5L and S6, 
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both positively charged, favor channel conformations with greater distances between these charges 

on structural elements. When S4S5L is at medium z, repulsion between these elements impedes 

pore transitions from close to open conformations (Figure 3.11D, middle). As S4S5L moves up, 

away from the C-terminal portion of S6, energy preference increases for conformations with a 

Figure 3.11, (A) Time constants for z translation of VS (zVS, squares) and S4S5L (zS4S5L, x 

symbols) in KCNQ1 (top) and IKs (bottom) for the protocol in Figure 3.4. There are two time 

constants for VS movement. The single time constant of S4S5L movement in KCNQ1 and IKs 

coincides with the slow time constant of VS in both cases. (B) Electrostatic contribution of 

R249 on S4S5L, with and without KCNE1, at different z levels of S4S5L (zS4S5L). The presence 

of KCNE1 close to S4S5L of VSA changes significantly electrostatic energy contribution from 

R249 and divides the local energy minimum into two minima at extreme positions on the z axis. 

KCNE1 does not change the electrostatic profile of R249 on S4S5L of VSB significantly, due to 

the large distance between these two structural elements. (C) An example VSA conformation at 

a medium level of z shows the small distance between R249 and positively charged residues on 

KCNE1 C-terminus. (D) Average probability of a pore conformation with a particular diameter 

(Dpore) for KCNQ1 (blue) or IKs (brown), with different heights of VSL, zS4S5L. Note that IKs 

has a smaller probability than KCNQ1 for having medium-size pore conformations (arrow) at 

medium zS4S5L. This indicates a greater barrier for pore opening as VSL moves up. 
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larger pore (Figure 3.11D, top). The C-terminal end of the KCNE1 transmembrane segment is 

docked close to S4S5L. It adds positive charge to the space of interaction between S4S5L and S6, 

decreasing further the probability of transitions from close pore to open pore conformations at 

medium z positions of S4S5L (Figure 3.11D). Therefore, the presence of KCNE1 requires a higher 

z position of S4S5L for the channel to be in a conducting state, thereby slowing activation of IKs 

relative to KCNQ1. 

3.6. Discussion  

The objectives of this study required an implementation of a computational approach that 

overcame limitations of existing methods and was capable of simulating ion channel gating over 

a physiological time scale of its function. This was achieved by dissecting the ion-channel protein 

into structural segments and linearizing energy computations. We applied this approach to the 

cardiac IKs channel and studied modulation by the β-subunit KCNE1 of its activation gating. A 

recent modeling paper introduced a different approach for simulating IKs gating at the atomic scale 

[Ramasubramanian 2018]. In that approach, artificial intelligence (machine learning) methods 

were used to overcome the computational enormity of the problem. Reassuringly, the two 

independent methods generated structural libraries that covered the same conformational space 

and contained experimentally determined and other simulated structures [Silva 2009, Zaydman 

2014, Smith 2007, Wu 2010]. The two approaches were applied to study different aspects of IKs 

activation.  

The simulated trajectories of conformational changes during channel activation reproduced 

experimental results (Figures 3.4 and 3.6). Further exploration of the conformational library 

provided new mechanistic insights into the workings of the IKs channel and some of its properties 
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that have been the subject of a long-standing debate. An important finding confirms that 

cooperativity between voltage sensors is not required for pore opening in either KCNQ1 or IKs. 

Not all voltage sensors need to be in activated (up) positions for the channel to be in a conducting 

state, as the conformational space contains permissible open-pore conformations with one or more 

voltage sensors in low z positions. However, there is greater preference energetically for open-

pore conformations with greater number of activated voltage sensors, increasing their open-pore 

probability. This property is consistent with the sequential gating concept, proposed in [Meisel 

2012]. The KCNE1 transmembrane helix introduces negative charge on the extracellular aspect of 

the lipid-water phase and positive charge on the intracellular aspect. This modification of the 

electrostatic environment favors conformations with higher z positions of the positively charged 

VSLs of IKs, resulting in a larger population of conformations with large pore diameter and larger 

Pc when KCNE1 is present, resulting in larger macroscopic IKs currents compared to KCNQ1 

[Sanguinetti 1996]. To study this property experimentally, it will be useful to devise fluorescent 

signal recording experiments that can identify channel conformations with different numbers of 

H-VSLs and record their occurrence together with macroscopic KCNQ1 and IKs currents.  

