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Effects of Secondary Stall and Unsteady Free-Stream  
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Dynamic stall is a complex aerodynamic phenomenon occurring in helicopter rotors, 

limiting the flight envelope and causing control linkage damage and instabilities. The 

Peters-Modarres semi-empirical dynamic stall model is extended to simulate pitching 

moment and drag in unsteady freestream and yawed flow, including the effects of 

secondary stall. The aerodynamics are implemented as a state-space model, suitable for 

time-marching or aeroelastic analyses. With small modifications to the original stall model, 

secondary stall effects and unsteady freestream can be simulated without adding 

additional states. An optimization routine determines sets of parameters that minimize the 

error between the modeled solution and experimental data. The stall model is validated 

against five wind tunnel tests with a range of aerodynamic conditions. The results show 

good qualitative correlation with each test case, improving on the pitching moment and 

drag results of previously found by Ahaus. 
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Chapter 1: Introduction  

 Dynamic Stall describes the behavior of airloads for airfoils that perform dynamic 

motions into the regime in which static stall would normally occur. Dynamic stall is 

dominated by the time-dependent aerodynamic effect of the large vortices that are shed 

from an airfoil undergoing pitching oscillations [1]. In particular, when airfoil oscillations 

subject the airfoil to angles of attack beyond its linear regime, (i.e., beyond where it would 

generate lift linearly with angle of attack in steady flow), the airfoil experiences loads 

different from those experienced in static stall in a steady freestream. Dynamic stall 

becomes significant when the time an airfoil spends beyond the normal angles of attack is a 

significant fraction of the time required for the stall vortex to shed and traverse along the 

airfoil. The phenomenon is characterized by an increased lift beyond the maximum lift of 

the airfoil in steady flow, followed by a loss of lift due to the stall vortex and a delayed 

reattachment of the flow. A typical dynamic stall event can be seen in the lift data from Fig. 

1.1, with the arrows indicating the direction of increasing time. While static and dynamic 

stall are usually described by their effects on lift, pitching moment and drag experience 

similar behavior: a hysteresis and overshoot of the static stall curves. Airfoil pitching 

moments during dynamic stall usually exhibit multiple "loops" in the data, indicating 

regions of negative aerodynamic damping. These can contribute to a phenomenon known 

as stall flutter. 

 Dynamic stall is an important condition for helicopter rotors in particular; it can 

occur at high advance ratios or heavily loaded rotors. At higher speeds, the helicopter rotor 

experiences a higher relative angle of attack on the retreating blade due to the relative 

wind, resulting in the stalled condition. Since the blades' positions are periodic, they do not 

stall statically, but oscillate in and out of stall. Dynamic stall in a helicopter is associated 

with excessive vibration and loads, a loss of lift, and severe control system feedback. It 

effectively establishes a limiting speed for helicopters in forward flight. Given the modern 

requirements for the U.S. military’s Joint Multi-Role helicopter, with intended designs 

capable of speeds exceeding 230 kts [2], dynamic stall remains a significant challenge to 

aerodynamicists and helicopter companies. 
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 Stall flutter is the effect that occurs when there is net negative damping in the 

pitching moment response during cycles of dynamic stall. As in classical flutter, stall flutter 

is a dynamic instability that increases in amplitude over time, causing excessive loads in 

the entire rotor system. Ref. [3] indicates that the stall flutter phenomenon is due to the 

phasing between the pitching moment and the loss of bound vorticity during the dynamic 

stall event, and is most prevalent during what would be considered "light dynamic stall." In 

Ref. [4], significant amounts of experimental data was examined to determine regimes of 

stall flutter, which can be seen in Fig. 1.2. Regions of negative damping (indicated by 

clockwise loops in the moment graph) were found for cases where the airfoil oscillated 

through stalled and unstalled angles. Negative damping was not present outside of those 

regions, even for very deep stall. Cases investigated in this work will include regions of 

negative damping, including some cases of net negative damping. 

 Modelling stall flutter is a necessary step in the effort to alleviate it, in both passive 

and active implementations. Ref. [5] introduces an experiment in individual blade control 

for affecting stall flutter in an active manner. This system uses servo motors on a single 

blade in a rotating configuration to attempt to limit blade motions during the stall flutter 

events. The application of feedback through the servo motors showed a significant 

reduction in the stall flutter frequencies in the pitching moment response. In Ref. [6] airfoil 

shapes are investigated for their effects on stall flutter. The Boeing VR-5, VR-6, and VR-7 

airfoil designs were influenced by the necessity for acceptable flutter characteristics, 

among other typical factors such as hover performance.  

 The pitching moment loads during dynamic stall of a helicopter rotor can impose 

very large stresses on the control system linkages, reducing their effective lifespan through 

fatigue and causing excessive vibration and feedback through the control systems [1]. 

While this can appear to be an issue of pitch-link strength, the cyclic loads due to stall 

flutter increase very rapidly with advance ratio, so simple reinforcement of the links and 

other components barely improve the flight envelope. Prediction of the pitch-link loads due 

to stall flutter is a major motivation for a reduced order stall model that correctly predicts 

pitching moment. Reference [6] shows how during a flight test of a CH-47C helicopter, 

variation in speed from 75 to 111 knots resulted in a 5-fold increase in peak pitch link 



 

3 
 

loads; the flight test data was correlated with an aerodynamic model that showed similar 

maximum loads but different phasing.    

 Reduced-order modelling of dynamic stall in order to predict and reduce its effects 

is an important area of modern helicopter research. Flight computers use control models in 

order to predict control responses in real time and must rely on simplified aerodynamic 

models. Due to the computational complexities of CFD, a typical flight computer cannot 

utilize a CFD model and expect to get loads and controls predictions fast enough, 

necessitating the use of reduced order models. Examples of such models include the 

ONERA method [7-8], the Leishman-Beddoes method [9], the UTRC method [10-11], MIT 

method [12-13], and the Peters-Modarres model [14-15], which has been selected for the 

current work (Modarres in Ref. [14] shows a fair comparison of these stall models). All of 

these models require some kind of parameter identification or empiricism; unsteady 

stalled behavior currently cannot be described in even a simplified form by any closed form 

solution, nor is there a simplified analytical equation for the stalled region that can be time-

marched with the other aerodynamic models. Thus, a large requirement for the 

development of these models is an extensive database of experimental data.   

Experimental data, such as those presented in Refs. [16-23], represent a wide range 

of operating conditions, all with certain advantages and drawbacks. Empirical stall models 

are usually hierarchical, such that additional complexity, when added to a model, does not 

affect previous solutions, but may require different datasets to validate. Most dynamic stall 

data takes the form of a harmonically pitching airfoil section in a steady freestream, with 

equipment to measure the unsteady loads on the section. This represents 2D data without 

unsteady freestream, yawed flow, or finite-wing effects, as would be present in an actual 

helicopter. Full flight test data are also used, but use of these data requires the assumption 

of a structural model, and would not be used to validate a stall model alone. It is preferable 

(and much easier) to use the simpler datasets. 

1.2 - Statement of work 

 The purpose of this work is to extend the Peters-Modarres dynamic stall model to 

prediction of pitching moment and drag, including the effects of secondary stall, unsteady 

freestream, and yawed flow. Secondary stall effects are evaluated for each case that 
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requires them, as many do not show the behavior; cases without secondary stall can still be 

used for validation of the primary stall model. The airloads, inflow, and dynamic stall 

models that are used in Ref. [14] serve as the basis for the current work. The model is 

validated by comparison with experimental data from wind tunnel tests of several airfoils 

and flow conditions listed in Table 1. An optimization routine selects parameter sets for the 

stall models that result in the closest agreement with the data, and appropriate 

modifications to the models are added if there is poor correlation with the data. Though it 

is not a necessity, the optimization routine is coded with efficiency in mind, taking 

advantage of parallel computing. The optimization routine determines sets of stall 

parameters to minimize cost functions that measure the error between the computed and 

experimental results, recording these parameter sets for future use. However, the 

parameters themselves are not the goal of this process. The goal is to develop an efficient 

means of determining parameters for the end user of the stall model. Future users 

implementing these aerodynamic models in a flight simulator should be able to process 

their experimental data or their CFD results and obtain stall parameters with minimal 

manual adjustment. Improvements to the previous implementations of the optimization 

process in Ahaus and Modarres [15] [14] will reduce the time required for the user to set 

up the routine. A novel method is presented in Section 3.2 that simplifies the number of 

states needed to run the model, reducing the optimization time by a factor of nine. 

1.3 - Literature review 

 A review of finite-state aerodynamic stall models is important to establish the 

precedent for the current model. While other aerodynamic models used in this work 

(airloads theory and inflow model) are particularly important, they are not being validated. 

Only the stall model from the previous work will be extended, modified, and validated in 

this work. 

