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Abstract. We present several efficient parallel algorithms for PAC-learning geometric concepts
in a constant-dimensional space. The algorithms are robust even against malicious classification
noise of any rate less than 1/2. We first give an efficient noise-tolerant parallel algorithm to
PAC-learn the class of geometric concepts defined by a polynomial number of (d—1)-dimensional
hyperplanes against an arbitrary distribution where each hyperplane has a slope from a set of
known slopes. We then describe how boosting techniques can be used so that our algorithms’
dependence on ¢ and & does not depend on d. Next we give an efficient noise-tolerant parallel
algorithm to PAC-learn the class of geometric concepts defined by a polynomial number of (d—1)-
dimensional hyperplanes {of unrestricted slopes) against a uniform distribution. We then show
how to extend our algorithm to learn this class against any (unknown) product distribution. Next
we define a complexity measure of any set 5 of (d—1)-dimensional surfaces that we call the variant
of S and prove that the class of geometric concepts defined by surfaces of polynomial variant can
be efficiently learned in parallel under a product distribution (even under malicious classification
noise). Furthermore, we show that the VC-dimension of the class of geometric concepts defined
by a set of surfaces § of variant v is at least v. Finally, we give an efficient, parallel, noise-tolerant
algorithm to PAC-learn any geometric concept defined by a set § of (d—1)-dimensional surfaces
of polynomial area under a uniform distribution.

Keywords: computational learning theory, geometric concepts, parallel computation

1. Introduction

‘We present several efficient parallel algorithms for PAC-learning geometric concepts
over [0,1]¢ (for d any constant). These algorithms are robust even against mali-
cious classification noise of any rate less than 1/2. We note that our algorithms
directly apply to any domain of the form [c;,cs]? for any constants ¢; and c2 by
just rescaling the points!. We present all of our algorithms as statistical query (SQ)
algorithms. Furthermore, we show that our algorithms can all be modified so that
they can folerate malicious classification noise. In this noise model, an adversary
can arbitrarily label some randomly chosen examples and thus the noise rate seen
on different portions of the domain can be different (as opposed to the random
classification noise handled by any 5Q algorithm).

We first present an efficient noise-tolerant parallel algorithm to PAC-learn geo-
metric concepts defined by a polynomial number of (d—1)-dimensional hyperplanes
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against an arbitrary distribution where each hyperplane has a slope from a set of
known slopes. We refer to this class as R-linear geometric concepts since they are
defined by hyperplanes restricted to be of one of » known slopes. We demonstrate
that this algorithm can easily be modified to handle malicious classification noise.
We then describe how hypothesis boosting can be used so that our algorithms’
dependence on ¢ and § does not depend on d (the number of dimensions).

Next we present an efficient noise-tolerant parallel algorithm that PAC-learns
any geometric concept defined by a polynomial number of (d—1)-dimensional hy-
perplanes (of unrestricted slopes) against a uniform distribution. We refer to this
class as linear geometric concepts since they are defined by hyperplanes. Next, we
show how to modify our algorithm that learns linear geometric concepts against a
uniform distribution so that it works against any product distribution.

We then consider the class of geometric concepts defined by any set S of (d — 1)-
dimensional surfaces. We refer to this class as non-linear geometric concepts since
these surfaces are not restricied to be linear. We define a complexity measure
of any set of (d — 1)-dimensional surfaces S that we call the variant of 5. We
then give a noise-tolerant parallel algorithm that PAC-learns the class of geometric
concepts defined by surfaces of polynomial variant under a product distribution.
Considering this class under the product distribution is of particular interest since
it is well known that even surfaces with variant 1 have infinite VC-dimension (see,
for example, Baum [8]) and thus, by the results of Ehrenfeucht, et.al. [20], this class
is not efficiently learnable under an arbitrary distribution.

Finally, we give an efficient parallel noise-tolerant algorithm to learn 2-dimensional
geometric concepts defined by a set of I-dimensional surfaces (or curves) of poly-
nomial length under the uniform distribution.

We note that not only do we give efficient parallel PAC-algorithms that tolerate
malicious classification noise of any rate n < 1/2, but to our knowledge no compa-
rable sequential noise-free PAC-learning algorithms for most of these classes were
known prior to our work®. Also since our algorithms are simple, tolerate noise, and
can take advantage of unlabelled as well as labelled data, they may have practical
value.

2. Preliminaries

The learning model we use in this work is the probably approzimately correct {(PAC)
model of Valiant [36). In this model, the learner is presented with examples, chosen
randomly from instance space X according to some unknown probability distribu-
tion D. Let f be an unknown target function from known concept class C. The
learner must return a hypothesis i that classifies at least (1—¢) of A’ consistent with
f, with probability at least (1 — J), where ¢ and 4 are given parameters. That is,
with high probability, the hypothesis must correctly classify most of the instances
(by weight under distribution D).

The basic PAC model assumes that the examples given to the learner are drawn
randomly from D and labeled correctly based on the target concept. In this work
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we also consider a variant of the PAC model in which the labeled examples that the
learner receives are corrupted by random classification noise [2]. In this noise model,
each example is still drawn at random from D. However, with probability 7 (where
0 € n < 1/2is called the noise rate), the learner receives an incorrect label and with
probability 1 — n, the learner receives the correct label. Thus the example drawn is
labeled incorrectly, at random, with probability 5. In the malicious classification
noise model [35), each example is still drawn at random according to D. however,
with probability n an adversary selects the label provided and with probability
1 — 75 the learner receives the correct label. In the more general malicious noise
model [37], with probability 5 the adversary can provide an example and label of
its choice.

To achieve noise-tolerance we use the statistical query model [27), [18], {3], [4]. In
this model, rather than sampling labeled examples, the learner requests from an
oracle the value of various statistics. The additive statistical query oracle returns
the probability, within some additive constant, that some predicate is true relative
to the distribution. An additive statistical query takes the form sTATp (), &) where
% is a predicate over labeled examples drawn from P and « is the relative error
bound. For target function f, let P, = Prp[x(x, f(2)} = 1]. Then STATp(x, &)
must return an estimate P, such that P, — o < B, < P, + . The learner
may also request unlabeled examples. Kearns [27] has shown that all statistical
query algorithms are robust against random classification noise for any noise rate
7 < 1/2. He has also shown that statistical query algorithms are robust against
small amounts of malicious errors.