Like other voltage-gated potassium channels [Papazian 1995], the positively charged S4 

segment of KCNQ1 moves up across the membrane in response to depolarization. Experimental 

studies suggested an important role for S4S5L in IKs gating [Choveau 2011, Labro 2011, Lvov 

2010, Sun 2017]. This functional property of S4S5L is supported by the residue-specific energy 

analysis of electrostatic interactions (Figure 3.9). The correspondence of the slow component of 

VSL movement with the upward movement of S4S5L (Figure 3.11) implies restriction of late-

phase S4 movement by S4S5L due to the short linker between them. The slowing of S4S5L 

movement and thereby of the slow component of S4 by KCNE1, provides an explanation for the 
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detection of 2-stage VS movement in fluorescence experiments for IKs but not for KCNQ1 [Barro-

Soria 2014]. The fast stage of the VS movement that is not slowed by the S4S5L movement, covers 

a larger displacement compared to the slow stage. This result is consistent with the observation by 

[Ramasubramanian 2018]. Direct experimental evaluation of the role of S4S5L movement during 

activation gating is difficult to obtain because of its cytosolic position on the channel protein.  

Previous experiments concluded that KCNE1 slows KCNQ1 activation either by slowing the 

S4 movement [Ruscic 2013] or by suppressing the coupling between VS movement and pore 

opening [Osteen 2010, Barro-Soria 2014]. The simulations demonstrated coexistence of both 

mechanisms and determined their molecular basis (Figure 3.6 and 3.11). Slowing of IKs S4S5L 

movement, by the interaction between its R249 residue and the C-terminus of the KCNE1 

transmembrane segment, has two consequences – it slows S4 movement and delays pore opening. 

Compared to KCNQ1, IKs requires a larger S4S5L movement to a higher position to achieve Pc 

larger than 0.5. Coupling between VS movement and pore opening is reduced, delaying IKs 

activation. A previous experiment suggested the presence of an intermediate-open state in KCNQ1 

but not in IKs [Zaydman 2014]. The simulated trajectories in the present study support this 

observation, identifying many more conducting conformations with VSLs at middle-z positions in 

KCNQ1 than in IKs. While open conformations with VS in middle z are possible, they occur with 

small probability because of the barrier to transition from close to open pore (Figure 3.11D, 

middle).   

The ratio of KCNQ1:KCNE1 was assumed 4:2, considered the dominant stoichiometry of IKs 

in cardiac cells [Plant 2014]. With two KCNE1 subunits located in opposite pockets of the KCNQ1 

tetramer, the four VSLs that are symmetric in KCNQ1, can be divided into two types, VSA and 

VSB. The simulations show that KCNE1 modifies the electrostatic energy landscapes of these two 
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VSLs in two different ways (Figure 3.7). Electrostatic interaction with the C-terminus of KCNE1 

transmembrane helix favors extreme z positions for S4S5L in VSA, but does not affect the S4S5L 

in VSB significantly. Consequently, the two types of VSLs in IKs behave differently during 

channel activation, a behavior that was also observed in recent simulations using a different, 

independent approach [Ramasubramanian 2018]. This property could contribute to the multiple 

stages of IKs voltage dependent gating observed experimentally [Barro-Soria 2014]. The 

possibility of variable KCNQ1:KCNE1 has also been suggested [Nakajo 2010, Murray 2016]. On-

going simulations, using the computational approach presented here, could examine the hypothesis 

that variable stoichiometry is a mechanism for modulation of IKs function.  

