Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-97-17

1997-01-01

Learning with Unreliable Boundary Queries

Avrim Blum, Prasad Chalasani, Sally A. Goldman, and Donna K. Slonim

We introduce a model for learning from examples and membership queries in situations where
the boundary between positive and negative examples is somewhat ill-defined. In our model,
queries near the boundary of a target concept may receive incorrect or "don't care" responses,
and the distribution of examples has zero probability mass on the boundary region. The
motivation behind our model is that in many cases the boundary between positive and negative
examples is complicated or "fuzzy." However, one may still hope to learn successfully, because
the typical examples that one sees to not come from that region. We present... Read complete
abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Blum, Avrim; Chalasani, Prasad; Goldman, Sally A.; and Slonim, Donna K., "Learning with Unreliable
Boundary Queries" Report Number: WUCS-97-17 (1997). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/433

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.


https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/433?utm_source=openscholarship.wustl.edu%2Fcse_research%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/433

Learning with Unreliable Boundary Queries

Avrim Blum, Prasad Chalasani, Sally A. Goldman, and Donna K. Slonim

Complete Abstract:

We introduce a model for learning from examples and membership queries in situations where the
boundary between positive and negative examples is somewhat ill-defined. In our model, queries near the
boundary of a target concept may receive incorrect or "don't care" responses, and the distribution of
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Abstract

We introduce a model for learning from examples and membership queries in situations where the
boundary between positive and negative examples is somewhat ill-defined. In our model, queries near
the boundary of a target concept may receive incorrect or “don’t care” responses, and the distribution
of examples has zero probability mass on the boundary region. The motivation behind our model is
that in many cases the boundary between positive and negative examples is complicated or “fuzzy.”
However, one may still hope to learn successfully, because the typical examples that one sees do not

come from that region.

‘We present several positive results in this new model. We show how to learn the intersection of two
arbitrary halfspaces when membership queries near the boundary may be answered incorrectly. Qur
algorithm is an extension of an algorithm of Baum [7, 6] that learns the intersection of two halfspaces
whose bounding planes pass through the arigin in the PAC-with-membership-queries model. We also
describe algorithms for learning several subclasses of monotone DNF formulas.

1 Introduction

In most of the theoretical work on concept learning, the environment is modeled as an omniscient
oracle that classifies all objects as positive or negative instances of the concept to be learned. Thus,
it is assumed that there is a well-defined boundary separating positive from negative examples. In
many cases, however, classification may be much less clear. For example, consider a membership query
algorithm for learning to recognize the number 3 from pixel images. A typical strategy would involve
taking a 3 and a non-3 (maybe a picture of a 2) and asking for classifications of examples halfway
between them until two nearby examples with different classification are found. A problem with this
type of approach!, as noticed by Lang and Baum [22), is that questions of this sort that are near the
concept boundary may result in unreliable answers. Merging an image of a 2 and a 3 tends to produce

*School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213-3891. avrim@theory.cs.cmu.edu.
Supported in part by NSF National Young Investigator grant CCR-9357793 and a Sloan Foundation Research Fellowship.

1.os Alamos National Laboratory, Los Alamos, NM 87544, chal@lanl.gov.
*Department of Computer Science, Washington University, St. Louis, MO 63130. sg@cs.wustl.edn. Supported in

part by NSF Grant CCR-9110108 and NSF National Young Investigator grant CCR-9357707 with matching funds provided

by Xerox Corporation.
SMIT Center for Genome Research, One Kendall Square, Building 300, Cambridge, MA 02139.
slonim@genome.wi.mit,edu. This work was supported by NSF Grant CCR-93-10888 and NIH Grant 1 T32 HG00038-01.

'Particularly when a human “expert” serves as the membership query oracle.



something that looks a bit like both, and that we don’t really care about anyway since we don’t expect
to see one in practice.

More generally, one unrealistic aspect of the PAC-with-membership-query model is that it relies
much more heavily on its assumptions than the passive PAC model. In both models, one typically
assumes there is a target function belonging to some class C that is labeling the data, and one then tries
to prove that one’s algorithm will succeed under that assumption. In the passive model, however, all
that is really needed is that the target function and the distribution on examples conspire in such a way
that the data actually seenis consistent with a function in C. In contrast, with membership queries one
needs the function on the entire space to be consistent with some function in C. For instance, suppose
a learning algorithm is using a simple hypothesis class (say a simple neural network) to learn images of
3’s. For a passive algorithm, one would want the data observed to be consistent with some hypothesis in
the class. For a membership query algorithm, however, one needs the stronger condition that the target
concept over the entire inpul space can actually be represented in such a simple form. The difference
is that typical images of 3’s may be distinct enough from images of other characters that many simple
consistent hypotheses exist. However, if one were to probe the exact boundary of the “3” concept, one
would likely find it has a complicated structure that even depends on which “expert” you ask.

In this pa.per‘we propose and study a model for learning with membership queries that addresses the
above issues. The basic idea of our model is that queries near the boundary of a target class may receive
either incorrect or “don’t care” responses. But, in partial compensation, we assume the distribution of
examples has zero probability mass on the boundary region. (The motivation is that the oracle responds
incorrectly or doesn’t know the answers because these examples do not actually appear in the world,
and thus it does not matter how the learner classifies them.) We do not require the oracle to answer
incorrectly or state “I don’t care” in the boundary region, since that would just make the learning
problem that of learning a different (perhaps ternary) target concept in the standard model. In that
case, onte could then simply perform binary search between the boundary and non-boundary examples,
defeating the purpose of the model. One way of viewing our model (although our model is actually
a bit more general) is that the true target concept is in fact some horribly complicated function, but
differs from a simple function only in a boundary region that has zero probability measure. See Figure
1 for an example.

The contributions of this work are: (1) the introduction of the model of learning with unreliable
boundary queries, (2) an efficient algorithm that PAC-learns the intersection of two halfspaces with
membership queries when the boundary queries are noisy, and (3) efficient algorithms to exactly learn
(with membership queries) several subclasses of monotone DNF formulas when there can be “don’t

care” responses to boundary queries for a small boundary size.

2 Definitions

2.1 Standard Learning Models

A concept f is a boolean function over an instance space X. In this paper we consider two instance
spaces: the boolean domain {0,1}" and the continuous domain R"™. A point z € X" is an ezample, and
is a positive ezample of f if f(x) = 1 and a negative ezample of f if f(z) = 0. A concept class C is a
set of functions, along with an associated representation language for describing them. For instance, C



Figure 1: The thick curve is the actual concept boundary. However, because the distribution has zero
probability mass in the shaded region, we can view the concept as an intersection of two halfspaces in

our model.

might be the class of monotone DNF formulas.

