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ABSTRACT OF THE THESIS 
 
 

A Thesis on  

Modeling of Cantú Syndrome in Zebrafish 

by 

Soma Sekhara Singareddy 

Master of Science in Biomedical Engineering 

Washington University in St. Louis, 2018 

Research Advisor:  Professor Colin G. Nichols 

 
 
Although rare, Cantú syndrome (CS) is a debilitating syndrome without any specific therapy, caused 

by gain-of-function (GOF) mutations in KCNJ8 and ABCC9 genes that encode ATP-sensitive 

potassium (KATP) channels. To better understand the link between molecular dysfunction and the 

complex pathophysiology, animal models that can rigorously mirror human CS are essential. Using 

ABCC9-mutated zebrafish, which can provide significant advantages over mice as an appropriate 

vertebrate model, GOF has been demonstrated at a cellular level in the ventricular cardiomyocytes. 

This also marks the first-known characterization of KATP currents in teleost hearts. In addition, 

sulfonylurea sensitivities of the channels have been studied, along with phenotypic consequences of 

such treatment, exploring a potential therapeutic approach to treating CS.   
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Chapter 1 

 

Introduction 

 

Historically, animal models have been used to better understand human physiology and anatomy. 

Advances in the field of genetics have enabled the replication of the genetic basis of human disease in 

animal models to study development and progression of various gene-specific diseases affecting the 

humans, as well as to test new treatments [1, 11]. One such understudied disease is ‘Cantú Syndrome’.  

1.1 Cantú Syndrome  
 
Hypertrichotic osteochondrodysplasia, commonly known as Cantú syndrome (CS), named after the 

Mexican physician José Maria “Chema” Cantú, who first delineated the disease [2], is a rare genetic 

disorder characterized by excessive hair growth (hypertrichosis), distinctive facial appearance (large 

head, broad nasal bridge, epicanthal folds and a wide mouth), enlarged heart (cardiomegaly), patent 

ductus arteriosus (PDA), pericardial effusion, pulmonary hypertension, skeletal abnormalities 

(thickening of calvaria, broad ribs, scoliosis and flaring of the metaphyses), vascular dilation and 

tortuosity [2, 3] (Figure 1.1).  

 

Despite its complex pathophysiology, the molecular basis of CS has been recognized in the last 5 years 

as the results of gain-of-function (GOF) mutations in just two genes, either ABCC9 or KCNJ8, which 

encode the SUR2 sulfonylurea receptor and pore-forming Kir6.1 subunit, respectively, of ATP-

sensitive potassium (KATP) channels [4-9]. That mutations in either subunit of the channel lead to the 

same disease is suggestive that the disorder arises from increased KATP channel activity, as opposed to 

any non-electrophysiological function of either subunit. Recent studies using mice models have 

demonstrated GOF in vivo and provide encouraging results that help us to better understand the 

connection between molecular dysfunction and the complex pathophysiology of CS [10].  
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HypertrichosisDistinctive Facial Appearance

Range of  Diverse CV Phenotypes

(Tortuous and dilated vasculature in the circle of  Willis 

of  a CS patient (right), contrasted with normal (left))

PDA, Pericardial Effusion, 

Pulmonary Hypertension

Figure 1.1 Pathophysiology of Cantú Syndrome 
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1.2 KATP Channels  
 

ATP-sensitive potassium (KATP) channels are hetero-octameric potassium-selective ion channels 

composed of 4 pore-forming inwardly rectifying Kir6.x subunits (Kir6.1 or Kir6.2 encoded by KCNJ8 

and KCNJ11, respectively) and 4 regulatory sulfonylurea receptor SURx subunits (subfamily C: SUR1, 

SUR2 encoded by ABCC8 and ABCC9), whose molecular heterogeneity is further increased by 

variable splicing of SUR2 into two distinct isoforms: SUR2A and SUR2B [12-18]. KCNJ8 and ABCC9 

are an adjacent gene-pair on chromosome 12p12.1, with KCNJ11 and ABCC8 paralogous on 11p15.1 

Regulated by intracellular nucleotides and membrane phospholipids, KATP channels serve as electrical 

transducers of the metabolic state of the cell by coupling cellular metabolism to the membrane 

potential [19]. By binding to the Kir6.x subunit, ATP decreases the channel’s open probability, 

whereas magnesium-nucleotide complexes (MgADP and MgATP) bind to the nucleotide-binding 

domains (NBDs) of the SURx subunits and increase the channel open probability [20, 21] (Figure 1.2).  