3.7. Limitations  

The emphasis in this study was on the transmembrane domain of the KCNQ1/KCNE1 

complex. Only spatial occupation by the cytosolic domain was considered in the study, including 

Helix-A, Helix-B, Helix-C, Calmodulin, KCNE1 C-terminus and a docked PIP2. The electrostatic 

energy from the cytosolic domain of KCNQ1 was neglected, considering the screening effect of 

the water phase. In order to linearize the electrostatic energy calculation for the transmembrane 

domain, parameters were estimated from a coarse-grid sample set of the conformation library. We 

estimated the error introduced by the linearization to be smaller than 1.5%. We evaluated the 

channel conductance indirectly, based on the pore diameter as a surrogate. Single-channel 

recordings detected multiple subconductances of IKs [Werry 2013]; subconductances will be 

introduced in the simulations from structural considerations when more detailed information on 

the pore structure becomes available. The simulations were conducted with a fixed 4:2 

KCNQ1:KCNE1 stoichiometry, considered the dominant ratio under physiological conditions. 
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Studying other stoichiometries (we hypothesize that stoichiometry could be variable and serves to 

regulate channel function [Nakajo 2010, Murray 2016]) requires building structural libraries for 

each stoichiometry from 4:1 to 4:4. A study of variable stoichiometry, considering all possible 

configurations of KCNE1 docking in KCNQ1, is being conducted in our laboratory. 
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Chapter 4 Concluding Remarks and 

Suggestions for Future Studies 

This is the first study that integrates the dynamics of an ion-channel protein structure into a 

model of the whole-cell AP. A previous modeling study used a Markov model of IKs kinetics to 

examine its role in AP repolarization [Silva 2005]. Here, starting from the molecular protein 

structure and its conformational changes during activation, we compare the time course of IKs and 

KCNQ1 during a human ventricular AP (Figure 3.4B). The results demonstrate that modulation 

by KCNE1 is essential for an effective role of IKs in AP repolarization and AP shortening at fast 

rate.  

The computational framework presented here is general and could be applied to study the 

relationships between physiological function and molecular structure of a variety of proteins. 

Examples specific to IKs could include: (1) The structural libraries of KCNQ1 and IKs generated 

here could be used to study other properties of the wild-type ion channel (e.g., the possible 

regulatory role of KCNQ1:KCNE1 stoichiometry; dependence on potassium ion concentration). 

(2) Following the same scheme, structural libraries could be generated for channels containing 

mutations to study the structural basis of pathological phenotypes such as the long QT syndrome. 

(3) Similarly, libraries of structures modified by drug binding could be used to study drug action 

and drug toxicity. (4) Effects of other regulatory subunits (e.g. KCNE2) could be explored. (5) The 

mechanism of β-adrenergic stimulation and current amplification could be studied, once methods 

are developed to extend the approach to the unstructured N-terminus of KCNQ1. 
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4.1. Stoichiometry 

  The stoichiometry of the IKs channel is still being debated. Morin and Kobertz [Morin 2008] 

show that a functional KCNQ1/KCNE1 channel has two KCNE1 accessory units co-assembled 

with the four pore-forming KCNQ1 subunits. An elevated KCNE1 concentration found in patients 

with chronic heart failure exhibits slowed activation kinetics and a positive shift in the voltage 

dependence of the macroscopic current compared to the normal case, suggesting a changed 

stoichiometry of the KCNQ1/KCNE complex [Watanabe 2007]. A recent fluorescent study shows 

a flexible ratio of KCNQ1 to KCNE1 in the channel and its dependence on the relative expression 

levels of the two components, which may play a role in regulating the heart rhythm [Nakajo 2010, 

Nakajo 2011]. Furthermore, expression experiment over a long time of KCNQ1 with KCNE1 

shows gradual changes in the macroscopic current characteristics at different time points, 

indicating a gradual disappearance of KCNE1 subunits from the cell membrane and a reversible 

behavior of KCNQ1-KCNE1 co-assembly [Poulsen 2007]. In contrast to the hypothesis in the 

simulations above that the stoichiometry is fixed at 4:2 under physiological conditions, another 

hypothesis of variable stoichiometry could be examined by the following protocols: 

(1) Repeat the procedures in Chapter 2 to construct structural libraries of 6 different 

configurations of KCNQ1/KCNE1 complex (including KCNQ1 only, Figure 4.1) of which 

two libraries have been completed in this study (KCNQ1 and IKsO in Figure 4.1). 