In the distribution-free or PAC learning model [29], to obtain information about an unknown target
function f € C, the learner is provided access to labeled (positive and negative) examples of f, drawn
randomly according to some unknown target distribution D over X. The learner is also given as input
€,0 > 0. Its goal is to output, with probability at least 1 — &, the description of a function A that has
probability at most € of disagreeing with f on a randomly drawn example from D (thus, A has error at
most €). An algorithm A PAC-learns C if for any f € C, any distribution D, and any ¢, > 0, A meets
this goal and runs in time polynomial in n (the size of an example), 1/¢, 1/6, and |f] (the description
length of the target function).

In the above definition, we have not specified what a “description of a function A” is. An algorithm
is said to be a proper learning algorithm if the hypothesis A is always chosen from the description
language associated with the concept class. On the other hand, more generally we may allow a learning
algorithm to output any polynomial-time algorithm as a hypothesis. This less constrained model is
sometimes called “PAC-predictability” [17, 16].

Another well-investigated model of learning is that of ezact learning from equivalence queries [3]. In
this model, the learner proposes as a hypothesis some A € C, and in response is told “yes” if A = f, or
is given a counterexample z such that k(2) # f(z). There is no distribution on examples; the learner is
required to exactly identify f (obtain a “yes” answer) in time {and queries) polynomial in n (the length
of the counterexamples) and |f| (the size of the representation of the target f), regardless of the choice
of target function and sequence of (adversarially chosen) counterexamples. It is not hard to see that
any class learnable exactly from equivalence queries can be learned in the PAC setting [3] (though the



converse does not hold [§]).
The PAC and exact learning models are passive in that the learner cannot directly affect the type of

examples it receives as input — in the PAC setting they are randomly generated, and in the exact setting
they are chosen by an adversary. Evidence suggests that only relatively simple types of concepts can
be learned passively in this way [2, 20, 24]. Consequently, researchers have considered augmenting this
learning protocol by allowing the learner to perform experiments. In addition to drawing a randomly
labeled example (or posing a hypothesis, in the exact model}, the learner can perform a membership
query MQ(z) in which it supplies an example z in the instance space and is told the value f(z).

We use PAC-memb to refer to the variation of the PAC model in which the learner can make
membership queries. Likewise we say that a concept class is ezactly learnable if it is learnable with

membership and equivalence queries.

2.2 Our New Learning Model

Given a concept f over an instance space that has a distance metric, we say that the distance to the
boundary of an example z is the distance to the nearest example y such that f(z) # f(y). For continuous
input spaces we use the infimum over distances to y’s such that f(z) # f(y). In the boolean domain we
use the Hamming distance as our metric. Thus an example is at distance 2 from the boundary if it is
possible to flip two bit positions and change its classification. In continuous domains, the Ly metric? is
often most natural. We define the boundary region of radius r to be the set of examples whose distance
to the boundary is at most r. We define the negative boundary region of radius r to be the set of all
examples 2 in the boundary region such that f(z) = 0.

We now define the unreliable boundary query (UBQ) model. This model is the same as the standard
PAC-memb model except for the following difference: there is a value r (the boundary radius) such
that any query to an example in a boundary region of radius r may receive an incorrect response, and
the example distribution D has zero probability measure in that boundary region. In the incomplete
boundary guery (IBQ) model, the learner never receives an incorrect response to a query, but in the
boundary region might receive the answer “don’t care”. Finally, we extend these definitions to the
exact learning model by requiring that counterexamples to equivalence queries not be chosen from the

boundary region.

3 Related Work

There has been much theoretical work on PAC or mistake-bound learning in cases where the training
examples may be mislabelled [3, 21, 27, 18] and additional work in models that allow attribute noise [26,
13, 23]. The p-concepts model of Kearns and Schapire [19] also falls somewhat into this category.
There have also been a number of results on learning with randomly generated noisy responses to
membership queries. Sakakibara [25] considers the case where each membership query is incorrectly
answered with a fixed probability, but where one can increase reliability by asking the same mem-
bership query several times. In models of persistent membership query noise, repeated queries to the
same example receive the same answer as in the first call. Goldman, Kearns and Schapire [14] give a

?Under the L; metric the distance d{(Z,7) between & = {z1,...,z.} and § = {y1,.-.,yn} Iis
\/(x1~y1)2+---+($n—yn)2-




positive result for learning certain classes of read-once formulas under this noise model. Their work uses
membership queries to simulate a particular distribution. Frazier and Pitt [12] show that CLASSIC
sentences are learnable in this noise model, using the fact that many distinct membership queries can
be formulated that redundantly yield the same information.

Angluin and Slonim [5] introduce a model of incomplete membership queries, in which a membership
query on a given instance may persistently generate a “don’t know” response. The “don’t know”
instances are chosen uniformly at random from the entire domain and may account for up to a constant
fraction of the instances. Additional positive results in this model are obtained by Goldman and
Mathias [15]. This model allows for a large number of “don’t know” instances, but positive results in
this model are typically highly dependent on the precisely uniform nature of the noise.

Sloan and Turan [28] introduce the limited membership query model. In this model, an adversary
may arbitrarily select some number £ of examples on which it refuses to answer membership queries
(or answers “don’t know”), but the learner is now allowed to ask a number of queries polynomial in
£. Sloan and Turan present algorithms in this model for learning the class of monotone k-term DNF
formulas with membership queries alone and the class of monotone DNF formulas with membership
and equivalence queries. Angluin and Krikis [4] introduce a similar model of malicious membership
gueries in which the adversary may respond with incorrect answers instead of “don’t know”. Their
paper proves that the class of monotone DNF formulas is learnable in this model. Angluin [1] has
shown that read-once DNF formulas are also learnable with malicious membership queries.

The main difference in motivation between our model and those above is that most previous work
supposes that there is a clear boundary between the positive and negative examples with some noise
included. Our goal is to model the very different situation in which the classification of examples in the
boundary region is just not well defined (for example, a “2” merged with a “3”). Our model is more
difficult than those above in the sense that the membership query errors or omissions are chosen by an
adversary (unlike the random noise models [5]), and algorithms must run in time that is polynomial in
the usual parameters regardiess of the number of queries that might receive incorrect answers (unlike
(28, 4]). For example, in the case of a 1-term monotone DNF formula with the boundary radius » = 1,
there may be exponentially many (in n) instances in the boundary region. (Example: let z42729 be
the target term. Then all positive instances, and all negative instances with exactly one of {z4, w7, 2o}
turned off, are in the boundary region of radius 1.) The algorithms of Sloan and Turan, and of Angluin
and Krikis make use of the allowance to use time polynomial in the number of lies. In particular, if
there are an exponential number of lies, then their algorithms will use exponential time and queries.
On the other hand, to partially compensate for this difficulty, we restrict membership query errors or
omissions to the boundary region and we require that counterexamples to equivalence queries be chosen
from outside the boundary region.