Let Z be the set of integers. Let X, the instance space, be [0,1]¢. We use
the colummn vectors = (y1,...,y4) to denote the d dimension variables, and & =
(z1,.-.,z4) to denote an element of X. Let & = (a4, ...,aq4) be a row vector where
a; € Z. A d-dimensional hyperplane is d-§ = b for some b € Z. A d-dimensional
halfspace is @ - § > b where » € {>,>,<, <} . We call G C X, a subspace. D(G)
denotes the weight of the points in G under distribution D.

In this paper we study geometric concept classes defined over [0, 1] where we
assume that d, the number of dimensions of the space, is a constant. The class of
R-Linear Geometric Concepts, denoted Cf““”ea’, is the class of geometric concepts
defined by any Boolean function over at most s, (d—1)}-dimensional halfspaces each of
which has a slope restricted to come from one of r known slopes. More formally, we
associate a Boolean variable »; for 1 € 7 < s with each of the s halfspaces. For ¥ €
X, we define v;(Z) = 1 if and only if £ is in the halfspace associated with v;. Then
CR-linear — f£(3, .., v,) | f is any Boolean function on s halfspaces over v1,...,v;}.
We define CH—lineer o |y cR-linear e define the complexity, C(f) of f(vy, .-, vs)
as [v1|+ - -+ |vs] + | f] where Ju;] (respectively, [f]) denotes the representation size
of the halfspace (respectively, the Boolean function). Given that a real number
can be represented in unit space, for this class |v;| < [lgr] < lgr + 1. Observe
that assuming all halfspaces define a border of the target then |f| > s. We define
the complexity C(g) of g € Cft_ii“ea‘" to be the minimum over all f{vy,...,%;) =g
of C(f). The class of Linear Geometric Concepts, denoted CH™*" is exactly like
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CR—linear gy cept that each halfspace can be of an arbitrary unknown slope. For ease
of exposition, for both of these classes we assume that the learner knows s, If s is
unknown standard doubling techniques can be applied.

We now define a new complexity measure for a (d—1)-dimensional surface. We say
dimension ¢ contains surface S if there exists a constant ¢ such that for all points of
S, ¥: = ¢. We define the complexity of the set of surfaces S in the following manner.
We say that any (possibly non-continuous) surface S is a I-variant surface if any
axis-parallel line, along any dimension not containing 5, intersects S at most once.
In other words, S is a l-variant surface if for each ¢, for which dimension 7 does not
contain S, and for every (d—1)-dimensional point, ®4,...,2i_1, #it1,..., 24 there
is at most one z; for which x,...,z4 is contained within 5. Thus any (d—1}-
dimensional hyperplane is a 1-variant surface. For d = 2, any monotone function®
defines a 1-variant surface.

For any arbitrary set S of (d—1)-dimensional surfaces, we define the complezily
or variant of S, V(5), as the minimum v such that S can be expressed as a union
of v 1-variant surfaces. For example, a circle has variant 4 since if you divide it into
four equal size arcs using diametric, axis-parallel cuts, each arc is a 1-variant curve.
The class of Non-Linear Geometric Concepts, which we denote by C{If(’g)_lmear, is
the class of geometric concepts defined by a Boolean function over any (d—1)-
dimensional surface S of variant at most V. We assume, without loss of generality,
that the learner is given an upperbound for V. When studying C{’,‘Eg)'lmear we use

V(S) as a measure for the complexity of the target concept.

We also study, for d = 2, the class CE""_H“““ in which we use the length of the
curves defining the target concept as the measure of complexity. This result is
better than the result based on variant in some cases, such as a very small tight
spiral where the length can be relatively small even though it has a high variant.

QOur algorithms consist of a first stage in which an unlabelled sample is used
to gather information about the unknown distribution, and a second stage in
which a randem sample is used to compute the conditional probability of the form
Pr{random point £ is positive | £ is in a subspace of X]. Thus it follows from known
results about the noise tolerance of statistical query (SQ) algorlthms [27], [18] 3]
that our algorithms can tolerate random classification noise of any noise rate
bounded above by 1/2. Because of the simplicity of the statistical queries we make,
rather than using this general technique, we can directly compute the sample com-
plexity required to obtain significantly better bounds. Furthermore, it is easily seen
that our noise-tolerant algorithms can handle malicious classification noise of any
noise rate bounded above by 1/2.

We also note that no efficient parallel algorithm exists to exactly learn® the union
of 5 axis-parallel boxes over {1, ...,n}? (which is the discretized version of a subclass
of Clinear) | We use an adversarial argument. The adversary answers all membership
queries “no”. Only when the learner asks an equivalence query is the adversary
forced to reveal a positive instance. The learner can then use membership queries
to learn the remainder of the box containing that instance. Thus, s equivalence
queries are necessary. Combined with the work of Bshouty and Cleve [13] we get



LEARNING GEOMETRIC CONCEPTS 5

that any parallel algorithm to exactly identify this class must have §(s) parallel
time which is not efficient (i.e. it is not poly-logarithmic).

3. Previous Work

Considerable work has been done on learning geometric concepts in the PAC model.
In particular, unions and intersections of halfspaces have been considered. Blum
and Rivest [10] show that there does not exist an efficient proper® learning algorithm
for unions of s halfspaces, unless P = NP. (That is, any such algorithm must have
exponential dependence on d.) Baum [7} gives an algorithm that efficiently learns a
union of s halfspaces in a constant number of dimensions. Blumer et al. {11] give a
similar result. Both algorithms return hypotheses containing O(slgm) halfspaces
where m is the size of the sample. Baum gives efficient algorithms for learning
several classes with infinite VC-dimension (such as convex polyhedral sets) under
the uniform distribution [8]. Haussler [25] also gives distribution specific algorithms
for several classes of functions.

Research has also been done on the learnability of unions of axis-parallel boxes.
Blumer et al. present an algorithm to PAC-learn an s-fold union of boxes in E¢
by drawing a sufficiently large sample of size m = poly (%,lg %,s, d), and then
performing a greedy covering over the at most (92—'3)2& boxes defined by the sample.
Thus for d constant this algorithm runs in polynomial time. Long and Warmuth [29]
present an algorithm to PAC-learn this same class by again drawing a sufficiently
large sample and constructing a hypothesis that consists of at most s{2d)* boxes
consistent with the sample. Thus both the time and sample complexity of their
algorithm depend polynomially on s, d*, i-, and lg %—. So for s constant this yields
an efficient PAC algorithm. We note that either of these PAC algorithms can be
applied to the class | J, Box? giving efficient PAC algorithms for this class for either
d constant or s constant.