 

 

 

Regulatory SURPore-forming Kir6.x

ATP

MgADP

(a) (b)

(c)

Cell Membrane

NBD1 NBD2

Cell Membrane

Figure 1.2 KATP Channel Structure  
(a) Hetero-octameric protein complex of the KATP channel, showing Kir6 tetramer surrounded by 4 SUR subunits 
(b) Schematic representation of Kir6.x and SUR protein topologies, indicating the two nucleotide binding domains 

(NBD1 and NBD2) of SUR (c) Structural model of the complex, showing the ATP and MgATP binding sites 
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KATP channels are widely expressed throughout the body, primarily in the plasma membranes and 

through their transduction of cellular metabolic states, serve a diverse range of key functions such as 

ischemic pre-conditioning in the cardiomyocytes, protection against fiber damage in skeletal muscle, 

vasomotor control in vascular smooth muscle (VSM), regulation of insulin secretion in pancreatic  

cells and determination of nerve-fiber excitability in central nervous system [22-28]. KATP channels in 

different tissues exhibit distinct nucleotide sensitivities as a result of distinct compositions. In pancreas 

and neurons, Kir6.2 is coupled with SUR1, Kir6.2 is coupled with SUR2A in the striated muscles and 

Kir6.1 is coupled with SUR2B in VSM [29-33] (Figure 1.3). CS mutations have been reported thus far 

in SUR2 and Kir6.1 domains, making it predominantly a cardiovascular disease.  

 

 

 

  

Two Pairs of Genes Encode KATP Channels
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Figure 1.3 KATP Channel Composition  
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1.3 Zebrafish 
 

Zebrafish (ZF; Danio rerio) are small freshwater teleost fish which have been used as a model organism 

since the 1960s. The complete genome sequence of ZF, published in 2013, has propelled its use as a 

leading animal model for various physiological studies, including heart research [34, 35]. ZF offer 

many advantages as a cardiovascular model (Figure 1.4), including:  

• Highly conserved amenable genome 

o About 70% of protein-coding human genes and 84% of genes associated with human 
diseases have orthologs in zebrafish genome [34]. ZF are genetically amenable to 
various genetic engineering techniques and as a result of the whole genome duplication 
that occurred early in the teleost lineage, over 3100 human genes have at least two 
orthologues in ZF genome [37].  

• Rapid development and fecundity 

o ZF achieve sexual maturity within 2 to 3 months and have a large clutch size (100 to 
1000 embryos per mature female). They breed readily, every 10 days making them 
amenable to high-throughput drug screening. They grow as much in a day as a human 
embryo does in a month and possess a fully developed heart at 96 hours post 
fertilization [35].   

• Nearly transparent larvae that survive without circulation 

o The transparency of ZF larvae facilitates the evaluation of phenotypes and genetic 
reporters in vivo, using light microscopy (Figure 1.4). Their larvae can function without 
circulation for 4–5 days at the embryonic stage, obtaining oxygen through diffusion. 
This makes them perfectly suitable for modelling cardiac malformations that would be 
fatal in other mammals [35].  

• Electrophysiological similarity to human cardiomyocytes 

o The ZF ventricular action potential (AP) is similar to that of human cardiac AP and 
unlike the mouse AP, exhibits a rapid depolarization upstroke followed by a long 
plateau phase, resulting in a QT interval similar to that of human electrocardiogram 
(ECG) (Figure 1.4) [36, 37].  