In other related work, Frazier, Goldman, Mishra and Pitt [11] introduce a learning model in which
there is incomplete information about the target function due to an ill-defined boundary. While the
omissions in their model may be adversarially placed, all examples labeled with “?” (indicating unknown
classification) must be consistent with knowledge about the concept class. They require the learner to
construct a ternary function with values {0,1,7} that, with high probability, correctly classifies most
randomly drawn instances, and give positive results for the classes of monotone DNF formulas and
d-dimensional boxes. One of the key differences between their model and ours is that they allow time



polynomial in the complexity of that ternary function: thus if the “?” region has a complicated shape,
then their learner is allowed a correspondingly longer time. In our model, a learner is required to run

won

quickly regardless of the complexity of the region.

4 Learning an Intersection of Two Halfspaces

We now describe one of our main positive results: an algorithm for learning an intersection of two
halfspaces in n dimensions in the UBQ model, for any boundary radius » (see Figure 2). Our algorithm
is an extension of an algorithm of Baum [7, 6] for learning the simpler class of intersections of two
homogeneous halfspaces in the standard PAC-with-queries model®.

The idea of Baum’s algorithm is to reduce the problem of learning an intersection of two homogeneous
halfspaces to the problem of learning an XOR of halfspaces, for which a PAC algorithm exists [9]. (That
algorithm works by noticing that the XOR of #& > 0 and @-& > 0 is equivalent to the degree-2 threshold
function (7- Z)(@ - Z) < 0 (except on degenerate inputs) which can be learned as a linear threshold
function over an O(n?®)-dimensional space.) The idea of Baum’s reduction is to notice that negative
examples in the quadrant opposite from the positive quadrant—the troublesome examples keeping the
data set from being consistent with an XOR of halfspaces—are exactly those examples ¥ such that —&

is positive. His algorithm is as follows:

Draw a sufficiently large set S of O (-i— log § + -”f—ig %) examples.? Mark all of the negative
examples & € S which have the property that a membership query to —& returns “positive”.
Then find a linear function P such that P(&) < 0 for all the marked (negative) examples
and P(Z) > 0 for all the positives. Finally, run the XOR-of-halfspaces learning algorithm of
[9] to find a hypothesis H' that correctly classifies {Z € S : P(Z) > 0}. The final hypothesis
is:

“f P(£) < 0 then predict negative, else predict H'(%).”

Baum’s algorithm seems appropriate for our model because it does not explicitly try to query
examples near the boundary. In fact, it is almost the case that if a negative example has distance at
least r from the boundary, then the example —7 has distance at least » from the boundary as well. This
fails only on the negative examples in the “A-shaped” region shown in Figure 2.

Our algorithm for learning an intersection of (not necessarily homogeneous) halfspaces in the UBQ
model is a small extension of Baum’s algorithm, though the analysis requires a bit more care. In our
algorithm, instead of reflecting through the origin, we reflect through a positive example. We use a
potential function to prove that some “good” positive example for reflection must exist. (The algorithm
tries all of them.) Specifically, our algorithm is the following:

Draw a sufficiently large set § of O (% log % + “é lg %) examples. For each positive example
Tpos € S do the following. For each negative example ¥, € S, query the example 2., —
Tpneg, and if the response to that query is “positive”, then mark Z,.,. Now, attempt to find

* A halfspace is homogeneous if its bounding hyperplane passes through the origin.
“The VC-dimension of the hypothesis class is O(n?) so a corresponding number of examples as given by the results of

Blumer et al. [10] are needed.



Figure 2: An intersection of 2 halfspaces. Boundary region is shaded. Notice that its apex is curved,
which complicates the proof somewhat. Note that NEG,; is the negative region that is not darkly
shaded. The region N EG/,, contains all the points from NEGy; except for those in the dashed “A”-
shaped regien.

a linear function P such that P(Z) < 0 for all the marked (negative) examples and P(%) > 0
for all the positives. If no such function exists, then repeat this step using a different positive
example Zp,, € S (we prove below that this step must succeed for some positive example
Tpos)-

Finally (assume we have found a legal linear function P), let S’ be the set of & € S such
that P(Z) > 0, and use the XOR-of-halfspaces learning algorithm to find a hypothesis H'
that correctly classifies the examples in S’. The final hypothesis is:

“If P(¥) < 0 then predict negative, else predict H'(Z).”

Theorem 1 For any radius r of the boundary region, our algorithm succeeds in the UB() model. The
sample size s for our algorithm is O (%Iog% + lf-lg %) and the time complezity O(s - Trp(n,s) +
Tr.p(n?,s)) where Trp(v,c) is the time complexity of solving a linear program over v variables with

¢ constraints®,

Before giving a proof of correctness, we point out the simplifying observation that our algorithm is
invariant under translation. If we add some vector ¥ to each & € S, this results in adding ¥’ to each
point of the form 2%, — #ney as well. In particular, this means that if we can prove that our algorithm

*Using an algorithm due to Vaidya[30], Trr(v,c), the time needed to solve a linear programming problem with v
variables and ¢ constraints (examples) cach specified to b bits of precision, is O(bu(c + v)**).



region of points that flip to positive or boundary {(all points
that fiip to positive must lie in here)

All negative examples that flip to positives lie above this hyperplane.

Figure 3: For clarity, Z,0s is the only positive example shown. All marked negative examples lie within
the dark-shaded region, which is the reflection of the positive and boundary regions through ;.
Lemma 2 states that the intersection of this region with the non-boundary negative region is linearly
separable from the set of positive examples in S. The hyperplane pictured is the linear equality P(z) = 2
from that lemma.

succeeds when the hyperplanes are homogeneous, then this implies that our algorithm also succeeds
in the general (non-homogeneous) case. Therefore, we can assume in our proof for simplicity that the
hyperplanes are, in fact, homogeneous.

We now fix some notation. Let r be the radius of the boundary region (which, notice, is not used
by the algorithm). We define the distance between a point 2 and a set S as the infimum over all y € S
of d(z,y). The target concept is defined by two unit vectors py and s, and the positive region POS =
{F:7 &> 0and py- & > 0}. We define the “opposite quadrant” to be {F: p;-Z < 0 and p5 - & < 0}.
We say a point (or example) is “non-boundary” if it is not within the boundary region.

The negative non-boundary region N EG,, is the set of negative points not in the boundary region.
Formally,

NEGu, ={Z:(p1-Z<0or py-7 < 0)and d(Z, POS) > r}.

Notice that if either ) - & < —r or 3 - & < —r then & is in NEG,;, though these are not necessary



conditions (see Figure 2). In fact, let us define
NEGpp ={Z:p1- < —rorpo-%< -7},

so NEGj,y € NEGr,. To get necessary conditions for lying in the region NEG,;, suppose that
T € NEGn— NEG p4,. Since & is negative but not in N EG .y, either —r < 71-Z < 0or —r < pp-& < 0.
However, since & € NEGy,, any point within distance r of £ must also be negative. In particular, if
—r < p1 - & < 0 then it must be that (T4 rf1) - 52 < 0, and if —r < Po - & < 0 it must be that
(Z -+ rp2) - p1 < 0. Thus,

NEG, C NEGfm-U
{.’I‘:": (ﬁl +& <0 and ﬁg T < *T‘ﬁl ﬁg) or (ﬁg -7 <{) and D1 T < —ri _‘ﬁg)} (l)

We begin by showing that the negative examples in the opposite quadrant do in fact get marked by our
algorithm.