Finally, under a variation of the PAC model in which membership queries can be
made, Frazier et al. [21] have given an algorithm to PAC-learn the s-fold union of
boxes in E? for which each box is entirely contained within the positive quadrant
and contains the origin. Their algorithm learns this subclass of general unions of
boxes in time polynomial in both s and d. Recall that since [J, BOXZ generalizes
DNF, a polynomial-time algorithm for arbitrary d and s would solve the problem of
learning DNF, Observe that the class considered by Frazier ¢f al. is a generalization
of the class of DNF formulas in which all variables only appear negated. Bshouty, et
al. [12] give a PAC algorithm to learn the discretized version of R-linear geometric
concepts with random classification noise.

A number of results [31], [32], [33], [28], [5], [30], [17], [15], [26], [16], [24], [14]
have been obtained for geometric classes in Angluin’s query learning model [1] as
well.

There has also been worlk on learning in parallel [39], [9], [40], [13], [6]. Of partic-
ular relevance is the work of Vitter and Lin [39], {40]). They say that a concept class
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C is NC-learnable (respectively, NCM-learnable) if there exists a PAC-learning
algorithm for C in ANC that runs in poly-logarithmic time with a polynomial
number of processors on an arithmetic CRCW PRAMS in the noise-free setting
(respectively, when the examples are corrupted with malicious classification noise
of rate ). Along with giving several non-geometric results, they prove that the fol-
lowing geometric classes are VC-learnable: non-axis parallel rectangles (for d = 2),
linearly separable functions (for constant d), simple k-gons (& constant), unions of
s axis-parallel rectangles in the plane’. Furthermore they prove that the class of
axis-parallel rectangles, linear separators and simple k-gons are NCMC_learnable

for 7 < 1/2. Berger, Rompel and Shor [9] gave NC approximation algorithms for
the unweighted and weighted set cover problems. They use these approximation
algorithms to prove the NC-learnability of concept classes formed by taking either
finite unions or finite intersections of a fixed base class of finite VC-dimensicon for
which there is a NC hypothesis finder.

4. Learning CR-!mea* Upnder an Arbitrary Distribution

In this section we describe a parallel algorithm to NG} C-learn CR~linear for any
< % For clarity, we introduce our algorithm as a sequential algorithm and analyze
the sample complexity. We then explain our method for handling noise. Next we
parallelize the algorithm, and analyze the parallel time complexity.

4.1. A Sequential Algorithm

The algorithm we present runs in two stages. First it draws unlabeled sample $;
of size m; that is used to partition [0, 1]¢ into a set of subspaces. This is done by
passing through each point of 57 a hyperplane with each of the possible r slopes,
where each of these hyperplanes defines three regions (the hyperplane itself and the
two open halfspaces on either side). The learner then draws labeled sample Sa of
size o that is used to determine the classification of each of the subspaces created.
Pseudo-code for this learning algorithm is shown in Figure 1.
We now analyze the sample complexity of the sequential algorithm.

4.2. Analysis

Let D be the distribution from which points are drawn. Let f be the target con-
cept generated from s hyperplanes with » distinct, known slopes. Let &;¥F = b,
t=1,...,s be the set of hyperplanes and let u1,..., - be the set of slopes. For
each hyperplane in the target, we define two parallel, bounding hyperplanes — one
“above” and one “below” the target hyperplane. Recall that D(G) represents the
weight under distribution P of the points contained within subspace G C X. Specif-
ically, for hyperplane ¢ we define
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Learn_cR-—linear.
B :
Draw an unlabeled sample Sy of size m; = 4?" In %"-
Fori=1tom
Forj=1tor
Pass a hyperplane of slope j through point ¢
d
Draw a labeled sample Ss of size ms = 2—(%’{1—)— Ind %‘1 In (%— (‘iﬁ)dlnd 4—51)

E 13
Fork=1tot
Label subspace k with the label of any point in subspace &

Figure 1. A sequential algorithm for learning geometric concepts defined by hyperplanes of arbi-
trary, known slopes against an arbitrary distribution. ¢ is the number of regions into which the
hypothesis divides {0, 1]4.

wl,izmin{wI'D(b,- <@ -F<bi+w)> _(—:4%)—}
and
3 m ] [
wz,;—mln{wJ’D(b,-—wga,-ysbl)g ‘(‘Z_;“)“}

as the distances of the bounding hyperplanes from the target hyperplane. We define
A ={F e X | b <dj-ZF<bi+wis)

and
Api={2€X | b —wo; <@ -7 < by}

as the sets of points contained between the target hyperplane and the bounding
hyperplanes. Note that by the definition of w;; and wa;, P(413) > (4‘—5) and
D(Ag,i) > -(—f;j-

Let A = {A11,...,415,A21,...,A42,:}. We want to ensure that, with high
probability, all A € A contain at least one point from S;. The following lemma
addresses this.

LEMMA 1 A sample 5y of size my = 45_5 In 46—5 is sufficient to ensure that with prob-
ability atl least 1 — % each A € A contains at least one point from 5.

Proof: The probability that a particular A € .4 does not contain a point of Sy
is at most (1 —¢/(45))™ and thus the probability that any A € A does not contain
a point of Sy is at most 2s(1 — ¢/(4s))™. Thus, setting
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suffices for the size of the first sample. (The other half of the confidence bound,
as well as the other half of the error bound, is reserved for the second stage of the
algorithm.) O

The total number of subspaces created (where each of the m;» hyperplanes divides
each region it intersects into three parts) is

< mr)t = 0((mny) =0  (Z) 1og' 5

where the inequality holds for d > 1. {See, for example, Edelsbrunner [19].) In
the second stage of the algorithm we must determine the classification of all of the
subspaces that contain at least v = o of the distribution. The following lemma
addresses the size of the second sample.

LEMMA 2 A sample Sz of size ma = gﬁ%ﬁlnd%ﬁn (3% ("—:—’)d}nd (%i)) is suf-
ficient lo ensure that with probability at least 1 —~ % every subspace G such that
D(G) > 7 contains at least one point of S.

Proof: Let Gy,...,G, be the subspaces of the hypothesis for which D{(G;) > 7.
The probability that any particular Gy, ¢ = 1,...,p, does not contain any point
from the second sample is {1 — 7)™2. Thus the probability that any of the G; does
not contain any point from Ss is p(1 — 7)™* < {(1— 7)™2. We want to ensure that,
with probability at least %, each (7; contains at least one point from S2. This gives
us

4
— Y2 o
(1l — 7)™ < 5

Solving for ms yields that

d d

Mo = ;1:}11 26t — 2: in %t — 2(m61r} I 2(mar)
_ 2{4sr)® d 4s 2 fasryd ) d /4ds
=4 $n (E(T) n* (%)

suffices for the size of the second sample. O
We now show that with high prebability our algerithm produces a hypothesis
with low error.

