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Abstract

The objective of The Programmers’ Playground, described in this manual, is to provide a development environment
and underlying support for end-user construction of distributed multimedia applications from reusable self-
describing software components. Playground provides a set of software tools and a methodology for simplifying
the design and construction of applications that interact with each other and with people in a distributed computer
system.

This manual explains how to write interactive distributed applications using Playground. The only background
necessary to get started is an understanding of basic data structures and control constructs in C4++. If you already
know C++, then with the tools provided by Playground, you will be able to write distributed applications without
learning a new programming language and without needing to learn about how communication works in a
distributed system.
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Chapter 1

Introduction

Distributed multimedia applications, supporting interaction among many users and system components,
can facilitate effective communication and synthesis of information. This effectiveness is compounded
when end-users are empowered with the ability to dynamically integrate and customize these
applications in order to take advantage of new components and new information sources.

The Programmers’ Playground provides a methodology and set of software tools for writing interactive
distributed applications. Playground offers an abstraction that serves as an insulating layer between the
programming language and low-level communication protocols, and provides a uniform approach to
communication that accommodates diverse collections of both persistent and transient applications. This
abstraction:

» simplifies the construction of distributed applications,

* provides end-user configuration and integration of software modules,

* is designed for high-bandwidth communication technology,

¢ provides uniform treatment of discrete and continuous data,

* permits a dynamically changing communication structure,

» offers protection for data and applications,

* supports existing programming languages and paradigms,

¢ is designed for scalability and modularity,

* rests on a formal foundation, and

* is compatible with a connection-oriented model of communication services.

Playground is neither a new programming language nor a new operating system. It is a way of thinking
about distributed applications and software to support that way of thinking. This chapter describes the
Playground philosophy. Later chapters describe the software library and tools that enable you to write

applications in C++ using this philosophy.



Playground Reference Manual Chapter 1: Introduction

1.1 Basic Concepts

A distributed application is composed of multiple processes, usually running on separate computers, that
communicate. The Programmers’ Playground C++ library, described in Chapter 3 through Chapter 5
allows programmers to write CH programs (0 implement these processes and their associated
communication without worrying about the low-level details of interprocess communication,

Playground is based on a model of distributed computing called I/O abstraction. Briefly, /O abstraction
is the view that each module (i.e., process) in a system has a set of data structures that may be externally
observed and/or manipulated. This set of data structures forms the module’s external interface, called the
presentation. Each module is written independently and modules are then configured by establishing
logical connections between the data structures in their presentations, The conmections must respect
access restrictions established by each module for its own data. As published data structures are
modified within a module, communication occurs implicitly “under the covers” to other modules
according to the connections created in the configuration.

Playground helps to simplify applications programming by treating communication as a high-level
relationship among module states. Program /O occurs implicitly as a result of this relationship. In this
way, low level input and output activities are hidden from programmer. Programmers need not be
concerned with explicitly initiating communication activities, such as sending and receiving messages,
and therefore need not be concerned with the particular communication primitives provided by the
operating system or the network interface.

1.1.1 Variables

Variables may be private to a module or may be published, meaning that other modules in the system
may access the values of the variables. Playground provides a library of data types that may be
published. These data types are divided into three categories: base types for storing integer, real,
boolean, string, and memory block values, tuples for storing records with various fields, and aggregates
for organizations of homogeneous collections of elements. The fields of tuples and the elements of
aggregates may be nested arbitrarily using the Playground data types.

Each Playground module has a presentation that consists of published variables. Each published variable
has certain associated information:

* public name: A descriptive textual name assigned by the module program when the data item is
published. The name helps users of the module to understand the module’s presentation.

* data type: The data type of the published data item, automatically associated with each data item.
This information is used to enforce type compatibility in logical connections among data items in
different modules. The type information is also an aid in understanding the module’s presentation.

* access protection: This protection information, which may be determined by the module at run-
time, provides restrictions on who may use a given data item, and how they may use it. Protection
is discussed in Section 4.1.

1.1.2 Control

Playground modules are written entirely in terms of the module’s local state information, some of which
may be published. Since all Playground communication takes place through the presentation, a
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Playground module’s view of the world is that it may modify its local state, and sometimes data in its
local state may change “miraculously™ as the result of some activity in the module’s environment.

This view of interaction suggests a natural division of the control portion of Playground modules into
two components: active control and reactive control. The active control carries out the ongoing
computation of the module, while the reactive control carries out activities in response to input from the
environment. For example, in a simulation application, the active control would be responsible for the
main loop that performs the computation for each event in the simulation, while the reactive control
would handle external changes to published variables representing simulation parameters.

The active control component of a Playground module is the control defined by the main function and
the functions that it calls. The reactive control component is described on a per data item basis. That is,
one associates with certain published variables a function to be performed when a new value is received
from an external module. Defining reactive control is discussed in detail in Section 4.5.

1.1.3 Connections

Relationships between the published variables of different modules are established by creating logical
connections between the variables. The set of connections defines the pattern of communication among
the corresponding modules. Connections can be formed:

1. graphically by the end-user, using a “Connection Manager” GUI (see Section 2.2),
2. programmatically within modules (see Chapter 5), or

3. from the “Application Management System,” an automated application launcher.

Connections may be either unidirectional or bidirectional. A bidirectional connection might be useful for
interactive or collaborative work, while a unidirectional connection with high fan-out would be
appropriate for connecting a video source to multiple viewing modules.

The semantics for logical connection communication is FIFO across the connection, meaning that if a
published variable has value a and later is assigned value b, then every module connected from that data
item will see a before b. The defanlt semantics is send-on-update. That is, a value is sent on a logical
connection only if the published variable is modified within its module.

The Playground supports two kinds of connections: simple connections and element-to-aggregate
connections. A simple connection specifies communication between published variables of the same
type. An element-to-aggregate connection specifies communication between an aggregate of elements of
type T (e.g., an array of integers) and a variable of type T (e.g., an integer). Element-to-aggregate
connections facilitate the construction of client-server applications, allowing data from multiple client
modules to each contribute individual elements to a server module’s aggregate. Element-to-aggregate
connections are discussed in more detail in Section 4.5.
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1.2 Example Application

Maple syrup is produced by pouring maple sap into a vat and boiling away excess water until a suitable
concentration level is reached. A factory producing maple syrup must adjust a number of actuators
controlling properties such as the incoming sap flow rate and the burner status (i.e., on or off). The
process control application automates maple syrup production, controlling the factory actuators in
response to sensor values.

o o

Figure 1: Process control application modules.

The process control application consists of three communicating modules. Using the Connection
Manager GUI (see Section 2.2), end-users can view these modules and configure their communication
(see Figure 1). Each Playground module is graphically represented as a box with a data “plug” for each
published variable. The color of each variable represents its type. Logical connections are represented
as arrows between pairs of published variables, and can be created by simply dragging from one
published variable to another. The metaphor is that of wiring together the components of a stereo
system, where the color of each cord denotes the type of information that it carries.

The SENSOR module monitors conditions of the syrup production: concentration, volume, and
temperature, These are published as cow, voL, and TEMP real number variables, making the values
available to other modules. The CONTROL module controls the actuator settings based on these sensor
values, It also has CON, voL, and TEMP published variables that are used to receive updates from the
SENSOR module through logical connections. Based on these values, the CONTROL module decides
how to adjust the vat’s burner and flow valve (see Figure 2). Two published variables, FIRE and FLOW
(boolean and integer values, respectively), are used to communicate these settings back to the SENSOR
module.