• Remarkable regenerative capacity 

o While the mammalian heart is particularly resistant to regeneration after injury, ZF 
heart can fully regenerate without scar formation (Figure 1.4) [38, 39]. This makes ZF 
a salient cardiovascular model to investigate mechanisms that stimulate the cardiac 
regeneration.  
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a) b)

c) d)

e)

Figure 1.4 Zebrafish as a Cardiovascular Model 
(a) Orthologue genes shared between ZF, human, mouse and chicken genome [34] (b) ZF larvae are nearly transparent, 

facilitating phenotypic evaluation using light microscopy (c) Comparison of zebrafish and human ECGs [37] 
(d) Typical injury models of mammalian, newt & ZF hearts [39] (e) Representative shapes of the major ion currents 

responsible for human, mice and zebrafish cardiac APs [36] 



 
 

7 

 
 
 
 
 
 
 

Chapter 2 

 
Materials and Methods 
 

Most ZF models developed thus far have been generated as transgenic over-expressers, which do not 

replicate the genetic basis of diseases caused by alleles carrying single nucleotide changes, as in CS. 

Using an effective approach that combined CRISPR/Cas9 with a short template oligonucleotide, 

Helen Roessler, in the group of Gijs van Haaften, at the University Medical Center (UMC) Utrecht, 

generated ZF knock-in (KI) lines carrying gain-of-function (GOF) missense mutations in SUR2-

encoding ABCC9 gene and developed a ZF model for CS (Figure 2.1) [40]. Two of these lines, 

containing patient-specific point mutations at human orthologue locations C1043Y and G989E were 

used for the current study.  

 

 

Figure 2.1 Generation of Patient-Specific KI Lines in ZF  
Stepwise procedure followed to establish the knock-in lines of zebrafish [40] 



 
 

8 

 
 
 
 
 
 
 

2.1 Isolation of Zebrafish Ventricular Myocytes 
 

Previous studies that implicate a physiological significance of KATP channels in ZF, were mostly 

performed either phenotypically or indirectly using transfected cells [41-43]. Direct analysis of ZF 

KATP expression and functional characterization has been performed so far only in β-cells [44]. Caveats 

associated with extrapolation and interpretation of such results arise from the whole genome 

duplication that occurred early in the teleost lineage, which suggest that molecular entities and 

regulatory pathways behind the functions are not always same in ZF and humans. This is evident from 

the recent analysis of ZF Kir2 channel composition which demonstrated striking differences between 

molecular basis of cardiac ionic currents (IK1) in ZF and human hearts [45]. This was the rationale to 

determine the ZF KATP channel composition, expression and validate GOF in the developed ZF CS 

model at a cellular and molecular level, before any further physiological studies.  

 

As a first step towards such validation, it was appropriate to begin with the isolation of ventricular 

cardiomyocytes from ZF in order to obtain recordings of channel activity in the native tissue. With 

only a handful of reports describing cardiomyocyte isolation from fish [46-48], this turned out to be a 

much more formidable task than initially expected. None of the reported protocols seemed to yield 

cells viable for physiological measurements. However, drawing parallels from the existing lab 

protocols to isolate mice and fish cardiomyocytes, I was able to develop a simple, yet effective protocol 

to isolate ventricular cardiomyocytes from ZF. 

 

The protocol can be divided into 3 basic steps – Isolation, Digestion and Wash.  

 

Isolation (Figure 2.2 [48]):  

1. The fish were euthanized using cold-shock (8oC water immersion, for approximately 10 s).  

2. The fish were then transferred onto a wet operation sponge (a piece of foam with incision 
large enough to place the fish) and placed under a dissecting microscope (Figure 2.2 a).  

3. Using forceps (Dumont FST no. 5), an opening of 4 mm was carefully made in the ventral 
muscle longitudinally (Figure 2.2 b).  
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4. The heart was quickly excised and placed in heparin buffer (Table 2.1) in a 55-mm Petri dish 
(Figure 2.2 c).  

5. Non-ventricle tissues (outflow tract, atrium, pericardium) were removed and the ventricles 
were gently torn open to wash out the blood (Figure 2.2 d, e).  

6. The torn ventricles were then quickly transferred to 750 l of perfusion buffer (Table 2.1) in 
a 1.5 ml Eppendorf tube (Figure 2.2 f).  

7. A total of 3 medium-sized fish hearts were necessary for optimal cell density. The above steps 
were repeated for the remaining two fish and the ventricles were pooled into the same tube. 

8. For best results, the isolation time for each fish heart did not exceed 90 seconds. 

 

 

Digestion:  

1. The perfusion buffer in the Eppendorf tube was replaced with digestion buffer (Table 2.1). 

For optimal results, 750 l of the digestion buffer was used per tube (250 l per heart). 