 Closed-form and exact solutions for aerodynamic problems are important in their 

own right; but given the task of creating a real time solution method for dynamic stall, a 

finite-state approach is particularly useful. State-space representations use a system of 

first-order ordinary differential equations to represent a physical model [24]; each 

dependent variable in the system is called a state. State-space representations allow 
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coupled aerodynamic and structural models to be time-marched using algorithms such as 

Runge-Kutta and Dormand-Prince. Finite-state models can be found in many areas in 

helicopter aerodynamics [25][26]. The airloads [27] and induced flow [28] models used in 

this work are examples of hierarchical finite-state models, indicating that the most 

significant aerodynamic effects are represented with the lowest-order states. As more 

states are added, changes to the aerodynamic results become less significant, while 

computational requirements increase. Finite-state models that can require a small number 

of states to accurately represent their physics are desirable.  

1.3.2 Dynamic Stall Models 

 Dynamic stall models investigated here only represent finite-state, reduced order 

dynamic stall models. CFD models, while they can be time-marched, are too 

computationally intensive and are only an important comparison for accuracy; real time 

CFD simulation is currently only possible with supercomputers. The reduced order models 

used in this work stem from the original ONERA empirical model. 

The ONERA model is the predecessor to the stall models used in Ahaus [15], 

Modarres [14], and this work. Developed in Refs. [7] and [8], the original ONERA method 

uses two equations: one for the linear lift in the unstalled region, and another for the lift in 

the stalled region, represented by Equations 1.1-1.3.  

 (1.1-1.3) 

 

The stalled lift equation contains parameters to be determined empirically from 

small-amplitude wind tunnel tests. This is similar to our parameter identification 

procedure, but is distinctly different in that ours involves large amplitude tests where wing 

sections are oscillated in and out of stall during one cycle, whereas identification of 

parameters in the original ONERA method involved small oscillations about fixed angles of 

attack either in stall or out of stall.  In that method, many more tests were necessary to 

characterize the behavior of an airfoil for a given Mach number and reduced frequency 
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than are required in the current stall model.  Fig 1.3 shows these small-amplitude tests 

from Ref [17], which is the VR-7 data we use in Chapter 4. The small amplitude tests were 

necessary to determine the components of the empirical parameters that depend on 

     
 (this process is developed in section 2.3.1).  

Another difference in the present method with respect to the ONERA approach is 

that Peters in [29] indicated that the linear lift equation (Eq. 1.2) of the ONERA model 

implies a first-order approximation to induced flow, and should be replaced with a more 

general airloads and induced flow theory. That is the approach taken here.  In addition, 

Peters suggested that the stalled lift equation be written in terms of circulation rather than 

lift coefficient.  That form is used throughout this work and referred to as the "primary stall 

model." The Ahaus-Peters and Modarres-Peters stall models take have this general form, 

with additional equations being added to account for the effects of unsteady freestream 

and yawed flow. 

An important finite state stall model for comparison is the Leishman-Beddoes model 

of Ref. [9]. This is a semi-empirical model for calculating lift, pitching moment, and drag of 

an airfoil in dynamic stall, based on the indicial method. Indicial methods use the step 

response of a system to determine the system’s response to arbitrary forcing via 

application of a convolution integral. Leishman uses an exponential approximation to the 

indicial lift and moment responses of an airfoil in potential flow for circulatory and non-

circulatory terms, with factors included to account for compressibility effects. To model 

stall in the static case, the linear lift is interpolated to the stalled value with an exponential 

function at the point of stall. To include unsteady effects, this entire lift function is applied 

with an exponential function in time, representing a time delay. The indicial method has 

several disadvantages, one of which is the inability to separate the induced flow model or 

wake model from the airloads. Use of the Wagner function implies a flat wake, which is not 

a reasonable approximation to the helical wake of a helicopter rotor.  While this may be 

sufficient for the determination of the empirical stall model with 2D data, it will require 

correction to predict the loads in a 3D scenario. The Leishman approach cannot arbitrarily 

substitute inflow models to correct for the 3D effects, which is why an ONERA-like 

approach is desired in the present work. The mutual independence of the stall, airloads, 
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and induced flow models allows one to change very few equations when investigating 2D 

or 3D effects. 

 The Peters-Ahaus dynamic stall model forms the basis of the current work [15]; and 

as modified by Modarres [14], it is our foundation. Ahaus used the current form of the 

primary stall equation to correlate lift, pitching moment, and drag data. Only one set of 

parameters was used for a given combination of airfoil geometry and Mach number, using 

the same set for each of the loads. The optimization process used was very similar to the 

one in this work, though Ahaus used cost functions that evaluated the error between 

modeled lift and experimental lift only; no adjustment to the parameters was made that 

attempted to minimize the error in pitching moment or drag, as is done in this thesis. The 

cost functions Ahaus used evaluated a weighted-average of the errors in several cases in 

order to fit one set of parameters for a range of reduced frequencies. The airfoil tests 

investigated include NACA 0012, SC-1095, and Boeing VR12 data. The VR12 data, from Ref.  

[16] is the same set we being examined here. 

 One of the objectives of Ahaus' work was the evaluation of the dynamic stall model 

for morphing airfoils. The Johnson-Peters airloads theory was used in Ahaus provides loads 

in the linear region for an arbitrarily morphed airfoil, and the stall model exhibited great 

flexibility in the range of behavior it can reproduce. The morphed Boeing VR-12 variable 

droop leading edge from Ref.  [16] was investigated with interest in evaluating the stall 

model for a design with active stall mitigation effects. A comparison of Figs. 5.15 and 5.12 

in Ahaus, for example, shows significantly reduced loads for the case of an airfoil with 

variable droop, as compared to its unmorphed configuration. The validation of the tests on 

morphing airfoils is not repeated in this work. 

 Modarres in [14] directly extended the work of Ahaus to validate the dynamic stall 

model on additional datasets, ones that included secondary stall effects, yawed flow, and 

unsteady freestream, but for lift only1. This work explores the same datasets for pitching 

moment and drag. He uses the same Unified model, but with changes to accommodate 

secondary stall and unsteady freestream. The single pitching moment case in section 5.5 of 

                                                
1
 Modarres included a single pitching moment case, but the rest were lift. 
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Modarres [14] was the first attempt to find a parameter set of the Unified model that was 

optimized for pitching moment instead of lift.  

Modarres and Peters revealed that secondary stall effects present in the lift data can 

be modeled with a simple second-order equation driven by a rectangular pulse. This 

secondary equation is then used alongside the same primary stall model as before. The 

secondary stall effects are due to additional vortex shedding after the initial stall vortex, 

and cannot be captured by the primary stall model alone. While this requires an additional 

set of parameters, the approach requires no additional states in a state-space 

implementation, as the secondary stall equation can be solved in closed form. The 

secondary stall equation is developed in section 2.3.2.  

 The unsteady freestream effects can be fully included in the Johnson-Peters airloads 

theory, but a modification to the stall model was required. The important effect observed in 

Ref. [22] was that the stalled lift and pitching moment behavior was dependent on the 

freestream conditions present at the time of stall only, and did not vary significantly during 

the vortex shedding. In Modarres [14], since the stall model is dependent on freestream, a 

correction to the original model is needed to effectively “freeze” the freestream and 

circulation values at the time of stall. Section 2.3.3 details this modification.  

 Many more works covering dynamic stall have been detailed by Modarres [14] and 

Ahaus [15] than are presented here. Since this work does not modify the theory used in 

those references in any way, more background knowledge unneeded. Modarres and Ahaus 

both cover the history of dynamic stall in more detail. 
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Figure 1.1 - a typical dynamic stall event in lift, compared to static data, from Ref. [14]. 
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Figure 1.2 - Regimes of pitching moment stall from Ref. [4]. 

 

Figure 1.3 - Small amplitude tests from McCalister [17] that were required for validation of the old 

ONERA stall model. Amplitudes of only 2 degrees were typical. 

 

 

Chapter 2 - Unified Model 

 The development of the set of aerodynamic models, referred to throughout this 

work as the Unified model, is crucial to the implementation of the dynamic stall model. The 

Unified model consists of the Johnson-Peters airloads model [27], the Peters-

Karunamoorthy 2-D induced flow model [28], and the Peters-Modarres dynamic stall 

model [14]. Each of these models can act be replaced with equivalent models without 

changing the others (i.e., the induced flow model can be changed from a 2D to a 3D model 

without affecting either the airloads or stall models). Figure 2.1 presents a flowchart that 

represents how the various models' inputs and outputs are related. The airloads theory is 

developed first in Section 2.1. This will provide the loads in the linear regime, the angles of 

attack smaller than the stall angle. In section 2.2, the 2D inflow model will calculate the free 

vorticity responsible for changing the angle of attack. Section 2.3 will define the primary 
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stall model, secondary stall model, and unsteady freestream modifications. The Unified 

model consisting of the models in the previous 3 sections will be summarized in Section 2.4 

and Appendix A. The result of this chapter is a state-space aerodynamic model that can 

predict lift, pitching moment, and drag on a 2D airfoil in steady or unsteady flow, stalled or 

unstalled. The Unified model is used in the optimization process of Chapter 3. 