LEMMA 3 Qur algorithm to learn Cf‘_“"e‘“ returns, with probability at least 1 -4, a
hypothesis that has error at most €. The sample complezity is polynomial in s, 7, -i-,
and log 3,
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Proof: After processing .51 we have that, with probability at least 1 — %, each
hyperplane in the target is bounded by two parallel hyperplanes (one from each
side) and the weight strictly between the two bounding hyperplanes is at most
25 =45

Let B;, i = 1,...,s be the set of points strictly between the closest parallel
hyperplanes (in the hypothesis) of the form &; - §¥ = b;. Therefore, D(B;) < ’(25—5)
Thus, for B = By U---U By, we have D(B) < . In this first phase of the algorithm
the domain has been divided into at most ©{(m;r)?) subspaces. Note that in all
subspaces R, except R C B, all of the points in R have the same sign. Thus, if
R ¢ B it is sufficient to get one point in R in order to find the sign of all of the
points in R. Furthermore, since D(B) < § we can afford to improperly label all
subspaces £ C B.

In the second stage of the algorithm, with probability at least 1 — %, all subspaces
with weight at least = are properly classified. Misclassifying those subspaces with
weight less than r adds at most 7 = £ to the learning error. O

Qur algorithm, therefore, returns an e-good approximation of the target concept,
with probability at least 1—4, with sample complexity polynomialin s, r, %and log %.
As previously noted, this algorithm is very easily stated as an algorithm in the
statistical query (SQ) model.

COROLLARY 1 There exists a statistical query algorithm that efficiently learns CR—1inear

Proof Sketch: The first stage of the algorithm is unchanged. In the second stage
we replace drawing sample S» with statistical queries. The predicate x in the
queries is [random point Z is positive | £ is in a subspace of X']. We use the ouiput
of these querues to label the regions of the hypothesis. O

Thus our algorithm is able to handle random classification noise. Next we prove
that our algorithm can tolerate malicious classification noise.

4.3, Handling Malicious Classification Noise

In this section we show that our algorithm for learning CE—!i"®2" is robust against
malicious classification noise of rate n < 1/2.

Allowing malicious classification noise requires only two changes to our first al-
gorithm. The first stage of the algorithm is unaffected since the learner does not
use the labels of the first sample and thus, noise has no effect. In the second stage
of the algorithm the size of the sample drawn must depend on the upperbound,
7, for the noise rate. The second change concerns determining the signs of the
subspaces created in the first stage of the algorithm. In the analysis of our sequen-
tial, noise-free algorithm we noted that in every subspace with weight at least = all
points must have the same sign. When points are misclassified this is no longer the
case. Thus, rather than simply returning as the label for a subspace the label of
any point in the subspace, we return the result of a majority vote of the labels of
all the points in the subspace.
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Let 55 be the upper bound on the noise rate. Thus, a point is mislabeled with
probability at most n, and is properly labeled with probability p > 1 — ;. We
now determine the necessary size of the second sample in the presence of malicious
classification noise.

LEMMA 4 A sample of size s, where my is

1 sr sy (s, 4s 1 sr s
1 (1og % 10l 5 (1og = +1og = +loglog &
0 (e (o +1085) + Gidrogt 10 + 108 % +1eg1os

is sufficient to ensure that with probability at least 1 — % more than half of the the
points tn each subspace are properly labeled.

Proof: Let mg be the number of points in subspace &, and § be the number of
points that appear properly labeled of those mg points. We want prove that

i 1 ]

Using Chernoff bounds we get that

Pr SS %m] S e_zm(%_(l_’?b))a_

Thus, we have

e=2m(3=(1-m))* < L

4t

Solving for m we find that

1 4t 1 4 4sy 4s
To rre——————— _— — — d} —_
™= T 8 g = sy (M5 4R n )

suffices to ensure that with probability at least 1—4/4 for all subspaces greater than
half of the points in that subspace are properly labeled. We must still ensure that
all of the subspaces of sufficiently high weight contain an point from the sample.
Thus, it suffices to select Sy of size

my = mae {W(ln +dln2r 4 din42)
2!‘;::! In d%‘-ln (5 (457‘ In d 45 )}

O

We now present an efficient parallel implementation of our algorithm for learning

this class. While the overall sample complexity remains unchanged, the parallel
time complexity is much improved over that of the sequential algorithm.
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4.4. A Parallel Algorithm

In this section we give a parallel algorithm for the class CF—"¢2* We have chosen,
whenever possible, to increase the number of processors in order to decrease the
running time. We do not claim that our algorithm is optimal in its use of processors
or time. I is intended to illustrate how our learning algorithm can be implemented
to run in parallel in poly-logarithmic time.

The parallel version of our algorithm is quite similar to the sequential version
shown in Figure 1. Recall that in the first stage of our algorithm, for each point
in the sample we add a hyperplane with each possible slope. Thus, we add mr
hyperplanes. To parallelize this stage of the algorithm we use m;r processors. We
divide these processors into my groups of » processors each. For each group we
choose a point 2 € 51. Each processor in a group is assigned a slope and creates
a hyperplane with that slope passing through z. Each processor then picks the
minimum dimension 7 for which a; # 0 and computes

_b—(mzi 4oz F a1 %y o aa3y)
@i

€Li

where @21+ - -+ag24 = b is a hyperplane defined by the processor. Then, for each
slope, all of the processors with that slope (from all groups) sort their hyperplanes
with that slope according to the calculated values of z;.

In the second stage of the algorithm we label each subspace created in the first
stage. To accomplish this we use O(mi7ma + (mi7)?) processors. For each of the
mgq points in the second sample we have a processor. Each of these processors
determines which subspace contains its point and then reporis the label of its point
to the processor for that subspace. To determine which subspace contains point
x, we use mir processors for each of the ma points. Each of these processors
corresponds to a hyperplane created in the first stage of the algorithm. The job
of each processor is to decide if point  lies “above”, on or “below” its associated
hyperplane. Each processor then reports the result to its two nearest neighbors
(one above and one below). Thus, the processor for each point knows the nearest
hyperplanes of each slope. This information is enough to index into the array of
processors for the subspaces and report the label of the point. The processors for
the points in a subspace write their labels concurrently. The last value that is
written is used as the label of that subspace. (This method works only in the noise-
free case. If malicious classification noise is present then a majority vote must be
used.) We now analyze our parallel algorithm.