2. The ventricles were then subjected to digestion in a thermomixer for 30–40 minutes at 32oC 
and 800 rpm. Older fish hearts needed a slightly longer time compared to the younger ones.  

 

 

 

Figure 2.2 Isolation of ZF Ventricular Cardiomyocytes [48] 
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 Wash:  

1. Once the digestion was complete, the hearts were allowed to settle for a minute or two.  

2. The digestion buffer was then replaced with 750 l stopping buffer (Table 2.1), without 
disturbing the tissue at the bottom of the tube.  

3. After 15 minutes in the stopping buffer, the supernatant buffer was replaced with fresh 750 

l stopping buffer or 750 l plating medium, depending on the requirement. Cells in stopping 
buffer can survive for 4 hours but undergo minimal calcium-shock. Cells in plating medium 
were good for physiological measurements up to 10 hours but underwent calcium-shock, if 
not titrated with increasing concentrations of calcium.  

4. The tissue was then gently triturated using a Pasteur pipette, to disperse the cells into solution.  

 

Reagents: 

• Collagenase Type II (Worthington) 

• Collagenase Type IV (Worthington) 

• Minimum Essential Medium (MEM; 
Gibco) 

• GlutaMax (Gibco) 

• 2,3-Butanedione Monoxime (BDM) 

• Fetal Bovine Serum (FBS) 

• Phosphate Buffer Saline (PBS) 

• Glucose 

• Taurine 

• Bovine Serum Albumin (BSA) 

• Calcium Chloride 

• Insulin 

• Penicillin-Streptomycin 
 
 

Table 2.1 Solutions for Isolation of ZF Ventricular Cardiomyocytes 

 

PERFUSION BUFFER (PB) 10 mM HEPES, 30 mM Taurine, 5.5 mM Glucose, 10 mM BDM 

DIGESTION BUFFER (DB) PB + 12.5 µM CaCl2 + 5mg/ml Col II + 5mg/ml Col IV + 5 ng/ml Insulin 

STOPPING BUFFER (SB) PB + 10% FBS + 12.5 µM CaCl2 + 10 mg/ml BSA + 5 ng/ml Insulin 

PLATING MEDIUM (PM) MEM + 2mM GlutaMax + 5mM BDM + 5% FBS + 100 U/mL Pen-Strep 
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2.2 Inside-Out Excised Patch-Clamping   
 

Upon successful isolation of the ZF ventricular cardiomyocytes (VCMs), inside-out excised patch-

clamping was performed to characterize KATP channel expression and activity, providing the first 

recordings of KATP currents in fish cardiomyocytes. The ZF VCMs, as discussed in chapter 3, are very 

slender and tiny in comparison to mammalian myocytes. This made them extremely sensitive to the 

continuous flow of buffers. Plating of the ZF VCMs on glass coverslips as per established protocols 

[48] proved to be futile. So, this turned out to be a flow-control challenge requiring the retooling of 

an old rig that uses a piezoresistive float-transducer to achieve sensitive flow control [49, 50]. This 

exercise proved very fruitful for the future experiments. A hydrophobic plastic-coated brass-shim 

'float' is connected to the piezoresistive element via a thin metal tube and cyanoacrylic adhesive (Figure 

2.3 a). The float assembly recognizes the fluid levels in the bath (Figure 2.3 b) through surface tension 

and relays it via a control circuit to the outflow pump (Figure 2.3 c), creating a feedback control loop. 

The bath consists of four channels, through which solutions supplied by inflow lines flow into a 

common end-pool and are pumped out through a single outflow. Cells are placed in the first channel 

(which is the widest; the numbering for channels is 1–4 from left–right), and patches are excised from 

these cells. A singular feature of this bath is that the columns separating the channels are provided 

with 'gates' filled with mineral oil, hence the chamber is referred to as an 'oil-gate chamber' within the 

'oil-gate rig'. By moving the electrode tip from one channel to another through these oil-gates, the 

excised patch of the cell membrane can be exposed to different solutions flowing through them. 