 

Figure 2.1 - Flowchart of the Unified Model 

 

  

 

2.1 - Johnson-Peters airloads theory 

 Validation of the dynamic stall model requires an airloads theory that provides the 

pressure on an airfoil section or blade during a dynamic stall event; this implies that we 

need a theory that works under unsteady and large airfoil motions, without any small-angle 

assumptions. Following the procedure of previous work [14] and [15], our choice of 

airloads theory is the Johnson-Peters airloads theory defined in Ref.  [27]. The model 

allows us to calculate lift, pitching moment, and drag through arbitrary blade motions and 

is not coupled to any inflow model, allowing it to work for 2D or 3D scenarios. The model 

also includes the effect of airfoil shape morphing, though we will likely only investigate 

rigid (unmorphed) airfoil sections in this work. The derivation of the Johnson-Peters 

theory provides a state-space representation, which will become necessary for the 

implementation of the Unified Model and its application in the optimization routine. The 
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results of the following derivation is more compactly summarized in Appendix A, which is 

the form used in the code for this work. 

 Consider a given airfoil section, with its leading and trailing edges situated at 

coordinates -b and +b, where b is the half-chord. The airfoil is fixed with respect to the 

coordinate system, but that coordinate system is allowed to move with horizontal velocity 

  , vertical velocity   , and rotational velocity   . The airfoil is allowed to deform 

arbitrarily within its reference frame, only such that h<<b, dh/dx <<1, and dh/dt <<   . The 

angles of the relative wind with respect to the reference frame are allowed to take on any 

value, with no small angle assumptions present. As is the case in thin-airfoil theory [30], the 

circulation generated by the airfoil is assumed to be concentrated along the chordline, 

which corresponds to the x-axis of the airfoil coordinate system.  

 The basis of the theory is the non-penetration boundary condition, eq 2.1 below: 

   (2.1) 

 The total induced flow, w, is composed of   , the induced flow from shed circulation, 

and  ̄, the induced flow from bound circulation. The movement of a point on the airfoil is 

with respect to the flow is represented by the    and       terms. The movement of a point 

on the airfoil due to the any changes in the shape of the section are represented by the 

                term. As in thin-airfoil theory, there is no y-dependence. There are no 

restrictions on frame motion, so   ,   , and   can be any value.  

The induced flow from bound circulation can be found from the Biot-Savart law: 

 ̄   
  

  
∫

       

   
  

 

  
        (2.2) 

where   is the unknown bound vorticity. The resulting pressure is determined by the 

pressure-vorticity equation: 

         (2.3) 

 These 3 equations are all that is needed to compute airloads, but an additional 

model is required to compute  . This inflow model can be chosen based on 2D or 3D flow 
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conditions or more specific assumptions about the wake geometry. Any appropriate inflow 

model can be used since the derivation of the airloads theory is not dependent on any 

particular inflow assumptions. Regardless of the inflow model used,   must satisfy the 

following equation: 

    (2.4) 

 where   is the total bound circulation,   is induced flow due to external bound 

vorticity, and   ̄ is the velocity of that external bound vorticity (for all the cases 

investigated in this work, external bound vorticity can be assumed negligible).  

Equations 2.1 and 2.2 can be converted into ordinary differential equations through 

a Glauert expansion.  We make a change of variable to express x in terms of the Glauert 

variable,  : 

               

                  (2.5)  

For positive   ,     is at the trailing edge, while     is at the leading edge. With 

this change of variable, thin airfoil theory results in the following expansions: 

(2.6-2.7) 

The shape functions and velocities are also expanded in the Glauert variable: 
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(2.8-2.11) 

If we substitute Eqs. 2.6-2.7 into 2.3, it simplifies to the following relation: 

(2.11) 

 

We get another set of differential equations using the Glauert expansion for wake 

circulation, substituting 2.10 into 2.4:

(2.12) 

If we add Eqs. 2.11 and 2.12, we get the form of the equation used to calculate loads: 

(2.13-2.14) 

In order to be useful in application, 2.14 must be in terms of    , the shape of the 

airfoil camber line. This can be done using the    expansions and the non-penetration 

boundary condition: 
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(2.15) 

The last condition we need before loads is the Kutta condition, which makes     . 

In real rotor conditions, this should be changed to accomodate reversed flow, as mentioned 

in Ref [27]. No test present in this work will contain reversed flow, so the Kutta condition is 

sufficient. 

The generalized loads per unit span can be determined by integrating the pressure 

distribution over the airfoil: 

 (2.16) 

This, combined with 2.7, gives the generalized loads for all n. The matrix form of this 

equation, and the form used in the code, is shown in Eq. 2.17. 

    (2.17) 

The definitions of each matrix and vector term in Eq. 2.17 are found in Appendix A. 

  , which is the negative lift per unit length, is Eq. 2.18: 

(2.18) 
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  , which is the nose-up pitching moment per unit length per semi-chord, is Eq. 

2.19: 

(2.19) 

Pressure drag can be found by computing the integral expression in Eq. 2.20: 

(2.20) 

Using the same expansions for pressure and airfoil shape from earlier, the pressure 

drag is:  

(2.21) 

Note this does not include profile drag, which must be added outside of the Johnson-

Peters theory. Typically, profile drag is input as a correction directly from experimental 

data, and is small compared to the overall drag. The matrix form of the drag equation used 

in the code is Eq. 2.22: 

 

(2.22) 
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 The end result of this section is a set of equations used to calculated the linear 

airloads of airfoils with arbitrary morphing camber lines in unsteady flow. This applies to 

every pitching moment and drag dataset investigated in Chapter 4, but does not account for 

stalled loads, which will be handled in Section 2.3. While equations 2.18, 2.19, and 2.22 are 

used to calculate every load in the results chapter,   , the constant component of inflow, is 

still undetermined. 

 

2.2 - Peters-Karunamoorthy 2D Induced Flow Model 

The Peters-Karunamoorthy 2D inflow model of Ref [28] is used to complete the set 

of loads equations in Section 2.1. All of the quantities are determined except for   , so an 

inflow model must be used to close the system, and the Karunamoorthy model is used here 

because all of the test cases in this work are considered 2D flow conditions. 3D flow 

conditions would require a different inflow model, which can be accommodated by a 3D 

inflow model such as the Peters-He model if necessary [31]. The important quantity for the 

loads of interest in the previous section is   , which represents the constant term of the 

induced flow distribution (like the other quantities, induced flow is represented as a 

combination of Chebyshev polynomials). Other inflow terms are necessary in order to 

determine   , but only    is needed to determine lift, pitching moment, or drag. 

Using the potential function expansion of wake velocity from [28], Eq. 2.4 results in 

2.23: 

     (2.23) 

2.23 is a system of N differential equations for determining N+1 inflow states that 

holds true for any wake model (as before, assuming the external vorticity term from Eq. 2.4 

is 0). One more relation is necessary to close the system, and for a flat wake,    may be 

approximated by Equation 2.24: 

         (2.24) 



 

18 
 

where    is defined by 2.25: 

      (2.25) 

 Equation 2.23 is now the 2D inflow model, but in order to be useful, the total 

circulation derivative term,   ̇ must be expressed in known quantities. From the airloads 

theory [27], the total circulation can be expressed as: 

      (2.26) 

This must be added to the circulation due to stall,     and differentiated to produce 

the right hand side of 2.23: 

    (2.27) 

where the       ̇ term is the matrix form of    (all vectors and matrices are defined 

in Appendix A). Equation 2.23 can now be written as:  

(2.28) 

 This is now a complete system of equations for the wake velocities    in terms of 

flow conditions (w) and stall conditions (  ̇). If we express this system in matrix form, using 

the definitions from the airloads theory, it becomes: 

    (2.29) 

 This is the form of the inflow used in the Unified model (and the code). The    are 

expressed as 8 states, so Eq. 2.29 represents 8 equations that must be time-marched in the 

state-space model. 2 additional states,   and   ̇, are needed to complete the states for the 

Unified model. These 8 inflow equations are the most computationally intensive part of 
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simulation, but that burden can be greatly reduced during optimization with the 

developments in Section 3.2.2. 

 

2.3 - Peters-Modarres Dynamic Stall Model 

 The dynamic stall model used throughout this work takes several forms, all of which 

were developed in the previous work by Modarres [14]. The intention of the stall model, as 

stated in Chapter 1, is to provide a quantitatively accurate simulation of pitching moment 

and drag during dynamic stall, including several effects previously explored by Modarres 

for lift, such as the secondary load peaks and effects of unsteady freestream. The model 

developed here will use lift data, but will only be applied to calculating pitching moment 

and drag. 

2.3.1 - Primary stall model 

 The 6-parameter ONERA model, modified by Ahaus [15], is one of the models 

referred to throughout this work as the "primary stall model." Eq. 2.9 and 2.10 represent 

this primary stall model, and they take the same form in the previous works.   

