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ABSTRACT OF THE DISSERTATION 
 

Guanine Nucleotide Synthesis and The Enteric Nervous System 
by 

Jonathan Ian Lake 
Doctor of Philosophy in Biology & Biomedical Sciences 

(Molecular Cell Biology) 
Washington University in St. Louis, 2015 

Professor Robert Heuckeroth, Chair 
Professor David Ornitz, Co-Chair 

 
There are currently no prevention strategies for Hirschsprung disease (HSCR), a potentially 

lethal birth defect caused by the failure of the enteric nervous system (ENS) to develop 

completely, resulting in an aganglionic segment of intestine. HSCR can result from one or a 

combination of partially-penetrant mutations in genes affecting the enteric neural crest-derived 

cells (ENCDCs) that colonize the intestine to form the ENS. While the genetics of HSCR and 

ENS development has been extensively studied, little is known about environmental risk factors 

for HSCR. To investigate maternal medication exposure as a possible HSCR risk factor, we 

conducted a chemical screen in zebrafish embryos for drugs that inhibit ENS development. 

Among several identified inhibitors of ENS development, we selected the antimetabolite 

immunosuppressant medication mycophenolic acid (MPA) and its prodrug mycophenolate 

mofetil (MMF) for further study. Here we demonstrate that maternal MPA or MMF exposure 

impairs ENS development in mice through MPA-mediated inhibition of inosine–5’-

monophosphate dehydrogenase (IMPDH), which catalyzes the rate-limiting step of de novo 

guanosine monophosphate (GMP) synthesis. This inhibition results in reduced ENCDC 

proliferation that then impairs colonization of the intestine. We also show that MMF exposure is 

sufficient to cause permanent ENS defects and greatly enhances the penetrance and severity of 

aganglionosis in the Sox10 and Ret mouse models of HSCR. Prompted by this interaction 



xiv 
  

between IMPDH inhibition and ENS development and by the proximity of an essential IMPDH 

gene, IMPDH2, to a mapped HSCR susceptibility region, we sequenced IMPDH2 in a cohort of 

HSCR patients. We detected a single individual heterozygous for a nonsynonymous variant, 

P123R, and show that it produces an enzyme with slightly reduced activity. Furthermore, we 

deleted Impdh2 in neural crest derivatives in mice, resulting in major developmental defects 

including drastically reduced ENCDC colonization of the intestine. However, heterozygosity for 

a null allele of Impdh2 did not affect the penetrance of either Sox10 or Ret mutations. These 

studies reinforce the importance of ENCDC proliferation to ENS development, demonstrate a 

dramatic gene-drug interaction, and provide the first evidence that maternal medications may 

increase HSCR risk. 



 

1 
 

Chapter 1: Introduction 

Hirschsprung disease (HSCR), or congenital megacolon, is a birth defect affecting 

1 in 5000 infants (1) in which a portion of the enteric nervous system (ENS) fails to form. 

HSCR is lethal if not surgically treated and is an oligogenic disease with incomplete 

penetrance and variable severity. The incomplete penetrance of HSCR mutations is 

generally attributed to either interactions between multiple mutations or to random 

developmental noise. While the human genetics of HSCR and developmental pathways 

of ENS development have been very heavily studied, the contribution of environmental 

factors to this birth defect’s penetrance may be overlooked. Investigating the effect of 

environmental factors on ENS development could lead to prevention or mitigation 

strategies for HSCR. To date, little attention has been paid to the possible role of 

nongenetic factors on HSCR, though animal data and some limited human data suggests 

that the fetal microenvironment exerts an influence. Since medications represent a group 

of compounds that have known biological relevance, often have well-understood 

mechanisms, and are actively used by people, they are an ideal tool with which to screen 

for environmental exposures that influence phenotype. 

The studies described here attempt to address this gap. In Chapter 2, I review the 

genetics and cell biology of ENS development and the pathological processes that occur 

in HSCR (2.3–2.10). I also discuss areas of ENS development and HSCR pathology 

where mechanisms remain unexplained or data appears contradictory (2.11). I then 

review the evidence from animal models and human studies that supports a role for gene-

environment interactions in ENS development and HSCR (2.13).  
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In Chapter 3, I describe a chemical screen in developing zebrafish that I 

conducted together with other lab members and our detection of mycophenolic acid 

(MPA) as an inhibitor of ENS development. I then describe my subsequent investigation 

into the mechanism of MPA’s effects on ENS development and demonstrate gene-drug 

interactions in mouse models of HSCR.  

While the chemical screen was intended to detect compounds that affect ENS 

development, it also prompted us to examine the genes in target pathways, the most 

prominent being the genes encoding inosine 5’ monophosphate dehydrogenase (IMPDH), 

the target of MPA. In Chapter 4, I examine the developmental role of one of the genes 

that encodes this enzyme, Impdh2, in the mouse ENS using conditional deletion within 

the neural crest. There, I demonstrate that Impdh2 expression in the neural crest is 

essential for development of the craniofacial skeleton and for colonization of the bowel 

by ENS progenitors.  

In Chapter 5, I investigate the possible relationship between genetic variation in 

the human IMPDH2 gene and HSCR, since this gene is located in a chromosomal region 

associated with HSCR susceptibility. Sequencing of a cohort of HSCR patients revealed 

one rare IMPDH2 variant that reduces its enzymatic activity, but mouse experiments did 

not support an Impdh2 interaction with HSCR model mutations.  

Together, these studies demonstrate the requirement for a basic metabolic process, 

de novo guanine nucleotide synthesis, in ENS precursors, reinforce the critical role of 

proliferation in this developmental process, and demonstrate proof-of-principle gene-

environment interactions in ENS development. 
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Chapter 2: Enteric Nervous System Development: 

Migration, Differentiation, and Disease. 

This chapter has been published as a review article by Jonathan I. Lake and Robert O. 

Heuckeroth in American Journal of Physiology - Gastrointestinal and Liver Physiology 2013, 

Volume 305, Issue 1, pp. G1-G24 

2.1 Summary 

The enteric nervous system (ENS) provides the intrinsic innervation of the bowel and is 

the most neurochemically diverse branch of the peripheral nervous system, consisting of two 

layers of ganglia and fibers encircling the entire gastrointestinal tract. The ENS is vital for life 

and is capable of autonomous regulation of motility and secretion. Developmental studies in 

model organisms and genetic studies of the most common congenital disease of the ENS, 

Hirschsprung Disease (HSCR) have provided a detailed understanding of ENS development. The 

ENS originates in the neural crest, mostly from the vagal levels of the neuraxis, which invades, 

proliferates, and migrates within the intestinal wall until the entire bowel is colonized with 

enteric neural crest-derived cells (ENCDCs.) After initial migration, the ENS develops further by 

responding to guidance factors and morphogens that pattern the bowel concentrically, 

differentiating into glia and neuronal subtypes, and wiring together to form a functional nervous 

system. Molecules controlling this process are required for ENS development in humans, 

including GDNF and its receptor RET, endothelin-3 and its receptor EDNRB, and transcription 

factors such as SOX10 and PHOX2B. Important areas of active investigation include 
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mechanisms that guide ENCDC migration, the role and signals downstream of EDNRB, and 

control of differentiation, neurochemical coding, and axonal targeting. Recent work also focuses 

on disease treatment by exploring the natural role of ENS stem cells and investigating potential 

therapeutic uses. Disease prevention may also be possible by modifying the fetal 

microenvironment to reduce the penetrance of HSCR-causing mutations. 

2.2 Introduction 

The gastrointestinal tract requires finely tuned control over muscular activity and fluid 

secretion to efficiently break down macroscopic food particles, efficiently extract nutrients, and 

maintain a healthy luminal microbiome. An important arbiter of these processes is the enteric 

nervous system (ENS), a network of neurons and glia within the wall of the bowel that controls 

most aspects of intestinal function.  In humans, the ENS contains about 500 million neurons of 

more than 15 functional classes comprising a wide range of neurotransmitters, projection 

patterns, and electrical properties (71).  When the ENS is missing (aganglionosis) or defective, 

children develop constipation, vomiting, abdominal pain, growth failure, and may die.  Because 

ENS development and function are complex, the regulatory molecules that control ENS 

morphogenesis are also diverse. Disruption of one or more of these signals contributes to a 

spectrum of diseases.  The ENS is derived from the neural crest (NC), a highly migratory and 

proliferative cell population originating at the junction of the neural plate and the adjacent 

ectoderm. NC cells invade the bowel and migrate through the mesenchyme in a process that is 

lengthy in both distance traveled and time required. Failure of enteric neural crest-derived cells 

(ENCDCs) to colonize the distal bowel causes Hirschsprung disease (HSCR), a common (1 in 

5000 live births) and life-threatening developmental disorder. Because enteric neurons are 
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required to actively relax intestinal smooth muscle, aganglionic bowel is tonically contracted 

causing functional obstruction. HSCR is a non-Mendelian genetic disease with partial penetrance 

and variable expressivity. Several excellent reviews of HSCR genetics (2, 111) and ENS 

developmental biology (12, 40, 79, 81, 89, 90, 120, 140), have been published recently, but these 

fields are advancing rapidly.  Here, we will review recent studies in the field in the context of 

existing models of ENS development and genetics and highlight areas that require additional 

investigation.  

 

2.3 The time course of ENS development 

ENS precursors originate in the vagal and sacral segments of the neural tube.  The vagal 

NC is the major source of ENS precursors (217), while the sacral NC makes a small contribution 

to the distal bowel (28, 52) and anterior trunk NC makes a small contribution to the foregut ENS 

(57). Because vagal NC are most extensively studied and form the vast majority of the ENS, we 

will focus our discussion on vagal NC while highlighting a few important differences in sacral 

ENCDC biology. At embryonic day 9.5 (E9.5) in mouse (108) and prior to week 4 in human 

embryos (63), pre-enteric neural crest-derived cells (pre-ENCDCs) invade the foregut and begin 

their long rostrocaudal journey down the bowel. By E14 in mice and week 7 in humans (66), this 

linear migration is complete (Figure 2.1). In mice and humans, ENCDC also undergo inward 

radial migration after initially colonizing the bowel (103), forming the two layers of ganglia that 

comprise the myenteric and submucosal plexi (Figure 2.2).  Unless otherwise indicated we will 

refer to mouse gestational ages.  As the enteric neural crest-derived cells (ENCDCs) migrate, 

they proliferate extensively, and then differentiate into neurons and glia and condense into 
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ganglia to form a network throughout the bowel. Recent data also suggest that ENS stem cells 

are present in both fetal and adult mammals raising interest in the possibility of autologous stem 

cell therapy for treatment of Hirschsprung disease and other intestinal motility disorders (14, 

138, 139).  Formation of the ENS therefore requires extensive cell migration, controlled cell 

proliferation, regulated differentiation, directed neurite growth and the establishment of a 

network of interconnected neurons.  Given these complex cellular events, each of which must be 

guided by specific molecular signals, it is not surprising that the genetics of ENS disease is 

complicated. 

2.4 Human genetics of Hirschsprung Disease and associated syndromes 

Most cases of HSCR are sporadic and occur as an isolated anomaly, but approximately 

20% are familial and 30% have either cytogenetic abnormalities or additional developmental 

defects that constitute a recognizable clinical syndrome. Currently, at least ten distinct genetic 

syndromes are strongly associated with HSCR, and many other disorders affecting genes without 

a clear role in ENS development occasionally include HSCR. These are beautifully discussed in 

recent reviews (2, 111).  There is also a strong male predominance (4:1 male/female ratio) in 

children with HSCR restricted to the rectum and sigmoid colon (i.e., short segment disease) and 

a weaker male predominance in children with long segment disease. Sibling recurrence rates for 

HSCR vary from 1% to 33% depending on the gender of the proband, the length of 

aganglionosis, and the gender of the new child.  This is consistent with the hypothesis that 

affected females and those with longer aganglionic regions are likely to carry greater genetic 

liability than males with short segment HSCR. These complex genetic patterns are to be 

expected given the developmental pathways needed to form the ENS and the many molecules
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Figure 2.1: Initial Colonization of the Mouse Gastrointestinal Tract by Enteric Neural 
Crest-Derived Cells 
During neural tube closure, neural crest cells (black) delaminate from the vagal region of the 
dorsal neural tube and migrate (arrows denote direction) in the ventral stream to the region 
adjacent to the foregut, which expresses glial cell line-derived neurotrophic factor (GDNF) (A). 
After these pre-ENCDCs invade the foregut, they migrate rostrocaudally, proliferate, and 
differentiate first into neurons (green) and later into glia (purple: earliest glial marker BFABP) 
(B, C, D, E). As this process proceeds, the bowel lengthens and changes shape, first from a 
straight line (B) to a single bend with midgut and hindgut closely apposed (C) followed by 
growth of the cecal appendage and further lengthening of the entire bowel (D, E). From E11-
E12, ENCDCs invade the colon by crossing the mesentery and transiting the cecum (C). The 
cecal and trans-mesenteric populations then fuse to form the ENS in the rostral colon (D) and the 
trans-mesenteric population populates the terminal colon as the smaller sacral ENCDC 
population enters the bowel and migrates caudorostrally (E). Regions of peak Gdnf (red) and 
endothelin-3 (Edn3) (blue) production are shown (A,B,C,D, E). The peaks of Gdnf expression 
partially but imperfectly mirror the extent of ENCDC migration, while peak Edn3 expression is 
centered at the cecum. A smaller domain of Gdnf expression in the antimesenteric side of the 
terminal colon may attract ENCDCs across the mesentery (C). Human ENS development 
proceeds through a similar process. 
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Figure 2.2: Primary and Secondary Migration of Mouse ENCDCs 
While the wavefront of ENCDCs in the bowel moves steadily rostrocaudally, individual 
ENCDCs have complex and unpredictable behaviors. At and immediately behind the wavefront 
(A, middle and right), ENCDCs migrate in chains and are often closely associated with the 
caudally-projecting neurites of immature neurons, which extend up to the wavefront. ENCDC 
connections are transient, and cells often swap neighbors within a chain or detach to switch 
chains or divide. The onset of neuronal lineage differentiation occurs very close to the wavefront 
(A, left) and these cells retain some of their motility as they begin to extend neurites. In 
colonized regions in mice (B, cross sectional illustration) a secondary centripetal migration of 
ENCDCs is triggered by trophic factors and the morphogens that control the patterning of the 
bowel wall. Netrin 1 and Netrin 3 are attractive to ENCDCs and are expressed in the epithelium, 
outer mesenchyme, and pancreatic buds, triggering the secondary migration of ENCDCs toward 
these structures. This broad attractive signal is probably refined by repulsive signals from sonic 
hedgehog (SHH) in the epithelium and later bone morphogenetic protein 4 (BMP4) expression in 
the inner mesenchyme, which SHH induces. A layer of BMP antagonist Noggin expressing cells 
is located just inside the primary ENCDC migration layer, which may protect that region from 
the influence of BMP4. The precise timing of these signals in relation to each other and the 
secondary migration process has not yet been established. A similar secondary migration occurs 
in humans, but this process appears to proceed differently in birds. 
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that guide this development. Many mouse models with varying degrees of bowel aganglionosis, 

hypoganglionosis, and other defects have been isolated or engineered (Table 2.1), many of which 

are caused by disruption of orthologs of human HSCR genes. 

2.5 Critical molecular mediators of ENS development:   

The process of ENS development is controlled by cell surface receptors and their ligands, 

transcription factors that regulate their expression, morphogens, and proteins that transmit 

signals from the cell surface the cytoskeleton and the nucleus.  Very brief summaries of these 

proteins are provided before discussing their role in cell biology and development. 

2.6 The RET/GFRα1/GDNF Pathway:  

RET is a transmembrane tyrosine kinase receptor that is expressed in ENCDCs as they 

migrate through the bowel.  It is the signaling receptor for four ligands (glial cell line-derived 

neurotrophic factor (GDNF), neurturin, artemin and persephin) that activate RET by binding to 

the glycosylphosphatidylinositol linked GDNF family of Receptors (GFRα1, GFRα2, GFRα3 

and GFRα4 respectively). RET signaling supports ENS precursor survival, proliferation, 

migration, differentiation, and neurite growth (80, 92, 95, 146, 192, 219). Heterozygous 

inactivating mutations in RET occur in about 15% of children with sporadic HSCR, and 50% of 

children with familial HSCR (2, 111).  A common intronic enhancer polymorphism (RET+3 or 

rs2435357) is an important risk factor for HSCR that impairs RET expression (58). This 

polymorphism underlies many cases of HSCR because of its high prevalence in the population. 

In both mice and humans, total RET deficiency causes complete intestinal aganglionosis, 
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highlighting the central role of RET signaling in ENS development (175, 177). RET’s coreceptor 

GFRα1 and ligand GDNF are the critical RET activators during fetal development, and loss of 

Gdnf and Gfra1 causes nearly identical phenotypes to Ret in mutant mice. Indeed, these genes 

may be involved in rare cases of HSCR. Constitutively active mutations in RET cause the 

hereditary cancer syndromes multiple endocrine neoplasia type 2 (MEN2A and MEN2B) and 

familial medullary thyroid carcinoma (FMTC). MEN2A is genetically heterogeneous and 

paradoxically associated with HSCR despite mutations that constitutively activate RET.  In 

contrast, MEN2B is almost always caused by the same M918T mutation and causes 

ganglioneuromas to form within the ENS, impairing bowel function. 

2.7 EDNRB, ET-3 and ECE1:  

Another signaling pathway, centered on endothelin receptor B (EDNRB) and its ligand 

endothelin-3 (ET-3) is required for ENS development in the colon. EDNRB is a G-protein 

coupled receptor expressed in neural crest derivatives including the developing ENS. 

Hypomorphic or null-mutations in EDNRB, EDN3 (encoding the prepropeptide for ET-3), or the 

ligand-processing protease ECE can cause Hirschsprung disease, usually in the context of 

Waardenburg syndrome type 4 (WS4), a disorder that includes pigmentation defects, 

sensorineural deafness, dysmorphic facial features and aganglionic megacolon in humans. 

Spontaneous mutation of EDNRB has also occurred in domesticated mice, rats, and horses, 

producing a similar phenotype. 
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2.8 Transcription factors important for ENCDC colonization of the bowel:   

Several transcription factors play critical roles in early ENS development.  In part they 

are important because they influence the expression of RET (SOX10, PAX3, PHOX2B) (118, 

119, 124, 154) or EDNRB (SOX10) (228), but this is clearly not their only role. While these 

transcription factors are critical for cells in multiple organ systems, we will concentrate on their 

roles in ENS development. 

SOX10 is an SRY-related HMG-box transcription factor expressed in the neural tube 

prior to NC delamination, in migratory ENCDCs, and in mature enteric glia. In humans, 

heterozygous mutations in SOX10 cause WS4 with a highly penetrant HSCR component (1, 10, 

63). Experiments with homozygous Sox10-null mice revealed apoptotic cell death of neural crest 

cells prior to their entry to the foregut (109). Haploinsufficiency for Sox10 appears to decrease 

the number of ENCDCs that initially colonize the bowel, eventually resulting in colonic 

aganglionosis. In addition to these requirements for survival, appropriate population size, and 

ENS gene transactivation, SOX10 has a critical role in maintaining ENCDCs in an 

undifferentiated state. Overexpression and loss-of-function experiments in primary cell culture 

(19, 112) and in chick embryos (137) indicate that SOX10 prevents precursors from 

differentiating into neurons. 

PHOX2B is a homeodomain transcription factor expressed in the neural crest-derived 

autonomic nervous system, including the developing ENS and adult enteric neurons. PHOX2B is 

required for Ret expression in mouse pre-ENCDCs (154), and heterozygous PHOX2B 

polyalanine-expansion mutations cause congenital central hypoventilation syndrome (CCHS, 

central sleep apnea) in people, a syndrome that may include Hirschsprung disease (Haddad 

syndrome) (2, 11). 
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Other transcription factors implicated in ENS development include PAX3 and ZFHX1B. 

In humans, heterozygous PAX3 mutations cause Waardenburg syndrome without HSCR (158), 

but PAX3 is required for development of the ENS in mouse (118). PAX3 also activates Ret 

transcription in concert with SOX10. ZFHX1B (ZEB2/SIP1) mutations cause HSCR in the 

context of Mowat-Wilson syndrome, which also includes microcephaly, mental retardation, and 

dysmorphic facial features (31, 204). In mice, ablation of Zfhx1b within the neural crest prevents 

ENCDC migration beyond the proximal duodenum (163). NKX2-1 and HOXB5 also physically 

associate with RET’s promoter and increase its expression (124, 227). Their necessity in vivo 

remains uncertain in the mouse, though mutations in both genes have been detected in the DNA 

of some HSCR patients (75, 131). 

Several other transcription factors have been linked to the ENS in model systems, but 

have unexpected mutant phenotypes or an unknown relevance to human disease. ASCL1 

(MASH1) and HAND2 (dHAND) are transcription factors required for the development of 

subsets of autonomic neurons. In Ascl1-/- mice, ENCDCs colonize the bowel, but develop into a 

sparse and abnormal ganglionic network (15) and do not form serotonergic neurons (15) or 

esophageal neurons (85). Loss of Hand2 (93) results in a complex phenotype involving a failure 

of multiple aspects of ENS development. Both Ascl1 and Hand2 will be discussed in the context 

of neuronal subtype specification. 

2.9 Morphogens in ENS development 

Organization of the ENS requires the establishment of two ganglion cell networks in 

precise locations within the bowel wall (Figure 2.2B).  Neurons and glia cluster together into 

ganglia, and then neurons extend neurites that initially fasciculate before innervating targets.  
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Molecules controlling ENS morphogenesis are relatively poorly understood, but several classic 

morphogens are now known to have important roles in ENS development.  Some specific trophic 

factors are also critical for subsets of enteric neurons, but their absence does not cause intestinal 

aganglionosis or malformed ganglia. 

The hedgehog pathway is involved both indirectly and directly in the developing ENS. 

Hedgehog proteins have important roles as morphogens. For example, localized sonic hedgehog 

(SHH) expression is critical for defining anterior-posterior patterning of digits in the limb (10) 

and dorsoventral patterning in the spinal cord (50).  Similarly in the bowel, localized expression 

of hedgehog proteins in epithelium is essential for concentric patterning of the bowel wall (165). 

The hedgehog ligands SHH and Indian hedgehog (IHH) are expressed by the gut epithelium 

during bowel development (13, 165, Figure 2.2B). However, loss of SHH or IHH have very 

different effects in mice, despite signaling though the same receptor and transduction machinery. 

Targeted mutation of Shh results in excessive numbers of enteric neurons and improper 

colonization of villi by enteric neuron cell bodies, whereas loss of Ihh causes dilated segments of 

bowel and aganglionosis in parts of the GI tract (165). Oddly, ectopic expression of the 

hedgehog pathway’s transcriptional effector GLI in developing mice produced an effect similar 

to loss of Ihh (216). These disparate phenotypes in mice with hedgehog signaling pathway 

mutations are incompletely understood.  It is possible that Ihh and Shh mutant phenotypes differ 

because of important temporal or spatial expression requirement for these proteins. Some of 

these phenotypes are consistent with known hedgehog effects on ENCDCs since SHH promotes 

proliferation, inhibits neuronal differentiation, and prevents premature centripetal invasion of 

ENCDCs into the future submucosa (64, 187). 
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A second role for hedgehog in the developing ENS is indirect. Hedgehog signaling 

induces bowel mesenchyme to secrete bone morphogenetic protein 4 (BMP4), another important 

modulator of ENS patterning. During initial ENCDC migration, BMP4 expression is induced in 

a ring of mesenchyme adjacent to the epithelium. Noggin, a BMP antagonist, is secreted by cells 

surrounding the BMP4 producing mesenchyme (82) and presumably reduces the effect of BMP4 

on migratory ENCDCs (67). Interestingly, BMP effects on ENCDC migration differ between 

mouse and chick. In organotypic and explant cultures of embryonic mouse bowel, inhibiting 

BMP4 signaling with noggin enhances ENCDC migration (67), while chick embryos that 

overexpress noggin in the mesenchyme inhibit ENCDC migration (82). However, BMP4 clearly 

enhances neuronal aggregation in both organisms (38, 64, 82), and is probably important for the 

clustering of ENCDCs into definitive ganglia. BMP4 also induces the fasciculation of neurites in 

cell and organotypic culture systems. BMP effects on aggregation and fasciculation appear to be 

mediated through the addition of the polysaccharide polysialic acid (PSA) to neural cell adhesion 

molecule (NCAM) expressed by ENCDCs and enteric neurons (62, 67). 

Netrins, diffusible ligands involved in central nervous system (CNS) and peripheral 

nervous system (PNS) patterning, are also involved in the radial migration of the ENS that 

occurs after initial colonization of the bowel. In mice, Netrins 1 and 3 are produced by the outer 

bowel mesenchyme in the presumptive myenteric region and by the intestinal mucosa and 

pancreatic buds (103), which are also invaded by ENCDC during this secondary migration 

(Figure 2.2B). Deleted in colon cancer (DCC), a netrin receptor, is expressed in migrating 

ENCDCs and is required for netrins to attract ENCDCs, since Dcc-/- mice do not develop a 

submucosal plexus. Enteric neurons also produce netrins after they differentiate (167), attracting 

extrinsic fibers from the vagus nerve. Interestingly, laminin, an extracellular matrix molecule 
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that accumulates in the epithelial basal lamina and around enteric ganglia, converts the attractive 

effect of netrins on vagal axons to repulsion (166). It is unclear if this repulsion of fibers also 

applies to migrating ENCDCs, but if it does then such an effect could contribute to the cohesion 

of ganglia and the exclusion of ENCDCs from the epithelium. 

Semaphorins are diffusible ligands involved primarily in axon growth cone repulsion. In 

the developing colon and cecum, Sema3A is expressed by the inner mesenchyme, while the 

coreceptor for Sema3A, neuropilin-1, is expressed in all ENCDCs (4). Despite its wide 

expression, Sema3A appears to specifically affect sacral ENCDCs and the extrinsic axons that 

they migrate upon. Normally, sacral ENCDCs are sequestered until embryonic day 13.5 within 

the pelvic ganglia that flank the end of the colon. They begin migrating up the colon, closely 

associated with extrinsic nerve fibers, just before the arrival of the vagal ENCDC wavefront 

(110, 209). In Sema3A-/- embryos, sacral ENCDCs migrate into the colon early, demonstrating 

that Sema3A serves as a repulsive cue (4). 

Retinoic acid (RA) is a diffusible morphogen produced locally in tissues by the 

retinaldehyde dehydrogenase (RALDH) enzymes. Mice lacking Raldh2 die prior to ENS 

development, but viability can be prolonged by exogenous RA supplementation. These partially 

rescued embryos lack ENCDCs entirely (148), indicating a clear role for RA in ENS 

development. In vitro, Retinoic acid has dramatic effects on both ENCDCs and differentiating 

enteric neurons. For example, RA is required for the efficient migration of ENCDCs, and acts by 

reducing levels of phosphatase and tensin homolog (PTEN) protein, a critical negative regulator 

of ENCDC migration and proliferation that we will discuss below. RA also induces shorter 

neurites in enteric neurons, a response opposite to that of most other neurons (174). Because RA 



    
 

16 

is essential for normal ENS development, mouse embryos with impaired RA production due to 

deficiency in its dietary source, Vitamin A, also have defects in ENS development (65).  

2.10 Intracellular signaling molecules in the developing ENS 

The trophic factors and morphogens that control ENS development depend on complex 

intracellular signaling pathways for their action (Figure 2.3). This implicates a large number of 

additional proteins whose function in the ENS has not been directly tested, and whose expression 

patterns are not always restricted to the neural crest.  For example, SHH, IHH, and GLI activity 

implicates important functions for the Patched (PTCH1 or PTCH2) receptor and for Smoothened 

(SMO).  Similarly, BMP4 activity implies important roles for SMADs, and RA activity implies 

that at least some of the retinoid receptors and metabolizing enzymes (RARα, RARβ, RARγ, 

RXRα, RXRβ, RXRγ, RALDH1, RALDH2, RALDH3, ADH, RDH, CYP26A, CYP26B, 

CYP26C, STRA6) will have essential functions that still need to be evaluated. This situation is 

not confined to morphogen pathways and also applies to signals downstream of critical ENS 

development genes. To illustrate the complexity of these signaling pathways, we will briefly 

review the intracellular consequences of RET signaling, some of which have been directly 

demonstrated in ENCDCs and others inferred from non-ENCDC RET-expressing tissues and 

studies in cell culture. 

The RET gene produces two protein isoforms, RET9 and RET51, which differ in their 

intracellular domains and have some distinct signaling properties in different cell types. After 

stimulation by a GDNF-family ligand complexed with the appropriate GFR coreceptor, RET 

dimerizes and becomes autophosphorylated. Phosphorylated RET activates many intracellular 

signaling pathways including phosphatidylinositol 3-kinase (PI 3-kinase) (146, 182), 
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Figure 2.3: Molecules and Pathways Implicated in ENS Development 
The roles of molecules and pathways discussed in this review are shown in the contexts of 
ENCDC migration (top), neuronal differentiation (bottom left), and glial differentiation (bottom 
right). Markers used to distinguish these developmental stages are listed outside the cells. 
Intracellular signaling molecules with important activating or inhibitory roles in RET signaling 
within ENCDCs are boxed (red: inactivating, green: activating). Transcription factors with 
known (color) or likely (gray) roles in ENS development are shown in nuclei.  Important 
mechanisms that remain unresolved are highlighted with black question marks including the 
mechanism and targets of endothelin-3 (ET-3)/endothelin-receptor type B (EDNRB) signaling in 
ENCDCs, the conditions that specify each subtype of neuron, the factors other than GDNF that 
control axonal targeting and circuit formation, and the role of neurogenesis in adults. RA, 
retinoic acid; PSA-NCAM, polysialic acid-neural cell adhesion molecule; ECE1, endothelin-
converting enzyme 1; PP1, protein phosphatase 1; PTEN, phosphatase and tensin homolog; 
ENCDC, enteric neural crest-derived cell. 
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extracellular-regulated mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase 

(JNK), p38 MAPK, phospholipase Cγ (PLC-γ), and the small GTPase Rac (70). These pathways 

are activated by adapter complexes that bind to phosphorylated RET intracellular domains. c-

SRC also binds directly to activated RET and contributes to PI 3-kinase activation (59, 60).  

Important docking tyrosines known to be required for ENS development include tyrosine 981, 

the docking site for SRC, and tyrosine 1015, which activates phospholipase C-gamma. Tyrosine 

1062 of the RET9 isoform is especially critical for ENS development (102, 211), and serves as a 

docking site for adapter proteins SHC and GRB2, mediating activation of the MAPK and PI3K 

pathways. Negative regulators of RET are also required for normal ENS development and 

maturation. Mice lacking Sprouty2, a negative regulator of receptor tyrosine kinase signaling, 

have hyperganglionosis, esophageal dysmotility, and intestinal motility defects due to 

hypersensitivity of RET to GDNF signaling (189). Another recent study implicates KIF26A, an 

atypical kinesin, in the negative regulation of RET through the binding and inhibition of GRB2. 

Mice lacking Kif26a develop megacolon and hyperganglionosis, and appear to have defects in 

neurite growth despite an overactive GDNF/RET signaling system (226). Overactivation of RET 

also occurs in the context of MEN2A, which is occasionally co-incident with HSCR. This 

paradoxical situation demonstrates that the same mutation can have activating effects in one 

system (i.e., oncogenesis) and inactivating effects in another (ENS development). One possible 

mechanism for this is that some MEN2A mutations, which result in inappropriate intermolecular 

disulfide bond formation, activate RET via constitutive dimer formation but disrupt RET 

structure and prevent its efficient expression at the cell surface (188). Protein trafficking to the 

cell surface may be more efficient in some cells than in others, or perhaps the rapid rate of 

ENCDC division does not permit the accumulation of poorly trafficked but hyperactive protein. 
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Of the pathways activated downstream of RET, the PI 3-kinase pathway appears to be 

most critical for ENCDC migration. Studies of ENCDC migration in the presence of PI 3-Kinase 

inhibitors have demonstrated the importance of this pathway for migration towards GDNF (146). 

PI3-kinase phosphorylates phosphatidylinositol (4,5)-bisphosphate (PIP2) to generate 

phosphatidylinositol (3,4,5)-triphosphate (PIP3), which recruits the kinases PDK1 and AKT to 

the membrane. In addition to targets downstream of AKT, PIP3 accumulation increases the local 

activity of the Rho GTPases RAC1 and CDC42 through their guanine nucleotide exchange 

factors, contributing to cell motility and neurite extension (83). This process also recruits the 

partitioning defective (PAR) complex of polarity proteins (PAR3/PAR6/PKCζ), which influence 

axon specification and growth. PKCζ, an atypical protein kinase C, is then activated by PIP3 and 

PDK1 and may locally inhibit glycogen synthase kinase beta (GSK3β), which must be disabled 

for definition and efficient growth of axons. In differentiating enteric neurons, inhibition of 

PKCζ or GSK3β increased the number of neurons developing multiple axons and decreased 

neurite growth (202). PKCζ and GSK3β inhibition also reduced ENCDC invasion of the colon in 

organ culture assays, suggesting a role for polarity effectors in the migration of undifferentiated 

ENCDCs or a role for neurite growth in the colonization process. 

Molecules that inhibit the PI 3-kinase cascade are also involved in ENS development. 

PTEN is a tumor suppressor protein that reverses the reaction catalyzed by PI3-kinase, 

preventing activation of downstream effectors. In the ENS, PTEN serves as a “brake” on 

ENCDC migration, proliferation, and growth. One recent study genetically ablated Pten within 

the mouse neural crest, which caused intestinal hyperganglionosis and megacolon. These animals 

also have overactivation of AKT and other downstream targets of the PI3-Kinase pathway within 

the ENS (162). Enteric neuron hyperplasia began at embryonic day 16, several days after the 
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colonization of the colon by ENCDCs. Another recent study complements these post-

colonization findings, showing that PTEN levels must be reduced within migratory ENCDCs at 

the wavefront for efficient migration (65). Furthermore, in cultured cells responding 

chemotactically to GDNF, PTEN was polarized away from the leading edge of the cell and 

PTEN overexpression impaired ENCDC migration. 