THEOREM 1 Let my = £ In % and
_ (sr)d Y sr 1
m2"0(ed+1 log 5 Iog-—e--}-logg i

There is a parallel algorithm to NC-learn CE=Y7°3 ysing my 4 my points. The
algorithm uses O(mirmy + (m17)}?) processors and O(logm;) parallel time.
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Proof: In Lemma 1 we prove that m, is sufficient for the size of sample 51 and in
Lemma 2 we prove that ms is sufficient for the size of sample S2. Lemma 3 proves
that the algorithm returns an e-good hypothesis with probability at least 1 — 4.

All that remains is to prove the running time. In the first stage we create r groups
each containing my hyperplanes. We must calculate an intercept for each hyper-
plane and then sort the hyperplanes by these intercepts. Since we have a processor
for each hyperplane the calculation of the intercepts is performed in constant paral-
lel time. The sorting requires O(logm;) parallel time. In the second stage the deter-
mination of the nearest pair of hyperplanes of each slope for each point requires con-
stant time. The concurrent write into the appropriate location for the subspace con-
taining each point also requires constant parallel time. Thus, the entire second stage
requires O(1) parallel time. The total running time for the algorithmis O(logm;).

O

The following corollary addresses malicious classification neise in the parallel al-

gorithm.

CoRroLLARY 2 There is a parallel algorithm to NC',‘;’IC—learn CR-linear - for any
n < 1/2. The sample complexity and number of processors are poly(r,s,1/¢,log1/8)
and the parallel time complexity is poly(log r,log s,log 1/¢, loglog 1/6).

Proof: There are only two relevant differences from the sequential algorithm. The
first is the size of the second sample which was addressed in Lemma 4. The second
difference is the running time of the second stage. Due to the noise, instead of
using a concurrent write and taking the result for the label of a subspace, we must
do a majority vote. This can be achieved in parallel time that is logarithmic in

the number of examples in the subspace (using a parallel prefix computation).
|

5. DBoosting To Reduce the Dependence on € and §

In this section we show how hypothesis boosting techniques can be used to modify
all of our algorithms so that their dependence on ¢ and § do not depend on d.

THEOREM 2 Let A be an algorithm that learns a class C of Boolean functions under
any distribution with m(s, d, ¢,8) examples for any function m. Then there exists
an algorithm that learns C with m(s,d,1/4,1/2)poly(1/e,log(1/§)) examples.

Proof: We handle § by running A with 6§ = 1/2 and ¢/2, £ = log(2/4) times to
get £ hypotheses hy, ..., he. The sample size is m(s, d,¢/2,1/2) log(2/4) and with
probability at least 1 — d/2 one of the hypotheses is ¢/2-good. Using hypothesis
testing on Ay, ..., he with probability at least 1 — §/2 we can find one that is e
good using poly(1/e,log(1/8)) more examples. This shows that the sample size
m(s,d,e,8) can be changed to m(s,d,e/2, 1/2}poly(1/e,1og(1/8)}). Let B be the
resulting algorithm.

We now handle ¢ using boosting. We run B for € = 1/4 to get a weak approxi-
mation of the target. Using boosting techniques we need to generate log(1/¢) weak
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hypotheses to get an e-good approximation [34], [22], [23]. The blow up in 4 is
poly(log(1/4)). Therefore, the boosting algorithm generates an e-good approxima-
tion of the target with sample size

m(s,d, 1/4,1/2)poly(1/¢,log(1/4)).

6. Learning CI'"®* Under a Uniform Distribution

In this section we present an efficient noise-tolerant parallel algorithm for learning
Clinear ynder a uniform distribution. A key step of the algorithms we present in
the remainder of this paper is to partition X into ¢ subspaces by partitioning
each dimension of X' into ¢ pieces. We use f;3,..., /i 4 to denote the intervals
used to partition {0, 1] in the ith dimension where each I ; is the interval such that
c; < ¥ < c¢g for constants ¢;,ca. We use gg to denote the grid defined by

{.[1,1, ...,I1’¢} X {1211, . .,.[2,¢,} XX {Id,la' . .,fd,¢}.

So G € G is one of the ¢* subspaces that are in G.

In this section we make Q’g a uniform grid by selecting J; ; for 1 < ¢ < d and
1 <7 < ¢ be the interval (7 — 1}¢ < ¥ < j¢. Thus we partition each dimension
into ¢ intervals each of width 1/¢4. We now prove the following lemma that is used
by most of our remaining results.

LEMMA 5 There exist af most d - $9~1 subspaces in the uniform grid gg that are
intersected by a (d — 1)-dimensional hyperplane through gg.

Prooft: A (d — 1)-dimensional hyperplane in X can be written as

_ b an 277
= @ a1 Y2 & Yda
where a3 = max{ai,...,aq}. Since a; is the largest coefficient a change of at most
£1in one of ys,..., s, will cause a change of at most £ in ¢.

Think of gg as ¢ slices of Gg_l where gg—l is obtained by projecting dirnension
1 out of G§. That is, G5~ is defined by

{12,1: -- -;12,¢} X {13,13 ey '[3,9'7} XKoo X {Id,lz .. ':Id,¢}‘

We now focus on one of the ¢%! subspaces G € g¢-1 and the corresponding ¢

slices in G4. Note that in all points in G each of the d — 1 variables change by
at most 1/¢. Thus it follows that y; changes by at most {d—1)/¢. Finally, since

d—1
the “depth” of each slice is 1/¢ it follows that at most meﬁ)slf- + 1 = d slices of
Gg corresponding to G can be cut by any one hyperplane. Summing over all ¢!
subspaces of G4~ yields the desired result. O

Now for the main result of this section.
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THEOREM 3 There exists a parallel algorithm to NC-learn any concept from Chnear

under the uniform distribution with a sample complezity of size (*‘f) (dIn 4’-6-4 +In %)
where s s the number of hyperplanes defining the target concept.

Proof: Let ¢ = (sd/e}, and let gg be a uniform grid. Thus for each of the ¢¢
subspaces G € G it follows that D(G) = (1/4)? = (¢/(25))? where D is the
uniform distribution.

‘We draw a sample 51 of size m; such that with probability at least 1 —§ at least
one point from S) falls into each G € Qg. For any given subspace G € gg, the
probability that m; points are drawn none of which are in G is (I — (1/4)4)™.

Thus setting Pr[d G € gg | no pointin Sy isin G] < ¢¢ (1 - (%&) d) " < §, and
solving for m; ylelds that a sample of size

my = ¢° (cilnqb +In3)
- (t’;é? (dln % +In %)

(

=0 (()" (log ¢ +1log }))

suffices.