Lemma 1 For any non-boundary positive ezample ¥,,5 and any negative example Tn.y in the opposite
quadrant, the point 2&p,s — Tneg 15 a non-boundary positive ezample.

Proof: Since &, lies in the opposite quadrant, we have g - Tney < 0 and F7 - Tney < 0. Since Tpos is a
non-houndary positive example, we know that 5y - £pos > r and Py - #p05 > r. Therefore,

ﬁl b (25}703 . fneg) 2 ﬁ]_ . 25;;05 >r

and
52 - (pros - :E.ncg) Z ﬁ2 ! 2:ﬁ",vms >

a

What remains to be shown is that there exists a positive example Z0s such that the set of negative
examples marked when using %, for reflection is linearly separable from the positives. In particular,
we show the positive example ¥ € S that minimizes (p; - £+ r)(F2 - £+ r) will succeed. Letting #p,s be
that example and a; = 7 - Tpos and ag = Py - Tpos, we show that a legal separator is the linear inequality
% + E’Q—ii > 2. (Intuitively, what we want is for Zp,s to be the “closest” positive example to the
origin according to some measure, and the correct notion of “closest” is that of being on the hyperbola

(p1- &+ 7r)(f2- £+ 7) = ¢ for minimum ¢.)
Lemma 2 Let ., be the example & € S minimizing (P1 - T+ r)(Fa- T+ ) and let a1 = F1 - Tpos and
g = Py « Tpos. Then the linear function

P& 4r | Pp-F4r
T oaptr ag +r

P(7)
is at least 2 for each positive example T and at most 2 for each negative ezample T that is marked when
using T'pos for reflection.

Proof: First we consider the positive examples. Let § be some positive example in 5. Define o =
(F-p1+r)/(a1+7) and B = (§- 72+ r)/(ag+7). By definition of Z,,, we have @ > 1, and by definition



of the positive region we know both « and § are at least 0. These inequalities imply that o + 8 > 2,
which implies P(3) > 2.

Now consider the negative examples. The set of examples ¥ with the property that 2&,0; — £ might
be classified as positive by a membership query is pictured in Figure 3. Any such example & must satisfy
71+ (2% pos — &) > —r and Fa - (28,05 — &) > —r, and therefore must belong to the set

MAYFLIP ={Z: 91 - £ < 2a1+r and 5 - £ < 202+ r}.

We now consider the possible cases for marked negative examples & € 5, using the characterization of
the negative non-boundary region given by Equation (1) (cases 1 and 2 below handle the possibility
that £ € NEG g,,).

Case 1. Suppose & € MAYFLIP (N {& : ; - & < —r}. Then P(&) < 0+ 2242 = 3,
Case 2. Suppose & € MAYFLIPN {Z: 5, -& < —r}. Then P(Z) < Z—Zii—f” +0=2.

Case 3. Suppose £€ {T:5;-F < 0and gy - F < —rpy - o}

Then P(Z) < ;I + r(_f;fiﬂ) <1+ -&f:'ll_;-, which is at most 2 since ag > .

Case 4. Suppose £ € {Z:p2-& < 0 and F; - & < —rf) - P2}. Same reasoning as Case 3. m|

Proof of Theorem 1: The correctness of our algorithm follows from Lemmas 1 and 2. For the time
complexity, for each of the at most s positive examples, we do the following. First we must do a
query for each of the at most s negative examples to mark the appropriate ones. Next, we attempt
to find a linear separator (which can be done in Trp(n, s) time). Finally, the XOR algorithm requires
solving a linear program over n? variables and s constraints. Thus the overall time complexity is
O(s(s -+ Trp(n, s)) + Trp(n?,5)) = O(s - Tup(n, 8) + Trp(n?, 5)). a

Note that the proof of Lemma 2 (and thus the proof of Theorem 1) relies on the fact that there are
no examples from the boundary region. Otherwise, we could not prove that we would get the needed

separation.

5 Learning Subclasses of Monotone DINF Formulas

In this section we describe algorithms to learn two subclasses of monotone DNF formulas in the IBQ
model for small values of the boundary radius ». Qur algorithms will treat each “don’t care” response
as positive. Thus one could view this result has learning in a one-sided false-positive-only UBQ model
in which the learner may receive false positive answers to any queries in the negative boundary region,
but receives correct answers in the positive boundary region.

Specifically, we give an algorithm to learn the class of “read-once monotone DNF formulas in which
each term has size at least 4” in the IBQ model with boundary radius r = 1. While this is clearly a
highly-restrictive class, it is not difficult to show, using standard prediction preserving reductions [24],
that it is as hard to learn as general DNF formulas in the passive PAC model. In particular, we can
reduce an arbitrary DNF formula f to a read-once monotone DNF formula f' in which each term has
size at least 4 by replacing each literal of f with the conjunction of four new variables, and mapping
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an example z for f into an example &' for f’ such that f(z) = f/(2') in the straightforward way. Thus
our algorithm demonstrates that unreliable queries provide some power over the passive model in a
boolean setting. We also give an algorithm to properly learn a subclass of constant-term monotone
DNF formulas for any constant ». While the class of k-term DNF formulas is learnable in the passive
model, membership queries are required for proper learnability.

One reason for studying the one-sided, false-positive error model (which is what we obtain from the
IBQ model by treating all “don’t care” responses as positive) is that the monotonicity of the target
class provides some inherent ability to handle false-negative errors. In a related model, Angluin and
Slonim [5] show how to learn monotone DNF with random false-negative answers to membership queries
allowed anywhere in the domain (not just in the boundary region). However, it is not known how to
extend their results to handle false positive errors. We hope that the results presented here may be
combined with these previous results to produce general techniques for learning monotone concepts with
two-sided noise.

Let y1,...,yn denote the n boolean variables, and 2 = (21,...,2,) denote an example. As is
commonly done, we view the sample space, {0,1}", as a lattice with top element {1}" and bottom
element {0}". The elements are partially ordered by the relation <, where v < w if and only if each bit
in v is less than or equal to the corresponding bit in w. The deseendants (respectively, ancestors) of a
vector v are all vectors w in the sample space such that w < v (respectively, w > v). For a monotone
term, by moving down in the lattice (i.e. changing a 1 to 0), the term can only be “turned off”. Thus
every monotone term can be represented uniquely by the minimum vector in the ordering < for which
it is true.

Let A(7, v) be the set of examples obtained by flipping exactly 7 zeros to ones in vector v. The parents
of v are the elements of A(1,v), and the grandparents of v are the elements of A(2,v). Likewise, D(3,v)
is the set of examples obtained by flipping exactly ¢ ones to zeros in v, and for a set V of examples we
let D(%, V) = Uyev D(i,v). We define the children of v as all elements in D(1,v), and the siblings of v
are all elements in D(1, A(1,v)).