2.11 Progress in answering persistent questions in ENS developmental biology 

Despite dramatic advances in our understanding of the molecular and cellular mechanisms of 

ENS development, many important questions remain only partially addressed. 

2.11.1 Why do ENS precursors migrate through the bowel?  

It has been difficult to identify a master mechanism that controls the migration of 

ENCDCs. Clearly, The GDNF-RET-GFRα1 signaling pathway is critical for the migration of 

ENCDCs out of explants (146, 219) and for their directional migration through Boyden chamber 

membranes (65). GDNF is also mitogenic to ENCDCs and, at later stages of development, 

trophic for differentiating enteric neurons. The expression of RET in the vagal NC begins at or 

before E9, prior to the invasion of the foregut (57). At the same time, the foregut mesenchyme 

begins to express Gdnf mRNA, so the GDNF protein can attract pre-ENCDCs adjacent to the 

foregut (146). In addition, Gdnf expression along the gut mesenchyme appears to be 

spatiotemporally patterned. At E9.5, Gdnf mRNA is abundant in the stomach. By E10.5, Gdnf 

mRNA extends to the cecum and is most intense in this region. At both these time-points, the 

ENCDC wavefront is rostral to the Gdnf expression peak. However, the cecum sustains the 

highest level of Gdnf mRNA until ENCDCs complete their colonization of the terminal colon 

(146). This suggests a role for a gradient of GDNF in promoting ENCDC migration, at least up 
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to the point where ENCDCs pass through the cecum, after which GDNF chemoattraction cannot 

explain their continued migration since Gdnf mRNA levels are lower in more distal bowel. 

GDNF is clearly chemoattractive to ENCDCs in cell and organotypic culture (65, 146, 219), but 

the ability of endogenous GDNF to induce directed chemotaxis of ENCDCs within the bowel 

mesenchyme has been difficult to demonstrate in vivo. In addition to attracting pre-ENCDCs into 

the foregut, another place where long-range GDNF signals might have an important role is 

during the entry of the very first ENCDCs into the colon at E11 in mouse. A recent study has 

determined that most of these pioneer cells actually enter the colon by crossing the mesentery 

between the closely apposed midgut and hindgut (Figure 2.1C). Unlike the majority of ENCDCs, 

which migrate though the bowel wall, these cells exit the midgut and migrate across the 

mesentery as isolated cells. This study also showed that a thin band of antimesenteric colon 

mesenchyme expresses Gdnf mRNA at this time point and that the mesenteric crossing process 

requires GFRα1, suggesting that a long-range gradient of GDNF attracts these ENCDCs into the 

colon. By combining organ culture and a mouse line expressing a photoconvertible fluorescent 

protein in ENCDCs, the authors were able to mark these cells and demonstrate that the ENS in 

the distal colon is derived almost entirely from ENCDCs that cross the mesentery. 

A model that explains many aspects of vagal ENCDC migration within the bowel 

mesenchyme (170, 193) is based on the observation that neural crest cells only migrate 

efficiently through the bowel when at high densities and proliferating. According to this model, 

migration need not be directed toward a particular attractive signal at the end of the bowel. 

Instead, the only mechanisms required to produce a directionally migrating wavefront of cells are 

a proliferating cell population, a limited “carrying capacity” of the local microenvironment, and 

random motility of ENCDCs. Proliferation in one region proceeds until a limiting cell density is 
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reached, and then stops. The translocation of the wavefront proceeds mostly by the proliferation 

and random movement of cells at the wavefront (181). Thus, migration of individual cells need 

not be directional for a moving wavefront to develop (180).  

There is ample evidence to support this model. The first experiments demonstrating a 

neural crest origin for the enteric ganglia showed that removing the vagal neural crest abolished 

ganglia throughout the digestive tract, and that partial ablation produced partial aganglionosis, 

always in the distal region of the bowel (217). Indeed, mechanically reducing the numbers of 

ENCDCs in bowel explants reduces the population’s migration speed (218) and reduces their 

invasion of the colon (53). ENCDC proliferation is also required for wavefront advance (181). In 

addition, there is strong evidence that ENCDC migration is not intrinsically unidirectional 

through the bowel, since ENCDCs grafted at the caudal ends of aneural bowel can migrate 

caudorostally (181, 220), and vagal neural tube grafted into the sacral level of the neuraxis of 

chick embryos results in ENCDCs that efficiently migrate caudorostrally through the bowel (27). 

Finally, it is likely that the bowel microenvironment has a limited carrying capacity for 

ENCDCs. Even in the absence of any other limiting factors, availability of GDNF limits the 

proliferation of ENCDCs above a maximal density (80, 208).  

The proliferation dependent model cannot explain all aspects of ENCDC colonization. 

According to simulations based on this model, purely random diffusion would be sufficient to 

create a migrating wavefront (180), but observations of migrating ENCDCs demonstrate 

complex and nonrandom patterns of movement (Figure 2.2A). ENCDCs migrate in contact with 

one another in structures that, near the wavefront, resemble caudally projecting “chains” of cells. 

Time-lapse imaging of fluorescent ENCDCs in organ culture reveals that the ENCDCs in these 

chains climb upon each other and have unpredictable trajectories (218). ENCDCs can detach 
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from chains, sometimes forming new chains, or can advance along an existing chain (54).. 

However, the overall structure of the chains and the spaces between them are persistent over time 

despite the dynamic behavior of each ENCDC. These complex behaviors strongly suggest 

additional signals governing ENCDC guidance that remain to be discovered.  Furthermore, early 

neuronal differentiation begins almost immediately behind the wavefront, and neurites grow 

along chains of ENCDC. The nascent neuronal cell bodies also migrate along these neurites, 

which generally project rostrocaudally (86, 220). At the wavefront itself, migration trajectories 

of ENCDCs are also predominantly caudal (151, 218), suggesting that wavefront ENCDCs 

migrate toward a local cue. It is possible that the ENCDC population generates a gradient of 

GDNF by consuming or competing for GDNF. Endocytosis or simply receptor binding of GDNF 

by ENCDCs may deplete most of the available GDNF behind the wavefront, creating a local 

gradient that travels with the wavefront. 

 

Another phenomenon that might contribute to the directed migration of wavefront cells is 

contact inhibition of locomotion. Recent experiments in Xenopus neural crest demonstrated that 

directional migration of neural crest cells is inhibited by contact with other neural crest cells, but 

not with other cell types (32). Furthermore, the authors found that non-canonical Wnt signaling 

(planar cell polarity) at cell-cell contacts mediates this repulsion. Disrupting this pathway 

inhibits directional migration (34). This pathway, in turn, is dependent on the function of primary 

cilia on neural crest cells and is disturbed in Bardet-Beidel Syndrome (BBS), an HSCR-

associated condition caused by ciliary gene dysfunction (168). The caudally-directed migration 

of individual ENCDCs at the wavefront could be driven by such a mechanism. Some aspects of 

colonization might be explained by this behavior, such as the failure of vagal ENCDCs to 
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colonize already colonized bowel, but others such as chain migration seem incompatible with 

this mechanism. 

The proliferation dependent and contact-mediated repulsion models of migration may 

explain some otherwise perplexing non-cell-autonomous effects of ENS gene mutations. Mouse 

chimera and grafting experiments have shown that mixing migration-capable neural crest cells 

with a sufficient number of neural crest cells with genetic lesions in Ret (16), Ednrb (107), or 

Sox10 (106) impairs migration of wild-type ENCDC enough to cause distal aganglionosis in 

chimeric embryos and grafted bowel tissue.  Wild-type ENCDC were also able to rescue the 

migration of Ednrb null mutant ENCDCs in some chimeric embryos. Since RET, EDNRB and 

SOX10 are primarily expressed within ENCDCs, the observed non-cell-autonomous effects 

exerted on neighboring normal ENCDCs are surprising. These results are consistent with a 

proliferation dependent model of migration, which predicts that if some part of the migratory 

population is defective for proliferation or survival, as is the case in these models, incompetent 

cells at the leading edge of the wavefront can inhibit the progress of the cells in the more 

proximal bowel by reducing the size of the proliferating cell population and blocking progress 

forward. Similarly, the ability of normal ENCDCs to rescue the migration of mutant ENCDCs 

may be rooted in an increased overall population size or proliferative capacity. However, it may 

also occur because wild type cells actively invade aganglionic bowel forming a substrate for 

mutant cells to migrate on via chain migration or migration along neurites.  

Several processes occur simultaneously during colonization of the bowel, including some 

that fit a proliferation model (wavefront movement), some that appear more chemotactic 

(movement of individual cells at the wavefront), and some related to cell or matrix adhesion 

(fiber-climbing and chain-migration). Determining experimentally which of these processes are 
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critical for colonization has been difficult, largely because mechanisms responsible for directed 

migration, proliferation, and neurite growth share many molecules and pathways, making any 

experimental separation difficult. Despite this difficulty, roles for several molecules involved in 

neuronal polarity and cell motility have been demonstrated. As discussed previously, inhibiting 

the neuronal polarity effectors GSK3β and PKCζ impairs ENCDC migration (202). Also, 

chemical inhibition of the RAC and CDC42 GTPases or the RHO effectors ROCKI/II in the 

cecum and colon reduced both migration and neurite growth without affecting proliferation 

(185). In another study, genetic ablation of Rac1 and Cdc42 in the early neural crest impaired 

neural crest cell proliferation and thereby prevented colonization of the distal bowel by 

ENCDCs, but did not cause migration defects in early NC cells emigrating from the neural tube 

(69). While both studies implicate Rho-family GTPases in ENS development, they suggest 

different roles of these molecules in different stages of neural crest development. 

Finally, we should not neglect the critical role of the extracellular matrix (ECM) and the 

ENCDC proteins that interact with the ECM during bowel colonization. The ECM provides both 

a mechanical substrate and important signals for ENCDC migration and differentiation. During 

the process of ENCDC migration, the bowel mesenchyme matures from a uniform-appearing 

population of mesenchymal cells into layers with distinct morphologies and ECM molecule 

expression patterns (147). Maturation occurs in a bidirectional wave from rostral and caudal ends 

of the bowel, and occurs more quickly than ENCDC colonization, so the ECM in contact with 

ENCDCs is constantly changing. Laminin influences axon guidance, as noted previously, and 

also enhances neuronal differentiation (43) Since newly differentiated neurons migrate more 

slowly than undifferentiated ENCDCs (86), the high levels of laminin in the colon may 

contribute to distal bowel aganglionosis.  
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Important roles have also been assigned to several ECM-interacting molecules. β1 

integrin (Itgb1) is important for ENCDC migration, and its loss from ENCDCs results in colonic 

aganglionosis and structural abnormalities of the ENS (24). Integrins are cell surface receptors 

for ECM molecules that participate in both adhesion and signaling. β1 integrins are necessary for 

optimal ENCDC migration on fibronectin, which is present throughout the bowel and is enriched 

in the hindgut. β1 integrin is especially critical for migration on the ECM molecule tenascin-C, 

which is expressed at high levels in the hindgut and otherwise inhibits ENCDC migration (21). 

β1 integrin is also important for transducing signals from the ECM, and dysregulation of these 

signals impairs ENS development. PHACTR4, a protein recently shown to be required for 

directed ENCDC migration, interacts with the actin cytoskeleton and protein phosphatase 1 

(PP1). PHACTR4, though its interaction with PP1, modulates β1 integrin signaling and activates 

the actin-severing protein cofilin, contributing to the formation of directionally stable 

lamellipodia (225). This manifests as hypoganglionosis in Phactr4humdy/humdy mutant mice, which 

lack interaction between PHACTR4 and PP1. During development, these embryos have less 

directed ENCDC migration at the wavefront, despite having a normal random migration velocity.  

Adhesion between an individual ENCDC and other ENCDCs is also important for 

migration. The homophilic adhesion molecules N-cadherin, NCAM, and L1CAM are expressed 

by migrating ENCDCs, and loss of either N-cadherin or L1CAM results in delayed ENCDC 

migration and potentiates aganglionosis (5, 24, 206), though neither is sufficient to cause 

aganglionosis by themselves. Finally, as previously discussed in the context of BMP signaling, 

the posttranslational addition of polysialic acid to NCAM influences ENCDC aggregation and 

migration efficiency  (62, 67). 
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Migration and proliferation differ significantly between ENCDCs derived from the vagal 

and sacral neural crest. Sacral crest-derived ENCDCs migrate in isolation rather than in chains 

(209), always moving along extrinsic neuronal fibers that project into the hindgut. Although 

sacral ENCDCs arrive in the terminal hindgut at the same time as vagal ENCDCs, they continue 

to migrate caudorostrally through vagal crest-colonized bowel. In contrast, vagal ENCDCs will 

not enter previously colonized bowel (97). The proliferative capacity of sacral ENCDCs is also 

very different from vagal ENCDCs. While sacral ENCDCs normally comprise about 10-20% of 

the most distal region of the ENS (28, 209), their population only slightly expands if the vagal 

neural crest is mechanically ablated in chick embryos (26) and the hindgut is otherwise devoid of 

ENCDCs. Vagal-to-sacral transplantation experiments in the chick (27) have demonstrated at 

least some of these differences in behavior reflect intrinsic differences between sacral and vagal 

neural crest rather than different signals along the migration routes. While vagal and sacral 

ENCDCs express the same ENCDC-specific markers (3, 49), an RNA microarray comparing 

vagal and sacral chick neural tube explants (49) indicated that sacral-derived crest expressed less 

RET mRNA than vagal crest, and their behavior was partially transformed to that of vagal crest 

by RET overexpression. A study in mice where the vagal wavefront was significantly delayed 

(neural-crest specific Ednrb deletion) confirmed the finding that RET expression was reduced in 

sacral ENCDCs (61). Notably, In the Ret-/- and Gfra1-/- mouse models of total intestinal 

aganglionosis (57, 30) and a conditional Ednrb ablation model of colonic aganglionosis (61), 

rare intrinsic neurons can be found within the most distal bowel. These almost certainly represent 

the remnants of the sacral ENCDC population. Since these neurons are rare and their numbers 

approach neither the expected sacral-derived densities observed in the chick nor those estimated 

in mouse organ culture experiments (28, 209),  it seems likely that mutations affecting vagal 
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ENCDCs also affect sacral ENCDCs, which likely accounts for their absence in the terminal 

colon of HSCR patients. To our knowledge, it is not known whether the aganglionic segment of 

HSCR-affected terminal colon contains any residual neurons, but they would likely be difficult 

to detect using routine diagnostic histology and would not form a functional ENS.  

2.11.2 What is the function of EDNRB in ENS development?  

Although EDNRB/EDN3 signaling is essential for efficient colonization of the colon and 

clearly influences ENCDC differentiation and migration, many of the cellular and molecular 

effects of EDNRB/EDN3 signaling on the developing ENS remain confusing.  Total loss of 

EDNRB signaling results in colonic aganglionosis, abnormalities of the ENS in the small bowel 

(33), and a developmental delay in ENCDC migration (55). This is a much milder phenotype 

than is associated with a loss of RET signaling. There are two primary processes that EDNRB 

affects within ENCDCs: it prevents premature neuronal differentiation and it is required for 

efficient migration within the colon.  Here we will summarize the well-established actions of 

EDNRB and discuss some apparently contradictory observations demonstrating species specific, 

region specific, and cell-type specific roles for EDNRB in the ENS. 

In culture, there is significant evidence that the EDNRB ligand ET-3 maintains ENCDCs 

in an undifferentiated state (19, 92, 213). ET-3 alone does not appear to cause proliferation, but 

ET-3 treatment causes overpopulation of the developing ENS in avian gut explants (143) and 

acts together with GDNF to increase the proliferation of undifferentiated mouse ENCDCs (8). 

ET-3 administration to cultured enteric progenitors maintains their expression of SOX10 and 

their undifferentiated state (19), suggesting that EDNRB signaling might be required to prevent 

premature loss of SOX10 protein. These observations are consistent with a role for ET-

3/EDNRB signaling in repressing neuronal differentiation that might otherwise be triggered by 



    
 

29 

the high GDNF levels in the cecum and rising laminin levels in the colon (55). Since neurons are 

post-mitotic, enhanced neuronal differentiation will reduce the proliferative drive that supports 

bowel colonization by ENCDCs. The similarity of the phenotypes that result from EDNRB or 

SOX10 mutations (colonic aganglionosis) and their genetic interaction when mutated (discussed 

below) further suggests that EDNRB and SOX10 are components of a common pathway that 

keeps ENCDCs undifferentiated. In mouse ENCDCs, Ednrb expression is directly regulated by 

SOX10 binding to promoter elements upstream of Ednrb (228), possibly forming a positive 

feedback loop contingent on ET-3 signaling. 

It is unclear whether increased neuronal differentiation occurs in vivo when EDNRB 

signaling is defective. The best evidence, from homozygous null Edn3 mouse embryos, showed 

an increase in the percentage of wavefront ENCDCs positive for neuron-specific βIII tubulin, 

indicating an increase in early neuronal differentiation (19). However, in a recent study that used 

a conditional allele of Ednrb allowing specific ablation from the neural crest, the wavefront did 

not display an increased proportion of ENCDCs positive for the neuronal marker Hu (55). In 

another study of Ednrb-null rat embryos, the wavefront also failed to display an increase in 

peripherin positive cells (116).  This same study showed that rat enteric neural crest stem cells 

(NCSCs), a defined subpopulation of crest-derived cells in the gut, respond to ET-3 in culture by 

differentiating into myofibroblast-like cells. It is unclear whether differences between cell types, 

the mutation status of Edn3 or Ednrb, the neuronal markers chosen, or the species studied 

account for these differing results suggesting the need for additional investigation of the role of 

EDNRB signaling in the ENS. 

Despite the fact that ENCDCs lacking Ednrb have a migratory delay throughout ENS 

development, ENCDCs have a specific requirement for EDNRB signaling as they migrate 
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through the colon. In grafting experiments performed in organotypic culture, neural crest cells 

from normal bowel colonized normal embryonic colon, but did not invade embryonic colon from 

mice with Edn3 mutations (101). Edn3 mRNA appears to be expressed in a spatially and 

temporally regulated manner that tracks the migration of ENCDCs, and EDNRB signaling is 

required during a very narrow temporal window roughly corresponding to colonic migration. At 

E10, Edn3 mRNA is expressed throughout the midgut, but levels become elevated in the cecum 

at E10.5 and this domain of expression extends into the hindgut at E11, when ENCDCs are 

migrating through the cecum (8). This is identical to the temporal interval when EDNRB 

signaling is required for ENS development (E10.5 to E12.5) as shown using a tetracycline-

regulated Ednrb knock-in mouse (178). Like the effects on differentiation, some of the effects of 

ET-3/EDNRB signaling on migration are also contradictory and difficult to interpret. One issue 

is that ET-3 appears to have divergent effects on ENCDC migration under different conditions. 

ET-3 impairs GDNF’s chemoattractive effects on ENCDCs in explants cultured in collagen gels 

(8, 116, 143), but appears to encourage migration through the colon in explant cultures (143), 

and to partially rescue colon colonization when RET signaling is dysfunctional (203). EDNRB 

antagonists also cause colonic hypoganglionosis or aganglionosis in culture (143, 212), and acute 

chemical inhibition of EDNRB in colonic ENCDCs produces immediate retraction of cell 

processes and loss of motility that occurs too quickly to result from effects on differentiation 

(55). In addition to its expression in ENCDCs, EDNRB is expressed to some degree in the 

mesenchyme (8) of mouse bowel. This observation, combined with the finding that laminin-α 

expression by enteric smooth muscle cells is negatively regulated by ET-3 (213) suggested that 

EDNRB signaling in the mesenchyme might be necessary to create a colonic microenvironment 

permissive to ENCDC colonization. However, mesenchymal expression of EDNRB is not 
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conserved in the chick (143, 144).  Furthermore, neural-crest specific ablation of Ednrb produces 

the same ENS phenotype as a null allele (56) and colonic aganglionosis in rats lacking Ednrb can 

be rescued with a transgene that expresses functional EDNRB specifically in ENCDCs (78), 

indicating that neural crest cells are the critical targets of the ET-3 signaling required for ENS 

development. 

The importance of each second messenger pathway activated downstream of EDNRB is 

also unclear. One disease-causing mutation in EDNRB has been linked to a selective loss of 

Gαq/Gα11 coupling and intracellular Ca2+ signaling (100, 161) while two others have been shown 

to perturb Gαi coupling and prevent the reduction in cyclic-AMP levels that occurs with Gαi 

activation (68). Of these possibilities, there is more evidence for EDNRB signaling through 

cyclic-AMP in ENCDCs. Indeed, neural crest-restricted deletion of Gαq/Gα11 did not result in any 

ENS defects (51). In primary enteric progenitor cell culture, the anti-differentiation actions of 

ET-3 were mimicked by inhibition of the cAMP-regulated protein kinase A (PKA), and 

suppressed by increasing cyclic-AMP (8). In the same study, a protein kinase C inhibitor did not 

appear to inhibit the effects of EDNRB stimulation, which would be likely if some of the actions 

of EDNRB were mediated through Gαq/Gα11. Interestingly, cAMP-dependent and cAMP-

independent activation of PKA downstream of BMP signaling have important roles controlling 

differentiation of another neural-crest derived population, noradrenergic sympathetic neurons 

(129).   However, inhibiting PKA activity is probably not uniformly beneficial to the developing 

ENS. PKA has been shown to phosphorylate RET at a serine residue (70) important for 

lamellipodia formation in culture. Targeted mutation of this site to prevent phosphorylation 

results in distal colonic aganglionosis and ENCDC migration defects (6). Moreover, the same 

study demonstrated that PKA inhibition reduced ENCDC migration in the colon. This 
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requirement of PKA activity for migration is difficult to reconcile with the evidence for 

inhibition of cAMP signaling required to maintain ENCDCs in an undifferentiated state. 

Intermediate levels of PKA activation or fine temporal or spatial control of cAMP or PKA may 

be required for normal ENS development. Further study of the ET-3/EDNRB signaling pathway 

in ENCDCs is necessary to better understand these important molecules. 

2.11.3 What controls neuronal versus glial differentiation of ENS precursors and what 

controls neuronal subtype specification? 

Although appropriate differentiation into the many neuronal classes and into glia and is 

absolutely critical for ENS function, the signals that control these cell fate decisions are less well 

understood than the process of initial ENS colonization by the multipotent ENCDCs.  

ENCDC, neuron, or glial cell?  

Presumably, an ENCDC must decide whether to self-renew or differentiate into a 

neuronal or a glial progenitor. While SOX10 has a central role in maintaining ENCDCs (19, 

112), it is not sufficient for maintaining an undifferentiated state, since both ENCDCs and adult 

enteric glia express SOX10. Notch signaling is implicated in gliogenesis in other areas of the 

PNS, but appears to have a different role in the ENS. Mice with neural crest incapable of 

receiving Notch signals develop a hypocellular ENS as newborns, accompanied by reduced 

Sox10 expression in migrating ENCDCs and inappropriately high level of neuronal 

differentiation in the population of migrating ENCDCs. Thus, in the developing ENS, Notch is 

required to prevent premature neuronal differentiation and depletion of undifferentiated 

ENCDCs. One signal recently demonstrated to be important for enteric glial development is the 

secreted factor LGI4, which is produced by migrating ENCDCs in the bowel and glia 

themselves. Mutations in Lgi4 or its receptor ADAM22 reduce the number of enteric glia and 
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alter ENS structure (150). BMP signaling may be involved in specifying enteric glia, since it 

induces glial differentiation of ENCDCs in vitro and these developing glia become dependent on 

glial growth factor 2 (Ggf2, a NRG1 isoform) signaling through ErbB3 for survival (39). RA 

signaling also increases neuronal differentiation and the proliferation of cells with early neuronal 

markers, but not at the expense of glia (174).  

Neurogenesis in the ENS is asynchronous 

Cells expressing early neuronal markers (Tubb3/Tuj1 and HuC/HuD) and bearing long 

processes appear in the ENS almost immediately after colonization begins (86, 221). A core 

population remains as undifferentiated ENCDCs and are presumably responsible for propagating 

the ENCDC wavefront down the bowel. Other cells express pan-neuronal markers and extend 

neurites but remain in the cell cycle and continue to migrate. Still others exit the cell cycle during 

specific intervals (a neuron’s “birth date”), and differentiate into diverse enteric neuron subtypes. 

Neuronal birth dating is a technique that exploits labels such as BrdU or tritiated thymidine that 

are permanently integrated into the DNA of replicating cells. The label is administered at one 

selected time point and development is allowed to continue. Neuronal precursors that incorporate 

the label and then become postmitotic retain high levels of the label, while cells that continue to 

divide dilute the label to undetectable levels. Thus, this technique marks cells preparing for their 

final division. In the mouse, serotonergic neurons are born earliest (embryonic days 9-15), and 

birth of cholinergic neurons peaks at E14 and continues until E17. Birth dates for dopaminergic, 

peptidergic, nitrergic, and GABA-ergic neurons peak at E14 in the myenteric plexus and close to 

P0 in the submucosal plexus, extending into postnatal life for up to two weeks after birth (41, 

156). While the expression of a neurochemical phenotype occurs some time after a given 

neuron’s birth, the tight association between the time of cell cycle exit and neurochemical 
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phenotypes suggests that the timing of cell cycle exit may control some aspect of neurochemical 

fate. Alternatively, an upstream mechanism that remains unknown may determine both birth date 

and ultimate fate. 

Signals and genes affecting neuronal subtypes 

There are relatively few genetic models that lack subsets of enteric neurons. This is likely 

due to the difficulty of identifying subtle ENS phenotypes, which may not lead to life threatening 

bowel dysfunction. A prominent exception is serotonin (5-hydroxytryptamine, 5-HT) producing 

neurons that are absolutely dependent on the transcription factor ASCL1. Serotonergic and, to a 

lesser extent, calretinin-expressing neurons also require the norepinephrine transporter (NET, 

Slc6a2) to develop in proper numbers (125). Another transcription factor required for terminal 

differentiation of enteric neurons is HAND2, a basic helix-loop-helix transcription factor needed 

for heart and neural crest development. Hand2 is not required for ENCDC migration down the 

bowel, but its deletion results in profound defects in overall ENS structure (93), reductions in 

neuronal density (93, 48), severe bowel distension likely caused by ENS defects (123) and either 

subtype-selective (93, 123) or a more general failure (48) to differentiate into functional neurons. 

Overexpression studies demonstrate that HAND2 is sufficient to both support neurogenesis (93) 

and specify vasoactive intestinal peptide (VIP) expression in cultured chick ENCDCs, while 

early neural crest-specific deletion of mouse Hand2 results in a loss of VIP-expressing neurons 

(93). In a mouse model where Hand2 is deleted in a specific subset of ENCDCs, (123) precursor 

proliferation, gliogenesis, and the specification of many (cholinergic, nitrinergic, and calretinin-

expressing) but not all neuronal subtypes were impaired within the population derived from 

Hand2 deleted ENCDCs, Reductions in numbers of specific neuronal subtypes (nitrergic and 

calretinin-expressing but not substance P-expressing) also result from haploinsufficiency for and 
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hypomorphic alleles of Hand2 (47). Since Hand2 is expressed and experimentally deleted in 

both undifferentiated ENCDCs and differentiating neurons and glia, the precise stage where loss 

of Hand2 alters neuronal subtype specification or gliogenesis is not yet known. 

Another signal critical for specific cell populations in the ENS is neurotrophin-3 (NT-3), 

which signals through the p75 neurotrophin receptor and the TrkC receptor. Mice lacking NT-3 

or TrkC had significantly fewer neurons throughout the ENS, with a particular deficit in the 

submucosal plexus (42). Calcitonin gene-related peptide (CGRP) reactive submucosal neurons 

are most sensitive to loss of NT-3/TrkC signaling. However, this signaling pathway does not 

appear to uniquely identify a single type of neuron. BMP2 and BMP4 signaling also influence 

neuronal subtype and enhance the development of this TrkC+ population (38, 41). When the 

BMP inhibitor Noggin was expressed ectopically in all enteric neurons in vivo, the overall 

neuronal density in the ENS increased markedly, but the number and proportion of TrkC+ 

neurons was reduced. Conversely, a transgene expressing BMP4 increased the proportion of 

TrkC+ neurons in the adult ENS. These studies implicate BMP signaling in both specification of 

a particular neuronal subtype (TrkC+) and limiting the numbers of other neurons (TrkC-). In 

particular, the density and proportion of early-born classes of neuron were increased and of late-

born classes were decreased when BMP signaling was inhibited by the Noggin transgene (41).  

In accordance with the effects of BMPs on glial differentiation in culture, the same Noggin 

transgene also reduced the density and proportion of glia in the ENS (39). 

Early neuronal activity shapes late-differentiating neurons 

Since enteric neurons are “born” asynchronously, the activity of early-born neurons has 

the potential to shape developmental decisions in later-born neuronal populations. Serotonin 

producing neurons are one of the earliest-born populations in the ENS (156) and the 5-HT 
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produced by these cells has a significant effect on the development of later-born neuronal 

populations (126). ENCDCs express many classes of serotonin receptors and 5-HT promotes the 

neuronal differentiation of ENCDCs in culture. Mice with enteric neurons unable to synthesize 

5-HT develop fewer neurons of several late-born classes including dopaminergic, GABA-ergic, 

and a subset of nitrergic neurons. Serotonergic neurons, in turn, require the norepinephrine 

transporter for proper development, which suggests that norepinephrine uptake may shape 

neuronal differentiation. Recent work has also demonstrated that nascent enteric neurons are 

electrically active very early in the colonization process (87), and that inhibition of this activity 

reduces the number of early-born nitrergic neurons close to the ENCDC wavefront (88), 

suggesting that the interdependence of different types of enteric neuron is not limited to the late-

born populations. Finally, neuronal activity may be important for ENCDC colonization of the 

bowel, since Tetanus and Botulinum neurotoxins slow neurite extension and ENCDC migration 

(201). 

Lineage restriction and decision points 

There are a few known progenitor states that mark major decision points in the enteric 

neuron generation program. One important mark of lineage restriction is the transiently 

catecholaminergic (TC) class of immature enteric neuron. Neurons expressing catecholaminergic 

markers are common early in the colonization process, but definitive catecholaminergic neurons 

represent a small fraction of the mature ENS. The early, transiently catecholaminergic (TC) 

lineage encompasses many terminal fates, but it includes all future serotonergic neurons (7) and 

excludes certain fates, including late-born CGRP-producing neurons (15). TC status is clearly a 

marker of an important decision-making step, but the factors controlling this decision remain 

unknown, though Ascl1 may contribute since it is required for development of the TC lineage 
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(15). Also, since TC cells produce norepinephrine and both TC-cells and the TC-derived lineage 

express the norepinephrine transporter, the TC-lineage may influence its own developmental fate 

by signaling through norepinephrine. 

2.11.4 What controls neurite outgrowth and axon pathfinding in the ENS?  

The ENS is controlled by the organized connections between neurons of different types 

in different regions. In the CNS and other regions of the PNS, target-derived trophic factors 

ensure that specific neuronal subtypes are matched qualitatively and quantitatively to their 

targets. This system works well because axon tips and neuronal cell bodies are usually distant 

from each other and in quite distinct environments.  In contrast, ENS neurons often have a 

similar environment at the axon tip and cell body (e.g. for cells whose soma and neurites remain 

within the myenteric plexus) making it difficult to imagine how target derived trophic factors 

might direct the proper wiring of the adult ENS. While distribution of neuronal classes clearly 

differs between different areas of the ENS, each ganglion is indistinguishable from its immediate 

oral or aboral neighbor. Few conditions leading to defects in targeting of neuronal projections 

have been demonstrated in the ENS at least in part because there has until recently been no 

simple way to track neurites of single enteric neurons. One study has demonstrated that the 

targeting of projections from myenteric nitrergic neurons is controlled by GDNF during perinatal 

and postnatal development. When GDNF was ectopically expressed in enteric glia using the glial 

fibrillary acid protein (GFAP) promoter, NADPH diaphorase positive (a marker of nitric oxide 

synthase) fibers redistributed densely around enteric glia, suggesting a role for GDNF in axon 

targeting for this subtype of enteric neuron (208). In contrast, neither cholinergic nor 

serotonergic neuron fibers redistributed toward enteric glia in these GDNF overexpressing mice. 

A recent study used ligand regulated Cre recombinase and a fluorescent recombination reporter 
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to label single enteric neurons in fetal bowel (173). Using this system, they were able to detect 

very subtle structural ENS defects and demonstrated that enteric neurons require the planar cell 

polarity signaling components Celsr3 and Fzd3 for proper wiring. Further study and innovative 

methods will be required to better understand the maturation of the nascent ENS into functional 

circuits. 

2.11.5 What is the normal role of cell death in the developing and mature ENS?  

Programmed cell death in the form of apoptosis plays a critical role matching neuron 

numbers to target size and ensuring correct targeting of neurites in the developing vertebrate 

CNS and other regions of the PNS. In fact, in most regions of the nervous system more than half 

of the neurons generated undergo apoptosis, often after target innervation (25). In contrast, 

during normal ENS development, some apoptosis occurs in pre-ENCDCs (i.e., before these cells 

enter the bowel) and this may be important for limiting ENS density in the proximal bowel 

(205). However, after ENCDC entry into the bowel, programmed cell death in the form of 

apoptosis does not appear to play a role in ENS development in wild type mice.  In contrast, cell 

death does occur in the ENS of mice with specific gene defects. In support of this statement, 

activated caspase-3 (a marker of cells undergoing apoptosis) is extremely rare in the fetal, 

newborn, and adult ENS (80) of wild type mice. Rare instances of nuclear fragmentation and 

death have been observed in migrating SOX10+ ENCDCs (45), although these events are so 

infrequent that they are unlikely to influence the size of the ENCDC population. Moreover, Bax-/- 

and Bid-/- mice, which have defective apoptosis in other developing neuronal populations, have 

an essentially normal ENS (80). Thus, programmed cell death appears to be involved in 

regulating the number of ENCDC precursors that initially arrive in the bowel, but seems unlikely 

to control later developmental processes such as neuronal subtype ratios and ENS wiring. 
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However, it should also be noted that ENCDC apoptosis is a critical consequence of complete 

Ret and Sox10 deficiency. Furthermore, under certain circumstances, an unusual form of cell 

death occurs in the ENS. When GFRα1 is genetically ablated after ENCDC migration is 

complete, neurons undergo non-apoptotic cell death, and do not display ultrastructural signs of 

necrosis or autophagy (198). A subsequent study also demonstrated that a similar atypical 

ENCDC death occurs in the colons of mice with reduced Ret expression (Ret9/-) (199), a model 

that very closely resembles RET mediated HSCR in humans. Thus, this atypical cell death may 

prove to be a critical contributor to the most common form of HSCR. 