      (2.30) 

    (2.31) 

 

 The    terms represent the stall correction to the "nth" quantity,   . Every stalled 

load will have an associated   ; for lift, this physically represents the circulation loss due to 

stall, but it does not have the same physical meaning for the other loads, so it is called 

pseudo-circulation. The           term represents the contribution to that load from the 

linear Peters-Johnson airloads theory. Each load will have a set of 6 stall parameters 

associated with it; these stall parameters are the coefficients in Eq. 2.30, and they have the 

following functional form: 

            
       (2.32) 

             
       (2.33) 

                
       (2.34) 
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 Each set of parameters represents a point in the space of the cost function used 

during the optimization routine. These are empirical parameters, determined only by the 

optimization, and do not have units.  

 The    of Equations 2.30-2.31 is    of Equation 2.29. Eq. 2.30 above (the primary 

stall equation), when expressed in state-space form, provides the equations for the 2 stall 

states that complete the model when combined with the 8 inflow states. While the 

optimization process determines the parameters to the stall equation, the time-marching 

must occur for the 10 total states, as the equations are coupled. The stall equations contain 

inflow terms through the quantities dependent on angle of attack,                , and 

the inflow equations contain the derivative of pseudo-circulation. 

 The primary stall model used throughout this work, referred to as the "12-

parameter model", is a modification of the original 6-parameter model to allow multiple 

parameter sets for a single cycle of airfoil oscillation. It was observed early on that a single 

parameter set only captured the stall effects of pitching moment accurately on the upstroke 

of an oscillating airfoil; given that a large improvement for lift results in the previous work 

was possible by allowing separate stall parameters for the upstroke and downstroke, we 

have elected to use the 12-parameter model as the primary stall model throughout this 

work, unless otherwise stated. 

 It is important to note that while Modarres needed a cross-coupling term plus an 

additional 2 stall parameters to model pitching moment, our model does not. The same 

stall equation he used for lift is used here for pitching moment and drag. 

2.3.2 - Secondary stall model 

 The secondary stall phenomenon was explored heavily by Modarres [14] for lift, 

who had also observed similar behavior in the other loads. He described secondary stall as 

one or more peaks in the lift following the first stall peak, as shown in Fig. 2.2. Modarres 

noted that the primary stall model was unable to match these additional peaks in the lift, 

and similar peaks were also present in several sets of pitching moment and drag data 

[16][17]. The difference in the stall model and the experimental data revealed a plot that 

could be matched by the response of a simple harmonic oscillator. He used a simple 

second-order equation for a harmonic oscillator driven by a rectangular pulse to represent 
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this secondary stall phenomenon. This secondary stall model of Eq. 2.35 is used alongside 

the primary stall model, being activated only in the region of secondary load peaks: 

  (
 

 
)
 

 ̈     (
 

 
)     ̇      

        
                   (2.35) 

 As in the primary stall model, the      is the contribution to that particular load from 

the secondary stall model. An additional set of 5 parameters for each load is needed, but no 

additional states are required to simulate secondary stall effects, since the equation has a 

closed-form solution. For the loads and inflow equations, the secondary stall pseudo-

circulation is simply added to the primary stall pseudo-circulation. 

 

Figure 2.2 - Lift data showing secondary stall effects, adapted from [14] 

2.3.3 - Unsteady Freestream 

 Modarres and Peters [14] modified the stall model to account for the effect of 

unsteady freestream. They hypothesized that the important parameter to describe the 

stalled behavior would be the value of freestream velocity at the point of stall. Modification 

of the stall model allows this circulation due to the freestream at the point of stall to be 

"frozen in," otherwise the simulated shed vortex would be changing strength as it traversed 

aft, which is not observed in reality. The equations for total lift and moment in unsteady  

freestream are below: 

  (2.36) 

 (2.37) 
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     (2.38) 

 

  (2.39-2.40) 

The first two terms of eq. 2.36 represent the linear lift from the airloads theory, plus 

a correction to maintain the same linear circulation throughout stall, since the unsteady 

freestream would normally modify        . In a similar manner, the last two terms of the 

same equation represent the stalled loads from the primary stall model with a correction to 

keep the stalled circulation the same strength at the point of stall. 

 

The Unified model is now defined, being a combination of the airloads theory in Eqs. 

2.17 and 2.22, the inflow model of Eq. 2.29, the primary stall model of 2.30, the secondary 

stall model of 2.35, and finally the unsteady freestream corrections of 2.36-2.40. The states 

to be time-marched are the 2 pseudo-circulation states of the stall equation and the 8 

inflow states from the inflow equation. The matrix form of the Unified model exactly as it 

appears in the code [32] is in the Appendix. 
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Chapter 3 - Optimization Process 

 This chapter explains the process used to find stall parameters and verify the stall 

model. Specific programming details are not included here, but the code is available in [32]. 

This code generated all of the results in Chapter 4; and any mention of code, or of 

implementation, refers to it. Much of the code is convenience functions, such as plotting 

and formatting methods, which are unimportant for the stall model and will not be detailed 

here. 

The unified model as developed in the previous chapter is implemented in the Julia™ 

language as a state-space model. The equations are used in their matrix forms, with the 

necessary additional states accounting for second-order equations. Each experimental case 

is expressed as a function of time instead of angle of attack, and fourier smoothing of the 

static data is applied as necessary.  Static corrections are determined, and the optimization 

algorithm determines stall parameters that minimize a particular cost function, usually the 

2-norm error between the experimental and modelled solutions. Graphs of pitching 

moment and drag calculated by the model are compared with the corresponding 

experimental cases to determine the model’s accuracy. The end result is a parameter set 

that applies to one airfoil at a particular Mach number, load, and reduced frequency. This is 

the progression of events for every case investigated in this work. 

 Any solution to an arbitrary optimization problem can be expressed as the point in a 

space that minimizes a cost function. The optimization problem consists of selecting a set of 

6 parameters of the modified ONERA dynamic stall equation such that the error in the load 

of interest (lift, pitching moment, or drag) is minimized. This error is defined as the 2-norm 

of the difference between the experimental and computed solutions. For determining 

parameters of the 12-coefficient model, 2 optimizations must be performed, one for each 

set of parameters. The secondary stall model requires an additional optimization for its 5 

parameters, though determining these does not require as many computations (often these 

can be found analytically). Each cost function evaluation requires simulating several cycles 

of the unified model using a time-marching algorithm, such as 4th-order Runge-Kutta [33].  

A typical optimization process requires approximately 1.8 million time steps of the time-
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marching algorithm, but every function call can be computed in parallel, greatly improving 

the computing time of the whole process.  

To begin the optimization process, we first find an appropriate set of experimental 

data. These data can be from wind tunnel testing, CFD, or flight tests, but the physical 

constraints must agree with our model constraints. For example, all of the datasets 

correlated in this work are from wind tunnel tests of airfoil sections, so 2D flow conditions 

are assumed. If we used flight test data or wind tunnel tests of rotors, we would assume 3D 

flow conditions and change our inflow model to accommodate this. Using flight test data 

would require implementing a structural model to account for blade motions, which is 

outside the scope of this project. Experimental data must exhibit stalled behavior for the 

Unified model validation to be useful. 

Collection of these experimental data usually involves digitization of plots of 

dynamic stall loops and static data for each load (often no static data or not enough static 

data is present in the original paper, in which case we use additional sources). Since the 

unified model is expressed in the time domain, these dynamic stall loops must be 

“unrolled” in time by assuming some function       the geometric angle of attack. For wind 

tunnel tests, the airfoil section is usually mounted to allow sinusoidal pitching at a 

particular frequency, which gives us a      but this function is sometimes slightly off from 

the actual angle of attack data2, so we can also assume a sinusoidal form based on the data 

alone. 

The static load data,           must be converted into the residual form used in the 

stall equation,          and      This is done by using the linear model (no stall equation) 

to predict static loads for all angles of attack in an experimental case, including past the 

stall angle where the model would no longer give accurate results. The difference between 

the static data and the computed load is the static stall residual (          ). These delta-

loads are input as the forcing function in the stall equation for that particular load. The stall 

residuals can also be computed simply by extrapolating a straight line from the linear 

portion of the static data into the nonlinear angles of attack, and then taking the difference 

between them. 

                                                
2
 Modarres and Ahaus have both noted small differences in the angle of attack data a source presents, and the 

pitching function that is supposed to produce it. Every data source in this work has discrepancies too. 
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A very important part of using the static data is Fourier smoothing. The e parameter 

appears in the last term of stall equation, multiplying the derivative of    . When just the 

raw points from the static data were used,    was not smooth and its derivative was not 

continuous; this is due to the low resolution of the static data (usually 15-20 points), so 

intermediate values were linearly interpolated. This would cause the model to be overly 

sensitive to changes in the    and    parameters and the optimization algorithm could not 

consistently find optimum values for them. Since the model is a function of time, and 

geometric angle of attack is periodic, the static stall residual is also periodic in time and can 

be represented as a Fourier series. The series can then be truncated to smooth the peaks in 

the     function, as seen in Fig 3.1. This smoothing process should not be severe enough to 

significantly change the static data, so testing the smooth function by running the stall 

model with      and      is necessary. The smoothing was deemed acceptable if the 

solution changed by less than 1%. Previous works (Ahaus [15] and Modarres [14]) did not 

mention any kind of data smoothing, so we are unsure if their models were found to be 

overly sensitive to the    and    parameters as well. 