We often think of examples as terms and vice-versa, associating with a monotone term the minimal
positive example that satisfies it. For example v let term(v) denote the most specific monotone term
that v satisfies. Thus, we say an example is a sibling of a term, meaning that it is a sibling of that
term’s associated example. Given an example  we define vars(z) to be the set of variables set to 1 by
2. We also treat a term ¢ as the set of variables it contains.

We now describe the high-level algorithm that is used to obtain both of our results. Our hypothesis
h contains candidates for terms of the target function f, and possibly some additional terms used to
ensure that counterexamples provided are not in the boundary region of any known terms. We begin
with # = (. We then enter a loop in which we make an equivalence query with our current hypothesis,
and then ask a collection of membership queries to update our hypothesis in light of the counterexample
received, until a successful equivalence query is made. We maintain the invariant that after 7 positive
counterexamples have been received, i contains at least ¢ distinct terms #4,...,%; of the target concept
(and possibly other terms that may or may not be in the target concept).

Following our definitions in Section 2, we say an example 2 is in the boundary region of term ¢ if
t{z) = 0, but there exists an 2’ > 2z such that ¢(z') = 1 and dist(z,2") < r. We define the set of
boundary/positive ezamples B = {v | v is in the positive or boundary region of some term in AN f},
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where “A N f7 denotes the set of terms that appear in both formulas. Observe that since each term
is monotone, B is monotone. Note that B depends not only on f, but on the current hypothesis i as
well. Thus, there may be some example v € B such that u is in the boundary region of some term £ in
h, but is a truly positive example of the target function f. Such a u might be returned as a positive
counterexample to an equivalence query made on h. Thus to maintain the invariant, we need to show
that we can always use counterexample u to find a new term of f not already in A.

We now describe how a counterexample 2 is processed so that we can maintain this invariant. When
it receives a negative counterexample, our algorithm simply removes from A all terms that classify 2
as positive. Clearly no term from f will be removed. No terms in the boundary of f will be removed
either, since no counterexamples are chosen from the boundary region.

If  is a positive counterexample we first run the procedure Exit-Boundary(z), which returns an
example v € B such that MQ(v) is positive (this could be a false positive). We then run the following
process to “reduce” v so it is “near” a new target term. To ensure that we do not rediscover a known
term, the procedure Move-Further must return an example that is not in B. Below is our procedure,
which is guaranteed to add a new term from f to A.

1. Let v be the example returned from Exit-Boundary. (So v is positive or in the boundary region of

a new term of f.}

2. So long as v has some child to which 2 membership query reports “positive”, replace v by that
child and repeat. This is the standard Reduce procedure common to many monotone-DNF learning
algorithms. (Note that since v ¢ B and the target formula is monotone, it follows that no child

of v could be in B.)

3. We now call a procedure Move-Further(v) for which one of two cases will occur:

Case 1: Move-Further(v) returns an example v’ & B such that v’ has strictly fewer ones than v
and MQ(v’) is positive. In this case we return to step 2 using v’ as the current example.

Case 2: Move-Further(v) reports failure. Here we are guaranteed that v is “near” a new term
tiy1 of f. Example v is “near” £;14 if the number of irrelevant variables in vars(v) is at most
the number of relevant variables from £;4; missing from vars(v), which in turn is at most r.

Formally, we require that
fvars(v) — tip1| < [tig1 — vars(v)| < 7.

In this case we call the procedure Generate-Candidates(v), which returns a polynomial-sized
set T of terms with the guarantee that ;.3 € T. We then add all terms in T to A.

At this point our algorithm is ready to make its next equivalence query.

Lemma 3 Given that Exit-Boundary, Move-Further, and Generate-Candidates satisfy the stated condi-
tions and run in polynomial time for some subclass C of monotone DNF formulas, the above procedure
learns C in the IBQ) model (or the false-positive-only UBQ) model) in polynomial time.
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Proof: If there are no counterexamples to h, we are done. The number of positive counterexamples
received is at most the number of terms in the target DNF. Once Exit-Boundary is completed, all examples
that the Reduce process recurses on have the property that they are positive examples (possibly false
positive) outside the positive or boundary region of any term of A N f. Thus from the correctness of
Move-Further and Generate-Candidates, we are guaranteed that a new term is added to A after at most
n calls to Move-Further. Furthermore, each negative counterexample removes at least one “extra” term
placed in A by Generate-Candidates, and we are guaranteed that there are at most a polynomial number
of such terms. Thus, there are only a polynomial number of negative counterexamples, so our algorithm
runs in polynomial time as long as all of the provided procedures do. a

We now briefly describe some of the difficulties we encountered in designing an algorithm to learn
the class of general monotone DNF formulas in the IBQ model. The challenge is to develop an algorithm
that finds new terms of the target concept sufficiently often and that avoids rediscovering known terms
exponentially-many times. Each positive counterexample must be positive for at least one new term, so
one might hope to add that new term to the hypothesis each time. However, if the “reduce” procedure
is allowed to move through positive or “don’t care” examples that are in the boundary region of some
known term, then there is a chance of moving away from the new term entirely, so that all the positive
or “don’t care” examples nearby are only positive for (or in the boundary of) previously-discovered
terms.

We avoid this hazard by using the Exit-Boundary procedure. The motivation for defining FExit-
Boundary as we do is the following. Once the learner has an example v € B such that MQ(v) is positive
(this could be a false positive), then, at least for constant r, a procedure like the standard “reduce”
procedure can be used to find a polynomial-sized set of terms, one of which will be a new term of the
target concept. The drawback of requiring Exit-Boundary to return an example classified as positive or
don’t care that is not in B is that for some general monotone DNF target functions and some subsets &
of the terms in the target, no such example exists. That is, all positive counterexamples might be in the
boundary of some already known term. Even when such an example exists, it may not be possible to
move from the initial counterexample @ to an example y ¢ B such that the Hamming distance between
z and y is constant and MQ(y) is positive. Thus designing an efficient Exit-Boundary procedure is hard
in general.

For the subclasses described in this section, we solve these problems in two different ways. In the
first of our algorithms, the concept class is restricted so that by building a hypothesis that contains
a subset of the terms of 2 and the “children” for each such term in A, the counterexample we obtain
already satisfies the requirements for Exit-Boundary. For the second of our algorithms, we show that
by examining (via a membership query) a polynomial number of examples we are able to find one that
satisfies the requirements for Exit-Boundary.

One alternative approach we considered was to begin the “reduce” procedure from the given coun-
terexample, but to add the extra constraint of never moving to an example already classified as positive
by the hypothesis. One difficulty here is that there may be incorrect terms in the hypothesis preventing
the algorithm from reducing towards the new target ferm. Another is that once again, the learner can
move from the new term satisfied by the original counterexample to an example that is in the boundary
region for a known term (and no longer near any term in f—h). Because of these difficulties, we adopted
our current approach.
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5.1 Learning A Subclass of Read-Once Monotone DNF Formulas

We now describe how to complete the generic procedure above to obtain an algorithm that learns the
class C of “read-once monotone DNF formulas in which each term has size at least 4” in the UBQ model
where r = 1.

