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ABSTRACT  

Mammals have evolved an intricate regulation of a genetically programmed 

apoptotic cell death that involves mitochondria. Diverse apoptotic signals converge on 

mitochondria, which causes the release of cytochrome c into the cytosol to activate Apaf-

1. This initiates caspase activation, which results in irreversible cellular demise. The 

BCL-2 family proteins constitute a critical checkpoint in mitochondrion-dependent 

apoptosis. Multidomain proapoptotic BAX/BAK promotes mitochondrial outer 

membrane permeabilization, whereas anti-apoptotic BCL-2/BCL-XL/MCL-1 protects 

mitochondrial integrity and prevents cytochrome c release. The proapoptotic activity of 

BAX/BAK is triggered by BH3-only molecules (BH3s) which are upregulated by 

upstream death signals. However, how these subfamilies interact with one another to 

execute mitochondrial cell death remains unclear. Thus, this thesis aims at elucidating the 

mechanism regarding how the interplay between BCL-2 subfamilies determines cellular 

commitment to survival versus death and how BAX/BAK activation is triggered by BH3s. 

Our laboratory showed that BH3s can be further classified into two subclasses- 

‘activator’ tBID/BIM/PUMA that directly activates BAX/BAK to induce cytochrome c 

release and ‘inactivator’ BH3s that antagonize the function of anti-apoptotic BCL-2 

members. Here, a BAX/BAK mutagenesis study indicated that anti-apoptotic BCL-2 

members prevent BAX/BAK activation by sequestering activator BH3s rather than by 

directly binding to BAX/BAK. I further demonstrated that inactivator BH3s are able to 

displace activator BH3s from anti-apoptotic BCL-2 members with unique specificity, 

thus preventing their sequestration of activator BH3s. Activator BH3s were shown to act 

downstream of inactivator BH3s to trigger BAX/BAK activation, establishing the 
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hierarchy of BCL-2 subfamilies in regulating mitochondrial apoptosis. Then, I 

investigated the molecular mechanism whereby BAX/BAK is activated by activator 

BH3s. I demonstrated that BAX undergoes stepwise structural reorganization leading to 

two activation processes-mitochondrial targeting and homo-oligomerization. Activator 

BH3s initiate BAX activation by attacking and exposing α1 helix of BAX leading to the 

secondary disengagement of the α9 helix and mitochondrial translocation. Activator 

BH3s remain associated with BAX to drive homo-oligomerization at the mitochondria. 

BAK has bypassed the first activation step, but requires activator BH3s for homo-

oligomerization. This study further emphasizes the direct engagement of activator BH3s 

in BAX/BAK-dependent mitochondrial apoptotic pathway. Lastly, our laboratory showed 

that BH3s trigger caspase-independent mitochondrial dysfunction only in the presence of 

BAX/BAK. I found that BAK exists as several distinct complexes at the mitochondria, 

one of which is functionally different from cytochrome c-releasing BAK oligomers but 

instead includes VDAC/ANT channels that regulate ATP/ADP transport to support ATP 

production by oxidative phosphorylation. tBID overexpression induces cell death in the 

absence of Apaf-1 by inhibiting VDAC-mediated ADP import into the mitochondria in a 

BAK-dependent manner, suggesting that activated BAK antagonizes VDAC activity to 

initiate mitochondrial dysfunction. This study provides novel insights into how BAK 

activation couples apoptosis and mitochondrial dysfunction to trigger cell death.  
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1.1. Mammalian apoptosis 

Apoptosis, the best characterized type of programmed cell death, is an 

orchestrated event of genetic and biochemical pathways that is conserved in all 

multicellular organisms (Danial and Korsmeyer, 2004; Horvitz, 2003). This tightly 

regulated process was initially characterized by cell shrinkage, membrane blebbing, 

chromatin condensation, and DNA fragmentation (Kerr et al., 1972; Wyllie et al., 1980). 

Proper execution of apoptosis is crucial for normal embryonic development and adult 

tissue homeostasis. In this respect, deregulation of the core apoptotic pathway often 

results in unbalanced cellular status that causes human diseases (Thompson, 1995). For 

instance, insufficient elimination of aberrant cells can lead to cancer and autoimmunity 

whereas accelerated apoptosis can elicit neurodegenerative disorders.   

The execution of apoptosis is mediated by the activation of a family of cysteine 

proteases known as caspases. Caspases exist as zymogens in viable cells, but once 

activated, they cleave diverse intracellular substrates resulting in breakdown of the cell 

accompanied by characteristic morphological changes (Thornberry and Lazebnik, 1998). 

Two major cell death pathways exist to trigger caspase activation in mammalian cells. 

The extrinsic pathway operates downstream of transmembrane death receptors such as 

TNFR1 (tumor necrosis factor receptor 1), Fas (APO1/CD95), and TRAILR1/2 (TNF-

related apoptosis-inducing ligand receptor 1/2) activated by the engagement of their death 

ligands from outside the cell (Danial and Korsmeyer, 2004). Activated receptors form a 

death-inducing signaling complex (DISC) that leads to the activation of initiator caspase-

8 and -10, which directly cleave and activate effector caspase-3 and -7. The intrinsic 

pathway is initiated by a variety of cellular stress including cytokine/growth factor 
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deprivation, genotoxic or endoplasmic reticulum (ER) stress, and involves mitochondria 

as a death checkpoint. The intrinsic cell death signals culminate in the permeabilization 

of the mitochondrial outer membrane, which triggers cytochrome c release into the 

cytosol (Thornberry and Lazebnik, 1998; Wang, 2001). Cytosolic cytochrome c binds to 

Apaf-1, an apaptor protein that exists as an inactive monomer in the cytosol, and initiates 

the conformational change that leads to the oligomerization of Apaf-1 into a heptameric 

protein complex called the apoptosome, which recruits and activates initiator caspase-9 

(Shi, 2006). Activated caspase-9 subsequently cleaves and activates effector caspases 

such as caspase-3 and -7. In addition to cytochrome c, apoptogenic factors including 

Smac/DIABLO, EndoG, HtrA2/Omi, and AIF are released from the mitochondria and 

further facilitate to cellular demise (Du et al., 2000; Li et al., 2001; Susin et al., 1999; 

Van Loo et al., 2001; Verhagen et al., 2000). In some cell types such as lymphocytes 

(type I cells), the signaling from the extrinsic pathway is sufficient to engage apoptosis, 

whereas amplification of the apoptotic signaling through the intrinsic pathway is required 

for the cell death of hepatocytes and pancreatic β-cells (Type II cells).  

 

1.2. BCL-2 family members 

The BCL-2 family members are core regulatory proteins that control the 

permeabilization of the mitochondrial outer membrane in the intrinsic cell death pathway. 

The BCL-2 gene was first cloned in the t(14;18) chromosomal translocation breakpoints 

of B-cell follicular lymphomas (Bakhshi et al., 1985; Cleary et al., 1986; Tsujimoto et al., 

1985). Subsequently, BCL-2 overexpression was shown to inhibit cell death against 

various cellular insults and confer oncogenic potential; as such, BCL-2 is recognized as a 
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new class of oncogene that contributes to tumor development by protecting cells from 

apoptosis rather than by increasing cellular proliferation (McDonnell et al., 1989; Vaux et 

al., 1998). The number of BCL-2 family members has exploded ever since with members 

falling into one of three subfamilies based on the presence of up to four conserved 

regions termed BCL-2 Homology (BH) domains and on their death regulatory activities 

(Cory and Adams, 2002; Danial and Korsmeyer, 2004; Gross et al., 1999) (Fig. 1.1). The 

anti-apoptotic members, including BCL-2, BCL-XL, BCL-W, MCL-1, and A1, share 

sequence homology through all four BH domains and safeguard mitochondria outer 

membrane integrity. The prosurvival function of BCL-2 is also conserved in the C. 

elegans orthologue CED-9 (Hengartner et al., 1992). The other two subfamilies promote 

apoptosis. The multidomain proapoptotic BAX and BAK share BH1-3 domains and 

promote cell death by inducing the release of cytochrome c and other apoptogenic factors 

from mitochondria. The members of the third subfamily are termed BH3-only molecules 

(BH3s) in that they only exhibit sequence homology within this domain (Kelekar and 

Thompson, 1998; Gross et al., 1999). Such members including BID, BIM, PUMA, BAD, 

NOXA, BMF, BIK/BLK, and HRK/DP5 act as proapoptotic sentinels to convey upstream 

stress signals to the terminal multidomain BCL-2 family members at the level of 

mitochondria by either activating BAX/BAK or inactivating anti-apoptotic BCL-2 

members.  

Since distinct BH3s initiate programmed cell death in different types of cells in 

response to diverse stress conditions, their prodeath activity is placed under stringent 

control. On the one hand, specific stresses lead to the transcriptional upregulation of 

specific BH3s. For instance, PUMA and NOXA is transcriptionally upregulated as direct 
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targets of p53 in response to genotoxic stress (Nakano and Vousden, 2001; Oda et al., 

2000; Yu et al., 2001). The expression level of HRK/DP5 is upregulated following NGF 

withdrawal or Aβ treatment in cultured neurons (Imaizumi et al., 1997). Growth factor 

withdrawal induces the upregulation of BIM expression, which requires JNK activation 

in neurons and forkhead transcription factor FKHR-L1 in hematopoietic cells (Dijkers et 

al., 2000; Putcha et al., 2001; Whitfield et al., 2001). On the other hand, some of the 

BH3s are easily detectable in healthy cells, and their proapoptotic activity is unleashed by 

post-translational modifications. BAD undergoes dephosphorylation upon growth factor 

deprivation, allowing its dissociation from the 14-3-3 scaffolding protein and thereby its 

interaction with BCL-XL (Zha et al., 1996). Inactive BID is proteolytically cleaved by 

caspase-8 and N-myristoylated, which promotes efficient mitochondrial targeting and 

increased affinity to multidomain BCL-2 members (Zha et al., 2000). BMF is regulated 

by the interaction with DLC2 dynein light chains sequestrating it to the actin-bound 

myosin V motor complex (Puthalakath et al., 2001). Activation of BIM-L and -EL 

isoforms by UV-irradiation or taxol treatment involves their release from the dynein 

motor complex, and loss of the ERK-mediated phosphorylation of BIM-EL prevents it 

from being degraded by ubiquitin-proteasome system (Ley et al., 2005; Puthalakath et al., 

1999). It was also demonstrated that ER stress causes the direct induction of Bim 

transcript by CHOP-C/EBPα and the stabilization of BIM-EL through protein 

phosphatase 2A-mediated dephosphorylation (Puthalakath et al., 2007).  
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1.3. Genetic knockout models of the BCL-2 family 

 Mouse knockout studies have not only highlighted the importance of BCL-2 

family members in regulating apoptosis for successful embryogenesis and tissue 

homeostasis, but also revealed their specific involvements in different signaling pathways 

and cell types. Mice with single knockout of Bax or Bak reveal functional redundancy 

such that Bak deficiency alone has no obvious phenotype, and Bax-deficient mice behave 

normally with limited phenotypic abnormalities such as male sterility. On the other hand, 

the majority of mice lacking both genes die perinatally, and the fewer than 10 % that 

survive into adulthood show various developmental abnormalities in the digits, female 

reproductive tract, and the central nervous system, as well as increased numbers of 

hematopoietic precursors and mature lymphocytes (Lindsten et al., 2000). Also, Bax/Bak 

DKO mouse embryonic fibroblasts (MEFs) are completely resistant to caspase-dependent 

apoptosis triggered by all of the tested intrinsic death signals as well as overexpression of 

BH3s, suggesting that BAX and BAK constitute an essential gateway in regulating 

intrinsic cell death pathway downstream of the BH3-only subfamily (Cheng et al., 2001; 

Wei et al., 2001; Zong et al., 2001). In addition, a study using Bax/Bak DKO MEFs 

defined BAX and BAK as a critical cell death gateway at the ER against apoptotic signals 

that affect Ca2+ release from the ER (Scorrano et al., 2003). 

The BH3-only family member BIM was shown to be essential for 

developmentally programmed apoptosis of thymocytes in mammals. Bim-deficient mice 

show abnormal accumulation of lymphoid and myeloid cells, and lymphocytes are 

resistant to cytokine deprivation and calcium ion flux, emphasizing a critical role for BIM 

in the hematopoietic system (Bouillet et al., 1999). Importantly, loss of a single allele of 



 7

Bim prevents the fatal polycystic kidney disease and lymphopenia of Bcl-2-/- mice, 

suggesting that BIM acts downstream of BCL-2 in the same apoptosis-regulatory 

pathway (Bouillet et al., 2001). Bid-/- mice are resistant to Fas-induced hepatocyte 

apoptosis and fatal hepatitis (Yin et al., 1999). Cells derived from Puma-/- mice are 

profoundly resistant to DNA damage, cytokine deprivation, glucocorticoid, and phorbol 

ester (Jeffers et al., 2003; Villunger et al., 2003). In contrast, knockout mice deficient for 

other BH3s exhibit only mild phenotypic abnormalities. Interestingly, BH3-only double 

knockout (DKO) mice reveal additional defects that are not observed in single knockout 

mice. For example, while loss of PUMA alone does not cause any obvious defect in 

lymphocyte development, Bim/Puma DKO mice exhibit hyperplasia of lymphatic organs 

exceeding the hyperplasia observed in Bim-/- mice (Erlacher et al., 2006). Moreover, the 

combined loss of BIM and PUMA promotes spontaneous tumorigenesis, causing the 

similar malignancies observed in the Bcl-2 transgenic mice (Erlacher et al., 2006). On the 

other hand, it was reported that Bid/Bim DKO mice mostly resemble single knockout 

mice (Willis et al., 2007). These results imply that generation of mice with more than two 

BH3-only knockouts is necessary to uncover additional compound phenotypes.  

Knockouts of the anti-apoptotic BCL-2 members validate their important 

prosurvival function in specific tissues or cell types, reflecting their unique expression 

patterns. Bcl-2-/- mice are normal at birth but exhibit severe defects with age in their 

immune system, hair follicles, and renal epithelial cells ultimately developing polycystic 

kidney disease (Veis et al., 1993). Bcl-x-/- mice survive only until E13.5 due to severe 

apoptosis of neuronal and hematopoietic cells (Motoyama et al., 1995). Also, genome-

wide N-ethyl-N-nitrosourea (ENU) mutagenesis of mice identified the mutations in BCL-
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XL that limit the life span of platelets, and accordingly, Bcl-xL heterozygous knockout 

mice exhibit thrombocytopenia (Mason et al., 2007). Mcl-1-/- mice show peri-

implantation embryonic lethality, and conditional knockout reveals the importance of 

MCL-1 in maintaining the survival and development of hematopoietic stem cells, 

thymocytes, and B lymphocytes (Opferman et al., 2003; Opferman et al., 2005; 

Rinkenberger et al., 2000). 

 

1.4. Regulation of BAX/BAK activation  

While proapoptotic multidomain BAX and BAK are essential downstream 

effectors, they need to be activated by BH3s to homo-oligomerize and mediate 

cytochrome c release. Since BAX and BAK are abundantly expressed in healthy cells, 

their activity must be tightly kept in check (Cheng et al., 2001; Lindsten et al., 2000; Wei 

et al., 2001). Both BAX and BAK contain a C-terminal hydrophobic transmembrane 

domain, which is utilized by other BCL-2 family members for mitochondria targeting 

(Nguyen et al., 1993). Indeed, BAK is an integral membrane protein that is tail-anchored 

at the mitochondrial outer membrane. Genetic and biochemical analyses identified the 

mitochondria outer membrane protein voltage-dependent anion channel 2 (VDAC2) to be 

responsible for BAK inhibition (Cheng et al., 2003). BAK, but not BAX, interacts with 

the mammalian-restricted VDAC2 isoform, but not with the more abundant VDAC1. 

VDAC2 prevents BAK self-oligomerization by directly binding to the dimerization 

pocket of BAK. Therefore, VDAC2 specifically inhibits BAK-dependent mitochondrial 

apoptosis. Importantly, genetic deletion of Vdac2 in the thymus results in excessive cell 

death with hypersensitivity to diverse death stimuli, which is completely rescued by the 
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concurrent deletion of Bak, but not Bax, emphasizing the role of the VDAC2-BAK axis 

in regulating thymocytes homeostasis (Ren et al., 2009).  

On the other hand, BAX mainly resides in the cytosol as an inactive monomer, 

and during the early stage of apoptosis, it translocates from the cytosol to mitochondria 

(Hsu and Youle, 1997; Wolter et al., 1997). The solution structure of human BAX was 

determined by NMR (nuclear magnetic resonance) spectroscopy (Suzuki et al., 2000) 

(Fig. 1.2A). The resolved three-dimensional structure indicated that BAX adapts an auto-

inhibited conformation such that the C-terminal transmembrane α9 helix is folded back 

into the hydrophobic dimerization pocket composed of BH1, BH2, and BH3 domains; 

therefore the contacts between the α9 helix and the BH3 binding pocket prevents dimer 

formation and mitochondrial targeting (Suzuki et al., 2000). This implies that an energy-

driven conformational change may be required to free the α9 helix from the dimerization 

pocket. Furthermore, it is conceivable that the auto-inhibited conformation of BAX is 

stabilized by its associated protein. Indeed, several cytosolic retention factors of BAX 

have been reported to modulate BAX activation. These include cytosolic Ku70, a small 

peptide humanin, 14-3-3 isoforms (σ, θ, ε, and ζ), αA- and αB-crystallin, and the 

apoptosis repressor with caspase-recruitment domain (ARC) (Guo et al., 2003; 

Gustafsson et al., 2004; Mao et al., 2004; Nam et al., 2004; Nomura et al., 2003; Samuel 

et al., 2001; Sawada et al., 2003). However, these identified BAX inhibitors do not 

appear to provide a universal mechanism to control BAX activation, and their 

significance in regulating BAX activation is not convincing.  

How BAX/BAK is activated upon the presence of death stimuli is not fully 

understood. It is known, however, that BH3s induce conformational changes and homo-
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oligomerization of BAX/BAK (Korsmeyer, 2000; Reed, 2006). For instance, tBID was 

shown to induce conformational change of BAX to trigger mitochondrial translocation 

and homo-oligomerization of BAX at the mitochondrial outer membrane (Desagher et al., 

1999; Eskes et al., 2000). tBID was also able to disrupt the BAK-VDAC2 complex to 

release BAK allowing its homo-oligomerization and subsequent cytochrome c release 

(Cheng et al., 2003; Wei et al., 2000).  

The monoclonal BAX 6A7 antibody is commonly used to identify the 

rearrangement of BAX conformation since its epitope, N-terminal amino acids 12-24, is 

inaccessible when BAX is in its inactive conformation but becomes exposed during BAX 

activation (Desagher et al., 1999; Hsu and Youle, 1998; Nechushtan et al., 1999). 

Crystallization of the complex between 6A7 antibody and the epitope peptide suggests 

that a significant remodeling of the BAX N-terminal region is required during apoptosis 

(Peyerl, 2006). Consequently, N-terminal exposure of BAX has been routinely used as a 

marker for BAX activation, but its correlation with mitochondria translocation and homo-

oligomerization remains obscure. For instance, some studies have suggested that N-

terminal exposure can be reversible in the presence of lipid and is insufficient for 

commitment to apoptosis (Makin et al., 2001; Yethon et al., 2003). 

Several lines of evidence indicate that major conformational changes in the N-

terminal and C-terminal regions are important for initiating BAX activation and targeting 

to mitochondria (Lalier et al., 2007). An N-terminal region of 19 amino acids named 

ART (apoptosis-regulating targeting domain) was shown to repress BAX targeting to the 

mitochondria, and ART-deleted BAX caused enhanced cytotoxicity after transfection 

(Goping et al., 1998). The hydroxyl group of Ser184 in the α9 helix forms a hydrogen 



 11

bond with the carboxyl group of Asp98 in the α4 helix, and S184V/∆S184 mutation in the 

C-terminal α9 helix causes BAX to localize at the mitochondria in healthy cells 

(Nechushtan et al., 1999; Suzuki et al., 2000). C-terminal deletion of BAX results in the 

exposure of N-terminus, implying that N- and C- termini may be functionally connected 

to regulate BAX function (Nechushtan et al., 1999). Also, mutagenesis of amino acids 

located upstream of the α9 transmembrane region revealed that Pro168 regulates N-

terminal exposure and the release of the C-terminal region (Schinzel et al., 2004). 

Interestingly, the α1 helix of BAX was shown to interact with BID and PUMA, and the 

inhibition of the physical interaction between them could prevent BAX activation 

(Cartron et al., 2004). In addition, our recent structural analysis defined the α1 and α6 

helices with an interhelical junction as the binding site for BIM BH3 peptide to trigger 

BAX activation, which is located opposite to the conventional hydrophobic pocket 

(Gavathiotis et al., 2008). These studies suggest that interaction of BH3s with the N-

terminus of BAX may contribute to initiating the conformational change of BAX.  

The other critical step for BAX/BAK activation is homo-oligomerization at the 

mitochondria during apoptosis, which is responsible for the permeabilization of 

mitochondrial outer membrane to release apoptogenic factors. Enforced dimerization of 

FKBP (FK506 binding protein)-BAX induced by the FK1012 ligand targeted BAX 

chimera to mitochondria and induced apoptosis (Gross et al., 1998). Upon treatment with 

tBID, BAX was shown to form a higher-ordered oligomeric complex at the mitochondria 

that was captured by chemical cross-linkers (Eskes et al., 2000). Gel filtration analysis of 

BAX from isolated mitochondria after death stimuli also demonstrated the appearance of 

large molecular weight oligomers/complexes (Antonsson et al., 2001). A study using 
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recombinant BAX in the liposome indicate that it can form ~ 22 Å tetrameric pores that 

are capable of mediating the initial efflux of cytochrome c (Saito et al., 2000). It also 

highlights the importance of tetramers rather than dimers in permeabilizing membranes. 

Furthermore, tBID- or detergent-activated BAX was sufficient to produce supramolecular 

openings in the liposome that could allow the translocation of large molecules (Kuwana 

et al., 2002). tBID induces a distinct conformational change of BAK that is revealed by 

an altered pattern of trypsin-digested BAK and by the formation of higher-ordered BAK 

oligomers in the mitochondrial membrane (Cheng et al., 2003; Wei et al., 2000). During 

BAK activation, BAK was shown to expose its BH3 domain to form homo-dimers 

through BH3:groove interactions, which would nucleate the formation of BAK oligomers 

(Dewson et al., 2008). However, the precise molecular mechanisms by which BAX/BAK 

is activated by BH3s remain largely unknown.  

 

1.5. Interplay of BCL-2 family members for survival/death decision 

 Homo-dimerization and hetero-dimerization are one of the signature 

characteristics of BCL-2 family proteins. These interactions are known to determine the 

prodeath or prosurvival activity of BCL-2 subfamily members. The conserved BH 

domains drive interactions among various BCL-2 members. Three-dimensional structure 

of BCL-XL and a peptide spanning the BH3 domain of BAK revealed that the 

amphipathic helix of the BAK BH3 motif containing a leucine and three conserved 

hydrophobic residues occupies the hydrophobic pocket made from the BH1, BH2, and 

BH3 domains of BCL-XL (Sattler et al., 1997) (Fig. 1.2B). Subsequent structural studies 

of BCL-XL/BAD and BCL-XL/BIM further supported the general mode of interaction 



 13

between the α-helical BH3 domain and the hydrophobic pocket (Liu et al., 2003; Petros 

et al., 2000). 

Among BH3s, murine Bid was first cloned by its ability to interact with BAX and 

BCL-2 during protein interactive cloning; it was further demonstrated that the intact BH3 

domain of BID is required for it to bind to the BH1 domain of BCL-2 and BAX (Wang et 

al., 1996). The overall three-dimensional structure of BID that contains two central 

hydrophobic core helices resembles the pore-forming domains found in BCL-XL and the 

bacterial pore-forming toxins of diphtheria toxin fragment B and colicin, raising the 

possibility that the activated form of BID may permeabilize the mitochondrial outer 

membrane by itself (Chou et al., 1999; McDonnell et al., 1999). However, BAX and 

BAK were proven to be required for BID-induced cytochrome c release since the 

activated form of BID, tBID (truncated BID; p15 BID) could not trigger cytochrome c 

release in the absence of BAX/BAK, nor could it alone permeabilize liposomes (Kuwana 

et al., 2002; Wei et al., 2000; Wei et al., 2001). Therefore, tBID functions as a membrane 

targeting death ligand that regulates the activity of the death receptor BAK rather than as 

a direct pore-forming protein responsible for cytochrome c release (Korsmeyer, 2000) 

(Fig. 1.3).  