Static corrections are the changes to the inputs needed to account for features in the 

experimental data not treated by the linear airloads theory or the stall model. 

Compressibility of air, airfoil thickness effects, and wind tunnel wall effects are phenomena 

that could change the loads but would not be part of the airloads model. We do not try to 

specifically determine causes, as it is sometimes a combination of several; instead we have 

sought to minimize the number of necessary corrections, and make them the same 

quantities for every case. For each pitching moment and drag dataset, a user of the model 

only needs to find corrections to    and  .    is a measure of the camber of the airfoil, but 

can be used to account for the lift or pitching moment curves having a constant offset. Fig 

3.2 shows a NACA 0012 test from Ref [18] in which the angle of zero lift is clearly not 0 

degrees, even for a symmetric airfoil; the    parameter can correct for this.  The “a” 

parameter is the location of the aerodynamic center, in semi-chords, aft of the mid-chord (a 

= -0.5 corresponds to the quarter-chord). We can apply additional corrections as in Ahaus 

[15], but we have found that correcting the camber and aerodynamic center is all that is 

necessary for each case we investigated. The correction factors can be determined 
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analytically, but it is usually easier to include the determination of static corrections as part 

of the optimization process. 

There is one other correction factor that is occasionally necessary to include:     

This parameter is a constant shift in the true angle of attack of the airfoil not accounted for 

by the unified model. The shift in the wind tunnel data could arise from wall effects or 

other effects previously mentioned. We found that certain stall cases were impossible to 

correlate for any set of parameters, due to the stall forcing function lagging behind the 

experimental data, as seen in Figure 3.3. One can see that regardless of the choice of stall 

parameters, it is not possible to match the experimental case unless the phase of the true 

angle of attack was adjusted. This was not required on the majority of cases, but for a few it 

was extremely important. 

 In either the 6-parameter or 12-parameter primary stall models, parameters are 

optimized independently of each other. If the parameters could affect the cost function 

independently of each other, it would be more efficient to optimize each parameter 

separately while holding the others constant. This is not the case, so the parameters are all 

adjusted at the same time, which increases the number of combinations of parameter sets, 

requiring more computing time to effectively search the space of possible parameters. Each 

parameter set in the 12-parameter model, one set for the upstroke and another for the 

downstroke, are determined during separate phases. This can be done because the 

upstroke parameters should have very little effect on the downstroke portion of the 

solution, and vice-versa, reducing the number of possible combinations to be searched in 

the 12-parameter system. The upstroke parameters are determined first, with an arbitrary 

set of downstroke parameters used; the upstroke parameters are then fixed while the 

downstroke parameters are determined. This process of holding one set of parameters 

constant while optimizing the other set can be repeated as desired, but usually only one 

cycle of this is needed. The upstroke parameters are usually unchanged after a 2nd 

iteration.  

 Once the primary stall parameters have been determined, the secondary stall 

optimization is performed. The region in which secondary stall occurs must be determined 

for a particular case beforehand because two of the secondary stall parameters depend on 

where in time the secondary peak in pitching moment or drag occurs. With the current 
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secondary stall model, the parameters can be determined without any optimization from 

the difference solution; however, this usually can be improved upon slightly by allowing 

those parameters to be an initial guess for the optimization routine. Given how quickly the 

entire optimization process takes, this can be done with very little extra computing time. A 

final optimization of the primary stall parameters can be performed after the secondary 

stall parameters are determined, but this rarely affects the final solution. 

 The primary stall parameters are constrained in order to restrict the stall equation 

to produce qualitatively accurate solutions. While the optimization process would likely 

find the qualitatively accurate solutions, by restricting the space to only include them, we 

can greatly reduce the computation time. The primary stall equation should produce a 

solution with similar behavior to that of a harmonic oscillator driven by the static stall 

curves. This restricts the    and    terms to be > 0 in order for the equation to be statically 

and dynamically stable. Furthermore, while the    and    terms can be negative, they 

should not allow the stall equation to become unstable for a significant portion of the 

stalled region. Usually we restrict    and    such that         
     for all angles of 

attack. 

 Every set of stall parameters is associated with a particular Mach number, M, and 

reduced frequency, k. The static data associated with each case are also dependent on Mach 

number. One of the goals of this semi-empirical model, similar to the goals of the previous 

modified ONERA stall models, is to produce a single set of parameters for a particular 

airfoil at a given Mach number that can be used to determine loads during dynamic stall for 

a range of reduced frequencies. The goal of the previous work was to provide a process to 

determine parameter sets that would be independent of reduced frequency, but for this 

current work, each test case is allowed to have significantly different parameters for 

different reduced frequencies. One can modify the cost function used during the 

optimization in order to select a parameter set that is independent of reduced frequency, 

but this kind of cost function must simulate several cases independently, so the computing 

time necessarily increases. 

 Various cost functions can be used with the optimization algorithm; all of our cost 

functions use the 2-norm error between the experimental case being examined and the 
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modelled solution. In the interest of computation time, only a single experimental case is 

compared for a set of parameters to determine cost, except for the results in section 4.6 

Ahaus in Ref. [15] has used a cost function that calculates the weighted average of the 

errors for multiple test cases, which effectively requires multiple time-marched 

simulations. The effect of the weighted-average cost function is to produce a set of 

parameters that applies to a range of reduced frequencies. A non-weighted cost function 

like this is used for the results in 4.6. 

 Since the work here deals with cases that exhibit secondary stall behavior, it is often 

useful to determine the set of primary stall parameters that closely matches the so-called 

"smooth curves" drawn through the experimental data. This smooth curve is created to 

resemble a solution that the primary stall model can match that also allows the secondary 

stall model to capture the effects of the secondary peak. An example of a smooth curve is 

shown in Figure 3.4, where the difference between the experimental and computed 

solutions resembles a simple damped harmonic oscillation. Once the secondary stall model 

is enabled, the entire solution closely matches the experimental data. If just the optimal 

primary stall solution was used instead of a smooth curve, it will often result in a curve that 

does not produce a difference solution that looks like the desired pulse response. The 

production of the smooth curves for experimental cases is largely arbitrary, so they can be 

either manually drawn or automated via splines or other means. We have opted to 

manually determine smooth curves for this work.  

 Once the primary stall parameters (and secondary if necessary) are found, a case is 

finished. The parameters are then saved to be used as an initial guess for future 

optimizations, if needed, or for future users of the stall model. The process, not parameters, 

should be seen as the end goal for this work, since a user will eventually apply it to their 

own data to determine their own parameters. 

The optimization algorithm used here is “Simulated Annealing”, a technique first 

described by Kirkpatrick et al in [34]. This choice of optimization algorithm was not 

motivated by the stall parameter problem in particular, but instead of its ease of 

implementation. Genetic algorithms, as used in previous works, can efficiently solve these 

kinds of optimization algorithms as well, but since we had code for simulated annealing 

already available, it was easy to adapt it. We imposed only a few requirements on the 
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algorithm: it must be at least as computationally efficient as previously used optimization 

routines from the MATLAB standard library, and it must be a parallel implementation that 

can easily scale across multiple processors. These constraints are not simply for 

convenience, since with limited time and computing power available, our options for test 

data would be reduced by a slower implementation. 

The optimization algorithm used is non-deterministic, so a collection of final 

parameter sets is kept for each experimental case. If the parameters all produce solutions 

which differ qualitatively but have acceptable and similar costs, more work is needed for 

those cases; this may also indicate something in the code is incorrect3. 

 The computational efficiency of the model is extremely important for its application 

in flight simulators and on-board flight computers. It is a necessity that the physical models 

in such applications are able to run and update in real-time, since pilots will be using the 

simulations in real-time. This only applies to the models, and not the whole optimization 

process, which will always take a non-trivial amount of time. The current implementation 

of the optimization process in Julia benefits greatly from the fast implementation of the 

model; optimizing cases in the previous work [14] would occasionally take hours, but 

usually single cases only require 5 minutes in the current work (this figure varies greatly 

based on how quickly transient solutions decay). A large part of this benefit stems from 

being able to execute the optimization algorithm in parallel.  