We begin by describing a utility routine, Study-Example, used in the algorithm. This routine takes
an example returned by Mave-Further (which is guaranteed to be “near to” some term of the target) and
produces a more useful approximation to that term. The desired behavior of the routine Study-Example
is specified in Property 1.

Property 1 Let f be a function in C, and let v be an example such that there ezists a term t;y of f such
that v is either equal to, a sibling of, or a child of t;y.q. Then Study-Example produces an approzimation
fivy of tiy1 along with one of these two guarantees:

(1) fir1 is equal to tiy; or a parent of t;y1 (so it is a superset of t;y1), or
(2) tiy1 is equal to tiy; or a child of tiy; (so it is a subset of tiyy).

The Study-Example routine asks a membership query on all siblings of v (where v is the example
returned by Move-Further). Let P be the set of siblings for which the membership oracle replied “yes.”

Let P/ = P U {v}, and let ¢ be the term that contains exactly the variables in [ | vars(p). The
pEP!
procedure Study-Example outputs based on the following cases:

1. If || = [term(v)] -+ 1, let f;11 = ¢ and report “superset”.
2. Else

(a) If some variable y; € vars(v) is “responsible for” at least two of the variables in ¢ — vars(v)
in the sense that at least two variables in ¢ — vars(v) are set to 1 in examples of P setting y;
to 0, then let £;41 = term(v) — {1} and report “subset”. (If there are several such variables
Yi, just pick one.) For example, let v = 0011 and P = {1001, 1010,0101}. Then ¢ = y1Y2y3¥y4
and t — vars(v) = {y1,y2}. Here y3 is responsible for y; and ys, since y3 is 0 in 1001 and
0101. However, y, is only responsible for 3. Thus in this case we would let y; be ys and

tit1 = Ya-
(b) Else let ;1) = term(v) and report “subset”.

Lemma 4 The routine Study-Example as described above correctly satisfies Property 1.

Proof: Note that no siblings of v are in the boundary region of any of the other terms in the target
function. That is because a sibling of v may have at most two variables set to 1 that are not in t;41,
and every other term must have at least four variables not in #;4+; (since they all have size at least 4
and the target function is read-once). Thus, we may analyze the routine as if ¢;4.; were the only term
in the target function.

We now consider three cases based on whether v is equal to, a sibling of, or a child of ¢;4;. First
suppose v = t;y;. Notice that when Case 1 occurs, ¢ must be a parent of v (since it has exactly one
more variable). Thus the output of returning ¢ and “superset” is correct since Study-Example returns a

14



parent of v = £;41. In Case 2a Study-Example returns a child of £;;; and “subset” which is correct, and
in Case 2b Study-Example returns #;.; itself (and “subset”) which is correct.

Next we consider the case in which v is a child of #;4.;. That is v contains exactly the variables in
ti+1 except some relevant variable y.o;. Note that any element of P that is positive (all would be false
positives), must have set y,.¢; to 1 and set some irrelevant variable to 0. Thus if Case 1 occurs, £ = £;43
and thus Case 1 is correct. Notice that in Case 2b, Study-Example returns term(v) and subset which is
correct since ferm(v) is a child of £;;1. Finally, notice that removing any relevant variable from term(v)
would give an example that must be reported as negative unless y.e is set to 1. Thus no variable in
vars(v) could be responsible for more than the one variable, namely yre, in ¢ — vars(v) and thus Case
2a cannot apply here.

Finally, we consider the case in which v is a sibling of ¢;;y. That is v contains exactly the variables
in t;y; except it is missing some relevant variable y,.es and includes one irrelevant variable y;re;. Notice
that £;41 is a sibling of v and must be reported as positive. Thus ¢;41 is in P and thus y, will be in
t. Thus ¢ will contain all the relevant variables of ¢;;1 along with some number of irrelevant variables.
Note that if Case 1 occurs, then ¢ contains exactly the variables in #;y; plus ¥isper. Thus returning t
and “superset” is correct since ¢ is a parent of t;41. We now argue that if Case 1 does not occur (in
which case [t| > |term(v)| + 2), then Case 2a must occur. Let y’ be a variable (besides y,e;) that is in
t—vars(v). (Note that vars(t) 2 vars(term(v)) and thus since j¢| > [term(v)|+2, there are at least two
variables in ¢ — vars(v)). In Case 2a consider when y; = y;rrer. Notice that when y; = 0, there was an
element of P corresponding to when either y,. or ¢ were set to 1. Thus y;,re i responsible for at least
two vars in ¢ — vars(v) and thus either Case 1 or Case 2a applies. Finally, if any variable in vars(v),
besides Yirrer, is set to 0, an example is only placed in P if y,. is 1 (otherwise, two relevant examples
would be 0 and thus the membership oracle must respond with negative). Thus all variables in vars(v)
besides y;rrer could only be responsible for a single variable in t —vars(v). Thus fi1; = term(v) — {Yirrei}
is a child of t;1; and thus returning #;1; and “subset” yields the correct answer. a

We now prove our main result of this subsection.

Theorem 2 The class of read-once monotone DNF formulas where each term in the target formula
has at least four variables is exactly learnable in the IB(Q) model (or false-positive-only UBQ model) for
boundary radius r = 1 using O(n®) equivalence queries and O(n®) time and membership queries where
n is the number of variables.

Proof: By Lemma 3, we need only define subroutines Exit-Boundary, Move-Further, and Generate-
Candidates, and show that they satisfy the conditions outlined in the previous section.

We first describe Generate-Candidates. The procedure Generate-Candidates(v) calls Study-Example(v).
Study-Example(v) returns a term fir1 and a label o (either “subset” or “superset”)}. Next, add the pair
(fi41,0) to the set £, which stores all the ;s and their labels. If label ¢ = “subset” then place £;4; and
its children into 7. Otherwise, if label o = “superset” then place £;;1 and its parents into 7'.

From Lemma 4 it follows that if Study-Example is called on example v such that v is equal to, a
sibling of, or a child of a new term #;4y, then ¢;4; is placed in 7. Thus the set D(1,T) must include all
children of t;4.1. We therefore have Generate-Candidates return 7'U D(1,T), so all terms in TU D(1,T)
are added to A.

Next, we claim that the identity function satisfies all the requirements for the procedure Exit-
Boundary. For positive counterexample z, we want Exit-Boundary(z) to return some example v € B
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such that MQ(v) is positive. If # is a positive counterexample, then certainly MQ(z) is positive.