Further, passing through oil provides an almost instantaneous change of solutions, which can be useful 

for studying the kinetics of the ion channels. The outflow pump motor is connected between the 

ground and ‘motor’ connections in the circuit, via a three-position switch from off to maximum to 

feedback control. In feedback mode, the float position determines the change in resistance of the 

piezoresistors (labelled with asterisk) which balance the circuit through a Wheatstone bridge.  
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Micropipettes for patch-clamping were pulled from soda lime glass microhematocrit tubes (Kimble-

Chase 2502) using a P-97 puller (Sutter Instruments) and had a resistance of 1–2 M when filled with 

pipette solution. The pipette and channel 1 (also called Well 1) solutions typically contained KINT 

(Table 2.2). Membrane currents were recorded at a constant holding potential of 50 mV, using an 

Axopatch 200B amplifier and Axon pCLAMP software from Molecular Devices. Experiments were 

performed at the room temperature (20–22 °C). Free Mg2+ concentrations for MgATP and MgADP 

dose-response recordings were calculated using CaBuf (Katholieke Universiteit Leuven). Channel 

currents in solutions of varying nucleotide concentrations were normalized to the basal current in the 

absence of nucleotides, and the dose-response data were fit with a four-parameter Hill fit according 

to equation 2.1, using the Data Solver Function in Microsoft Excel,  

Normalized current = Imin + (Imax - Imin)/(1 + ([X]/IC50)H)  (2.1) 

C – Channel

I – Inflow Line

G – Oil-Filled Gate

O – Outflow

F – Float

P – Common End-Pool

b)a)

c)

Figure 2.3 The Oil-Gate Rig 
a) An oblique detailing of the float assembly [49] b) A schematic diagram of the oil-gate chamber [50] 

c) Circuit diagram of the oil-gate rig’s electrical control activity [49] 
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where the current in KINT = Imax = 1; Imin is the normalized minimum current observed in Wells 2 or 4 

(ATP/MgATP/glibenclamide); [X] refers to the concentration of the ATP/MgATP in the Well under 

consideration; IC50 is the concentration of half-maximal inhibition; and H denotes Hill coefficient.  

 

Buffers for Patch-Clamping:  

The KINT buffers, ATP buffers, Mg-nucleotide buffers and glibenclamide (GLB) buffers for ATP, 

MgATP and GLB dose-response recordings (DRRs) were prepared as per the following tables –  

 

Table 2.2 KINT Buffer (1 Liter) 

 
SOLUTE CONC. SOLUTE ADDED STOCK PREPARATION 

KCl 140 mM 10.437 gms MW: 74.5513 gm/mol 

K.HEPES 10 mM 10 mL of 1 M Stock 23.83 gms of K.HEPES in 100 mL H2O 

K.EGTA 1 mM 2 mL of 0.5 M Stock 38.035 gms of K.EGTA in 200 mL H2O 

(adjust the pH for better dissolution) None of the stock solutions should contain Na, which blocks the KATP channels. 

Adjust the pH to 7.4 using only KOH, preferably pellets and makeup to 1 L. 

 
 

Table 2.3 Buffers for ATP DRR  

 
WELL BUFFER CONTENT BUFFER PREPARATION 

1 KINT 50 mL of KINT Solution 

2 KINT + 5 mM ATP 2.5 mL ATP Stock + 47.5 mL KINT + Phenol Red 

3 KINT + 10 M ATP 0.1 mL of Well 2 Buffer + 49.9 mL KINT 

4 KINT + 100 M ATP 1 mL of Well 2 Buffer + 49 mL KINT + Phenol Red 

ATP Stock: Freshly prepare 5 mL of 100 mM ATP stock by adding 0.291 gms of K.ATP in 4 mL KINT, adjust the 

pH by using Phenol Red and KOH, makeup to 5 mL. 
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Table 2.4 Buffers for MgATP DRR  

 

WELL BUFFER CONTENT BUFFER PREPARATION 

1 KINT 50 mL of KINT Solution 

2 KINT + 5 mM ATP + 4.65 mM MgCl2 
2.5 mL of ATP Stock + 2.325 mL MgCl2 Stock  

+ 45.175 mL KINT + Phenol Red 

3 KINT + 10 M ATP + 0.55 mM MgCl2 
0.1 mL of Well 2 Buffer + 0.270 mL MgCl2 Stock  

+ 49.629 mL KINT 

4 KINT + 100 M ATP + 0.62 mM MgCl2 
1 mL of Well 2 Buffer + 0.2635 mL MgCl2 Stock  

+ 48.7365 mL KINT + Phenol Red 

MgCl2 Stock: Prepare 200 mL of 100 mM MgCl2 stock by adding 4.066 gms of MgCl2.6H2O in H2O. 