3.1 Frozen Inflow Method 

There is a method in the code we call the “frozen inflow method” to speed up the 

optimization by a factor of 9, but at the cost of accuracy. This was not used in the previous 

work. The optimization is concerned with the calculation of   , the pseudo-circulation that 

is the basis of stall corrections, using equations 2.30 and 2.31. The two equations 

representing pseudo-circulation in state-space depend on the inflow equations through the 

   terms in the stall parameters, and the     term and its derivative in the forcing 

function. This is due to inflow affecting angle of attack, and because the inflow depends on 

the pseudo-circulation, the equations are coupled. However, the effect of the stall equation 

                                                
3
 Before using Fourier smoothing on the static data, the algorithm could not consistently find useful “e” 

parameters 
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is small on inflow, making the change in angle of attack small, and so the effect on the 

stalled loads is also small. The inflow equation (2.29) is repeated below, with the stall 

feedback highlighted: 

 

Figure 3.5 shows the computed stalled pitching moment using the normal model, in blue, 

and using the model without including the stall feedback in the inflow equation, in red. For 

this particular case, and many others, there is almost no difference between using the stall 

circulation and removing it from the inflow equation. Time marching the 8 inflow states 

takes the majority of the computing time during an optimization, but since the coupling is 

small, we created a shortcut: the inflow from a previous optimization is saved and used as a 

lookup table instead of being recalculated for each differing set of stall parameters. This 

decouples the equations, and the optimization algorithm now uses the same exact history 

of inflow states for every cost function evaluation regardless of the stall equation. This is 

inaccurate and technically incorrect, but the cost to the overall accuracy is small until the 

optimization closes in on a solution. Between running cases, normally the cost function 

should not change at all, since the algorithm can never do worse than the best result from 

the previous run; the frozen inflow method can break this rule, however, since the inflow is 

allowed to change, which is how we know when the method cannot improve the solution 

anymore. The final cost function value for a run will be better than the first cost function 

value for the next run, so at this point we can switch back to the original model. This 

process of using the frozen inflow method first and switching to the original model after a 

few runs can save an enormous amount of time.   

Creating the lookup table for the frozen inflow method is more involved than just 

saving the states from a previous simulation. The 4th-order Runge-Kutta algorithm uses 

half steps in time when calculating the derivative, so a previous simulation needs double 

the number of states available when using this method. At the beginning of a frozen inflow 

optimization, a simulation is evaluated at twice the number of steps inputted by the user. 

These states are saved and used instead of evaluating the 8 derivative equations in 

Karunamoorthy model. This also requires a different implementation of the Runge-Kutta 
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algorithm that uses an integer index instead of an arbitrary time value to calculate its 

output.  

 All of the results in Chapter 4 were generated using the frozen inflow optimization 

method first, using the normal method afterwards if a better solution was possible.  
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Figure 3.1 - Smoothed    data; fourier series truncated to first 100 terms 
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Figure 3.2 - Lift coefficient vs Angle of attack from Ref [18], showing a nonzero lift offset, 

even for a symmetric airfoil (NACA 0012).  
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Figure 3.3 - Phase difference between forcing function and pitching moment data 

 

Figure 3.4 - Example of a smooth curve for lift, taken from [14] 
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Figure 3.5 - Comparison of stalled loads with and without stalled feedback in the inflow 

equation. 
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Chapter 4: Results 

The Unified model correlations are divided into 6 sections: VR-12, VR-7, NACA 0012 

Yawed, NACA 0012 Unsteady, SSC-A09 Unsteady, and VR-7 for a single set of parameters. All 

of the results from each dataset were generated by the same procedure outlined in Chapter 

3. Each plot contains the experimental data in green, the modeled solution in blue, and, if 

applicable, the modeled solution including the secondary stall effects in red. 

 

4.1  Boeing VR-12 

The first results are correlations from the data in Ref [16], a wind tunnel test of a 

harmonically pitching Boeing VR-12 airfoil, the same data investigated in Ahaus [15]. The 

test is meant to evaluate the effectiveness of a Variable Droop Leading Edge (VDLE) airfoil 

for lessening the effects of dynamic stall on a retreating helicopter blade. The VDLE 

configuration is effectively a dynamically morphing airfoil, well suited to be modeled by the 

Johnson airloads theory, and Ahaus considered both morphed and unmorphed 

configurations. However, for this work we only consider the baseline (unmorphed) data. 

This is because Ahaus already validated the effects of morphing on pitching moment and 

drag, so we are more interested in the stall effects. The Mach numbers of the tests are 0.2, 

0.3, and 0.4, with 2 reduced frequencies, k = 0.05 and k=0.1. Lift, pitching moment, and drag 

dynamic data are all present, but drag static data was only present for the M=0.3 case, 

which is why the M=0.2 and M=0.4 cases are not evaluated. The geometric angles of attack 

vary sinusoidally from 0 to 20 degrees, with a mean angle of 10 degrees for each 

experiment, according to the following expression: 

                        

, where   is the geometric angle of attack. CFD data is available from the same reference, 

though it shows poor correlation for several pitching moment and drag cases, and will not 

be evaluated here. 

 The VR-12 results are shown in Figs [4.1-4.8]. Each figure is plotted in angle of 

attack and phase and the experimental data, primary stall, and primary + secondary stall 

are shown in green, blue, and red, respectively. The pitching moment results of [4.1-4.6] 



 

37 
 

show close agreement with the experimental data for each Mach number and reduced 

frequency examined. The secondary stall model provides a small improvement to the k = 

0.05 results around the small secondary peak in pitching moment (secondary peaks occur 

between phases of 120 to 180 degrees for Figures 4.1-4.3). The same static corrections 

(  and a) were used for every case. 

 

4.2 - Boeing VR-7 

Data from Ref [17] were obtained in a water-tunnel test of a Boeing VR-7 airfoil. 

They contain the largest range of reduced frequencies of any data we used, with k values 

ranging from 0.002 to 0.25. Ref [17] evaluates the original ONERA stall model with 

experimental data taken from the Aeromechanics Laboratory Water Tunnel at NASA Ames. 

The airfoil section was placed a water tunnel with minimal side clearance, attached to a 

pitch transducer at the quarter-chord to allow simple harmonic pitching. No plunging or 

side motion of the airfoil was allowed, as it was fixed in these directions. The water velocity 

in the tunnel was set to produce a dynamic pressure of 689 N/m^2, corresponding to a 

reynolds number of 120000. The airfoil section oscillated sinusoidally, with a mean value of 

10 degrees, and an amplitude of 10 or 15 degrees.  

Cases were evaluated for reduced frequencies of .05, .1, .15, .2, and .25 (the k=0.002 

data is quasi-static, and is not used). Since the original ONERA model relied on determining 

parameters from much smaller-amplitude tests, this data is available as well, with 

amplitudes of ~2 degrees and means values from 0 to 18 degrees. This is not necessary for 

the parameter identification in the Modarres-Peters stall model, so only the large 

amplitude data will be used, since the large-amplitude data is more representative of the 

aerodynamic environment of real helicopter blades. Both pitching moment and drag data 

were evaluated. Only one set of static data was necessary since the compressibility effects 

were negligible (due to the increased speed of sound in water, this data effectively has a 

Mach number of 0). This is the only data to provide plots with both angle of attack and 

reduced time, so we did not need to assume the sinusoidal form from the data as described 

in Chapter 3. This is the same dataset that will be used for the last set of results that 

attempt to match all of the VR-7 data for a given load with the same set of parameters. 
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 The VR-7 results for pitching moment in Figs [4.9-4.13] show some interesting 

characteristics. First, the data shows significant multiple vortex shedding phenomenon for 

the reduced frequencies higher than 0.1. The multiple peaks present in the data do not 

resemble the normal secondary vortex behavior, like what was observed in Section 4.1, 

where a smaller peak is following the single large peak. The smaller peaks leading the 

larger peaks are an interesting stall phenomenon not present in the other datasets. The 

Unified model matches the linear region well and the stalled region fairly well for each 

case. For this dataset in particular, the optimization routine had a difficult time finding 

parameter sets that reached the same peak values as the data, which is a concern for load 

modelling. In an application where peak loads are critical, the stall model would need to be 

corrected. This could be done by implementing composite cost functions that try to 

minimize error and put additional weight on the peak value being close to the data 

(perhaps erring on the side of predicting larger loads than is present in the data). These 

kinds of cost functions were not tested. 

 

4.3  NACA 0012 Yawed Flow 

Ref [18-19] is a wind tunnel experiment of a NACA 0012 airfoil pitching 

harmonically in a steady freestream. Since we are not investigating flight tests or other 3D 

data, this paper is our only source of data taken at swept geometries. This source contains 

many combinations of reduced frequencies and pitch angle ranges, with yaw angles of 

either 0 or 30 degrees. Static data for every load at both yaw angles is also provided. 

Modarres [14] validated 3 reduced frequencies of this data for lift, so we validate the same 

three frequencies for drag and pitching moment: 0.037, 0.075, and 0.093. The data at these 

three reduced frequencies is for a Mach number of 0.4, with a pitch range of 4° to 20°. 

 This dataset introduced some interesting problems. The pitching moment data show 

what appears to be a constant component of the moment on the airfoil that changes 

depending on reduced frequency and yaw angle. Figure 27 of Ref [18] strongly exhibits this 

trait for the  ̄     degrees cases, which is not the data we correlated. We cannot account 

for anything aerodynamic that would cause this phenomenon, especially since the same 

constant component of pitching moment should be independent of reduced frequency, as it 
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was for other cases validated in this work. We believe this indicates a physical error in the 

testing apparatus of the wind tunnel, possibly an axis of rotation that is changing slightly 

with each test. Normally we use a single value of h2 to correct for any effect of “virtual 

camber” on a dataset, but in this case we make an exception to allow a different h2 for each 

case. We would be otherwise unable to get the optimization routine find decent parameter 

sets.  