We now argue that @ cannot be in B. Initially, whenever we add a new term ¢;¢; to h, we also add
its children, as described above. (Note that it is not possible for Generate-Candidates to accidently add
an additional term #;4, to k without its children. If it did so, ¢;32 would have to be in D(1,T) but not
in T'. But since f is read-once and each term has size at least 4, it is not possible to have two terms of
fy tiy1 and ¢;49, such that £;4; € T" and ;40 € D(1,T). } Once a term of f or any of its children is
placed in &, it cannot be removed by any negative counterexample (since any child of a term in f is in
the boundary region of f}. So no positive counterexample can be in B. Thus, Exit-Boundary(z) simply
returns z.

We now describe the procedure Move-Further(v). Note that the input » has the properties that v
is not in B and that MQ(v)}=1. Furthermore, since v must have failed the standard Reduce procedure,
MQ(v'} is negative for all v € D(1,v).

1. For each £; in £ (for j = 1,2,...,4) that is labeled “subset”, set every variable in vars(f;) to 0 in
v. (This new example is still in the positive or boundary region of a new term since f is read-once.
And since f is monotone, this example is not in B.) We fix these variables at 0 for the remainder

of this procedure.

2. Let V Dbe the set of variables set to 0 by v and not fixed to 0 in Step 1. For each variable ys € V,
consider the example v’ obtained from v by flipping to 0 all variables in the terms fj that contain
ye, and then flipping y; to 1. Let P be the set of all such examples for which a membership query
reports “positive”.

3. (a) If there is an example in P that has fewer 1’s than v, then return this example.

(b) If not, then query all children and grandchildren of examples in P and if one of them has

fewer 1’s than v and is reported as positive, then return this example.

(c) Otherwise report failure.

Lemma 5 The procedure Move-Further(v) as described above either returns an example v/ & B such that
v' has strictly fewer ones than v and MQ(v') is positive, or it returns failure, in which case |vars(v) —

tiv1] < [big1 — vars(v)} < 1.

Proof: Move-Further maintains the invariant that v ¢ B and v is in the positive or boundary region of
a new term of f. We have already argued that this holds after Step 1. Thus, at this point, there exists
some term £;41 € f, distinct from #y,...,%;, such that v sets to 0 at most one variable in #;44.

We now argue that each example in P has at most one variable in common with term ¢; for1 < j < 4.
If v’ € P was obtained by flipping to 1 some variable y appearing in, say, term ¢; (7 < ¢} then one of
two cases holds. If {; is a “subset” of t;, then y is the only variable that vars(v’) has in common with
t;, since all others in t; have been fixed to 0. Otherwise, fj is a “superset” of ¢;. In this case, y is also
in fj, s0 to obtain v’ we flipped all the rest of the variables in fj to 0. Thus, since each term of f has
at least 4 literals, no example in P is in B. So if an example ¢’ is returned in step (3a) or (3b) then it
has the desired properties: v’ ¢ B, MQ(v') is positive, and |vars(v’)| < jvars(v)|.

We now argue that if step (3c) reports failure then v satisfies jvars(v) — t;a1] < |fip1 — vars(v)| < 1.
We have already argued that v is the the positive or boundary region of a new target term, ¢;41, and thus
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at most one relevant variable from ¢;4, is missing from vars(v) (i.e., |tiy1 —vars(v)| < 1). Furthermore,
if vars{v) contains all the variables in #;4+; then #;31 = vars(v), because all irrelevant variables would
have been removed by the standard Reduce procedure. (Recall that one input condition on v is that no
children of v are positive.) Therefore, if [t;11 — vars(v)| = 0, then [vars(v) — ;11| = 0 as well.
Otherwise, suppose that |t;41 — vars(v)| = 1, so v is missing one relevant variable, yg, from ;4.
Then when ye is added in step (2), the membership query would be positive and thus this example
would be added to P. Now suppose there were two or more variables in vars(v) that were not in #;43.
Then an example in which two of those variables were set to 0 would have been returned in either step
(3a) or (3b). Thus if we reach step (3c) we know that |vars(v) — ¢;41| < [tis1 — vars(v)| < 1 holds. O

Finally, we claim that since the example v returned by Move-Further satisfies the property |vars(v) —
tip1] < |t — vars(v)| < 1, v must either be equal to ¢;14, or be a sibling or a child of t;4;. Thus,
Study-Example is called on a vector satisfying the conditions of Property 1, proving the correctness of
Generate-Candidates and of Theorem 2.

We now analyze the time and query complexity. Let m be the number of terms in the target
formula (and since the formula is read-once we have that m = O(n)). There are at most m positive
counterexamples since we are guaranteed to find at least one new term for each positive counterexample.
We now analyze the time and membership queries used to process each positive example. For each such
counterexample we must use Reduce and Move-Further until we are “stuck.” We can move to a “lower”
example in the lattice at most n times and for each move down we could perform a membership query
on the at most n children and then use Move-Further. In the first step of Move-Further we use O{n%)
time. In the second step we use O(n?m) time and make at most » membership queries. Finally
the third step uses O(n3) membership queries and time since [P| < n and at most n? membership
queries are made per element of P. Thus our reduction procedure uses O(n?) membership queries
and O(n(n® -+ n?m)) = O(n?) time per positive counterexample. Finally, Study-Example makes O(n?)
membership queries and uses O(n?3) time, and Generate-Candidates returns a set TUD(1,T) that has size
at most O(n?) since T has size at most n - 1. Putting it all together, the number of counterexamples
is at most O(mn?) = O(n®) since n? terms could be placed in h for each of the up to m positive
counterexamples. The time complexity and number of membership queries is O(mn?) = O(n®). a

It is possible to extend the algorithm of this section to learn in the IBQ model, for any constant r,
the class of “read-once monotone DNF formulas in which each term has size at least ¢” where ¢ is a
“constant” that depends on r. However, in the above proof the details of Study-Example, the proof that
the identity function mets the needs for Exit-Boundary, and the Move-Further procedure all currently
rely on the requirement that » = 1 (and ¢ = 4).

5.2 Learning (r + 1)-Separable k-Term Monotone DNF Formulas

We now show that a subclass of monotone k-term DNF formulas is properly learnable in the IBQ model
(where again we will treat all “don’t care” examples as positive) for any constant boundary radius. We
say that two terms #; and ¢; are {-separable if there are £ variables in ¢; that are not in ¢;, and there
are £ variables in #; that are not in ¢;. A monotone DNF formula f is £-separable if all pairs (f;, ;) of

terms of f are f-separable.
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Theorem 3 The class of (r 4 1)-separable k-term monotone DNF formulas is exactly learnable in the
IBQ model (or false-positive-only UBQ model) using polynomial queries and time (for r and k constant).
Furthermore, all equivalence queries made by our algorithm are (r+1)-separable k-term monotone DNF
formulas. Our algorithm uses O(n3*+3+E%) time and queries.

Proof: We first prove this result under the assumption that Generate-Candidates not only finds a set of
candidates that contains some new term of the target formula, but has the power to “guess” which one
is right. Thus A always contains a subset of the terms of the target. Then we argue that our algorithm
can be modified to remove this assumption.