 

 

Table 2.5 Buffers for GLB DRR  

 

WELL BUFFER CONTENT BUFFER PREPARATION 

1 KINT 50 mL KINT Solution 

2 KINT + 5 mM ATP + 4.65 mM MgCl2 
2.5 mL ATP Stock + 2.325 mL MgCl2 Stock  

+ 45.175 mL KINT + Phenol Red 

3 KINT + 100 M ATP + 0.96 mM MgCl2  

+ 500 M ADP 

50 L ATP Stock + 250 L ADP Stock  

+ 480 L MgCl2 Stock + 49.220 mL KINT 

4 KINT + 100 M ATP + 0.96 mM MgCl2  

+ 500 M ADP + 1 M GLB 

50 L ATP Stock + 250 L ADP Stock + 480 L 

MgCl2 Stock + 50 L GLB Stock + 49.170 mL KINT 

GLB Stock: Prepare 10 mL of 1 mM GLB stock by dissolving 0.00494 gms of GLB in DMSO. 

ADP Stock: Prepare 5 mL of 100 mM ADP stock by adding 0.251 gms of K.ADP in 4 mL KINT, adjust the pH by 

using Phenol Red and KOH, make up to 5 mL. Freeze & store in aliquots. 
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2.3 Phenotypic Drug-Response Studies  
 
In collaboration with Helen Roessler from UMC Utrecht, phenotypic drug-response studies using 

glibenclamide (GLB) were conducted in adult ZF and larvae to determine the sulfonylurea sensitivity 

of  heart size in SUR2 mutated CS models of  ZF. 10 adult fish each of  wild type, G989E heterozygous 

and G989E homozygous were subjected to treatment with 50 M GLB for two weeks. The 50 M 

concentration of  GLB was the maximum soluble drug in fish-water using 1% DMSO (Dimethyl 

sulfoxide). The drug was added to 1L of  fish-water, which was exchanged once every day. In addition 

to the drug, 10 fish of  each type were also subjected to 1% DMSO treatment as vehicle control and 

10 others were each similarly used as controls in normal fish-water (E3). After two weeks of  treatment, 

the hearts of  the fish were excised and imaged using Hamamatsu C9300-221 high-speed CCD camera 

(Hamamatsu Photonics) at 150 frames per second (fps) mounted on a Leica DM IRBE inverted 

microscope (Leica Microsystems) using Hokawo 2.1 imaging software (Hamamatsu Photonics). 

Subsequent image analysis was carried out using NIH's image processing program, ImageJ.  

 

The imaging was done for approximately 10 seconds at room temperature (28 oC).  
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Chapter 3 

 
Results and Discussion 

 

3.1 Phenotypic Characterization of CS Fish  
 
In collaboration A phenotypic characterization of the cardiovascular phenotypes of CS in ZF, such as 

enlarged ventricles, enhanced cardiac output and contractile function, cerebral vasodilation has been 

performed in one of the earlier studies by Helen Roessler from UMC Utrecht, confirming an efficient 

introduction of the GOF mutations (Figure 3.1) [40].  

 

 

 

 

a)

b)

c)

Figure 3.1 Phenotypic Characterization of CS in ZF [40]  
a) Confocal imaging used to assess the cardiac function 5dpf b) Cerebral vasodilation in WT and 

mutant ZF, 5dpf c) H&E staining showing the enlarged ventricular size in ZF, 5dpf 
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It was reported in those studies that the C1043Y mutation had less severe cardiovascular phenotypes 

compared to the G989E mutation. One conceivable explanation can be found in the positioning of 

these mutations. G989E is situated closer to the sulfonylurea (GLB) drug-binding site, whose Cryo-

EM structure was recently resolved [51] and on the side chain directly connecting the NBD1 to the 

TMD of the SUR subunit, whereas C1043Y is situated at the extracellular face of TMD (Figure 3.2).  