In contrast, the most critical function of anti-apoptotic BCL-2 members is to be 

the binding and sequestration of BH3s. Overexpression of anti-apoptotic BCL-2 or BCL-

XL could sequester tBID into stable mitochondrial complexes, thus preventing 

BAX/BAK activation (Cheng et al., 2001). Seminal structural and biochemical studies 

revealed that BH3s display binding specificities with selected multidomain BCL-2 

members (L. O'Connor, 1998; Oda et al., 2000; Wang et al., 1996; Yang et al., 1995). 
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Based on these observations, it was proposed that BH3s can either activate BAX/BAK or 

inactivate BCL-2/BCL-XL/MCL-1 according to their selective interactions to promote 

apoptosis (Kelekar and Thompson, 1998). This “two-class” model of BH3s was 

experimentally validated using BH3 domain peptides derived from various BH3s. The 

peptides derived from the α-helical BH3 domains of BID and BIM directly trigger 

BAX/BAK oligomerization causing mitochondria outer membrane permeabilization, thus 

BID and BIM are termed ‘activator’ BH3s (Letai et al., 2002). BAD- and NOXA-BH3 

peptides, on the other hand, induce BAX/BAK activation indirectly by serving as 

‘sensitizer’ BH3s that antagonize the ability of anti-apoptotic BCL-2 members to 

sequester tBID (Letai et al., 2002). Interestingly, anti-apoptotic BCL-2, BCL-XL, and 

MCL-1 are selectively antagonized by a different subset of BH3s since they do not 

interact equivalently with sensitizer BH3s. For instance, BAD-BH3 peptides show 

selective binding affinity to BCL-2, BCL-XL, and BCL-W, while MCL-1 and A1 are 

primarily occupied by NOXA-BH3 peptides (Chen et al., 2005; Kuwana et al., 2005; 

Letai et al., 2002). However, these peptide binding studies have limitations in that the 25-

26 amino acid fragments of the BH3 peptide may not fully recapitulate the regulatory 

function of full-length proteins. Furthermore, such dual classification has not been 

validated in vivo.  

The interaction between activator BH3s and BAX has been demonstrated by 

various methodologies such as bacterial two-hybrid, immunoprecipitation, and 

biochemical studies (Cartron et al., 2004; Harada et al., 2004; Marani et al., 2002). 

However, low binding affinity between activator BH3s and BAX casts doubt on the 

existence of activator BH3-driven BAX/BAK activation. Instead, an alternative model 
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proposes that BAX and BAK are constantly kept in check by interacting with anti-

apoptotic BCL-2 members, and that the disruption of the interaction between BAX/BAK 

and anti-apoptotic BCL-2 members by BH3s is necessary and sufficient to trigger 

BAX/BAK activation (Adams and Cory, 2007). In this model, activation of BAX/BAK 

occurs by default as long as BAX/BAK is no longer inhibited by anti-apoptotic BCL-2 

members (Chen et al., 2005; Willis et al., 2005; Willis et al., 2007).  

 However, further evidence of activator BH3-mediated BAX activation was shown 

by a synthetic liposome system where the combination of recombinant tBID or BID/BIM 

BH3 domain peptides and BAX protein is sufficient to induce BAX oligomerization and 

membrane permeabilization (Kuwana et al., 2002; Kuwana et al., 2005; Walensky et al., 

2006). In addition, the strategy of employing hydrocarbon-stapled BH3 peptides to 

increase the α-helicity and stability of the short BH3 motif enhances the binding affinity 

between BAX and the BID/BIM BH3 domains (Walensky et al., 2004; Walensky et al., 

2006). Furthermore, FRET (fluorescence resonance energy transfer) analysis of the 

liposome system allowed for the observation of an ordered series of tBID-induced BAX 

activation and membrane permeabilization, as well as displacement of tBID from BCL-

XL by BAD (Lovell et al., 2008). Taken together, these studies clearly support the direct 

activation model where activator BH3s directly engage BAX/BAK to trigger BAX/BAK-

dependent mitochondrial apoptosis.  

 

1.6. The BCL-2 family as a regulator of mitochondrial physiology 

 The mitochondrion serves as a powerhouse of cells by generating cellular ATP 

through oxidative phosphorylation coupled with electron transport (Newmeyer and 
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Ferguson-Miller, 2003). Therefore, in addition to the release of apoptogenic factors by 

mitochondrial outer membrane permeabilization, the regulation of mitochondrial 

physiology is also an important control point for cell death. The voltage-dependent anion 

channel (VDAC) is responsible for the exchange of cytosolic ADP and mitochondrial 

ATP, and it also facilitates the passage of other metabolic anions including creatine 

phosphate, succinate, and pyruvate across the mitochondrial outer membrane (Hodge and 

Colombini, 1997). The inner membrane contains the adenine nucleotide translocator 

(ANT), which regulates the ATP/ADP transport between the matrix and the 

intermembrane space. Continuous exchange of ATP/ADP across the VDAC/ANT 

channels is crucial for ATP synthase to produce ATP by dissipating proton gradient 

generated by the electron flow through the electron transport chain. Therefore, limitation 

of the substrate for ATP synthase due to the defect of the VDAC/ANT channels causes 

inner membrane hyperpolarization by the accumulation of hydrogen ion in the 

intermembrane space. This leads to increased production of reactive oxygen species 

(ROS) and matrix swelling, ultimately causing mitochondrial dysfunction and cell death 

(Vander Heiden and Thompson, 1999). BCL-XL was shown to prevent growth factor 

withdrawal-induced cell death by maintaining ATP/ADP transport across the 

mitochondrial outer membrane through keeping VDAC in its open configuration (Vander 

Heiden et al., 1999; Vander Heiden et al., 2000; Vander Heiden et al., 2001).  

 Besides releasing cytochrome c directly from mitochondria, multidomain pro-

apoptotic BCL-2 members also contribute to mitochondrial dysfunction that elicits cell 

death. BAX overexpression triggers cell death in the presence of caspase inhibitors, 

suggesting the existence of caspase-independent mitochondrial dysfunction (Xiang et al., 
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1996). Moreover, it was shown that overexpression of BH3s kills Apaf-1- or caspase- 

deficient cells by caspase-independent mitochondrial dysfunction (Cheng et al., 2001). 

BAX was shown to induce mitochondrial hyperpolarization and growth arrest in S. 

cerevisiae, which was dependent on the presence of respiratory chain components 

suggesting that BAX-induced cell death requires respiratory activity to generate ROS or 

affect ATP production (Gross et al., 2000; Harris et al., 2000). Taken together, BCL-2 

family proteins play an essential role in regulating not only mitochondria-dependent 

caspase activation but also mitochondrial physiology. 

 

1.7. Significance  

Our understanding of BCL-2 family members and how their interactions 

determine the cellular commitment to apoptosis have substantially expanded over the past 

decades. Thanks to elaborate cell biology, biochemistry, and genetic studies, there is 

general consensus that BCL-2 subfamily members interact among others to play a unique 

role in regulating both developmental processes and adult tissue homeostasis via 

mitochondrion-centered cell death. However, the order of interactions and their relative 

contributions to cell survival versus death have largely remained unsolved. Although a 

“two-class” model has been proposed to delineate the functional differences among the 

different BH3-only sets, a detailed functional map of dynamic interactions among BCL-2 

subfamily members has not yet been established. The reagents have been limited to the 

synthetic peptides derived from the conserved BH3 domain or bacterially expressed 

proteins of certain BH3s. In addition, the activation process by which BH3s relay 

apoptotic signals to the downstream effector BAX/BAK is still a matter of intense debate 
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despite extensive research in the apoptosis field. This has been largely due to the 

difficulty in capturing the defined structure and conformation of BAX/BAK during the 

activation process, including interaction with BH3s, translocation/membrane insertion, 

and oligomerization. Moreover, conflicting experimental results regarding the 

intermolecular binding partners of proapoptotic BAX/BAK in initiating BAX/BAK 

activation have prevented the formulation of a clear picture of how the BAX/BAK-

dependent cell death program is regulated by upstream BH3s. Although the structure of 

BAX has been revealed by an NMR structural study, how the auto-inhibitory 

configuration is relieved to initiate BAX translocation to mitochondria is among the few 

of numerous unanswered questions regarding the activation of BAX.  

This thesis addresses some of these critical questions. In chapter 2, I assess the 

dynamic interconnection among BCL-2 subfamily members and investigate how this 

intricate interplay governs cellular commitment to survival versus death. In chapter 3, I 

dissect the molecular mechanism by which BAX/BAK is activated by upstream BH3s to 

initiate the mitochondrial apoptotic program. In chapter 4, I expand the scope of my 

thesis to study how activated BAK triggers mitochondrial dysfunction to promote cell 

death independently of cytochrome c-initiated caspase activation.  

In summary, the work described here will substantially improve the current 

understanding of how BCL-2 family members regulate mitochondrion-dependent cell 

death program. In addition, it gives new insights into how the proapoptotic BCL-2 

member can integrate the core apoptotic cell death pathway and mitochondrial 

physiology to determine cellular life and death.  
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1.8. Figure legends 

 

Figure 1.1. Schematic summary of three BCL-2 subfamily members 

BCL-2 family members are divided into three subfamilies based on the composition of 

BCL-2 homology (BH) domains and their death regulatory activities.  

 

Figure 1.2. The NMR Structure comparison of BAX monomer and BCL-XL/BAK 

BH3 peptide complex 

(A) Ribbon representation of BAX structure that shows auto-inhibitory conformation. 

Each nine α-helix is designated with a different color.  

(B) Ribbon representation of BCL-XL complexed to the BAK BH3 domain 

(GQVGRQLAIIGDDINR) peptide.  The BAK BH3 peptide (gold) binds to a 

hydrophobic cleft formed by the BH1, BH2, and BH3 domains of BCL-XL.  

Bottom panels: close-up views of the hydrophobic pocket occupied by the α9 helix of 

BAX, and a similar view of the peptide-binding pocket in BCL-XL. Overall configuration 

of the complex between BCL-XL/BAK BH3 and BAX/α9 helix exhibits high similarity 

although the BAK peptide is bound to the hydrophobic pocket in reverse orientation to 

the α9 helix of BAX. (Mitchell, 2001) 

 

Figure 1.3. Schematic model of pro-apoptotic activation cascade 

The pro-apoptotic tBID ligand allosterically regulates the activation of death receptor 

BAK to integrate the apoptotic pathway from upstream death signals to cytochrome c 

release from mitochondria. (Korsmeyer, 2000) 
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1.9. Figures 

Figure 1.1 
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Figure 1.2 

 

 

 

   A. BAX                                              B. BAK BH3/BCL-XL 
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Figure 1.3 
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- CHAPTER 2 - 

 

Hierarchical Regulation of Mitochondrion-Dependent Apoptosis 

By BCL-2 Subfamilies 

 

(The content of this chapter was published as Kim et al., (2006) Nature Cell Biol. 8:1348-

58) 
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2.1. Summary 

 

Although the BCL-2 family constitutes a crucial checkpoint in apoptosis, the 

intricate interplay between these family members remains elusive. Here, we demonstrate 

that BIM and PUMA, similar to truncated BID (tBID), directly activate BAX/BAK to 

release cytochrome c. Conversely, anti-apoptotic BCL-2/BCL-XL/MCL-1 sequesters 

these ‘activator’ BH3-only molecules into stable complexes, thus preventing the 

activation of BAX/BAK. Extensive mutagenesis of BAX/BAK indicates that their 

activity is not kept in check by BCL-2/BCL-XL/MCL-1. Anti-apoptotic BCL-2 members 

are differentially inactivated by the remaining ‘inactivator’ BH3-only molecules 

including BAD, NOXA, BMF, BIK/BLK and HRK/DP5. BAD displaces tBID, BIM or 

PUMA from BCL-2/BCL-XL to activate BAX/BAK, whereas NOXA specifically 

antagonizes MCL-1. Coexpression of BAD and NOXA killed wild-type but not Bax/Bak 

doubly deficient cells or Puma deficient cells with Bim knockdown, indicating that 

activator BH3-only molecules function downstream of inactivator BH3-only molecules to 

activate BAX/BAK. Our data establish a hierarchical regulation of mitochondrion-

dependent apoptosis by various BCL-2 subfamilies. 
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2.2. Introduction 

 

Apoptosis, or programmed cell death, results from the activation of an 

evolutionarily conserved genetic pathway (Horvitz, 2003). Apoptosis manifests in 

irreversible damage to cellular constituents through caspase activation and mitochondrial 

dysfunction (Danial and Korsmeyer, 2004; Degterev et al., 2003). Mammals evolved a 

more complex regulation of caspase activation with the involvement of mitochondria, 

namely the requirement for cytochrome c (Green and Reed, 1998; Wang, 2001). The 

BCL-2 family members are major regulators of mitochondrial integrity and 

mitochondrion-initiated caspase activation (Cory and Adams, 2002).  

The BCL-2 family possesses both anti-apoptotic and proapoptotic members and 

is divided into three subclasses, defined by the homology shared within four conserved 

BCL-2 homology domains (BH1–4) (Cory and Adams, 2002; Danial and Korsmeyer, 

2004). The anti-apoptotics, including BCL-2, BCL-XL, MCL-1, A1 and BCL-W, display 

sequence conservation through BH1–4. Proapoptotics are further subdivided into more 

fully conserved, 'multidomain' members (BAX and BAK) possessing homology in BH1–

3 or BH3-only molecules (BH3s). Cells deficient for BAX and BAK proved resistant to 

tested intrinsic death signals (Lindsten et al., 2002; Wei et al., 2001). In viable cells, 

multidomain proapoptotics exist as inactive monomers in the cytosol (BAX) or at the 

mitochondria (BAK) (Hsu et al., 1997). Genetic and biochemical studies indicate that 

voltage-dependent anion channel (VDAC)-2 is a specific inhibitor of BAK (Cheng et al., 

2003). Following death stimuli, BAX inserts into the mitochondrial outer membrane 

(MOM) as homo-oligomers, while BAK also homo-oligomerizes, resulting in the 
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permeabilization of the MOM with release of intermembrane space (IMS) proteins, 

including cytochrome c (Wei et al., 2000; Antonsson et al., 2001). Deficiency of BAX 

and BAK conferred long-term protection from apoptosis triggered by all BH3s, 

positioning the BH3-only subfamily upstream of multidomain BAX/BAK (Cheng et al., 

2001; Zong et al., 2001). 

Recently, peptides of the α-helical BH3 domains provided evidence for a two-class 

model in which BID and BIM directly activated BAX/BAK, whereas the BAD- and 

NOXA-like BH3 peptides served as 'sensitizing' or 'derepressor' domains capable of 

antagonizing BCL-2-, BCL-XL- or MCL-1-mediated inhibition of BID (Kuwana et al., 

2005; Letai et al., 2002). However, it remains unclear whether fragments of 25–26 amino 

acids recapitulate the activity of full-length proteins in regulating apoptosis. Furthermore, 

the significance of such classification has not been fully validated in vivo. Emerging 

evidence suggests that anti-apoptotic BCL-2s are selectively inactivated by different 

BH3s, but most studies were only focused on BAD/NOXA or based on studies of BH3 

peptides (Chen et al., 2005; Kuwana et al., 2005; Letai et al., 2002). A detailed functional 

map of how BH3s antagonize anti-apoptotic BCL-2s is absent. Finally, it remains 

debatable whether anti-apoptotic BCL-2s directly inhibit BAX/BAK and/or sequester 

BH3s. 

Here, we reassessed the 'two-class' model of BH3s using full-length proteins and 

found that similarly to tBID, both BIM and PUMA were activators of BAX/BAK. The 

remaining BH3s selectively inactivated anti-apoptotics by preventing their sequestration 

of activator BH3s. Moreover, we demonstrated that BIM and PUMA were required for 

BAD and NOXA to kill cells, establishing the hierarchy of the proapoptotic BCL-2 
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signaling cascade. Finally, instructive mutants of BAX and BAK indicated that their 

activity was not kept in check by anti-apoptotic BCL-2/BCL-XL/MCL-1. The principal 

role of anti-apoptotic BCL-2s in preventing apoptosis is to tie up activator BH3s, thereby 

preventing these activators from triggering BAX/BAK activation. Our studies provide 

insights into how the interplay between various BCL-2 subfamilies determines cell 

commitment to survival versus death. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 28

2.3. Materials and Methods 

 

Plasmid construction and retrovirus production 

The indicated Bcl-2 members were cloned into pSG5 (Stratagene, La Jolla, CA) 

or pCDNA3 (Invitrogen, Carlsbad, CA) for IVTT experiments and the retroviral 

expression vector MSCV–IRES–GFP (pMIG) or MSCV–Puro (Clontech, Mountain 

View, CA). Mutant Bax (L70A and D71A) and mutant Bak (I82A and N83A) were 

generated by PCR-based site-directed mutagenesis. All the constructs were confirmed by 

DNA sequencing. Bim-knockdown construct cloned into pSuper–Retro–Puro 

(Oligoengine, Seattle, WA) was described previously (Harada et al., 2004). The 

production of amphotropic retroviruses using 293GPG packing cell line was performed 

as described previously (Cheng et al., 2001). Retroviral plasmids were transfected using 

FuGene (Roche, Mannheim, Germany) according to the manufacturer's protocols. 

Retroviral transduction of each indicated BCL-2 family protein was confirmed by 

Western blotting. 

 

Cell culture, cell transfection and viability assay 

All the MEFs used in the experiments were SV40 transformed and maintained in 

Dulbecco's modified Eagles medium supplemented with 10% fetal bovine serum 

following standard culture conditions and procedures. Reconstitution of BAX or BAK 

into DKO cell was achieved by retroviral transduction of BAX–IRES–GFP or BAK–

IRES–GFP, followed by MoFlo (DakoCytomation, Carpenteria, CA) sorting for GFP-

positive cells. Expression plasmids were transfected using Lipofectamine 2000 
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(Invitrogen) according to the manufacturer's instructions. Cell death was quantified by 

Annexin-V–Cy3 (BioVision, Mountain View, CA) staining according to manufacturer's 

protocols, followed by flow cytometric analysis using a FACS Caliber (BD Bioscience, 

San Jose, CA) and CellQuest software. P values for statistical analyses were obtained 

using Student's t test. 

 

Peptides and in vitro transcription-translation of proteins 

BH3 peptides of NOXA (VPADLKDECAQLRRIGDKVNLRQKL) and BAD 

(NLWAAQRYGRELRRMs.d.EFVDSFKK) were synthesized by Tufts University Core 

Facility (Boston, MA). In vitro transcription and translation reactions were performed 

with TNT Quick Coupled Transcription/Translation Systems (Promega, Madison, WI) 

with non-radiolabeled or 35S-labelled methionine (Amersham, Piscataway, NJ). All the 

constructs generated full-length BCL-2 family proteins with the expected molecular 

weights detected by autoradiography. 

 

Cytochrome c-release assay, protein crosslinking and mitochondrial targeting of 

BH3-only molecules 

Mitochondria purification and cytochrome c-release assays were performed as 

described previously (Cheng et al., 2001). Quantitation of cytochrome c release was 

performed using colorimetric ELISA assays (MCTC0; R&D Systems, Minneapolis, MN). 

To obtain the percentage of cytochrome c release, the amount of cytochrome c present in 

mitochondrial supernatant was divided by total cytochrome c present in both 

mitochondrial supernatant and pellet. Crosslinking of BAX and BAK was performed as 
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previously described (Cheng et al., 2001; Cheng et al., 2003). Briefly, 10 mM solution of 

bismaleimidohexane (BMH) or disuccinlmidyl suberate (DSS) cross-linker (Pierce, 

Rockford, IL) in DMSO was added to mitochondria for 30 min at room temperature. 

Mitochondrial targeting of in vitro transcribed-translated BH3-only proteins was 

previously described (Wei et al., 2000). 

 

Antibodies, Western blot analysis and coimmunoprecipitation 

Antibodies used for Western blot analyses included: anti-BAK (Upstate 

Biotechnology, Lake Placid, NY), anti-BAX (N-20, Santa Cruz Biotechnology, Santa 

Cruz, CA), anti-MCL-1 (S-19, Santa Cruz Biotechnology), polyclonal anti-BCL-XL (Cell 

Signaling Technology, Beverly, MA), monoclonal anti-BCL-XL (7B2, Southern Biotech, 

Birmingham, AL), anti-BCL-2 (6C8 or 3F11, BD Bioscience), anti-BAD (C-20, Santa 

Cruz Biotechnology), anti-BMF (Cell Signaling Technology) and anti-NOXA 

(Invitrogen). Cell or mitochondria lysates were resolved by 10% NuPAGE (Invitrogen) 

gels, transferred onto PVDF membrane (Immobilon-P, Millipore, Beford, MA). 

Antibodies were detected using the enhanced chemiluminescence method (Western 

Lightning, Perkin Elmer, Boston, MA) and LAS-3000 Imaging system (FUJIFILM Life 

Science, Tokyo, Japan). For coimmunoprecipitation, cells were lysed in 0.2% NP40 

isotonic buffer (0.2% NP40, 142.5 mM KCl, 5 mM MgCl2, 1 mM EGTA, 20 mM 

HEPES at pH 7.5) supplemented with complete protease inhibitors (Roche). Cell lysates 

were immunoprecipitated with anti-HA antibody (12CA5), anti-MCL-1 antibody (S-19, 

Santa Cruz Biotechnology), Anti-BCL-XL antibody (7B2.5), or anti-BCL-2 (3F11) 

antibody and separated by 10% NuPAGE (Invitrogen) gels. 
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Immunoprecipitation of in vitro transcribed-translated proteins 

Cotranslated proteins were immunoprecipitated with anti-HA antibody (12CA5) 

in 0.2% NP40 isotonic buffer supplemented with complete protease inhibitors (Roche). 

Immunoprecipitates were separated in 10% NuPAGE (Invitrogen) gels and detected by 

autoradiography. For competition experiments, non-radiolabeled IVTT BH3-only 

proteins serving as cold competitors were added at 1:1, 2.5:1 or 5:1 ratio compared with 

radiolabeled proteins. 
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2.4. Results 

 

BID, BIM and PUMA are activator BH3s that directly activate BAX/BAK 

Among BH3s, only tBID has been shown to exhibit cytochrome c releasing 

activity in vitro (Li et al., 1998; Luo et al., 1998). As most studies used BH3 peptides 

(Kuwana et al., 2005; Letai et al., 2002), it remains unclear whether peptides reflect the 

function of full-length proteins. We undertook a systematic approach to investigate the 

cytochrome c-releasing activity of ten BH3s using a coupled in vitro transcribed–

translated (IVTT) system. IVTT proteins of tBID, BIM-EL and PUMA effectively 

released cytochrome c from isolated mitochondria, whereas BAD, NOXA, BMF, BLK, 

HRK, BNIP3, and NIX failed to induce cytochrome c efflux with comparable 

mitochondrial targeting (Fig. 2.1A and Fig. S2.1A, B). Accordingly, the BH3s directly 

releasing cytochrome c were more potent death agonists (Fig. 2.1B and Fig. S2.1C, D). 

Retroviral transduction of tBID, BIM or PUMA in mouse embryonic fibroblasts (MEFs) 

resulted in >65% death at 24 h, whereas the remaining BH3s only induced <25% of 

apoptosis (Fig. 2.1B). The differential activity of BH3s was not due to quantitative 

difference (Fig. S2.1A, C). 

Single amino-acid substitutions or a deletion of seven amino-acid residues within 

the BH3 domain abolished the cytochrome c releasing activity of tBID, BIM-EL or 

PUMA, indicating that BH3 domain is essential for mitochondrial permeabilization (Fig. 

2.1C). Moreover, mitochondria isolated from Bax/Bak double knockout (DKO) MEFs 

proved resistant to tBID-, BIM-, or PUMA-induced cytochrome c translocation (Fig. 

2.1C). By analogy to tBID, BIM and PUMA directly activated BAX/BAK, resulting in 
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homo-oligomerization of BAX/BAK (Fig. 2.1D, E). Consequently, mitochondria isolated 

from either Bax-/- or Bak-/- cells were sensitive to tBID/BIM/PUMA-induced cytochrome 

c release (data not shown). We have previously demonstrated that VDAC2 specifically 

interacts with the inactive BAK conformer, preventing BAK activation (Cheng et al., 

2003). On apoptotic signals or treatment of mitochondria with tBID, BAK was released 

from VDAC2 to homo-oligomerize. Here, we showed that addition of BIM or PUMA to 

isolated mitochondria dissociated the BAK-VDAC2 complexes (Fig. 2.1F). Importantly, 

the BH3s lacking cytochrome c releasing activity were incapable of disrupting 

BAK/VDAC2 association or inducing BAX/BAK oligomerization (data not shown). 