2.11.6 Applying our understanding of ENS development to human disease 

These exciting advances in our understanding of the mechanisms of ENS development 

raise new hope that novel strategies can be developed to reduce the frequency and severity of 

human intestinal motility disorders. Managing HSCR remains a challenge in the modern era. 

One to 10% of children with HSCR still die despite advances in surgical treatment and post-

operative management (2, 159).  Furthermore, long-segment aganglionosis can necessitate the 

removal of enough small bowel to cause short gut syndrome resulting in long term dependence 

on parenteral nutrition, which has serious risks of infection and liver damage. Several other less 

well understood clinical conditions are caused by altered ENS activity. For example, chronic 

idiopathic intestinal pseudoobstruction (CIIP), a condition where intestinal motility is abnormal 

but neurons are present, can also be caused by structural and functional ENS defects that may or 

may not be obvious on routine clinical biopsies. Based on murine models where the ENS is 

formed, but the bowel does not function properly, pseudoobstruction of neuronal origin is likely 

to be due to a variety of failures in post-colonization ENS development such as neurotransmitter 

selection, axonal targeting, or synaptogenesis. For example, RET activating mutations that cause 
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MEN2B and mutations in FLNA (77) cause dysmotility, but the motility defects remain 

incompletely characterized. In contrast to the major defects that may underlie chronic 

pseudoobstruction, even more subtle changes to the physiology of the ENS may contribute to 

irritable bowel syndrome and other “functional” motility disorders. In fact, genetic lesions that 

alter the structure of the ENS can produce or modify bowel inflammation, suggesting that 

developmental abnormalities of the ENS can contribute to the severity of inflammatory bowel 

disease (29, 134). Understanding neuronal cell fate decisions and the wiring process that 

generates the normal ENS will help us better understand how these pathophysiological events 

impair intestinal function, and may suggest novel clinical interventions for intestinal motility and 

inflammatory diseases. 

2.11.7 Why is HSCR partially penetrant and why does the extent of aganglionosis vary 

between individuals?   

Human birth defects including HSCR result from genetic defects, non-genetic factors or 

interactions between genes and “fetal environmental” factors.  In some cases, single-gene defects 

are the major risk factor for HD occurrence and have very high penetrance. However, no known 

HSCR associated gene defect is fully penetrant. A partial explanation for this observation is that 

genetic interactions critically influence HD penetrance. For example, there is a well-established 

genetic interaction between EDNRB and RET mutations in both humans and in mice. Alleles of 

each gene that produce mild phenotypes or no phenotype in isolation can cause severe disease in 

compound heterozygous mice and humans (36, 136). In mice, non-penetrant and weakly-

penetrant alleles of Ednrb (or Edn3) can also worsen the severity of the ENS phenotype resulting 

from Sox10 mutations (33, 183). In addition to RET coding mutations, a common intron one 

polymorphism that reduces RET expression (RET+3 or rs2435357) is highly associated with 
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sporadic HSCR and modifies the penetrance of HSCR in various predisposing syndromes (58, 

152, 160). Recent studies have also implicated neuregulin 1 (NRG1) as a modifier of RET-

dependent HSCR risk (76). Additionally, genes at several other chromosomal loci may influence 

HSCR risk in people with RET mutations (17, 72, 74, 190), though identifying the specific genes 

has been challenging.  

Genetic interactions cannot explain all of HSCR’s variability, since HSCR-like 

phenotypes in many inbred animal models are partially penetrant and of variably severity. 

Sox10Dom is an excellent example of this phenomenon (33). “Developmental noise” or random 

occurrences at the level of individual ENCDC movement might influence migration processivity 

and speed. This could be translated into a variable extent of aganglionosis as the bowel wall 

eventually becomes relatively non-permissive to continued invasion (55, 97) after E14 and the 

migration wavefront is frozen in position, forming the transition zone between ganglionic and 

aganglionic bowel. The non-permissiveness of older bowel is relative rather than absolute, as 

illustrated by Tcof1 (Treacher Collins-Franceschetti syndrome 1) mutant mice, where 

heterozygous mice do not fully colonize the bowel at E14.5 due to depletion of early neural crest 

precursors but continue to migrate, fully colonizing the colon by E18.5 (9). Tcof1 ENCDCs, 

however, have abnormally low rates of differentiation and may in fact be more capable of 

migrating through older bowel than wild-type ENCDCs. Another situation where ENCDCs 

complete their migration despite a significant colonization delay occurs in the rescued Ret9/- 

mouse model. These mice develop colonic aganglionosis after a moderate ENCDC migration 

delay and ENCDC death in the colon (199), but in mice that also overexpress the pro-survival 

protein Bcl-XL, the colon is eventually fully colonized even though ENCDC migration is not 

rescued and is incomplete at E13.5. In these situations, it seems that abnormal “hardier” 
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ENCDCs are capable of compensating for a developmental delay that would normally contribute 

to aganglionosis (197). 

2.11.8 Why is HSCR more common in males than in females?  

Another perplexing issue in the study of HSCR and ENS development is the male bias 

for penetrant disease. Interestingly, the male bias is much more pronounced in patients with 

short-segment disease (5.5:1) than in those with longer regions of aganglionosis (1.75:1) (2). 

Conceptually, this makes sense if we consider male sex as a mild predisposing factor for 

aganglionosis. Among syndromic HSCR cases, length of aganglionosis mostly correlates with 

penetrance of a mutation (160), and strongly penetrant mutations are not dependent on a weak 

modifier like sex. The molecular basis of this sex bias has been difficult to determine, despite 

several genetic models of colonic aganglionosis that demonstrate a similar predominance of 

affected males (33, 136, 199). Mutations in one X-linked gene, L1CAM, are rarely associated 

with HSCR and a group of syndromes involving multiple nervous system abnormalities and 

hydrocephalus. Murine studies have demonstrated that null mutations in L1cam can interact with 

Sox10 mutations to increase the penetrance of aganglionosis and result in more severe pathology 

(206). Since L1CAM mutations cause syndromic disease, they are unlikely to account for the 

male predominance in isolated HSCR unless a new and much less severe variant is found to be 

associated with HSCR. Another possible explanation for the male bias is suggested by the lower 

levels of colonic Edn3 and Ece1 expression in males compared to females during the time that 

ENCDC colonize distal bowel (203). However, the reasons for this difference remain unclear as 

neither testosterone nor Müllerinan inhibitory factor (MIF) had any measurable effect on either 

ENCDC migration or gene expression. Adding ET-3 to cultured Ret mutant male mouse bowel, 

however, increased the extent of colonization in vitro suggesting that EDNRB signaling is 
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limiting in male mice.  Clarifying the mechanisms behind these sex differences will require a 

better understanding of sexual dimorphism at the level of gene-expression with more detailed 

analysis of cis and trans regulatory elements (e.g. for Edn3 and Ece1) and the epigenetic marks 

that control gene expression for critical regulators of ENS development.  

2.11.9 Why does Down syndrome predispose to HSCR? 

Down syndrome (Trisomy 21) is the most common genetic disorder that predisposes to 

HSCR. Overall occurrence of HSCR in Down syndrome is low (about 1%), and the common 

RET +3 polymorphism is highly associated with HSCR among children with Down syndrome, 

suggesting that some level of RET dysfunction is required for penetrant disease (160). Despite 

the fact that HSCR occurs in Down syndrome with a low penetrance relative to single-gene 

syndromes like WS4 and Mowat-Wilson syndrome, Down syndrome contributes to 2-10% of 

HSCR cases (2) because it is quite common (about 1 in 800 births). Increased chromosomal copy 

number of genes expressed in the ENS or surrounding tissues could be important for the HSCR-

predisposing effect of trisomy 21. However, no genes confirmed to be important to ENS 

development reside on chromosome 21, though some candidates have been identified (135). One 

of these is DSCAM, an immunoglobulin-superfamily cell adhesion molecule expressed widely in 

the CNS and the developing ENS (214). A high-resolution copy number study of individuals 

with partial trisomy 21 and birth defects including HSCR demonstrated a shared 13-megabase 

region containing DSCAM that was duplicated in the 3 study participants with HSCR (113). It 

will be interesting to see whether DSCAM or other genes from this critical region impair ENS 

development if overexpressed.  
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2.12 Stem cells in the ENS: therapeutic possibilities and natural roles 

During ENS colonization, ENCDCs serve as stem cells for the ENS and engage in both 

self-renewing replication and terminal differentiation into neurons and glia.  Similar cells exist in 

the adult and newborn bowel in humans and rodents (Reviewed in 90, 98). Understanding these 

cells is critical for any future attempts to use them in therapy for HSCR, gastroparesis, achalasia, 

intestinal pseudoobstruction syndrome or possibly CNS disorders.  Some stem cell types that 

have been transplanted into the rodent bowel are not neural crest derivatives, but instead begin as 

embryonic stem cells (99) or CNS neural stem cells (NSCs), which can improve gastric 

emptying in a mouse model of gastroparesis (141) when transplanted into the pylorus. However, 

we will focus our discussion on stem cells derived from the ENS.  

Cultures of multipotent and self-renewing enteric neurospheres can be established from 

embryonic and postnatal mouse bowel (20, 186). Human enteric neurospheres have also been 

grown from full-thickness bowel explants (1, 138) and endoscopic mucosal biopsy samples (139) 

of children with HSCR and others of various ages. These human cells can colonize embryonic 

bowel (127, 139), differentiate into some types of neuron and glia in appropriate positions, and 

restore some contractile function (127) in grafting studies. Many criteria have been used to 

enrich cells isolated from bowel for ENS stem cells, including RET expression (145), selection 

using reporters recapitulating the expression patterns of ENS genes (44, 45, 91), selection for 

proliferative capacity in culture (20), and coexpression of p75NTR and the HNK-1 carbohydrate 

epitope (207). Another well-defined population of stem cells present in embryonic and postnatal 

bowel of rats coexpress alpha-4 integrin and high levels of p75NTR, and is both multipotent and 

self-renewing (14, 115) in culture.  Many challenges lie between our current capability to expand 

a population of progenitors and the prospect of colonizing neonatal aganglionic bowel. To date, 
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engraftment and migration of grafted cells through non-embryonic bowel has been quite limited 

(139, 196), and it is unclear what functional capabilities these cells could have once engrafted, 

although they do extend neuronal processes. One aspect that has received less attention is the use 

of ENS-derived stem cells for transplant into the CNS. These ENS-derived stem cells may be an 

ideal therapeutic source since they are already capable of differentiating into cells expressing 

neurotransmitters lost in adult nervous system diseases. Furthermore, human ENS stem cells 

derived from a patient’s own mucosal biopsies are proliferative, neurogenic, and non-

immunogenic without the need for genetic modification. They may be the most easily accessible 

neuronal stem cell in the body, and their use in both CNS and ENS transplantation is worth 

investigating. 

Although much effort has been focused on isolation and growth of ENS-derived stem 

cells in culture, these cells may serve a homeostatic role in postnatal ENS development, possibly 

in response to injury and aging. Recent work has demonstrated the existence of an extra-

ganglionic cell that responds to 5-HT4 receptor stimulation by proliferating, becoming 

immunoreactive for SOX10, Phox2B and HuC/HuD, and very slowly migrating into ganglia 

(130). Two recent studies used lineage tracing to demonstrate that enteric glia in the adult rat and 

mouse ENS have significant neurogenic potential in culture, but only form neurons in vivo under 

very restricted circumstances. Adult cells labeled by an inducible recombinase under control of 

SOX10-genomic sequences (Sox10-CreERT2) never became neurons in vivo, except after ENS 

injury by benzalkonium chloride (121). However, a simultaneous study by another group 

demonstrated that neurogenesis from cells labeled by a GFAP-controlled recombinase (GFAP-

Cre) did not occur after the same type of ENS injury. Furthermore, they did not detect any 

proliferative neurogenesis in adult mice and rats exposed to an array of chemical, physical, 
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infectious and dietary insults (105). Taken together, these studies suggest that some neurogenesis 

in the adult ENS can occur via proliferation of an extraganglionic cell after 5-HT4 receptor 

stimulation or possibly through non-proliferative differentiation of an as-yet unidentified 

SOX10-positive, GFAP-negative (or GFAP-Cre transgene non-expressing) cell after injury. 

Further work will be needed to identify the source cells for both these fascinating processes. 

Since neuronal progenitors within the postnatal and adult central nervous system express glial 

markers (114), the population currently considered to be uniformly enteric glia may contain a 

distinct subpopulation with the capacity to generate neurons. 

2.13 Prevention of HSCR and other intestinal motility disorders 

 While progress is being made toward novel transplantation strategies that might help 

treat HSCR or other serious motility disorders, HSCR prevention strategies deserve more 

focused study. Given the myriad of molecules and pathways involved in ENS development, it is 

very likely that one or more can be affected by some aspect of the prenatal environment. 

Currently, counseling for parents of a child with sporadic HSCR is limited to providing 

information about the sibling recurrence risk, which varies depending on the sex of the proband 

and the length of aganglionosis. RET sequencing in HSCR patients is also becoming more 

common, since 1-2 % of children that present with HSCR actually have RET mutations that 

cause MEN2A. However, knowing the nature of the mutation does not influence the treatment of 

HSCR.  

Since treatment for HSCR remains imperfect, and even diagnosed and treated HSCR 

causes significant morbidity, identifying environmental factors that could modify disease 

penetrance or expressivity would be extremely valuable. The vast majority of sporadic HSCR 
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(80%) occurs because ENCDC fail to colonize the final 5-10% of the bowel. At this critical 

point, small effects on ENCDC migration efficiency, proliferation, or survival can mean the 

difference between a functional colon and aganglionic bowel causing life-threatening disease. By 

identifying and eliminating environmental factors that impair ENS development, we may be able 

to prevent some cases of short-segment disease and reduce the morbidity of more extensive 

aganglionosis. To date, very few associations between environmental factors and ENS 

development have been found, but this has not been systematically investigated. Only a few 

small clinical studies address whether the prenatal environment affects HSCR risk. One study of 

children with trisomy 21, for example, found that consumption of more than 3 cups of coffee a 

day and possibly maternal fever were associated with increased HSCR occurrence (195). An 

earlier study performed before the identification of any HSCR susceptibility genes also proposed 

an association between HSCR and hyperthermia during gestation (128), though a subsequent 

study failed to find any correlation (122). More subtle disorders of intestinal motility may also be 

rooted in environmental disruption of ENS development. In a recent retrospective study (149), 

tricyclic antidepressant use during the first trimester and selective serotonin reuptake inhibitor 

(SSRI) use during the second or third trimester of pregnancy was associated with increases in 

laxative use (a surrogate for constipation) during early childhood. This is especially interesting 

because tricyclic antidepressants inhibit the function of many receptors and transporters 

including the norepinephrine transporter, which, as discussed previously, is required for normal 

TC-lineage differentiation into serotonergic neurons. In turn, SSRIs might interfere with the 

normal role of 5-HT in later neurogenesis. 

Animal models and culture studies now provide strong evidence that specific gene-

environment interactions influence ENS development and/or HSCR risk. Treatment of cultured 
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fetal mouse colon with the Rho-kinase inhibitor Y-27632 for example, inhibited ENCDC 

migration significantly more in Ret+/- explants than in controls (185). Furthermore, oxidative 

stress in the early neural crest, induced by injection of pregnant mice with H2O2, reduced the 

extent of ENCDC migration into distal bowel in Tcof1+/- embryos while not affecting the extent 

of ENCDC bowel colonization in wild-type littermates (9). A dramatic and clinically relevant 

gene-environment interaction was also observed in a mouse model of vitamin A deficiency (65). 

Mice maintain significant stores of vitamin A in their livers in the form of retinol, so Rbp4-/- 

mice, which cannot mobilize these stores and depend on dietary retinol, were used to assess the 

effects of vitamin A depletion during ENS development. Rbp4-/- mice fed a vitamin-A deficient 

diet during neural crest development had striking ENCDC migration delays in the colon 

compared to Rbp4-/- mice fed a diet containing vitamin A. Additionally, Rbp4-/- Ret+/- mice had a 

much more severe delays in ENCDC colonization of the bowel when deprived of dietary vitamin 

A, and even manifested a significant developmental delay when fed a vitamin-A sufficient diet. 

Similarly, in humans carrying HSCR risk alleles, otherwise subclinical vitamin A deficiency 

could synergize with genetic defects to worsen the severity of HSCR or increase the likelihood 

that HSCR will occur. Genetic models of HSCR susceptibility that more closely approximate 

sporadic HSCR and a careful examination of the signals involved in ENS development will be 

critical for identifying and characterizing other environmental insults that impair ENS 

development and to test prevention strategies.   

Finally, large scale human epidemiologic studies are now appropriate and will be needed 

to validate and identify non-genetic factors that increase HSCR risk. Given the strength of the 

experimental data demonstrating that non-genetic factors can alter HSCR risk, the known effect 

of many medicines on proteins needed for ENS development, and our ability to couple genetic 
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and epidemiologic data, this is the ideal time to launch a systematic national or international 

case-control study of non-genetic HSCR risk factors. The implications of this work will have 

immediate benefit to families since many children with HSCR are now becoming parents, and 

families who have one affected child are at dramatically higher risk of having a second child 

with HSCR. 

2.14 Conclusion 

Much of our understanding of ENS development has been informed by developmental 

and genetic studies of very severe ENS defects, in a generally successful effort to understand the 

etiology of Hirschsprung disease and ENCDC colonization of the bowel. However, we have 

highlighted several areas where aspects of both global ENS development (cell motility, 

colonization, cell death, gene and environmental interactions) and processes with more restricted 

effects (neuronal fate decisions, axon pathfinding, postnatal ENS stem cells) remain unexplained. 

To address these gaps in our understanding, it will be necessary to find new and more precise 

ways to perturb ENS development in experimental systems and expand the study of subtle and 

difficult to identify ENS phenotypes. Understanding normal ENS development and its modes of 

failure will translate into better outcomes for those affected by developmental defects of the 

ENS, whether these improvements come in the form of more informative genetic counseling, 

prevention strategies to mitigate the penetrance and expressivity of mutations, or via stem-cell 

therapy.  
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Table 2.1 

Genes involved in RET and EDNRB signaling 

Gene Mouse Model ENS Phenotype in Mouse 
Human 
Disease 
Association(2) 

Ret 
receptor 
tyrosine kinase 

Monoisoformic alleles 
that are hypomorphic 
in the ENS despite not 
having any mutations: 

Homozygous RetmiRet51/ miRet51: 
Colonic aganglionosis (84)   

HSCR, 
Total 
intestinal 
aganglionosis, 
MEN2A, 
MEN2B 

Hemizygous Ret9/-: Colonic 
aganglionosis (199)  

Serine 
phosphorylation site 
mutation RetS697A 

Homozygous: Colonic aganglionosis 
(6) 

Tyrosine 
phosphorylation site 
mutations such as   
RetY1062F (104)   

 

RetRET9(1062F) 
RetRET9(Y981F) 

RetRET9(Y1015F) 

RetRET51(Y1062F) 

RetRET51(Y1015F)  (102)   

Homozygous: Range of phenotypes 
from occasional hypoganglionosis to 
total intestinal aganglionosis. Effects 
of a given mutation depend on which 
isoform is mutated. Mutations 
affecting monoisomorphic RET9 
have more deleterious effects than 
mutations affecting RET51. 

Missense MEN2A 
mutation RetC620R 

Homozygous: Total intestinal 
aganglionosis 
Heterozygous: Hypoganglionosis 
(35)   

Dominant negative 
allele: 
RetRET9-L985P-Y1062F 

Heterozygous: Aganglionosis 
extending into the small bowel.  

Null alleles 

Homozygous:  Total intestinal 
aganglionosis (175) 
Heterozygous: Subtle reductions in 
neuron size and fiber density. Bowel 
contractility is abnormal (80)   



    
 

51 

Genes involved in RET and EDNRB signaling (continued) 

Gene Mouse Model ENS Phenotype in Mouse 

Human 
Disease 
Association 
 

Gdnf 
neurotrophin, 
RET ligand 

Null allele 

Homozygous:  Total intestinal 
aganglionosis (172)    

Mutations 
found in 
some HSCR 
cases 

Heterozygous: Reduced enteric neuron 
density (80)   

Gfra1 
RET 
coreceptor 

Null allele 

Homozygous:  Total intestinal 
aganglionosis (30)  

 Heterozygous: Subtle reductions in 
neuron size and fiber density. Bowel 
contractility is abnormal (80)  

Nrtn 
neurotrophin, 
RET ligand 

Null allele 
Homozygous: Reduced soma size and 
fiber density in the myenteric plexus. 
Abnormal motility (94)   

Mutations 
found in 
some HSCR 
cases 

Gfra2 
RET 
coreceptor 

Null allele Homozygote: Reduced fiber density 
and abnormal motility (169)     

Ednrb 
G-protein 
coupled 
receptor 

Null allele: Ednrbs-l 

Homozygote: Colonic aganglionosis 
with hypoganglionosis of the small 
intestine (96)   
Heterozygote: hypoganglionosis of the 
small intestine (33)   

HSCR, 
WS4 

Hypomorphic allele: 
Ednrbs 

Homozygote: Rare colonic 
aganglionosis (136)  

Edn3 
EDNRB ligand Null allele: Edn3ls Homozygote: Colonic aganglionosis 

(155)   
WS4, very 
rare 

Ece1 
EDN3 
processing 
protease 

Null allele: Homozygote: Colonic aganglionosis 
(215)   

One case of 
HSCR with 
multiple 
birth defects   

Genes involved in ENS development and implicated in syndromic HSCR 
BBS1-11 
intraciliary 
transport 
proteins 

ENS not yet studied in mouse models. Morpholino knockdown 
in zebrafish causes ENS precursor migration defects (194)  

Bardel-
Biedl 
syndrome 
(±HSCR) 

KIAA1279 
(Kbp) 
unclear 
function 

No mouse model exists. Zebrafish kbpst23  loss-of-function 
mutation reduces axon growth in the ENS (132)   

Goldberg-
Shprintzen 
syndrome 
(+HSCR) 
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Genes involved in ENS development and implicated in syndromic HSCR (continued) 

Gene Mouse Model ENS Phenotype in Mouse 
Human 
Disease 
Association 

L1cam 
L1 family cell 
adhesion 
molecule 

Null allele Transient ENCDC migration delay at 
E11.5 (5) 

X-linked 
congenital 
hydrocephal
us, MASA 
Syndrome 
(±HSCR) 

Pds5A and 
Pds5B 
cohesin 
regulatory 
factor 

Null alleles 
Homozygotes: Delayed ENS 
colonization (223) , partially penetrant 
colonic aganglionosis (224)   

Cornelia de 
Lange 
syndrome 
(One 
family) 

Phox2b 
homeodomain 
transcription 
factor 

Null allele Homozygous: Total intestinal 
aganglionosis (154)   

Congenital 
central 
hypoventilat
ion 
syndrome, 
Haddad 
syndrome 

Sox10 
SRY-related 
HMG-box 
transcription 
factor  

Dominant Negative 
Sox10Dom 

Heterozygous: Colonic aganglionosis 
(117)   

HSCR, 
WS4 

Homozygous: Total intestinal 
aganglionosis (109)   

Null allele Sox10LacZ 

Heterozygous: Colonic aganglionosis 
(23)   
Homozygous: Total intestinal 
aganglionosis (23)   

Zfhx1b (SIP1, 
ZEB2) 
zinc-
finger/homeo-
domain protein 

Null allele 
Homozygous: Failure of vagal neural 
crest delamination. ENCDCs do not 
enter the bowel. (164)   

Mowat-
Wilson 
syndrome 
(+HSCR) 

Genes involved in ENS development or associated with HSCR 
Aldh1a2 
(Raldh2) 
retinoic acid 
synthesis 
enzyme 

Null allele Homozygous: Neural crest cells never 
enter the bowel (148)     
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Genes involved in ENS development or associated with HSCR (continued) 

Gene Mouse Model ENS Phenotype in Mouse 
Human 
Disease 
Association 

Ascl1 
(MASH1) 
basic helix-
loop-helix 
transcription 
factor 

Null allele 
Serotonergic neurons absent from ENS 
(15), no neurons develop in the 
esophagus (85)    

Dcc 
receptor for 
netrin-1 

Null allele 
Homozygous: Failure of ENCDCs to 
migrate to submucosal plexus and 
pancreas (103)  

 

HOXB5 
homeodomain  
transcription 
factor 

Dominant negative 
Tg(enb5), Tg(b3-IIIa-
Cre), mosaic 
expression 

Hypoganglionosis and aganglionosis of 
the ENS, Ret expression and migration 
reduced in the subset of cells that 
express dominant negative HOXB5 
(131)  

Variants 
associated 
with HSCR 
(37, 131)  

Ihh 
hedgehog 
ligand 

Null allele 
Homozygous: ENS is absent in some 
regions of the small bowel and colon 
(165)   

 

Kif26a 
negative 
regulator of 
RET signaling 

Null allele 
Homozygous:  Homozygous: 
Myenteric neuronal hyperplasia, 
pseudoobstruction (226)   

 

Lgi4, 
Adam22 
Secreted factor 
and receptor 
involved in 
glial 
development 
and 
myelination 

Null alleles 

Homozygous: Reduced numbers of 
glial cells, impaired glial marker 
expression, abnormal ENS structure. 
(150)  

 

NKX2-1 
homeodomain 
transcription 
factor 

ENS not studied in mouse models. Protein is detectable in 
human but not mouse ENCDCs.  

Mutations 
found in 
some HSCR 
cases. (73)  

NRG1 
ERBB3 Ligand ENS not yet studied in mouse models HSCR (76)  

NRG3 
ERBB4 Ligand ENS not yet studied in mouse models HSCR (191) 

Ntrk3 (TrkC) 
receptor for 
NT-3 

Null allele 
Reduced numbers of enteric neurons, 
evidence for a selective reduction in 
late-born CGRP neurons (42)   

Mutations 
found in 
some HSCR 
cases 
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Genes involved in ENS development or associated with HSCR (continued) 

Gene Mouse Model ENS Phenotype in Mouse 
Human 
Disease 
Association 

Ntf3 (NT-3) 
neurotrophin, 
TrkC/p75NTR 
ligand 

Null allele Reduced numbers of enteric neurons 
(42)   

Mutations 
found in some 
HSCR cases 

Pax3 
paired-box 
transcription 
factor 

Null allele Pax3Sp Homozygous: Total intestinal 
aganglionosis (118)   

Hetero-
zygous 
mutations 
associated 
with 
Waardenburg 
syndrome 
without 
HSCR.  

Phactr4 
regulator of the 
actin 
cytoskeleton 
and cell 
adhesion 

Mouse hypomorphic 
allele Phactr4humdy 

Homozygous: Colonic 
hypoganglionosis (225)    

PROK1 
PROKR1 
PROKR2 
Prokineticin 
and receptors 

ENS not yet studied in mouse models. Receptors are expressed 
in cultured human enteric neurosphere-like bodies. (171)  

Mutations 
found in some 
HSCR cases. 

Shh 
hedgehog 
ligand 

Null allele Homozygous: Ectopic neurons 
located in mucosa (165)     

Slc6a2 (NET) 
norepinephrine 
reuptake 
transporter 

Null allele 

Homozygous: Decreased neuronal 
numbers, selective decreases in 
numbers of serotonin and calretinin 
reactive neurons (125)   

 

Tcof1 
nucleolar 
factor 

Null allele 

Heterozygotes: Delayed colonization 
of the bowel by ENCDCs. Migration 
continues between E14 and E18 to 
colonize the entire bowel (9) 

 

Tlx2 
(Hox11L1) 
homeodomain 
transcription 
factor 

Null allele Homozygous: Myenteric neuronal 
hyperplasia, pseudoobstruction (179)   
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Genes involved in ENS development or associated with HSCR (continued) 

Gene Mouse Model ENS Phenotype in Mouse 
Human 
Disease 
Association 

Tph2 
neuronal 
serotonin 
biosynthesis 
enzyme 

Null allele 

Homozygous: Decreased numbers of 
myenteric neurons, selective decreases 
in numbers of dopaminergic and 
GABAergic neurons (126)   

 

Spry2 
regulator of 
receptor 
tyrosine 
kinases 

Null allele 
Homozygous: Myenteric neuron 
hyperplasia, pseudoobstruction, 
achalasia (189)  

 

Other genes associated with syndromic HSCR 
DHCR7 
final enzyme in 
cholesterol 
biosynthesis 

ENS not yet studied in mouse models 

Smith-
Lemli-Opitz 
syndrome 
(±HSCR) 

RMRP 
mitochondrial 
RNA-
processing 
noncoding 
RNA 

No viable mouse model 

Cartilage-
hair-
hypoplasia 
(±HSCR) 

TCF7L2, 
(TCF4) 
transcription 
factor involved 
in Wnt 
signaling. 

ENS not yet studied in mouse models 

Pitt-
Hopkins 
syndrome, 1 
case 
includes 
HSCR 

Transgenic models where overexpression alters ENS development 
Mouse Model Description ENS Phenotype 

Tg(DBH-NT3) 
Ectopic neuronal and 
ENCDC expression of 
NT-3 

Increased numbers of enteric neurons and neuronal 
hypertrophy (42)   

Tg(GFAP-
GDNF) 

Ectopic glial 
expression of GDNF 

Increased numbers of submucosal neurons, increased 
numbers of nitrergic neurons, aberrant clustering of 
nitrergic axons around myenteric ganglia (208)    

Tg(HoxA4) 
Global overexpression 
of homeodomain 
transcription factor 

Colonic hypoganglionosis with neuronal hypertrophy. 
(210)   
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Transgenic models where overexpression alters ENS development (continued) 
Mouse Model Description ENS Phenotype 

Tg(Mt1-GLI) 

Ectopic and inducible 
expression of GLI1, 
activator of genes 
downstream of 
hedgehog pathway 

Megacolon with hypoganglionosis, perinatal and adult 
death. Severity is related to expression level (216)    

Tg(NSE-
Noggin) 

Ectopic neuronal 
expression of BMP 
antagonist noggin 

Increased numbers of enteric neurons, with a selective 
decrease in the size of the TrkC expressing 
population. (38)   

Conditional Mutations 
Gene Mouse Model* ENS Phenotype 
Cdh2 (N-
Cadherin) 
homophilic 
cell adhesion 
molecule 

Tg(Ht-PA-Cre) 
Cdh2LoxP 

 

Delayed colonization of the colon. Severe migration 
defects in Cdh2 Itgb1 double-conditional ENCDCs 
(24)   

Dicer1 
miRNA 
processing 
enzyme 

Tg(Wnt1-Cre) 
Dicer1LoxP Post-colonization loss of ENS cells (222)   

Erbb2 
EGF-receptor 
family member 
without known 
ligand. Hetero-
dimerizes with 
ERBB3/4. 

Tg(Nestin-Cre) 
Erbb2LoxP 
recombination in 
neural crest and other 
tissues including 
colonic crypt 
epithelium. 

Postnatal loss of colonic neurons (46) , thought to be 
due to loss of Erbb2 in the epithelium, not the neural 
crest. 

Ercc1 
nucleotide 
excision repair 
factor 

Tg(Tyr-Cre) Ercc1LoxP Postnatal death of colonic neurons (176)  

Itgb1 (Beta-1 
Integrin) 
cell-ECM 
adhesion 
molecule 

Tg(Ht-PA-Cre) 
Itgb1LoxP 

 

Colonic aganglionosis (22)   
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Conditional Mutations (continued) 
Gene Mouse Model* ENS Phenotype 

Hand2 
basic helix-
loop-helix 
transcription 
factor 

Tg(Wnt1-Cre) 
Hand2LoxP 

Tg(Wnt1-Cre), Hand2LoxP/LoxP (93) : Disrupted 
patterning of nascent enteric ganglia and fiber 
network, reduction in neuronal density. Failure of 
neurons to colocalize Tuj1 and Hu markers, selective 
loss of VIP-immunoreactive neurons. 
Tg(Wnt1-Cre), Hand2LoxP/null: Loss of markers of 
terminal neuronal differentiation (Hu, microtubule-
associated protein 2) and some neuronal subtypes 
(nNOS, dopamine β-hydroxylase). Fetal death at E14 
(48). More severe phenotype may be the result of 
heterozygosity for null allele (47).  

Pofut1 
required for 
notch signaling 

Tg(Wnt1-Cre) 
Pofut1LoxP Hypoganglionosis (153)   

Pten 
phosphatase 
and tumor 
suppressor 

Tg(Tyr-Cre) PtenLoxP Hypertrophy and hyperplasia of enteric neurons (162)   

Rac1 and 
Cdc42 
Rho-family 
GTPases 

Tg(Wnt1-Cre) 
Rac1LoxP or Tg(Wnt1-
Cre) Cdc42LoxP 

Failure of ENCDCs to proliferate and colonize distal 
bowel (69)   

Tfam 
mitochondrial 
transcription 
factor 

CNPCre,TfamLoxP 

recombination in 
Schwann cells and 
ENS precursors 

Postnatal death of specific subsets of enteric neurons 
(200) 

Zfhx1b 
(SIP1, ZEB2) 
zinc-
finger/homeo-
domain protein 

Tg(Wnt1-Cre) 
Zfhx1bLoxP 

  

Aganglionosis of the entire bowel distal to the 
stomach and rostral duodenum. (163)  

Genetic Interactions in Model Systems 
Genes or alleles ENS Phenotype 

Ret+/- Ednrbs/s 
Ednrbs-l/s 

Highly penetrant aganglionosis in double-mutant 
animals. (136)  In isolation, Ret+/- is not penetrant, and 
these Ednrb genotypes have extremely low 
penetrance. 