For each G € Q’g our algorithm classifies all points in G based on the label of a
point from 5y that isin (7. If $1 has multiple points in (7, we arbitrarily choose one.
We now prove that given there is a sample point in each G € Qg, which oceurs with
probability at least 1 — 4, the error of our hypothesis is at most ¢. By Lemma 5,
we have that each hyperplane of the target concept can intersect at most dg?—!
subspaces of Qg. Thus a total of at most sd@?~! subspaces are intersected by the
hyperplanes defining the target concept. For each G € Gg not intersected, all points
in G are classified in the same manner and thus our algorithm predicts correctly.
Our hypothesis may misclassify those subspaces that are intersected. However,
since each subspace has weight at most ¢~¢ and at most sd¢® ! subspaces are
intersected the overall error is at most ﬂﬁ = sd/¢ = c.

Finally, the techniques of Theorem 1 can be used to show that with a polynomial

number of processors, the parallel implementation runs in poly-logarithmic time.
]

By drawing a larger sample and using a majority vote of the points in each
subspace of G¢ to select the classification for each subspace, it is easily shown that
this algorithm is robust against malicious classification noise.

CoROLLARY 3 The class Ci™** is efficiently NCYC-learnable under the uniform
distribution for any n < 1/2.

7. Learning Cli"°® Under a Product Distribution

In this section we give a parallel algorithm to NC-learn any concept from Clinear
under a product distribution. A product distribution over points in d-dimensional
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space is a distribution D = (Dy,...,Ds) in which each dimension’s distribution
is independent. Thus, the probability of choosing point p = (z1,22,...,24) is
Di(z1) - Pa(wa) - - - Da(2q) where Di(z;) is the probability that z; is drawn under
distribution D;.

In both methods we have two phases, in the first phase we use the sample to
partition A" into subspaces such that the weight of any subspace is not too large.
Then in the second phase we draw a sample to classify each subspace in such a
way that with high probability the total error is at most ¢. The following lemma
extends Lemma 5 when ng may be non-uniform.

LEMMA 6 There exist at most d- 29 - ¢9~1 subspaces of any grid gg that are inter-
sected by a (d — 1)-dimensional hyperplane through gg.

Proof: For each dimension ¢ for 1 < ¢ < d consider the (d — 1)-dimensional grid
g = gg‘l obtained by projecting out dimension 7 from Q’g. Now consider the ¢4?
points from g; defined by {p1,ps,...,ps}?" ! and imagine projecting each such
point infinitely in both directions in dimension ¢. Clearly any (d — 1)-dimensional
hyperplane intersects each of these lines at at most 1 point. Furthermore, since each
point of intersection can border at most 2%~! regions it follows that the number of
cut regions of gg defined by 7 dimensional borders is at most 2¢¢4~!. Finally, since
every region intersected is intersected at some border, all regions are counted by
adding up the number intersected in each of the d dimensions. Thus the number of
regions of gg intersected by a (d—1)-dimensional hyperplane is at most d-2%. $9-1.
d
We now describe our algorithm for learning linear geometric concepts under the
product distribution. The key to this algorithm is to use a sample from the unknown
product distribution to divide each dimension into ¢ intervals of nearly equal weight.
Namely, with high probability we can guarantee that each of the ¢ intervals created
have weight at least 1/(4¢) and at most 4/¢$. Then we can proceed with a second
phase like that used when learning this class under the uniform distribution (with
the only change being that our choice for ¢ must be adjusted slightly).

THEOREM 4 Consider the interval [0, 1] and let D be an unknown distribution over
{0,1]. Using a sample of size O(¢log(¢/6)) we can partition [0,1] into ¢ intervals
such that with probability at least 1 —§ each interval has weight at least 1/(4¢) and
at most 4/¢.

The proof for this theorem follows from the Vapnik-Chervonenkis theory [38] and
the fact that intervals have a VC-dimension of 2.

Here we summarize the basic technique used. The algorithm is very simple.
Draw a sample of size m = O (qﬁ log %) and then divide [0, 1] into intervals such

that each interval contains m/¢ points. That each of these intervals has weight

between 1/(4¢) and 4/¢ then follows. .
We now apply this theorem to obtain an aigorithm to PAC-learn Cimear under a

product distribution.
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THEOREM 5 There exists a parallel algorithm to NC-learn any concept from Chne®
under a product distribution with a sample complezity of size

9) ((g)d (log%»}-log%)) .

Proof: Since we are working with a product distribution, we can apply Theorem 4
in each dimension by projecting the sample onte each dimension and then using a
confidence parameter of 6 /(2d). Thus it immediately follows that, with probability
at least d (-2%) = §/2, in each dimension each interval has weight between 1/(4¢)
and 4/¢. We now can proceed as in the proof of Theorem 3 except that we let
¢ = (sd4)/e. Since each region has weight at least (1/(4¢))¢ it is easily shown
that by drawing a sample of size (4¢)¢ (dIn ¢ + 2), with probability at least 1—5/2,
there is at least one sample point in each region. Thus the only error caused is by
regions that are cut by the hyperplanes defining the target concept. Since each
subspace has weight at most (4/¢)¢ and at most sd¢?~! regions are intersected the
overall error is at most €. O
Then using the same techniques as in Section 4.3 both of these algorithms can be
modified to tolerate malicious classification noise of any rate less than 1/2.

COROLLARY 4 The class Ci® s efficiently NCMC-learnable under any product
distribution for any n < 1/2.

8. Learning C5" '™ Under a Product Distribution

In this section we present an efficient noise-tolerant parallel algorithm for learning
C{}°g"me“‘" under a product distribution where the target concept is defined by any
set of surfaces of polynomial variant. As we mentioned in the introduction, it is
well known that even a surface with a variant of 1 may have infinite VC-dimension.
We now give a proof.

THEOREM 6 VCD{CPn1neer) — o0,

Proof: For ease of exposition, we give the proof for d = 2, it easily generalizes
for arbitrary d. Take any number m and take the m points z; = (i/m,i/m) for
i=10,...,m—1. We now show that the set {z;} is shattered by a surface of variant
1. To see this take any A C {z;} and define a monotone function that passes above
the points of A and below the points of {#;} — A. ( Line segments can even be used
to define this monotone function). Finally, observe that the resulting surface has
variant 1 and shatters the m points. O

Thus, by the results of Ehrenfeucht et al. [20], there is no efficient algorithm (even
if computation time is unbounded) to PAC-learn C{‘,‘Eg)"““e”, even when V(S5) =1,
against an arbitrary distribution. However, we are able to show that by modifying
our algorithm from the previous section we can efficiently PAC learn a geometric
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concept defined by any set of surfaces of polynomial variant against any product
distribution (in parallel, with malicious classification noise).
The key to our result of this section is the following lemma.