 

BAK and BAX are not kept in check by BCL-2, BCL-XL or MCL-1 

In addition to VDAC2, BCL-XL and MCL-1 have been reported to keep BAK in 

check (Cuconati et al., 2003; Willis et al., 2005). We, and others, have shown that BCL-2 

is unlikely to control BAK activation as it lacks binding to the inactive BAK conformer 

(Cheng et al., 2003; Willis et al., 2005) (Fig. S2.2A). To further investigate BAK 

activation, extensive mutagenesis of BAK was performed in an attempt to generate BAK 

mutants that no longer interact with BCL-XL/MCL-1. If such a mutant were not a loss-of-

function mutant, it would be constitutively active under the assumption that BAK is 

solely inhibited by BCL-XL/MCL-1. A BAK mutant (BAKI82A & N83A) failed to be 

coprecipitated with HA-tagged BCL-XL or MCL-1 before or during apoptosis (Fig. 2.2A-

D). Reconstitution of this Bak mutant into DKO cells to a physiological level (Fig. S2.2B) 

restored killing by staurosporine and etoposide (Fig. 2.2E). Importantly, this mutant did 

not induce apoptosis without death stimuli despite its inability to heterodimerize with 
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BCL-XL/MCL-1, indicating that it must be regulated by proteins other than BCL-

XL/MCL-1. Indeed, this mutant was crosslinked to VDAC2 and coprecipitated with 

VDAC2 like wild-type BAK (Fig. 2.2F and Fig. S2.2C), suggesting that it was still 

inhibited by VDAC2. Furthermore, endogenous BCL-XL and MCL-1 could not be 

crosslinked to BAK (Fig. S2.2D). 

As BCL-XL and MCL-1 were identified as cytosolic inhibitors of mitochondrial 

permeabilization, and MCL-1 was proposed to play a pivotal role upstream of BAX 

translocation (Nijhawan et al., 2003), we tested whether BCL-XL and MCL-1 are 

pertinent to BAX activation. A BAX mutant (BAXL70A & D71A) that failed to be 

coprecipitated with endogenous BCL-XL or MCL-1 before or during apoptosis still 

conferred full or partial killing of DKO cells by staurosporine and etoposide, respectively 

(Fig. 2.3A-C). This BAX mutant also failed to interact with BCL-2 (Fig. S2.2E). As 

different BH3s are likely to be activated by staurosporine versus etoposide, this BAX 

mutant may be selectively activated by different BH3s. The instability of this BAX 

mutant protein following etoposide treatment also contributed to its inability to fully 

confer death susceptibility to DKO cells (Fig. 2.3C and Fig. S2.2B). Moreover, 

overexpression of BCL-XL, MCL-1 or BCL-2 in DKO cells reconstituted with either 

BAKI82A & N83A or BAXL70A & D71A protected cells from apoptosis (Fig. 2.3D, E and Fig. 

S2.2F), indicating that BCL-XL/MCL-1/BCL-2 does not inhibit apoptosis by directly 

antagonizing BAX/BAK. 

 

Anti-apoptotic BCL-2s inhibit apoptosis by sequestering activator BH3s 
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To interrogate how anti-apoptotic BCL-2s inhibit apoptosis, we examined 

whether the ability of anti-apoptotic BCL-2s to prevent apoptosis triggered by activator 

BH3s correlated with their sequestration of these BH3s. HA-tagged BCL-2, BCL-XL and 

MCL-1 coprecipitated tBID, BIM and PUMA effectively (Fig. 2.4A). Previously reported 

loss-of-function mutants of BCL-2 and BCL-XL were included as negative controls 

(Cheng et al., 2001). Consequently, overexpression of BCL-2, BCL-XL or MCL-1 

completely blocked apoptosis triggered by tBID, BIM or PUMA (Fig. 2.4B). Moreover, 

BCL-2/BCL-XL/MCL-1 protected DKO cells reconstituted with either BAKI82A & N83A or 

BAXL70A & D71A from BIM-induced apoptosis (Fig. 2.4C). Thus, the anti-apoptotic BCL-

2s act as sequestration sinks to tie up BH3-only activators of BAX/BAK, thus preventing 

the activation of BAX/BAK. 

To further confirm that activator BH3s activate BAX/BAK independent of anti-

apoptotic BCL-2s, we performed mutagenesis of tBID. One BH3 mutant of tBID 

(tBIDM97A & D98A) completely lost interaction with anti-apoptotic BCL-2/BCL-XL/MCL-1, 

but still induced apoptosis (Fig. 2.4D, E). These data not only highlight that activator 

BH3s induce apoptosis by directly activating BAX/BAK instead of inactivating anti-

apoptotic BCL-2s, but also suggest that endogenous BAX/BAK is not kept in check by 

anti-apoptotic BCL-2s. 

 

Inactivator BH3s displace activator BH3s from anti-apoptotic BCL-2s to activate BAX–

BAK 

BH3s have been proposed to selectively inactivate anti-apoptotic BCL-2s based 

on their interaction specificity. BAD bound well with BCL-2 and BCL-XL, but not MCL-
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1, whereas NOXA interacted only with MCL-1 ( Chen et al., 2005; Kuwana et al., 2005; 

Letai et al., 2002; Opferman et al., 2003). Based on our model that anti-apoptotic BCL-2s 

inhibit apoptosis by sequestering the activator BH3s, one possibility is that the remaining 

BH3s prevent anti-apoptotic BCL-2s from sequestering activator BH3s. MCL-1/BIM or 

BCL-XL/BIM heterodimers were detected by anti-HA immunoprecipitation of in vitro 

cotranslated BIM and HA-tagged MCL-1 or BCL-XL (Fig. 2.5A). NOXA reduced the 

heterodimerization between MCL-1 and BIM in a dose-dependent manner, whereas BAD 

effectively disrupted BCL-XL/BIM complexes (Fig. 2.5A). In contrast, BMF failed to 

abolish either MCL-1/BIM or BCL-XL/BIM interactions (Fig. 2.5A). To determine the 

functional relevance of these selective displacement reactions, we tested whether the 

expression of BAD, NOXA, BMF or BLK triggered apoptosis in cells coexpressing 

MCL-1/BIM or BCL-XL/BIM. We first expressed an equimolar ration of MCL-1 or 

BCL-XL versus BIM in wild-type MEFs using a retroviral system in which MCL-1 or 

BCL-XL expression was coupled to that of BIM through an internal ribosomal entry site 

(IRES). Coexpression of MCL-1 or BCL-XL abolished BIM-induced apoptosis. 

Subsequent expression of NOXA, but not BAD, BMF or BLK, triggered apoptosis in 

cells coexpressing MCL-1 and BIM (Fig. 2.5B). In contrast, only BAD killed cells 

coexpressing BCL-XL and BIM (Fig. 2.5B). The selective killing of BAD and NOXA 

was not observed in cells that only express BCL-XL
 or MCL-1, or in DKO cells (data not 

shown), indicating that BIM and BAX/BAK were essential downstream effectors of 

BAD/NOXA. The activity of these inactivator BH3s was also examined in cells 

expressing BCL-2 and BIM. BAD, but not NOXA, BMF or BLK, induced more 

apoptosis in cells expressing BCL-2 and BIM in comparison with wild-type cells (Fig. 
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2.5C). Similar findings were observed in PUMA-induced apoptosis in which BAD 

abolished the protection conferred by BCL-2 and BCL-XL, whereas NOXA antagonized 

MCL-1 (Fig. 2.5D and Fig. S2.3A). One critical question was whether NOXA and BAD 

were able to displace BIM or PUMA from anti-apoptotic BCL-2s to activate BAX/BAK. 

Indeed, the BAD BH3 peptide induced cytochrome c release in isolated mitochondria 

expressing BCL-XL/PUMA but not MCL-1/PUMA (Fig. 2.5E). Reciprocally, the NOXA 

BH3 peptide only permeabilized mitochondria expressing MCL-1/PUMA (Fig. 2.5E). 

We further investigated the effect of BAD/NOXA/BMF/BLK in opposing BCL-

2/BCL-XL/MCL-1-mediated inhibition of tBID-induced apoptosis. Expression of tBID 

killed wild-type, but not BCL-2/BCL-XL/MCL-1 overexpressing cells (Fig. 2.5F, G and 

Fig. S2.3B). Coexpression of BAD, BMF or BLK with BCL-2 or BCL-XL abrogated the 

protective effect of BCL-2 or BCL-XL against tBID (Fig. 2.5F, G). In contrast, NOXA 

had minimal effect on the anti-apoptotic activity of BCL-2/BCL-XL (Fig. 2.5F, G). These 

functional readouts were supported by the biochemical assays showing that BMF, but not 

NOXA, displaced tBID from BCL-XL (Fig. 2.5H). This was in stark contrast to the 

inability of BMF to antagonize BCL-XL against BIM because BMF was unable to release 

BIM from BCL-XL (Fig. 2.5A, B). Therefore, the ability of individual inactivator BH3s 

to antagonize specific anti-apoptotic BCL-2s is not simply determined by whether they 

interact. Instead, the relative binding affinity between activator or inactivator BH3s and 

anti-apoptotic BCL-2s governs the decision of survival or death (Table 2.1). Similarly to 

MCL-1-mediated inhibition of BIM, NOXA diminished the anti-apoptotic activity of 

MCL-1 against tBID (Fig. S2.3B). 
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It has been reported that BAD and NOXA cooperated to kill cells through 

simultaneous inhibition of BCL-XL and MCL-1 (Chen et al., 2005). Coexpression of 

BAD and NOXA was as potent as tBID/BIM/PUMA for inducing apoptosis in wild-type 

cells, but not in DKO cells, highlighting the essential role of BAX/BAK for the 

synergistic killing by BAD and NOXA (Fig. 2.6A). The cooperative effect of BAD and 

NOXA was equally evident in Bax or Bak single-knockout cells, indicating that either 

BAX or BAK alone could serve as a downstream effector (data not shown). As BAD and 

NOXA are unable to activate BAX/BAK, they must displace endogenous activator BH3s 

that are sequestered by BCL-2/BCL-XL/MCL-1 to activate BAX/BAK. BIM and PUMA 

would be obvious candidates as BID was not cleaved or activated by coexpression of 

BAD and NOXA (data not shown). Displacement of BIM by NOXA from MCL-1 was 

also demonstrated on DNA damage (Fig. S2.3E). Retrovirus-mediated stable knockdown 

of Bim conferred a statistically significant protective effect against apoptosis triggered by 

BAD and NOXA (Fig. 2.6A). Similarly, Puma homozygous-knockout cells exhibited 

decreased apoptosis induced by BAD and NOXA as compared with Puma heterozygous-

knockout cells (Fig. 2.6B). Most importantly, knockdown of Bim in Puma homozygous-

knockout cells provided marked protection against BAD- and NOXA-induced death (Fig. 

2.6B). Notably, these cells were still susceptible to PUMA-induced apoptosis (Fig. 

S2.3C). Although the lesser protection compared with DKO cells may simply reflect an 

incomplete Bim knockdown (Fig. S2.3D), we could not exclude the possible existence of 

yet identified activator BH3s. Nevertheless, these data establish a hierarchy for the 

proapoptotic BCL-2 signaling cascade in which activator BH3s, such as BIM and PUMA, 
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act downstream of inactivator BH3s, such as BAD and NOXA, to trigger BAX/BAK-

dependent death (Fig. 2.7). 

 

Differential regulation of anti-apoptotic BCL-2s by inactivator BH3s 

To define the specificity of inactivator BH3s against anti-apoptotic BCL-2s, we 

extended our studies to investigate the effect of BAD/NOXA/BMF/BLK/HRK on BCL-

2/BCL-XL/MCL-1 in response to staurosporine, etoposide, tunicamycin, thapsigargin and 

glucose withdrawal (Fig. 2.8 and Fig. S2.4A). We have established that BCL-2 and BCL-

XL are similarly affected by inactivator BH3s in response to death induced by 

tBID/BIM/PUMA, whereas MCL-1 was only inactivated by NOXA (Table 2.1). One 

critical question is whether BCL-2 and BCL-XL are functionally equivalent. The anti-

apoptotic activity of BCL-2 and BCL-XL against diverse death stimuli was differentially 

regulated by BAD, BMF, BLK and HRK (Fig. 2.8A, B). None of the inactivator BH3s 

was able to antagonize BCL-XL against staurosporine-induced apoptosis, whereas each of 

the BH3s, with the exception of NOXA, almost completely abolished the activity of 

BCL-XL in glucose-deprivation-induced death (Fig. 2.8B). BCL-2 was less opposed by 

inactivator BH3s compared with BCL-XL in tunicamycin- and thapsigargin-induced 

death (Fig. 2.8A, B). Although it has been reported that HRK interacts with both BCL-2 

and BCL-XL (Inohara et al., 1997), HRK selectively inhibited BCL-XL (Fig. 2.8A, B). 

BMF was originally cloned as an MCL-1-interacting protein (Puthalakath et al., 

2001), even though it did not bind as tightly as NOXA to MCL-1 (Fig. S2.4B). The 

physiological relevance of MCL-1/BMF interaction was reflected by the ability of BMF 

to antagonize MCL-1 in staurosporine-, etoposide- and thapsigargin-induced apoptosis 
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(Fig. 2.8C). As both activator and inactivator BH3s could be activated by these death 

stimuli, our assays potentially reflected additive or synergistic effects between the tested 

inactivator BH3s and those induced. Our data provided evidence that BCL-2, BCL-XL 

and MCL-1 are not functionally equivalent. 
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2.5. Discussion 

Although multidomain proapoptotic BAX and BAK are essential downstream 

effectors controlling the mitochondrion-dependent cell-death program, they need to be 

activated by the activator BH3s — BID, BIM and PUMA. Contradictory to previous 

reports showing that bacterially expressed BIM and PUMA were unable to trigger 

cytochrome c efflux (Cartron et al., 2004; Chipuk et al., 2005; Terradillos et al., 2002), 

we observed potent cytochrome c releasing activity of both IVTT proteins. As <1 ng of 

BIM/PUMA was generated by IVTT, less than 1 nM of BIM/PUMA was sufficient to 

mobilize all the intramitochondrial cytochrome c. This discrepancy may reflect 

misfolding of bacterially expressed BIM/PUMA. Alternatively, post-translational 

modification, such as phosphorylation, may be required to activate BIM/PUMA. The 

three isoforms of BIM exhibited comparable activity. Finally, the observation that the 

PUMA BH3 peptide is incapable of releasing cytochrome c further highlights the 

importance of using full-length molecules. Recently, cytosolic PUMA was proposed to 

displace p53 from BCL-XL, allowing p53 to permeabilize mitochondria (Chipuk et al., 

2005). Notably, p53 is at least 1,000 times less potent than PUMA in inducing 

mitochondrial permeabilization (Mihara et al., 2003). Consistent with a previous report 

that PUMA was localized at the mitochondria (Nakano and Vousden, 2001), we were 

able to utilize BAD or NOXA BH3 peptides to displace PUMA from BCL-XL or MCL-1 

from isolated mitochondria to release cytochrome c. Most importantly, PUMA effectively 

triggered cytochrome c efflux in p53 null cells (Fig. S2.1E) 

Heterodimerization between multidomain proapoptotic and anti-apoptotic BCL-2s 

is one of the signature characteristics of the BCL-2 family. However, functional 
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correlation of this heterodimerization is ambiguous. BAK was reported to interact 

selectively with BCL-XL and MCL-1, but not BCL-2, BCL-W, and A1 (Willis et al., 

2005). Nevertheless, both BCL-2 and BCL-XL inhibited BAK-dependent apoptosis in 

Bax-deficient cells equally well (data not shown). Our studies clearly demonstrate that 

BCL-2/BCL-XL/MCL-1 efficiently inhibits apoptosis in Bax/Bak DKO cells reconstituted 

with a BAX or BAK mutant that no longer interacts with BCL-2/BCL-XL/MCL-1. 

Therefore, anti-apoptotic BCL-2s do not block apoptosis through direct inhibition of 

BAX/BAK. Indeed, the anti-death activity of anti-apoptotic BCL-2s correlates well with 

their ability to sequester BAX/BAK activators (BID/BIM/PUMA). The competition for 

activator BH3s by multidomain anti-apoptotic and proapoptotic members may help 

explain why the ratio between these two multidomain subfamilies dictates the 

susceptibility to death. It is likely that the heterodimerization between multidomain 

proapoptotic and anti-apoptotic BCL-2s regulates other biological processes, such as 

calcium homeostasis (Li et al., 2002; Scorrano et al., 2003). Notably, the anti-apoptotic 

BCL-2s display much higher affinity for activator BH3s compared with proapoptotic 

BAX/BAK. The implication is that BAX/BAK will not be activated until all the 

hydrophobic pockets of anti-apoptotic BCL-2s are saturated with BH3s, thus providing a 

fail-safe mechanism to avoid unnecessary BAX/BAK activation. Interestingly, it seems 

that most, and probably all, intrinsic death signals activate both activator and inactivator 

BH3s simultaneously: DNA damage upregulates PUMA and NOXA (Nakano and 

Vousden, 2001; Oda et al., 2000; Yu, 2001); NGF deprivation induces BIM and HRK 

(Imaizumi, 1997; Putcha et al., 2001); and cytokine withdrawal activates BIM and BAD 
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(Dijkers et al., 2000). Thus, they not only activate BAX/BAK, but also inactivate anti-

apoptotic BCL-2s, ensuring that death occurs. 

Overexpression of VDAC2 inhibited apoptosis of Bax-/- cells, but not Bak-/- cells, 

supporting a selective role for VDAC2 in BAK-mediated death (Cheng et al., 2003). The 

specificity of VDAC2 in suppressing BAK was further demonstrated during Wilms 

Tumour 1 (WT1)-induced apoptosis (Morrison et al., 2005). In contrast, BCL-XL/MCL-1 

protected both Bax-/- and Bak-/- cells from apoptotic insults. Importantly, a BAK mutant 

(BAKI82A & N83A) that failed to bind BCL-XL/MCL-1 but retained interaction with 

VDAC2 was not constitutively active and functioned like wild-type BAK, requiring 

further activation by BH3s to trigger apoptosis. The potentially lethal BAK was 

apparently kept in check by VDAC2, but not by BCL-XL/MCL-1. Moreover, all the 

activator BH3s were able to displace BAK from VDAC2, enabling the released BAK to 

homo-oligomerize. An instructive BAX mutant also argued against a direct role of BCL-

2/BCL-XL/MCL-1 in antagonizing multidomain proapoptotics. 

Anti-apoptotic BCL-2s are not functionally equivalent. Thus, the phenotypes of 

knockouts deficient for a specific anti-apoptotic BCL-2 may not simply reflect their 

differential expression in various tissues. Instead, they may be dictated by tissue-specific 

signaling cascades involving different BH3s. We presented evidence that the activator 

BH3s were more potent death agonists compared with inactivator BH3s. This is 

consistent with more profound phenotypes observed in mice deficient for Bid/Bim/Puma 

compared with those deficient for the inactivator BH3s (Bouillet et al., 1999; Coultas et 

al., 2004; Imaizumi et al., 2004; Jeffers et al., 2003; Ranger et al., 2003; Shibue et al., 

2003; Villunger et al., 2003; Yin et al., 1999). Our data support the hypothesis that 
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activator BH3s function downstream of anti-apoptotic BCL-2s (Fig. 2.7), which is 

consistent with the observation that Bim deficiency rescues the phenotypes of Bcl-2 

knockout mice (Bouillet et al., 2001). 

The increased number of BCL-2 family members and the potential combinatorial 

interactions among these factors illustrates the complexity that evolved as the mammalian 

core apoptotic pathway diverged from that of nematode. Our studies provide a unifying, 

hierarchical regulatory schema to integrate the previously elusive, even contradictory, 

interplay between various BCL-2 subfamilies. Recently, BH3 mimetics have been 

developed as anti-cancer therapeutics (Oltersdorf et al., 2005; Walensky et al., 2004). Our 

characterization of the differential regulation between various BCL-2 subfamilies should 

help refine the strategies targeted on BCL-2-regulated apoptosis. 
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2.6. Figure and table legends 

 

Figure 2.1. BID, BIM and PUMA directly activate BAX and BAK to induce 

cytochrome c release from mitochondria  

(A) Isolated mitochondria were incubated with the indicated IVTT BH3-only proteins for 

30 min at 30 °C, after which the release of cytochrome c was quantified by ELISA assays.  

(B) SV40-transformed wild-type MEFs were infected with retrovirus expressing 

indicated BH3-only molecules. Cell death was quantified by flow cytometric analyses of 

Annexin-V staining at 24 h. 

(C) Mitochondria isolated from either wild-type or Bax/Bak DKO MEFs were incubated 

with IVTT wild -type or mutant tBID, BIM or PUMA proteins and cytochrome c release 

was quantified by ELISA assays. 

(D) Isolated mitochondria were incubated with indicated BH3-only proteins then treated 

with 10 mM BMH crosslinker. Higher order BAK complexes were identified by an anti-

BAK Western blot.  

(E) Isolated mitochondria were incubated with indicated BH3-only proteins then treated 

with 10 mM BMH crosslinker. Higher order BAX complexes were identified by an anti-

BAX Western blot. 

(F) Isolated mitochondria were incubated with indicated BH3-only proteins then treated 

with 10 mM DSS crosslinker. BAK–VDAC2 complexes were identified by an anti-BAK 

Western blot. The values in A, B and C represent the mean ± s.d. of three independent 

experiments. The mitochondria used in A, D, E and F were isolated from SV40-

transformed wild-type MEFs. 
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Figure 2.2. BAK is kept in check by VDAC2 but not by BCL-XL or MCL-1 

(A) Wild-type (WT) or mutant (MT; I82A and N83A) BAK was transiently coexpressed 

with HA-tagged BCL-XL or BCL-XL in Bax/Bak DKO MEFs. Cells lysed in 0.2 % NP40 

lysis buffer were immunoprecipitated with anti-HA antibody and analysed by anti-BAK 

or anti-BCL-XL Western blots. 

(B) Wild-type or mutant (I82A and N83A) BAK was transiently coexpressed with HA-

tagged MCL-1 in Bax/Bak DKO MEFs. Cellular extracts were immunoprecipitated with 

anti-HA antibody and analysed by anti-BAK or anti-MCL-1 Western blots. 

(C) Wild-type MEFs or Bax/Bak DKO MEFs reconstituted with mutant BAK (I82A and 

N83A) were treated with 1.2 µM staurosporine for 6 h. Cellular extracts were 

immunoprecipitated with anti-BCL-XL antibody (7B2) and analysed by anti-BAK or anti-

BCL-XL Western blots.  

(D) Wild-type or mutant (I82A and N83A) BAK was transiently coexpressed with HA-

tagged MCL-1 in Bax/Bak DKO MEFs, followed by treatment with 1.2 µM staurosporine 

for 6 h. Cellular extracts were immunoprecipitated with anti-HA antibody and analysed 

by anti-BAK or anti-MCL-1 Western blots.  

(E) Wild-type MEFs or Bax/Bak DKO MEFs reconstituted with mutant BAK (I82A and 

N83A) were treated with staurosporine (1 µM) or etoposide (10 µg/mL) to induce 

apoptosis. Death is presented as mean ± s.d. of Annexin-V-positive cells at 24 h from 

three independent experiments.  

(F) Wild-type MEFs or Bax/Bak DKO MEFs reconstituted with mutant BAK (I82A and 

N83A) were treated with 10 mM DSS crosslinker. BAK–VDAC2 complexes were 

detected by an anti-BAK Western blot. 
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Figure 2.3. BAK is not kept in check by BCL-XL or MCL-1 

(A) Wild-type MEFs or Bax/Bak DKO MEFs reconstituted with mutant BAX (L70A and 

D71A) were lysed in 0.2% NP40 lysis buffer, immunoprecipitated with anti-BCL-XL 

antibody (7B2) and analysed by anti-BAX or anti-BCL-XL Western blots. The upper 

panel represents immunoprecipitation performed in the absence of a death stimulus; the 

lower panel is immunoprecipitation performed after treatment with 1.2 µM staurosporine 

for 6 h.  