 The results for the stall model on this dataset, Figures [4.19-4.30], showed close 

agreement for both pitching moment and drag, yawed and un-yawed cases. Oddly, some of 

the cases still showed a constant offset in the results even after correction for it during a 

no-stall simulation. Both yawed and un-yawed results show peak values close to the data 

and stall loops that are close in size to those in the data, so the effect of stall flutter would 

not be under predicted. Many more figures are available from Ref [18], and also Refs [35-

36], for more stall model validation. 

 

4.4   NACA 0012 Unsteady Freestream 

The wind tunnel test of Ref [21] is a NACA 0012 airfoil section in a subsonic wind 

tunnel. With a maximum speed of 25 m/s, the Reynolds number of the tests range from 

50,000 to 400,000. The unsteady freestream is simulated via the motion mechanism 

attached to the airfoil; combinations of pitching, plunging, and fore-aft motion can be 

induced, and the phasining between the types of motion can be varied. The pitching occurs 

via a shaft at the quarter-chord of the section. Several combinations of pitch range, reduced 

frequency, and unsteady freestream amplitude are available, for the sake of brevity, we 

have limited the analysis to only the drag data of Figure 3 in Ref [21]. There are nine cases 

investigated here, one with steady freestream and eight with unsteady freestream. The 

reduced frequency is 0.135, the amplitude of unsteady freestream is 0.153, and the pitch 

range is 3° to 15°. The unsteady freestream and pitching functions are the following: 
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, where   is the unsteady freestream amplitude and   is the phase difference between the 

two functions.   is varied between each unsteady case in 45 degree increments, from 0° to 

315°. 

 The results for all of the unsteady cases, Figures [4.32-4.39], use a parameter set 

optimized for the steady case only, Fig 4.31. All of the cases show decent agreement with 

the experimental data (since the experimental data does not change very much for each  ), 

but they also reveal that we have a bias when looking at these plots. Every plot in phase 

looks much better than the plots in angle of attack, but they have the same 2-norm error. 

We believe the phase plots better represent the true nature of the model since the model is 

based in time, but this also indicates how additional validation through other means than 

what was done here, in Ahaus [15], and in Modarres [14], is necessary. How accurate the 

stall model is for a given dataset should not be dependent on the method we chose to plot 

the results with, nor should it be just a quantitative measure of that visual difference we 

discern when looking at the plots. A real-world application of the stall model needs to be 

used as feedback for a better way to formulate cost functions and determine parameters. 

 It should be noted that the same authors of this data paper [21] also have pitching 

moment data available in another source [20], but this data posed some issues. In figures 5 

and 6 of [20], the pitching cases show extremely large peaks in moment and drag, several 

times the magnitude of the static data. We were unable to get the stall model to correlate 

this without making much larger corrections outside of the simple static corrections we 

elect to use for every other dataset. It may require additional changes to the model, or the 

dataset itself might be suspect. The plunging data for the same angles of attack shows much 

smaller loads for pitching moment and drag, but similar loads for lift, which makes us 

hypothesize that the experiment could have some physical problem. The pitching moment 

data shows a large region of negative damping that may have caused the apparatus to go 

unstable. 

  

4.5   SSC-A09 Unsteady Freestream 

The experiment of Ref [22] is of a blowdown wind tunnel, which can produce much 

higher mach numbers than the other unsteady experiment of Ref [21]. A high pressure (17 
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MPa) tank of air is connected to the tunnel allowing a fast gust of air to reach the SSC-A09 

airfoil test section, which can be oscillated in pitch only. The motor controlling the pitch of 

the airfoil can be phase-matched to the vanes controlling the gusts, so the unsteady 

freestream and pitch oscillations can be synchronized. Lift and pitching moment data are 

available from this test at reduced frequencies of 0.025 and 0.05 (approximately). The 

Mach number of the freestream is         . Additional data for this experiment is 

available in Ref. [23], in which the freestream phasing with respect to the airfoil pitch 

phasing is allowed to vary. 

 This test is important for several reasons. First, it is the only unsteady moment data 

we tested. Modarres previously tested this same dataset for only one of the reduced 

frequencies, so it also provided a sanity-check for the implementation of the model. The 

small reduced frequencies and high Mach numbers of these tests are more indicative of real 

helicopter conditions. In lieu of 3D test data, these data are the next best thing. Lastly, this 

paper interpolated steady freestream tests to predict unsteady behavior, which 

corroborates the unsteady freestream corrections to the Unified model by Peters and 

Modarres [14]. The idea of holding the freestream value at the point of stall constant to give 

the same vortex-shedding behavior shows how the stall characteristics of steady conditions 

can predict stall in the unsteady freestream. 

 The results for the SSC-A09 data are Figures [4.40-4.45]; 4 of the results have steady 

freestream and 2 are unsteady freestream. Parameters optimized from the steady 

freestream cases are used in the unsteady cases because we are validating the unsteady 

corrections themselves. Ideally, the unsteady corrections with only one stall parameter set 

could be used for the dynamic stall of a real helicopter blade instead of trying to interpolate 

multiple sets of stall parameters without the corrections. The agreement between the 

model and experimental data in these cases shows the unsteady corrections of Section 

2.3.3 effectively model the small difference between the steady and unsteady data. 

 It is important to note that while the model was able to match the unsteady k = 

0.0506 case, this result is not as close as Modarres’ correlation, and the exact cause of this 

was not determined. We believe the main issue is his inclusion of a cross-coupling term in 

the primary stall equation that is not present in our model. Equation [5.2] of Ref [14] has an 

additional term to allow lift data to affect the pitching moment model. It is also possible 
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there is a discrepancy between our static corrections and his; in particular he may have 

used an    parameter that we did not include. 

 

4.6  Boeing VR-7 with single set of parameters 

This is the same dataset from Ref [17] considered in section 4.2. One of the goals of 

this work is to find a k-independent parameter set, so data with a large number of reduced 

frequencies is desired. All of the same conditions and static corrections applied to this 

optimization; the only part changed was to use a cost function that averaged the error from 

each case equally. This required 5 time-marching simulations instead of 1 for each cost 

function evaluation, so the optimization took 5 times as long (the frozen inflow method was 

able to alleviate this greatly). Results from this optimization are shown in Figures [4.46-

4.55]. 

 These results show fairly good agreement with the higher reduced frequencies, 

similar to the solutions of the previous VR-7 results. The lower reduced frequencies, k=0.1 

and k = 0.05, have solutions that differ from the previous results. In particular, the deep-

stalled region of the pitching moment results for those 2 reduced frequencies shows some 

very lightly-damped oscillations that are not present in the higher reduced frequencies. 

This would not be desirable in an application that expected the dynamic stalled behavior to 

approach static stalled behavior, as the model would produce oscillations for a quasi-static 

case. The stall parameters for the drag cases did not have this oscillating behavior; instead, 

the model slightly underpredicted the peak drag for the higher reduced frequency cases, 

and overpredicted the drag for the lower reduced frequencies. This is not necessarily a bad 

feature, since the consequences of underpredicting loads could be worse than 

overpredicting. These results could be further improved by relaxing the requirement of one 

parameter set for all reduced frequencies. In order to provide close agreement with both 

low and high reduced frequencies, multiple parameter sets could be smoothly interpolated 

between as a function of reduced frequency. 
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Airfoil Mach 
Number 

Reduced 
Freq. 