Playground also provides a graphical user interface construction module called EUPHORIA. With
EUPHORIA, end-users can create interactive graphical displays for distributed applications through the
use of a graphics editor. In the process control application, the EUPHORIA module was used to create an
interactive graphical display of the maple syrup production (Figure 2). In addition, this display also has
published variables for the sensor and actuator values which are associated with graphics objects.
Whenever the SENSOR or CONTROL modules change their published variables, these changes are
communicated to EUPHORIA according to the established connections and are used to animate the
display.
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Note that the FIRE and FLOW connections between the CONTROL and EUPHORIA modules are
bidirectional, allowing user interaction in the display to override decisions of the CONTROL module, in
which case the CONTROL module would report the user-specified values to the SENSOR module. For
example, the factory operator can adjust the valve of the incoming sap by dragging the width of the sap
flow rectangle.

1.3 Overview

The remainder of this manual is organized as follows. Chapter 2 discusses how to start using the
Playground environment to develop and use distributed applications. Chapter 3 through Chapter 5
summarizes Playground’s C++ library application programmer interface (API) for creating modules,
variables, and connections respectively. Chapter 7 outlines a recommended methodology for designing
distributed applications with The Programmers’ Playground.



Chapter 2

Getting Started

This chapter describes how to start using the Playground tools and compiling modules. These
instructions describe how to start applications manualily (i.e., launching each module from the UNIX
shell; graphical configuration). Playground also provides a mechanism for automating application
launching.

To use Playground tools, first add Playground to your UNIX path (this only needs to be done once). For
Washington University users, execute the following in the UNIX shell:

pkgaddperm playground (Washington University users only)
Other users, add the following to your . cshrc file:
set path = ($path <pgbin>) (Other users)

where <pgbin> is the directory where the Playground executables are located on your file system.

2.1 Parent File

A parent module is a module that has information about all of the other modules of an application. When
a new module is launched, it needs to be informed of the location of its parents. This is accomplished
through a file named .pginitre. This file can be created initially as an empty file:

touch .pginitre

In general, modules are launched in UNIX by typing the name of the module’s executable in the UNIX
shell. When a parent module (e.g., the Connection Manager GUI) is launched, it searches for the
.pginitrc file, first in the current directory then in the user’s home directory. If found, the parent
module writes its “module ID” to the file for use by future modules. When other modules are launched,
they also search for the .pginitrc file in the same way. If found, the modules communicate with the
parents listed in the file, sending presentation information.
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2.2 Connection Manager GUI

At the beginning of each Playground session, you will start up a Connection Manager GUL. The
Connection Manager GUI allows you to see modules that you launch and enables you to form
connections among published variables. To launch the Connection Manager GUI, type PGemgui in the
UNIX shell:

PGemgui

An empty window should appear on your screen. It is empty because you have no other Playground
modules running. As other modules are launched, they will appear in the window as boxes (see Section
1.2).

To create a logical connection in the Connection Manager GUI, just drag an arrow from the presentation
entry of one module to the presentation entry of the other module while holding the left mouse button. A
bidirectional connection is created the same way, but the middle mouse button is held. By default,
connections are “send on connect,” meaning that upon establishing the connection the current value of
the downstream variable is communicated to the upstream variable. Holding the shift key while forming
a connection inhibits “send on connect.”

To delete a connection, click on the connection line with the right mouse button. A module may be

rotated by clicking on its title,

2.3 Compiling Modules

You must use the CC compiler, version 4.1 or later. Application programs compiled with any other
compiler may not link to the Playground library. The line:

#include "PG.hh"

at the top of every file which uses Playground data types or functions, directs the compiler to include the
Playground data types and operations.

A sample Makefile is available to automate module compilation.



Chapter 3

Module API

This chapter discusses the Playground C++ library functions for creating and using a module including
initialization, naming, timing, and data synchronization. All module functions discussed in this manual
are static members of the PG class, and should be preceded by PG: :.

3.1 Initialization and Termination
Every Playground module should call pG: :initialize before operating on Playground variables and
should call PG: : terminate upon conclusion;
void PG::initialize(const char* name);
name Initial module name (optional; default = <host>:<process ID>).

void PG: :terminate();

Although initialization and termination is done automatically by the Playground run-time system,
implementors are encouraged to use PG::initialize and PG::terminate to make the behavior of
the code clear, Below is an example skeleton for a Playground module,

#include "PG.hh"

main{)
{

PG::initialize ("module name");

// declarations and active control, including
// publishing data items and setting up reactive control

PG::terminate();

3.2 Synchronization

Synchronization is used to control when updates to published variables will be sent or received. By
default, whenever Playground variables are accessed, the Playground system may perform internal
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operations associated with interprocess communication, These operations can result in communication
to external modules (i.e., if a published variable is modified) or changes to the values of a module’s
published variables (i.e., if updates are received from external modules). At times it may be desirable to
temporarily prevent this communication. This can be accomplished by using the functions
PG: :shelter and PG: :beginAtomicStep:

void PG::shelter();

void PG::unshelter();

PG: :shelter shields the entire presentation from external module updates. Incoming values are not
seen but updates go out. When complete, updates from external modules resume. Multiple shelters and
atomic steps can be nested, the appropriate updates occur when the last PG::unshelter or
PG: :endAtomicStep is called. Updates received while sheltered are queued and are used when the
shelter is complete.

void PG::beginAtomicStep();
void PG::endAtomicStep();

PG: :beginAtomicStep specifies that no updates should be sent or received from the module. When
PG: :endAtomicStep is called, the final values of all modified presentation entries are transmitted as an
atomic unit to each connected module. When a group of updates from an atomic step is received by a
module, the updates to the presentation and the associated reaction functions are completed for the entire
group before the active control is allowed to resume. Thus, the active control perceives the update as an
atomic step, Updates received during the atomic step are queued and are used when the atomic step is
complete.

Common Bug Associated with Synchronization

PG: :shelter Or PG: :beginAtomicStep must be matched with a corresponding PG: : unshelter or
PG: :endAtomicStep. A common mistake is to have a function whose control flow does not always
reach the end function. For shelter, this means that updates from other modules are never seen again.
For atomic step, this means that updates are neither sent out or received again. For example:

void
foo ()

{
PG::beginAtomicStep();

if (<condition>)
return; // <-- bug, exiting will skip PG::endAtomicStep

// do some more

PG::endAtomicStep();
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3.3 Explicit Checks for Incoming Data

A module checks for updates to the presentation whenever a published variable is accessed (unless the
access occurs after a PG: ;:beginAtomicStep or a read occurs after a PG: :shelter). In addition to
this, it is possible to give the module a chance to process updates by using PG::sleep or
PG: :checkInput,

void PG::sleep{unsigned int sec, unsigned int msec);
sec Seconds to sleep (optional; default=1).
msec Milliseconds to sleep (optional; default = 0).

PG: :sleep suspends the module process for a given period of time!, processes pending changes to a
moduie’s presentation, and returns.

On the Solaris operating system, specifying small sleep values (e.g., 1 ms) may cause unpredictable
results on heavily loaded systems (e.g., the program never returns from sleep).

void PG: :checkInput (unsigned long timeOut);
timeQut Maximum wait time, in milliseconds (optional; default = 0).

PG: :checkInput explicitly checks for and/or processes updates to presentation. If no parameters are
supplied, PG::checkInput processes all currently pending updates and returns. The timeOut
parameter specifies the maximum time to wait for an update before returning.

If a module does not access any of its published variables as part of the active control, it is important to
call PG: :checkInput, PG::sleep, or a synchronization method. Otherwise, updates to published
variables will not be seen by the program and reactor methods (see Section 4.5) will not be called. Also,
if a module needs to wait for some period of time (e.g., wait for a change to published variables) it is a
good idea to call PG: : sleep periodically. Calling PG: : sleep periodically ensures that the module
does not monopolize the CPU, since it releases its cycles during idle times.

3.4 Module Naming

To set the name of a module, use PG: : setName,

void PG: :setName (const char* name);

name New name of this module.