(B) Wild-type MEFs or Bax/Bak DKO MEFs reconstituted with mutant BAX (L70A and 

D71A) were lysed in 0.2% NP40 lysis buffer, immunoprecipitated with anti-MCL-1 

antibody and analysed by anti-BAX or anti-MCL-1 Western blots. The upper panel 

represents immunoprecipitation performed in the absence of a death stimulus; the lower 

panel is immunoprecipitation performed after treatment with 1.2 µM staurosporine 6 h.  

(C) Wild-type MEFs or Bax/Bak DKO MEFs reconstituted with mutant BAX (L70A and 

D71A) were treated with 1 µM staurosporine or etoposide (10 µg/mL) to induce 

apoptosis.  

(D) Bax/Bak DKO MEFs reconstituted with mutant BAK (I82A and N83A) were 

transduced with control retrovirus (MSCV) or retrovirus-expressing BCL-XL or MCL-1, 

and then treated with 1 µM staurosporine to induce apoptosis.  

(E) Bax/Bak DKO MEFs reconstituted with mutant BAX (L70A and D71A) were 

transduced with control retrovirus (MSCV) or retrovirus expressing BCL-XL or MCL-1, 

and then treated with 1 µM staurosporine to induce apoptosis. The values in C, D and E 

represent the mean ± s.d. of three independent experiments. Cell death was quantified by 

flow cytometric analyses of Annexin-V staining at 24 h. 
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Figure 2.4. Anti-apoptotic BCL-2 proteins inhibit apoptosis by sequestering 

activator BH3-only molecules, preventing them from activating BAX/BAK 

(A) HA-tagged BCL-2, HA-tagged BCL-XL, HA-tagged MCL-1, HA-tagged mutant 

BCL-2 (G145E), or HA-tagged mutant BCL-XL (G138E, R139L and I140N) were 

cotranslated with tBID, BIM or PUMA in vitro in the presence of 35S-methionine. 

Reticulocyte lysates in 0.2% NP40 lysis buffer were immunoprecipitated with anti-HA 

antibody and analysed in 10% NuPAGE gels and autoradiography. 

(B) Wild-type MEFs stably expressing BCL-2, BCL-XL or MCL-1 were transduced with 

tBID-, BIM- and PUMA-expressing retrovirus. 

(C) Wild-type MEFs, Bax/Bak DKO MEFs reconstituted with mutant BAK (I82A and 

N83A) or mutant BAX (L70A and D71A), or Bax/Bak DKO MEFs reconstituted with 

mutant BAK or mutant BAX stably expressing BCL-2, BCL-XL or MCL-1, were 

transduced with control (MIG) or BIM-expressing retrovirus. 

(D) HA-tagged BCL-2, HA-tagged BCL-XL or HA-tagged MCL-1 was cotranslated with 

tBID mutant (M97A and D98A) in vitro in the presence of 35S-methionine. Reticulocyte 

lysates in 0.2% NP40 lysis buffer were immunoprecipitated with anti-HA antibody and 

analysed in 10% NuPAGE gels and autoradiography. 

(E) Wild-type MEFs were transduced with control retrovirus (MIG) or retrovirus 

expressing either wild-type or mutant (M97A and D98A) tBID. The values in B, C and E 

represent the mean ± s.d. of three independent experiments. Cell death was quantified by 

flow cytometric analyses of Annexin-V staining at 24 h. 
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Figure 2.5. Activator BH3-only molecules sequestered by anti-apoptotic BCL-2 

members can be displaced by inactivator BH3-only molecules to activate BAX/BAK-

dependent mitochondrial apoptosis 

(A) BIM and HA-tagged MCL-1 or HA-tagged BCL-XL were cotranslated in vitro in the 

presence of 35S-methionine. Reticulocyte lysates in 0.2 % NP40 lysis buffer without or 

with increasing amounts of non-radiolabeled IVTT BAD, BMF or NOXA (1:1, 2.5:1 or 

5:1 compared with BIM) were immunoprecipitated with anti-HA antibody and analysed 

by 10 % NuPAGE gels and autoradiography.  

(B) Wild-type MEFs or MEFs stably expressing MCL-1–IRES–BIM or BCL-XL–IRES–

BIM were transduced with indicated BH3-only molecules by retrovirus. 

(C) Wild-type MEFs or MEFs stably expressing BCL-2–IRES–BIM were transduced 

with indicated BH3-only molecules by retrovirus.  

(D) Wild-type MEFs or MEFs stably expressing MCL-1–IRES–PUMA or BCL-XL–

IRES–PUMA were transduced with indicated BH3-only molecules by retrovirus.  

(E) Mitochondria isolated from MEFs stably expressing BCL-XL–IRES–PUMA or MCL-

1–IRES–PUMA were incubated with 20 µM BAD or NOXA BH3 peptides and 

cytochrome c release was quantified by ELISA assays. 

(F) Wild-type MEFs or MEFs stably expressing BCL-2, BCL-2–IRES–BAD, BCL-2–

IRES–NOXA, BCL-2–IRES–BMF or BCL-2–IRES–BLK were transduced with control 

MSCV retrovirus or retrovirus expressing tBID.  

(G) Wild-type MEFs or MEFs stably expressing BCL-XL, BCL-XL–IRES–BAD, BCL-

XL–IRES–NOXA, BCL-XL–IRES–BMF or BCL-XL–IRES–BLK were transduced with 

control MSCV retrovirus or retrovirus expressing tBID.  
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(H) HA-tagged BCL-XL and tBID were cotranslated in vitro in the presence of 35S-

methionine. Reticulocyte lysates in 0.2 % NP40 lysis buffer without or with increasing 

amounts of non-radiolabeled IVTT BMF or NOXA (1:1, 2.5:1 or 5:1 compared with 

tBID) were immunoprecipitated with anti-HA antibody and analysed by 10% NuPAGE 

gels and autoradiography. Cell death assays performed in B, C, D, F and G were 

quantified by Annexin-V staining 24 h post-infection. The values in B–G represent the 

mean ± s.d. of three independent experiments. 

 

Figure 2.6. BAD and NOXA synergize to trigger apoptosis by displacing BIM and 

PUMA from anti-apoptotic BCL-2 members to activate BAX and BAK 

(A) Wild-type, Bax/Bak DKO MEFs, or wild-type MEFs stably expressing shRNA 

against Bim using pSuper–Retro system were transduced with BAD and/or NOXA 

expressing retrovirus. Cell death was quantified by Annexin-V staining 24 h post-

infection. The values represent the mean ± s.d. of three independent experiments; P = 

0.0292 vector control versus Bim knockdown.  

(B) Puma+/-, Puma-/- or Puma-/- MEFs stably expressing shRNA against Bim using 

pSuper–Retro system were transduced with control MSCV retrovirus or BAD plus 

NOXA expressing retrovirus. Cell death was quantified by Annexin-V staining 24 h post-

infection. The values represent the mean ± s.d. of three independent experiments; P = 

0.0013 Puma+/- versus Puma-/-; P = 0.0053 Puma-/- versus Puma-/- with Bim knockdown. 

 

Figure 2.7. Schematic representation of the mammalian core apoptotic pathways 
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Figure 2.8. The anti-apoptotic activity of BCL-2, BCL-XL and MCL-1 against 

various death stimuli is differentially regulated by specific inactivator BH3-only  

 

Table 2.1. Summary of differential regulation of the anti-apoptotic activity of BCL-2, 

BCL-XL and MCL-1 against BH3s by various inactivator BH3s 
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Supplementary figure legends 

 

Figure S2.1. Expression level of BH3-only molecules  

(A) Autoradiogram of BH3-only proteins translated in vitro in the presence of 35S-

methionine. The quantity of each protein was determined by densitometry (FUJI, 

ImageGauge) then divided by the number of methionine in each protein.  

(B) Autoradiogram of in vitro targeting of indicated BH3-only proteins to mitochondria. 

P denotes mitochondrial pellet; S, mitochondrial supernatant.  

(C) Anti-HA Western blot of indicated HA-tagged BH3-only molecules transduced in 

Bax/Bak DKO cells by retrovirus. Asterisk indicates a cross-reactive band, serving as a 

loading control.  

(D) Wild-type MEFs were infected with retrovirus expressing indicated HA-tagged BH3-

only molecules. Death is presented as mean ± s.d. of Annexin-V positive cells at 24 hrs 

from three independent experiments. 

(E) Mitochondria isolated from p53 null MEFs were incubated with IVTT wild-type or 

mutant PUMA or truncated BID proteins, and cytochrome c release was quantitated by 

ELISA assays. Values shown are mean ± s.d. of three independent experiments.  

 

Figure S2.2. Co-immunoprecipitation of BAX/BAK mutants 

(A) Wild-type MEFs or Bax/ Bak DKO MEFs reconstituted with mutant BAK (I82A & 

N83A) were lysed in 0.2 % NP40-lysis buffer, immunoprecipitated with anti-BCL-1 

antibody, and analyzed by anti-BAK or anti-BCL-2 Western blots. 
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(B) Anti-BAX and anti-BAK Western blots of wild-type MEFs or Bax, Bak DKO MEFs 

reconstituted with either mutant BAX (L70A & D71A) or BAK (I82A & N83A) before 

or after treatment with staurosporine (STS) for 6 hours or etoposide for 12 hours. 

(C) Wild-type or mutant BAK (I82A & N83A) was transiently co-expressed with HA-

tagged VDAC2 in Bax/Bak DKO MEFs. Cells lysed in 1 % CHAPS lysis buffer were 

immunoprecipitated with anti-HA antibody and analyzed by anti-BAK or anti-VDAC2 

Western blots. 

(D) Wild-type MEFs or Bax/Bak DKO MEFs were treated with 10 mM BMH or DSS 

crosslinker and analyzed by anti-BCL-XL (upper panel) or anti-MCL-1 (lower panel) 

Western blots. No discernable differences following cross-linking were observed between 

BCL-XL/MCL-1 and BAX/BAK. Asterisks denote cross-reactive bands.  

(E) Wild-type MEFs or Bax/Bak DKO MEFs reconstituted with mutant BAX (L70A & 

D71A) were lysed in 0.2 % NP-40 lysis buffer and analyzed by anti-BAX or anti-BCL-2 

Western blots.  

(F) MEFs or Bax/Bak DKO MEFs reconstituted with either mutant BAX (L70A & D71A) 

or BAK (I82A & N83A) were trans.d.uced with control retrovirus (MSCV) or retrovirus 

expressing BCL-2, then treated with 1 µM STS to induce apoptosis. Death is presented 

by mean ± s.d. of Annexin-V positive cells at 24 hrs from three independent experiments.  

 

Figure S2.3. Cell viability of various MEFs 

(A) Wild-type MEFs or MEFs stably expressing BCL-2-IRES-PUMA were transduced 

with indicated BH3-only molecules by retrovirus. Death is presented by mean ± s.d. of 

Annexin-V positive cells at 24 hrs from three independent experiments.  
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(B) Wild-type MEFs or MEFs stably expressing MCL-1, or MCL-1 and BAD, MCL-1 

and NOXA, MCL-1 and BMF, or MCL-1 and BLK were transduced with retrovirus 

expressing truncated BID. Death is presented by mean ± s.d. of Annexin-V positive cells 

at 24 hrs from three independent experiments.  

(C) Puma+/-, Puma-/- MEFs, or Puma-/- MEFs stably expressing shRNA against Bim using 

pSuper-Retro system were transduced with control MSCV retrovirus or PUMA 

expressing retrovirus. Death is presented by mean ± s.d. of Annexin-V positive cells at 24 

hrs from three independent experiments.  

(D) Anti-BIM Western blot of Puma-/- MEFs stably expressing shRNA against Bim 

(E) SV-40 transformed Apaf-1-/- MEFs with or without etoposide (10 µg/mL) and MG132 

(10 µM) treatment for 18 hours were lysed in 0.2 % NP-40 lysis buffer, 

immunoprecipitated with anti-MCL-1 antibody, and analyzed by anti-MCL-1, and-

NOXA, or anti-BIM Western blots.  

 

Figure S2.4. BCL-2 family expression and interactions 

(A) Anti-BCL-2, anti-BCL-XL, anti-HA, anti-BAD, anti-BMF, and anti-NOXA Western 

blots of indicated cell lines used for viability assays shown in Fig. 2.8 

(B) N-terminal HA-tagged MCL-1 was co-translated with BMF or NOXA in vitro in the 

presence of 35S-methionine. IVTT proteins of BMF and NOXA alone served as negative 

controls. Reticulocytes in 0.2 % NP-40 lysis buffer were immunoprecipitated with anti-

HA antibody and analyzed in 10 % NuPAGE gels and autoradiography.  
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2.7. Figures and tables 

Figure 2.1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Courtesy of E. Cheng 
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Figure 2.1 
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Figure 2.1 
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Figure 2.2 
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Figure 2.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2F: Courtesy of E. Cheng 
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Figure 2.3 
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Figure 2.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2D & F: Courtesy of M. Rafiuddin-Shah 
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Figure 2.4 
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Figure 2.4 
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Figure 2.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4E: Courtesy of M. Rafiuddin-Shah 
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Figure 2.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5B: Courtesy of M. Rafiuddin-Shah 
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Figure 2.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5C & D: Courtesy of M. Rafiuddin-Shah 
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Figure 2.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5F & G: Courtesy of M. Rafiuddin-Shah 
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Figure 2.6 
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Figure 2.7 
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Figure 2.8 
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Table 2.1 
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Figure S2.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S2.1D: Courtesy of M. Rafiuddin-Shah 
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Figure S2.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S2.2F: Courtesy of M. Rafiuddin-Shah 
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Figure S2.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S2.3A, B, & C: Courtesy of M. Rafiuddin-Shah 
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Figure S2.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S2.4A: Courtesy of M. Rafiuddin-Shah 
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- CHAPTER 3 - 

 

Stepwise Activation of BAX and BAK by tBID, BIM, and PUMA 

Initiates Mitochondrial Apoptosis 

 

(The content of this chapter is being published as Kim et al., (2009) Mol. Cell. In press) 
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3.1. Summary 

 

While activation of BAX/BAK by BH3-only molecules (BH3s) is essential for 

mitochondrial apoptosis, the underlying mechanisms remain unsettled. Here, we 

demonstrate that BAX undergoes stepwise structural reorganization leading to 

mitochondrial targeting and homo-oligomerization. The α1 helix of BAX keeps the α9 

helix engaged in the dimerization pocket, rendering BAX as a monomer in cytosol. The 

‘activator’ BH3s, tBID, BIM, and PUMA attack and expose the α1 helix of BAX, 

resulting in secondary disengagement of the α9 helix and thereby mitochondrial insertion. 

Activation BH3s remain associated with the N-terminally exposed BAX through the BH1 

domain to drive homo-oligomerization. BAK, an integral mitochondrial membrane 

protein, has bypassed the first activation step, explaining its faster killing kinetics than 

BAX. Furthermore, death signals initiated at ER induce BIM and PUMA to activate 

mitochondrial apoptosis. Accordingly, deficiency of Bim and Puma impedes ER stress-

induced BAX/BAK activation and apoptosis. Our study provides novel mechanistic 

insights regarding the spatiotemporal execution of BAX/BAK-governed cell death.  
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3.2. Introduction 

 

 Mammalian cell death proceeds through a highly regulated genetic program 

termed apoptosis that is heavily dependent on the mitochondria (Danial and Korsmeyer, 

2004). Multiple apoptotic signals culminate in permeabilizing the mitochondrial outer 

membrane (MOM), resulting in the release of apoptogenic factors including cytochrome 

c and SMAC (Wang, 2001). Once released, cytochrome c activates Apaf-1 to assist the 

morphological and biochemical changes associated with apoptosis. The permeabilization 

of the MOM not only couples the mitochondria to the activation of caspases but also 

initiates caspase-independent mitochondrial dysfunction (Cheng et al., 2001). The BCL-2 

family proteins control a crucial checkpoint of apoptosis at the mitochondria (Cory and 

Adams, 2002; Korsmeyer et al., 2000). Multidomain proapoptotic BAX and BAK are 

essential effectors responsible for the permeabilization of the MOM, whereas anti-

apoptotic BCL-2, BCL-XL, and MCL-1 preserve mitochondrial integrity and prevent 

cytochrome c efflux triggered by apoptotic stimuli. The third BCL-2 subfamily of 

proteins, BH3-only proteins (BH3s), promotes apoptosis by either activating BAX/BAK 

or inactivating BCL-2/BCL-XL/MCL-1 (Certo et al., 2006; Cheng et al., 2001; Kim et al., 

2006; Kuwana et al., 2005; Letai et al., 2002; Wei et al, 2000; Wei et al., 2001). Upon 

apoptosis, the ‘activator’ BH3s, including truncated BID (tBID), BIM, and PUMA, 

activate BAX and BAK to mediate cytochrome c efflux, leading to caspase activation 

(Cheng et al.., 2001; Desagher et al., 1999, Kim et al., 2006; Wei et al., 2002; Wei et al., 

2001). Conversely, the anti-apoptotic BCL-2, BCL-XL, and MCL-1 sequester ‘activator’ 

BH3s into inert complexes, thus preventing BAX/BAK activation (Cheng et al., 2001; 



 79

Kim et al., 2006). The remaining BH3s including BAD, NOXA, BMF, HRK, and 

BIK/BLK do not activate BAX/BAK directly, but instead prevent the anti-apoptotic 

BCL-2 members from sequestering the ‘activator’ BH3s (Certo et al., 2006; Kim et al., 

2006; Kuwana et al., 2005; Letai et al., 2002). Although it was proposed that activation of 

BAX and BAK occurred by default as long as all the anti-apoptotic BCL-2 proteins were 

neutralized by BH3s (Willis et al., 2007), the liposome studies clearly recapitulate the 

direct activation model in which tBID protein or BH3 domain peptides derived from BID 

or BIM induced BAX oligomerization and membrane permeabilization (Gavathiotis et al., 

2008; Kuwana et al., 2002; Walensky et al., 2006b). In addition the temporal sequence of 

BAX activation by tBID was nicely demonstrated by a FRET (fluorescence resonance 

energy transfer)-based liposomal study (Lovell et al., 2008).  

 While BAK and BAK are the essential effectors of mitochondrial apoptosis, their 

proapoptotic activity is tightly kept in check (Cheng et al., 2003; Lindsten et al., 2000; 

Wei et al., 2001). BAX exists in the cytosol as a monomer with its C-terminal α9 helix 

occupying the dimerization pocket formed by BH1-3 domains (Suzuki et al., 2000). This 

auto-inhibited BAX monomer may be further stabilized by associated proteins (Reed, 

2006). By contrast, the C-terminal α9 helix of BAK is constitutively inserted in the MOM 

and its activity is inhibited by mammalian-restricted VDAC isoform, VDAC2, which 

occupies the dimerization pocket of BAK to restrict BAK in the monomeric inactive 

conformation (Cheng et al., 2003; Wei et al., 2000). Upon apoptosis, ‘activator’ BH3s 

induce conformational changes of BAX to promote the targeting and homo-

oligomerization of BAX at the MOM, and disrupt BAK-VDAC2 interaction to enable 

homo-oligomerization of BAK, leading to the efflux of apoptogenic factors (Cheng et al., 



 80

2003; Desagher et al., 1999; Kim et al., 2006; Wei et al., 2000) Therefore, the 

proapoptotic activity of BAC and BAK is triggered by BH3s, whose activity is in turn 

regulated either transcriptionally or posttranslationally by upstream death signaling 

cascade (Danial and Korsmeyer, 2004; Korsmeyer, 2000). By analogy, BH3s function as 

death ligands that allosterically regulate the mitochondrial death receptor BAX/BAK 

(Korsmeyer, 2000). 

 Conformational changes and homo-oligomerization are two critical events 

associated with the activation of BAX/AK by BH3s (Korsmeyer, 2000; Reed, 2006). 

However, the underlying mechanisms remain unsettled. It is especially complex for BAX 

due to its change in the subcellular localization during apoptosis (Wolter et al., 1997). 

The N-terminal exposure of BAX is a commonly used marker for its activation of which 

the molecular basis is obscure (Desagher et al., 1999; Nechushtan et al., 1999). Although 

it was proposed that the intramolecular interaction between the N- and C- terminal 

regions of BAX might somehow regulate its activation (Goping et al., 1998; Nechushtan 

et al., 1999; Schinzel et al., 2004), direct experimental data supporting this model is 

missing. Interestingly, our recent study demonstrated that a novel interaction site 

involving the α1 and α6 helices of BAX and the BH3 domain of BIM is required for 

BAX activation (Gavathiotis et al., 2008). The α1 helix of BAX was also implicated in its 

interaction with BID and PUMA (Catron et al., 2004). However, it is unknown how this 

interaction contributes to BAX activation. BAK was reported to expose its BH3 domain 

to form dimmers via BH3-groove interactions (Dewson et al., 2008). Unfortunately, this 

study did not examine higher-ordered BAK oligomers that are more functionally relevant 

since BAX tetramers but not dimers could form pores large enough for cytochrome c 
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passage (Saito et al., 2000). To address these questions, we performed structural 

functional analyses to dissect the molecular mechanisms by which BH3s activate 

BAX/BAK. We demonstrated that activation of BAX can be dissected into two 

sequential steps, mitochondrial targeting and homo-oligomerization, both of which 

require ‘activator’ BH3s and intact BH1 and BH3 domains of BAX. The α1 helix of 

BAX stabilizes the binding of the α9 helix to dimerization pocket, which in turn controls 

the mitochondrial targeting of BAX. Thus, tBID, BIM, and PUMA initiates the activation 

process of BAX by attacking the α1 helix, resulting in the N-terminal exposure of BAX 

and secondary disengagement of the α9 helix that becomes available for mitochondrial 

targeting. tBID, BIM, and PUMA remain associated the N-terminally exposed BAX to 

drive homo-oligomerization of mitochondrially localized BAX. Our data reveal a 

dynamic interaction between BH3s and BAX, which helps explain the previous difficulty 

in detecting these interactions. BAK, an integral mitochondrial membrane protein, has 

bypassed the first activation step but still requires ‘activator’ BH3s to induce its homo-

oligomerization. The BH1 and BH3 domains are required for the assembly of higher-

ordered BAX or BAK oligomers, which is essential for the proapoptotic activity of BAX 

or BAK. Moreover, ER stress induces BIM and PUMA to activate BAX/BAK at the 

mitochondria, exemplifying how ‘activator’ BH3s interconnect upstream death signaling 

cascades with downstream BAX/BAK-dependent mitochondrial death program. All 

together, out study supports the direct engagement of ‘activator’ BH3s in activating 

BAX/BAK-dependent mitochondrial death program.  
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3.3. Materials and Methods 

 

Plasmid construction and retrovirus production 

 Indicated Bcl-2 members were cloned into pSG5 (Stratagene), pcDNA3 

(Invitrogen), or the retroviral expression vector MSCV-IRES-GFP (pMIG) or MSCV-

puro (Clontech). Mutant Bax and Bak were generated by PCR-based site-directed 

mutagenesis. All the constructs were confirmed by DNA sequencing. The production of 

retrovirus was described previously (Cheng et al., 2001).  

 

Antibody and reagents  

Antibodies used for immunoblots are listed as followed: anti-BAK (NT, Upstate), anti-

BAK (G23, Santa Cruz), anti-BAX (N-20, Santa Cruz), anti-BAX (6A7, Trevigen), anti-

BIM (Calbiochem), anti-PUMA (Sigma), anti-HA (12CA5), and anti-BCL-2 (3F11, BD 

Bioscience). The chemicals with concentration used are as followed: etoposide 10 µg/mL, 

staurosporine 1.2 µM, tunicamycin 1 µg/mL, thapsigargin 2 µM; and 

bismaleimidohexane (BMH) 5 mM (Pierce).  