LEMMA 7 There exist at most d - 22 - ¢4~ subspaces of gg that are intersected by
any (d—1)-dimensional surface of variant-1.

Proof: This proof follows directly from the proof of Lemma 6 by noting that

the only property of a hyperplane used in that proof is that any axis-parallel line

intersects a hyperplane at most once. Since, by definition of a 1-variant surface,

we have the property that an axis-parallel line intersects it at most once, the result

follows. (|
We now give the main result of this section.

THEOREM 7 There exists a parallel algorithm to NC-learn C"f,‘(’g)_““e“ under the
product distribution with a sample complexity of size

0 ((E—)d (log-:- +Iog%))

where v = V(S) is the variant of the surface S that defines the target concpet.

Proof: Here we use an algorithm like that used to learn Cin®®" against the prod-
uct distribution where V(S) replaces s, the number of hyperplanes defining the
target concept. Namely, let ¢ = (V(S5)d4%)/ec. By applying Theorem 4 in each
dimension, we get that, with probability at least d (553) = 4/2, in each dimen-
sion each interval has weight between 1/(4¢) and 4/¢. Since each region has
weight at least (1/(4¢))¢ it is easily shown that by drawing a sample of size
(4¢)¢ (d Ing -+ %), with probability at least 1 — §/2, there is at least one sample
point in each region. Thus the only error caused is by regions that are cut by the
hyperplanes defining the target concept. Since each subspace has weight at most
(4/6)9 and at most V(S)d¢4~! regions are intersected the overall error is at most .
0
Then using the same techniques as in Section 4.3 this algorithm can be modified
to tolerate malicious classification noise of any rate less than 1/2.

CororLLARY 5 The class C:}':(’g)_““ear is efficiently NCMC.learn under any product

distribution for any n < 1/2.

9. Learning Concepts Defined by Surfaces of Polynomial Length

We briefly describe a technique to learn any 2-dimensional geometric concept de-
fined by any set of surfaces where L is the total length of the surfaces. The key to
the result of this section is the following lemma
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LevmMa 8 Any l-dimensional surface of length L can intersect af most 4L¢ sub-
spaces of the uniform grid gg.

Proof: Imagine cutting L into at most L¢ pieces of length 1/¢. We now argue
that each piece can intersect at most 4 regions of gg and thus the total number of
regions intersected is at most 4L4.

Recall that each G € Q’i is a square where each side has length 1/¢. It is easily
shown that there are at most 4 subspaces of G¢ that the segment of curve of length
1/¢ can intersect. Since there are at most L¢ such segments the result follows.

a

THEOREM 8 There exists a parallel algorithm (for d = 2) to NC-learn any concept
from C3olneT ynder the uniform distribution with a sample compleity of size

2
(ﬂ{) (2 In é—-i}- +In -1->
€ € §

where L is the total length of the curves defining the target concept.

Proof: Here we use an algorithm like that to learn Cl"®" except that we let
¢ = 4L/¢. Using the same analysis as in the proof of Theorem 3 it follows that if
we draw a sample of size

2 2
m=¢> (QInqﬁ—!—in%) = (é:i) (21n%+ln%) :O(il_z (ln§+ln%))

then, with high probability, there is least one peoint in each subspace of gg.

We now prove that the error of our hypothesis is at most ¢. From Lemma 8§ it
follows that the surface intersects at most 2¢L¢ = 4L¢ regions of gg. For those
regions not intersected by one of the hyperplanes defining the target, all points in
that region are the same and thus the majority vote is correct. For those regions that
are intersected the majority vote may produce the wrong classification. However,
since each region has weight at most 1/¢% and at most 4L¢ regions are intersected
the overall error is at most 4L/¢ = e. ]

Then using the same techniques as in Section 4.3 this algorithm can be modified
to tolerate malicious classification noise of any rate less than 1/2.

10. Concluding Remarks

We have described a set of simple parallel algorithms for efficiently learning various
classes of geometric concepts in constant-dimensional space even when there is a
high rate of random classification noise. When the target concept is defined by
taking boolean combinations of halfspaces, we provide an algorithm to learn this
class (1} against any distribution when the hyperplanes defining the halfspaces use
a set of known slopes, and (2) against product distributions when the slopes of
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the hyperplanes defining the halfspaces are arbitrary. We then look at concepts
defined by non-linear surfaces, and define the variant, a new complexity measure
for this class. While the VC-dimension of the class of concepts defined by surfaces
of variant one is infinite, we are still able to efficiently learn any concept defined by
a set of surfaces of polynomial variant against any product distribution.

Since all of our algorithins are easily formulated as statistical query algorithms,
in addition to handling labelling noise, known results allow us to handle small
amounts of malicious noise, and various types of noise effecting the distribution of
the random examples (e.g. see Decatur [18]). In addition, they can all be efficiently
implemented in parallel.

Another nice feature of our algorithms is that they can take advantage of unla-
belled as well as labelled data which may be of value for some real-life applications,
especially when combined with the simplicity and robustness of the algorithms.
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Notes

1. Furthermore, we note that all of these results can easily be converted to learn the corresponding
geometric classes defined over ¢ by first drawing a sufficiently large sample to find a bounding
box that has small weight outside.

2. There is a known sequential PAC algorithm to learn the discretized version of R-linear geo-
metric concepts with random classification noise [12].

3. A function f is monetoneif 43 > w2 = f(11) > Sf(v2).

4. An algorithm ezactly learns a concept class if for any concept in the class it rettrns a hypothesis
that correctly classifies every instance in the instance space.

5. A learning algorithm is proper if all hypotheses come from the concept class.

8. In the arithmetic CRCW PRAM model each memory location can hold a single real number.

7. This result can be extended to higher dimensions and other geometrical objects like circles,
triangles, and polygons in which each side has one of a constant number of fixed orientations.

References

1. Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319-342, 1988,

2. Dana Angluin and Philip Laird. Learning from noisy examples. Machine Learning, 2(4):343—
370, 1988,

3. J. A. Aslam and 5. E. Decatur. General bounds on statistical query learning and PAC
learning with noise via hypothesis boosting. In 34th Annual Sympesium on Foundations of
Computer Science, pages 282291, November 1993.

4. J. A, Astam and 8. E. Decatur. Specification and simulation of statistical query algorithms
for efficiency and noise tolerance. In Proceedings of the Eighth Annual ACM Conference on
Computational Learning Theory, pages 437-446, July 1995,



20

10.