1. The sleep operation suspends the process for af least the specified time. Due to operating system sched-
uling, it is likely to actually sleep a little bit longer.
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Chapter 4

Variable API

Opening up a Playground module for interaction with other modules is accomplished by declaring
Playground variables and publishing them in the presentation of the module, This chapter explains how
to declare and use Playground data structures,

The Playground data types are of three categories: base fypes for storing simple data values, tuples for
storing records with fields, and aggregates for organizations of homogeneous collections of elements.
Figure 3 shows the class hierarchy of Playground data types and commonly used member functions.

Figure 3: Playground variable class hierarchy and commonly used methods.
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4.1 Using Playground Variables

Class PGvariable is the base class of all publishable variables; all Playground types inherit the member
functions listed in this section, For the following methods, let v be a PGvariable concrete subclass.

4.1.1 Publishing

Method publish publishes a Playground variable in the presentation of a module, exposing it for use by
external modules. Method unpublish removes the variable from the module’s presentation.

int v.publish{);
void v.unpublish();

The return value of publish is the variable’s presentation index, which can be used in forming
connections (see Chapter 5). When v is published, it uses either the default values or previously set
values for the v’s name and access permissions (see Section 4.1.2), The default name of a variable is its
type name; the default permission is PG: :READ (see below). A variable may also be published with
these values explicitly specified:
int v.publish(const char* name, unsigned long access);
name Public name.

access Read/write permission.
Possible values: PG: :READ, PG::WRITE, PG::ELT2AGG, or combination.

The name parameter specifies the public name of the variable. The access parameter is used to restrict
the types of connections that can be made to the variable. For example, PG: : WRITE permission means
that connections can be directed to the variable, allowing external modules to write updates to the
variable. Access permissions can be combined with the | operator (e.g., PG: :READ | PG: :WRITE).

In addition, the order of a published variable can be specified relative to other published with
publishBefore and publishafter.

int v.publishRefore (PGvariable* var);

int v.publishAfter (PGvariable* var);
var variable in which to publish before/after

4.1.2 Property Accessors

void v.setPublishedName (const char* name);

name New public name.

const char* v.getPublishedName ();

Method setPublishedName is used to change a variable’s public name.
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void v.setlinkAccess (unsigned long access);

access New read/write permission.
Possible values: PG: :READ, PG::WRITE, PG::ELT2AGG, or combination.

unsigned long v.getLinkAccess();

Method setLinkAccess change permission of a variable, as described in Section 4.1.1. A variable’s
permission may only be changed when it is not published.

4.1.3 Checking for Updates

As described in Chapter 1, there are two approaches for handling external updates to published variables:
active and reactive, Methods isModified and clearModified provide support to aid in making
modules that poll the presentation for external updates more efficient, Method setReactor provides
support for reactive control.

bool v.isModified();

void v.clearModified();

When a published variable! is modified by an external update, a “modified” bit is set to true within the
variable. Calling method isModified returns the value of this bit, allowing an active control module to
periodically poll the variable to check for changes. This approach frees a module’s implementor from
keeping a copy of the published variables’ state in order to determine whether a modification occurred
(particularly useful when aggregates are involved). To set this bit to false, use method
clearModified. Method clearModified does not clease the modified bit for constituent published
variables,

void v.setReactor (PGreactor* reactor);

reactor Reactor object (see Section 4.5.1).

PGreactor* v.getReactor();

Method setReactor sets a reactor object to be used when an update to the variable is received from an
external environment. Sending a null pointer as the parameter clears the variable’s reactor object.
Reactor objects are explained in detail in Section 4.5.1.

4.2 Playground Base Types

A Playground base type can be used wherever a variable of the corresponding C++ data type can be used
as an rvalue. All Playground base types support operators =, ==, and !=. The following sections
describe each of the Playground base types.

1. Published variable or any constituent published variables, in the case of tuples or aggregates.

- 13
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4.2.1 PGint

Objects of type PGint carry C++ integer values. All C++ integer operators are supported. Values in
C++ integer types may be assigned directly to PGint objects, and vice versa. The standard casting rules
apply. A PGint can be assigned from a PGreal or a double and so on.

Syntax;
PGint i;
PGint i(long);

PGint i(PGinté&);
Example: The following demonstrates using PGint with other C data types.

void
PGint_example()
{
PGint x(20);
PGint y = 10.3;

5; // % now has a value of S
* X // y now has a value of 12

X =y -
Yy 2.5
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4.2.2 PGreal

Objects of type PGreal carry CH double precision floating point values. All C++ floating point
operations are supported. Values in C++ double types may be assigned directly to PGreal objects, and

vice versa.
tax:

PGreal r;
PGreal r (double);

PGreal r (PGrealg);
Example: The following swaps the values in x and y:

void swap(}
{
PGreal x = 3.7;
PGreal y¥(5.2);
double t = x;
X = y; // % is now 5.2
y = t; // y is now 3.7
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4.2.3 PGbool

Objects of type PGbool carry the boolean values false or true. An object of type PGbool can be used
wherever a bool can be used. All boolean operators in C++ apply to objects of type PGbool.

Values in C++ integer types may be assigned directly to PGbool objects. When an integer value O is
assigned (o a PGbool, the PGhool takes on the value false; otherwise, it takes on the value true, If a
PGbool with value false is assigned to a C++ integer variable, the value 0 will be assigned; if a
PGbool with value t rue is assigned to a C++ integer variable, the value 1 will be assigned.

Syntax:
PGbool b;

PGbool b (bool});

PGbool b (PGboolk);
Example: The following demonstrates assignment between integer and boolean variables,

void
PGhool_assign()
{
PGint 1 = -2;
PGbool b(false);
b = i; // b now has a value of true
i=b; // i now has a value of 1
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4.2.4 PGstring

Objects of type PGstring carry string values (i.e., character sequences terminated by a null character),
A PGstring object does not have a fixed length; its length is dynamically set during copies and external

updates.

A PGstring may be used where ever type const char* is expected (e.g., as the second parameter to
strcpy). In that case, it is actually casted to a char* character sequence. Be careful, if the PGstring

is null, this casting will return 0,
Syntax:
PGstring s;
PGstring s (const char* sl);

PGstring s (PGstring& sl);
In addition, PGst ring supports the + operator for concatenation:

PGstring& s.operator+(PGstringé sl);

PGstring& s.operator+(const char* sl);
Example: The following would swap PGstring r and PGstring s, using a local character siring:

#include <string.h>

void

swap ()

{
PGstring r = "This is string 'r'.";
PGstring s("This is string 's'.");

char t[30];

strepy(t, r); // strcpy is required since we are copying to a char array

r = 8; // <~ PGstring supports operator =, strcpy is not required here
s = t; // ditto

}

-17-
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425 PGmemoryBlock

An object of type PGmemoryBlock is used to store a chunk of memory. PGmemoryBlock objects differ
from PGstring objects in that a PGmemoryBlock can contain null characters.

Syntax;
PGmemoryRlock m;
PGmemoryRlock m(size_t size, unsigned char* block=0);

PGmemoxryRlock m(PGmemoryRlocks& ml);
PGmemoryBlock supports the following methods:

void m.setRlockAndSize (const unsigned char* block, const size_t size);
block Pointer to the start of a block of memory to be copied.
size Number of bytes in the memory block.

Method setBlockandSize is used to set the value of the memory block. Given block and size, the
specified memory is copied into the PGmemoryBlock.

size_t m.getSize();
unsigned char* m.getRlock();

void m.updateRlock();

Method getSize returns the number of bytes in the memory block. Method getBlock returns a pointer
to PGmemoryBlock's data, as set by setBlockandSize. Given the memory block’s data, it is possible
to perform arbitrary computation on the data without the intervention of the Playground run-time
system. Method updateBlock is used to inform the Playground run-time system that operations on the
memory block’s data have finished, and an update of the data should be sent out to connected modules.