Ret Y1062F/Y1062F Spry2-/- 
Partial rescue of nitrergic neuron density in the 
stomach. No effect on the remainder of the ENS. 
(142)   

Ednrbsl/sl Ret+/miRet51 Partial rescue: double mutant embryos have a shorter 
aganglionic segment than Ednrbsl/sl single mutants (8)  
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Genes affecting ENS development. Genes involved in HSCR disease or known to be important 
to ENS development are listed and their mutant phenotypes described. In addition, genetic 
interactions and gene-environment interactions that have been demonstrated in the mouse are 
listed. While many of the genes with well-documented roles in the ENS are also HSCR 
susceptibility genes, most are rare. Conversely, the normal ENS developmental role of several 
HSCR susceptibility genes in has not been explored. Human gene symbols are listed when 
mouse models have not been studied. Otherwise, mouse symbols are listed. While the Hoxb5 
dominant negative mouse is a transgenic, it is listed together with the loss-of-function mutations 
due to the possible association of HOXB5 with HSCR. The conditional mutations are listed here 
when they provided additional information about the role of each gene in ENS development.  

 

Genetic Interactions in Model Systems (continued) 
Genes or alleles ENS Phenotype 

Sox10Dom/+ 

Ednrbs/+ 
Ednrbs/s 

Ednrbls-l/+ 
Ednrbs-l/s-l 

Double mutant embryos have more penetrant 
aganglionosis (33) , a more severe ENCDC 
developmental delay, and more pre-ENCDC cell death 
than  Sox10Dom/+ embryos (183)  

Sox10Dom/+ Edn3ls/ls 
Edn3ls/+ 

Double mutant embryos have a more severe ENCDC 
developmental delay than  Sox10Dom/+embryos (183)  

Sox10LacZ/+ Zfhx1b-/+ 

Double mutant embryos have a more severe ENCDC 
developmental delay and more extensive 
aganglionosis than  Sox10LacZ/+embryos (184) . The 
Zfhx1b-/+genotype does not cause aganglionosis by 
itself.  

Sox10LacZ/+ Sox8LacZ/+ 
Sox8LacZ/LacZ 

Double mutant embryos have a more severe ENCDC 
developmental delay, more extensive aganglionosis, 
and more pre-ENCDC cell death than 
Sox10LacZ/+embryos (133). Sox8 mutations do not 
affect ENS development in isolation. 

Sox10LacZ/+ L1cam+/- 
L1cam-/Y 

Double mutant embryos have a more severe ENCDC 
developmental delay, more extensive aganglionosis, 
and more pre-ENCDC cell death than Sox10LacZ/+ 
embryos (206). L1cam mutations individually produce 
transient delays in ENS development. 

Gene-environment interactions 

Genetic factor Environmental 
factor ENS Phenotype 

Ret+/- Rbp4-/- Vitamin A deficiency 
during gestation 

Aganglionosis of the colon and small bowel.  Rbp4-/- 

mice depleted of vitamin A and Ret+/- Rbp4-/- fed 
vitamin A also developed aganglionosis, but less 
severely. (65)   

Tcof1+/- H2O2 exposure at E7.5 
More severe ENCDC migration delay than Tcof1 
mutation alone. H2O2 had no effect on ENCDC 
migration in wild-type mice. (9)  
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*Tg(Wnt1-Cre), Tg(Ht-PA-Cre), lines result in recombination in the neural crest, while 
the Tg(Tyr-Cre) line results in recombination in a subset of the vagal neural crest including the 
ENS. Human chromosomal regions with as-yet unidentified susceptibility loci and the genetic 
interactions that have been identified in humans are not included in this table.  BMP, bone 
morphogenetic protein; CGRP, calcitonin gene-related peptide; ECM, extracellular matrix; 
EDNRB, endothelin receptor type B; ENCDC, enteric neural crest-derived cell; E7.5, E11.5, 
E14, and E18, embryonic days 7.5, 11.5, 14, and 18; MEN2A and MEN2B, multiple endocrine 
neoplasia 2A and 2B; nNOS, neuronal nitric oxide synthase. 
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Chapter 3: Hirschsprung-like disease is exacerbated 

by reduced de novo GMP synthesis 

This chapter describes the rationale and results of our broad attempt to detect 

environmental factors that impair enteric nervous system (ENS) development using a chemical 

screen in zebrafish. This screen led to the detection of several inhibitors of ENS development 

including mycophenolic acid. The systemic effects of MPA and its prodrug mycophenolate 

mofetil (MMF) on ENS development were then confirmed in the mouse, and we demonstrated 

using in vivo and primary culture systems that MPA impairs ENS development primarily 

through its antiproliferative effects on enteric neural crest-derived cells (ENCDCs). Finally, we 

demonstrate a profound gene-environment interaction between mouse mutation models of 

Hirschsprung disease and MMF exposure, the first demonstration that Hirschsprung disease 

phenotypes can be enhanced by an environmental exposure. 

Since these experiments indicate that MPA/MMF exerts its antiproliferative effects on 

ENCDCs through its inhibition of inosine 5’-monophosphate dehydrogenase (IMPDH) and de 

novo guanine nucleotide synthesis, these experiments also form the rationale for our subsequent 

investigations into the Impdh2 gene in the developing mouse ENS and the possible association 

between the IMPDH2 gene and human Hirschspung disease. 

 The contents of this chapter have been published: Lake JI, Tusheva OA, Graham BL, 

Heuckeroth RO. Hirschsprung-like disease is exacerbated by reduced de novo GMP synthesis. 

The Journal of Clinical Investigation 2013;123(11):4875–4887. 
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3.1 Summary 

Hirschsprung disease is a partially penetrant oligogenic birth defect that occurs if enteric 

nervous system (ENS) precursors fail to colonize distal bowel during early pregnancy. We 

hypothesized that non-genetic factors might contribute to this disease. Here we show that 

mycophenolate, an inhibitor of de novo guanine nucleotide biosynthesis, and eight other drugs 

identified using a zebrafish screen impair ENS development.  Murine studies in vivo confirm 

that mycophenolate selectively impairs ENS precursor proliferation, delays precursor migration, 

induces bowel aganglionosis, and increases the penetrance and severity of Hirschsprung-like 

pathology in Sox10 and Ret mutant mice. Mycophenolate also reduces ENS precursor migration, 

lamellipodia formation, proliferation, and survival in vitro. Using X-inactivation mosaicism for 

the purine salvage gene Hprt, we show that reduced ENS precursor proliferation most likely 

causes mycophenolate-induced migration defects and aganglionosis. Mycophenolate is the first 

medicine identified that causes major ENS malformations and Hirschsprung-like pathology.  

These studies demonstrate a critical role for de novo guanine nucleotide biosynthesis in enteric 

nervous system development and suggest that some cases of Hirschsprung disease may be 

preventable. 

 

3.2 Introduction 

     Hirschsprung disease (HSCR) is a common (1 in 5000) birth defect where the enteric nervous 

system is missing from distal bowel (aganglionosis). Because the ENS controls intestinal 

motility, HSCR causes severe constipation, abdominal distension, bilious vomiting, growth 
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failure and life-threatening infection (1). Survival requires surgical excision of aganglionic 

bowel. After surgery, however, enterocolitis (i.e., bowel inflammation) occurs commonly (35%), 

and ~5% of affected children still die from HSCR. Infrequently, long-segment HSCR 

necessitates intravenous nutrition with accompanying life-threatening infections.  Most children 

with HSCR (80%) have only a short segment of aganglionosis, suggesting that slightly enhanced 

bowel colonization by ENS precursors could prevent disease.  New strategies are needed to 

enhance bowel colonization by ENS precursors and to reduce HSCR occurrence. 

     While HSCR undoubtedly requires genetic defects (2), almost all predisposing mutations 

have partial penetrance and variable expressivity. For example, inactivating RET mutations occur 

in 15-20% of sporadic and 50% of familial HSCR, but only about half of children with 

inactivating RET mutations have HSCR (2). Genetic interactions also influence HSCR risk (3–6), 

however, much variability in occurrence and severity of HSCR and other human birth defects 

remains unexplained. We hypothesized that non-genetic factors might affect HSCR occurrence. 

If so, then some cases of HSCR might be preventable by changes in prenatal care. 

     HSCR is caused by failure of distal bowel colonization by enteric neural-crest derived cells 

(ENCDCs) during week four to seven of human gestation (7–9).  Normally, ENCDCs proliferate 

vigorously and migrate rostrocaudally to colonize the entire intestine. A similar process occurs in 

mice from embryonic day 9.5 (E9.5) to E13.5 and in zebrafish from 36-96 hours post fertilization 

(hpf).  Many genes (7, 10) in addition to RET are needed for ENS development including 

SOX10, PHOX2B, EDNRB, EDN3, GDNF, intracellular signaling molecules (11, 12), 

cytoskeletal components (13, 14), and adhesion proteins (15–17). 30% of children with HSCR 

have additional birth defects and at least 30 genetic syndromes are HSCR-associated (2). The 

diverse molecular mechanisms supporting ENS development suggest that many non-genetic 
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factors could influence ENCDC bowel colonization and HSCR occurrence by modifying the 

activity or abundance of needed molecules. Furthermore, chemical perturbation of the 

developing ENS may identify new pathways involved in ENCDC migration, self renewal, 

proliferation, or survival. 

     To identify medicines that might increase HSCR risk, gain new insight into HSCR genetics, 

and identify new modulators of ENS developmental biology, we conducted a zebrafish chemical 

screen. Here we show that mycophenolic acid (MPA), a commonly used immunosuppressant, 

caused ENS developmental defects in fish and impaired ENCDC colonization of the bowel in 

mice via inhibition of inosine monophosphate dehydrogenase (IMPDH), the rate limiting enzyme 

in de novo GMP synthesis.  Guanine nucleotides are essential for DNA replication, transcription, 

and for > 200 GTP-dependent proteins.  Our analyses suggest that reduced ENCDC proliferation 

after GTP depletion is the primary cause of MPA induced bowel aganglionosis (Supplemental 

Figure 3.1) and show that IMPDH inhibition can greatly increase the penetrance and severity of 

genetic defects affecting the ENS. These studies reinforce the central role of ENCDC 

proliferation in bowel colonization and raise the intriguing possibility that drugs, nutritional 

deficiencies, or gene polymorphisms that reduce cell proliferation during early pregnancy may 

increase HSCR occurrence. 

3.3 Results 

3.3.1 Medications that inhibit ENS development 

     Zebrafish were treated with 1508 individual drugs from the Johns Hopkins Clinical 

Compound Library (18) (Supplemental Table 3.1, available at 

http://www.jci.org/articles/view/69781/sd/1) for the entire duration of ENCDC colonization of 
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the bowel (34 to 96 hours post fertilization (hpf)). Using Elavl3/4 (HuC/HuD) 

immunohistochemistry to visualize neurons (19), we identified 9 compounds that consistently 

impaired ENS development, are systemically administered, and were not overtly toxic at doses 

impacting the ENS (Table 3.1). Dose-response studies permitted determination of TD50 for ENS 

defects for these drugs. We analyzed mycophenolic acid (MPA) in more detail because MPA 

dramatically impaired fish ENS development (Figure 3.1A-C), is commonly used in humans, has 

a well-understood molecular mechanism, and has a TD50 within human therapeutic levels (20).  

3.3.2 MPA impaired mammalian ENS development 

MPA inhibits IMPDH, a protein detected in all E10.5-E12.5 bowel cells (Supplemental 

Figure 3.2), that is slightly more abundant in ENCDCs than in neighboring mesenchyme. To 

determine if MPA impairs mouse ENS development, we injected pregnant dams with MPA daily 

from E10.5 through E12.5 and analyzed fetal bowel at E13.5. Since we expected that MPA 

metabolism and effects might vary depending on genetic background, we used both the outbred 

CF1 strain due to its high fertility and large litters and the C57Bl/6 (B6) standard laboratory 

strain. CF1 fetuses tolerated 100 mg/kg/day (36% of adult human therapeutic dose allometrically 

scaled to mice (21)), but no B6 fetuses survived >25 mg/kg/day. In both strains, MPA caused 

dose-dependent reductions in the extent of ENCDC colonization of the bowel (Figure 3.1D-E) as 

indicated by the extent of TuJ1-positive neurites in the colon. While we have previously 

demonstrated that the caudal extent of TuJ1 reactivity indicates the position of the ENCDC 

wavefront (12), these structures might not be tightly associated after MPA treatment. To directly 

assess the position of the wavefront, we mated B6 females to Wnt1-Cre Rosa26EYFP/EYFP males, 

marking all neural crest-derived cells with enhanced yellow fluorescent protein (EYFP). We 

examined the position of the most distal staining in the bowel using EYFP, TuJ1 and SOX10
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Table 3.1: Compounds that inhibited ENS development in zebrafish 

Compound TD50 in 
zebrafish 
ENS 

Cmax in 
mammals 

Indication Primary 
mechanism 

Target 
molecule 

Artesunate 500 nM 1-3 µM Antimalarial Unknown Unknown 
Benzbromaron
e 

600 nM 6-8 µM Uricosuric Inhibits uric acid 
reabsorption 

URAT1 

CinchophenA <100 nM unknown Analgesic/anti-
inflammatory 
(veterinary) 

Possibly 
cyclooxygenase 
inhibition 

Unknown 

Closantel 1.8 µM 82 µM Antihelminthic 
(veterinary) 

Possibly 
mitochondrial 
uncoupling 

Unknown 

Diclazuril 1 µM 5 µM Antifungal (veterinary) Unknown Unknown 
Flubendazole 2 µM 20 nM Antihelminthic 

(veterinary) 
Inhibits 
microtubule 
assembly 

beta-tubulin 
(invertebrate) 

Lovastatin 
(Mevinolin) 

0.4 µM 0.1 µM Antihyperlipidemic Inhibits 
cholesterol 
biosynthesis 

HMG-CoA 
Reductase 

Mycophenolic 
Acid 

1 µM 1-10 µM Immunosuppressant Inhibits de novo 
GMP synthesis 

IMPDH 

Oxibendazole 200 nM 30 nM Antihelminthic 
(veterinary) 

Inhibits 
microtubule 
assembly 

beta-tubulin 
(invertebrate) 

A – Dose response not performed. 
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Figure 3.1 

MPA inhibited ENS development in developing zebrafish and mouse. Developing 
wild-type zebrafish were exposed to DMSO or MPA from 34 hpf to 96 hpf and larvae (N>200) 
were immunostained for (A) neuronal marker HuC/D (elavl3/4) (filled arrowheads = most caudal 
enteric neuron, empty arrowheads = vent, scale bar = 250 µm), (B) merged with transmitted 
light. (C) Average uncolonized distal intestine is plotted vs. MPA dose and compared to control 
(Kolmogorov-Smirnov test).  MPA exposure by maternal intraperitonal injection from E10.5-
E12.5 impairs enteric neuron colonization of the mouse hindgut at E13.5 (D) as visualized by the 
neuronal marker TuJ1 (left side = ileocecal junction, dotted line = colon outline, scale bar = 1 
mm). The position within each E13.5 colon of the most caudal (E) neuronal process (marked by 
TuJ1) or (F) ENCDC cell body (ascertained by the lineage-marker EYFP or by SOX10 staining 
in EYFP-negative littermates) in each E13.5 fetus is plotted for each MPA dose and mouse strain 
(thick lines = mean, statistical tests are ANOVAs and t-test). *** = P < 0.001, ** = P <0.01, * = 
P <0.05, ns = not significant. 
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 immunoreactivity. Both SOX10 and TuJ1 reliably reflected the extent of bowel colonization 

seen with EYFP after control or MPA treatment (Supplemental Figure 3.3) confirming that MPA 

impaired ENCDC colonization (Figure 3.1F). While MPA treatment reduced fetal size and colon 

length (Supplemental Figure 3.3), it also increased the absolute length of uncolonized colon, 

suggesting a greater effect of MPA on ENS development than on colon growth. 

3.3.3 MPA impaired development of cultured ENCDCs 

MPA could reduce migration in vivo by direct effects on ENCDCs or indirect effects on 

other fetal cells. To study ENCDCs moving on an acellular, migration-permissive surface, we 

cultured E12.5 midgut slices on fibronectin (12). MPA drastically reduced RET-positive cell 

migration (Figure 3.2A-B,E) out of bowel explants and reduced the percentage of migrating 

ENCDCs with lamellipodia (Figure 3.2F,G-I). MPA also significantly reduced DNA synthesis 

(Figure 3.2A-B,D) and induced ENCDC apoptosis (Supplemental Figure 3.4). MPA did not, 

however, alter neurite growth in post-mitotic enteric neurons (BrdU-negative, TuJ1-positive) 

grown in low density dissociated cell culture (22) (Supplemental Figure 3.5).  To confirm that 

MPA effects were due to reduced guanine nucleotide levels, we treated cells with guanosine to 

restore GTP through the purine salvage pathway. Guanosine efficiently rescued MPA’s effects 

on ENCDC migration (3. 2C, E), DNA synthesis (Figure 3.2D), and lamellipodia (Figure 3.2F, 

J), indicating that MPA effects are due to IMPDH inhibition. 

3.3.4 MPA selectively reduced ENCDC DNA synthesis in vivo 

     To deliver MPA more consistently than drug injections permit, the prodrug mycophenolate 

mofetil (MMF) was given in drinking water at a dose (1 mg/mL) that improves survival in a 

mouse lupus model (23). B6 females mated to Wnt1-Cre Rosa26EYFP/EYFP males were MMF 

treated from E10.5-E13.5 and injected with BrdU one hour prior to analysis. MMF decreased
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Figure 3.2 
MPA reduced ENCDC migration, DNA synthesis, and lamellipodia in explant 

cultures. (A-C) Low-magnification confocal micrographs of 24-hour E12.5 midgut explant 
cultures immunostained for RET and BrdU (explant is on left side of each panel, scale bar = 250 
µm). Guanosine (Guo) (C) completely reverses the proliferation and migration reduction caused 
by MPA (B). (D) Quantification of BrdU labeling index and (E) distance migrated by the RET-
expressing population after 16 and 24 hours in culture (repeated-measures ANOVA). (F) MPA 
reduced the percentage of cells with lamellipodia within the neural crest-derived cell population 
(stained with anti-p75NTR) most distant from the explant, an effect also reversed by guanosine 
(ANOVA). (G-J) Optical sections of p75NTR and phalloidin stained ENCDCs demonstrate the 
changes in cell shape associated with MPA treatment (filled arrowhead shows ENCDC with 
lamellipodium; empty arrowhead shows ENCDC without lamellipodia, scale bar = 50 microns). 
Insets show detail of ENCDC at the leading edge. *** = P < 0.001, ** = P < 0.01, * = P < 0.05, 
ns = not significant. 
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 distal colon colonization by ENCDCs (Figure 3.3A-D), recapitulating the effect of injected 

MPA. SOX10 and RET immunohistochemistry showed that neuronal differentiation in littermate 

fetuses was unaffected by MMF (Supplemental Figure 3.6A-C). Since MPA might affect 

transcription of mesenchyme-derived signals required for colonization of the bowel, we 

measured Gdnf, Edn3, and Ece1 mRNA levels in E13.5 bowel using qRT-PCR, but found no 

differences (Supplemental Figure 3.6D). In contrast to our in vitro data, cleaved-caspase 3 

positive cells were rare in both ENCDC and surrounding mesenchyme after MMF treatment 

(Supplemental Figure 3.7), but were readily detected in limb bud interdigital web. These results 

agree with recent studies that showed low but detectable rates of nuclear fragmentation (24) and 

cleaved-caspase 3 (25) reactivity in wild-type ENCDCs. While ENCDCs also can die through 

unconventional, caspase-independent processes in circumstances such as partial loss of RET 

expression (26), ENCDCs in culture readily undergo canonical apoptosis in response to MPA, so 

we limited our examination of cell death to cleaved-caspase 3. Consistent with MPA effects on 

ENCDCs in culture, MMF reduced proliferation of colon ENCDCs. In contrast to its effects on 

ENCDCs, MMF actually increased the fraction of surrounding mesenchymal cells incorporating 

BrdU in (Figure 3.3E-G). Since this was unexpected given the reduction in bowel size resulting 

from either MPA or MMF treatment (Supplemental Figure 3.3), we counted mitotic figures 

within these populations. The mitotic index (Figure 3.3H) was reduced within ENCDCs in 

concordance with the reduction in BrdU incorporation. In contrast to BrdU results, however, the 

mitotic index in the mesenchyme was not increased, indicating that MMF treated mesenchymal 

cells entered S-phase but did not divide at elevated rates. MMF therefore selectively reduced 

ENCDC proliferation and distal bowel colonization in vivo without increasing caspase-mediated 

apoptosis or altering neuronal differentiation. 
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Figure 3.3 
MMF treatment reduces ENCDC migration and DNA synthesis in vivo. (A-D) Oral 

treatment of pregnant B6 dams with MMF from E10.5-E13.5 reduces the colonization of the 
hindgut at E13.5. Stitched maximum-intensity projections of untreated (A), mildly affected (B) 
and severely affected (C) fetal colons with EYFP-marked ENCDCs demonstrate MMF’s 
inhibitory effect on ENCDC wavefront migration in vivo (dotted lines = outline of bowel, scale 
bar = 1 mm). (D) The position within each E13.5 colon of the most caudal ENCDC cell body 
(ascertained by EYFP or by SOX10 staining in EYFP-negative littermates) is plotted for each 
treatment. (Thick line = mean, statistic is Student’s t-test). (E-F) 8 µm-thick maximum-intensity 
projections of EYFP and BrdU labeled E13.5 colons (scale bar = 50 µm) and (G) counting of 
BrdU positive cells within these volumes demonstrate a reduced proportion of BrdU positive 
ENCDCs and an increased proportion of BrdU-positive mesenchymal cells after MMF treatment 
(ANOVA). (H) Counting of mitotic figures shows that the proportion of ENCDCs undergoing 
mitosis was reduced, while the mitotic index of the mesenchyme was not significantly changed 
(ANOVA on log-transformed values). mes = non-ENCDC mesenchyme. * = P < 0.05, ** = P <  
0.01, *** = P < 0.001, ns = not significant.  
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3.3.5 MPA reduced ENCDC migration by reducing proliferation 

Guanine nucleotide depletion must underlie MPA effects because guanosine rescues 

these effects in vitro.  GTP is essential for DNA, RNA, and protein synthesis as well as for 

GTPases and many other proteins.  To distinguish between primary effects of guanine nucleotide 

depletion on cell motility versus effects on ENCDC proliferation that secondarily reduce distal 

bowel colonization, we determined which effects of GTP depletion are cell autonomous. This is 

important since either reduced ENCDC proliferation or reduced cell intrinsic motility could 

prevent ENCDC migration into distal bowel (27). We used mice with a null mutation in the 

purine salvage gene Hprt (28), which is required for guanosine to rescue GTP depletion (29). 

Since Hprt is X-linked, one copy of the Hprt locus is randomly inactivated in each cell of a 

female. Thus, in all the cells of Hprt− males or half of the cells of Hprt+/− females, HPRT protein 

is absent and guanosine supplementation will not rescue GTP depletion. Leveraging this system 

to determine which GTP depletion effects are cell autonomous requires a cellular marker 

indicating which X chromosome is active. To achieve this, male mice carrying an X-linked 

EGFP transgene (30) were mated to Hprt+/− females, and E12.5 midgut explants were cultured 

with 5 µM MPA and 100 µM guanosine, conditions that completely rescue MPA effects in wild-

type explants. Four possible genotypes resulted from this mating (enumerated in Figure 3.4A). 

One of these genotypes (female X-EGFP+; Hprt+/−) produces an embryo containing a mixture of 

cells with normal HPRT activity (EGFP-positive) and EGFP-negative cells with no HPRT 

activity. Therefore, each explant from fetuses of this genotype contains a mixture of guanosine-

rescuable ENCDCs (EGFP-positive) and EGFP-negative cells that cannot convert guanosine to 

GMP, GTP, or dGTP. The other three genotypes serve as controls. As expected, MPA and 

guanosine treated male (Hprt−/Y) explants had much less migration (Figure 3.4F), less BrdU 
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incorporation (Figure 3.4D), and fewer lamellipodia (Figure 3.4H) than wild-type explants, 

confirming that HPRT is required for guanosine rescue. In female wild-type explants, ENCDCs 

incorporated BrdU equally within EGFP-positive and negative populations as expected.  In 

contrast, EGFP-negative cells in female heterozygote mosaic (X-EGFP+; Hprt+/−) cultures 

incorporated very little BrdU compared to neighboring EGFP-positive cells (Figure 3.4E), 

confirming that DNA synthesis is cell-autonomous with respect to GTP depletion and that 

guanine nucleotides are inefficiently transferred from rescued wild-type to mutant cells. 

Unexpectedly, the overall migration from Hprt+/− explants was equivalent to wild-type 

(Figure 3.4F). Moreover, despite absent BrdU incorporation, within Hprt+/− cultures HPRT-

deficient ENCDCs (EGFP-negative) migrated indistinguishably from neighboring HPRT-

expressing EGFP-positive cells (Figure 3.4G). Furthermore, consistent with competence to 

migrate, the proportion of EGFP-negative ENCDCs with lamellipodia in Hprt+/− cultures was 

not reduced (Figure 3.4I). Thus, while DNA synthesis, cell migration, and lamellipodia are all 

affected by GTP depletion and require HPRT for guanosine rescue, only effects on DNA 

synthesis are cell-autonomous with respect to GTP pools. ENCDC with adequate GTP fully 

rescue the ability of adjacent GTP-depleted ENCDC to migrate in culture. Consistent with these 

results, time-lapse imaging of isolated ENCDCs confirmed that MPA does not reduce cell 

motility. However, in explant cultures where dense clusters of ENCDCs migrate outward, time-

lapse imaging confirmed slower migration of MPA treated ENCDCs (Supplemental Figure 3.8). 

Because ENCDC proliferation also drives migration in vivo (27), these data suggest that the 

primary defect that causes HSCR-like delays in ENCDC migration after MPA/MMF treatment is 

reduced cell proliferation that secondarily reduces ENCDC colonization of distal bowel. 
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Figure 3.4 
Mosaic analysis reveals that effects of GTP depletion on migration and lamellipodia 

are non-cell autonomous. (A) Schematic of the mating scheme, genotypes, HPRT and EGFP 
expression patterns, and the GTP depletion status of each population when cultured in the 
presence of both MPA and guanosine. These conditions create mixed cultures of GTP-depleted 
and EGFP-marked, guanosine-rescued ENCDCs in X-EGFP+, Hprt+/− explants, allowing 
migration of individual GTP-depleted ENCDCs to be examined in the context of a field of 
rescued ENCDCs. (B-D) BrdU labeling reveals that guanosine rescues DNA synthesis in all 
ENCDCs in X-EGFP+, Hprt+/+ explants (B) but only rescues DNA synthesis within the HPRT-
expressing ENCDCs marked by EGFP in X-EGFP+, Hprt+/− explants (C). As expected, 
guanosine fails to rescue DNA synthesis in Hprt−/Y ENCDCs (D). Filled arrowheads = BrdU, 
EGFP double positive ENCDCs, empty arrowheads = BrdU positive/GFP negative ENCDCs, 
scale bar = 50 µm. (E) Quantification of BrdU labeling in mosaic explants (paired t-test). (F) 
ENCDC migration out of explants was impaired in Hprt−/Y explants, as expected, but Hprt+/+ and 
Hprt+/− explants produced similar ENCDC migration distances (ANOVA). (G) Quantification of 
migration within the depleted (EGFP-negative) and rescued (EGFP-positive) populations of 
female Hprt+/− cells demonstrated that GTP-depleted cells did not migrate any less efficiently 
than rescued cells (Wilcoxon signed-rank test) when surrounded by rescued cells. (H) Similarly, 
while lamellipodia were reduced in Hprt−/Y explants (t-test), they were not reduced (I) within the 
GTP-depleted ENCDC population in Hprt+/− explant cultures (paired t-test). *** = P < 0.001, ns 
= not significant.  
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3.3.6 MMF increased penetrance and extent of aganglionosis 

  MPA is teratogenic (31) in humans and some MPA-associated malformations are 

plausibly due to defective neural crest-derived cell development (32). However, aganglionosis 

has not been described in MPA-exposed children or animals. We hypothesized that MPA’s 

effects on perinatal ENS structure might be more dramatic when combined with predisposing but 

incompletely penetrant mutations, and that HSCR might only be induced by MPA when such 

mutations are present.  We therefore exposed the developing ENS of Sox10LacZ/+ mice to MPA.  

Sox10LacZ/+ mice have partially penetrant aganglionosis and hypoganglionosis (33), modeling 

high-penetrance HSCR in Waardenburg syndrome type IV. Explant cultures of Sox10LacZ/+ E12.5 

bowel had equivalent ENCDC migration and BrdU labeling to wild-type under control 

conditions. Importantly, MPA had similar effects on WT and Sox10LacZ/+ ENCDC (Figure 3.5A-

B). Thus, in this short-term culture, MPA was not more toxic to mutant than to wild-type 

ENCDCs. 

Next, we examined the interaction between MMF and Sox10 in vivo. Since Sox10 is 

haploinsufficient in the developing ENS, we crossed Sox10LacZ/+ males with B6 females (34) and 

treated with MMF throughout prenatal ENS development (E7.5-E18.5). We attempted postnatal 

evaluation, but some MMF-treated pups had exencephaly and died immediately after birth. To 

avoid missing more severely affected animals, we harvested E18.5 fetuses. Occasionally, control 

dams delivered at E18.5, but ENS structure was similar to fetuses that had not delivered. Whole-

mount immunohistochemistry for neuronal processes (TuJ1) and somata (HuC/D) demonstrated 

that Sox10 mutations and MMF individually caused partially-penetrant colonic hypoganglionosis 
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and aganglionosis (Figure 3.5C). The combination of Sox10 mutation and MMF resulted in 

extensive bowel aganglionosis. 

We next tested MPA on Ret+/− ENCDCs in culture, since RET is mutated in most human 

HSCR (2) cases. Ret+/− mice, however, are never aganglionic or hypoganglionic (35).  In 

contrast to Sox10LacZ/+, Ret+/− ENCDCs did not migrate as efficiently as WT in culture, although 

BrdU labeling was unaffected by Ret genotype (Figure 3.5D-E). MPA and Ret heterozygosity 

had additive effects on distance migrated, consistent with known roles for RET in ENCDC 

migration (11, 36) and MPA’s primary effect on proliferation. 

Since heterozygous null Ret mutations do not delay ENCDC colonization of fetal bowel 

(35) and only slightly alter adult ENS structure (37), we used a hypomorphic allele, Ret9, that 

causes partially penetrant aganglionosis (38) to test MMF effects in vivo. Ret+/9 males were bred 

to Ret+/− females on a B6 background and pregnant dams were treated with MMF from E7.5 to 

E18.5. We expected Ret9/− fetuses to have partially penetrant aganglionosis even without MMF 

(26), but found no aganglionosis and only one mouse with obvious hypoganglionosis (Figure 

3.5F, H). Other genotypes did not have detectable ENS abnormalities in control fetuses. In 

contrast, two of six MMF-treated Ret+/+ fetuses had hypoganglionic or aganglionic colons 

(Figure 3.5F, I). Furthermore, MMF-treated Ret9/+ and Ret+/− fetuses had longer regions of 

aganglionic colon than wild-type, demonstrating a synergistic effect. (Figure 3.5F, J, K). 

Strikingly, all eight MMF treated Ret9/− fetuses had aganglionosis, often extending into small 

bowel (Figure 3.5F, L). These findings are remarkable since the Ret9/- genotype closely mimics 

heterozygous RET mutations that underlie more than 25% of human HSCR.  Unlike human 

HSCR, however, sex did not affect the penetrance or the extent of ENS abnormalities in MMF 

treated Ret mutant mice.   
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Thus MMF treatment from E7.5 onward caused Hirschsprung-like aganglionosis that was 

significantly worse in genetically susceptible mice. We also tested the hypothesis that a more 

limited period of MMF exposure might cause permanent distal bowel aganglionosis.  ENCDCs 

normally first enter the bowel at E9.5 (39) and reach the end of the colon by E13.5, but the colon 

becomes less permissive (40, 41) to ENCDC migration at E14.5. To determine if MMF treatment 

during the critical period of ENCDC migration caused permanent or transient distal bowel 

aganglionosis, we switched dams carrying Sox10 and Ret litters from PBS to MMF for the 

interval from E9.5-E14.5 and then allowed them to recover on PBS from E14.5 to E18.5.  For 

Sox10 and Ret matings (Figure 3.5C and 3.5F), the colons of all wild-type fetuses and 

intermediate Ret genotype fetuses were completely colonized at E18.5, though one Sox10+/+ 

fetus had a hypoganglionic terminal colon. In contrast, aganglionosis was highly though not 

universally penetrant in Ret9/- fetuses treated with MMF from E9.5-E14.5 and was confined to 

the colon (Figure 3.5F). Furthermore, although the penetrance of aganglionosis in Sox10LacZ/+ 

fetuses treated with MMF from E9.5-E18.5 was very similar to those treated with MMF from 

E7.5-E18.5, the aganglionic segments were shorter on average if mice did not receive MMF 

before E9.5 and after E14.5. Collectively, these data suggest that significant ENCDC migration 

delays may be reversible, but the most susceptible genotypes lack the capacity to recover from 

transient MMF exposure. 

It is important to note that the preceding data described colonization of the bowel by 

ENCDC derived from the vagal region of the neural crest. Interestingly, in mice with aganglionic 

bowel, the terminal third of the colon often had single neurons or isolated clumps of neurons 

(<150 neurons per colon) associated with extrinsic nerve bundles and separated from vagal
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Figure 3.5 
MMF treatment interacts with Ret and Sox10 mutations to increase penetrance and 

severity of HSCR-like pathology. MPA treatment in 24-hour explant cultures reveals that (A, 
D) neither Ret nor Sox10 heterozygosity impacts BrdU incorporation. (B, E) In contrast, Ret but 
not Sox10 heterozygosity reduces ENCDC migration distance and MPA treatment has an 
additive effect on ENCDC migration distance (two-way ANOVA, interaction terms were not 
statistically significant). (C, F) Pregnant dams were provided MMF or control PBS in drinking 
water and the ENS was examined at E18.5 with neuronal fiber (TuJ1) and soma (HuC/HuD) 
markers. The position of the most caudal soma within the intestine is plotted as a dot, and the 
region of hypoganglionosis is plotted as a line. Mean positions of aganglionosis are indicated 
with black lines. Groups without abnormal fetuses are summarized as one dot and number. 
Treatment with MMF from E7.5-E18.5 resulted in hypoganglionosis and aganglionosis with 
genotype-dependant penetrance and severity. Treatment with MMF from E9.5 to E14.5 to test 
whether MMF-induced developmental delays are reversible demonstrates genotype-dependent 
reversal. (G-L) Representative maximum-intensity projections are shown of myenteric plexus in 
the mid-small bowel, terminal ileum, proximal colon, and terminal colon from PBS-exposed 
wild-type and Ret9/− fetuses and all MMF-treated Ret genotypes (scale bar = 100 µm). The PBS-
exposed Ret9/− colon shown (H) displays distal hypoganglionosis. TuJ1 staining demonstrates 
thick nerve bundles in the aganglionic terminal colons of J-L and disorganized fibers in 
hypoganglionic regions. *** = P < 0.001, ns = not significant. 
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 ENCDC by long segments of bowel that were completely devoid of enteric neurons. These rare 

neurons are likely to arise from ENCDCs derived from the sacral region of the neural crest. 