(2) Trajectories of conformational changes during gating of different configurations with 

different stoichiometries could be computed using the different libraries. Voltage 

dependence and time constants of the VS movement and the probability of a conducting 

pore conducting for KCNQ1, IKs1, IKsO and IKs4 could be validated by comparison to a 

recent fluorescent study [Murray 2016]. 
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(3) xs1 and xs2 in equation (2.9) could be re-computed based on the generated trajectories to 

formulate the equation calculating each component in the equation below: 

𝐼𝐾𝑠 = 𝑘𝑄1[𝐾𝐶𝑁𝑄1] + 𝑘1[𝐼𝐾𝑠1] + 𝑘𝑂[𝐼𝐾𝑠𝑂] + 𝑘𝐽[𝐼𝐾𝑠𝐽] + 𝑘3[𝐼𝐾𝑠3] + 𝑘4[𝐼𝐾𝑠4]        (4.1) 

where kx is the percentage of each component and [KCNQ1] or [IKsx] are the currents carried by 

the different components, computed by equation (2.9) with different xs1 and xs2 for each 

configuration. If we express the same amount of KCNQ1 and KCNE1 in the cell and assume that 

there is no cooperativity in co-assembly of KCNQ1 and KCNE1, we have kQ1 = 0.053, k1 = 0.249, 

kO = 0.132, kJ = 0.263, k3 = 0.249 and k4 = 0.053. When the expression level of KCNE1 increases, 

larger kO, kJ, k3 and k4 are expected and the cell is anticipated to have a slower activating IKs current 

and a longer AP duration [Watanabe 2007]. 

4.2. Mutation Studies  

Simulations of IKs channels carrying mutations could help to validate the molecular and cellular 

models and to examine the hypotheses presented here. KCNQ1 I257 on the S4-S5 linker, H363 on 

S6, and H73, S74, D76 on KCNE1 are important residues in the interaction between the gating 

structure of KCNQ1 and the C-terminal part of the KCNE1 transmembrane helix. It is expected 

Figure 4.1, Configurations of 

KCNQ1/KCNE1 complex with different 

stoichiometries. VS0, VSA, VSB and VS2 

denote different types of the VS of 

KCNQ1, differentiated according to their 

location relative to KCNE1 in the protein. 

IKsO is the IKs in the previous chapters. 
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that mutations on these sites would affect the channel activation. The mutation G52R, located 

above the middle point of the KCNE1 transmembrane segment, is associated with LQT5. The 

mutated KCNE1 co-assembles with the KCNQ1 subunits, but generates a macroscopic current 

with kinetics similar to the KCNQ1 channel [Harmer 2010].  

The first step in mutation studies is to construct a structural model of the KCNQ1/KCNE1 

complex carrying a specific point mutation, for example, with Gly52 on KCNE1 substituted by an 

Arginine residue. With the mutation, the docking site of KCNE1 in KCNQ1 may require a fine 

adjustment, which could be calculated through the docking procedures described above. By using 

the methods described above, energy landscape with S4 at different positions in the structure of 

mutated IKs at different membrane potentials will be calculated to obtain activation gates in the 

macroscopic current model corresponding to the mutation. Comparing the current traces generated 

by the modified “mutant” model and experimental data, the level of consistency will provide a 

measure of accuracy for the following hypotheses regarding phenotypes of LQT mutations: (1) 

Insertion of a positive charge in the middle part of the KCNE1 transmembrane segment (G52R) 

will interfere with the interaction between the hydrophobic side chains of KCNQ1 and KCNE1 

and increase the distance between the C-terminus of the KCNE1 transmembrane helix and the S4-

S5 linker of KCNQ1. This will remove the obstacle that slows the S4-S5 linker movement during 

gating and the mutant channel will generate a macroscopic current with fast activation, similar to 

the KCNQ1 channel [Harmer 2010]; (2) Mutation S74L on KCNE1 shares similarities in the side 

chains with Ile257 on the S4-S5 linker of KCNQ1, with which Ser74 on KCNE1is shown to make 

contact. This suggests KCNE1’s role in impeding the movement of the S4-S5 linker by increasing 

the size of the KCNE1 side chains. It slows activation of the mutated channel and produces a 
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positive shift in the voltage dependence of the IKs current, prolonging the APD and the QT interval 

on the patient’s ECG [Chen 2009].  