 

Cell culture and viability assay 

 All the MEFs utilized were SV40-transformed. Reconstitution of BAX or BAK 

into DKO cell was achieved by retroviral transduction of BAX-IRES-GFP or BAK-

IRES-GFP, followed by MoFlo (DakoCytomation) sorting for GFP-positive cells. Cell 

death was quantified by Annexin-V-Cy3 (Biovision) and CellQuest Pro software. P 

values for statistical analyses were obtained using Student’s t test.  
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Mitochondria isolation, alkaline extraction of BAX, protein cross-linking, and gel 

filtration chromatography 

 Mitochondria isolation and cross-linking of BAX were performed as described 

previously (Cheng et al., 2001; Kim et al., 2006). The chromatographic step of Superdex 

200 (HR 10/30, GE-Amersham) was performed on an automatic fast protein liquid 

chromatography (AKTApurifier, GE-Amersham). The column was equilibrated with 2 % 

CHAPS buffer (2 % CHAPS, 300 mM NaCl, 0.2 mM DTT, 20 mM HEPES pH 7.5) and 

calibrated with thyroglobulin (669 kD, GE-Amersham), ferritin (440 kD, GE-Amersham), 

catalase (232 kD, GE-Amersham), aldolase (158 kD, GE-Amersham), bovine serum 

albumin (66 kD, Calbiochem), and cytochrome c (14 kD, Sigma). Protein lysates (200 µg) 

were loaded onto the column, eluted at a flow rate of 0.3 ml/min. Fractions of 0.6 ml 

were collected, precipitated by trichloroacetic acid, and analyzed by 8 – 16 % SDS-

PAGE (Bio-Rad). For alkaline extraction, mitochondria were resuspended in 0.1 M 

Na2CO3 (pH 11.5) for 30 min on ice. Supernatant (alkali-sensitive) and pellet (alkali-

resistant) fractions were separated by centrifugation at 75,000 rpm for 10 min at 4 °C.  

 

Immunoblot analysis and immunoprecipitation  

  Cell or mitochondrial lysates were resolved by NuPAGE (Invitrogen) gels and 

transferred onto PVDF (Immobilon-P, Millipore) followed by antibody detection using 

enhanced chemiluminescence method (Western Lightening, Perkin Elmer) and LAS-300 

Imaging system (FUJIFILM Life Science). In vitro transcription and translation reactions 

were performed with TNT® T7 Quick Coupled Transcription/Translation Systems or Wheat Germ 

Extract System (Promega). Immunoprecipitation (IP) of IVTT proteins were described 
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previously (Kim et al., 2006). To detect BAX or BAK homo-dimers, IP was performed 

using 0.2% NP40 isotonic buffer (0.2 % NP40, 142.5 mM KCl, 5 mM MgCl2, 1 mM 

EGTA, 20 mM HEPES at pH 7.5). To detect intramolecular interaction of BAX, IP was 

performed using 1 % CHAPS buffer (1 % CHAPS, 142.5 mM KCl, 2 mM CaCl2, 20 mM 

Tris-Cl, pH 7.4). Anti-6A7 IP was performed using 1 % CHAPS buffer.  

 

Fluorescence microscopy 

 Fluorescence images were acquired with a SPOT camera (Diagnostics 

instruments) mounted on an Olympus IX51 microscope (Olympus).  
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3.4. Results 

 

Previous mutagenesis studies of BAX and BAK often generate conflicting results 

due to overexpression of BAX/BAK mutants in cells containing wild-type (wt) 

BAK/BAK, which likely assess their function as BH3-like death ligands that could 

activate endogenous BAX/BAK (Chittenden, 1995; Simonen et al., 1997; Wang et al., 

1998). To fully address the role of BAX and BAK as mitochondrial death receptors, we 

reconstituted mutants of BAX or BAK into Bax/Bak double knockout (DKO) mouse 

embryonic fibroblasts (MEFs) to a physiological level similar to wt cells and examined 

the ability of each mutant to restore the apoptotic sensitivity of death-resistance DKO 

cells (Fig. S3.1). 

 

Mitochondrial targeting and homo-oligomeriztion are two separable, essential steps of 

BAX activation 

 Although BAX contains a conserved, putative transmembrane domain at the C-

terminal α9 helix (Wolter et al., 1997), it was reported that its N-terminus also bears a 

mitochondrial targeting signals (Cartron et al., 2003). To determine whether the C-

terminal transmembrane domain is required for the mitochondrial targeting and 

proapoptotic activity of BAX, GFP-BAX or GFP-BAX∆C (BAX mutant with deletion of 

the C-terminal transmembrane domain) was reconstituted into DKO cells. In accordance 

with BAX, GFP-BAX restored the apoptotic sensitivity of DKO cells and translocated 

from cytosol to mitochondria in response to various intrinsic death signals (Fig. 3.1A, C 

and data not shown). On the contrary, GFP-BAX∆C remained in the cytosol upon death 
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stimuli and BAX∆C failed to induce apoptosis, supporting the essential role of α9 helix 

for both mitochondrial targeting and death induction (Fig. 3.1A, C).  

 The S184V mutation at the α9 helix of BAX constitutively targeted BAX to 

mitochondria, which is consistent with a previous report (Nechushtan et al., 1999) (Fig. 

3.1B). Remarkably, BAX S184V did not spontaneously induce apoptosis in the absence 

of death signals (Fig. 3.1C). DKO cells reconstituted with BAX S184V did die faster than 

those expressing wt BAX (Fig. 3.1D), consistent with the notion that BAX S184V has 

bypassed the activation process required form mitochondrial targeting. This might help 

explain why Bax-deficient cells (BAK-dependent apoptosis) died faster than Bak- 

deficient cells (BAX-dependent apoptosis) (Fig. S3.2). Interestingly, L63E mutation at 

the BH3 domain also rendered BAX localized at the mitochondria, but it totally abolished 

the proapoptotic activity (Fig. 3.1B, C). To determine the molecular basis underlying the 

functional differences between these two mitochondria-targeted BAX mutants, we 

examined whether they differ in the ability to undergo conformational changes. The N-

terminal BAX epitope recognized by the 6A7 antibody (aa residues 12-24) becomes 

exposed after an apoptotic stimulus (Hsu and Youle, 1997; Nechushtan et al., 1999). 

Thus, anti-6A7 antibody could only immunoprecipitate BAX from cells following DNA 

damage but not from viable cells using CHAPS buffer (Fig. 3.1E). It was reported that 

NP-40 and Triton-X 100 but not CHAPS could induce the conformational changes of 

BAX (Hsu and Youle, 1997). Surprisingly, both L63E and S184V mutants of BAX have 

already exposed their N-termini even in the absence of apoptotic stimuli (Fig. 3.1E). 

These data suggest that the N-terminal exposure indicates mitochondrial targeting but not 

full activation of BAX. We next performed gel filtration assays to assess the formation of 
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BAX homo-oligomers triggered by tBID. Like wt BAX, BAX S184V was eluted as a 

monomer (molecular weight ~20 kD) before activation and formed higher-ordered 

oligomers in response to tBID (Fig. 3.1F). By contrast, BAX L63E failed to undergo 

homo-oligomerization and was eluted around 50-60 kD range irrespective of tBID 

treatment (Fig. 3.1F). It is possible that BAX L63E formed dimer, or associated with 

other proteins or detergent micelles, which accounts for its elution at almost twice of its 

molecular weight. Nevertheless, these findings clearly demonstrate the importance of 

BH3 domain for the homo-oligomerization and thereby the proapoptotic activity of BAX. 

 

The N-terminal exposure of BAX correlates with mitochondrial targeting rather than 

homo-oligomerization 

 To further investigate the importance of BAX homo-oligomerization, we 

performed extensive mutagenesis and identified two additional BAX mutants that failed 

to undergo homo-oligomerization. BH1 (G108E) and BH3 (G67R) domain mutants failed 

to form higher-ordered oligomers detected by gel filtration in response to tBID (Fig. 

3.2A). In addition, HA-tagged BAX G67R or G108R was unable to co-precipitate non-

tagged corresponding mutant by anti-HA immunoprecipitation (Fig. S3.3). Accordingly, 

these two mutants were unable to rescue the apoptotic defect of DKO cells (Fig. 3.2B). 

The S184V substitution was introduced into these BAX mutants to enforce mitochondrial 

localization. These mutants remained inactive in triggering apoptosis upon death signals 

(Fig. 3.2C). GFP-BAX G108E/S184V targeted at the mitochondria constitutively, 

whereas GFP-BAX G67R/S184V only exhibited partial mitochondrial localization (Fig. 

3.2D). Since our initial study suggests that the N-terminal exposure of BAX likely 
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reflects mitochondrial targeting, we next tested whether these two double mutants could 

be pulled down by the 6A7 antibody. Indeed, the N-terminus of BAX G108E/S184V was 

readily exposed in the absence of apoptotic stimuli whereas that of BAX G67R/S184V 

was partially exposed (Fig. 3.2E). By analogy to BAX L63E, the mitochondria-targeted 

BAX G108E/S184V could not be activated by tBID to undergo homo-oligomerization 

detected by protein cross-linking, and thereby failed to induce apoptosis (Fig. 3.2C, F). 

We also tested a preciously reported BAX P168A mutant that was defective in 

mitochondrial targeting (Schinzel et al., 2004). This mutant when stably reconstituted in 

DKO cells could not be immunoprecipitated by the 6A7 antibody (Fig. S3.4). Of note, it 

was previously reported that the N-terminus of this mutant was exposed when it was 

overexpressed in HeLa cells that contain wt BAX/BAK (Schinzel et al., 2004). 

Collectively, the N-terminal exposure of BAX is the conformational change associated 

with mitochondrial targeting rather than homo-oligomerization. More importantly, our 

data indicate the mitochondrial targeting and homo-oligomerization are two separable, 

distinct steps of BAX activation. Homo-oligomerization of BAX is apparently not 

required for BAX to translocate to mitochondria.  

 

The BH1 and BH3 domains of BAX are required for its activation 

 Although both BAX G67R and G108E mutants failed to undergo homo-

oligomerization driven by tBID, it remains possible that they have defects even in the 

earlier step of conformational changes. Indeed, both mutants failed to translocate to 

mitochondria following intrinsic death signals and were enable to expose their N-terminal 

epitope in response to DNA damage or tBID (Fig. 3.3A, B), indicating that they have 
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defects in the first steps of BAX activation. In addition to visualizing mitochondrial 

targeting, we performed alkaline extraction to quantify the percentage of wt or mutant 

BAX integrating into the MOM (Goping et al., 1998). BAX was loosely associated with 

mitochondrial and could be extracted by alkali (Fig. 3.3C). Once activated by tBID, BAX 

inserted into the MOM and became resistant to alkaline extraction (Fig. 3.3C). By 

contrast, both G67R and G108E mutants were still sensitive to alkaline extraction, 

indicating that they failed to insert into the MOM upon tBID treatment. Similar to tBID, 

BIM and PUMA also directly activated BAX to induce its mitochondrial insertion (Fig. 

3.3D). Collectively, intact BH1 and BH3 domains are essential for the activation of BAX 

by ‘activator’ BH3s.  

 

The α1 helix of BAX controls the engagement of α9 helix into the dimerization pocket 

 The observation that N-terminal exposure of BAX initiates its activation and 

dictates mitochondrial targeting prompted us to explore how the N-terminal exposure of 

BAX regulates its mitochondrial targeting. Given that the α9 helix of BAX occupies its 

hydrophobic pocket formed by BH1-3 domains to prevent mitochondrial targeting and 

dimerization (Suzuki et al., 2000), one testable thesis is that the N-terminus stabilizes the 

engagement of the α9 helix in the hydrophobic pocket to keep BAX in an inactive 

conformation. To test this hypothesis, we developed an in vitro system to recapitulate the 

intramolecular interaction between the hydrophobic pocket of BAX and the C-terminal 

α9 transmembrane domain (TM). We found that HA-tagged BAX∆C could co-precipitate 

the α9 helix of BAX fused to the C-terminus of GST using anti-HA immunoprecipitation 

in the presence of CAHPS (Fig. 3.4A). S184V mutant within the α9 helix abolished its 
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association with BAX∆C, suggesting that the α9 helix of BAX S184V no loner stays in 

the pocket and becomes available to insert into the MOM. Importantly, deletion of the α1 

helix in BAX∆C (BAX∆N∆C) disrupted the interaction between the α9 helix and the 

hydrophobic pocket, indicating that the N-terminal α1 helix stabilizes the binding of the 

α9 helix to the pocket (Fig. 3.4A). These data are supported by a previous reported 

demonstrating that N-terminally deleted BAX could target to mitochondria constitutively 

(Goping et al., 1998).  

  The aforementioned findings led to our next hypothesis-exposure of the α1 helix 

results in the disengagement of the α9 helix and subsequent mitochondrial translocation. 

To test this hypothesis, we developed another in vitro system to detect the intramolecular 

interaction between the α1 helix of BAX and BAX∆N with deletion of the N-terminal 37 

amino acid residues. HA-tagged α1 helix of BAX co-precipitated BAX∆N using anti-HA 

immunoprecipitation in the presence of CHAPS (Fig. 3.4B). Of note, NP-40 disrupted 

this interaction, consistent with the notion that NP-40 induces the conformational changes 

or BAX. (Fig. S3.5). The NMR structure of BAX reveals that the α2 helix (BH3 domain) 

of BAX is in close proximity to its α1 helix (Suzuki et al., 2000). This prompted us to 

investigate whether the mitochondria-targeted BAX α2 helix L63E mutant might 

destabilize the interaction between the α1 helix of BAX and BAX∆N, resulting in 

secondary disengagement of the α9 helix. Indeed, the α1 helix failed to interact with 

BAX∆N containing L63E mutation (Fig. 3.4B). By contrast, another BH3 domain 

mutation G67R had no effect on this interaction and BAX G67R was cytosolic (Fig. 

3.4B). These findings provide mechanistic basis explaining how a mutation at the BH3 

domain affects mitochondrial targeting. Moreover, S184V mutation abrogated the 
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interaction between the α1 helix and BAX∆N, consistent with the observation that BAX 

S184V readily exposed its N-terminus (Fig. 3.4C). 

 

tBID, BIM, and PUMA induce the N-terminal exposure of BAX and remain associated 

with the N-terminally exposed BAX through the BH1 domain 

 As the α1 helix of BAX controls the pivotal step of conformational changes, we 

next investigated whether ‘activator’ BH3s initiates BAX activation by binding directly 

to the α1 helix of BAX. Indeed, HA-tagged α1 helix of BAX co-precipitated tBID, BIM, 

and PUMA, but not BAD or BMF in vitro (Fig. 3.4D and Fig. S3.6). These findings are 

supported by our recently solved NMR structure of BAX complexed with BIM BH3 

peptide in which the α1 and α6 helices of BAX were involved in the binding with BIM 

(Gavathiotis et al., 2008). Furthermore, tBID, BIM, and PUMA, but not BAD or BMF, 

could directly induce the N-terminal exposure of BAX in vitro (Fig. 3.4E and S3.7). Co-

incubation of BAX with tBID, BIM, and PUMA led to the exposure of α1 helix of BAX 

that could be immunoprecipitated with the 6A7 antibody (Fig. 3.4E). Remarkably, tBID, 

BIM, and PUMA were co-precipitated with the N-terminally exposed BAX using the 

6A7 antibody (Fig. 3.4E). Since the α1 helix is the epitope recognized by the 6A7 

antibody, the binding between BH3s and the α1 helix of BAX must be transient, 

otherwise activated BAX would not be pulled down by the 6A7 antibody. As BH3s 

remain associated with the N-terminally exposed BAX, they must bind to a region other 

than the α1 helix. The second interaction is probably essential for the subsequent 

activation of BAX to induce homo-oligomerization since the N-terminal exposure of 

BAX only contributes to mitochondrial targeting. The N-terminally exposed BAX S184V 
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mutant did not undergo homo-oligomerization until it was activated by tBID, BIM, and 

PUMA (Fig. 3.4F). Of note, ‘inactivator’ BH3s such as BAD or BMF failed to induce 

homo-oligomerization of BAX S184V mutant (Fig. S3.8). To identify the second 

interaction site between N-terminally exposed BAX and BH3s, we reasoned that the 

canonical dimerization pocket is the most likely candidate since it is no longer blocked by 

the α9 helix and the BH1 domain has been demonstrated to mediate the interaction 

between BAX and BID (Wang et al., 1996). Since BH1 domain mutant of BAX (G108E) 

failed to undergo N-terminal exposure triggered by BH3s, we introduced L63E mutation 

on top of G108E to bypass the first activation step. Indeed, BAX L63E/G108E mutant 

constitutively exposed its N-terminus and targeted to the mitochondria (data not shown). 

Importantly, BAX L63E/G108E failed to co-precipitate tBID using the 6A7 antibody (Fig. 

3.4G). Furthermore, BAX G108E failed to interact with tBID in NP-40 which induces its 

N-terminal exposure (Fig. S3.9). Together, our data discover a dynamic interaction 

between ‘activator’ BH3s and BAX.  

 

The BH1 and BH3 domains are essential for the assembly of higher-ordered BAK 

oligomers and the proapoptotic activity of BAK 

To investigate the importance of BH1 and BH3 domains for the proapoptotic 

activity of BAK, W122A/G123E/R124A (BH1) and L75E (BH3) mutants of BAK were 

generated. These two mutants failed to form higher-ordered oligomers in response to 

tBID (Fig. 3.5A). In addition, HA-tagged BH1 or BH3 mutant was unable to co-

precipitate non-tagged corresponding mutant by anti-HA immunoprecipitation. (Fig. 

3.5B). Accordingly, they were unable to induce apoptosis following intrinsic death 
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signals when they were reconstituted in DKO cells (Fig. 3.5C). Of note, these two 

mutants localized at the mitochondrial like wt BAK (Fig. 3.5D). Similar to the N-

terminally exposed BAX, the BH1 domain of BAK was involved in its binding to tBID 

(Fig. 3.5E). Although the N-terminal exposure of human BAK following apoptotic 

signals was suggested by a conformation-specific antibody (Ab-1) using FACS analysis 

(Griffiths et al., 1999), mutagenesis studies indicated that it neither correlated with 

dimerization nor was required for the proapoptotic activity (Dewson et al., 2008). 

Intriguingly, the epitope recognized by Ab-1 is not clear since it was generated using C-

terminal truncated human BAK protein and Ab-1 could not detect mouse BAK even by 

immunoblots. The enhanced detection of BAK by Ab-1 or Ab-2 during apoptosis may 

represent a more global conformation change rather than a simple exposure of the α1 

helix of BAK. To address the exposure of the α1 helix in mouse BAK, we performed 

immunoprecipitation using antibody specific for the α1 helix of BAK (NT), which 

immunoprecipitated comparable amounts of mouse BAK before and after tBID activation 

in MEFs (Fig. 3.5F). Comparable amounts of BAK were immunoprecipitated before and 

after staurosporine treatment in two additional mouse cell lines 4T1 (breast cancer) and 

N18 (neuroblastoma) (Fig. 3.5G). These data suggest that the integral mitochondrial 

membrane protein BAK constitutively exposes its N-terminal α1 helix, reminiscent of 

mitochondrially translocated BAX.  

 

Death signals initiated from ER require mitochondria- but not ER-localized BAK to 

execute apoptosis 
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 BAX and BAK not only control the mitochondrial gateway of apoptosis but also 

regulate ER calcium homeostasis (Scorrano et al., 2003; Zong et al., 2003). Since BAK is 

an integral membrane protein that resides at both mitochondria and ER (Scorrano et al., 

2003; Zong et al., 2003), we generated BAK chimera proteins that were specifically 

targeted to ER or mitochondria to determine the contribution of ER calcium regulation to 

apoptosis controlled by BAK. The transmembrane domain of BAK was replaced by 

heterologous ER or mitochondrial targeting signals derived from cytochrome b5 and 

OMP25, respectively (Fig., 3.6A) (Shirane and Nakayama, 2003; Zhu et al., 1996).The 

restricted localization of BAK∆C/Cb5 at ER and that of BAK∆C/OMP25 at the 

mitochondria were confirmed by fusing these chimera proteins with YFP (Fig. S3.10). 

The proapoptotic activity of these BAK mutants was assessed by reconstituting these 

BAK mutants in DKO cells. Interestingly, targeting of BAK to the mitochondria restored 

the apoptotic response of DKO cells not only to staurosporine (a general kinase inhibitor) 

and etoposide (DNA damage) but also to ER stress induce by tunicamycin and 

thapsigargin (Fig. 3.6B). By contrast, ER-targeted BAK failed to rescue the apoptotic 

defect of DKO cells even to ER stress (Fig. 3.6B). The minor difference in activating 

apoptosis between wt BAK and BAK∆C/OMP25 is likely due to the lower protein 

expression level of BAK∆C/OMP25 which was less stable (Fig. S3.1). These data clearly 

indicate that death signals emanated from ER also converge on mitochondrial BAK to 

execute apoptosis.  

 

ER stress induces BIM and PUMA to activate BAX/BAK-dependent mitochondrial 

death program 
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 Since BAK needs to be activated by BH3s, we envision that ‘activator’ BH3s 

must be induced by ER stress to provide the missing link that interconnects ER stress 

signaling and the BAX/BAK-dependent mitochondrial death program. Indeed, ER stress 

induced BIM and PUMA proteins (Fig. 3.6C). Consequently, Bim or Puma single 

knockout cells were resistance to ER stress-induced apoptosis and doubly deficiency of 

Bim and Puma DKO cells provided further protection (Fig. 3.6D). Importantly, ER stress-

induced homo-oligomerization of BAX or BAK was blocked by the deficiency of Bim 

and Puma, supporting that BIM and PUMA are required to activate BAX/BAK upon ER 

stress (Fig. 3.6E, F). Collectively, these findings exemplify the essence of BAX/BAK 

activation driven by ‘activator’ BH3s in the context of normal cell death signaling 

cascades.  
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3.5. Discussion 

 

How the death effectors BAX and BAK are activated to trigger the mitochondria-

dependent death program remains as one of the most vigorously debated topics in 

apoptosis research (Chipuk and Green, 2008; Youle and Strasser, 2008). Here, we 

propose a stepwise activation model of BAX and BAK driven by ‘activator’ BH3s, tBID, 

BIM, and PUMA (Fig. 3.7 and Table 3.1). We demonstrated that the α1 helix of BAX 

stabilizes and thereby controls the engagement of the α9 helix in the dimerization pocket. 

tBID, BIM, and PUMA bind transiently to the α1 helix of BAX to unleash auto-inhibition 

which allows for the structural reorganization by exposing both N- and C- termini. The 

C-terminal transmembrane domain hence becomes available for insertion into the MOM. 

tBID, BIM, and PUMA remain associated with the N-terminally exposed BAX to drive 

the homo-oligomerization of mitochondrially localized BAX. BAK, an integral 

mitochondrial membrane protein, constitutively exposes its α1 helix and requires tBID, 

BIM, and PUMA to trigger its homo-oligomerization. The homo-oligomerization of BAX 

or BAK appears to involve the interaction between the BH3 domain of one molecule and 

the canonical dimerization pocket of the other since mutations in either BH1 or BH3 

domain abolish their homo-oligomerization, the same strategy utilized for 

heterodimerization between BH3s and anti-apoptotic BCL-2 members (Sattler et al., 1997; 

Walensky, 2006). Previous mutagenesis studies often involve overexpression of mutant 

BAX or BAK in wt cells such that BH3 but not BH1 mutants were defective in triggering 

apoptosis (Chittenden, 1995; Simonen et al., 1997) Recently, the importance of BH1 and 
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BH3 domains for the homo-oligomerization of BAX and BAK was reported (Dewson et 

al, 2008; George et al., 2007).  

 The “indirect” activation model of BAX/BAK is proposed based in the lack of 

strong and stable interaction between BH3s and BAX/BAK (Willis et al., 2007). Our 

study reveals the dynamic nature of the interaction between BH3s and BAX because the 

conformational changes of BAX apparently involve continuous, step-by-step structural 

reorganization, which helps explain the difficulty in detecting these interactions. BH3s 

first attack the α1 helix of BAX and then interact with BH1 domain once the N- and C-

termini are exposed. This is for the first time that stable interaction between BH3s and 

BAX, at close to 1:1 stoichiometry, could be captured in solution (Fig. 3.4E). The reason 

why this interaction could be readily detectable is likely due to the block of subsequent 

conformational changes that requires the presence of lipid microenvironment since the N-

terminally exposed BAX is supposed to insert into the MOM. An “embedded together” 

model has been proposed to emphasize the importance of lipid in the activation of BAX 

that was facilitated by cardiolipin (Leber et al., 2007). In addition, it was reported that 

unidentified MOM proteins assist tBID to activate BAX in the formation of lipidic pore 

(Schafer et al., 2009). The identification of the canonical dimerization pocket as the 

second interaction site helps reconcile with previous mutagenesis study demonstrating the 

involvement of BH1 domain in the binding between BAX and BID (Wang et al., 1996). 