 

 

  

G989E 

C1043Y 

GLB 

Figure 3.2 ZF Models of C1043Y and G989E CS  
Structural representation of the ventricular cardiomyocyte KATP channel with the equivalent position 

of C1043Y and G989E mutations in SUR2 domain, relative to the GLB binding site.  
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3.2 Zebrafish Ventricular Cardiomyocytes  
 

The protocol developed in the chapter 2 for isolating ZF ventricular cardiomyocytes (VCMs) uses 3 

fish, takes 1 hour for the isolation and yields 80% live cells (Figure 3.3 b). ZF ventricular 

cardiomyocytes are very tiny in comparison to their murine counterparts and are difficult to patch-

clamp with microelectrode tips lower than 1 M resistance (when filled with KINT solution) (Figure 

3.3 a, c). Non-plated cells almost always are pulled with the electrode, making it necessary to go into 

oil or air for the excision. Also, resealing at the tip upon excision (formation of vesicles) was very 

frequent for ZF VCMs, at times requiring long periods of exposure to air outside the buffer for the 

inside-out configuration to be achieved.  

 

Zebrafish WT VCMs Mice WT VCMs

40X

20X

a)

b) c)

Figure 3.3 Zebrafish Ventricular Cardiomyocytes  
a) A wildtype ZF VCM compared with mice VCMs at 40x b) The density and quality of ZF VCMs 

obtained using the developed isolation protocol c) Size-comparison of a ZF VCM with a 

microelectrode tip attached to it, scale bar is 5 m [46] 
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3.3 ATP-Sensitivity of CS ZF VCM KATP  
 

The ATP dose-response recordings from ZF VCMs, show a typical KATP channel activity (Figure 3.4) 

with ~4 pA single channel current at +50 mV in the buffer conditions used, corresponding to 80 pS 

single channel conductance, and a rapid inhibition of the channel current by intracellular ATP (5 mM). 

In low concentration of ATP (10 M), channel activity was ~ 80% of maximum in the WT, 85% in 

the heterozygous and ~90% in the homozygous C1043Y and G989E channels, suggesting a decreased 

sensitivity to inhibitory ATP, which was also evident in moderate concentrations of ATP (100 M).  

 

 

 

Figure 3.4 KATP Channels in WT and C1043Y  
Representative inside-out patch-clamp recordings of KATP channel activity from ZF VCMs of WT, 

C1043Y heterozygous and homozygous mutants.  
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This decreased sensitivity is characterized by the increase in IC50 values for the C1043Y and G989E 

mutants (Figure 3.5, 3.6). The amount of ATP required to cause 50% inhibition of the channels (IC50) 

for the C1043Y and G989E homozygous mutants was ~60 M and ~40 M respectively. The IC50 

values for the C1043Y and G989E heterozygous mutants were ~17 M and ~23 M respectively, 

whereas the WT IC50 value was ~16 M.  
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Figure 3.5 C1043Y ATP DRC 
Summary ATP dose-response curves for C1043Y homozygous and heterozygous mutants 
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The introduced mutations could result in reduced ATP-sensitivity by several potential mechanisms: 

stabilization of the channel in the open state, thereby increasing the open probability (Po) may be the 

most reasonable, rather than directly affecting the inhibitory ATP-binding, since the inhibitory ATP-

binding site is on the pore-forming (Kir6.x) subunit. Activating nucleotides interact with SUR, but in 

a Mg-dependent manner, and the above experiments were carried out in the absence of Mg2+. 
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Figure 3.6 G989E ATP DRC 
Summary ATP dose-response curves for G989E homozygous and heterozygous mutants 



 
 

22 

 
 
 
 
 
 
 

3.4 ATP-Sensitivity in the Presence of Mg2+ 

 

To further investigate the effects of the induced mutations on SUR2-dependent nucleotide 

interactions, MgATP dose-responses were assessed, as described in chapter 2. A further rightward 

shift in ATP sensitivity was seen in the presence of Mg, for both the G989E and C1043Y mutant 

channels, compared to Mg-free conditions (Figure 3.7, 3.8 and 3.9).  