In addition to ENS defects, MMF treated mice were small, had reduced bowel length 

(Supplemental Figure 3.9), exencephaly and congenital heart defects. MMF-induced 

exencephaly was unaffected by genotype but was only present in litters treated with MMF from 

E7.5-E18.5 (Supplemental Table 3.2). Most heart defects occurred in Sox10 or Ret mutant 

fetuses in the E7.5-E18.5 treatment group.  Although the number of fetuses was small, the 

infrequent heart defects in MMF treated control mice raises the possibility that Sox10 or Ret may 

have unappreciated roles in cardiac crest development that are only demonstrable with additional 

genetic or environmental insults. We also observed 6 MMF-exposed fetuses with orofacial 

clefting and three with iris colobomas. These defects are similar to those reported in MMF 

exposed human infants (31). 

3.4 Discussion 

Hirschsprung disease and other problems with ENS development are known to occur in 

individuals with many well established genetic defects (2) suggesting that these disorders are not 

preventable. The gene defects and chromosomal anomalies that predispose to HSCR, however, 

are all partially penetrant and cause variable degrees of aganglionosis.  In part this variation in 

phenotype in individuals who share the same underlying primary genetic defect is thought to 

occur because of interactions between genes needed for normal development.  Our current data 

provide the first direct evidence that specific medicines impact enteric nervous system 

development to cause distal bowel aganglionosis in mice and fish that mimics human 

Hirschsprung disease.  In addition, the data show dramatic gene-environment interactions.  



101 
 

Importantly, these studies suggest the possibility that any factor that reduces ENCDC 

proliferation might increase the risk of distal bowel aganglionosis and that some cases of 

Hirschsprung disease might be prevented by careful optimization of non-genetic risk factors 

during early pregnancy. 

Most compounds found to inhibit distal bowel colonization by ENCDCs in fish lack 

obvious links to previously recognized ENS developmental pathways.  Furthermore, because we 

tested only one drug concentration, many additional medications are probably detrimental to the 

developing ENS. Two medications in addition to MPA deserve comment. Mevinolin is a 

commonly used inhibitor of the rate limiting step in de novo cholesterol biosynthesis (HMG-

CoA reductase), which is interesting because DHCR7 mutations disrupt the final step in 

cholesterol biosynthesis, causing HSCR as a component of Smith–Lemli–Opitz syndrome (42). 

Artesunate is a common malaria treatment that may increase reactive oxygen species (ROS), and 

in Tcof1 mutant mice, additional oxidative stress delays ENCDC migration (43).  These findings 

highlight the many complex pathways needed for ENCDC colonization of fetal bowel and the 

potential for diverse medicine classes to increase HSCR occurrence.  This is especially important 

since families with one child with HSCR have a 50- to 1600-fold increased risk of having 

another child with the same life-threatening disease (2). 

We investigated the immunosuppressant mycophenolic acid in more detail because MPA 

profoundly inhibited zebrafish ENS development at concentrations in the low human therapeutic 

range and because MPA is the only drug identified associated with specific patterns of human 

birth defects (31). Despite inhibiting the ubiquitous process of GMP biosynthesis, some MPA 

associated defects (cardiac defects, craniofacial defects, coloboma) suggest that IMPDH 

inhibition disproportionately affects neural crest-derived cells (32). Interestingly, Drosophila 
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IMPDH mutations (raspberry) cause mis-targeting of photoreceptor axons (44), and MPA 

impairs cranial nerve development in rat embryos (45) demonstrating that defects in other neural 

cell types can be caused by abnormal purine metabolism. We are not aware of human ENS 

malformations reported after MPA or MMF exposure, but HSCR occurrence after exposure 

likely requires predisposing gene mutations. Here we show that MPA caused dose-dependent 

distal ENS malformations in fish and mice, that MPA impairs ENCDC migration by depleting 

guanine nucleotides and reducing proliferation, and that mutations that model HSCR-

predisposition dramatically increased MMF’s teratogenic effects on distal bowel colonization by 

ENCDCs. 

The unique way that the ENS develops that may explain why ENCDCs are particularly 

sensitive to MPA/MMF. One possibility is that the relatively high rate of ENCDC proliferation 

compared to neighboring mesenchymal cells requires ENCDC to synthesize guanine nucleotides 

more rapidly via IMPDH and the de novo synthesis pathway. The elevated levels of IMPDH in 

ENCDC compared to adjacent cells are consistent with this hypothesis, as are the different 

effects of MMF in different cell types. As expected, MPA/MMF dramatically reduced BrdU 

incorporation and mitotic figures in ENCDC.  Remarkably, MPA/MMF effects in neighboring 

mesenchyme were more complex. In contrast to ENCDC, a higher proportion of mesenchymal 

cells incorporate BrdU after MPA/MMF treatment, but without a concomitant increase in 

mitoses. This might occur if MMF-treated mesenchymal cells have enough guanine nucleotide to 

enter S-phase, but have a prolonged period of DNA synthesis because of limited dGTP 

availability. Alternatively, guanine nucleotide depletion could cause DNA damage, and the 

elevated levels of BrdU incorporation reflect DNA repair. In any case, the effect on mammalian 

development of blocking a ubiquitous enzyme like IMPDH depends not only on how the drug 
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affects the biology of individual cells, but also on how important that perturbation is for 

particular aspects of development.  For example, proliferation is essential for ENCDC to 

efficiently colonize the distal bowel (27).  Reduced proliferation of other cell types might lead to 

smaller organs, but might not cause a structural defect because proliferation is not essential to 

build that structure during the interval of drug exposure. 

     For our studies it was important to determine if distal bowel aganglionosis in MPA/MMF 

treated mice occurred because of reduced ENCDC proliferation (27) or if depletion of guanine 

nucleotides directly affected proteins needed for cell migration. In mesangial (46) and 

endothelial (47) cells, for example, MPA-mediated GTP depletion led to reduced levels of active 

(GTP-bound) Rho-family GTPases including RAC1, a key regulator of the actin cytoskeleton. 

Our experiments, however, strongly suggested that MPA/MMF in the doses tested did not 

directly impair cell migration.  Specifically, we found that random motility of EYFP-labeled 

ENCDCs was unchanged by MPA (Supplemental Figure 3.8) when cells were cultured at a 

density that reduced cell-cell contact. Furthermore, using X-inactivation mosaicism we deleted 

HPRT and depleted GTP in single ENCDCs that were surrounded by “normal” guanosine 

rescued ENCDCs. In these cultures, the non-rescued ENCDCs remain BrdU negative, excluding 

cell-to-cell transfer of any significant amount of guanine nucleotide, but the GTP depleted cells 

appear to migrate essentially normally. Thus, with two different approaches we demonstrate that 

GTP-depleted ENCDC can move at normal speeds, but fail to migrate effectively unless they are 

surrounded by adjacent normally proliferating ENCDC.  This result is conceptually related to the 

findings that Sox10 and Ednrb mutations have non-cell autonomous effects on ENCDC 

migration in aggregation chimeras (48, 49) and that proliferation inhibitors (27) or mechanical 

reduction of ENCDC density (35) can reduce ENCDC colonization of cultured bowel. The 
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molecular mechanisms that allow ENCDCs to sense and react to local ENCDC density or that 

control the unpredictable trajectories of individual ENCDCs remain unknown, though in other 

neural-crest cells both diffusible (50) and contact-mediated signals are involved (51). 

We therefore propose that reduced ENCDC proliferation parsimoniously explains all 

other observed effects of MPA on the developing ENS. These results suggest the possibility that 

any condition that reduces ENCDC proliferation could increase the risk of Hirschsprung disease. 

In addition to the risk of bowel aganglionosis in wild-type mice after MPA/MMF treatment, our 

data show dramatic gene-environment interactions between MMF and either Sox10 or Ret 

mutations at term. MMF caused distal bowel aganglionosis both when administered for the entire 

period of prenatal neural crest development (E7.5-E18.5) or during the period of ENCDC 

migration (E9.5-E14.5). Interestingly, ENCDCs were able to recover from a transient MMF-

induced developmental delay in wild-type mice and in mice with “mild” Ret genotypes, but not 

in Sox10LacZ/+ or Ret9/− fetuses.  Furthermore, MPA/MMF appeared to inhibit bowel colonization 

by both vagal and sacral neural crest.  The sacral neural crest normally migrates proximally 

through terminal colon and forms 10-20% of the distal colonic ENS  (52). Although we observed 

isolated neurons in each aganglionic colon, sacral ENCDC derivatives, if present, are greatly 

diminished in number by MMF and/or the genetic lesions evaluated (i.e., less than 2% of 

anticipated sacral-derived neurons in this region).  If the same phenomena occur in humans, then 

many potentially detrimental drug exposures will only cause Hirschsprung disease in children 

with underlying predisposing mutations. 

A few interesting differences were noted between in vivo versus explant culture results 

for Ret and Sox10 mutant animals. In vivo, Ret+/+ and Ret+/− ENCDC migrate at the same rate 

through the colon (35), but we noted reduced migration of Ret+/− ENCDC from cultured gut 
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explants compared to WT cells.  This may occur because the supraphysiologic level of GDNF 

used in culture saturates all RET receptors, whereas in vivo GDNF is limiting even in Ret+/− 

mice (37).  In contrast, Sox10 mutant and WT ENCDC migrated an equal distance from gut 

explants in vitro, while the same Sox10 mutation impaired distal bowel colonization in vivo.  

This illustrates the importance of coupling in vitro and in vivo studies since some defects will not 

be detected in the culture system currently in use.  Differences that might be required to detect 

Sox10-mediated defects include the much longer time that ENCDCs migrate in vivo, the diverse 

set of factors affecting stem cell renewal, differentiation, and migration, and the three 

dimensional environment in vivo that requires degradation of the extracellular matrix (53) and 

may engage alternate integrin or adherence protein signaling.   

Collectively, this work provides the first strong evidence that medicines may impact ENS 

development and that potent gene-environment interactions dramatically alter the risk of 

Hirschsprung-like disease. Combined with our previous demonstration that vitamin A deficiency 

increases HSCR-like defects in concert with Ret mutations (12), this work adds credibility to the 

hypothesis that unappreciated maternal non-genetic factors influence HSCR risk. Oral MMF may 

also be a valuable experimental tool to probe for genetic factors that predispose to ENS 

abnormalities but that are not severe enough to cause disease in the absence of additional defects. 

Finally, these studies demonstrate a profound linkage between basic processes in cell 

metabolism and specific mammalian ENS developmental defects.  This work supports the idea 

that any stressor that reduces the efficiency of ENCDC proliferation might increase HSCR 

occurrence and severity in children with predisposing mutations, even without altering 

“classical” ENS developmental pathways. De novo purine biosynthesis, for example, is a 

multistep process where enzymes require nicotinamide, folate, and vitamin B12. Focused 
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investigation of clinically-relevant antimetabolic stressors such as folate and B12 deficiency, 

anti-folate medicines (trimethoprim, methotrexate), and other antimetabolites (e.g. azathioprine, 

6-mercaptopurine) may identify immediate candidate interventions for reducing the incidence 

and severity of HSCR in genetically predisposed children.  In parallel with work in model 

systems, these studies suggest that human case-control epidemiologic investigation is appropriate 

and may uncover avoidable maternal exposures or health conditions that could reduce the risk of 

dangerous neural crest-dependent birth defects like HSCR. 

3.5 Materials and Methods 

3.5.1 Zebrafish 

Wild type (AB) in vitro fertilized embryos were treated (N ≥ 6 embryos per drug) with 10 

µM drug and 1% DMSO in E3 Screening Media (54) from 34-96 hpf.  1% DMSO did not induce 

any defects but may increase sensitivity as 2% DMSO alone inhibited ENCDC migration.  

Distance from most caudal neuron (Elavl3/4-positive) to bowel terminus was measured (N > 

9000 larvae) using a micrometer-calibrated eyepiece grid.  Compounds were retested if mean 

uncolonized distance was >125 microns, results were consistent between experiments, and the 

compound might cross the placenta in mammals.  Drugs causing death at 10 µM were retested at 

lower concentrations. Larvae with >100 microns of uncolonized bowel were considered as 

affected for the TD50 calculations.  

3.5.2 Mice 

Vaginal plug day was considered E0.5. Mice were from Charles River (CF1), or the 

Jackson Laboratory: C57Bl/6J (referred to as B6), C3HeBFe/J (C3Fe), 129X1Sv/J (129X1), 

Tg(Wnt1-cre)11Rth (55) referred to as Tg(Wnt1-Cre), Gt(ROSA)26Sortm1(EYFP)Cos (56) referred to 
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as Rosa26EYFP, and Tg(CAG-EGFP)D4Nagy/J (30) referred to as X-EGFP+. Other mouse strains 

and genetic backgrounds used were Rettm1Jmi: a null allele referred to as RetTGM (57) on a B6 

background, Sox10tm1Weg: a null allele referred to as Sox10LacZ (33) on a C3Fe background, and 

Rettm2(RET)Jmi: a hypomorphic allele referred to as Ret9 (38) and backcrossed to 129X1 for 2-5 

generations. Wnt1-Cre Rosa26EYFP/EYFP and Hprtb-m3 (28) (referred to as Hprt−) were on a mixed 

background. PCR genotyping (58) for Sox10LacZ and Wnt1-Cre used published primers (58). 

Other primers are listed in Supplemental Table 3.3. 

3.5.3 MPA and MMF treatment 

Dams were injected daily with MPA (Sigma #M3536) in DMSO or DMSO alone (1.24 

µL/gram body weight, 31.25-250 mM MPA, intraperitoneal), or given prodrug MMF (Accord 

Healthcare, NDC #16729-094) at 1 mg/mL in 0.25X PBS adjusted to pH 3.6 as drinking water 

(23). MMF and PBS groups drank equal amounts. Cardiovascular anatomy at E18.5 was 

visualized under a dissection stereomicroscope by left ventricle injection with India ink (Windsor 

Newton) diluted 1/10 in water). 

3.5.4 Primary ENCDC culture 

300–500 micron slices of E12.5 small bowel were cultured on fibronectin-coated (250 

µg/mL, Life Technologies) Lab-Tek Permanox chamber slides (Thermo Fisher) in DMEM (high 

glucose), 200 mM L-glutamine, 100 IU/mL penicillin, 100 g/mL streptomycin, 1X B-27 

supplement (Life Technologies), and MPA in DMSO (0.01% final concentration).  Four hours 

after plating, GDNF (59) at 50 ng/mL was added to trigger migration. Cultures were maintained 

for an additional 16 or 24 hours (37ºC/5% CO2). BrdU (10 µM) was added five hours before 

fixation when appropriate. All culture experiments not involving mutant mice used CF1 fetuses. 

Sox10, Ret, and Hprt fetuses were cultured individually and genotyped. 



108 
 

For measuring neurite lengths, E12.5 bowel was enzymatically dissociated into a single-

cell suspension (22) and cells were cultured in Neurobasal media supplemented with 1X B-27, 

200 mM L-glutamine, 100 IU/mL penicillin, and 100 g/mL streptomycin. Cultures were plated at 

a density 1250 cells per cm2 on glass chamber slides (Lab-Tek) coated with poly-D-lysine (100 

µg/mL, Sigma) and laminin (BD Biosciences) and cultured for 48 hours before fixation. BrdU 

(10 µM), DMSO or MPA (5 µM final), and GDNF (50 ng/mL) were added at plating. For time-

lapse EYFP microscopy, E12.5 Wnt1-Cre Rosa26EYFP/+ midguts were cultured as dissociated 

cells or slices as described above and plated on fibronectin-coated glass chamber slides (Thermo 

Fisher). Both cells and slices were cultured in phenol red-free DMEM supplemented with B-27, 

L-glutamine, and antibiotics as described above.  All other culture conditions were identical to 

those of explant cultures. 

3.5.5 X-inactivation mosaic analysis 

X-EGFP+ male mice were bred to Hprt+/− females. E12.5 midgut explants resulting from 

these matings were cultured for 16 hours in the presence of both MPA (5 µM) and guanosine 

(100 µM) to rescue all wild-type cells while GTP-depleting all cells that do not express HPRT. 

Since both Hprt and the EGFP transgene are subject to mosaic X-inactivation, in Hprt+/− 

explants EGFP marks wild-type (rescued) cells but not mutant (depleted) cells. EGFP expression 

from the transgene was weak and visualization required immunohistochemistry. 

3.5.6 Immunohistochemistry 

Zebrafish were fixed and then stained in whole-mount as previously described (19) with 

anti-HuC/HuD monoclonal 16A11 (250 ng/mL, Life Technologies) and Alexa Fluor 594 anti-

mouse secondary (1:250, Life Technologies) before mounting in 50% glycerol/PBS. 
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E18.5 mouse bowel flushed with PBS was fixed (4% paraformaldehyde/PBS for 30 

minutes at 25ºC), washed (PBS), and permeabilized/blocked (1 hour at 25°C) in TBST (Tris-

buffered saline with 0.1% Triton-X 100), 1% cold water fish skin gelatin (Sigma), 100 mM 

glycine, and 5% normal serum matching secondary species (Jackson ImmunoResearch). Primary 

antibodies (Supplemental Table 3.4) were incubated overnight in blocking solution at 4ºC. 

Fluorophore-conjugated secondary (Alexa 488 and 594 donkey anti-rabbit, Alexa 488 and 594 

donkey anti-goat, Alexa 647 goat anti-rabbit, or Alexa 647 donkey anti-goat, Life Technologies) 

incubation was for 1 hour at 25ºC. When desired, DAPI (100 ng/mL) and/or Alexa 594 or Alexa 

488-conjugated phalloidin (4 units/mL, Life Technologies) were added during secondary 

incubation. 

An acid treatment (4N HCl, 5 minutes, 25ºC) step was required for BrdU and RET 

staining and was performed after blocking (for TuJ1 co-staining) or after antibody staining and a 

post-fixation step (4% paraformaldehyde/PBS for 10 minutes) for co-staining of other antigens. 

Samples were washed twice with TBS and blocked again between acid treatment and primary 

antibody incubation. 

E18.5 mouse bowel anti-HuC/HuD staining required an alternate procedure. Fixed 

samples were treated with 3% H2O2/PBS (20 minutes at room temperature) before blocking in 

PBST (phosphate-buffered saline pH 7.4, 1% Triton-X 100), 10% normal donkey serum, 1% 

cold water fish skin gelatin, and 100 mM glycine. Endogenous biotin was blocked 

(Streptavidin/biotin blocking kit, Vector Labs) before an overnight 4ºC incubation with biotin-

XX conjugated anti-HuC/HuD (400 ng/uL, Life Technologies #A21272) in blocking solution. 

After 6 PBST washes, tissue was incubated with Alexa–594 streptavidin (1:2000, Life 

technologies) in PBST (15 minutes at 37ºC). 
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3.5.7 Quantitative Reverse Transcriptase PCR (qRT-PCR) 

Intestines (from stomach to colon) were harvested from E13.5 fetuses treated with PBS or 

MMF (E10.5-E13.5) and individually homogenized in 800 µL of Trizol (Life Technology) by 

passage through a 26-guage needle. RNA was isolated according to manufacturer’s instructions 

with 200 µg of RNA-grade glycogen (Thermo Scientific) added as a carrier. 1 µg of each RNA 

sample was treated with RQ1 DNAse (Promega) in a total volume of 10 µL to degrade genomic 

DNA according to manufacturer’s instructions. 1 µL of this treated RNA solution was reverse-

transcribed with 200 units of SuperScript II Reverse Transcriptase (Life Technologies) according 

to manufacturer’s instructions using 250 ng of random hexamers in a total volume of 21.1 µL. 

qPCR reactions were performed on the equivalent of 1.6 ng of input RNA using Power SYBR 

Green PCR Master Mix (Applied Biosystems) and 20 µM of each oligonucleotide in a 25 µL 

reaction on a Stratagene Mx3005P thermocyler using the following cycling parameters: 10 

minutes at 95ºC followed by 40 cycles of 30 seconds at 95ºC, 1 minute at 55ºC, and 1 minute at 

72ºC. Oligonucleotide sequences for Gdnf, Ece1 (60), and Gapdh (61) were described 

previously, and sequences for Edn3 were 5’ TCACCAGTTATTCCGGGAGAG 3’ and 5’ 

TAAGGCCGGTGGGCTTTATC 3’. No-template controls and no-RT enzyme controls were 

performed for each primer-pair. Three replicate reactions were run for each sample-amplicon 

combination and average PCR efficiencies for each amplicon were calculated using LinRegPCR 

software (62) which were then used to calculate efficiency-corrected fold changes (63) using 

Gapdh as a reference gene. 

3.5.8 Microscopy and Quantification 

Micrographs were acquired with Olympus BX60 or IX71 microscopes, Axiocam CCD 

camera, and Axiovision software or with an Olympus FV1000 confocal microscope and 
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Fluoview software. ImageJ was used for image processing limited to cropping, stitching multiple 

fields (64), rotating, and uniform contrast adjustments. Confocal micrographs are presented as 

single optical sections or maximum intensity projections.  

Uncolonized zebrafish bowel was measured using micrometer-calibrated gridded 

eyepieces. Mouse bowel colonization was measured with ImageJ. E18.5 bowel was considered 

hypoganglionic when gaps between myenteric ganglia became perceptibly larger and ganglia 

contained fewer neurons. For explant cultures, we measured the distance between gut edges and 

cell bodies of the most distant ENCDC in 8 sectors per explant. In X-inactivation mosaic 

experiments, overall, EGFP-positive, and EGFP-negative migration were measured. Time-lapse 

images were acquired every 3 minutes on an AxioObserver.Z1 microscope (Zeiss) equipped with 

motorized stage, incubator, and CO2 controller. Cells were tracked with MTrackJ software (65). 

All experiments were performed in at least triplicate with separate embryos or separate 

pools of embryos in culture.  For drug treated pregnant mice, at least three litters were collected 

per treatment. Mean ± SEM are plotted unless otherwise indicated. Analyses were performed by 

observers blind to genotype and treatment status.  

3.5.9 Statistical Analysis 

We used SigmaPlot 11 (Systat Software) or R (R Foundation) for analysis. For fetal 

bowel colonization, Student’s t-test or one-way ANOVA was used. For wild-type explants, 

repeated measures ANOVA was used unless noted. For mutant explants, two-way ANOVA was 

used to test influence of genotype, treatment, and interactions. Paired t-tests or Wilcoxon signed-

rank tests (when data were non-normally distributed) were used for mosaic analyses. Other 

parameters were compared with one-way ANOVA, t-test, rank-sum test, or Kolmogorov-

Smirnov test as indicated. For all analyses, P < 0.05 was considered significant and two-tailed 



112 
 

tests were performed. P values were adjusted for multiple comparisons by the Holm-Bonferroni 

procedure based on numbers of planned comparisons. When colonization was normalized to 

bowel length, absolute length of aganglionic (or abnormal) segments were also tested and always 

agreed with the normalized results. 

3.5.10 Study Approval 

Animal experiments were approved by the Washington University Animal Studies 

Committee. 
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3.6 Supplemental Data 

Supplemental Figure 3.1 
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Supplemental Figure 3.1 
The de novo and salvage purine synthesis pathways are shown converging on GMP 

synthesis (A).  Enzymes and intermediates not involved in MPA action and/or guanosine salvage 
are omitted for simplicity. A model (B) for the individual and synergistic effects of MPA (or 
other similar antiproliferative insults) and HSCR-predisposing mutations on the developing ENS. 
Normally, the ENCDCs that migrate into the developing bowel complete their colonization of 
the terminal colon with relatively little time remaining before the bowel microenvironment 
becomes more resistant to colonization. Either defects in classical ENS development genes or 
prolonged exposure to antimetabolites (e.g. MPA) can result in partially penetrant aganglionosis 
because of this developmental window. ENCDCs may be individually more sensitive to MPA 
than other bowel cells and or simply cannot migrate effectively if proliferation of all cells slows. 
MPA interacts with genes both affecting proliferation (Ret) and other aspects of ENS 
development (Sox10) suggesting that multiplicative effects on disease penetrance and severity 
can result from two hits in converging but largely separate signaling pathways. Transient 
environmental insults that are removed as the ENCDC migration window closes can result in 
phenotypes ranging from complete recovery to lethal aganglionosis dependent on genotype. 
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Supplemental Figure 3.2 

IMPDH is ubiquitously expressed in the bowel at the time that ENCDCs colonize the 
colon. Since we anticipated that IMPDH levels might vary by position within the bowel and 
ENS, we first used whole mount IMPDH immunohistochemistry to visualize and quantify the 
expression in situ. (A) IMPDH reactivity was diffusely cytoplasmic with rod and ring 
aggregates. Since ENCDCs appeared to have more intense cytoplasmic immunoreactivity for 
IMPDH, we measured the average fluorescence signal intensity in 2.17 micron thick rings (B) 
(represented by the shaded green region) around mesenchymal and ENCDC (SOX10-positive) 
nuclei (blue ovals). This strategy was designed to minimize overlap with the cytoplasm of 
neighboring cells (black lines). (C) Intensity values.  Each dot is mean fluorescence intensity 
from a single cell. Measurements are from optical sections of three separate E11.5 colons from 
the CF1 strain. Thick line = median; thin lines = 25th and 75th percentile. Values have extensive 
overlap, but ENCDCs have a statistically significant increase in average IMPDH fluorescence 
intensity. ** = P < 0.01, rank-sum test. Since whole bowel staining did not reveal any obvious 
differences in anti-IMPDH reactivity between regions of the bowel, we quantified (D) total 
cellular anti-IMPDH reactivity in cells dissociated from six E12.5 Tg(Wnt1-Cre); Rosa26EYFP 
bowels that were cultured for 3 hours on fibronectin-coated glass at a density of 3.1×104 
cells/cm2 before fixation and staining. Total-cellular anti-IMPDH fluorescence for each cell was 
quantified with ImageJ and is shown for EYFP-negative and EYFP-positive populations as 
histograms.  
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Supplemental Figure 3.3 

MPA/MMF treatment from E10.5-E13.5 reduced colon lengths at E13.5. (A) Higher 
doses of MPA significantly reduced the length of CF1-strain colons at E13.5 (P < .001, Kruskal-
Wallis test) while lower doses of MPA and oral MMF significantly reduced the length of Wnt1-
Cre Rosa26EYFP-strain colons (t-tests). Lower doses of MPA did not significantly affect bowel 
length in C57Bl/6 fetuses, though variability was high (Kruskal-Wallis test). Thick line = 
median; thin lines = 25th and 75th percentile. *** = P < 0.001, * = P < .05. (B,C) Plots of ENS 
colonization extent assessed with double-stained E13.5 Wnt1-Cre Rosa26EYFP-strain colons. (B) 
Cellular markers such as neural-crest lineage marker EYFP or SOX10 have near-perfect 
concordance for ENS colonization extent measurements. The most caudal TuJ1+ process also 
reliably indicates colonization extent, albeit with some random error. MPA treatment does not 
appear to have any systematic effect on the extension of neuronal processes up to ENCDCs at the 
wavefront.  
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Supplemental Figure 3.4 
Cleaved caspase 3 staining of 24-hour explant cultures reveals that MPA induces 

apoptosis in cultured ENCDCs. *** = P < 0.001, t-test. 
 
 
 
 
 
 

 

Supplemental Figure 3.5 
MPA did not alter neurite growth in post-mitotic neurons. Data show the length of the 

longest neurite on each TuJ1+ cell that did not incorporate BrdU over the course of 48 hours in 
culture with GDNF, (n>150 cells/group).  
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Supplemental Figure 3.6 

MMF treatment at doses that significantly reduced ENCDC proliferation and bowel 
colonization in vivo did not cause premature differentiation at E13.5. 8 µm-thick maximum-
intensity projections of SOX10 (pseudocolored green) and RET (pseudocolored red) distal small 
intestine (A,B, scale bar = 100 µm) and quantification of each cell population within total 
ENCDCs (C) demonstrate the expected reduction in the percentage of SOX10, RET double 
positive progenitor cells within the ENCDC population as we move from distal (e.g. more 
recently colonized) to proximal. Concomitantly, the RET+, SOX10− and SOX10+, RET− single 
positive populations increase in proportion as the double-positive proportion falls. Since enteric 
neurons already exist at this time and are known to lose SOX10 and retain RET expression, the 
RET single-positive population is very likely a neuronal lineage. Increased differentiation would 
manifest as a reduction in the proportion of double-positive cells. MMF treatment did not 
significantly change the percentage of SOX10+, RET+ progenitor cells within the ENCDC 
population (two-way ANOVA, interaction term was not significant). (D) qRT-PCR analysis of 
mRNAs encoding mesenchyme derived factors important for ENS colonization. RNA was 
isolated from E13.5 bowels after treatment from E10.5-E13.5 with PBS (5 embryos) or MMF (4 
embryos). Gapdh is used as an internal reference gene for relative quantitation (t-tests). *** = P 
< 0.001, ns = not significant. 
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Supplemental Figure 3.7 
MMF treatment at doses that significantly reduced ENCDC proliferation and bowel 

colonization in vivo did not cause detectable canonical caspase-mediated ENCDC apoptosis. 
Cleaved-caspase 3 reactivity was readily detected in the interdigital web of E13.5 mice (C) but 
was infrequently detected in ENCDCs or non-neural crest mesenchymal cells with or without 
MMF treatment (A-B,D) ns = not significant, t-test). Bowels shown in (A-B) are the same as in 
Figure 3E-F. 
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Supplemental Figure 3.8 
Time lapse imaging of isolated ENCDC and bowel explant cultures reveals that (A, C) 

MPA does not alter the speeds or migration distance of individual ENCDCs when they are 
cultured at low density (Kolmogorov-Smirnov test), but does reduce (B, D) the speed and 
migration of ENCDCs migrating from bowel explants (t-test on log-transformed speeds). 
Isolated ENCDCs were prepared from the same region of Wnt1-Cre Rosa26EYFP bowel as were 
the explants (small intestine) and were plated at low density (3125 cells/cm2) to minimize cell-
cell collisions. Migrating EYFP+ cells were randomly selected for tracking at 8 hours after 
GDNF addition and tracked for the duration of culture that they remained in the field of view, 
alive, and non-dividing. Measurements from the middle third (approximately hours 6-11) of 16-
hour time-courses were chosen for analysis because most chosen cells stayed in field for this 
interval. ns = not significant, *** = P <.05. Thick lines in A-B = median. Thin lines in A-B= 25th 
and 75th percentile. Thick lines and shaded region in C-D = Mean and 95% confidence interval. 
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Supplemental Figure 3.9 
MMF treatment during gestation reduces intestine length at E18.5 in (A) Sox10 and (B) 

Ret interaction experiments. Data are shown with all genotypes pooled since Ret or Sox10 
genotype did not affect intestine length.  Black lines = mean, *** = P < 0.001, ns = not 
significant, statistical test: Welch ANOVA. 
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Supplemental Table 3.2: Incidence of neural tube and heart defects in the offspring of 
MMF treated dams 

Paternal 
Strain / 
Genotype 

Maternal 
Strain / 
Genotype 

Treatment Fetus 
Genotype 

N 
Fetuses Exencephaly 

Heart / 
Great 
Vessel 
Defects 

C3HFe/J 
Sox10+/LacZ C57Bl/6 

0.25X PBS 
E7.5-E18.5 

Sox10+/+ 11 0 (0%) 0 (0%) 

Sox10+/LacZ 16 0 (0%) 0 (0%) 

MMF 
1 mg/mL 
E7.5-E18.5 

Sox10+/+ 10 4 (40%) 1 (10%) 

Sox10+/LacZ 17 6 (35%) 4 (23%) 

MMF 
1 mg/mL 
E9.5-E14.5 

Sox10+/+ 9 0 (0%) 0 (0%) 

Sox10+/LacZ 13 0 (0%) 1 (8%)A 

B6;129X1 
Ret9/+ 

C57Bl/6 
RetTGM/+ 

0.25X PBS 
E7.5-E18.5 

Ret+/+ 7 0 (0%) 0 (0%) 

Ret9/+ 6 0 (0%) 0 (0%) 

Ret+/− 6 0 (0%) 0 (0%) 

Ret9/− 8 0 (0%) 0 (0%) 

MMF  
1 mg/mL 
E7.5-E18.5 

Ret+/+ 5 3 (60%) 0 (0%) 

Ret9/+ 4 2 (50%) 0 (0%) 

Ret+/− 4 2 (50%) 0 (0%) 

Ret9/− 8 5 (63%) 3 (38%) 

MMF  
1 mg/mL 
E9.5-E14.5 

Ret+/+ 9 0 (0%) 0 (0%) 

Ret9/+ 4 0 (0%) 0 (0%) 

Ret+/− 5 0 (0%) 0 (0%) 

Ret9/− 14 0 (0%) 0 (0%) 

A – Affected fetus was much smaller than littermates 
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Supplemental Table 3.3: Genotyping oligonucleotides 

Gene Allele Direction Sequence Amplicon 
Size (bp) 

Ret common Forward 5’CAG CGC AGG TCT CTC ATC AGT ACC GC 
AAC C3’ multipleA 

Ret wild-type 1 Reverse 5’ACG TCG CTT TCG CCA TCG CCC GTG 
CGC GCG3’ 230 

Ret RetTGM Reverse 5’CCC TGA GCA TGA TCT TCC ATC ACG 
TCG AAC3’ 290 

Ret wild-type 2 Reverse 5’GCG CAG CAG CTA GCC GCA GCG ACC 
CGG TTC3’ 450 

Ret Ret9 Reverse 5’CCC AGT AAG CAT CCC TCG AGA AGT 
AGA GGC3’ 320 

Hprt wild-type Forward 5’TCT GGT TTT ATA TGG GTA CTG GGG GAT 
CT3’ 218 

Hprt Hprtb-m3 Forward 5’AGC ATT CCT GCC CCA ACA ATG ATT C3’ 288 

Hprt common Reverse 5’CAT GCA GGC ACT CAC ACA TAC AAG 
TAA AAA3’ multipleB 

Sry N/A Forward 5’TTG TCT AGA GAG CAT GGA GGG CCA 
TGT CAA3’ 273 

Sry N/A Reverse 5’CCA CTC CTC TGT GAC ACT TTA GCC CTC 
CGA3’ 

EGFP
/EYFP N/A Forward 5’GCA CGA CTT CTT CAA GTC CGC CAT 

GCC3’ 265 EGFP
/EYFP N/A Reverse 5’GCG GAT CTT GAA GTT CAC CTT GAT 

GCC3’ 
A – To detect Ret+ and RetTGM, a PCR reaction was performed with three primers 

(common, wild-type 1, and TGM). To distinguish Ret+ and Ret9, an analogous reaction was used 
(common, wild-type 2, and Ret9).  