BH1 domain is also required for BAK to interact with tBID. However, this interaction 

should be “hit-and-run” in nature since the same pocket is also utilized for homo-

oligomerization. If BH3s continue to occupy the pocket, it is impossible for BAX or 

BAK to undergo homo-oligomerization. Indeed, it was reported that tBID was not co-
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eluted with higher-ordered BAX oligomers by gel filtration upon TNFα-induced 

apoptosis (Sundararajan and White, 2001). On the other hand, BH3s bind tightly to the 

pocket of anti-apoptotic BCL-2 members such that anti-apoptotic BCL-2 members do not 

homo-oligomerize (Fig. S3.11). Moreover, the fact that BCL-2 was not co-eluted with the 

higher-ordered BAX/BAK oligomers suggests that BCL-2 is unlikely to inhibit activated 

BAX/BAK directly (Fig. S3.11). Anti-apoptotic BCL-2 members function like “decoy” 

death receptors that form inert stable complexes with BH3s but are incapable to assemble 

the death machinery that permeabilizes the MOM.  

 Since the α1 helix plays pivotal role in initiating BAX activation, it is conceivable 

that inhibitors of BAX activation likely bind to the α1 helix to keep BAX inactive, 

exemplified by humanin (Guo et al., 2003). On the contrary, VDAC2 binds to the 

dimerization pocket of BAK to keep BAK in check (Cheng et al., 2003). In the absence 

of VDAC2, BAK exist as a monomer yet displaying conformational-specific proteolysis 

sensitivity comparable to activated BAK (Cheng et al., 2003). However, its full activation, 

i.e. homo-oligomerization, is still dependent on ‘activator’ BH3s (Cheng et al., 2003). By 

analogy, VDAC2 functions as a brake controlling the BAK-centered death machinery, 

whereas ‘activator’ BH3s provide the driving force. Our recent genetic study provided in 

vivo evidence demonstrating a critical VDAC2-BAK axis in regulating negative selection 

and survival of thymocytes (Ren et al., 2009).  

 Both multidomain proapoptotic and anti-apoptotic BCL-2 members reside at the 

ER to affect ER Ca2+ store likely through the modulation of IP3 receptor (Chen et al., 

2004; Oakes et al., 2005; White et al., 2005). Interestingly, BCL-2 and BCL-XL remain 

capable of regulating ER Ca2+ even in Bax/Bak DKO cells (Oakes et al., 2005). These 
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data position anti-apoptotic BCL-2 proteins downstream of BAX/BAK in maintaining ER 

Ca2+ homeostasis, a hierarchy opposite to that for the control of mitochondrial apoptosis. 

We found that mitochondria- but not ER-targeted BAK is indispensable for ER stress-

induce apoptosis in which BIM and PUMA function as sentinels interconnecting 

upstream death signals and downstream death program. BIM was induced by ER stress 

through CHOP-mediated transcriptional regulation and dephosphorylation-dependent 

stabilization (Puthalakath et al., 2007), whereas how PUMA is regulated by ER stress 

remains unclear. The role of BIM in ER stress-induced apoptosis was uncovered recently 

in that BID was cleaved by Caspase-2 upon ER stress (Upton et al., 2008), which helps 

explain why double deficiency of Bim and Puma provides less apoptotic block than the 

deletion of Bax and Bak.  

 In summary, our data propose a stepwise model of BAX/BAK activation that 

integrates available structural and functional analyses and resolves previously elusive 

hypothesis. Our study clearly demonstrates the essential axis of ‘activator’ BH3-

BAX/BAK in mitochondrial apoptosis.  
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3.6. Figure and table legends 

 

Figure 3.1. Mitochondrial targeting and homo-oligomerization are two separable, 

essential steps of BAX activation 

(A) C-terminal α9 helix targets BAX to the mitochondria. Fluorescence microscopy of 

Bax/Bak DKO MEFs reconstituted with GFP-BAX or GFP-BAX∆C before or after 

treatment with staurosporine (12 hr) or etoposide (15 hr). 

(B) A single amino acid substitution at the BH3 domain or α9 helix of BAX 

constitutively targets BAX to mitochondria. Fluorescence microscopy of Bax/Bak DKO 

MEFs stably reconstituted with BAX S184V or L63E followed by retroviral transduction 

of DsRed-Mito.  

(C) Mitochondrially localized BAX is not constitutively active. DKO MEFs reconstituted 

with wt or mutant BAX were treated with staurosporine (18 hr), etoposide (18 hr), 

tunicamycin (TC, 30 hr), or thapsigargin (TG, 30 hr) to induce apoptosis. Cell death was 

quantified by Annexin-V. Data shown are mean ± s.d. from three independent 

experiments.  

(D) BAX S184V displays faster kinetics in comparison with wt BAX. DKO MEFs 

reconstituted with wt BAX or BAX S184V were treated with etoposide or tunicamycin 

for the indicated time. Cell death was quantified by Annexin-V. Data shown are mean ± 

s.d. from three independent experiments. Asterisk, P<0.05 

(E) Mitochondrially localized BAX mutants or activated BAX expose the N-terminal α1 

helix. DKO MEFs reconstituted with wt BAX before and after treatment with etoposide 

for 15 hr, or reconstituted with indicated BAX mutants were lysed in 1 % CHAPS and 
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then immunoprecipitated with the 6A7 antibody. Immunoprecipitates were analyzed by 

anti-BAX (N20) immunoblots.  

(F) BH3 domain is required for the homo-oligomerization of BAX. Mitochondria isolated 

from DKO MEFs reconstituted with BAX S184V or L63E were incubated with 

recombinant tBID (1 ng/µl) and solubilized in 2 % CHAPS buffer. Protein lysates (200 

µg) were subjected to Superdex 200 (HR 10/30) gel filtration chromatography and 

fractions were analyzed by anti-BAX immunoblots.  

Data shown in (C) and (D) are mean ± s.d. from three independent experiments. Cell 

death was quantified by Annexin-V. 

 

Figure 3.2. Characterization of homo-oligomerization and mitochondrial targeting 

of BAX 

(A) BH1 and BH3 domain mutants of BAX fail to undergo homo-oligomerization in 

response to tBID. Mitochondria isolated from DKO MEFs reconstituted with wt or 

mutant BAX were treated with recombinant tBID (1 ng/µl) and solubilized in 2 % 

CHAPS buffer. Protein lysates (200 µg) were subjected to Superdex 200 (HR 10/30) gel 

filtration chromatography and fractions were analyzed by anti-BAX immunoblots.  

(B and C) BH1 and BH3 domain mutants of BAX fail to trigger apoptosis. DKO MEFs 

reconstituted with wt BAX or indicated BAX mutant were treated with staurosporine (18 

hr), etoposide (18 hr), tunicamycin (TC, 30 hr), or thapsigargin (TG, 30 hr) to induce 

apoptosis. Cell death was quantified by Annexin-V. Data shown are mean ± s.d. from 

three independent experiments. 
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(D) S184V mutation fully targets BAX G108E but only partially targets BAX G67R to 

the mitochondria. Fluorescence microscopy of DKO MEFs reconstituted with the 

indicated GFP-tagged BAX mutants.  

(E) The N-terminal exposure of BAX correlates with mitochondrial targeting. DKO 

MEFs reconstituted with wt BAX before and after treatment with etoposide (15 hr), or 

reconstituted with indicated BAX mutants were lysed in 1 % CHAPS and then 

immunoprecipitated with the 6A7 antibody. Immunoprecipitates were analyzed by anti-

BAX (N20) immunoblots.  

(F) BH1 domain is required for the homo-oligomerization of BAX. Mitochondria isolated 

from DKO MEFs reconstituted with BAX S184V or BAX G108E/S184V were incubated 

with recombinant tBID for 30 min and then treated with BMH crosslinker. The BAX 

oligomers were detected by an anti-BAX immunoblot.  

 

Figure 3.3. BH1 and BH3 domains of BAX are required for its activation 

(A) BH1 and BH3 domain mutants of BAX fail to translocate to mitochondria upon 

apoptotic signals. Fluorescence microscopy of Bax/Bak DKO MEFs reconstituted with 

GFP tagged wt BAX, BAX G67R, or BAX G108E before or after treatment with 

staurosporine (12 hr) or etoposide for (15 hr). 

(B) BH1 and BH3 domain mutants of BAX fail to expose their α1 helix in response to 

DNA damage or tBID. DKO MEFs reconstituted with wt or mutant BAX were untreated, 

treated with etoposide, or transduced with retrovirus expressing tBID. Cells lysed in 1 % 

CHAPS were subject to the 6A7 immunoprecipitation, followed by an anti-BAX 

immunoblot.  
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(C) BH1 and BH3 domain mutants of BAX fail to insert into the MOM in response to 

tBID. Mitochondria isolated from DKO MEFs reconstituted wt or mutant BAX were 

mock treated or treated with IVTT tBID, followed by alkaline extraction. The alkali-

sensitive supernatant (S) and alkali-resistant pellet (P) fractions were analyzed by anti-

BAX immunoblots. The numbers shown denote the percent of BAX quantified by 

densitometry.  

(D) BIM and PUMA induce the mitochondrial insertion of BAX. Mitochondria isolated 

from DKO MEFs reconstituted with wt BAX were mock treated for treated with IVTT 

BIM or PUMA, followed by alkali extraction. The alkali-sensitive supernatant (S) and 

alkali-resistant pellet (P) fractions were analyzed by anti-BAX immunoblots. The 

numbers shown denote the percent of BAX quantified by densitometry.  

 

Figure 3.4. Activation of BAX can be dissected into two sequential steps, 

mitochondrial targeting and homo-oligomerization, both of which require 

‘activator’ BH3s 

(A) The α1 helix of BAX keeps the α9 helix engaged in the dimerization pocket. 

Radiolabeled IVTT HA-tagged BAX∆C or HA-tagged BAX∆N∆C in combination with 

GST-α9 or GST-α9 S184V were subjected to anti-HA immunoprecipitation in 1 % 

CHAPS. Immunoprecipitates and pre-IP input were analyzed by NuPAGE and 

autoradiography. Asterisk denotes degradation products.  

(B) The L63E mutation in BAX disrupts the binding of the α1 helix to the rest of the 

protein, resulting in N-terminal exposure and mitochondrial targeting. Radiolabeled 

IVTT HA3-tagged BAX α1 helix in combination with BAX∆N wt, L63E, or G67R were 
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subjected to anti-HA immunoprecipitation in 1 % CHAPS. Immunoprecipitates and pre-

IP input were analyzed by NuPAGE and autoradiography.  

(C) The S184V mutation in BAX destabilizes the binding of the α1 helix to the rest of the 

protein. Radiolabeled IVTT HA3-tagged BAX α1 helix in combination with BAX∆N wt 

or S184V were subjected to anti-HA immunoprecipitation in 1 % CHAPS. 

Immunoprecipitates and pre-IP input were analyzed by NuPAGE and autoradiography.  

(D) tBID, BIM, and PUMA bind to the α1 helix of BAX. Radiolabeled IVTT HA3-tagged 

BAX α1 helix in combination with tBID, BIM, and PUMA were subjected to anti-HA 

immunoprecipitation in 1 % CHAPS. Immunoprecipitates and pre-IP input were analyzed 

by NuPAGE and autoradiography. 

(E) tBID, BIM, and PUMA, but not BAD, induce the N-terminal exposure of BAX and 

remain associated with the N-terminally exposed BAX. Radiolabeled IVTT BAX 

incubated with tBID, BIM, PUMA, or BAD were immunoprecipitated with the 6A7 

antibody in 1 % CHAPS. Immunoprecipitates and pre-IP input were analyzed by 

NuPAGE and autoradiography. 

(F) tBID, BIM, and PUMA induce the homo-oligomerization of BAX S184V. 

Mitochondria isolated from DKO MEFs reconstituted with BAX S184V were incubated 

with IVTT tBID, BIM, or PUMA for 30 min and then treated with BMH crosslinker. The 

BAX oligomers were detected by an anti-BAX immunoblot.  

(G) BH1 domain is required for N-terminally exposed BAX to interact with tBID. 

Radiolabeled IVTT BAX L63E or L63E/G108E incubated with tBID were 

immunoprecipitated with the 6A7 antibody in 1 % CHAPS. Immunoprecipitates and pre-

IP input were analyzed by NuPAGE and autoradiography. 
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Figure 3.5. BH1 and BH3 domains are required for the homo-oligomerization and 

proapoptotic activity of BAK 

(A) BH1 and BH3 domain mutants of BAK fail to undergo homo-oligomerization in 

response to tBID. Mitochondria isolated from DKO MEFs reconstituted with wt or 

mutant BAK were treated with recombinant tBID (1 ng/µl) and solubilized in 2 % 

CHAPS buffer. Protein lysates (200 µg) were subjected to Superdex 200 (HR 10/30) gel 

filtration chromatography and fractions were analyzed by anti-BAK immunoblots.  

(B) BH1 and BH3 domain mutants of BAK fail to form homo-dimers. Radiolabeled 

IVTT HA3-tagged wt or mutant BAK plus non-tagged counterparts were 

immunoprecipitated with anti-HA antibody. Immunoprecipitates and pre-IP input were 

analyzed by NuPAGE and autoradiography. Asterisk denotes degradation products.  

(C) BH1 and BH3 domain mutants of BAK fail to trigger apoptosis. DKO MEFs 

reconstituted with wt or mutant BAK were treated with staurosporine (18 hr), etoposide 

(18 hr), tunicamycin (30 hr), or thapsigargin (30 hr) to induce apoptosis. Cell death was 

quantified by Annexin-V. Data shown are mean ± s.d. from three independent 

experiments. 

(D) BH1 and BH3 domain mutants of BAK are localized at the mitochondria. 

Fluorescence microscopy of Bax/Bak DKO MEFs stably reconstituted with YFP-tagged 

wt or mutant BAK followed by retroviral transduction of DsRed-Mito.  

(E) BH1 domain is required for BAK to interact with tBID. Radiolabeled IVTT BAK wt, 

BAK BH3 mt (L75E) or BH1 mt (W122A/G123E/R124A) incubated with tBID-HA were 

immunoprecipitated with anti-HA antibody. Immunoprecipitates and pre-IP input were 

analyzed by NuPAGE and autoradiography.  
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(F) BAK constitutively exposes its N-terminal α1 helix. Mitochondria isolated from wt 

MEFs, mock treated or treated with tBID, were lysed in 1 % CHAPS and then 

immunoprecipitated with the α1 helix specific anti-BAK antibody (NT). 

Immunoprecipitates and pre-IP input were analyzed by anti-BAK (G23) immunoblots. 

Mitochondria isolated form DKO MEFs serve as a negative control. 

(G) BAK constitutively exposes its N-terminal α1 helix. 4T1 or N18 cells before and 

after staurosporine treatment were lysed in 1 % CHAPS and then immunoprecipitated 

with the α1 helix specific anti-BAK antibody (NT). Immunoprecipitates and pre-IP input 

were analyzed by anti-BAK (G23) immunoblots.  

 

Figure 3.6. BIM and PUMA activate mitochondrial BAK and BAX to execute 

apoptosis upon ER stress 

(A) Schematic of the mitochondria- and ER-targeted BAK chimera mutants.  

(B) Mitochondria- but not ER-targeted BAK is required for apoptosis triggered by 

intrinsic death signals. DKO MEFs reconstituted with wt or mutant BAK were treated 

with staurosporine (9 hr), etoposide (18 hr), tunicamycin (TC, 30 hr), or thapsigargin (30 

hr) to induce apoptosis. Cell death was quantified by Annexin-V. Data shown are mean ± 

s.d. from three independent experiments.  

(C) BIM and PUMA are induced by ER stress. DKO MEFs treated with tunicamycin (TC, 

18 hr), or thapsigargin (18 hr) were lysed and analyzed by anti-BIM and PUMA 

immunoblots.  

(D) BIM and PUMA are required for ER-stress induced apoptosis. Wild-type, Bim KO, 

Puma KO, or Bim/Puma DKO MEFs were treated with tunicamycin or thapsigargin for 
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30 hr. Cell death was quantified by Annexin-V. Data shown are mean ± s.d. from three 

independent experiments.  

(E) Deficiency of Bim and Puma prevents ER stress-induced BAK homo-oligomerization.  

Wild-type or Bim/Puma DKO MEFs were untreated or treated with tunicamycin for 30 hr. 

Protein lysates were subjected to Superdex 200 (HR10/30) gel filtration chromatography. 

Fractions were analyzed by anti-BAK immunoblots.  

(F) Deficiency of Bim and Puma prevents ER stress-induced BAX homo-oligomerization.  

The blots shown in (E) were stripped and reprobed with anti-BAX antibody.  

 

Figure 3.7. Schematic depicts the model for activation of BAX and BAK driven by 

“‘activator’” BH3s 

 

Table 3.1. Summary of BAX and BAK mutants  
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Supplementary figure legends 

 

Figure S3.1. Reconstitution of BAX or BAK mutants to Bax/Bak DKO MEFs 

(A) Anti-BAX immunoblots detect comparable expression of wild-type or mutant BAX 

reconstituted in Bax/Bak DKO cells by retroviral transduction.  

(B) Anti-BAK immunoblots detect comparable expression of wild-type or mutant BAK 

reconstituted in Bax/Bak DKO cells by retroviral transduction. Of note, BAK∆C/OMP25 

was less stable, and expressed at a lower level.  

 

Figure S3.2. Bax-deficient MEFs displays faster death kinetics in comparison with 

Bak-deficient MEFs 

(A) Bax- or Bak-deficient MEFs were treated with etoposide for the indicated time.  

(B) Bax- or Bak-deficient MEFs were treated with tunicamycin for the indicated time.  

Cell death was quantified by Annexin-V. Data shown are mean ± s.d. from three 

independent experiments.  

 

Figure S3.3. BH1 and BH3 domain mutants of BAX fail to form homo-dimers 

In vitro transcribed and translated, radiolabeled N-terminal HA-tagged wild-type or 

mutant BAX plus non-tagged counterparts were immunoprecipitated with anti-HA 

antibody. Immunoprecipitates and pre-IP input were analyzed by NuPAGE and 

autoradiography.  
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Figure S3.4. BAX P168A fails to expose its N-terminus upon DNA damage 

 Bax/Bak DKO MEFs reconstituted with wild-type BAX or BAX P168A before or after 

treatment with etoposide for 15 hr were lysed in 1 % CHAPS and then 

immunoprecipitated with the 6A7 anti-BAK antibody (NT). Immunoprecipitates and pre-

IP input were analyzed by anti-BAX (N20) immunoblots.  

 

Figure S3.5. NP-40 disrupts the binding of the α1 helix of BAX to BAX∆N 

Radiolabeled IVTT HA3-tagged BAX α1 helix in combination with BAX∆N were 

subjected to anti-HA immunoprecipitation in 0.2 % NP-40. Immunoprecipitates and pre-

IP input were analyzed by NuPAGE and autoradiography. 

 

Figure S3.6. tBID, but not BAD or BMF binds to the α1 helix of BAX 

Radiolabeled IVTT HA3-tagged BAX α1 helix in combination with tBID, BAD, or BMF 

were subjected to anti-HA immunoprecipitation in 1 % CHAPS. Immunoprecipitates and 

pre-IP input were analyzed by NuPAGE and autoradiography. 

 

Figure S3.7. tBID, but not BMF induces the N-terminal exposure of BAX and 

remains associated with the N-terminally exposed BAX 

Radiolabeled IVTT BAX incubated with tBID, or BMF were immunoprecipitated with 

the 6A7 antibody in 1 % CHAPS. Immunoprecipitates and pre-IP input were analyzed by 

NuPAGE and autoradiography. 
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Figure S3.8. tBID, but not BMF induces the homo-oligomerization of BAX S184V 

Mitochondria isolated from Bax/Bak DKO MEFs reconstituted with BAX S184V were 

incubated with IVTT tBID, BAD, or BMF for 30 min and then treated with BMH 

crosslinker. The BAX oligomers were detected by an anti-BAX immunoblot.  

 

Figure S3.9. BH1 domain is required for N-terminally exposed BAX to interact with 

tBID 

Radiolabeled IVTT BAX incubated with tBID were immunoprecipitated with the 6A7 

antibody in 0.2 % NP-40. Immunoprecipitates and pre-IP input were analyzed by 

NuPAGE and autoradiography. 

 

Figure S3.10. YFP-BAK∆C/Cb5 TM colocalizes with DsRed-ER whereas YFP-

BAK∆C/OMP25 TM colocalizes with DsRed-Mito 

Fluorescence microscopy of Bax/Bak DKO MEFs stably reconstituted with indicated 

YFP-tagged BAK chimera followed by retroviral transduction of DsRed-ER or DsRed-

Mito. 

 

Figure S3.11. BCL-2 does not homo-oligomerize in response to tBID 

(A) Mitochondria isolated from Bax/Bak DKO MEFs reconstituted with wild-type BAX 

were treated with recombinant tBID (1 ng/µl) and solubilized in 2 % CHAPS buffer. 

Protein lysates (200 µg) were subjected to Superdex 200 (HR 10/30) gel filtration 

chromatography. The membranes utilized in Fig. 3.2A were stripped and reprobed with 

anti-BCL-2.  
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(B) Mitochondria isolated from Bax/Bak DKO MEFs reconstituted with wild-type BAK 

were treated with recombinant tBID (1 ng/µl) and solubilized in 2 % CHAPS buffer. 

Protein lysates (200 µg) were subjected to Superdex 200 (HR 10/30) gel filtration 

chromatography. The membranes utilized in Fig. 3.5A were stripped and reprobed with 

anti-BCL-2.  
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3.7. Figures and tables 
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Figure 3.1 
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Figure 3.1 
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Figure 3.2 
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Figure 3.2 
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Figure 3.3 
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Figure 3.3 
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Figure 3.4 
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Figure 3.4 
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Figure 3.4 
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Figure 3.5 
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Figure 3.5 
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Figure 3.5 
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Figure 3.6 
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Figure 3.6 
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Figure 3.7 
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Table 3.1 

 

 

 

 
Mutation Domain Localization Bind 

BH3s 
Defect 

BAX L63E BH3 Mitochondria yes Oligomerization 
 

BAX S184V TM Mitochondria ND no 
 

BAX G67R BH3 Cytosol ND Mitochondrial 
insertion  

& oligomerization 
BAX G108E BH1 Cytosol no Mitochondrial 

insertion  
& oligomerization 

BAX G67R/S184V BH3 & TM Mitochondria/
Cytosol 

ND oligomerization 

BAX G108E/S184V BH1 & TM Mitochondria ND Oligomerization 
 

BAK L75E BH3 Mitochondria yes Oligomerization 
 

BAK 
W122A/G123E/R124A 

BH1 Mitochondria no Oligomerization 
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Figure S3.1 
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Figure S3.2 
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Figure S3.10 
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Figure S3.11 
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- CHAPTER 4 - 

 

BAK Triggers Mitochondrial Dysfunction by Inhibiting  

VDAC Activity upon Activation by BH3-only Molecules 
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4.1. Summary 

 

 Although activated BAX/BAK not only mediates cytochrome c release but also 

initiates caspase-independent mitochondrial dysfunction, the mechanism whereby 

BAX/BAK modulates mitochondrial physiology remains uncharacterized. Here, I 

identify a BAK complex that contains VDAC/ANT channels known to regulate 

ATP/ADP transport to support ATP production by oxidative phosphorylation. This 

higher-ordered BAK complex is functionally different from BAK oligomers that induce 

cytochrome c release during apoptosis. Activator BH3-only tBID is recruited to the 

complex and shuts down VDAC-mediated ADP import into the mitochondria in a BAK-

dependent manner. Accordingly, knockdown of Bak inhibits the loss of ATP and cell 

death upon tBID overexpression in Apaf-1-deficient cells, suggesting that activated BAK 

antagonizes VDAC activity to initiate mitochondrial dysfunction. This study provides 

novel insights into how BAK promotes caspase-independent cell death and also suggests 

that BAK controls the metabolic function of VDAC, coupling apoptosis and 

mitochondrial physiology.  
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4.2. Introduction 

 

Mitochondrion is a complex and versatile organelle that controls both life-

supporting function and death-promoting activity (Newmeyer and Ferguson-Miller, 

2003). Integration of apoptotic signals at the mitochondria is a critical determinant for 

mammalian cell death, which is controlled by BCL-2 family members (Danial and 

Korsmeyer, 2004). Upon apoptotic signals, multidomain proapoptotic BAX and BAK 

homo-oligomerize to permeabilize the mitochondrial outer membrane, releasing 

cytochrome c to initiate Apaf-1-dependent caspase activation, while anti-apoptotic BCL-

2, BCL-XL, and MCL-1 protect mitochondrial membrane integrity (Youle and Strasser, 

2008). BAX/BAK is activated by the third BCL-2 family, BH3-only molecules (BH3s) 

that either directly induce conformational change of BAX/BAK or occupy the pocket of 

anti-apoptotic BCL-2 members to prevent the sequestration of BH3s by anti-apoptotic 

BCL-2 members (Cheng et al., 2001; Certo et al., 2006; Kim et al., 2006). Since other 

apoptogenic factors are also compartmentalized in the intermembrane space of 

mitochondria, maintaining mitochondrial integrity is important to prevent programmed 

cell death (Green and Kroemer, 2004). On the other hand, mitochondrion is responsible 

for carrying out energy-yielding oxidative phosphorylation that generates ATP to 

maintain various cellular functions and mediating critical metabolic reactions that 

produce amino acids and lipids to sustain cell survival. Thus, regulation of mitochondrial 

physiology is also an important control point for cell death. The alteration of redox 

potential and accumulation of cellular oxidative stress by the generation of reactive 

oxygen species (ROS) accompanied by energy catastrophes also play a crucial role to 
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trigger mitochondrial dysfunction and cell death (Green and Reed, 1998). Numerous 

mitochondrial diseases due to the defects on both mitochondrial DNA- and nuclear DNA-

encoded mitochondrial proteins involved in the electron transport and oxidative 

phosphorylation emphasize the central role of mitochondria in controlling energy 

metabolism and cellular homeostasis (Wallace and Fan, 2009).  