 

 

Figure 3.7 MgATP DRR in G989E 
Representative inside-out patch-clamp recordings of KATP channel activity from ZF VCMs of G989E 

heterozygous and homozygous mutants in the presence of MgATP.  
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Summary MgATP dose-response curves for G989E homozygous and heterozygous mutants 

Figure 3.9 C1043Y MgATP DRC 
Summary MgATP dose-response curves for C1043Y homozygous and heterozygous mutants 
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The IC50 values for G989E homozygous increased by about 110 M in MgATP compared to ATP, 

whereas the shift was only about 10 M in C1043Y homozygous and WT. Due to the low number of 

recordings obtained, shifts in the heterozygous were less clear. G989E proved to be the more sever 

mutation at the organ level, with larger hearts than C1043Y [40], and the more marked right-shift of 

IC50 curves for G989E suggests that Mg-nucleotide interaction or consequence may be additionally 

affected in this case, perhaps due to the close proximity of this residue to the nucleotide binding 

domain (Figure 3.2). A more marked gain-of-function (GOF) for this mutation is consistent with data 

from previous studies using transfected cells [9, 52]. Another interesting anecdotal observation was 

that the quality of isolated cells, and channel density seem to be proportional to the KATP channel 

activity. Homozygous mutants consistently gave better quality cells and more channels per excision, 

compared to the WT controls that were isolated and patched simultaneously. This could be due to the 

ischemic protection offered by KATP channels in the cardiomyocytes.  

3.5 Glibenclamide Sensitivity  

 

Second-generation sulfonylureas such as glibenclamide (GLB) bind to the SUR subunits of KATP 

channels and cause an inhibitory action [53]. This presents a potential pharmacotherapeutic option 

for CS. However, multiple reports suggest that, in other tissues, such GOF mutations, by increasing 

the open state stability, also reduce the sulfonylurea sensitivity [54-57]. To assess the effect of SUR2 

CS mutations on inhibitor sensitivity, GLB dose-response studies were performed as described in 

chapter 2. A decrease in GLB potency was seen in both C1043Y and G989E mutations (Figure 3.10). 

The insensitivity seemed to be inversely proportional to the severity of the mutation, with G989E 

homozygous reporting around 20% inhibition compared to 30% and 80% in C1043Y homozygous 

and WT, with the heterozygous of G989E and C1043Y lying in between 45% and 55%.   
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The GLB sensitivity was evaluated in a 'homozygous' context. However, since all CS patients identified 

so far are heterozygous, the treatability of the disease using GLB still needs to be evaluated and a 

phenotypic drug-response study was conducted using the methods described in chapter 2. G989E was 

chosen as the model for the study, due to its phenotypic severity. After two weeks of treatment, 

cardiomegaly – a predominant cardiovascular phenotype for CS, was analyzed. The heart size inclined 

towards reduction in both the homozygous and heterozygous case (Figure 3.11).  
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Figure 3.10 GLB Response Study 

The fractional KATP current remaining in the presence of 10 M Glibenclamide (GLB) in the inside-out 
patch clamp recordings from zebrafish VCMs.  
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Figure 3.11 Phenotypic GLB Dose-Response Study in G989E 
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Chapter 4 

 
Conclusion 

 

Taken together, these results validate the gain-of-function at a molecular and cellular level in the 

ventricular cardiomyocytes of zebrafish models of Cantú syndrome. Given that these are also the first 

recordings of KATP currents from ZF cardiomyocytes, they also serve to provide a basis for the 

characterization of KATP channel composition in ZF. Using ABCC9 and ABCC8 knock-out fish, the 

channel composition in the atrial and ventricular cardiomyocytes can be determined. Also, using 

KCNJ8 and KCNJ11 knock-out fish, the functional significance of Kir6.3, which is unique to the 

teleost can be determined. In this regard, the retooled oil-gate rig will continue to serve an important 

function in determining further channel activities. The developed isolation protocol may also  be 

adapted for successful isolation of atrial cardiomyocytes, and for vascular smooth muscle (VSM) cells, 

which would give further insights into the cardiovascular mechanisms involved in CS. The successful 

isolation and characterization of the channels in VSM cells will prove valuable in studying KCNJ8 

models of CS. This would help in further validation of the fish models, which with all the advantages 

listed in chapter 1, promise an exciting future for research into Cantú syndrome and other 

cardiovascular diseases.  
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