4.3. Potential Requirements for Computational Resources  

Our computational framework could be extended into areas studying the relationships between 

physiological function and molecular structure of proteins other than IKs. The two key procedures 

of the presented approach are construction of a structural library and generation of trajectories for 

conformational changes under various voltage protocols. The time to execute the first step is highly 

dependent on the number of degrees of freedom of the target protein, the desired resolution of the 

library and knowledge of the conformational space. The second step is less time consuming and 

depends on the number of trajectories required for convergence. Taking the IKs conformation 

library in this study as an example, it requires about 8 weeks for a 64-core super-computer to 

construct the raw library. Applying restrictions to the library (eliminating steric clashes, etc.) takes 

additional time. It requires another 2-3 weeks of computing time to generate the trajectories. 

Building a Hodgkin-Huxley model of the current and incorporation into the cell model requires 

minimal computational resources and could be accomplished using a desktop computer within one 

week. Note that it is possible to optimize these procedures by specialized data structures and 

computational algorithms.  
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Appendix 

A1. List of Abbreviations 

 AP, action potential. 

 APD, action potential duration. 

 CaM, calmodulin. 

 Dpore, pore diameter of a KCNQ1 conformation. 

 ECG, electrocardiogram. 

 HR, His258-Arg259 of KCNQ1. 

 H-VSL, voltage sensor and S4-S5 Linker (VSL) locates at high z positions. 

 ISO, isoproterenol. 

 LQT syndrome (or Long QT syndrome), syndrome with a prolonged QT interval in a patient’s 

ECG signal. 

 LQT1, LQT syndrome type1. 

 L-VSL, voltage sensor and S4-S5 Linker (VSL) locates at low z positions. 

 MD, molecular dynamics. 

 NMR, nuclear magnetic resonance spectroscopy. 

 PAG, Pro343-Ala344-Gly345 of KCNQ1. 

 Pc, probability for a conformation to be in a conducting state.  

 QGG, Gln244-Gly245-Gly246 of KCNQ1.  

 RMSD, root-mean-square deviation 

 S4S5L, S4-S5 linker. 
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 S6N, N-terminal section of S6, residues 323-342 of KCNQ1 

 S6C, C-terminal section of KCNQ1 S6 after PAG. 

 Vm, membrane voltages. 

 VS, voltage sensor, S3-S4 domain in KCNQ1. 

 VSL, voltage sensor and S4-S5 Linker. 

 VSX, different types of the VS of KCNQ1, differentiated according to their location relative to 

KCNE1 in the protein 

A2. Additional Information of Parameters and Variables  

 Van der Waals radii of atoms: C, 1.70Å; O, 1.52Å; N, 1.55Å; H, 1.20Å; S, 1.80Å. 

 Boundaries of membrane-water boxes for MD simulations: x, [-70Å 70Å]; y, [-70Å 70Å]; z, 

[-90Å 50Å] (more space in the cytosolic side of the protein). 

 Temperatures: 0K for initialization of MD simulations and 310K for all the other cases. 

 Force field: CHARMM2.7 (https://www.charmm.org/charmm/). 

 Computing electrostatic energy: (1) Distribution of partial charges on a certain atom in a 

residue and occupation of that atom carrying such partial charges was generated by PDB2PQR 

Server (http://nbcr-222.ucsd.edu/pdb2pqr_2.0.0/) [Dolinsky 2004]. (2) Coulomb's constant ke 

= 8.99×109 N·m2/C2 = 332.057 kcal· Å/mol. (3) Dielectric constant of protein and membrane 

εp = 2.0, dielectric constant of water εw = 80.0. 

A3. Data Profile  

Due to the large data size, it is impossible to attach the source files directly to the dissertation. 

However, we will publish the core dataset with the source code on our website (rudylab.wustl.edu) 
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to help others to reconstruct the entire conformational library used in this work. Instructions how 

to generate the trajectories or modify the library will also be made available with the code.  
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