Although BAX and BAK function as essential downstream effectors that control 

cytochrome c-dependent caspase activation by constituting pores at the mitochondrial 

outer membrane, several studies suggest that they are also involved in the cell death that 

occurs independently of caspase activity. BAX overexpression in Jurkat cells triggers cell 

death despite the inhibition of BAX-induced caspase activation (Xiang et al., 1996). 

Combination of BAX expression and F1F0-ATPase inhibitor oligomycin induces cell 

death in the presence of caspase inhibitor in GM701 cells, indicating that BAX may 

directly regulate mitochondrial physiology that maintains the cellular metabolic process 

including ATP production (Fitch et al., 2000). F1F0-ATPase was also shown to be 

functionally linked to BAX by the genetic study of BAX-induced killing in yeast 

(Matsuyama et al., 1998). In contrast, anti-apoptotic BCL-XL was shown to prevent 

mitochondrial hyperpolarization induced by oligomycin (Vander Heiden et al., 1997). 

Most importantly, we have previously showed that Apaf-1-deficient MEFs where 

cytochrome c-initiated caspase-dependent apoptotic cell death axis is eliminated slowly 

die upon overexpression of BH3s, whereas Bax/Bak DKO cells are completely resistant 

to BH3s (Cheng et al., 2001). The cell death is accompanied by the loss of mitochondrial 

transmembrane potential, suggesting that mitochondrial dysfunction plays a major role in 

executing cell death in Apaf-1-deficient cells. However, the mechanism by which BAX 
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and/or BAK regulate mitochondrial dysfunction upon activation by BH3s remains 

uncharacterized.  

Mitochondrion serves as a critical site of cell survival regulation by generating 

cellular ATP through oxidative phosphorylation coupled with electron transport 

(Newmeyer and Ferguson-Miller, 2003). In order to maintain the electrochemical 

gradient generated by the electron flow along the electron transport chain machinery, 

ATP production from ADP by ATP synthase must be tightly coupled with continuous 

exchange of ATP/ADP across the mitochondrial membranes. Limited substrate 

availability for ATP synthase would lead to inner membrane hyperpolarization due to the 

accumulation of proton gradient in the intermembrane space, increased production of 

ROS, and dissipation of transmembrane potential, culminating in mitochondrial 

dysfunction and cell death. Voltage-dependent anion channel (VDAC) is a pore-forming 

channel found in the mitochondrial outer membrane of all eukaryotes that is known to 

regulate ATP/ADP transport and metabolite fluxes such as creatine phosphate, succinate, 

and pyruvate between cytosol and intermembrane space (Colombini et al., 1996; Hodge 

and Colombini, 1997). VDAC interacts with proteins in the intermembrane space and 

adenine nucleotide translocator (ANT) in the inner membrane, which leads to the 

formation of the ‘contact sites’ between the mitochondrial outer membrane and the 

peripheral inner membrane (Crompton et al., 2002).  This tight coupling of VDAC and 

ANT channels allows for regulating the activity of oxidative phosphorylation by substrate 

exchange such as ADP to adjust mitochondrial function (Brdiczka et al., 2006). Of note, 

VDAC channel dysfunction by adopting its closed conformation has been implicated in 

cell death triggered by growth factor withdrawal, which disrupts the ATP/ADP transport 
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causing mitochondrial hyperpolarization and dysfunction (Vander Heiden et al., 1999; 

Vander Heiden et al., 2000). There exist three VDAC isoforms in mammals, which 

exhibit a considerable degree of functional redundancy regarding the metabolic function 

of mitochondria (Wu et al., 1999). However, contrary to viable Vdac1 or Vdac3 null mice, 

Vdac2 deficiency causes embryonic lethality likely due to the unchecked activation of its 

binding partner BAK to trigger apoptosis (Cheng et al., 2003). The physical association 

between the proapoptotic molecule and the regulator of mitochondrial physiology raises 

the possibility that BAK may have a reciprocal activity to modulate the VDAC-mediated 

metabolic function following cell death signals. However, the regulation of VDAC 

function by BAK has not been investigated yet.  

 Here, I demonstrate that BAK negatively regulate VDAC-mediated ATP/ADP 

transport leading to mitochondrial dysfunction upon activation by BH3s. Biochemical 

analyses demonstrated that BAK constitutes a higher-ordered complex associated with 

VDAC/ANT channels likely localized at the contact sites. In contrast to BAK oligomers 

formed by tBID-induced activation, this BAK complex is not able to induce cytochrome 

c release but instead modulates the preexisting VDAC/ANT channel activity. Apaf-1-

deficient cells with Bak downregulation exhibit higher level of cellular ATP by 

maintaining greater ability to import ADP into the mitochondria through VDAC channels, 

rendering cells less susceptible to tBID-induced cell death. tBID is recruited to the 

BAK/VDAC/ANT complex, but requires BAK to kill cells. This study not only provides 

novel insights into how BAK triggers caspase-independent mitochondrial dysfunction, 

but also presents solid biochemical evidence that BAK exerts its distinct prodeath roles 

through different BAK complexes at the mitochondria. In addition, the result implies that 
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in mammals, BAK and VDAC2 may have coevolved to reciprocally regulate their 

functions to control both apoptosis and mitochondrial dysfunction.  
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4.3. Materials and Methods 

 

Plasmid Construction and Retrovirus Production 

The production of retrovirus and retroviral transduction of Protein C-HA-Flag 

BAK to Bax/Bak DKO MEFs were performed as previously described (Cheng et al., 

2001; Kim et al., 2006). The tBID-inducible Apaf-1 knockout MEFs were generated by 

Ho-Chou Tu at our laboratory.  

 

Cell culture and viability assay 

All the mouse embryonic fibroblasts (MEFs) utilized were SV-40 transformed 

and maintained in Dulbecco's Modified Eagles Medium supplemented with 10% fetal 

bovine serum following standard culture conditions and procedures. Cell death was 

quantified by propidium iodide (Sigma; 2 µg/mL) staining followed by flow cytometric 

analysis using a FACSCaliber (BD Biosciences) and CellQuest Pro Software.  

 

Knockdown experiments 

Retrovirus-mediated shRNA knockdown constructs were generated using 

pSuperior-Retro-Puro according to the manufacture's instruction (Oligoengine). The 

murine targeting sequences are as follows: Bax 5’-CACCAAGAAGCTGAGCGAG, Bak 

5’-TATTAACCGGCGCTACGAC, Luciferase shRNA, 5’-GCGCGCTTTGTAGGA- 

TTCG. For siRNA-mediated knockdown, following Ambion Silencer Select oligos 

(Applied Biosystems) were reverse-transfected using lipofectamine RNAiMAX 

(Invitrogen) to a final concentration of 10 nM for 2 days before experiments; Bax #1 5’-
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CUUCUACUUUGCUAGCAAAtt, Bax #2 5’-GGAUGAUUGCUGACGUGGAtt, Bak 

#1 5’-CCUACGAACUCUUCACCAAtt, Bak #2 5’-GAAUUUACUAGAACAGCUUtt.  

 

Antibodies, reagents and Western blot 

BH3 peptides of BIM (MRPEIWIAQELRRIGDEFNA) were synthesized by 

Tufts University Core Facility (Boston, MA). The primary antibodies used for Western 

blots are listed as followed: anti-BAX (N20, Santa cruz), anti-BAK (NT, upstate), anti-

VDAC1 (Porin 31HL, Calbiochem), anti-VDAC2 (rabbit polyclonal; peptide of amino 

acid 212-228), anti-prohibitin 2 (Upstate), anti-cyclophillin D (Affinity BioReagents), 

anti-ATP synthase β (BD Biosciences), anti-cytochrome c oxidase IV (Cell Signaling), 

anti-BID (Wang et al., 1996), anti-actin (Chemicon). Cellular and mitochondrial lysates 

were separated by NuPAGE (Invitrogen) or SDS-PAGE (Bio-Rad) gels and transferred 

onto PVDF membrane (Immobilon-P; Millipore). Antibody detection was accomplished 

by enhanced chemiluminescence method (Western Lightning, PerkinElmer) and LAS-

3000 Imaging system (FUJIFILM).  

 

Identification of the mitochondrial BAK complex 

Mitochondria isolation was performed as previously described (Cheng et al., 

2001). Mitochondria isolated from Bax/Bak DKO MEFs or DKO MEFs expressing 

Protein C-Flag-HA tagged BAK were left untreated or treated with 10 µM of BIM BH3 

peptide and lysed with 1 % CHAPS lysis buffer (1 % CHAPS, 142.5 mM KCl, 2 mM 

CaCl2, 20 mM Tris-Cl, pH 7.4) supplemented with EDTA-free protease inhibitor (Roche). 

After centrifugation, the supernatant was removed, and the pellet was sonicated in lysis 
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buffer with 2 % CHAPS supplemented with EDTA-free protease inhibitor (Roche), and 

the supernatant was designated as 1 % CHAPS insoluble / 2 % CHAPS soluble 

mitochondrial fraction. The protein lysates were immunoprecipitated by anti-Protein C 

affinity matrix (Roche) overnight and eluted with 10 mM EDTA after three times of 

washing. The eluted immune complex was precipitated by trichloroacetic acid and 

analyzed by 4-12 % MOPS NuPAGE (Invitrogen) gel and silver staining (Silver Staining 

Plus kit, Bio-Rad). Excised gel slices of interest were sent for tandem mass spectrometric 

analysis at Taplin Mass Spectrometry Facility (Harvard Medical School, Boston, MA).  

 

Gel filtration chromatography and immunoprecipitation  

The chromatographic step of Superdex 200 (HR 10/30, GE-Amersham) was 

performed on an automatic fast protein liquid chromatography (AKTApurifier, GE-

Amersham) as previously described (Cheng et al., 2003). The column was equilibrated 

with 2 % CHAPS gel filtration buffer (2 % CHAPS, 300 mM NaCl, 0.2 mM DTT, 20 

mM HEPES pH 7.5) and calibrated with thyroglobulin (669 kD), ferritin (440 kD), 

catalase (232 kD), aldolase (158 kD), bovine serum albumin (66 kD), and cytochrome c 

(14 kD). Mitochondrial lysates were loaded onto the column, eluted at a flow rate of 0.3 

ml/min. Fractions of 0.6 ml were collected, precipitated by trichloroacetic acid, and 

analyzed by 8-16 % SDS-PAGE (Bio-Rad) gels and Western blots. For 

immunoprecipitation of Protein C-HA-Flag tagged BAK from gel filtration eluants, the 

indicated factions were combined and incubated with anti-Protein C beads in the presence 

of 2 mM Ca2+ supplemented with EDTA-free protease inhibitor (Roche). The samples 
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were separated by 4-12 % MOPS NuPAGE (Invitrogen) gels and analyzed by silver 

staining and Western blots.  

 

Cytochrome c release and cross-linking  

 The aliquots of gel filtration fractions were incubated with Bax/Bak DKO 

mitochondria such that the final CHAPS concentration is less than 0.1 % in 1 mg/mL 

(100 µl) of mitochondria. Quantitation of cytochrome c release was performed using 

colorimetric ELISA assays as previously described (MCTC0; R&D Systems; Kim et al., 

2006). For detecting BAK oligomers, bismaleimidohexane (BMH; Pierce) was directly 

added to the elution fractions at the final concentration of 2.5 mM, incubated at room 

temperature for 30 min, and quenched by NuPAGE sample buffer. The samples were 

analyzed by 4-12 % NuPAGE and anti-BAK Western blot.  

 

Measurement of cellular ATP and ADP levels 

Cellular ATP levels were measured by the luciferin/luciferase method using ATP 

Bioluminescence Assay Kit HS II (Roche). The total 104 MEFs were used for each assay. 

Upon automatic injection of 50 µl of luciferase reagents to 50 µl of diluted samples, the 

luminescence signal was integrated for 10 sec after a delay of 1 sec using a Dynex MLX 

96-well Plate Luminometer (MTX Lab Systems, Inc).  A standard curve was prepared for 

each measurement by serial dilutions of ATP standard provided by the kit. For ADP 

measurement, ADP in the lysates was first converted to ATP by adding 4 mM 

phospho(enol)pyruvate (Sigma) and 5 U of pyruvate kinase (Sigma) in 0.1 M phosphate 

buffer, and the ATP + ADP value was determined. Then, ATP value of the same lysate 
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was determined, which was subtracted from the ATP + ADP value to acquire the ADP 

value. 

 

ANT-dependent ADP import assay 

Mitochondrial pellets were resuspended with 900 µl of ADP import buffer (250 

mM sucrose, 20 mM HEPES, 10 mM KCl, 5 mM succinate, 3 mM KH2PO4, 1.5 mM 

MgCl2, 1 mM EGTA, 5 uM rotenone pH 7.2). For 400 µl of mitochondrial resuspension, 

50 µM of atractyloside (Sigma) was pretreated before incubating with 0.5 µCi of 14C-

ADP (PerkinElmer NEN® radiochemicals) for 10 min on ice. The reaction was stopped 

by adding 700 µl of ADP import buffer containing 50 µM of atractyloside. After 

centrifugation, the pellets were washed twice with ADP import buffer, and 14C-ADP 

counts were determined by liquid scintillation counter (LS6000; Beckman coulter). ANT-

specific ADP uptake was calculated by subtracting the counts of the sample pretreated 

with atractyloside from the untreated one. To isolate mitoplasts, 0.5 mg/mL of purified 

mitochondria was treated with 0.15 % (w/v) digitonin (Sigma) in mitoplast isolation 

buffer (220 mM mannitol, 70 mM sucrose, 2 mM HEPES pH 7.5) for 10 min on ice and 

spun down at 10,000 g for 10 min. P values for statistical analyses were obtained using 

Student’s t test.  
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4.4. Results 

 

BAK associates with VDAC/ANT channels 

To address the question if there are additional proteins associated with BAK to 

facilitate cytochrome c release, I initially attempted to identify the BAK complex that 

constitutes a pore to release cytochrome c. Given that BAK is an integral mitochondrial 

membrane protein that may be resistant to the certain level of detergent, mitochondrial 

fraction was prepared by removing 1 % CHAPS soluble fraction and dissolving the 

remaining pellet in 2 % CHAPS with sonication. From this 1% CHAPS insoluble / 2% 

CHAPS soluble mitochondrial lysate derived from Bax/Bak DKO MEFs reconstituted 

with Protein C-HA-Flag-tagged BAK, anti-Protein C affinity purification was performed. 

BIM BH3 domain peptide that can induce BAK activation was incubated with 

mitochondria in order to see the different protein profiles before and after death stimuli 

(Letai et al., 2002). Unexpectedly, tandem mass spectrometry identified VDAC1, 

VDAC2, VDAC3, ANT1 and prohibitin 2 as BAK-associated proteins, and the 

composition was not changed after addition of BIM peptide (Fig. 4.1A). Specific 

interactions were verified by anti-Protein C immunoprecipitation and Western blot 

analyses (Fig. 4.1B). On the other hand, neither matrix protein cyclophilin D nor 

mitochondria innermembrane protein ATP synthase β was pulled down with BAK, 

confirming the specificity of the interaction (Fig. 4.1B). These data suggest that BAK 

associates with the VDAC/ANT channel complex present at the contact sites that can be 

extracted by relatively high concentration of CHAPS. VDAC and ANT presumably 

concentrated at the contact sites were previously shown to be co-purified with 
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mitochondrial kinases or receptors form a Triton X-100 extract of rat brain or kidney 

homogenates (Beutner et al., 1996; McEnery et al., 1992)  

 

BAK exists as three distinct complexes at the mitochondria 

The identification of a BAK complex from nonapoptotic cells suggests that BAK 

is able to form a complex other than the BAK-mediated pore formed during apoptosis, 

which can be extracted by different concentration of detergent. Therefore, I performed 

gel filtration chromatography using 1 % CHAPS soluble or 1 % CHAPS insoluble / 2 % 

CHAPS soluble mitochondrial lysates to assess the existence of different BAK 

complexes. Interestingly, it showed different elution patterns of BAK depending on the 

detergent concentration and the treatment of activator BH3 tBID that induces 

oligomerization of BAK (Wei et al., 2000; Cheng et al., 2003; Kim et al., 2006). BAK 

exists as a presumably inactive form around 60 kD in the 1 % CHAPS soluble fraction 

and appeared between 150 and 200 kD in response to tBID (Fig. 4.2A). This corresponds 

to the size of oligomeric BAK presumably composed of 6 to 8 BAK molecules, 

suggesting that this may represent the cytochrome c-releasing BAK oligomeric pores 

formed after BAK activation. In contrast, BAK was eluted in the high molecular weight 

fractions around 500 kD as well as 60 kD in the 1 % CHAPS insoluble / 2 % CHAPS 

soluble mitochondrial fraction prior to tBID addition (Fig. 4.2A). tBID treatment reduced 

the 60 kD BAK and induced the formation of 160 kD BAK complex (Fig. 4.2A). Of note, 

BAK was present around 500 kD before and after tBID treatment (Fig. 4.2A). The 

discovery of a high molecular weight BAK complex around 500 kD before activation 
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raises the possibility that BAK may exert distinct function at the mitochondria other than 

inducing cytochrome c release during apoptosis.  

 

The 500 kD BAK complex is functionally distinct from the 160 kD BAK complex 

To determine whether the components identified as BAK-associated proteins 

constitute the 500 kD BAK complex revealed by gel filtration, I collected these fractions 

from gel filtration of the 1 % CHAPS insoluble / 2 % CHAPS soluble mitochondrial 

lysates and performed anti-Protein C affinity purification. Silver staining and Western 

blot analyses showed that the identified proteins were co-precipitated with BAK (Fig. 

4.2B). Of note, the identified proteins were also eluted in the high molecular weight 

fractions, indicating that these proteins constitute a higher-ordered complex with BAK 

(Fig. 4.2C). This association is not due to the insufficient detergent solubilzation of 

mitochondrial inner membranes, since inner membrane protein cytochrome c oxidase IV 

and ATP synthase β exhibit distinct elution profiles different from those of BAK-

associated proteins (Fig. 4.2C). Moreover, matrix protein cyclophilin D known to 

regulate Ca2+- and ROS-induced necrotic cell death through the permeability transition 

pore did not co-elute with BAK (Baines et al., 2005; Nakagawa et al., 2005) (Fig. 4.2C). 

In stark contrast, BAK from the ~ 160 kD fraction that appeared after tBID treatment was 

not associated with any other protein, implicating that the oligomeric BAK by itself may 

be sufficient to form pores that can release cytochrome c (Fig. 4.2D). Indeed, BAK from 

the ~ 160 kD fraction could be cross-linked to produce dimer and trimer, and release 

cytochrome c from Bax/Bak DKO mitochondria whereas BAK from the 500 kD complex 
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or the 60 kD BAK could not (Fig. 4.2E and 2F). These data suggest that the 160 kD BAK 

complex and the 500 kD BAK complex are functionally distinct.  

Next, I asked whether BAK is essential for the formation of the 500 kD complex, 

or BAK is recruited to the pre-existing VDAC/ANT complex to modulate its funciton. 

VDAC isoforms and prohibitin 2 were still eluted in the high molecular weight fractions 

in the absence of BAX and BAK, suggesting that BAK is not essential for the formation 

of the higher-ordered complex (Fig. 4.2G).  Instead, this suggests that BAK is recruited to 

the VDAC/ANT complex localized at the contact sites.  

 

BAK inhibits VDAC-mediated ATP/ADP transport upon activation by BH3s  

Since BAK is known to mediate mitochondrial dysfunction triggered by BH3s 

(Cheng et al., 2001), and my result suggests that it associates with VDAC and ANT that 

constitute essential channels for ATP/ADP transport, I hypothesized that BAK negatively 

regulates the VDAC channel activity leading to mitochondrial dysfunction upon 

activation by BH3s. VDAC channel dysfunction has been shown to be correlated with 

mitochondrial dysfunction and cell death where removal of growth factor resulted in the 

failure of VDAC channels to maintain ATP/ADP transport (Vander Heiden, et al., 1999; 

Vander Heiden, et al., 2000). To determine if BAK antagonizes the VDAC channel 

activity leading to the failure of ATP generation, cellular ATP level during tBID-induced 

cell death was measured. The ATP level of Apaf-1-deficient cells significantly decreased 

upon tBID expression, whereas Bax/Bak DKO cells maintained their initial ATP level 

(Fig. 4.3A). The other activator BH3s, BIM and PUMA could also deplete the cellular 

ATP level (Fig. 4.3B). The decline of ATP level was not the secondary effect of cell 
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death since cell death was minimal at the time point when ATP was already significantly 

depleted (Fig. 4.3C). Moreover, ATP decrease was accompanied by an increase of 

cellular ADP level excluding the possibility that ATP loss is due to the overall decrease 

of ADP substrate for ATP production (Fig. 4.3D). Importantly, Apaf-1-deficient cells 

with Bak downregulation maintained their higher ATP level compared to control upon 

tBID overexpression, suggesting that BAK antagonizes the continuous ATP production 

when it is activated by tBID (Fig. 4.3E).  

To provide direct evidence that mitochondrial dysfunction occurs due to the 

defect of ATP/ADP transport through the mitochondria, the ability of mitochondria to 

uptake ADP through VDAC/ANT channels was measured upon activation of BAK by 

BH3s. To acquire synchronized and homogenous tBID expression from a large amount of 

cells, a tBID-inducible system in the Apaf-1-deficient MEFs was established by Ho-Chou 

Tu at our lab. This inducible system is created by a retroviral insertion of the GFP coding 

sequence flanked by LoxP in the upstream of tBID cDNA under the same LTR promoter 

such that 4-hydroxytamocifen (4-OHT) treatment can activate Cre-ERT2 and remove the 

GFP sequence to induce tBID expression. tBID induction was confirmed by Western blot 

(Fig 4.3F). Treatment of 4-OHT almost completely inhibited the ability of mitochondria 

to import ADP when cell death was not evident (Fig. 4.3F, G). The parental Apaf-1-

deficient cells treated with 4-OHT had no such defect verifying the specific effect of 

tBID expression (Fig. 4.3H). Of note, mitochondria isolated from the cells with Bak 

downregulation following 4-OHT treatment exhibited greater ability to import ADP than 

control mitochondria, arguing that BAK is required to inhibit ADP transport through 

VDAC/ANT channels upon activation by BH3s (Fig. 4.3G). To examine whether 
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defective ADP import is due to the inhibition of ADP transport across the outer 

membrane caused by VDAC channel dysfunction, mitoplasts were isolated by removing 

the mitochondrial outer membrane. The mitoplasts from tBID-expressing Apaf-1-

deficient cells had intact ability to uptake ADP in contrast to whole mitochondria, 

suggesting that the dysfunction of VDAC, but not that of ANT is responsible for the 

defect of ADP import upon tBID expression (Fig. 4.3I).  

 

tBID is recruited to the VDAC/ANT complex, but requires BAK to induce 

mitochondrial dysfunction and cell death 

 Consistent with the role of BAK in triggering the defect of VDAC-mediated ADP 

transport, shRNA-mediated Bak downregulation significantly protected Apaf-1-deficient 

cells against tBID-induced cell death, while Bax downregulation had minimal effect (Fig. 