Example: In the following example, a memory block is used to store a sequence of 8 bit positive
integers. This example normalizes each integer by a scaling factor (0 < scale < 1), sending the value

out to connected modules.

veoid
scaleBlock (PGmemoryBlock& b, double scale)

{
PG::beginAtomicStep(); // atomic step shields against unexpected updates

size_t size = b.getSize();
unsigned char* block = b.getBlock();
for (size_t i=0; i<size; i++)
block([i] = (unsigned char) (block([i] * scale);
b.updateBlock ()

PG::endAtomicStep();
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4.3 Tuples

Tuples provide a mechanism for treating a logically related, fixed sized collection of values (of possibly
different data types) as a single unit. A tuple is functionally similar to a C++ struct, consisting of a
number of fields. The data type of a field may be any Playground type, allowing arbitrary nesting (e.g.,
tuples containing tuple or aggregate fields are permitted).

A tuple is defined by subclassing the type PGtuple and calling its f£ield method for each tuple field.
Let t be a subclass of PGtuple.

size_t t.field(PGvariables& pgVar);
pgvar Playground variable to append to the tuple.

Method field appends the given Playground variable to the end of the tuple’s list of fields, returning the
index of the newly added field. The order and types of fields are important since they are used by the
run-time system to determine the type compatibility of two tuples, The £ield method may not be called
while the tple is published,

PGvariable& operator(] (const size_t index);
index Index of element to access.

The [] operator can be used to access a tuple field given its index.

Example: The following declares a tuple type representing an (x, y) Cartesian coordinate and an
example of how it can be used.

class Peint : public PGtuple {
public:
Point ()
{ field(x); field(y); 1};: // add the x and y fields upon creation
PGreal x, ¥:
};

Point p;

p.publish{*location”, PG::READ);

pP-x = 5;

((PGreal&)p[1])) = 10; // x is index 0, y is index 1

When using tuples as a part of some other type (e.g., a PGarray of tuples), it is necessary to define a
copy constructor for the type. If the copy constructor is not defined, it is likely that type incompatibities
will occur when making connections. Also, overloading the assignment operator can be useful for
defining atomic assignment operations. The following example is the Point class with these methods.
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class Point : public PGtuple {
public:
Point ()
{ field(x); field(y}; };

Point (const Point& p) // COPY CONSTRUCTOR
{ field(x); field(y); *this = p; };

Point& operator=(const Point& p) // ASSIGNMENT OPERATOR
{ PG::beginAtomicStep();

X = p.X; Yy =p.yY;
PG::endAtomicStep () ; // atomic step sends x and y together
return *this; };

PGreal x, y;
}i

4.4 Aggregates

Playground provides aggregates for building data structures that consist of homogeneous collections
called elements. The element type of a Playground aggregate must be a Playground type. Currently,
array, list, and mapping data types are supported. Each aggregate type allocates and maintains its own
element storage; elements inserted into an aggregate are copied rather than used directly, All aggregates
support the following methods (let a be an aggregate subclass):

size_ t a.size();

void a.clear();

Method size returns the number of elements in the aggregate. Method clear removes and deallocates
all elements of an aggregate (clear cannot be used with a PGstaticArray).

void a.setAggregateReactor (PGaggregateReactoxr* aggReactor);
aggReactor Aggregate reactor object,

Method setAggregateReactor is used to register an aggregate reactor object in order to customize the
behavior of element-to-aggregate connections to the aggregate. Sending a null pointer as the parameter
clears the aggregate reactor, Aggregate reactors are described in more detail in Section 4.5.2.

When the values stored in a published aggregate are accessed, either a shelter or atomic step operation
(see Section 3.2) should usually be used. Since the number of elements stored within the aggregate can
be changed from an external module, a published aggregate may change during traversal if shelter or
atomic step is not used. Also, if iterators are used on the aggregate, the iterators may become invalid as a
result of an external change.

Using PG: :shelter ensures that the aggregate does not change while iterating over its values. Using

PG: :beginAtomicStep ensures that all changes to aggregate elements are sent out all at once, which is
likely to make communication more efficient.
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4.41 PGarray

A PGarray is a single dimension array of Playground data types. PGarrays can be either static, having a
fixed size, or dynamic, having an adjustable size. The size of static arrays is used for type checking when
a connection is requested. Two static arrays cannot be connected if they are of different sizes.

Syntax:
PGataticArray<Element, size t> a;
PGdynamicArray<Element> a;

PGstaticArray specifies the array’s size as its second template argument. The specified size must be
greater than 0. Both static and dynamic arrays support the [) operator:

Element& a.operator[] (size_t index);

index Array index to access.

The [] operator is used to access an element of the array, given its index (type Element represents the
array’s element type, as defined by the template). For dynamic arrays, if the supplied index is larger than
the size of the array, the array is automatically resized to accommodate the index. For static arrays,
supplying an index larger than the array’s size generates an exception.

void a.setSize(size_t size); (dynamic arrays only)

size New size.

The setSize method is used to change the size of a dynamic array to a specified size. The size of a
dynamic array is not used in determining type compatibility.
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Example: The following example reads a series of points from a file and stores them in a dynamic array.

#include “PG.hh”
#include <fstream.h>
/* Include the Point tuple example from Section 4.3 */

typedef PGdynamicArray<Peoint> Points;

void
readFile (Pointsé& points)
{

PG::beginAtomicStep();

int n;
ifstream file(“peints.txt”, ics::in); // open file called “points.txt”
file »> n; // read the first number (# of points)

peints.setSize(n); // set the array’s size

double x, y;
for (int i=0; i<n; i++) {

file »>> x >> y; // read points into temporary variables
pointsfi].x = x; // <- assign to PGreals
peints[i).y = ¥; // <= ditto
}
PG::endAtomicStep(); // send all points together
}
main ()

{

PG::initialize (“Coordinates”);

Points pts; // instantiate array of Points
pts.publish(“points”, PG::READ);

readFile (pts);

while (1)
PG::sleep(l);

PG::terminate();

e
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4.4.2 PGlist

PGlist is a singly linked list of homogeneous elements. Used in conjunction with PGlistIterator,
one can insett, remove, or iterate over list elements.

Syntax:
PGlist<Element> lst;
PGlistIterator<Element> it (PGlist<Element> lst);

PGlistIterator<Element> it (PGlistIterator<Element> it2);

An iterator may be initialized using either a PGlist or another iterator. If a PGlist is used, the iterator
initially points to the first list element. I another iterator is supplied, the iterator is initially points to the
same list element as the supplied iterator,

PGlist supports the following methods:

Element& lst.append(Element el);

Element& lst.prepend(Element el);
el Element to add.

Method append is used to add an element to the end of the list, The parameter el is copied into the
newly created last list element. Similarly, method prepend is used to add an element to the beginning
of the list. A reference to the newly created element is returned.

PGlistIterator support the following methods:
void it.begin{();
void it.next();

bool it.atEnd();

Method begin moves the iterator to the first list element. Method next advances the iterator forward
one element from its current position. Method atEnd returns true if the iterator has advanced past the
last list element or the list is empty.

Element& it.getElement();

Method getElement returns a reference to the list element referred to by the iterator. The Element
type is defined by the template definition of the list.

Element& it.insertRefore (Element el);

Element& it.ingsertAfter (Element el);

el Element to insert,

1
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Methods insertBefore and insertAfter are used to insert list elements before or after the current
iterator position, respectively. The parameter el is copied into the newly created last list element. A
reference to the newly created element is returned.

void it.remove();

The remove method removes the current element associated with the iterator. The iterator becomes
invalidated once the remove operation is performed.

Example: The following function inserts a string into a list of strings in alphabetical order.