B – To detect Hprt genotype, two separate PCR reactions were performed for wild-type 
(wild-type and common) and b-m3 (b-m3 and common). 
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Supplemental Table 3.4: Primary antibodies 

Antibody Manufacturer / 
Investigator Dilution used 

rabbit anti-TuJ1 Covance (PRB-435P) 1:10000 
goat anti-RET Neuromics (GT15002) 1:200 
rabbit anti-p75NTR Promega (G323A) 1:200 
chicken anti-GFP Aves Labs (GFP-1020) 1:1000 
goat anti-SOX10 Santa Cruz Biotechnology 1:200 

rabbit anti-SoxE Craig Smith, MRCI, 
Australia 1:4000 

rabbit anti-IMPDH Proteintech (12948-1-AP) 1:100 on bowel; 1:200 on 
cells 

rabbit anti-cleaved Caspase 3 Cell Signaling (#9661) 1:250 
Alexa 594-conjugated 
 mouse anti-BrdU Life Technologies  (PRB–1)  1:50 

biotin-XX conjugated 
 anti-HuC/HuD Life Technologies (A21272) 400 ng/mL 
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Chapter 4: Neural crest requires Impdh2 for 

development of the enteric nervous system, great 

vessels, and craniofacial skeleton 

4.1 Summary 

Mutations that impair the proliferation of enteric neural crest-derived cells 

(ENCDC) cause Hirschsprung disease, a potentially lethal birth defect where the enteric 

nervous system (ENS) is absent from distal bowel. Inosine 5’ monophosphate 

dehydrogenase (IMPDH) activity is essential for de novo GMP synthesis, and chemical 

inhibition of IMPDH induces Hirschsprung disease-like pathology in mouse models by 

reducing ENCDC proliferation. Two IMPDH isoforms are ubiquitously expressed in the 

embryo, but only IMPDH2 is required for life. To further understand the role of IMPDH2 

in ENS and neural crest development, we characterized a conditional Impdh2 mutant 

mouse. Deletion of Impdh2 in the early neural crest using the Wnt1-Cre transgene 

produced defects in multiple neural crest derivatives including highly penetrant intestinal 

aganglionosis, agenesis of the craniofacial skeleton, and cardiac outflow tract and great 

vessel malformations.  Analysis using a Rosa26 reporter mouse suggested that some or 

all of the remaining ENS in Impdh2 conditional-knockout animals was derived from cells 

that escaped Wnt1-Cre mediated DNA recombination.  These data suggest that IMPDH2 

mediated guanine nucleotide synthesis is essential for normal development of the ENS 

and other neural crest derivatives. 
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4.2 Introduction 

The enteric nervous system (ENS) is a network of ganglia distributed throughout 

the digestive tract that autonomously controls motility, secretion, and blood flow (1). The 

ENS develops from migratory neural crest-derived cells that invade, migrate through, and 

colonize the nascent bowel while dividing rapidly, eventually reorganizing into discrete 

ganglia, and differentiating into glia or one of more than fifteen functional classes of 

neuron (2–4). A complete and functional ENS is required for life. Incomplete 

colonization of the bowel by ENS precursors results in Hirschsprung disease (HSCR), a 

life-threatening oligogenic birth defect where a segment of distal bowel is devoid of 

enteric neurons (aganglionosis). Bowel colonization critically requires that ENCDC 

proliferate efficiently (5, 6).  For this reason, many of the mutations that cause HSCR 

impair ENS precursor proliferation or self-renewal (2, 7). Inhibition of ENCDC 

proliferation with the antimetabolite immunosuppressant mycophenolic acid (MPA) also 

causes aganglionosis in mice (6) and enhances the penetrance and phenotypic severity of 

mutations that model HSCR. MPA blocks the rate-limiting step of de novo guanine 

nucleotide synthesis by inhibiting inosine 5’ monophosphate dehydrogenase (IMPDH), a 

ubiquitous metabolic enzyme whose expression is relatively enriched in ENCDC (6). 

Prenatal MPA exposure in humans is also associated with a specific pattern of birth 

defects (8), some of which are plausibly due to disruptions in neural crest development 

(9). 

Relatively little is known about the developmental roles of IMPDH, which is 

present in two isoforms encoded by separate genes in vertebrates. IMPDH2 is widely 

expressed and is enriched in activated lymphocytes, tumor cells, fetal tissues, and other 
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proliferative cells (10–12). Homozygous Impdh2 deletion in mice results in early lethality 

prior to embryo implantation, while heterozygous deletion results in a subtle reduction in 

the IMPDH activity of splenic lymphocytes (13). IMPDH1 is also ubiquitously expressed, 

but does not appear to be regulated by proliferative demand, and has a specialized but 

poorly-understood role in the retina (12, 14–17), where missense mutations in IMPDH1 

cause a form of autosomal dominant retinitis pigmentosa in humans. In mice, Impdh1 is 

dispensable for life and its deletion results in a relatively mild retinal phenotype (16, 18).  

Our previous experiments with the non-selective IMPDH inhibitor mycophenolic 

acid did not target IMPDH inhibition to neural crest derivatives, nor did they indicate 

whether IMPDH1 and IMPDH2 have redundant roles or whether one isoform is uniquely 

required for neural crest development. Since Impdh1 homozygous mutant mice are viable 

and fertile and thus must form a complete and functional ENS, we hypothesized that 

Impdh2 is required within the neural-crest lineage for ENCDCs to proliferate efficiently 

and colonize the bowel. To further explore the role for this basic metabolic pathway in 

development, we deleted Impdh2 in the early neural crest of mice using a Cre/loxP 

system and Wnt1-Cre mice. 

Here we demonstrate that Impdh2 expression is required in the neural crest for 

development of the craniofacial skeleton, cardiac outflow tract, and enteric nervous 

system. In the ENS, loss of Impdh2 results in extensive bowel aganglionosis. 

Furthermore, ENCDC that do colonize the bowel in Impdh2 conditional mutant mice are 

delayed and demonstrate incomplete Cre/loxP recombination, indicating a strong 

selective pressure against Impdh2 deletion.  Collectively these data support the need for 

de-novo guanine nucleotide synthesis and cell proliferation during neural crest 
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development and are consistent with the hypothesis that IMPDH1 does not adequately 

supply metabolic guanine nucleotide needs for these neural crest-derived cell populations. 

 

4.3 Results 

4.3.1 Impdh2 deletion in the neural crest results in craniofacial and cardiac defects. 

Guanine nucleotides can be produced either de novo via IMPDH1/IMPDH2 or by 

the purine salvage pathway. To determine whether Impdh2 was required within the neural 

crest lineage for ENS development or whether Impdh1 and/or purine salvage from 

adjacent tissue could provide adequate GMP once embryonic lethality was bypassed, we 

used the well-characterized Wnt1-Cre transgene (19) to delete a conditional Impdh2loxP 

allele (Supplemental Figure 4.1) in the early neural crest. As expected, both 

Impdh2loxP/loxP and Impdh2loxP/Del mice lacking Wnt1-Cre survived to adulthood and were 

fertile. While Wnt1-Cre Impdh2loxP/+ mice appeared normal, Wnt1-Cre Impdh2loxP/loxP 

mice did not survive after birth, though they did develop to term. At E18.5, Wnt1-Cre 

Impdh2loxP/loxP fetuses had profound malformations of the anterior head (Figure 4.1A,E) 

including a near-total absence of the jaw and a protruding brain that was not covered by 

bone. Eyes were sometimes open, and ear pinnae were rudimentary. Bone and cartilage 

staining revealed that most skeletal structures anterior to the parietal (dorsal) or 

basisphenoid (ventral) bones were reduced or ablated, and the remaining structures 

consisted of irregular spicules of bone and cartilage (Figure 4.1B-D,F-H). Notably, these 

structures are normally neural crest-derived. Several posterior elements of the skull that 

are neural crest-derived are also reduced or missing in Wnt1-Cre Impdh2loxP/loxP fetuses, 
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Figure 4.1: Impdh2 deletion by Wnt1-Cre results in craniofacial and cardiac defects 
at term.  
At embronic day 18.5 (E18.5), (A, E) Wnt1-Cre Impdh2loxP/loxP fetuses lack a jaw, 
external ear, or any mineralized bone in the anterior head. (B, F) superior, (C, G) inferior, 
and (D, H) lateral views of bone and cartilage stained skulls show that Wnt1-Cre 
Impdh2loxP/loxP fetuses have missing or severely reduced neural-crest derived skeletal 
structures of the head, including most structures anterior to the parietal and basiosphenoid 
bones as well as the neural crest derived interparietal bone and tympanic rings. bo = 
basiooccipital bone, bs = basisphenoid bone, eo = exooccipital bone, f = frontal bone, m 
= mandible, n = nasal bone, p = parietal bone, px = premaxilla, ip = interparietal bone, so 
= supraoccipital bone, tr = tymanic ring, x = maxilla, * = remnant or abnormal structure. 
scale bars in panels A-H = 5 mm. Injection of ink into the ventricles of control Wnt1-Cre 
Impdh2loxP/+ hearts (I) reveals normal anatomy of the great arteries. Wnt1-Cre 
Impdh2loxP/loxP hearts (J and K) show representative malformations of the great vessels 
and outflow tract: J shows an interrupted aortic arch, where the left subclavian (ls) arises 
from the pulmonary artery instead of the aorta. In K, the pulmonary artery fails to label 
with ink despite ink injection into the right ventricle, indicating pulmonic stenosis or 
atresia. a = aorta, p = pulmonary artery, b = brachiocephalic trunk, lc = left common 
carotid artery, ls = left subclavian artery, p* = atretic pulmonary artery. Scale bar = 2 mm. 
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such as the interparietal bone and tympanic rings (20, 21). Since our previous 

experiments with IMPDH inhibition also revealed heart defects in exposed fetuses, we 

examined hearts at E18.5 using dye injection into the left ventricle and observed outflow 

tract and great vessel defects in 4 of 8 Wnt1-Cre Impdh2loxP/loxP fetuses (Figure 4.1I-K). 

4.3.2 Neural crest-specific deletion of Impdh2 results in bowel aganglionosis. 

Examination of enteric neurons in E18.5 fetal bowel using ANNA–1 (anti-

HuC/HuD) staining revealed normal colonization in Impdh2loxP/+ fetuses while deletion 

of Impdh2 in the neural crest of Impdh2loxP/loxP fetuses resulted in severe defects of the 

ENS including highly-penetrant aganglionosis of variable length (Figure 4.2A-C) ranging 

from very short colonic aganglionosis to total intestinal aganglionosis. In bowels that had 

normally-innervated regions, those regions were always oral to hypoganglionic and 

aganglionic regions, strongly suggesting that Impdh2 deletion causes a vagal ENCDC 

colonization defect. Some isolated enteric neurons were found in the walls of otherwise 

aganglionic colons and are possibly of sacral neural crest origin. We were concerned that 

the variable phenotype seen in the conditional knockout was due to the presence of two 

“floxed” alleles of Impdh, resulting in either incomplete recombination or a failure to 

reduce IMPDH2 protein levels quickly enough to produce a complete phenotype in the 

ENS. To address this concern, we converted one copy of Impdh2loxP to the deleted allele 

Impdh2Del in the germline and examined the phenotype of Wnt1-Cre Impdh2loxP/Del 

fetuses. This configuration requires only a single recombination event to delete Impdh2. 

This strategy greatly increased the severity of the ENS phenotype. (Figure 4.2A,D). 
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Figure 4.2: Impdh2 deletion by Wnt1-Cre causes highly penetrant aganglionosis of 
variable length at term.  
(A) At E18.5, all Wnt1-Cre Impdh2loxP/+ bowels are fully colonized by neurons, while 
Wnt1-Cre Impdh2loxP/loxP and Wnt1-Cre Impdh2loxP/Del intestines demonstrate distal 
aganglionosis reminiscent of Hirschsprung disease. Proximal to aganglionic bowel there 
is a hypoganglionic transition zone and eventually, in many cases, regions of relatively 
normal bowel. Dots = position of the most caudal enteric neuron in each intestine, grey 
lines = hypoganglionic regions. vertical lines = mean positions of the most caudal 
ENCDC. (B) ANNA–1 (anti-HuC/HuD) staining of enteric neuron somata reveals that 
Wnt1-Cre Impdh2loxP/+ bowels contain a dense network of enteric neurons throughout the 
bowel while (C-D) conditional knockout genotypes contain aganglionic (distal colon), 
hypoganglionic (C, proximal colon) and relatively normal regions of the ENS (proximal 
small intestine). ANNA–1 photomicrographs are maximum intensity projections of 20 
micron-thick volumes. Scale bar = 100 µm. 
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4.3.3 Impdh2 deleted ENCDCs colonize the bowel abnormally 

Because of the distal aganglionosis apparent at E18.5, we examined the effects of 

Impdh2 deletion as the ENCDC migration process nears completion at E13.5 using a 

mouse strain that expresses EYFP after Cre-induced DNA recombination, Rosa26EYFP. 

The craniofacial defects that result from Impdh2 deletion were readily apparent at E13.5. 

While lineage-marked EYFP+ cranial neural crest cells did migrate to the expected 

regions of the anterior head in Wnt1-Cre Impdh2loxP/loxP and Wnt1-Cre Rosa26EYFP 

Impdh2loxP/Del fetuses, the resulting structures were abnormal in Wnt1-Cre Rosa26EYFP 

Impdh2loxP/loxP embryos and the pharyngeal arches were almost entirely absent in the 

Impdh2loxP/Del genotype (Figure 4.3A,C,E). In the ENS, Wnt1-Cre Impdh2loxP/+ colons 

were uniformly colonized at E13.5 as indicated by EYFP fluorescence or SOX10 staining. 

In contrast, both Wnt1-Cre Impdh2loxP/loxP and Wnt1-Cre Impdh2loxP/Del genotypes showed 

severe colonization defects at E13.5 (Figure 4.3B,D,F-G) and colonization in the Wnt1-

Cre Impdh2loxP/Del genotype was slightly but significantly reduced relative to Wnt1-Cre 

Impdh2loxP/loxP (Figure 4.3G). The structure of the proximal colonized regions of the ENS 

was also abnormal in both conditional knockout genotypes. In Impdh2loxP/+ fetuses, the 

ENCDCs immediately behind the wavefront were organized into chains of cells (Figure 

4.3B), quickly transitioning into a high-density network more proximally. In contrast, 

Wnt1-Cre Impdh2loxP/loxP and Wnt1-Cre Impdh2loxP/Del bowel contained long stretches of 

low-density ENCDC strands and even isolated ENCDCs (Figure 4.3D,F). Notably, the 

proximal colonized areas of E18.5 bowel appeared essentially normal (Figure 4.2), 

indicating that these sparse strands of ENCDCs did expand between E13.5 and E18.5 to 

populate the colonized regions of the proximal bowel. In an effort to determine the fate of 
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Figure 4.3: Impdh2 conditional knockout fetuses have cranial neural crest and 
ENCDC abnormalities at E13.5 
(A, C, E) EYFP-positive neural crest derivatives have migrated to the anterior head in all 
genotypes, but in (C) Wnt1-Cre Rosa26EYFP Impdh2loxP/loxP fetuses, EYFP-positive tissue 
is reduced in size and has not fused at the midline. In (E) Wnt1-Cre Rosa26EYFP 
Impdh2loxP/Del fetuses, EYFP-positive tissue is still present anterolaterally but does not 
form recognizable branchial arch structures. Scale bar = 1 mm. In (B) control bowel, 
SOX10-positive enteric neural crest-derived cells (ENCDCs) have colonized almost the 
entire bowel and have accumulated to a high density in colonized regions (small intestine 
and proximal colon). In (D) Wnt1-Cre Impdh2loxP/loxP and (F) Impdh2loxP/Del intestine, 
colonized regions are both significantly shorter and contain fewer cells, indicating a 
profound inability for ENCDCs to efficiently populate the intestine. Scale bar = 100 µm. 
Measurements (G) of colonization extent as well as colonized regions of bowel 
containing an unusually low ENCDC density reveal that Wnt1-Cre Impdh2loxP/Del 
intestine has a significantly worse colonization defect than Wnt1-Cre Impdh2loxP/loxP. Dots 
= position of the most caudal ENCDC in each intestine as indicated by EYFP expression 
in Rosa26EYFP bowels or SOX10 staining in Rosa26+ bowels. Grey lines = regions of low 
ENCDC density. Vertical lines = mean positions of the most caudal ENCDC. * = P< .05, 
*** = P < .001 by Welch’s t-test on the most-caudal ENCDC positions.  
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Impdh2-deficient ENCDCs, we measured DNA synthesis and apoptosis at E13.5 using 

BrdU labeling and cleaved-caspase 3 staining. We did not detect significant numbers of 

cleaved-caspase 3 reactive ENCDCs of any genotype and found that BrdU incorporation 

in the EYFP-positive cells of E13.5 Impdh2loxP/Del bowel was not significantly reduced 

relative to EYFP-positive cells at the migration wavefront in Impdh2loxP/+ fetuses 

(Supplemental Figure 4.2). 

4.3.4 Wnt1-Cre incompletely recombines the Rosa26EYFP reporter in the ENS of 

Impdh2 conditional knockouts 

E18.5 fetuses that also carried the Rosa26EYFP reporter displayed an unexpected 

phenotype. In Wnt1-Cre Impdh2loxP/+ bowel, all neurons were EYFP-positive (Figure 

4.4A), as expected given the Wnt1-Cre fate map (20). However, in every Impdh2loxP/loxP 

Rosa26EYFP fetus (N=4 EYFP-positive samples), mixtures of varying numbers of EYFP-

positive and EYFP-negative neurons were clearly visible (Figure 4.4B-C). The degree of 

incomplete recombination varied both between animals and between regions of a single 

bowel, reflecting the clonal mixing that occurs during ENS development (22–24). When 

we examined heterozygous Wnt1-Cre Impdh2loxP/+ Rosa26EYFP bowels at E18.5, (N=4 

EYFP-positive samples), we were unable to find any EYFP-negative neurons. Similarly, 

when we examined Wnt1-Cre Impdh2loxP/+ and Wnt1-Cre Impdh2loxP/Del bowels carrying 

the Rosa26EYFP reporter at E13.5 and stained for SOX10, we observed many EYFP-

negative ENCDCs in the Impdh2loxP/Del genotype (2 of 4 embryos, Figure 4.4D-E). After 

searching the colonized regions of Wnt1-Cre Impdh2loxP/+ bowels marked by EYFP 

(N=6), we found only a few scattered EYFP-negative SOX10-positive ENCDCs in a
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Figure 4.4: Residual enteric neurons and ENCDCs in Impdh2 conditional knockouts 
display incomplete recombination.  
In (A) Wnt1-Cre Impdh2loxP/+ Rosa26EYFP control fetuses, all ANNA–1-positive (anti-
HuC/HuD, red) enteric neurons are EYFP-positive (green) at E18.5, demonstrating that 
under normal circumstances Wnt1-Cre efficiently recombines the ancestors of essentially 
all ENCDCs. In (B-C) Wnt1-Cre Rosa26EYFP Impdh2loxP/loxP colon (B) and small intestine 
(C), many enteric neurons are not EYFP-positive, and the degree of incomplete labeling 
varies. (D-E) A similar phenomenon is already visible in the small intestine at E13.5. 
ENCDCs (SOX10-positive, red) are always EYFP-positive (green) in (D) control Wnt1-
Cre Rosa26EYFP Impdh2loxP/+ bowel, but in Wnt1-Cre Rosa26EYFP Impdh2loxP/Del bowel, 
many SOX10-positive ENCDCs are EYFP-negative (E). Dashed boxes = magnified 
insets. All scale bars = 100 µm. All photomicrographs are maximum intensity projections 
of 20 micron-thick volumes. 
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single embryo (Supplemental Figure 4.3), indicating that while Wnt1-Cre mediated 

recombination in the ENS is highly efficient, it is not universal. 

4.4 Discussion 

4.4.1 A neural-crest autonomous requirement for Impdh2 

Deletion of Impdh2 in the early neural crest results in craniofacial defects 

including near-total ablation of skull structures derived from the neural crest (20, 25).  

This includes the skeleton anterior to the basisphenoid and parietal bones as well as the 

tympanic rings and the interparietal bone in the posterior skull (Figure 4.1). In addition, 

conditional knockout fetuses demonstrated cardiac outflow tract and great vessel defects. 

These phenotypes bear a striking resemblance to the pan-neural crest defects that result 

from experimental ablation of the Wnt1-Cre fate map using Cre recombinase-triggered 

expression of diphtheria toxin fragment-A (26) or HSV-Tk followed by ganciclovir 

treatment (27), which suggests that neural crest derivatives lacking Impdh2 fail to expand, 

survive, or differentiate properly. Taken together with the catastrophic results of Impdh2 

deletion in the ENS, these results reinforce our previous findings that global IMPDH 

inhibition results in cardiac and ENS defects (6). Our previous work could not separate 

the effects of IMPDH inhibition on ENCDCs and non-neural crest tissues such as the 

bowel mesenchyme, which manifested as global growth restriction and reduced intestinal 

length in exposed fetuses. These experiments clearly show that Impdh2 is required in 

ENCDCs and that the resulting ENS defects occur in the context of an entirely normal 

bowel microenvironment. Moreover, guanine salvage from this normal neighboring 
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tissue and any residual GMP synthesis by IMPDH1 clearly cannot compensate for the 

loss of IMPDH2. 

4.4.2 Incomplete recombination in conditional deletion of Impdh2  

The aganglionosis observed in Impdh2 conditional knockout bowel demonstrates 

the necessity of IMPDH2 for ENS development, while the incomplete recombination 

seen in the ENS (Figure 4.4) of these fetuses provides indirect evidence that loss of 

Impdh2 selects against neural crest cells populating the bowel. The Wnt1-Cre transgene 

has been used extensively to delete genes in and mark the cells of the ENS (28–31), and 

we are unaware of any previous instances where incomplete recombination has been 

demonstrated in Wnt1-Cre mice, although it has been suggested that it may account for 

some otherwise contradictory results (32, 33). Indeed, we observed only rare instances of 

incomplete recombination of the EYFP reporter in E13.5 Impdh2loxP/+ Rosa26EYFP fetuses 

(Supplemental Figure 4.3), suggesting that Cre-induced recombination is nearly complete 

in the ENS of Wnt1-Cre mice. The Impdh2loxP/loxP conditional knockout, on the other 

hand, shows clear evidence of incomplete recombination of the Rosa26 reporter. Since 

each Cre-catalyzed recombination event is independent, when reporter recombination is 

obviously incomplete we can no longer assert with confidence that every EYFP-positive 

cell has recombined the gene of interest. Because the Wnt1-Cre transgene is very 

efficient in conditional heterozygotes, we suspect that cells escaping recombination had a 

strong selective advantage early in neural crest development, leading to their 

overrepresentation in the ENS of conditional knockout fetuses. We also suspected that 

incomplete deletion of Impdh2 could account for the variability in ENS phenotype. Since 

the Impdh2 allele used in this study lacks an internal recombination reporter and all 



 
 

143 

available anti-IMPDH antibodies suitable for immunohistochemistry lack specificity for 

IMPDH2, we attempted to circumvent this problem by using the Impdh2loxP/Del 

Rosa26EYFP genotype, reasoning that reducing the number of required recombination 

events from 3 to 2 might make both deletion and lineage marking more uniform. 

However, examination of the ENCDC population indicates that this was not entirely 

successful, since many SOX10-positive cells in Impdh2loxP/Del Rosa26EYFP bowels still 

escaped recombination at the Rosa26 locus. Using the Impdh2loxP/Del genotype likely 

increased deletion efficiency and reduced the number of proliferation competent cells 

entering the bowel since the migration phenotype in Impdh2loxP/Del embryos at E13.5 was 

significantly worse than in mice with the ImpdhLoxP/LoxP genotype and ENCDC migration 

depends largely on population size and proliferation (5, 34). The relatively normal BrdU 

labeling index in Wnt1-Cre Impdh2loxP/Del ENCDCs is also easily accounted for if the 

ENCDCs that do colonize the bowel in Impdh conditional mutant mice have 

preferentially not undergone recombination at the Impdh2 locus despite sporadically 

recombining the Rosa26EYFP reporter. 

The defect in ENCDC colonization of Impdh2 conditional knockout fetuses is 

severe at E13.5, with long stretches of very sparsely populated bowel (Figure 4.3). 

Continued expansion of this remnant ENCDC population must occur to produce the 

relatively normal-appearing ENS present in the colonized regions of bowel at E18.5 

(Figure 4.2), which also supports the idea that this sparsely colonized network is made up 

of fugitive ENCDCs whose ancestors escaped recombination and then adaptively expand 

to fill the underpopulated bowel (35). To our knowledge, it is not known how long Cre 

expression from the Wnt1-Cre transgene lasts in the migratory neural crest. Expression of 
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a similar Tg(Wnt1-LacZ) transgene in the developing ENS was lost after E11.5 (36), 

suggesting that the rare ENCDC that had not yet recombined at that time would 

permanently escape Cre-mediated DNA recombination.  As other studies have shown, 

reducing the number of ENCDCs that enter the bowel is sufficient to cause aganglionosis 

even if the remaining ENCDCs are healthy (34), which accounts for the failure of these 

remaining cells to colonize the more distal portions of the bowel. It is also possible that 

non-recombined cells support the migration of Impdh2-deleted cells through the bowel, 

since non-cell autonomous rescue of ENCDC migration occurs in aggregation chimeras 

(37, 38) and in tissue culture (6). In the absence of a method to directly detect Impdh2 

recombination on a cell-by-cell basis, we cannot determine if all ENCDC that colonize 

the bowel in mutant mice retain IMPDH2 expression. 

4.5 Conclusions 

Taken together with our prior study demonstrating that chemical inhibition of 

IMPDH results in aganglionosis by reducing ENCDC proliferation (6), these experiments 

identify IMPDH2 as uniquely required for the development of the ENS. This is especially 

interesting since human genetic studies have independently identified a risk locus at 3p21 

in Hirschsprung disease  (39), and the IMPDH2 gene is located at 3p21. In that analysis, 

the 3p21 risk allele appeared to enhance the effect of RET mutations, the primary 

causative mutation in most cases of Hirschsprung disease (7). A subsequent study has 

mapped this risk locus to an interval 0.6 megabases from IMPDH2 (40). Other modifier 

mutations are well-appreciated contributors to Hirschsprung disease (41–43), and future 



 
 

145 

studies will investigate whether known (44) or novel genetic variation in human IMPDH2 

is associated with Hirschsprung disease. 

Because IMPDH inhibition impairs ENS development and the Impdh2 gene is 

indispensable for embryonic survival, we examined whether Impdh2 is required in the 

neural crest lineage for its proper development. Wnt1-Cre-mediated deletion of Impdh2 

resulted in severe craniofacial, heart, and extensive aganglionosis of the ENS. During 

initial ENS development, ENCDC colonization in conditional knockout fetuses was 

impaired and the remaining colonized regions were abnormally hypocellular. 

Furthermore, both the developing and definitive ENS showed evidence of incomplete 

recombination that was specific to the conditional knockout genotype, demonstrating that 

Impdh2 deletion is strongly selected against in the neural crest cells that eventually 

become the ENS. These results confirm a critical role for de novo guanine nucleotide 

synthesis and IMPDH2 in the neural crest lineage, and indicate that IMPDH1 and the 

salvage pathway cannot compensate for IMPDH2 loss even when other tissues in the 

developing embryo are normal.  

4.6 Materials and Methods 

4.6.1 Impdh2 Gene Targeting 

The pOSfrt-loxP vector (Provided by Randy Thresher, Lineberger Comprehensive 

Cancer Center Animal Models Core) containing a FRT-flanked positive selection marker 

(MC1-Neo) and a negative selection marker (PGK-TK) was used to assemble the Impdh2 

targeting construct from a 129/SV derived mouse genomic Impdh2 clone (Agilent 

Lambda FIX II). A XbaI/XbaI fragment containing Impdh2 exons 10-14 and 3’ flanking 
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region (4.6 kb ‘long arm’) was filled-in using T4 DNA polymerase (Promega) and cloned 

into the PmeI site of pOSfrt-loxP using T4 DNA ligase (NEB) 3’ to the FRT-flanked 

MC1-Neo cassette. A second 3.5 kb fragment was synthesized by PCR using one primer 

located in intron 1 (5’ AAG GGT ACC CAT ATG TGA AGC AGG GGC AGG GGT 

TTA GAG G 3’) and a second loxP sequence-containing primer located in intron 9 (5’ 

CCG GGT ACC ATA ACT TCG TAT AAT GTA TGC TAT ACG AAG TTA TAG 

AGA TGC CAA GTC AGG CCT TGC C 3’). KpnI restriction sites at both ends of the 

amplified product were utilized to clone the fragment into the KpnI site of pOSfrt-loxP 

between the FRT-flanked MC1-Neo cassette and the 4.6 kb “long arm”. The entire PCR 

insert was sequenced and confirmed to be void of mutations. To complete the targeting 

construct, a 3.3 kb XbaI/NdeI fragment containing the 5’ end of Impdh2 (5’ flanking 

sequence through exon 1, ‘short arm’) was filled-in and ligated into the PmlI site of 

pOSfrt-loxP containing the other two fragments, between the PGK-TK gene and the 

FRT-flanked MC1-Neo cassette. Sequencing of the completed targeting vector revealed 

that the most 5’ portion of this fragment was phage vector DNA located between Impdh2 

genomic sequences and the PGK-TK cassette, and that the homologous ‘short arm’ was 

1.3 kb long.  

Transfection and selection of E14TG2a (129/Ola) ES cells and generation of 

chimeras was performed by the Animal Models Core of the UNC-Lineberger 

Comprehensive Cancer Center. A single correctly targeted ES cell clone was identified 

using PCR screening and sequencing, and the resulting agouti male chimeras were bred 

to C57Bl/6 females to accomplish germline transmission. The MC1-Neo cassette was 

excised by mating to Flp-recombinase expressing mice to produce the Impdh2loxP allele. 
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4.6.2 Animals and Genotyping 

Animal experiments were approved by the Washington University Animal 

Studies. Animal procedures were conducted in accordance with animal research protocols 

approved by the University of North Carolina – Chapel Hill’s Institutional Animal Care 

and Use Committee. All mice were maintained on mixed genetic backgrounds with 

functional HPRT-mediated purine salvage. Since E14TG2a ES cells carry the Hprtb-m3 

null mutation, PCR was used to confirm that the Impdh2loxP strain did not carry Hprtb-m3 

(6) prior to experimental matings. Cre-mediated recombination of the Impdh2loxP allele 

results in a frameshift after codon 32 and a premature stop after codon 48, preventing 

expression of the catalytic domain. To produce a conventional knock-out allele, 

Impdh2loxP/+ mice were bred to Tg(ACTB-cre)2Mrt/J “Actin-Cre” mice (45) resulting in 

pups carrying germline deletions of Impdh2, referred to as Impdh2Del. Actin-Cre was then 

removed through further breeding prior to experimental matings. Impdh2loxP mice were 

bred to Gt(ROSA)26Sortm1(EYFP)Cos (46) mice (referred to as Rosa26EYFP) which 

permanently marks all Cre-expressing cells and their descendants with EYFP expression. 

Impdh2loxP and Impdh2Del mice were bred to Tg(Wnt1-cre)11Rth (19) mice, (referred to 

as Wnt1-Cre), which drives loxP recombination in the entire neural crest and the dorsal 

tissues of the neural tube of the midbrain and hindbrain (20). These strains were 

intercrossed as indicated using timed matings to produce Wnt1-Cre Impdh2loxP/+ 

conditional heterozygotes (control animals) and the two conditional knockout genotypes 

Wnt1-Cre Impdh2loxP/loxP and Wnt1-Cre Impdh2loxP/Del with and without the Rosa26EYFP 

reporter. 
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The vaginal plug day was counted as embryonic day 0.5. For collection of fetal 

samples, dams were euthanized with CO2 according to institutionally-approved 

procedures. Embryonic day 18.5 (E18.5) fetuses were euthanized by decapitation except 

for fetuses to be processed for bone and cartilage staining, which were anesthetized prior 

to immersion fixation. Tail DNA was prepared using the HotSHOT method (47) and 

genotyped using a previously described PCR genotyping protocol (48). Genotyping 

reactions for Cre recombinase-containing transgenes and Rosa26EYFP used previously 

described primers (6, 48). The Impdh2+ and Impdh2loxP alleles were genotyped using 

primer pair Impdh2-F: 5’GAC TAC CTG ATT AGC GGA GGC ACC TCT TAC3’ and 

Impdh–5FRTlox-R: 5’CAC GCT AAC ATA TTC CAC ATA TCC AGA GAA3‘, 

producing a 320 bp band from the wild-type allele and a 450 bp band from the 

conditional allele. The Impdh2Del allele was genotyped with primer pair Impdh2-F and 

Impdh–3lox-R: 5’CTG AAA GAC ACC TAT ACC AAG TCC ATA GCC3’ resulting in 

a 650 bp band indicating the presence of the deleted allele. All analyzed mice were 

hemizygous for the Wnt1-Cre transgene and heterozygous for Rosa26EYFP if it was 

present. 