We first define the procedure Exit-Boundary. For each term ¢; of f already in h, choose a set s; of
(r + 1) variables in #;. Let S = U;s;. Then let v’ = v with all variables in S set to 0. The procedure
Exit-Boundary(v) performs a membership query on each possible v' obtained in this fashion, and returns
the first such example for which the membership oracle replies “yes.” Thus, each query sets up to
(r + 1)(k — 1) variables in vars(v) to 0. We now prove that Exit-Boundary is correct.

Lemma 6 The procedure Exit-Boundary(v) successfully returns an ezample v' & B for which MQ (V") =

“nositive.”

Proof: Since v was a positive counterexample, it must be in the non-boundary positive region of some
term tpey in f — h. Suppose it is also in the boundary region of some terms in 4. Consider one such
term txpown. Since fis (r + 1)-separable, if we set to zero r 4 1 variables in vars(v) € tinown — tnew
then v will no longer be in the boundary of txpown. However, we still know that all variables in ., are
in vars(v) since we do not change any variables in fpey. (In fact, if all » + 1 variables in tznown — tnew
are 1 in v, then it suffices to pick any r of them to set to 0, since we know that v is already in the
boundary region of fyneun.) We can repeat this for the at most (k£ — 1) other terms in h. Thus after
setting at most (r -+ 1)(k — 1) variables in vars(v) to 0, we obtain an example that is not in B and is
in the truly positive region of t,ey. Since this is one of the examples queried by Exit-Boundary we know
that at least one membership query will respond “yes”.

Of course, it is possible that some other membership query responds “yes”. However, note that
Exit-Boundary never queries any example in B, since all examples queried are obtained by setting » +1
variables from each known term to 0. Thus, in this case we are still guaranteed that the example v’
returned is not in B and that MQ(v") is positive. 0

The procedure Move-Further works as follows. For each 7 such that r +1 < ¢ < rk, it performs a
membership query on all examples v’ in D(i, A(r,v)) that are not in B and returns the first v’ for which
MQ(v') = 1. If no such examples are found after all values of 7 have been tried, then it returns “failure.”
If Move-Further returns v/, then v’ must have strictly fewer ones than v, since v’ € D(7, A(r, v)) for some
i > 7.

We now argue that when Move-Further(v) reports failure the following two properties hold:

1. Example v sets to 0 at most r variables from term ¢;41 of the target formula (i.e. |£;41 —vars(v)| <
r).
2. The number of variables not in #;1, that are one in v is at most the number of variables in ;41

that are zero in v (Le. |[vars(v) — tiy1] < |41 — vars(v)|).
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Since v ¢ B and MQ(v) = 1, v must be in the positive or boundary region of some new term from
f. Since the adversary can reply “positive” only on an example that sets to 0 at most r variables from
a term in f, the first property follows.

We now prove that the second property holds. Let ;1 be any new term of f for which v has £ < r
variables set to 0. Suppose that the second property fails. Thus there are at least £ + 1 variables not
in #;3; that are one in v. Since the target is (r + 1)-separable we know that ¢;4, is not in B. Since
t;+1 has at most r variables set to 0 in v, at least one example # in A(r, v) has all variables in #;4; set
to 1. When adding these r 1’s, we have at worst just set to 1 r variables in each of the known terms.
For each term #; € A, let s; be the set of all variables in #; but not in #;4,, and let S = U;s;. Let 2/
be example z with all variables in S set to zero. Since the target concept is monotone and (r + 1)-
separable, we know that 2’ is still in the positive region of term ¢;; and that 2’ € B. Move-Further
queries examples in D(4, A(r, v)) for all 7 such that r + 1 < ¢ < kr, so 2’ must be one of the examples
queried by the procedure. Finally, since there are at least £+ 1 variables not in #;5; that are 1 in v, and
since 2’ € D(i, A(r,v)) for some i > r > £, &' must have strictly fewer ones than v. But this contradicts
the assumption that Move-Further(v) reported failure. Thus the second property holds. Also note that
only a polynomial number of examples were queried (since » and & are constant). Thus this procedure
runs in polynomial time.

Generate-Candidates(v) lets T' = Ul_,D(¢, A(r,v)) and non-deterministically guesses which one is in
f. It follows from the correctness of Move-Further that ¢;y, is placed in T'.

We now analyze the time and query complexity for the non-deterministic case. In Exit-Boundary
we consider turning off each subset of up to (r + 1)(k — 1) of the n variables. Thus this step uses
O(nlr+1)k=1)) = O(n7#+*) time and queries. Reduce uses O(n?) time and queries. In Move-Further, we
may have to query all elements of D(7, A(r, v)) for r+1 < ¢ < rk. Since [A(r,v)| = O((%)) = O(n"), then
|D(i, A(r, )] < T35 (w7 - nf) = O(w"*+7). Thus the time per call of Move-Further is O(n™**"). Finally,
Move-Further may be called up to n times per each of the & positive counterexamples. The routine
Generate-Candidates creates O(n®") candidates (of which one is the non-deterministically selected). Thus
the overall time and sample complexity is O(kn™*+7+5) = Q(pritrt+k)

To remove the need to non-deterministically select the right term from 7' we just try all guesses.
We halt when failure is detected because a negative counterexample is received or a (k + 1)st positive
counterexample is received.

Any negative counterexample stops and restarts the algorithm. Since in Generate-Candidates at most
O(n?") candidates are generated and we need to choose one of these correctly at each of & + 1 possible
steps, there may be up to n2"(*+1) runs of the deterministic algorithm. Thus the overall time and query
complexity is O(n"F+r+E . p2rlk+1)) = O(p3*+3r+5) which is polynomial since r and k are constant. O

The proof of Theorem 3 can be extended to obtain the following result.

Corollary 4 The class of 2-term monotone DNF formulas is evactly learnable by the class of 2-term
monotone DNF formulas in polynomial time in the IBQ (or false-positive-only UBQ model) with a
boundary region of radius r (for constant r). The time and query complezity is O(n%*?).

Proof: Let f =¢; 4+ t5. If {; and ¢; are (r - 1)-separable then the result immediately follows. Thus,
without loss of generality, assume that ¢ contains all of the variables in #; except at most r of them, as
well as any number of additional variables. If ¢; is placed in h first then no counterexample is created
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by t2 since it is entirely contained within the boundary region of ;. If ¢; is placed in h first, then we
receive a positive counterexample for £; (unless it is contained within #2’s boundary in which case we
are done). This counterexample is processed to add ¢; to h. The time and query complexities directly
follow from Theorem 3 by just setting & = 2. m

6 Concluding Remarks

We have introduced two related models of learning with noise near the boundary of the target concept,
and we have presented positive results in these models in both continuous and discrete domains. How-
ever, there is much more work to be done. The algorithms described here learn fairly simple concept
classes. We do not yet know how to extend these results to learn general monotone DNF formulas or the
intersection of more than two halfspaces. One eventual goal might be a general result describing ways
to transform classes of PAC-memb or exact-learning algorithms to work in the IBQ or UBQ model.
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