#include <string.h>

void
insert (PGstring word, PGlist<PGstring>& list)
{

PGlistIterator<PGstring> it (list); // create an iterator
for (it.begin(); '!'it.atEnd({); it.next ()} { // iterate over each element
if (strcmp (word, it.getElement()) < 0) { // if word comes before current..
it.insertBefore(word); /7 insert before current
return;
}
}
list.append(word); // word comes last...
} // put it at the end

PGlist<PGstring> 1lst;
insert (“*foo”, 1lst);
insert (“bar”, 1lst);
insert (“*foo”, lst);
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4.4.3 PGmapping

A mapping is a one-to-one and onto relation from a domain type to a range type. That is, for each
domain value stored in the mapping, there is an associated range value. Stored range values can be
accessed by supplying the associated domain value (there cannot be duplicate domain values). In
addition, all domain/range mapping elements can be accessed through the use of an iterator,
PGmappingIterator,

Syntax:
PGmapping<Domain, Range> map;
PGmappingIterator<Domain, Range> it (map);
Where Domain and Range are Playground types. PGmapping supports the following operations:

Range& map.operator[] (Domain domain});
bool map.isMember (Domain domain);
veoid map.remcove (Domain domain);

The [] operator is used to access range values given a domain value, This can be used for both storing
and retrieving values to/from the mapping. If there is no associated domain/range value, one is created
automatically. Method isMember returns true if and only if there is an associated domain/range already
stored in the mapping. The remove method is used to remove a domain value and its associated range
value from the mapping.

PGmappingIterator supports the following operations:
void it .begin();
void it.next ();

bool it.atEnd();

Method begin moves the iterator to the first mapping element. Method next advances the iterator
forward one element from its current position. Method atEnd returns true if and only if the iterator has
advanced past the last mapping element.

Domaing it.getDomain();
Range& it.getRange();

Method getDomain returns the domain value of the element associated with the iterator. Method
getRange returns the range value of the element associated with the iterator.
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Example: The following example creates a mapping with domain PGstring and range Stock (tuple
containing two PGstring fields, name and price). The mapping is used to store stock information
associated with a given stock symbol.

// find the associated Stock tuple, create if necessary.
// set the associated stock information.
void
setPrice (PGmapping<PGstring, Stock>& m, PGstring symbol, char* name, double price)
1
Stock& s = m[symbol];
S.name = name;
s.price = price;

}

// use an iterator to print out the stocks. A shelter is used to ensure
// that the contents of the mapping do not change during iteration.
void
printMap (PGmapping<PGstring, Stock>& m)
{
PG::shelter();
PGmappinglterator<PGstring, Stock> iter(m);
for (iter.begin{); !iter.atEnd{); iter.next{()) {
cout << “D: " << iter.getDomain() << % R: [V
Stock& s = iter.getRange();
cout << s.name << %, " << sg,price << “1*¥ << endl;
}
PG::unshelter();

void

foo ()

{
PGnapping<PGstring, Stock> m;
m.publish(“stocks”, PG::READ | PG::WRITE};

// add some elements to the mapping
setPrice(m, "SAN", "Sandboxes, Inc.", 37.28);:
setPrice{m, "TRE", "Treehouses, Inc.", 28.43);
setPrice{m, "SEE", "Seesaws, Inc.", 87.32);
setPrice(m, "SLI", "Slides, Inc.", 12.64);
setPrice(m, "SWI", "Swings, Inc.", 67.11);

cout << "Starting elements:™ << endl;
printMap (m);

if (m.isMember ("SWI")}
m. remove ("SWI");

cout << "Remaining elements:" << endl;
printMap (m) ;
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4.5 Reactor Objects

The purpose of reactor objects is to enable the programmer to define an operation (i.e., a method) to be
performed when a particular event occurs. The following subsections describe reaction objects that
enable reactive control in response to updates (see Section 1.1.2) and element-to-aggregate connections
(see Section 1.1.3).

4.5.1 Reacting to Updates

The purpose of reactive control is to allow a module to take a specific course of action whenever a
published variable is modified by an external module. This is accomplished by defining a subclass of
PGreactor and associating it with the variable through the use of PGvariable’s setReactor method
(see Section 4.1,3). Let r be a subclass of class PGreactor.

virtual void r.react (PGvariable& reactVar);
reactvar Published variable that has r as its reaction object.

The react method is a virtual method of PGreactor. It is called whenever the run-time system
receives an external update for its associated published variable, supplying the variable as a parameter.
Execution of the react method is sheltered by the run-time system (see Section 3.2), so other external
updates are not processed during react’s execution.

In order for reactive control to occur, the program must give the Playground run-time system a chance to
run. This is accomplished by either accessing a published variable or calling one of the module functions
listed in Section 3.3. Otherwise, reaction methods will never be called.

Example: The following program prints the value of a PGint whenever it is modified by an external
module. This is achieved by defining a reactor object, associating it with the PGint, and entering a
reaction loop.

#include “PG.hh”

class IntReactor : public PGreactor {

public:
virtual void react (PGvariable& v) |{ // param type is always PGvariable
PGint& i = (PGint&)v; // casting is usually necessary...

cout << “Walue: ™ << i << endl; };

bi

main ()

{
PG::initialize (“Printer”);
PGint num;
IntReactor r;
num.publish (“*NUM”, PG::WRITE);
num. setReactor (&r};

while (1) // infinite loop, calls reaction fn as needed
PG::sleep(0, 200); // checks for updates about 5 times per second

PG::terminate();

i
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4.5.2 Element-to-Aggregate Connections

Recall from Section 4.4 that an aggregate data type is an organization of a homogeneous collection of
elements, such as a set of integers or an array of tuples. The element type of an aggregate is the data type
of its elements, For example, if q is a list of PGint, the element type of q is PGint.

An element-to-aggregate connection results when a connection is formed between a data item of type T
and an aggregate data item with element type T. For example, a client/server application could be
constructed by having the server publish a data structure of type list(T) and having each client publish a
data structure of type T. If an element-to-aggregate connection is created between each client’s type T
data structure and the server’s list(T} data structure, then the server program will see a set of client data
structures, and each client may interact with the server through its individual data structure.

The creation of an element-to-aggregate connection from t to aggr causes an element elt of the aggr
to be used as the element associated with the connection and t. In other words, it is as if there is a simple
connection between t and elt. When the connection is broken, elt can be removed from aggr. Like
simple connections, element-to-aggregate connections may be unidirectional or bidirectional, and permit
arbitrary fan-out and fan-in.

An element-to-aggregate reactor serves as mechanism for controlling how elements are used from an
aggregate based on established element-to-aggregate connections. The program is informed when an
element-to-aggregate connection is created or removed from an aggregate, giving the programmer the
ability to define the relationship between the connection and the aggregate. For instance, if the aggregate
is a fixed size array, one might associate each new element-to-aggregate connection with a consecutive
element of the amray, starting at element 0. If the aggregate is a list, one might wish to create a new list
element in response to each new element-to-aggregate connection and destroy the element when the
connection is removed.

Element-to-aggregate reactors are created by subclassing PGaggregateReactor, overriding its
methods, and associating the reactor with its aggregate through the setAggregateReactor method
(see Section 4.4). In addition, the aggregate should have the PG: : ELT2AGG permission set (see Section
4.1) in order to accept element-to-aggregate connections, Let r be a subclass of PGaggregateReactor.

virtual PGvariable* r.newConnection(PGaggregate* aggr);
aggr Aggregate to react upon.
Method newConnection is a virtual function of the aggregate reactor that is called when its associated
aggregate receives a new element-to-aggregate connection. This method should return a pointer to the

element that is to be associated with the connection. For PGmapping, newConnection should return a
pointer to the new domain value.

virtual void r.removeConnaction(PGaggregate* aggr, PGvariable* elt);

aggr Aggregate to react upon,
elt Element associated with removed connection.

Method removeConnection is a virtual function of the aggregate reactor that is called when a

connection associated with its aggregate is removed, This method takes as a parameter elt, which is the
element associated with the removed connection as returned by newConnection.
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Chapter 5

Connection API

As described in Section 1.1.3, logical connections among published variables can be made in three ways;

1. graphically by the end-user, using a “Connection Manager” GUI,
2. programmatically within modules, or

3. from the “Application Management System,” an automated application launcher.