4.6.3 Bone and Cartilage Staining 

Simultaneous staining with alizarin red S and alcian blue was performed 

essentially as described in (49). E18.5 mouse fetuses were fixed in 95% ethanol for two 

hours, after which skin and organs were removed and fixation was continued for one 

week. Samples were moved to acetone for two days and then stained for 3 days at 37 ºC 

in 0.015% alcian blue (Sigma #A5268), 0.005% alizarin red S (Sigma #5533), 5% glacial 

acetic acid, and 70% ethanol. Samples were washed with water and rocked in a 1% KOH 
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solution at room temperature until skeletons became visible after 48 hours. Samples were 

then passed through a graded series of 20–80% glycerol/1% KOH baths over the course 

of several weeks until tissues cleared. Skeletal preparations were stored and 

photographed in 100% glycerol. 

4.6.4 Whole-mount Immunofluorescent Staining 

Enteric neurons were labeled in E18.5 fetal mouse bowel using human ANNA–1 

antiserum (A gift of Vanda Lennon, Mayo Clinic), which stains the somas of all enteric 

neurons (50) with the same pattern as the anti HuC/HuD monoclonal antibody used in 

previous studies (6). Fetal bowel was harvested, flushed with PBS, fixed with 4% 

paraformaldehyde in phosphate-buffered saline (PBS) for 30 minutes at room 

temperature, and then incubated in blocking solution for 1 hour at 37 ºC: 5% normal goat 

serum (Jackson ImmunoResearch #005–000–121), 1% cold water fish-skin gelatin 

(Sigma #G7765), 100 mM Glycine in Tris-buffered saline pH 7.5 with 1% Triton-X 100 

(TBST). Samples were then incubated overnight at 4 ºC in ANNA–1 antiserum diluted 

1:2000 in ANNA–1 diluent (5% normal goat serum, 1% bovine serum albumin, and 0.2% 

sodium azide in PBS.) Samples were washed 3 times with PBS and incubated with 

Alexa–594 conjugated goat anti-human secondary antibody (1:400, Life Technologies 

#A–11014) at 37 ºC for 1 hour in PBS. After 3 washes with PBS, samples with the 

Rosa26EYFP reporter were incubated overnight at 4 ºC with chicken anti-GFP (1:1000, 

Aves Labs #GFP–1020) in blocking solution, washed 3 times with TBST, incubated for 1 

hour at 37 ºC with Alexa–488 conjugated goat-anti-chicken (1:400, Life Technologies 

#A–11039), and washed 3 times with PBS. 
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Embryonic day 13.5 (E13.5) fetuses were pulse-labeled by maternal 

intraperitoneal bromodeoxyuridine (BrdU) injections (100 µg/gram body weight) with a 

one-hour chase. Fetal bowel was harvested, processed, and stained for EYFP (Aves Labs 

GFP-1020), cleaved-caspase 3 (Cell Signaling #9661) or for SOX10 (rabbit anti-SoxE, 

Craig Smith, MRCI Australia) exactly as described (6), except that rat anti-BrdU (1:400, 

BU1/75, Abcam #ab6326) and Alexa–594 conjugated donkey anti-rat (1:400, Life 

Technologies A–21209) was used to visualize BrdU incorporation instead of a 

fluorophore-conjugated primary antibody. All samples were mounted on slides and 

visualized in 50% glycerol/PBS. 

4.6.5 Microscopy and Measurement 

Photographs of whole fetuses, skeletal preparations, and hearts were acquired on 

an Olympus SZ–40 stereomicroscope. EYFP fluorescent micrographs of whole fetuses 

were acquired on a Nikon SMZ1500 stereomicroscope using a GFP-B epifluoresence 

filter. Measurements of colonization, aganglionosis and hypoganglionosis were 

conducted on an IX71 epifluoresence microscope guided by ANNA–1 staining at E18.5 

or by SOX10 and EYFP staining at E13.5. Images of fluorescent whole-mount bowel 

were acquired as wide-field fluorescent micrographs on a Zeiss Axio Observer.Z1 or as 

multiple optical sections using either a Zeiss Apotome.2 structured illumination device or 

an Olympus FV1000 point-scanning confocal microscope. BrdU positivity within EYFP-

positive cells was manually counted from confocal volumes. All optically sectioned 

samples are presented as maximum intensity projections through 20 micron-thick 

volumes unless otherwise indicated. Image processing was performed in ImageJ software 

(51) and was limited to stitching of multiple fields (52), rotation, cropping, uniform 
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brightness and contrast adjustments, and maximum intensity projection of volumes, with 

the exception of EYFP fluorescent micrographs of whole E13.5 fetuses, which were 

subjected to local contrast enhancement using contrast limited adaptive histogram 

equalization (CLAHE) (53) to improve the contrast of EYFP-containing tissue. 

4.6.6 Statistical Analysis 

Statistical tests were performed using the R software package (54). Student’s t test 

was used to compare E13.5 bowel colonization and rates of BrdU incorporation within 

ENCDCs. Multiple comparison adjustments were performed with the Holm-Boniferroni 

method based on the number of planned comparisons. 
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4.5 Supplemental Data 

 

Supplemental Figure 4.1: Production and structure of the Impdh2loxP and Impdh2Del 
alleles.  
(A) The Impdh2 targeting construct, shown above the corresponding wild-type Impdh2 
locus, contains loxP sequences (red triangles) in intron 1 and intron 9 while FRT 
sequences (hollow triangles) flank a MC1-Neo cassette immediately preceding the first 
loxP site. Flp-mediated recombination excises the MC1-Neo cassette (B) from the 
targeted allele to produce the conditional Impdh2loxP allele. Cre-mediated recombination 
produces the Impdh2Del allele, which results in a frameshift (asterix) and premature 
termination codon in the exon 3’ to the recombination. After Cre-mediated DNA 
recombination, the IMPDH catalytic domain will be not be produced. 
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Supplemental Figure 4.2: BrdU incorporation in ENCDCs of Impdh2 conditional 
knockout fetuses. 
(A) Immediately behind the migration wavefront in Wnt1-Cre Rosa26EYFP Impdh2loxP/+ 

bowel, many EYFP-positive ENCDCs (green) incorporate bromodeoxyuridine (BrdU, 
red and merge). (B) At this time point, very few ENCDCs are present in the small 
intestine of Wnt1-Cre Rosa26EYFP Impdh2loxP/Del fetuses. Scale bar = 100 µm. Pictures are 
maximum intensity projections of 12 µm-thick volumes. (C) Quantification of BrdU 
incorporating nuclei within the EYFP-marked ENCDC population does not demonstrate a 
significant difference in BrdU incorporation between Impdh2loxP/+  (N = 5) and 

Impdh2loxP/Del (N = 4) genotypes. Note that different regions of the bowel are being 
compared, since each contains the migration wavefront in its respective genotype. ns = 
not significant by pooled-variance t-test. Error bars are s.e.m. 
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Supplemental Figure 4.3: Incomplete Rosa26EYFP recombination by Wnt1-Cre in the 
absence of selective pressure. 
In Wnt1-Cre Impdh2loxP/+ Rosa26EYFP fetuses, Cre/loxP recombination of the EYFP 
reporter allele is not entirely complete. Individual SOX10-positive, EYFP-negative cells 
(inset, arrowheads) can be seen, likely representing a clone of ENCDCs derived from a 
rare neural crest cell that escaped recombination. 



 
 

155 

4.6 References 

1. Furness JB. The enteric nervous system.. Malden, MA: Blackwell Publishing; 2006: 

2. Lake JI, Heuckeroth RO. Enteric nervous system development: migration, 
differentiation, and disease. Am. J. Physiol. - Gastrointest. Liver Physiol. 
2013;305(1):G1–G24. 

3. Obermayr F, Hotta R, Enomoto H, Young HM. Development and developmental 
disorders of the enteric nervous system. Nat. Rev. Gastroenterol. Hepatol. 
2013;10(1):43–57. 

4. Goldstein A, Hofstra R, Burns A. Building a brain in the gut: development of the 
enteric nervous system. Clin. Genet. 2013;83(4):307–316. 

5. Simpson MJ, Zhang DC, Mariani M, Landman KA, Newgreen DF. Cell proliferation 
drives neural crest cell invasion of the intestine. Dev. Biol. 2007;302(2):553–568. 

6. Lake JI, Tusheva OA, Graham BL, Heuckeroth RO. Hirschsprung-like disease is 
exacerbated by reduced de novo GMP synthesis. J. Clin. Invest. 2013;123(11):4875–4887. 

7. Amiel J et al. Hirschsprung disease, associated syndromes and genetics: a review. J. 
Med. Genet. 2008;45(1):1–14. 

8. Anderka MT, Lin AE, Abuelo DN, Mitchell AA, Rasmussen SA. Reviewing the 
evidence for mycophenolate mofetil as a new teratogen: Case report and review of the 
literature. Am. J. Med. Genet. A. 2009;149A(6):1241–1248. 

9. Lin AE et al. An additional patient with mycophenolate mofetil embryopathy: Cardiac 
and facial analyses. Am. J. Med. Genet. A. [published online ahead of print: March 15, 
2011]; doi:10.1002/ajmg.a.33934 

10. Zimmermann AG, Spychala J, Mitchell BS. Characterization of the human inosine-5′-
monophosphate dehydrogenase type II gene. J. Biol. Chem. 1995;270(12):6808 –6814. 

11. Senda M, Natsumeda Y. Tissue-differential expression of two distinct genes for 
human IMP dehydrogenase (E.C.1.1.1.205). Life Sci. 1994;54(24):1917–1926. 

12. Nagai M, Natsumeda Y, Weber G. Proliferation-linked Regulation of Type II IMP 
Dehydrogenase Gene in Human Normal Lymphocytes and HL-60 Leukemic Cells. 
Cancer Res. 1992;52(2):258–261. 

13. Gu JJ et al. Inhibition of T lymphocyte activation in mice heterozygous for loss of the 
IMPDH II gene. J. Clin. Invest. 2000;106(4):599–606. 



 
 

156 

14. Gunter JH et al. Characterisation of inosine monophosphate dehydrogenase 
expression during retinal development: Differences between variants and isoforms. Int. J. 
Biochem. Cell Biol. 2008;40(9):1716–1728. 

15. Bowne SJ et al. Why Do Mutations in the Ubiquitously Expressed Housekeeping 
Gene IMPDH1 Cause Retina-Specific Photoreceptor Degeneration?. Invest. Ophthalmol. 
Vis. Sci. 2006;47(9):3754–3765. 

16. Aherne A et al. On the molecular pathology of neurodegeneration in IMPDH1-based 
retinitis pigmentosa. Hum. Mol. Genet. 2004;13(6):641–650. 

17. Zimmermann A, Gu JJ, Spychala J, Mitchell BS. Inosine monophosphate 
dehydrogenase expression: Transcriptional regulation of the type I and type II genes. Adv. 
Enzyme Regul. 1996;36:75–84. 

18. Gu JJ et al. Targeted Disruption of the Inosine 5’-Monophosphate Dehydrogenase 
Type I Gene in Mice. Mol. Cell. Biol. 2003;23(18):6702–6712. 

19. Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP. Modification of 
gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre 
recombinase. Curr. Biol. 1998;8(24):1323–1326. 

20. Jiang X, Iseki S, Maxson RE, Sucov HM, Morriss-Kay GM. Tissue Origins and 
Interactions in the Mammalian Skull Vault. Dev. Biol. 2002;241(1):106–116. 

21. Huang T, Liu Y, Huang M, Zhao X, Cheng L. Wnt1-cre-mediated Conditional Loss 
of Dicer Results in Malformation of the Midbrain and Cerebellum and Failure of Neural 
Crest and Dopaminergic Differentiation in Mice. J. Mol. Cell Biol. 2010;2(3):152–163. 

22. Binder BJ et al. Spatial Analysis of Multi-species Exclusion Processes: Application to 
Neural Crest Cell Migration in the Embryonic Gut. Bull. Math. Biol. 2012;74(2):474–490. 

23. Young H m., Newgreen D. Enteric neural crest-derived cells: Origin, identification, 
migration, and differentiation. Anat. Rec. 2001;262(1):1–15. 

24. Rothman TP, Le Douarin NM, Fontaine-Pérus JC, Gershon MD. Colonization of the 
bowel by neural crest-derived cells re-migrating from foregut backtransplanted to vagal 
or sacral regions of host embryos. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 
1993;196(3):217–233. 

25. Chai Y et al. Fate of the mammalian cranial neural crest during tooth and mandibular 
morphogenesis. Development 2000;127(8):1671–1679. 

26. Olaopa M et al. Pax3 is essential for normal cardiac neural crest morphogenesis but is 
not required during migration nor outflow tract septation. Dev. Biol. 2011;356(2):308–
322. 



 
 

157 

27. Porras D, Brown CB. Temporal–spatial ablation of neural crest in the mouse results 
in cardiovascular defects. Dev. Dyn. 2008;237(1):153–162. 

28. Zehir A, Hua LL, Maska EL, Morikawa Y, Cserjesi P. Dicer is required for survival 
of differentiating neural crest cells. Dev. Biol. 2010;340(2):459–467. 

29. Fuchs S et al. Stage-Specific Control of Neural Crest Stem Cell Proliferation by the 
Small Rho GTPases Cdc42 and Rac1. Cell Stem Cell 2009;4(3):236–247. 

30. Okamura Y, Saga Y. Notch signaling is required for the maintenance of enteric neural 
crest progenitors. Development 2008;135(21):3555 –3565. 

31. Van de Putte T, Francis A, Nelles L, van Grunsven LA, Huylebroeck D. Neural crest-
specific removal of Zfhx1b in mouse leads to a wide range of neurocristopathies 
reminiscent of Mowat-Wilson syndrome. Hum. Mol. Genet. 2007;16(12):1423–1436. 

32. Hendershot TJ et al. Expression of Hand2 is sufficient for neurogenesis and cell type-
specific gene expression in the enteric nervous system. Dev. Dyn. 2007;236(1):93–105. 

33. D’Autréaux F, Morikawa Y, Cserjesi P, Gershon MD. Hand2 is necessary for 
terminal differentiation of enteric neurons from crest-derived precursors but not for their 
migration into the gut or for formation of glia. Development 2007;134(12):2237–2249. 

34. Barlow AJ, Wallace AS, Thapar N, Burns AJ. Critical numbers of neural crest cells 
are required in the pathways from the neural tube to the foregut to ensure complete 
enteric nervous system formation. Development 2008;135(9):1681 –1691. 

35. Natarajan D, Grigoriou M, Marcos-Gutierrez CV, Atkins C, Pachnis V. 
Multipotential progenitors of the mammalian enteric nervous system capable of 
colonising aganglionic bowel in organ culture. Development 1999;126(1):157–168. 

36. Kapur RP. Colonization of the murine hindgut by sacral crest-derived neural 
precursors: experimental support for an evolutionarily conserved model. Dev. Biol. 
2000;227(1):146–155. 

37. Kapur RP et al. Abnormal microenvironmental signals underlie intestinal 
aganglionosis in dominant megacolon mutant mice. Dev. Biol. 1996;174(2):360–369. 

38. Kapur RP, Sweetser DA, Doggett B, Siebert JR, Palmiter RD. Intercellular signals 
downstream of endothelin receptor-B mediate colonization of the large intestine by 
enteric neuroblasts. Development 1995;121(11):3787–3795. 

39. Gabriel SB et al. Segregation at three loci explains familial and population risk in 
Hirschsprung disease. Nat. Genet. 2002;31(1):89–93. 

40. Garcia-Barceló M-M et al. Mapping of a Hirschsprung’s disease locus in 3p21. Eur. J. 
Hum. Genet. 2008;16(7):833–840. 



 
 

158 

41. Carrasquillo MM et al. Genome-wide association study and mouse model identify 
interaction between RET and EDNRB pathways in Hirschsprung disease. Nat. Genet. 
2002;32(2):237–244. 

42. De Pontual L et al. Epistatic interactions with a common hypomorphic RET allele in 
syndromic Hirschsprung disease. Hum. Mutat. 2007;28(8):790–796. 

43. Garcia-Barcelo M-M et al. Genome-wide association study identifies NRG1 as a 
susceptibility locus for Hirschsprung’s disease. Proc. Natl. Acad. Sci. 2009;106(8):2694 
–2699. 

44. Wang J et al. A Novel Variant L263F in Human Inosine 5’-Monophosphate 
Dehydrogenase 2 Is Associated with Diminished Enzyme Activity. Pharmacogenet. 
Genomics 2007;17(4):283–290. 

45. Lewandoski M, Meyers EN, Martin GR. Analysis of Fgf8 Gene Function in 
Vertebrate Development. Cold Spring Harb. Symp. Quant. Biol. 1997;62:159–168. 

46. Srinivas S et al. Cre reporter strains produced by targeted insertion of EYFP and 
ECFP into the ROSA26 locus. BMC Dev. Biol. 2001;1:4–4. 

47. Truett GE et al. Preparation of PCR-quality mouse genomic DNA with hot sodium 
hydroxide and tris (HotSHOT). BioTechniques 2000;29(1):52, 54. 

48. Stratman JL, Barnes WM, Simon TC. Universal PCR genotyping assay that achieves 
single copy sensitivity with any primer pair. Transgenic Res. 2003;12(4):521–522. 

49. McLeod MJ. Differential staining of cartilage and bone in whole mouse fetuses by 
alcian blue and alizarin red S. Teratology 1980;22(3):299–301. 

50. Lennon VA. The case for a descriptive generic nomenclature: clarification of 
immunostaining criteria for PCA-1, ANNA-1, and ANNA-2 autoantibodies. Neurology 
1994;44(12):2412–2415. 

51. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image 
analysis. Nat. Methods 2012;9(7):671–675. 

52. Preibisch S, Saalfeld S, Tomancak P. Globally optimal stitching of tiled 3D 
microscopic image acquisitions. Bioinformatics 2009;25(11):1463–1465. 

53. Schindelin J et al. Fiji: an open-source platform for biological-image analysis. Nat. 
Methods 2012;9(7):676–682. 

54. R. Core Team. R: A Language and Environment for Statistical Computing [Internet]. 
Vienna, Austria: 2012: 

 



159 
 

Chapter 5: IMPDH2 variation in a Hirschsprung 

Disease Cohort 

5.1 Summary 

In the mouse, IMPDH activity and the Impdh2 gene are required for normal development 

of the enteric nervous system.  In humans, the IMPDH2 gene is located at 3p21, a region linked 

to Hirschsprung disease susceptibility and and genetic interactions with RET. These observations 

suggested the possibility that mutations in IMPDH2 predispose to Hirschsprung disease.  We 

therefore sequenced the IMPDH1 and IMPDH2 genes in a cohort of Hirschsprung disease 

patients and detected one rare nonsynonymous variant that moderately reduced the enzymatic 

activity of recombinant IMPDH2. Common variants that may affect IMPDH activity were 

detected at normal frequencies. In parallel, we investigated whether heterozygous loss of Impdh2 

could affect the penetrance of mutations that model Hirschsprung disease in mice, and 

determined that Impdh2 interacted with neither the Sox10 nor the Ret mutant alleles tested. 

Together these results suggest that IMPDH2 is unlikely to be the Hirschsprung disease 

susceptibility locus previously mapped to 3p21. 

5.2 Introduction 

Several factors prompted us to search for one or more mutations in IMPDH2, the gene 

encoding one of the two IMDPH isoforms (1), as possible risk factors for Hirschsprung disease 

(HSCR). We have shown that IMPDH proteins are enriched in ENCDCs, that IMPDH inhibition 



160 
 

impairs ENS development in vertebrates, and that IMPDH inhibition interacts with Ret in a 

mouse model of HSCR. These findings suggest that mutations that reduce IMPDH activity or 

expression could interact with established HSCR-predisposing mutations in a manner analogous 

to the effects of mycophenolic acid (MPA). Furthermore, we have demonstrated that Impdh2 is 

required in neural crest-derivatives for the formation of the ENS, while the survival and 

relatively normal phenotype of Impdh1-knockout mice (2) indicates that Impdh1 is dispensable 

for ENS development. Most intriguingly, IMPDH2 is located in a chromosomal region that has 

been linked to HSCR (3). Specifically, a region in 3p21 was identified along with RET and 

another unidentified locus at 19q12 in a genome-wide linkage study of families with short-

segment HSCR. The model that best fit the data indicated that the 3p21 and 19q12 risk alleles 

modify the effect of a RET mutations. More recent work has replicated this association between 

HSCR and 3p21 in a different population (4), but the causative gene has not yet been identified. 

This region is rich in genes, and these mapping studies have detected association with two 

different intervals in this region. IMPDH2 is located between the regions identified in these two 

studies (Figure 5.1). To date, no other approaches have been used to identify the gene 

responsible, refine the interval, or rule out candidates in humans or using model systems. 

Genetic variation in both IMPDH2 and IMPDH1 has been studied in several contexts. 

IMPDH1 (OMIM 146690, RP10, LCA11) mutations cause blindness in autosomal dominant 

retinitis pigmentosa (adRP) (5, 6) and Leber congential amaurosis (7), two genetically 

heterogeneous disorders affecting the retina. These mutations do not affect enzymatic activity, 

though they may cause aggregation (8, 9) or decrease IMPDH1’s ability to bind nucleotides (7, 

10) which has as-yet unknown functional significance, but may be involved in transcription (11) 

or translation (12). Though the mechanism by which these mutations cause disease is not 
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 completely understood, failure to synthesize GMP can be excluded as a possible reason, since 

Impdh1 knockout mice only develop a late-onset and mild retinopathy that is very different from 

adRP (8). In contrast, introducing RP10-mutant IMPDH1 to normal mouse retina using viral 

vectors is toxic to photoreceptors, while overexpression of normal human IMPDH1 causes no 

pathology (13). This demonstrates that RP10 IMPDH1 mutations that cause retinitis pigmentosa 

are dominant and probably not due to a simple loss of GMP synthesis. 

Variation in IMPDH2 and IMPDH1 have also been investigated in human patients for 

polymorphisms related to clinical outcomes and therapeutic drug monitoring in mycophenolate 

mofetil (MMF) / mycophenolate sodium (MPS) immuno-suppression. Two intronic IMPDH1 

SNPs (rs2278293 and rs2278294) were associated with biopsy-proven acute rejection in kidney 

transplants (14). rs2278294 was also associated with the risk of acute graft-versus-host disease in 

allogeneic hematopoetic stem-cell transplant recipients (15). Only rs2278294 was associated 

with rejection of kidney grafts and leukopenia in a subsequent study (16), while conversely only 

rs2278293 was associated with subclincal acute rejection in a third study of kidney transplant 

patients (17). Two other groups have failed to find any association with renal transplantation 

outcomes at either SNP (18, 19). In IMPDH2, the minor allele at one common SNP 

(rs11706052) has been associated with biopsy-proven acute rejection in kidney transplant (20), 

higher IMPDH2 activity after transplantation (21), MPA resistance in activated lymphocytes (22), 

and reduced incidence of lymphopenia (23). However, two other studies have failed to confirm 

this SNP’s association with rejection (14, 16) while a third found only a weak association (18). A 

rare variant (24) is located in the IMPDH2 promoter (IMPDH2:c.–96T>G) within a putative 

cyclic-AMP response element. This variant reduced the expression of reporter constructs relative 

to the wild-type promoter, but this variant is rare and has not been detected subsequently (25). 
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Still another rare variant, rs72639214, is intronic and associated with lower IMPDH2 mRNA 

levels (26). Electrophoretic mobility shift assays showed that the minor allele abolishes binding 

to nuclear extract, suggesting that this variant impairs binding of a transcription factor. The 

alleles that may provide reduced rejection or graft-vs-host disease risk are hypothesized to act by 

reducing the abundance of IMPDH1/IMPDH2 at the transcriptional or posttranscriptional level 

and allowing more complete immunosuppression for a given level of MPA, while 

simultaneously predisposing to side-effects like leukopenia. Rare nonsynonymous variants with 

functional consequences have also been detected in IMPDH1 and IMPDH2. In IMPDH1, 

excluding mutations linked to retinal disease, one nonsynonymous mutation (rs72624960, 

IMPDH1:p.S275L) has been detected that reduces enzyme activity largely through increased 

protein degradation and lower steady-state protein levels (26). In IMPDH2, the rare variant 

rs121434586 (IMPDH2:p.L263F) demonstrated 10% of the activity of wild-type enzyme (27) 

and this phenotype also seems to be related to lower protein levels and accelerated degradation 

(26). 

Exhaustively sequencing a human gene even in a small group of patients is a major 

undertaking using traditional methods, but second-generation sequencing coupled to an 

appropriate data analysis pipeline allows for detection of single nucleotide variants at single-

allele frequencies in pools of hundreds of alleles (28), an approach generally referred to as 

“amplicon-seq”. New analysis strategies have extended this approach to allow for identification 

of both missense mutations and small insertions and deletions (indels) with high sensitivity and 

specificity (29). This strategy estimates minor allele frequencies in a pool but does not identify 

which individuals have a mutation nor the allelic configuration within any single individual, so 
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individual DNA samples must be genotyped using other methods if interesting variants are 

detected. 

Using this sequencing strategy, we scanned IMPDH2 and IMPDH1 in 51 HSCR patient 

samples for single-nucleotide variants and short indels. We detected one nonsynonymous variant 

in IMPDH2, IMPDH2:p.P123R (rs142797363), and examined its effect on IMPDH activity in 

recombinant enzyme preparations. We also demonstrate that heterozygous loss of Impdh2 does 

not enhance the phenotype of mouse models of HSCR. 

5.3 Results 

5.3.1 Pooled Resequencing 

The pooled sequencing reaction provided good coverage (>30 reads per strand per allele, 

Figure 5.2B) of all targeted regions of IMPDH2 and control sequences. Most exons of IMPDH1 

were also adequately covered, with the exception of exons 1, 4, and 12 (Figure 5.2A) likely due 

to the GC-richness of their immediate flanking sequences (70-80%). The SPLINTER algorithm 

detected all four positive control polymorphisms that were present at simulated frequencies of 

10/102, and detected 12 of the 13 variants present at 1/102 simulated alleles, indicating high but 

not perfect sensitivity. 

5.3.2 Variation in IMPDH1 and IMPDH2 

Only one nonsynonymous variant was detected in the pooled DNA from individuals with 

Hirschsprung disease: IMPDH2:c.368C>G or IMPDH2:p.P123R, which we confirmed by PCR-

RFLP assay and conventional sequencing to be present in one individual in the heterozygous 

configuration. Neither the L263F IMPDH2 variant nor the IMPDH1 S275L variant were 

detected. Minor alleles at the possibly relevant noncoding SNPs rs2278293, rs2278294, and 
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Figure 5.2: Sequencing coverage of IMPDH1 and IMPDH2 
Pooled-sequencing coverage plots of all targeted regions in A) IMPDH2 and B) IMPDH1. For 
all analyses and this plot, reads were truncated to 22 base pairs before alignment. Coverage of 
IMPDH2 noncoding regions is more complete since IMPDH2 is a much shorter gene. The cutoff 
for confident variant detection was set at 30 reads/allele in either orientation, though coverage 
was generally very similar in each direction. 
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rs11706052 were present at frequencies comparable to previous findings, and the two rarer 

noncoding IMPDH2 variants (rs72639214 and c.–96T>G) were not detected (Table 5.1). Other 

variation was generally intronic and did not appear to be obviously deleterious. Several detected 

variants were changes in the number of bases in repetitive regions. The IMPDH2 P123R allele 

(rs142797363) has been previously detected (38) but nothing is known about its functional 

consequences.  

5.3.3 Activity of the P123R IMPDH2 variant is reduced relative to wild-type. 

To determine whether the P123R variant affected enzyme activity, we expressed wild-

type, P123R, and known deleterious mutant L263F human IMPDH2 fused to an N-terminal 

6xHis tag using an E. coli expression system as has been done for IMPDH1 (8) yielding 

enzymatically active protein. Purified protein yields for wild-type IMPDH2 were consistently 

higher than those for P123R. L263F produced even less protein, as reported previously in 

bacterial (27) and mammalian expression systems (26). Activity assays revealed significant 

differences (Figure 5.3) between wild-type and both variant enzymes. The P123R variant 

demonstrated a modest but significant reduction in turnover number (Kcat) and an increase in Km 

for both IMP and NAD+ substrates (Table 5.2). The L263F variant resulted in larger changes in 

Kcat and both Km, though the reduction in activity was not as severe as was previously reported 

(26, 27). 

5.3.4 Heterzygous loss of Impdh2 does not enhance Ret or Sox10 mutations. 

Activated splenic lymphocytes from Impdh2+/– mice have reduced total IMPDH activity 

(39), indicating that heterozygous deletion of Impdh2 effectively simulates a partial loss of 

activity and can reasonably simulate a loss-of-function mutation. We applied this genetic stressor 

to the same two mouse models of HSCR that pharmacologic IMPDH inhibition potentiated but 
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Gene HGVS Name Type SNP id 
Minor allele 
freq.  
dbSNP HSCR 

IMPDH1 NM_000883.3:c.146+109A>T Intron rs2288553  0.121 0.061 
IMPDH1 NM_000883.3:c.147-52G>T Intron rs2288552  0.077 0.041 
IMPDH1 NM_000883.3:c.147-35G>A Intron rs2288551 0.077 0.061 
IMPDH1 NM_000883.3:c.505-34C>A Intron rs72624952 0.010 0.061 
IMPDH1 NM_000883.3:c.579+119G>A Intron rs2278293* 0.444 0.500 
IMPDH1 NM_000883.3:c.580-106G>A Intron rs2278294* 0.400 0.408 
IMPDH1 NM_000883.3:c.987G>C Synonymous rs2288550 0.126 0.133 
IMPDH1 NM_000883.3:c.1075-129C>A Intron novel N/A 0.020 
IMPDH1 NM_000883.3:c.1405+33C>T Intron rs28580600 0.101 0.133 
IMPDH1 NM_000883.3:c.1551-114T>G Intron rs4731447 0.175 0.061 
IMPDH1 NM_000883.3:c.1575G>A Synonymous rs2228075 0.279 0.428 
IMPDH1 NM_000883.3:c.1694+43G>A Intron rs72624969 0.122 0.071 
IMPDH1 NM_000883.3:c.1779-407G>C Intron rs78763502 0.090 0.133 
IMPDH1 NM_000883.3:c.1779-131G>T Intron novel N/A 0.020 

IMPDH2 NT_022517.18:g.49007307A>G  5' Flanking 
(run of As) 

adjacent to 
rs71641216 N/A 0.082 

IMPDH2 NT_022517.18:g.49007304delA 
and g.49007304delAinsAA 

5' Flanking 
(run of As) rs71641216 no data 0.102 

IMPDH2 NM_000884.2:c.368C>G Pro123Arg rs142797363 no data 0.041 
IMPDH2 NM_000884.2:c.532-177T>C Intron novel N/A 0.010 
IMPDH2 NM_000884.2:c.532-169T>C Intron novel N/A 0.031 
IMPDH2 NM_000884.2:c.532-168G>A Intron novel N/A 0.010 
IMPDH2 NM_000884.2:c.532-161G>A Intron novel N/A 0.020 
IMPDH2 NM_000884.2:c.532-160C>T Intron novel N/A 0.020 
IMPDH2 NM_000884.2:c.532-159C>T Intron novel N/A 0.020 
IMPDH2 NM_000884.2:c.532-156G>A Intron novel N/A 0.020 
IMPDH2 NM_000884.2:c.532-139C>T Intron novel N/A 0.031 
IMPDH2 NM_000884.2:c.532-138C>T Intron novel N/A 0.031 
IMPDH2 NM_000884.2:c.532-137G>A Intron novel N/A 0.071 
IMPDH2 NM_000884.2:c.532-120delA Intron novel N/A 0.010 
IMPDH2 NM_000884.2:c.532-96G>A Intron rs72624911 0.016 0.031 
IMPDH2 NM_000884.2:c.819+10T>C Intron rs11706052* 0.073 0.092 

IMPDH2 NM_000884.2:c.*26Tdel and 
c.*25_26TinsT 

3' UTR (run 
of Ts) rs200887858 no data 0.020 

Table 5.1: Variation detected in IMPDH2 and IMPDH1 in a HSCR cohort 

Known variants were queried using NCBI human variation search tool (as of September 2013) 
(www.ncbi.nlm.nih.gov/projects/SNP/tranSNP ). * = SNPs correlated with human phenotypes. 
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IMPDH 
Variant Kcat (s-1) Km IMP (µM) Km NAD+ (µM) 

Wild-type 0.524 (± 0.015)  36.4 (± 3.44)  95.1602 (± 6.52) 
P123R 0.477 (± 0.017) * 47.1 (± 3.92) * 125.8893 (± 10.21) * 
L263F 0.431 (± 0.026) ** 63.5 (± 10.20) * 187.4732 (± 24.32) ** 

Table 5.2: Kinetic parameters of recombinant IMPDH2 variants 
* = P<.05, ** = P<.01, two-tailed t-test against wild-type parameter. All values are ± standard 
error. Ki for substrate inhibition by NAD+ was estimated at 279 (± 57.51) µM 
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Figure 5.3: IMPDH activity of IMPDH2 variants is reduced 
IMPDH activity was measured by monitoring the production of NADH by 15 nM  (908 ng/mL) 
of each IMPDH variant (wild-type =  green, P123R = blue, L263F = red) in the presence of the 
indicated concentrations of (A) IMP and (B) NAD+ and 400 µM of the other substrate. The 
reduction in velocity seen at high concentrations of NAD+ (B) is typical of substrate inhibition.  
Both variants appear to have reduced enzymatic activity. 
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these crosses resulted in no effect on the penetrance of ENS malformations or the length of 

bowel affected in either Sox10 or Ret mutant mice (Figure 5.4). 

5.4 Discussion 

5.4.1 Expected Characteristics of a 3p21 HSCR Modifier Allele 

Using the population prevalence of HSCR (1 in 5000), the risk ratio estimate for the 

modifier allele at 3p21 (4.2), and estimates of the baseline population frequency (3) of the 3p21 

modifier allele (4% allele frequency and thus 7.5% heterozygote frequency) we can estimate that 

about 24% of HSCR patients in the originally studied population were heterozygotes for the 

3p21 modifier allele (Figure 5.5). Linkage to 3p21 was identified in short-segment HSCR 

families and the 3p21 risk allele is a RET modifier gene, so we do not expect it to be 

overrepresented in syndromic cases of HSCR associated with other genes (EDNRB, PHOX2B, 

SOX10, KIAA1279, or ZFHX1B). Because of the methods used to identify and enroll patients in 

the PHIS/BDS study, we lack detailed diagnostic information for each patient. It is a reasonable 

assumption that isolated (non-syndromic) HSCR requires some form of RET mutation, since 

linkage to the RET locus is seen even in the absence of identified functional mutations (3, 40). 