Secondary 
Stall 

Unsteady 
Freestream 

Yawed 
Flow 

Load Data Reference 

VR12 0.2 - 0.4 0.05, 0.1 yes no no Moment, 
Drag 

[16] 

 VR7 Approx. 0 
(water) 

0.05 - 0.25 yes no no Moment, 
Drag 

[17] 

NACA 0012 0.3 - 0.4 0.037, 
0.075, 
0.093 

no no yes Moment, 
Drag 

[18] 

NACA 0012 0.07  0.135 no  yes  no Drag [21] 

SSC-A09 0.33 - 
0.47 

0.025, 0.05 no yes no Moment [22] 

 

 Table 4.1 - Summary of experimental data investigated 
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Figure 4.1 - Pitching moment solutions for k = 0.05, M = 0.2, compared to Ref. [16].  
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Figure 4.2 - Pitching moment solutions for k=0.05, M=0.3 compared to Ref [16] 
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Figure 4.3 - Pitching moment solutions for k=0.05, M=0.4 compared to Ref [16] 
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Figure 4.4 - Pitching moment solutions for k=0.1, M=0.2 compared to Ref [16] 
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Figure 4.5 - Pitching moment solutions for k=0.1, M=0.3 compared to Ref [16] 
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Figure 4.6 - Pitching moment solutions for k=0.1, M=0.4 compared to Ref [16] 
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Figure 4.7 - Drag solutions for k=0.05, M=0.3 compared to Ref [16] 
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Figure 4.8 - Drag solutions for k=0.1, M=0.3 compared to Ref [16] 



 

52 
 

Figure 4.9 - Pitching moment solutions for k=0.1, compared to Ref [17]  
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Figure 4.10 - Pitching moment solutions for k=0.1, compared to Ref [17] 
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 Figure 4.11 - Pitching moment solutions for k=0.15, compared to Ref [17]  
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Figure 4.12 - Pitching moment solutions for k=0.2, compared to Ref [17] 
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Figure 4.13 - Pitching moment solutions for k=0.25, compared to Ref [17] 
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Figure 4.14 - Drag solutions for k=0.05, compared to Ref [17] 
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Figure 4.15 - Drag solutions for k=0.1, compared to Ref [17] 
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Figure 4.16 - Drag solutions for k=0.15, compared to Ref [17] 
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Figure 4.17 - Drag solutions for k=0.2, compared to Ref [17] 
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Figure 4.18 - Drag solutions for k=0.25, compared to Ref [17] 
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Figure 4.19 - Pitching moment solutions for k=0.037, M=0.4, compared to Ref [18] 
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Figure 4.20 - Pitching moment solutions for k=0.037, M=0.4, compared to Ref [18] 
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Figure 4.21 - Pitching moment solutions for k=0.075, M=0.4, compared to Ref [18] 
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Figure 4.22 - Pitching moment solutions for k=0.075, M=0.4, compared to Ref [18] 
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Figure 4.23 - Pitching moment solutions for k=0.093, M=0.4, compared to Ref [18] 
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Figure 4.24 - Pitching moment solutions for k=0.093, M=0.4, compared to Ref [18] 
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Figure 4.25 - Drag solutions for k=0.037, M=0.4, compared to Ref [18] 
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Figure 4.26 - Drag solutions for k=0.037, M=0.4, compared to Ref [18] 
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Figure 4.27 - Drag solutions for k=0.075, M=0.4, compared to Ref [18] 
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Figure 4.28 - Drag solutions for k=0.075, M=0.4, compared to Ref [18] 
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Figure 4.29 - Drag solutions for k=0.093, M=0.4, compared to Ref [18] 
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Figure 4.30 - Drag solutions for k=0.093, M=0.4, compared to Ref [18] 
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Figure 4.31 - Drag solutions for k=0.135, compared to Ref [21] 
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Figure 4.32 - Drag solutions for k=0.135, compared to Ref [21] 
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Figure 4.33 - Drag solutions for k=0.135, compared to Ref [21] 
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Figure 4.34 - Drag solutions for k=0.135, compared to Ref [21] 
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Figure 4.35 - Drag solutions for k=0.135, compared to Ref [21] 
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Figure 4.36 - Drag solutions for k=0.135, compared to Ref [21] 
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Figure 4.37 - Drag solutions for k=0.135, compared to Ref [21] 
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Figure 4.38 - Drag solutions for k=0.135, compared to Ref [21] 
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Figure 4.39 - Drag solutions for k=0.135, compared to Ref [21] 
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Figure 4.40 - Pitching moment solutions for k=0.0244, M=0.4, compared to Ref [22] 
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Figure 4.41 - Pitching moment solutions for k=0.0257, M=0.39, compared to Ref [22] 
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Figure 4.42 - Pitching moment solutions for k=0.0282, M=0.45, compared to Ref [22] 
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Figure 4.43 - Pitching moment solutions for k=0.0505, M=0.4, compared to Ref [22] 
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Figure 4.44 - Pitching moment solutions for k=0.0506, M=0.4, compared to Ref [22] 
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Figure 4.45 - Pitching moment solutions for k=0.0571, M=0.35, compared to Ref [22] 
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Figure 4.46 - Pitching moment solutions for k=0.05, compared to Ref [17] 
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Figure 4.47 - Pitching moment solutions for k=0.1, compared to Ref [17] 
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Figure 4.48 - Pitching moment solutions for k=0.15, compared to Ref [17] 
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Figure 4.49 - Pitching moment solutions for k=0.2, compared to Ref [17] 
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Figure 4.50 - Pitching moment solutions for k=0.25, compared to Ref [17] 
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Figure 4.51 - Drag solutions for k=0.05, compared to Ref [17] 
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Figure 4.52 - Drag solutions for k=0.1, compared to Ref [17] 
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Figure 4.53 - Drag solutions for k=0.15, compared to Ref [17] 
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Figure 4.54 - Drag solutions for k=0.2, compared to Ref [17] 
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Figure 4.55 - Drag solutions for k=0.25, compared to Ref [17] 
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Chapter 5: Summary and Conclusions 

 This work developed and validated a state-space dynamic stall model for predicting 

pitching moment and drag of rotor blades. The Unified model developed in Chapter 2 is a 

hierarchical, reduced-order model suitable for real-time flight simulation. Eight inflow 

states and two stall circulation states are sufficient to model an airfoil in 2D flow for 

arbitrary freestream conditions. Stall parameters were determined via an optimization 

routine that minimized the 2-norm error of the difference between our modelled solution 

and experimental data. The “frozen inflow method” of Section 3.1 reduced the computing 

time during optimization by a factor of nine by making assumptions to decouple the inflow 

and stall equations. Data from several wind tunnel experiments were tested that contain 

unsteady freestream, yawed flow, and secondary stall effects.  

 The results of Chapter 4 showed how the stall model can simulate pitching moment 

and drag for five different datasets. The results for the Boeing VR-12 data of Ref [16] show 

close correlation of both pitching moment and drag for three Mach numbers and two 

reduced frequencies, including secondary stall. The yawed flow results of Section 4.3 show 

that yaw effects in 2D can be modelled using the yawed static data. The unsteady 

freestream results of Sections 4.4 and 4.5 show how the small corrections to the loads in 

Eqs. 2.36-2.40 can account for the unsteady freestream conditions in Refs [21] and [22]. 

For the VR-7 data of Ref [17], a single set of stall parameters was found to give reasonable 

correlation for a range of reduced frequencies. 
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Chapter 6: Future Work 

The Peters-Modarres stall model has yet to be validated against any three-

dimensional data. While Modarres considered 3D effects, he did not have wind tunnel tests 

or flight test data to compare with the model. Dynamic stall in an actual helicopter rotor is 

a 3D phenomenon, so these kinds of data are the next important data in the validation of 

the Unified model. 

 The best kind of test to validate this stall model in 3D would be a full-rotor wind 

tunnel test with effectively rigid blades. A flexible rotor blade undergoing dynamic stall 

would also have significant flapping, lead-lag, and torsional motion; this would require a 

structural model coupled to our stall model in order to validate. Creating and using a 

structural model is a project by itself, and could introduce errors that would hinder the 

validation of the stall model, so it is very preferable to use data that does not have these 

blade motions. With the entire rotor inside of the wind tunnel, a 3D wake would be 

generated as in a real helicopter, and the stall vortices would affect other sections of the 

same blade, or even other blades. In Section 6.2 of Modarres [14], he made modifications to 

the stall model to include the effect of radial coupling, and with a stiff full-rotor wind tunnel 

test, this radial coupling equation could be validated.   

The problem with rigid-rotor tests is simple: there are none available. One the other 

hand, tests of flexible rotor blades undergoing dynamic stall in both wind tunnels and flight 

environments are much more available. Ref [37] is a flight test of a UH-60 helicopter during 

three dynamic stall-inducing conditions: a pull-up maneuver, a high-speed diving turn, and 

trim level flight. This test also shows generation of dangerously large pitch-link loads 

during the dynamic stall events. Ref [38] contains flight test and wind tunnel data of a 

bearingless rotor undergoing dynamic stall, with measured pitch-link loads. These non-

rigid rotor tests are not as useful to us as rigid ones, but are still capable of being validated. 
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Appendix: Summary of the Unified model 

 This section will state the matrix form of the Unified model, and define each matrix 

and vector used. All of the equations necessary to implement the model in code are in this 

section, and the definitions here should look identical to Appendix A in [15], Appendix A in 

[14], and Appendix B of [27].   

 

Generalized loads equation: 

 

    is the thin-airfoil theory lift. 

  
 
       is the pitching moment about the quarter-chord. 

D is the pressure drag (this does not include profile drag): 

 

  is the total circulation from the linear theory, so it does not include   , the circulation due 

to stall. 

     

The “n” and “m” subscripts respectively refer to which inflow state and Glauert expansion 

state is being considered. There are a total of N inflow states and M Glauert states. 

From the 2D Karunamoorthy inflow theory, this is the equation for the inflow states: 

 

All states except   can be determined this way. To get   : 

 

where  
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Note that these two equations are misprinted in Ahaus [15]. 

Stall equation: 

 
Total lift: 

                

Total drag:  

                            

Total pitching moment about quarter-chord: 

                   

 

Stall parameter equations: 
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