This chapter discusses the second approach: how to form connections programmatically from within
modules. Note that this functionality is not required in constructing applications. Indeed, most of the
existing applications as of this writing do not make connections programmatically. This functionality is
provided to support applications that have fairly advanced configuration requirements.

5.1 Connection Requests

A module can make requests to establish or remove connections between the published variables of two
modules using PG: : connectRequest and PG: :disconnectRequest.

void PG::connectRequest (PGmoduleCommID* fromMod, char* fromName,
PGmoduleCommID* toMod, char* toName,
unsigned long properties);

void PG: :disconnectRequest (PGmoduleCommID* fromMod, char* fromName,
PGmoduleCommiID* toMod, char* toName,
unsigned long properties);

fromMod ID of upstream module.

fromName Public name of upstream module’s variable,
toMod 1D of downstream module.

toName Public name of downstream module’s variable,

properties Attributes of the connection, Combination of PG: : UNIDIRECTIONAL,
PG: :BIDIRECTIONAL, PG: : ELEM2AGGREGATE,
PG: : ELEMFROMAGGREGATE and PG: ; SENDONCONNECT.
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Given information about two modules and two published variables, PG: :connectRequest sends a
request to each module to initiate a connection between the variables. Similarly,
PG: :disconnectRequest sends a request to each module to remove a specified connection type
between the variables. If a request cannot be sent for some reason, an exception is thrown.

PGmoduleCommID contains all of the appropriate information in order to contact a module, It is a
subclass of PGtuple, and thus can be published. Section 5.3 describes automated mechanisms that
allow modules to obtain this information from other modules. In addition, a module can get its own ID
through method PG: : getCommunicationID.

PGmoduleConmID* PG::getCommunicationID();

The indices required for a connect/disconnect request represent the presentation indices associated with
the published variables. As described in Section 4.1.1, method publish returns this value. In addition,
Section 5.3 describes how to view the presentation information of external modules.

5.2 Connection Reactor

PG: :connectRequest and PG: :disconnectRequest send requests for connections to be created or
removed. However, this does not guarantee that the connections will actually be created or removed,
Modules perform type and access compatibility checking, and may reject a connection request,

When modules complete the processing of a request, a status message is sent back to the module that
initiated the request. A connection reactor is used to register 2 method to be performed in response to
the status message.

void PG: :setConnactionReactor (ConnectionReactor* reactor);

reactor Connection reactor object.

ConnectionReactor* PG::getConnectionReactor();

PG: :setConnectionReactor registers a connection reactor object with the Playground run-time
system. Sending a null pointer as the parameter clears the run-time system’s reactor object. A reactor
object is defined by subclassing ConnectionReactor and overriding its reactToStatus virtual
method. Let r be a subclass of ConnectionReactor.

virtual void r.reactToStatus (ConnectStatusMessage* message);
message Connection status message.

Whenever a connection status message is received by a module that has registered a connection reactor,
the reactToStatus method is called on the reactor object. Let s be a ConnectStatusMessage.

int s.getStatus();

Method getstatus returns the status of the connection message. Possible return values are
INITIALIZATION, TYPEMISMATCH, SUCCESSFULCONNECT, SUCCESSFULDISCONNECT, MESSAGENOTSENT,
FROMVARNOTPUBLISHED,  FROMPERMISSIONDENIED, NOFROMINCOMINGLINK, NOFROMOUTGOINGLINK,
TOVARNOTPUBLISHED, TOPERMISSIONDENIED, NOTOINCOMINGLINK, NOTOOUTGOINGLINK,
NODIRECTIONSPECIFIED, INVALIDFROMELEM2AGG, NOTRANSPORTSPECIFIED, OF INVALIDENCODING.
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5.3 Designating a Module as a Parent

A parent module is one that automatically receives information about other modules (i.e., “children™)
when they are started and (possibly) when their presentations change. The Connection Manager GUI
(Section 2.2} is one example of a parent; it receives information about other modules and uses this

information to create a graphical display.

There are two types of parent modules: dad modules and mom modules, A dad module receives only
basic information about its children. For each child module, the dad module receives the child’s module
ID. A mom module receives detailed information about its children. For each child module, the mom
module receives the child’s complete presentation information,

To designate a module as a dad or a mom, use PG: : addDadToStartup or PG: : addMomToStartup:

void PG: :addDadToStartup();

void PG: :addMomToStartup();

These methods append the parent module’s ID to the .pginitrc file as either a mom or a dad module, if
the .pginitrc file is being used (see Chapter 2). When child modules are started, they use the IDs in
this file to form element-to-aggregate connections from their presentation information to each of the
parents. For this reason, parent modules should publish as their first variable an aggregate to store
information about child modules:

* dad modules must have an aggregate of PGmoduleCommID as the first published variable,
* mom modules must have an aggregate of PGveneerInfo as the first published variable.

PGmoduleCommID is the ID of a module, as described in Section 5.1. PGveneerInfo is a PGtuple
containing complete presentation information about a module, Let v be a PGveneerInfo tuple;

const char* v,getModuleName ();
PGmoduleCommID* v,.getCommunicationID ();

Methods getModuleName and getCommunicationID are used to access the name and ID of a child
module given its PGvenserInfo.

size t v.getNumOfItems ();

PublishableInfo& v.getItem({size_ t nth);
nth Element number of variable to get (e.g., 0=first, 1=second, ...).

Methods getNumOfitems and getItem are used to iterate over the list of presentation entries.
Information about each published variable is stored in a PublishableInfo tuple. Let p be a
PublishableInfo tuple:

const char* p.getNameMember();
const char* p.getTypeMember();
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unsigned long p.getAccessMember();

Methods getNameMember, getTypeMember, and getAccessMember are used to access the name,
type, and access permissions of a published variable (see Section 4.1).

Example Parent Module

The following example shows how a simple server module can be constructed which automatically forms
connections to its client modules (client code is not given). The job of the server is to broadcast textual
messages received from each client to all clients. Figure 4 shows the relationship between the server
module (Mother) and the clients (Child).

Figure 4: Configured client/server modules,

Presentation information about each module is automatically published by the run-time system,
Normally, this information is not shown in the Connection Manager GUL. For illustration purposes, it is
shown as variable pres in Figure 4’s child modules. The following code implements the Mother
module, Publishing a mods list and calling PG::addMomToStartup means that each child will
automatically connect from their pres variable to the mods aggregate (see Section 5.3). The Mother
module can use this presentation to request connections between its in and out variables and each
child’s,

#include “PG.hh"

LI2LPPPLEPT2077 7000077777777 /7/777 children Class [///7 /7077070000700 7000070700800 777077

// This class is both a list of client modules and an aggregate reactor...
// bootstrapping of child modules causes methods of this class to be
// called, resulting in addition/deletien of children
//
class Children : public PGlist<PGveneerInfo>, public PGaggregateReactor {
public:

virtual PGvariable* newConnection(PGaggregate*);

virtual veid removeConnection(PGaggregate*, PGvariable* elt);

bi
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// Add tuple for a new child module, used to store module info.
PGvariable>*
Children::newConnection (PGaggregate*)
{
PGveneerInfo info;
return &append (info);

)

// Remove information about a child.
void
Children::removeConnection (PGaggregate*, PGvariable* elt)
{

PGlistIterator<PGveneerInfo> it (*this);

for (it.begin(); !'it.atEnd(); it.next())

if (elt == git.getElement{))
it.remove();

LHETERITELEL TP 07070007171 7777 Viother Class [f/////1/7111IHIFTELELI A0 1070777)

// This class is a reactor that manages the module’s published variables.
// It makes connections from its inMsg, ocutMsg variables to corresponding
// variables in each child. Through reaction methed, it forwards incoming
// messages from each child back out to all children.
/
class Mother : PGreactor |
public:

Mother {};

virtual void react (PGvariable& v);

void makeMsgConnections();

private:
Children kids; // list of child presentation info
PGstring inMsg, outMsg; // in message and out message strings

}:

// publish each variable and set reactors
Mother: :Mother ()

{
kids.pubklish({*mods*”, PG::WRITE | PG::ELT2AGG);

kids.setAggregateReactor (&kids);
inMsg.publish(“in”, PG::WRITE);
inMsg.setReactor (this);

ocutMsg.publish(“out”, PG::READ);

// when a new value of inMsg is received, this function is called.