11

12,

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

BSHOUTY, GOLDMAN AND MATHIAS

. Peter Auer. On-line learning of rectangles in noisy environments, In Proceedings of the Stzth

Annuval ACM Conference on Computational Learning Theory, pages 253-261, July 1993.

. 1. L. Balcdzar, I. Diaz, R. Gavalda, and O. Watanabe, An optimal parallel algorithm for

learning DFA. In Proceedings of the Seventh Annual ACM Conference on Computational
Learning Theory, pages 208-217, ACM Press, New York, NY, 1994,

. E. B. Baum. On learning a union of half spaces. Jeurnal of Complezity, 6(1):67-101, March

1990.

. E. B. Baum. The perceptron algorithm is fast for nonmalicious distributions. Neural Com-

putation, 2:248-260, 1990,

. B. Berger, ]. Rompel, and P. W, Shor. Efficient NC algorithms for set cover with applications

to learning and geometry. Journal of Computer and System Sciences, 49(2):454-477, 1994.
Avrim L. Blum and Ronald L. Rivest. Training a 3-node neural network is NP-Complete.
Neural Networks, 5:117-127, 1992.

Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learn-
ability and the Vapnik-Chervonenkis dimension. Journal of the Association for Computing
Machinery, 36(4):929-965, October 1989.

Nader H. Bshouty, Zhixiang Chen, and Steve Homer. On learning discretized geometric
concepts. In 85th Annual Sympoesium on Foundafions of Computer Science, pages 54-63,
November 1994,

Nader H. Bshouty and Richard Cleve. On the exact learning of formulas in parallel. In $3rd
Annual Symposium on Foundations of Computer Science, pages 1-15, October 1992.
Nader H. Bshouty, Paul W. Goldberg, Sally A. Goldman, and H, David Mathias. Exact
learning of discretized concepts. Technical Report WUCS-94-19, Washington University,
1994,

Zhixiang Chen. Learning unions of two rectangles in the plane with equivalence queries.
In Proceedings of the Sixth Annuel ACM Conference on Computational Learning Theory,
pages 243-252, ACM Press, July 1993.

Zhixiang Chen and Steven Homer. The bounded injury priority method and the learnability
of unions of rectangles. Unpublished manuscript, May 1994.

Zhixiang Chen and Wolfgang Maass. On-line learning of rectangles. In Proceedings of the
Fifth Annuel Workshop on Computational Learning Theory, pages 16-27. ACM Press, July
1992,

S. E. Decatur. Statistical queries and faulty PAC oracles. In Proceedings of the Sizth Annual
ACM Conference on Computational Lesrning Theory, pages 262-268., ACM Press, New
York, NY, 1993,

Herbert Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, New York,
1987.

Andrzej Ehrenfeucht, David Haussler, Michael Kearns, and Leslie Valiant. A general lower
bound on the number of examples needed for learning. Information and Computation,
82(3):247-251, 1989,

Mike Frazier, Sally Goldman, Nina Mishra, and Leonard Pitt. Learning from a consistently
ignorant teacher, In Proceedings of the Seventh Annual ACM Conference on Computational
Learning Theory, July 1994.

Yoav Freund. Boosting a weak learning algorithm by majority. In Proceedings of the Third
Annual Workshop on Computational Learning Theory, pages 202--216. Morgan KKaufmann,
August 1990,

Yoav Freund. An improved boosting algorithm and its implications on learning complexity.
In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pages
391-398, July 1992.

Paul W. Goldberg, Sally A. Goldman, and H. David Mathias. Learning unions of boxes with
membership and equivalence queries. In Proceedings of the Seventh Annual ACM Conference
on Computationael Learning Tkeory, July 1994.

David Haussler. Generalizing the PAC model: sample size bounds from metric dimension-
based uniform convergence results. In 30th Annual Sympostum on Foundations of Computer
Secience, pages 40-45, October 1989,



LEARNING GEOMETRIC CONCEPTS 21

28.

27.

28,

29.

30.

31.

32.

33.

34.

35.

36.

37.

38,

39.

40.

Steven Homer and Zhixiang Chen. Fast learning unions of rectangles with queries. Unpub-
lished manuscript, July 1993.

M. Kearns. Efficient noise-tolerant learning from statistical queries. In Proc. 25th Annu.
ACM Sympos. Theery Comput., pages 392-401. ACM Press, New York, NY, 1993.

Nick Littlestone. Learning when irrelevant attributes abound: A new linear-threshold algo-
rithm. Machine Learning, 2:285-318, 1988,

Philip M. Long and Manfred K. Warmuth. Composite geometric concepts and polynomial
predictability. In Proceedings of the Third Annual Workshop on Computatienal Learning
Theory, pages 273-287. Morgan Kaufmann, August 1990,

Wolfgang Maass and Gybrgy Turdn. On the complexity of learning from counterexamples.
In 80th Annual Sympesium on Foundations of Computer Science, pages 262-267, October
1989,

Woligang Maass and Gy8rgy Turdn. On the complexity of learning from counterexamples
and membership queries. In 815t Annual Sympesium on Foundatisns of Computer Science,
pages 203-210, October 1990.

Wolfgang Maass and Gydrgy Turdn. Algorithms and lower bounds for on-line learning of
geometrical concepts. Technical Report IIG-Report 318, Technische Universitét Graz, TU
Graz, Austria, October 1991.

Wolfgang Maass and Gydrgy Turdn. Lower bound methods and separation results for on-line
learning models. Machine Learning, 9:107-145, 1992.

Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197-227,
1990.

Robert H, Sloan. Types of noise in data for concept learning. In Procesdings of the 1988
Workshop on Computational Learning Theory, pages 91-96. Morgan Kaufmann, 1988,
Leslie Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142,
November 1984,

Leslie Valiant. Learning disjunctions of conjunctions. In Proceedings of Ninth International
Joint Conference on Artificial Intelleigence, 1985.

V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities. Theory of Probability and Its Applicetions, XVI(2):264-280,
1971.

Jeffrey S. Vitter and Jyh-Han Lin. Learning in parallel. In Proceedings of the 1988 Workshop
on Computational Learning Theory, pages 106~124. Morgan Kaufmann, 1988.

Jeffrey S. Vitter and Jyh-Han Lin. Learning in parallel. Information and Computation,
pages 179-202, 1992,



	Noise-Tolerant Parallel Learning of Geometric Concepts
	Recommended Citation
	Noise-Tolerant Parallel Learning of Geometric Concepts

	tmp.1439928365.pdf.IWPUm