Since HSCR appears as an isolated trait in 70% of patients and short-segment disease represents 

80% of HCSR patients (41), we can estimate the likelihood of a randomly-selected HSCR patient 

carrying the 3p21 risk allele as about 13.5% and thus sampling a group of as few as 21 HSCR 

patients is 95% likely to include at least 1 occurrence of the 3p21 mutation. Thus if mutations in 

IMPDH2 are the causative lesions at RET modifier locus 3p21 we would be able to detect them 

even in a small cohort of HSCR patients. Because IMPDH1 contains significant variation in the 

human population, we included canonical IMPDH1 exons in the sequencing library. 
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Figure 5.4: No effect of heterozygous loss of Impdh2 on the ENS of Ret and Sox10 mutants 
Impdh2+/Del mice were bred to (A) Ret and (B) Sox10 models of Hirschsprung disease and the 
neonatal (postnatal day zero) bowels were examined for aganglionosis and hypoganglionosis. 
The most caudal neuronal soma in each animal identified using ANNA-1 (anti-HuC/HuD) 
immunofluoresence is shown as a point, and the hypoganglionic region is shown with a line 
projecting to the left. Data are abbreviated with a number indicating sample size when no animal 
in a group was aganglionic or hypoganglionic. The Ret9/– genotype (A, bottom) has low 
penetrance and severity on its own, and Impdh2 heterozygosity did not appear to worsen its 
associated phenotype. The more penetrant Sox10+/– phenotype was similarly not enhanced by 
Impdh2 heterozygosity (B). Though the penetrance of Sox10+/– appeared possibly reduced by 
Impdh2Del, this difference was not statistically significant when considering either aganglionosis 
or hypoganglionosis (Fisher’s exact test).  
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Figure 5.5: Estimating proportion of 3p21 risk carriers within HSCR patients. 
Gabriel et al. (3) estimated a risk ratio of 4.2 and population allele frequency of .04 for the 3p21 
RET modifier allele. To estimate the proportion of allele carriers within the population, we first 
calculate the frequency of heterozygotes assuming Hardy-Weinberg equilibrium (.077). This 
allows the calculation of non-carrier non-affected (b) from the disease incidence (1/5000.) a/c, 
the carrier frequency within an affected cohort, can then be calculated. This assumes that 
homozyogosity is not selected against, but the numbers are very similar if homozygosity is lethal. 
This estimate does depend on the assumption that the results of one study in HSCR families with 
multiple cases of disease in each family can be generalized to the population at large. 
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5.4.2 Prevalence of the IMPDH2:p.P123R Nonsynonymous Substitution 

We did detect one nonsynonymous variant that reduces the enzymatic activity of 

IMPDH2 (IMPDH2:p.P123R), but this variant was present in only in one individual. Allele 

frequencies calculated by SPLINTER are vulnerable to errors in DNA quantification and pooling, 

likely accounting for the discrepancy between the number of P123R alleles detected (4/102) by 

pooled sequencing and those confirmed by individual genotyping (1/102). This variant was also 

detected by the NHLBI Exome Sequencing Project (ESP), but it was extremely rare. P123R was 

detected only once in 8600 alleles in a European-American population and was absent from a 

4406-allele African-American population. The cohorts included in the ESP contain both normal 

controls and several cardiac and pulmonary disease cohorts and it was not possible at this time to 

determine which NHLBI cohort contained the variant. In any case, we expect the 3p21 risk allele 

previously identified to be present in the general population at a significantly higher frequency 

than P123R, making IMPDH2 nonsynonymous variants poor candidates for the 3p21 risk factor. 

Our mutation scan also did not detect major overrepresentation or underrepresentation of any 

IMPDH2 or IMPDH1 variants that have been previously associated with transplantation 

outcomes and/or IMPDH activity (Table 5.1), nor did we detect the L263F variant.  

5.4.3 Functional Consequences of the IMPDH2:p.P123R Variant 

Both PolyPhen2 (42) and MutPred (43) phenotype prediction programs suggest that the 

proline to arginine amino acid substitution might be deleterious, and alignment of IMPDH2 

orthologs and IMPDH1 reveals that proline 123 is highly conserved despite many changes in 

flanking residues (Figure 5.6A). This amino acid, however, is located in the first cystathionine β-

synthase (CBS) domain, which is involved in nucleotide binding and is unnecessary for 

IMPDH’s catalytic activity (44). The region containing P123 is generally disordered in crystal 
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structures of IMPDH1 and IMPDH2 but a structure of S. pyogenes IMPDH (PDB: 1ZFJ, 45) 

does resolve this region and shows that the homologous proline residue (P106) initiates a turn 

(Figure 5.6B) within the first CBS domain, suggesting that a substitution may have structural 

consequences. As a control mutation for enzyme kinetics, we used the L263F variant of 

IMPDH2, assuming that it would produce nearly inactive enzyme. Somewhat surprisingly, 

IMPDH2 L263F retained a much larger proportion of wild-type catalytic activity in this study 

than in either a previous study using recombinant IMPDH2 from E. coli or affinity-tagged 

IMPDH2 expressed in mammalian cells (26, 27). Kinetic parameters for both wild-type and 

L263F enzyme also differed from previously published values, especially the Km for NAD+ and 

IMP. Since previous studies used either C-terminal affinity tags or untagged protein, it is 

possible that the N-terminal affinity tag alters the stability and kinetic properties of the enzyme. 

5.4.4 The Haplosufficiency of Impdh2 in Mouse HSCR Models 

Importantly, the hypothesis that IMPDH2 might be the HSCR susceptibility locus at 3p21 

was formulated based on our previous finding that IMPDH inhibition impairs ENS development 

and interacts with Ret and Sox10 (Chapter 3). To examine the plausibility that a loss-of-function 

variant could have an effect similar to global IMPDH inhibition, we tested if Impdh2 

heterozygosity increased bowel aganglionosis in mice with mutations in Ret and Sox10. While no 

association between 3p21 and SOX10 has been documented in HSCR, Sox10 was included as a 

potential interactor because IMPDH inhibition strongly enhances Sox10 phenotypes and because 

Sox10LacZ/+ has a much greater penetrance in the ENS than even the highest risk Ret9/– genotype. 

We detected no enhancement of either the Ret or Sox10 ENS phenotype by Impdh2 

heterozygosity. Furthermore the Ret+/– Impdh2+/Del compound heterozygotes generated as part of 

the breeding scheme survived to adulthood and were fertile. It seems likely that heterozygosity 
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Figure 5.6: Multispecies IMPDH2 alignment in context of P123R mutation 
A: Proline 123 is highly conserved across isoforms of human IMPDH and across species, 
including prokaryotes, despite poor conservation in the rest of this CBS domain at the amino-
acid level. B: While P123 or its immediate neighbors is generally missing from crystal structures 
of mammalian IMPDH, the homologous residue (blue section of backbone ribbon) is resolved in 
a structure of S. pyogenes IMPDH, showing that this residue initiates a turn.  
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for a null allele is a more severe defect than heterozygous P123R or even L263F mutations 

would create based on our in vitro enzyme kinetics studies, though we cannot discount the 

possibility that these mutations could have a dominant negative effect through 

heterotetramerization, cellular toxicity from aggregation, or disruption of one of the noncatalytic 

roles of IMPDH. Others have speculated that homozygosity for L263F might be incompatible 

with life (27), but even if P123R or L263F homozygosity were possible, such individuals would 

be vanishingly rare in the general population given the allele frequencies.  

IMPDH2 may have roles in the cell unrelated to its enzymatic activity, which are 

suggested by its ability to bind single-stranded nucleic acids, which mediates its association with 

translating polysomes and its role as a transcription factor in Drosophila (11, 12, 46). The CBS 

domain where the P123 residue is located is important for nucleic acid binding activity (46), and 

our study does not address whether the P123R substitution affects nucleic acid binding. However, 

any possible disruption to these functions is not directly related to the antiproliferative effects of 

IMPDH inhibitors that prompted us to examine IMPDH2 and thus lacks a plausible mechanism 

to cause ENS-specific disease. 

5.5 Conclusion 

The 3p21 RET modifier locus has thus far eluded identification (3, 4). Mutation scans of 

IMPDH2 in a HSCR cohort revealed one rare variant (rs142797363 or IMPDH2:p.P123R) with 

reduced enzymatic activity. However, other variants that could possibly reduce IMPDH activity 

were not overrepresented in the sequenced HSCR cohort compared to control populations. 

Moreover, heterozygous deletion of Impdh2 did not increase the penetrance or severity of mouse 
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HSCR models. Based on these findings, it is unlikely that a mutation in IMPDH2 is the RET 

modifier allele identified through linkage studies. 

5.6 Materials and Methods 

5.6.1 Isolation of Human Genomic DNA 

Cases of Hirschsprung disease were identified by the Pregnancy Health Interview Study 

(Birth Defects Study), an ongoing case-control surveillance study of birth defects in North 

America (30). Anonymized human genomic DNA samples were obtained either as isolated DNA 

in TE buffer or as buccal cells collected and frozen on nylon brushes. DNA was isolated from 

brushes using the Gentra Puregene Buccal Cell Kit (Qiagen) using a procedure modified to 

enhance the recovery of low-abundance (<2 µg) samples. Brushes were incubated in cell lysis 

solution with proteinase K (Qiagen) for 1 hour at 65 ºC. After this incubation, lysis buffer 

containing DNA and debris was recovered from brushes by embedding the brush in a sterile 

plastic micropipette tip and forcing liquid out with air driven by a syringe. Subsequent isolation 

steps were performed according to manufacturers instructions, after which the DNA/glycogen 

pellet was resuspended in 20 µL of DNA hydration solution (Qiagen) and quantified on a 

Nanodrop spectrophotometer (Thermo Scientific). 

5.6.2 Quantification and Whole-Genome Amplification of Human Genomic DNA 

Because buccal-derived DNA samples contain variable amounts of microbial DNA, the 

amount of human DNA in each sample was quantified using a qPCR assay designed against the 

human-specific Yd6 subfamily of the Alu element retrotransposable element. qPCR reactions 

consisted of 0.1 µM forward and reverse intra-Yd6 primers (31), 1X SYBR Master Mix (Applied 

Biosystems), and 1 µL of sample DNA in a total reaction volume of 25 µL. DNA samples were 



 
 

178 

compared to a standard curve of control human genomic DNA to determine the linear range of 

the assay and the amount of amplifiable human DNA in each sample. Samples containing too 

little DNA for pooled sequencing or undetectable amounts of DNA were subjected to whole-

genome amplification using the REPLI-g system (Qiagen) according to manufacturer’s protocol. 

51 HSCR samples were of sufficient quantity to include in the pooled sequencing procedure. 

5.6.3 Pooled Variant Detection in IMPDH2 and IMPDH1 

PCR amplicons were designed using to include all exons and splice sites of IMPDH1  

(NM_000883.3) and IMPDH2 (NM_000884.2) except the retina-specific exon 13b of IMPDH1 

(32). All variation coordinates are relative to these cDNA sequences, except for variation in the 

promoter of IMPDH2, which is presented relative to the genomic sequence NT_022517.18. At 

least 75 bp of all 3’ intron sequences and the core promoter of IMPDH2 (1) were included to 

capture functional noncoding elements. Primers (Table 5.3) were designed not to overlap any 

sequence of interest and were selected using Primer3 software (33). DNA samples were pooled 

to a total weight of 0.4 µg, with 10 ng of the pool used in each subsequent PCR reaction, 

ensuring that 60 haploid genomes per pooled individual were present in each reaction. To 

construct a positive control pool simulating unique heterozygous variants in a pool of 51 

individuals, plasmids containing defined mutant copies of TP53 exon 9 were pooled in amounts 

corresponding to either one allele (13 variants) or ten alleles (4 variants) out of a total of 104 

alleles, with the difference made up by wild-type sequence. The negative control DNA used to 

construct the error model was M13mp18 phage DNA (New England Biolabs). All pooled PCR 

reactions were performed and products were purified as previously described in (29) and Table 

5.3. Purified PCR products were pooled in equimolar amounts, ligated into concatamers, and 

fragmented by sonication on a Bioruptor XL (Diagenode) as described in (29). A single-end 
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Amplicon Primer Sequences Size 
(bp) 

Annealing 
Temp (°C) 

IMPDH2 
Amplicon 1 

Fwd: 5’GATGGATGGACCCTGGAGGGAATCT3’ 1394 59 
Rev: 5’GCTCACCTTGATGTTCAGGACCCAA3’   

IMPDH2 
Amplicon 2 

Fwd: 5’GGGTCCTGGGTGGCTGGATGTAG3’ 970 59A 
Rev: 5’CGCGCACCTAGGGGTACGAGACC3’ 

IMPDH2 
Amplicon 3 

Fwd: 5’TGGTGGTCCATAGAACTTCACCCCTG3’ 1074 64 
Rev: 5’CCCCTATTGGAGGGCTCTATTGTCCC3’ 

IMPDH2 
Amplicon 4 

Fwd: 5’GGCTGCTAAGACTGCATGTGCCTGA3’ 1289 64 
Rev: 5’TGAGGGTGCTGTTTTTGTGTGCATC3’ 

IMPDH1 
Amplicon 1 

Fwd: 5’GTAGGGACACCTCTCCCCCTCATCC3’ 1139 61 
Rev: 5’CAAATCCTCTGGACCGGAAGGACAG3’ 

IMPDH1 
Amplicon 2 

Fwd: 5’GCGCGGCTGAGCCCTTTGT3’ 392 57 
Rev: 5’CGCGCACCTAGGGGTACGAGACC3’ 

IMPDH1 
Amplicon 3 

Fwd: 5’GGGGGCTGTAGCCTCTGCTCCTCTA3’ 248 59 
Rev: 5’GCCCCTGAGCAAGAAGTCAGCCTCT3’ 

IMPDH1 
Amplicon 4 

Fwd: 5’GTCATCTTGAGCATATGTCCTGTGTCTG3’ 1296 64 
Rev: 5’GCTGTGAAGGAACAACGGGACTGTG3’ 

IMPDH1 
Amplicon 5 

Fwd: 5’GCTGTCACCTAGTGGCTGACTGGGG3’ 384 59 
Rev: 5’CTGCTGAACCACTCATCCATCTCCC  3’ 

IMPDH1 
Amplicon 6 

Fwd: 5’TTTCAGGGAAGCAGTCCCCTTTGAG3’ 692 65 
Rev: 5’ATACATCTGGGGAACAAAGGCGAGG3’ 

IMPDH1 
Amplicon 7 

Fwd: 5’ATCCAGCCCTGTCCCTTTTCCTGA3’ 1200 59 
Rev: 5’TCAGCTTGACCTCAGAACCCTGGC3’ 

IMPDH1 
Amplicon 8 

Fwd: 5’CAGGCCTAAGGCTGCCCCATTTTAG3’ 695 64 
Rev: 5’GAGCAGTCCTGACTCTGCAGGGGAT3’ 

Table 5.3: Primers and amplification conditions for pooled sequencing 
A: Denaturation temperature was raised to 96°C for this GC-rich amplicon 
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sequencing library was constructed from the fragmented concatamers using genomic DNA 

library construction reagents (Illumina) according to manufacturer’s instructions. The library was 

sequenced on a Genome Analyzer using one lane of a sequencing flow-cell. 24 bp reads were 

aligned to reference sequences allowing for two mismatches/indels per read and aligned reads 

were analyzed unknown variants using SPLINTER software using the positive control sequence 

and expected variants to set confidence cutoffs (29). Primer binding sites were masked and 

positions within 5 bp of the 3’ end of primer binding sites were excluded because of 

disproportionately high coverage. Variation in low-coverage (less than 30 reads/allele) regions 

was also excluded. 

5.6.4 PCR-Restriction Fragment Length Polymorphism Genotyping Assay 

The P123R (rs142797363) minor allele results in the creation of a MwoI restriction site. 

PCR primers were designed to produce a 182 bp amplicon for restriction digestion containing the 

polymorphic site. Presence of the P123R variant is indicated by cleavage of the amplicon into 

111 and 71 bp fragments. P123-Forward: 5’GCT TCA GAT CAA GAG CCT GAT GAA AGT 

AGT3‘, P123-Reverse: 5’GTC TGT GAT TGG GAT ACC GCA GAA AC3’. A positive control 

product containing the rs142797363 minor allele was amplified from control genomic DNA in 

two overlapping amplicons using 1) P123-Forward and mutated reverse primer P123R-OE-R: 

5’CGA TCC TTG CGG CTG AGG ACC ACA GGG TCT3’ and 2) mutated forward primer 

P123R-OE-F: 5’GTC CTC AGC CGC AAG GAT CGC GTG CGG GAT3’ and P123-Reverse. 

The two purified amplicons were fused and full length product was synthesized in a PCR 

reactions using the P123-Forward and P123-Reverse primers. Negative control product was 

amplified from control genomic DNA using the same primers and was mixed in equimolar 

amounts with positive control product to simulate heterozygosity. PCR reactions on individual 
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samples were performed in the following conditions: 5 ng genomic DNA sample, 200 µM 

dNTPs, 0.2 µM each primer, 1.3 M Betaine, 1X Klentaq LA Buffer pH 9.2, 0.1% (v/v) Klentaq 

LA polymerase mix in a total reaction volume of 20 µL. Cycling conditions were as follows: 94 

ºC for 3‘, 40 cycles of [94 ºC for 1“, 52 ºC for 45”, and 68 ºC for 1’], and 68 ºC for 5’. PCR 

products were digested with MwoI by adding 5 µL of a solution containing 0.2 units/µL MwoI in 

1X NEBuffer #4 (New England Biolabs) and incubating at 60 ºC for 2 hours. Digested products 

were separated on a 2% sodium borate-agarose gel. Heterozygous samples were confirmed by 

automated dye-terminator sequencing of purified PCR products. 

5.6.5 Plasmids 

Human IMPDH2 cDNA was amplified from IMAGE clone 3447994 (34) using primers 

KpnI-EK-IMPDH2-F: 5’CGG GGT ACC GAC GAC GAC GAC AAG ATG GCC GAC TAC 

CTG ATT AG3’ and SacI-IMPDH2-R: 5’CGC GAG CTC TCA GAA AAG CCG CTT CTC 

ATA3‘. Purified PCR products were double-digested with KpnI and SacI restriction enzymes 

(New England Biolabs) and ligated into pET30a(+) bacterial expression vector (Novagen) 

digested with KpnI and SacI and treated with Shrimp Alkaline Phosphatase (Promega, producing 

full-length human IMPDH2 with an N-terminal 6xHis-S-FLAG tag (pET30a-IMPDH2). P123R-

IMPDH2 was produced in two amplicons by amplifying the original IMPDH2 clone using 1) 

KpnI-EK-IMPDH2-F and P123R-OE-R primers and 2) P123R-OE-F and SacI-IMPDH2-R 

primers. The two purified amplicons were fused using PCR with KpnI-EK-IMPDH2-F and SacI-

IMPDH2-R primers, and the resulting product was ligated into pET30a(+) using the same 

procedure as wild-type IMPDH2 to produce pET30a-P123R-IMPDH2. pET30a-L263F-IMPDH2 

was derived from pET30a-IMPDH2 by a linear amplification-based site-directed mutagenesis 

procedure (35) using L263F-OE-F: 5’GGA CTT GTT CGC CCA GGC TGG TG3’ and 5’TGG 
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GCG AAC AAG TCC AGC CTA TAC TTG TC3’ primers. The fidelity of all constructs was 

confirmed by sequencing. 

5.6.6 Production of Recombinant Human IMPDH2 in E. coli 

The production and purification procedure was modified from (32). pET30a-IMPDH and 

variant plasmids were transformed into Rosetta (DE3) pLysS E. coli (Novagen) and grown in 

100 mL LB media with 30 µg/mL kanamycin and 34 µg/mL chloramphenicol. Cultures were 

grown on a shaker incubator at 37 ºC until reaching an OD600 of 0.5–0.6. Cultures were cooled to 

room temperature and were induced with 1 mM IPTG for 14–16 hours while shaking at room 

temperature. Bacteria were pelleted and resuspended in 6 mL of lysis buffer (50 mM NaH2PO4, 

300 mM NaCl, 10 mM imidazole, 10% glycerol v/v, pH 8.0) supplemented with Complete Mini 

protease inhibitor cocktail (Roche), 1 mg/mL lysozyme, 10 µg/mL RNAse A, and 5 µg/mL 

DNAse I (Sigma). Suspensions were sonicated with a probe sonicator on ice for a total of 60 

seconds in 10 second pulses with 10 second rest periods at a power of 250 W. Lysates were 

incubated on ice for 15 minutes and then cleared by centrifugation for 30 minutes at 10,000 g at 

4 ºC. The resulting supernatant was incubated with constant rotation with 1.5 mL of a 50% slurry 

of Ni-NTA Superflow resin (Qiagen) for 30 minutes at 4 ºC. Resin and lysate was decanted into 

gravity-flow chromatography columns, lysates were allowed to flow through, and the resin was 

washed twice with 6 mL wash buffer (lysis buffer with an imidazole concentration of 20 mM). 

Bound protein was eluted with four 0.5 mL volumes of elution buffer (lysis buffer with an 

imidazole concentration of 250 mM). The fractions containing protein (as indicated by UV 

absorbance at 280 nm) were pooled and dialyzed twice against 1 L of storage buffer (Tris-Cl 100 

mM, KCl 100 mM, 20% glycerol v/v, pH 8.0) overnight at 4 ºC. Coomassie stained SDS-PAGE 

gels revealed a single band at the expected size (60.5 kD). Attempts to enzymatically remove the 
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6xHis-S-FLAG tag with enterokinase were not successful on-resin or in solution without 

degrading the protein so tagged protein was used in subsequent assays. Protein concentrations 

were measured using the Bradford method (Bio-Rad Protein Assay) and protein was stored at 

−80 ºC until it was assayed. 

5.6.7 IMPDH Activity Assay 

IMPDH activity for each protein preparation was measured using a procedure modified 

from (27). Enzymatic activity was measured at 37 ºC in 100 mM Tris-Cl, 10 mM KCl, 3 mM 

EDTA, 2 mM DTT by monitoring production of reduced nicotinamide adenine dinucleotide 

(NADH) using absorbance at 340 nm (extinction coefficient 6,220 M−1cm−1). 15 nM of enzyme 

in a 200 µL volume was used for each reaction. Reactions were performed in 96-well plates and 

NADH production was monitored over a 30 minute period using a Synergy2 temperature-

controlled plate reader (Bio-Tek) using an absorbance path length calculated from plate well 

dimensions. Inosine monophosphate (IMP) or nicotinamide adenine dinucleotide (NAD+) 

concentration was varied from 1–400 µM in the presence of 400 µM of the other substrate. The 

rate of NADH production did not change appreciably in any reaction over the course of 30 

minutes, so average rate was assumed to accurately represent initial rate. 

5.6.8 Curve Fitting 

NADH production rates were fit to standard kinetic models using nonlinear least-squares 

regression in the R software package (R Foundation for Statistical Computing.) Apparent kinetic 

parameters for IMP were determined using the model v = Vmax × [IMP]/(Km+[IMP]). Since the 

experiment in which NAD+ concentration was varied revealed significant substrate inhibition at 

400 µM, an alternative model including substrate inhibition for NAD+ was used: v = Vmax × 

[NAD]/(Km+[NAD+]+[NAD+]2/Ki) (36). Ki for NAD+ was assumed to be identical between 
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variants. Differences in each model parameter (Vmax and Km) between wild-type and each variant 

were tested for statistical significance using two-tailed t-tests (37). Reported Kcat is calculated 

from the Vmax of the IMP experiment. 

5.6.9 Animals and Whole-Mount Immunofluorescence 

Impdh2Del, Sox10LacZ (Sox10–), RetTGM (Ret–), and Ret9 pups were genotyped as 

previously described in Chapter 3 and 4. Impdh2+/Del Sox10LacZ/+ pups were produced by mating 

heterozygote animals. Impdh2+/Del Ret9/– pups were produced by first breeding Impdh2+/Del and 

Ret+/– heterozygotes. Impdh2+/Del Ret+/– mice survived normally and were then bred to Ret9/+ 

mice. Postnatal day zero pups were euthanized by decapitation and intestines were collected, 

fixed, and stained with ANNA–1 antiserum and as previously described in Chapter 4. Bowels 

were then incubated overnight at 4 ºC with rabbit anti-Tuj1 (1:1000, Covance #PRB-435P)  in 

blocking solution: Tris-buffered saline pH 7.5 with 1% Triton-X 100 (TBST), 5% normal 

donkey serum (Jackson ImmunoResearch), 1% cold water fish skin gelatin (Sigma #G7765), 100 

mM Glycine. Samples were washed 3 times with TBST and incubated for 1 hour at 37 ºC with 

Alexa-488 donkey anti-rabbit secondary antibody (1:400, Life Technologies # A-21206) in 

TBST. Bowels were washed 3 times with TBST before mounting and visualization in 50% 

glycerol/PBS. Aganglionic and hypoganglionic regions were measured using the same methods 

described in Chapters 3 and 4. 
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Chapter 6: Conclusions and Future Research 

Directions 

6.1 Environmental factors affecting ENS development 

Through a chemical screen in zebrafish and subsequent studies in primary culture 

and in vivo in mice, we determined that the antimetabolite immunosuppressant 

mycophenolic acid (MPA) and its prodrug mycophenolate mofetil (MMF) impair ENS 

development and interact with Ret and Sox10, genes that cause Hirschsprung disease 

(HSCR) in humans and similar ENS defects in mice. To our knowledge, this is also the 

first chemical screen in which effects on ENS development were assessed. While our 

laboratory has previously demonstrated that Vitamin A deficiency impairs ENS 

development and interacts with Ret mutations, Vitamin A depletion in mice required both 

genetic and environmental manipulations of Vitamin A metabolism where the genetic 

insult was sufficient to interact with Ret even when dietary Vitamin A was abundant (1). 

Mycophenolate exposure is the first solely environmental factor that impacts the 

development of the ENS in an animal model. Future work will focus on drug exposures 

that are more likely to occur in pregnancy, since MPA/MMF is already recognized as a 

hazard (2, 3). 

In the chemical screen we identified several other interesting compounds that 

impaired ENS development, and preliminary work by others in the laboratory indicates 

that many of them affect murine ENCDCs in culture. Artesunate has become an 
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important part of combination malaria therapy (4) and pregnant women are likely being 

exposed to it regularly without apparent harm, though studies have demonstrated 

teratogenic effects in animals (5). Since this is likely to be a common exposure, it will be 

important to determine whether it interacts with mild HSCR-predisposing mutations such 

as RET polymorphisms (6), which can be relatively common in the general population. 

Mevinolin, a widely used cholesterol lowering drug, is contraindicated during pregnancy 

due to the results of animal studies, case reports of malformations and out of an 

abundance of caution (7). Separate from the likelihood of exposure and the possibility of 

adverse events, detecting a drug that affects cholesterol synthesis in our assay highlights 

the developmental importance of this pathway and suggests that ENS development 

should be studied in mice lacking Dhcr7, a cholesterol synthesis gene implicated in 

Smith-Lemli-Opitz syndrome, which can include Hirschsprung disease as a component. 

The chemical library used in this screen is relatively small (9), and does not cover even 

the modest 2200 compounds approved by the FDA (10). Also, our screen examined only 

a single, somewhat arbitrarily chosen dose of 10 µM. Use of a range of doses and 

expansion of the library to encompass both overlooked pharmaceuticals and bioactive 

natural products that may be present in the environment or deliberately used will likely 

yield additional ‘hits’ for further investigation. 

Further investigation of a class of drugs, toxins, exposures, and nutritional 

deficiencies is prompted by the fact that MPA/MMF impairs ENS development through 

its antiproliferative effects. Many other exposures could plausibly reduce proliferation in 

ENS precursors, contributing to the failure of ENS development during the critical period 

in which precursor migration is possible. Our data suggest that such insults might also 
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increase the likelihood that a RET mutation will result in penetrant disease. Interestingly, 

flubendazole has recently been shown to act as an inhibitor of microtubule 

polymerization in tumor cells and delays the growth of leukemia xenografts (8), 

suggesting that it may also act on the developing ENS through an antiproliferative 

mechanism. More common exposures that might modulate cell proliferation include 

Vitamin B12 and folic acid deficiencies, as well as commonly used antifolate drugs such 

as trimethoprim/sulfamethoxazole. These and other exposures are amenable to 

experimental testing against HSCR animal models analogous to the experiments 

performed using MMF. 

MPA/MMF itself may prove to be a useful experimental tool in the search for 

candidate genes affecting the ENS. Much as MMF treatment was capable of uncovering 

the phenotype of low penetrance and nonpenetrant Ret genotypes, this simple 

pharmacological manipulation might induce aganglionosis in the context of mutations 

such as Phox2b and Zfhx1b that, like Ret, cause no ENS phenotype in the heterozygous 

state in the mouse but result in HSCR in humans. 

6.2 Requirement of Impdh2 for ENS Development 

Prompted by the effects of MPA/MMF on ENS development, we then 

demonstrated that Impdh2 is required within the neural crest for the development of the 

ENS and other neural crest derivatives using a tissue specific knockout mouse model. 

Impdh2 deletion ablated most ENS precursors and appeared to provide a selective 

advantage to neural crest cells that did not efficiently express Cre. Implicitly, this shows 

that IMPDH1 is insufficient to substitute for IMPDH2 and that salvage cannot substitute 
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for de novo guanine nucleotide synthesis, even when neighboring non-neural crest tissues 

are normal. 

Given the reduction in the number of ENS precursors, it is somewhat surprising 

that we were able to detect neither a reduction in proliferation nor apoptosis in EYFP 

marked ENS precursors at embryonic day 13.5 (E13.5). It is possible that these cells are 

dying through non-apoptotic processes or have already been eliminated before entering 

the bowel. Wnt1-Cre probably begins to recombine loxP sites at E8 (11, 12), and our 

current studies leave a large time interval unexplored. While the developing ENS at 

embryonic day 12.5 and 11.5 was already hypocellular, examination of the pre-enteric 

migratory streams of vagal neural crest cells at a time point such as E9.5 (13) will 

probably be necessary to determine the fate of recombined cells. At this time, given the 

evidence of incomplete recombination and the defects in multiple neural crest derivatives, 

we cannot exclude the possibility that Impdh2 deletion is lethal to all cells, and the cells 

that are in the bowel at E13.5 appear normal because they escaped Cre-mediated 

recombination. 

In parallel with the studies performed in vivo, we established a mouse embryonic 

fibroblast (MEF) cell line from an Impdh2loxP/loxP Rosa26EYFP embryo. Preliminary 

attempts at Cre-mediated deletion of Impdh2 in culture do not appear to have resulted in 

adverse effects on these cells and thus suggest that not all cells require IMPDH2, but 

more work is needed both to confirm complete recombination and analyze the phenotype 

of these cells. In vivo, PCR analysis of ENS precursors sorted using the EYFP reporter 

would definitively determine whether any of the cells that enter the bowel have 

recombined both copies of Impdh2. 
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Alternatively, deletion of Impdh2 could be delayed until a later time using 4-

hydroxytamoxifen inducible Cre recombinase lines with activity in the developing ENS, 

such as RetCreERT2 (14) or Tg(Sox10:iCreERT2) (15). Normally, at E12.5, enough ENS 

precursors have entered the bowel to perform organotypic culture experiments 

incorporating time lapse imaging capable of observing non-apoptotic/non-necrotic cell 

death (13). Moreover, guanosine supplementation experiments performed on these cells 

could definitively determine whether or not any of the proposed nonenzymatic functions 

of IMPDH2 are important for ENS development. 

6.3 Hirschsprung Disease Genetics: IMPDH2 and 3p21 

Because human IMPDH2 is located in a genomic region associated with HSCR, 

we sequenced IMPDH1 and IMPDH2 in a cohort of patient samples. While we found one 

heterozygous IMPDH2 variant that moderately reduced the activity of recombinant 

IMPDH2, we did not observe any differences in the frequency of common variants 

associated with IMPDH function. Moreover, heterozygosity for loss of mouse Impdh2 

did not influence the penetrance of ENS defects in Ret or Sox10 mutants. 

Thus, IMPDH2 is unlikely to be the RET modifier locus at 3p21 and the causative 

gene remains unidentified. Mapping studies have demarcated large regions containing 

many genes, making a candidate approach difficult, and the relatively modest effect of 

the variant combined with the requirement for a RET mutation for penetrant disease 

complicates the human genetics. We could turn once again to the zebrafish for a higher-

throughput system with which to test the large number of candidate genes. This system 

has been successfully used to demonstrate genetic interactions between ret and the 
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syndromic-HSCR associated genes bbs4/bbs5 using morpholino injections (16) and a 

bowel colonization assay similar to the one used in our screen. This assay could be 

scaled-up using fluorescent reporter strains (17) and a prioritized list of candidate genes 

culled from the regions linked to HSCR. Such a screen could also be adapted to probe 

gain-of-function mutations since overexpression within the developing zebrafish ENS 

can be achieved through mRNA injection into the early embryo (18). Exome and genome 

sequencing of patient samples will likely allow finer mapping intervals to be obtained 

and may even identify specific candidate genetic lesions that can then be tested in animal 

models. 

In closing, these studies demonstrate that maternal medications can, in principle, 

induce HSCR-like defects in isolation and in cooperation with permissive genetics. 

Mycophenolic acid serves as a proof-of-concept environmental factor that modifies birth 

defect penetrance and expressivity in susceptible genetic backgrounds by reducing ENS 

precursor proliferation. Both pharmacologic inhibition of IMPDH and its genetic 

disruption through the tissue-specific ablation of Impdh2 can impair ENS precursor 

colonization of the bowel, implicating a requirement for de novo guanine nucleotide 

synthesis in the developing ENS. However, IMPDH2 mutations probably do not 

contribute to HSCR. 
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