// assigning to outMsg breocadcasts the message ocut to all connected modules.
void

Mother: :react (PGvariable&)

{
outMsg = inMsg;
}
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// iterate over all child modules, making message connections to each
// module named “Child”

void

Mother: :makeMsgConnections (}

{

PG::beginAtomicStep();

PGmoduleCommID* myID = PG::getCommunicationID();
PGlistIterator<PGveneerInfo> it (kids);
for (it.begin(); 'it.atEnd(); it.next{)) {
PGveneerInfo& info = it.getElement();
PGmoduleCommID* otherID = info.getCommunicationID{);
if (stremp(“Child”, info.getModuleName({)) == 0) {
PG::connectionRequest (otherID, “out”, myID, “in”, PG::UNIDIRECTIONAL);
PG::connectionRequest (myID, “out”, otherID, “in”, PG::UNIDIRECTIONAL);

}

PG::endAtomicStep();

main()

{

PG::initialize (“*Mother”);

Mother mom; // create mom object, with associated variables
PG::addMomToStartup(); // register mom sc that others will connect
PG::sleep(5); // wait for child modules
mom.makeMsgConnections {); // make connections to all children

while (1) // reactive loop, forward messages of children

PG::sleep{0, 200);

PG::terminate (};
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Chapter 6

Types API

Instead of statically defining the type of a Playground variable using one of the types described in
Chapter 4, there is the possibility of dynamically building a type and instantiating variables from that

type.

As of this writing, the types API described in this chapter are not supported in the current release. This
functionality will be released with future versions.

6.1 Specifying Types

Class pGtype is the container for the type information, which is kept as an internal structure of nodes
derived from the class PGtypeNode. These nodes are never created directly but can be accessed for
extracting appropriate information (See “Accessing Node Attributes” on page 37.).

6.1.1 Basic Type Creation

PGtype contains a set of static methods to create a type corresponding to the different Playground static
types. These methods are:

Basic Types:
PGtypeNode * aPGint ();
PGtypeNode * aPGreal();
PGtypeNode * aPGbool({();
PGtypeNode * aPGstring();

PGtypeNode * aPGmemoryRlock();
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Aggregates:
PGtypeNode * aPGXstaticArray(size_t arraySize,
PGtypeNode * element);
arraySize  size of the array
element type of the elements of the array

PGtypeNode * aPGXdynamicArray(PGtypeNode * element);
element type of the elements of the array

PGtypeNode * aPGXlist (PGtypeNode * element);
element type of the elements of the list

PGtypeNode * aPGXmapping (PGtypeNode * domain,
PGtypeNode * range);

domain type of the domain values

range type of the range values

For the aggregate types, the type arguments are specified using one of the methods described above, from
another PGtype (which will be automatically converted to a PGtypeNode *), or from a Playground
variable (See “Accessing the Type of a Variable” on page 40.) The following shows examples of type
creation:

PGtype tl = PGtype::aPGint();

PGtype t2 = PGiype::aPGXlist (PGtype: :aPGint(});

PGtype t3 = PGtype::aPGXlist(tl); // i.e., a PGlist of PGint, as is t2
PGtype t4 = t3;

6.1.2 Creating Tuple Types

Creating a type representing or containing a tuple can be performed using a combination of two methods:
directly by specifying the types of the fields, or indirectly by adding field types to an existing tuple type,
Two static methods similar to the ones described in the previous section are available to create a tuple

type:
PGtypeNode * aPGtuple();
PGtypeNoda * aPGtuple (size_t nbFields, ...);

nbFields number of field information specified after that argument

‘nbFields’ pairs of field information, each consisting of a (possibly NULL)
const char * specifying the name of the field, and a PGtypeNode * indicating
the type of the field
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Furthermore, given a PGtype t representing a tuple, one can add a field to t by using

PGtypeNode * t.addField{const char * fieldName
PGtypeNode * fieldType);

fieldName  (possibly NULL) name of the field
fieldType  type of the field

Here several possible methods to create a tuple with two pGint fields named ‘x’ and ‘y’, and a third
unnamed PGreal field:

PGtype i = PGtype::aPGint();
PGtype r = PGtype::aPGreal({);

// specify all at once
PGtype tuplel = PGtype::aPGtuple(3,“x”,i,"y”,.i,NULL,);

// add one field at a time

PGtype tupleZ = PGtype::aPGtuple();
tuple2.addField(*x”,i);
tupleZ.addField (“y”,1i);
tuplez.addField (NULL, r);

// chain the field additions
PGtype tuple3

= ((PGtype::aPGtuple()->addField(“x”,1))>addField(“*y”,i))->addField (NULL, r)
// hybrid creation

PGtype tupled4 = PGtype::aPGtuple(2,%x”,1i,"y",1i);
tupled4.addField (NULL, ) ;

A tuple type can be extended as long as no Playground variable has been instantiated from that type (See
“Creating a Variable from a PGtype” on page 40.) Once a variable has been instantiated, one must clone
the type (using the assignment operator or copy constructor for PGtype) to be able to modify the clone.
Trying to modify a type that has been instantiated will throw an exception. The method

bool t.canReModified() const;
will indicate if a mple type t can be safely modified.

6.1.3 Accessing Node Attributes

While the actual structure of a type is not directly available, it is possible to extract some information
from the nodes composing the structure, Each node is provided with a identifier indicating the kind of the

node, which can be accessed using
PGtype: ::Types_t t.getType t() const;
where PGtype: : Types_t is an enum containing the following values:

PGbool _t, PGint_t, PGreal_t, PGstring t, PGmemoryRlock_t, PGtuple_t,
PGXstaticArray t, PGXdynamicArray t, PGXlist_t, PGXmapping t
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There is a common attribute-accessing interface for all node types, also some methods are meaningful
only for specific kinds of nodes. Trying to access attributes which are not meaningful to a given node
type will return a null value (NULL pointer or 0). The interface is the following

For tuple nodes
size_t nbFields() const;
PGtypeNode * getFieldType(size_t fieldIndex) const;

const char * getFieldName (size t fieldIndex) const;

Eor array and list nodes

PGtypeNode * getComponentType() const;
Eor static array nodes

size_t getArraySize() const;
For mapping nodes

PGtypeNode * getDomainType() const;

PGtypeNode * getRangeType() const;

6.2 Instantiating Variables

Chapter 4 describes the high-level interface to create Playground variables. This section presents the
underlying mechanisms: generic aggregates and instantiating from a PGtype structure.

6.2.1 “Non-Templatized” Aggregate Variables

The set of template classes described in Section 4.4 are wrappers around an equivalent set of “generic”
classes for which the types of the elements are specified using PGtype information, instead of actual
Playground types. All generic aggregate class names start with ‘PGX’ instead of ‘PG’.

6.2.1.1 Creating Generic Aggregates

While the templatized aggregate classes get all the necessary information from the template structure,
generic aggregates need to be provided with appropriate information whenever an instance is created.
Thus, the constructors for the different generic aggregates are:

PGXstaticArray(size_ t size, const PGtype & elementType);
size number of elements in the array

elementType type of the elements
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PGXdynamicArray (const PGtype & elementType);
elementType type of the elements of the array

PGXlist (const PGtype & elementType)
elementType type of the elements of the list

PGXmapping (const PGtype & domainType, const PGtype & rangeType);
domainType type of the domain values
rangeType  type of the range values

Generic iterators are also provided for lists and mappings:

PGXligtIterator (PGXlist & list);
PGXlistCyclicIterator (PGXlist & list);
list the list to iterate through

PGXmappingIterator (PGXmapping & mapping);
mapping the mapping to iterate through

The template aggregates are actually derived from their respective generic versions. Thus one can
perfectly use a PGXlistIterator to iterate through a PGlist<...>.

6.2.1.2 Accessing Generic Aggregates

The generic aggregate classes provide the same set of methods as their templatized versions. But because
generic aggregate classes do not have any type information until created, the return values which were
typed based on the template information are replaced by PGvariable & types, as follows:

; o 1 PGXd {2 .
PGvariable & operator [] (size_t index);

EGXmappipa:
PGvariable & operator [] (PGvariable &);

BGXlistIterator PGXlistCvclicIterator and PGXmavpinglterator:
PGvariable & getElement ();

Thus casting is always required to manipulate the values returned from these methods:

PGXstaticArray array(4,PGtype::aPGint());
for (size_t i=0;i<4;i++) {

(PGint &)array[i] = 2*i;
}
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6.2.2 Creating a Variable from a PGtype

One can create instances of PGvariable based on a PGt ype structure t using:
PGvariable * t.createInstance();

The resulting variable is created using an appropriate combination of basic Playground types, PGtuple,
and generic aggregates,

PGtype type = PGtype::aPGXstaticArray(4,PGtype::aPGint()};
PGvariable * var = type.createlnstance();
PGXarray & axrray = *var;
for (size t i = 0; i<4; i++) {
(PGint &)array{i] = 2*i;
}

6.2.3 Accessing the Type of a Variable

Every PGvariable includes a representation of their PGt ype structure, which can be accessed using

PGtype & v.getType() const;

Note: using a copy constructor for one of the Playground types will result in a “clone” variable being
created, with a duplicate of the original variable’s value, as in

PGlist<PGint> listl;
// setting the content of listl
PGlist<PGint> listZ{listl); // listZ now has a duplicate of listl’s content

On the other hand, one can simply clone the variable structure without duplicating the original’s content
using the PGtype of the original variable:

PGlist<PGint> listl;

// setting the content of listl;

PGXlist * list2 = (PGXlist *) (listl.getType().createInstance());
// list2 is now an empty list of PGint

Warning: In the case of tuple classes derived from PGtuple, “cloning” a variable will result in a
PGtuple with the same set of internal fields, but without any of the additional data members that are

part of the derived types:

class PGpoint : public PGtuple {
public:
PGpoint () : { field(x); field{y); }
PGint x, ¥;
¥

PGpoint p;

PGtuple * p2 = (PGtuple *) (p.getType{).createlnstance());

{(*p2)[0] = 3; // OK, assign to 1lst field

PGpoint * p3 = (PGpoint *) (p.getType().createlnstance()); // DANGEROUS

p3->x = 3; // WRONG, ‘p3’ doesn’t point to a structure containing storage for
(*p3) [0] = 3; // OK, assign to lst field

Ixt
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Application Design Methodology

This chapter discusses a suggested approach for designing modules from scratch and upgrading existing
C++ programs to be Playground modules.

7.1 Behaviors and the Environment

It is helpful to think about a Playground module as interacting with an environment, an external
collection of modules that may observe and modify the data items in its presentation (as permitted by the
access protection defined for the data items). Sometimes, the data items in a presentation fall naturally
into input data items written only by the environment and output data items written only by the module,
In other cases, it is more natural to allow both the environment and the module to write to the same data
item,

A behavior of a module is a sequence of values held by the data items in its presentation. One should
think about the behavior as the view that the environment has of the module. Therefore, when designing
a Playground meodule, it is helpful to first write down a behavioral specification of the module, Such a
specification would include the set of data items that should appear in the presentation, as well as a
description of the allowable behaviors that may be exhibited by the module.

The notion of behavior is symmetric. That is, the behavior of an module is not only the view that the
environment has of the module, but it is also the view that the module has of the environment. In fact, as
part of the behavioral specification, it is useful to state any assumptions being made about the allowable
behaviors of the environment. Behavioral specifications are part of the Playground application design
methodology presented in the next section. Dividing the presentation into input data items and output
data items can help simplify the task of constructing a behavioral specification. Such a division can be
enforced by assigning the appropriate protection information to the data items.

7.2 Designing Playground Modules from Scratch

This section contains a step-by-step recommended approach to constructing Playground applications.
Beginners may prefer to work based on the examples provided and not following a formal methodology
as given below, but it is recommended that experienced Playground programmers use such a
methodology especially for non-trivial projects. As you develop experience with Playground, you will,

-41-



Playground Reference Manual Chapter 7: Application Design Methodology

no doubt, develop your own methodology that may differ from the one presented here. The guide is
written from the viewpoint of designing Playground applications from scratch. However, it is followed
by some hints on modifying existing C++ applications to interact in the Playground environment,

1.

Write down a behavioral specification of the module. This will include the following three parts.

* The set of data items to appear in the presentation, with annotations for whether they are externally
readable, writable, or both.

* A set of restrictions on how the environment is allowed to interact with your module. For
example, if you publish an integer variable that is writable by the environment, you may want to
require that the environment writes only positive integers into that variable, If you want the
module to be very robust, you may specify that the environment be allowed to do anything it
wishes.

* The set of allowable behaviors that may be exhibited by the module, as long as the environment
respects the conditions given in above. You are not likely to list all of the allowable behaviors
(there may be infinitely many of them!) Instead, you should characterize the set by stating a set of
necessary conditions on behaviors that, when met, imply that the sequence is legal. An important
kind of condition is an invariant assertion, a predicate on data items that must remain true at all
times during execution,

Identify which activities of the module will be under active control, and which will be under reactive
control. As arule of thumb, ongoing activities will be part of the active control, while those that
occur in response to an external change to a published data item will be part of the reactive control.
A good starting point is to consider each externally writable data item as a potential point of reactive
control,

Define the local (internal) state of the module.

For each reactive control activity, design a reaction method to be associated with the corresponding
data item. This function may modify the local state and/or data items in the presentation, Verify that
each reaction function cannot violate any conditions in the behavioral specification (provided that the
environment meets its obligations),

For the active control, there are typically three parts: an initialization phase (that includes some
necessary Playground initialization and typically publishes data items in the presentation), one or
more loops that control the ongoing part of the computation, and a termination phase. Verify that all
three phases are consistent with the behavioral specification.

Write the module based on the above design. Once the presentation, local state, and active and
reactive control have been identified, writing the code for the module should be a standard

programming task.

7.3 Upgrading Existing Modules for Playground

The essential difference between an ordinary C++ application and a Playground application is the way
that I/O is accomplished. Normally, the reason for upgrading an existing application to work in
Playground is so that it may be configured to work interactively with other Playground applications, or
so that a new user interface can be constructed for the application using EUPHORIA.
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To upgrade an existing module, you should begin by identifying the data structures of the module that are
of external interest, and by identifying the parameters or input data that direct the computation. The
former are prime candidates for externally readable data items in the presentation, and the latter are likely
to be externally writable data items. Writing a behavioral specification is likely to be helpful for
upgraded modules as well as for new ones.

Note that it is not a requirement that all /O take place through the presentation in an upgraded module,
For example, if you want to retain your old user interface, but allow the “back-end” to communicate with
other Playground modules, it may not be necessary to publish the user-controllable data in the
presentation. Alternatively, you may want to retain the same “back-end” but redefine the user interface.

Once the presentation has been determined, the data types for those data structures must be redefined in

terms of the provided Playground data types. Following this, it is a simple matter to publish these data
structures and make them available for interaction with the environment,
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