4.4A). Knockdown by siRNA oligos showed similar results (Fig. 4.4B).  

Given that the components of the 500 kD BAK complex do not change before and 

after BH3 treatment (Fig. 4.1A.), it is plausible that BH3s is recruited to the complex and 

triggers VDAC channel dysfunction in a BAK-dependent manner.  Indeed, tBID treated 

to the isolated mitochondria was eluted in the high molecular weight fractions in the gel 

filtration of the 1% CHAPS insoluble / 2 % soluble mitochondrial lysates (Fig. 4.4C). 

This is consistent with the previously reported in vitro study, which demonstrated that 

recombinant tBID is able to induce irreversible VDAC channel closure (Rostovtseva et 

al., 2004). Taken together, these results suggest that BH3s are recruited to the 

BAK/VDAC/ANT complex but requires BAK to initiate VDAC channel dysfunction.  
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4.5. Discussion 

 

Mitochondrion serves as an important control point for both apoptotic and 

nonapoptotic cell death regulated by BCL-2 family members (Green and Kroemer, 2004). 

Although BAK activated by upstream death signals is known to disrupt mitochondrial 

outer membrane integrity, triggering cytochrome c-initiated caspase activation, whether 

activated BAK affects the metabolic state of mitochondria to augment cellular demise is 

not clear. Here, I demonstrate that BAK associates with VDAC/ANT channels at the 

contact sites to negatively regulate the ATP/ADP transport through VDAC to trigger 

mitochondrial dysfunction upon activation by BH3s. This BAK complex is functionally 

distinct from the cytochrome c-releasing BAK oligomeric pore at the mitochondrial outer 

membrane. Therefore, BAK probably forms two distinct prodeath complexes at the 

mitochondria (Fig. 4.5). One is localized at the mitochondrial outer membrane, but kept 

in check by direct interaction with VDAC2 isoform. Upon activation by BH3s, BAK is 

released from VDAC2 to undergo homo-oligomerization to release cytochrome c. This 

complex at the mitochondrial outer membrane can be extracted by 1 % CHAPS. The 

other is localized at the contact sites, where BAK is associated with VDAC/ANT 

channels that regulate ATP/ADP transport. By coupling VDAC that allows diffusion of 

small molecules into the intermembrane space with ANT that is selectively permeable to 

a few ions and metabolites into the matrix, the contact sites provide both structural and 

functional basis for adjusting mitochondrial function to the energy demand and 

regulatory signals (Brdiczka, 2007). This junctional complex is more resistant to 

detergent extraction compared to the one at the mitochondrial outer membrane as 
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revealed by gel filtration analysis. Importantly, BAK is required for tBID to shut down 

the VDAC-mediated ATP/ADP transport, which triggers uncoupling of oxidative 

phosphorylation and electron transport, ultimately causing mitochondrial dysfunction. 

Therefore, upon receipt of cell death signals, BAK exerts its prodeath role both by 

triggering cytochrome c-initiated caspase activation and by mediating VDAC channel 

dysfunction, via utilizing two distinct complexes. The biochemical characterization of the 

complex presented here supports the role of BAK in regulating mitochondrial proteins at 

the contact sites, thereby integrating cell death signals and mitochondrial physiology.  

 This study exemplifies the existence of the cell death program that can occur 

independently of caspase activation. It is known that although Apaf-1 functionally 

couples mitochondria and caspase activation by sensing the released cytochrome c in the 

cytosol to execute apoptosis, perturbation of mitochondria physiology also triggers 

nonapopotitc cell death without caspase activation. However, this process is heavily 

dependent on the upstream BCL-2 family members. For instance, Apaf-1-deficient ES 

cells undergo cell death with the loss of mitochondrial membrane potential, which is 

rescued by BCL-2 overexpression, indicating that BAX/BAK activation and/or 

mitochondrial membrane permeabilization mediates caspase-independent cell death 

upstream of Apaf-1 (Haraguchi et al., 2000). In addition, Bax/Bak DKO mice exhibit 

much more severe phenotypes than Apaf-1 or caspase-9 knockout mice; deletion of Apaf-

1 slows but does not inhibit the loss of interdigital web during development, which is 

completely blocked in Bax/Bak DKO background (Lindsten et al., 2000; Yoshida et al., 

1998).  
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I showed that VDAC is a key target in BAK-induced mitochondrial dysfunction. 

However, the mechanism by which VDAC channel dysfunction is caused by BAK 

remains to be understood. BCL-XL was demonstrated to inhibit growth factor 

withdrawal-induced cell death by promoting the open configuration of VDAC thereby 

maintaining the balance of metabolic flux (Vander Heiden et al., 2001). Since BAK is 

associated with VDAC/ANT channels in the absence of death stimuli, and tBID requires 

BAK to kill cells, activation of BAK by BH3s may induce conformational change of 

BAK that directly alters the gating property of VDAC channels. The recently solved 

VDAC1 structure suggests that the movement of an N-terminal α-helix into the pore with 

substantial conformational flexibility may contribute to the channel gating such that the 

close state of VDAC is impermeable to negatively charged metabolites such as ATP/ADP 

(Bayrhuber et al., 2008; Hiller et al., 2008; Ujwal et al., 2008). Alternatively, activated 

form of BAK may change local lipid environment to alter the gating property of VDAC 

indirectly. Interestingly, it was reported that tBID induces negative membrane curvature 

and destabilization of bilayer membranes, suggesting that the insertion of a BCL-2 family 

protein to membranes can directly affect the membrane properties (Epand et al., 2002) 

Mitochondrial outer membrane permeabilization by activated BAK causes the 

redistribution of cytochrome c from the electron transport chain machinery, which is 

expected to inhibit respiration. However, block of the respiration by the loss of 

cytochrome c cannot fully explain mitochondrial dysfunction since tBID-induced 

respiratory failure can only be partially rescued by exogenous cytochrome c at early time 

points, which progressively becomes irreversible (Mootha et al., 2001). My study implies 

that the inability for VDAC/ANT channels to maintain ATP/ADP transport caused by 
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BAK activation leads to the decreased activity of ATP synthase due to the limited 

substrate availability, which causes the arrest of electron flow in the electron transport 

chain. This would allow the elevated level of ROS generation and dissipation of 

transmembrane potential ultimately causing mitochondrial dysfunction. Therefore, BAK 

activation by BH3s results in engaging two distinct pathways to ensure cell death-caspase 

activation and mitochondrial dysfunction.  

 In addition to functioning as a channel, VDAC2 has evolved to keep lethal BAK 

in check by its direct interaction with BAK at the mitochondrial outer membrane (Cheng 

et al., 2003). My study suggests that BAK has also acquired its additional prodeath role 

by controlling VDAC/ANT-mediated ATP/ADP transport. This reciprocal regulation 

would allow the sophiscated coupling of mitochondrial physiology and apoptosis by 

activated BAK.  
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4.6. Figure Legends 

 

Figure 4.1. BAK associates with the VDAC/ANT complex that can be extracted by 

high concentration of CHAPS detergent 

(A) VDAC isoforms, ANT1, and prohibitin2 are identified as BAK-associating proteins 

at the mitochondria. The 1 % CHAPS insoluble / 2 % CHAPS soluble mitochondrial 

lysates from Bax/Bak DKO MEFs reconstituted with protein C-HA-Flag BAK with or 

without treatment of BIM BH3 peptides was subjected to anti-protein C affinity column 

followed by EDTA elution, and the specific bands from silver staining was analyzed by 

tandem mass spectrometry. The mitochondrial lysate from Bax/Bak DKO MEFs serves as 

a negative control.  

(B) VDAC isoforms, ANT1, and prohibitin2 are associated with BAK. 

Immunoprecipitates prepared as described above were analyzed by 4-12 % NuPAGE and 

Western blots using the indicated antibodies.  

 

Figure 4.2. BAK constitutes functionally distinct complexes at the mitochondria 

(A) BAK constitutes three different complexes determined by gel filtration. Wild-type 

mitochondria left untreated or treated with recombinant tBID (1 ng/µl) was solubilized 

with the indicated concentration of CHAPS and the protein lysates were subjected to 

Superdex 200 (HR 10/30) gel filtration chromatography. The fractions were analyzed by 

8-16 % SDS-PAGE and anti-BAK Western blot.  

(B) The identified proteins are associated with BAK at the high-molecular weight 

fractions. The 1 % CHAPS insoluble / 2 % CHAPS soluble mitochondrial lysates were 
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isolated from Bax/Bak DKO MEFs reconstituted with protein C-HA-Flag BAK and were 

subjected to Superdex 200 (HR 10/30) gel filtration chromatography. The high-molecular 

weight fractions were collected and immunoprecipitated with anti-Protein C-conjugated 

beads followed by silver staining and Western blot analyses using the indicated 

antibodies. Asterisks denote the two bands that match with those in Fig. 4.1A.   

(C) The identified proteins are co-eluted with BAK in the high-molecular weight 

fractions. The 1 % CHAPS insoluble / 2 % CHAPS soluble mitochondrial lysates were 

prepared from wild-type MEFs and were subjected to Superdex 200 (HR 10/30) gel 

filtration chromatography. The fractions were analyzed by Western blot analyses using 

the indicated antibodies.  

(D) No associated proteins are identified in the 160 kD BAK complex. Mitochondria 

isolated from Bax/Bak DKO MEFs reconstituted with protein C-HA-Flag BAK were 

treated with recombinant tBID (1 ng/µl) and solubilized in 1 % CHAPS buffer. The 

protein lysates were subjected to Superdex 200 (HR 10/30) gel filtration chromatography. 

The indicated 160 kD fractions were collected and immunoprecipitated with anti-Protein 

C-conjugated beads followed by silver staining.  

(E) The BAK in the 160 kD fractions form oligomers. The fractions eluted at ~500 kD, 

~160 kD, or ~60 kD from the gel filtration chromatography of wild-type mitochondrial 

lysates as described in Fig. 4.2A were incubated with 2.5 mM BMH, separated by 4-12 % 

NuPAGE and analyzed by anti-BAK Western blot.  

(F) The 160 kD BAK complex is able to release cytochrome c. The fractions eluted at 

~500 kD, ~160 kD, or ~60 kD from the gel filtration chromatography were incubated 

with 0.5 mg/mL of Bax/Bak DKO mitochondria. Cytochrome c release from the 



 160

mitochondria was quantified by ELISA assays. The cytochrome c release activity was 

normalized against the background release by buffer alone.  

(G) BAK is not required for the formation of the higher-ordered complex. The 1 % 

CHAPS insoluble / 2 % CHAPS soluble mitochondrial lysates were prepared from 

Bax/Bak DKO MEFs and were subjected to Superdex 200 (HR 10/30) gel filtration 

chromatography. The fractions were analyzed by Western blot analyses using the 

indicated antibodies.  

 

Figure 4.3. BAK is required for shutting down VDAC activity upon tBID expression 

(A) Cellular ATP decreases upon tBID expression in Apaf-1-deficient cells. Cell extracts 

were prepared from the equal numbers of Apaf-1 KO or Bax/Bak DKO MEFs transduced 

with control retrovirus (MIGII) or retrovirus expressing tBID for the indicated times, and 

the ATP levels were measured using the luciferin/luciferase method. Data shown are 

mean ± s.d. from three independent experiments.  

(B) Cellular ATP decreases upon BIM or PUMA expression. Cell extracts were prepared 

from the equal numbers of Apaf-1 KO or Bax/Bak DKO MEFs transduced with control 

retrovirus (MIGII) or retrovirus expressing BIM or PUMA for 30 hrs, and the ATP levels 

were measured using the luciferin/luciferase method. Data shown are mean ± s.d. from 

three independent experiments.  

(C) The decrease of ATP level occurs prior to evident cell death. Apaf-1 KO or Bax/Bak 

DKO MEFs were transduced with control retrovirus (MIGII) or retrovirus expressing 

tBID, and cell death was quantified by flow cytometric analysis of PI staining at 36 hrs. 

Data shown are mean ± s.d. from three independent experiments.  
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(D) Cellular ADP increases upon tBID expression. Cell extracts were prepared from the 

equal numbers of Apaf-1 KO or Bax/Bak DKO MEFs transduced with control retrovirus 

(MIGII) or retrovirus expressing tBID for 36 hrs. Total ADP + ATP level was determined 

after ADP was converted to ATP using pyruvate kinase and phospho(enol)pyruvate. The 

ATP level was measured from the same lysate, and it was subtracted from the ADP + 

ATP level to determine the net ADP level. Data shown are mean ± s.d. from three 

independent experiments. Asterisk, P < 0.05 

(E) Downregulation of BAK inhibits the decrease of ATP caused by tBID expression. 

Apaf-1-deficient MEFs expressing shRNA against luciferase or Bak were transduced with 

control retrovirus (MIGII) or retrovirus expressing tBID for 24 hrs, and the ATP levels 

were measured using the luciferin/luciferase method. Data shown are mean ± s.d. from 

three independent experiments. Asterisk, P < 0.05  

(F) tBID is induced upon treatment of 4-OHT. tBID-inducible Apaf-1-deficient MEFs 

with or without 500 nM of 4-OHT for 24 hrs were lysed and analyzed by anti-BID 

Western blot. At 24 hrs, cell death was not evident as quantified by flow cytometric 

analysis of PI staining.   

(G) Mitochondria with Bak knockdown retain higher ability to import ADP upon tBID 

expression. Mitochondria were isolated from tBID-inducible Apaf-1-deficient MEFs 

expressing shRNA against luciferase or Bak with or without 4-OHT for 17 hrs. 14C-ADP 

uptake was measured in the absence of presence of atractyloside. The ANT-dependent 

14C-ADP import to mitochondria from cells treated with 4-OHT is presented as a 

percentage of that measured from cells without 4-OHT. Data shown are mean ± s.d. from 

three independent experiments. Asterisk, P < 0.05  



 162

(H) 4-OHT treatment alone does not affect the ability for mitochondria to import ADP. 

Mitochondria were isolated from Apaf-1-deficient MEFs left untreated or treated with 4-

OHT for 24 hrs, and 14C-ADP uptake was measured with or without pretreatment of 

atractyloside. Data shown are mean ± s.d. from three independent experiments.  

(I) Mitoplasts retain the ability to import ADP upon tBID expression. Mitochondria were 

isolated from tBID-inducible Apaf-1-deficient MEFs expressing shRNA against 

luciferase or Bak with or without 4-OHT for 17 hrs. 14C-ADP uptake was measured in the 

absence of presence of atractyloside. Where indicated, mitoplasts were isolated by 

removing the mitochondrial outer membrane with 0.15 % digitonin, and the ANT-

dependent 14C-ADP uptake by mitochondria or mitoplasts was assessed as (G). Data 

shown are mean ± s.d. from three independent experiments. Asterisk, P < 0.05 

 

Figure 4.4. tBID is recruited to the VDAC/ANT complex, but requires BAK to kill 

cells 

(A) shRNA-mediated Bak knockdown protects cells from tBID-induced cell death. Apaf-

1-deficient MEFs expressing shRNA against luciferase, Bax, or Bak were transduced 

with retrovirus expressing tBID, and cell death was quantified by flow cytometric 

analysis of PI staining at the indicated times. Data shown are mean ± s.d from three 

independent experiments. Anti-BAX/BAK Western blot confirms the efficient 

knockdown.  

(B) siRNA-mediated Bak knockdown protects cells from tBID-induced cell death. tBID-

inducible Apaf-1-deficient MEFs transfected with 10 nM of scramble siRNA, siRNA 

against Bax or siRNA against Bak for 48 hrs were treated with 500 nM of 4-
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hydroxytamocifen (4-OHT), and cell death was quantified by flow cytometric analysis of 

PI staining at 51 hrs. Data shown are mean ± s.d. from three independent experiments. 

Anti-BAX/BAK Western blot confirms the efficient knockdown.  

(C) tBID is recruited to the higher-ordered BAK complex. Wild-type or Bax/Bak DKO 

mitochondria were incubated with tBID (1 ng/µl) and the 1 % CHAPS insoluble / 2 % 

CHAPS soluble mitochondrial lysates were subjected to Superdex 200 (HR 10/30) gel 

filtration chromatography. The fractions were analyzed by anti-BAK or anti-BID 

Western blot.  

 

Figure 4.5. Schematic depicts the dual role of BAK in mediating both cytochrome c-

dependent caspase activation and mitochondrial dysfunction 
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4.7. Figures  

Figure 4.1. 
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Figure 4.2 
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Figure 4.2 
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Figure 4.2 
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Figure 4.2 
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Figure 4.3 
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Figure 4.3 
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Figure 4.3 
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Figure 4.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 173

Figure 4.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 174

Figure 4.5 
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5.1. Conclusion 

The studies described in this dissertation investigate the dynamics between the 

three BCL-2 subfamilies, and how these interactions affect the death effector function of 

BAX/BAK to determine the decision of cell survival versus death in the mitochondrial 

cell death program. From the work in chapter 2, I determined the relative contribution of 

each anti-death and prodeath BCL-2 subfamily member in regulating mitochondrial 

apoptosis. Unlike the simple ‘two-class’ model, this study established a hierarchical 

regulation of BCL-2 family members in BH3-mediated BAX/BAK activation. In 

response to death stimuli, ‘inactivator’ BH3s bind and inactivate anti-apoptotic BCL-2 

members with unique specificity, liberating sequestered ‘activator’ BH3s so that they can 

directly induce BAX/BAK activation. In this proapoptotic BCL-2 signaling cascade, cell 

death triggered by inactivator BH3s obviously requires downstream activator BH3s. This 

is in contrast with the ‘indirect’ model that explains the discrete pro-death potency of 

BH3s by their relative binding affinity to anti-apoptotic BCL-2 members. Importantly, by 

employing full-length BH3-only proteins produced by an in vitro transcription/translation 

system, the ambiguous role of BIM and PUMA has been resolved. Similarly to tBID, 

they are bona fide activator BH3s that can directly activate BAX/BAK. Another 

important contribution of this study to the apoptosis field is the identification of 

instructive point mutants of BAX/BAK and tBID, which proved that BAX/BAK 

activation is directly triggered by activator BH3s rather than by the disengagement of 

BAX/BAK from anti-apoptotic BCL-2 members. Moreover, anti-apoptotic BCL-2 

proteins principally prevent apoptosis through inhibiting BH3s rather than BAX/BAK. 
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The work in chapter 3 was focused on dissecting the molecular mechanism by 

which BAX/BAK is activated by activator BH3s. It revealed that BAX undergoes 

continuous structural reorganization to proceed to mitochondrial translocation and homo-

oligomerization, both of which are directly triggered by activator BH3s. Mechanistically, 

activator BH3s initiate BAX activation by transiently interacting with the α1 helix of 

BAX to induce the conformational change of BAX, leading to the disengagement of its 

α9 transmembrane domain and the release of auto-inhibitory state. Activator BH3s stay 

associated with N- and C-termini-exposed BAX through the BH1 domain within the 

canonical dimerization pocket, inducing BAX homo-oligomerization at the mitochondria. 

Of note, stable interaction between BAX and BH3s could be captured in solution using 

the conformation-specific anti-BAX antibody. By reconstituting each BAX/BAK mutant 

into the Bax/Bak double-deficient background, I was also able to demonstrate that not 

only the BH3, but also the BH1 domain is required for BAX/BAK activation, 

emphasizing the role of BAX/BAK as a death receptor that can accommodate the death 

ligand BH3s. In addition, the selective targeting of BAK to the ER or the mitochondria 

demonstrated that BAK needs to be localized to the mitochondria to execute apoptosis 

triggered by intrinsic death signals. Furthermore, BH3s act as a liaison to relay upstream 

signals to BAX/BAK at the mitochondria as shown by impeded BAX/BAK 

oligomerization in Bim/Puma double knockout cells upon ER stress. 

Lastly, chapter 4 explored the mechanism of BAK-mediated caspase-independent 

mitochondrial dysfunction. This study was initiated by the observation that upon 

expression of BH3s, Apaf-1-deficient cells exhibit loss of mitochondrial membrane 

potential and slowly proceed to cell death, while Bax/Bak DKO cells retain mitochondrial 
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membrane potential and are completely resistant to death. Affinity purification and gel 

filtration analyses allowed me to identify a higher-ordered BAK complex that contains 

the VDAC/ANT channels, which is functionally different from the cytochrome c-

releasing BAK oligomers. Upon activation by BH3s, BAK promotes cell death by 

triggering VDAC dysfunction, leading to a defect in ADP transport and the subsequent 

loss of ATP production. Given that the VDAC2 isoform is a specific inhibitor of BAK-

dependent apoptosis by its direct association with BAK, this study also implies that BAK 

and VDAC2 may have co-evolved to reciprocally regulate each other’s function, 

allowing for crosstalk between apoptosis and mitochondrial physiology.  

In conclusion, this thesis provides mechanistic insights into how the death 

signaling cascade of BCL-2 family members regulates the BAX/BAK-dependent cell 

death program, and resolves some of the critical questions heretofore unanswered in the 

apoptosis field. The field has witnessed tremendous conceptual and technical 

breakthroughs over the past two decades in elucidating how the dynamic interactions 

between BCL-2 family proteins execute the mitochondrion-dependent cell death program. 

The work presented in this thesis will contribute to shaping the framework to meet the 

next challenge the future holds: better appreciation of the functional network of BCL-2 

family members and translation the knowledge into the development of therapeutics for 

cancer treatment, some of which are discussed below.  
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5.2. Future directions 

 

Genetic proof of the hierarchy model 

 The hierarchy model established in chapter 2 suggests that tBID, BIM, and 

PUMA are more potent BH3s since they can directly engage BAX/BAK to trigger its 

activation. This model predicts that the absence of these activator BH3s should have an 

extensive impact on triggering apoptosis for embryonic development and tissue 

homeostasis. Indeed, knockout mouse models of this subgroup have proven that single 

knockout of either Bid, Bim, or Puma exhibits much stronger phenotypes than that of 

other BH3s (Bouillet et al., 1999; Jeffers et al., 2003; Yin et al., 1999). This is especially 

true for the loss of BIM, which causes an increase in blood leukocytes, an abnormal 

CD4/CD8 ratio during T-cell development, defects in negative selection of thymocytes, 

and a resistance of lymphocytes to cytokine deprivation, calcium ion flux, and 

microtubule perturbation (Bouillet et al., 1999; Bouillet et al., 2002). Of note, deletion of 

both Bim and Puma has revealed new defects that were not apparent in the single 

knockout such as exacerbation of hematopoietic defects, hyperplasia of lymphatic organs, 

and spontaneous tumorigenesis (Erlacher et al., 2006). In contrast, combined loss of Bid 

and Bim does not confer any additional phenotypes, suggesting that functional 

redundancy exists among activator BH3s (Willis et al., 2007). Therefore, these results 

suggest that the generation of a Bid/Bim/Puma triple knockout should be pursued in order 

to reveal any compound phenotype masked by functional complementation. This mouse 

will also be a valuable tool for addressing the question of whether the deletion of all 

known activator BH3s can phenocopy the defects seen in Bax/Bak DKO animals. 
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Ultimately, the genetic proof of the importance of BID, BIM, and PUMA in triggering 

apoptosis during development and in response to cellular damage would strongly support 

the direct BAX/BAK activation model in vivo.  

 

Therapeutic implications 

 The hierarchy model of BAX/BAK activation suggests that a small molecule that 

can occupy the binding pocket of anti-apoptotic BCL-2 members can be utilized to 

trigger apoptosis by mimicking the function of inactivator BH3s; such a compound can 

displace activator BH3s from anti-apoptotic BCL-2 members to activate BAX/BAK. 

Previously, ABT-737 was developed by NMR-based compound screening as an 

antagonist of the anti-apoptotic BCL-2 members to trigger apoptosis in cancer (Oltersdorf 

et al., 2005). ABT-737 is a BH3 mimetic of the inactivator BH3-only BAD that can bind 

and inhibit BCL-2, BCL-XL, and BCL-W. This compound, which is currently in Phase I 

and II clinical trials as an orally available form ABT-263, exhibits synergistic effects with 

chemotherapeutics in several tumor cell lines as well as single-agent efficacy in cell lines 

from lymphoid malignances and small-cell lung cancer (Oltersdorf et al., 2005). ABT-

737 was mechanistically shown to displace BIM from BCL-2 to activate BAX and induce 

cell death in chronic lymphocytic leukemia (Del Gaizo Moore et al., 2007). This 

demonstrates that inactivator BH3 mimetics can be used to selectively kill cancer cells by 

exploiting the dependence of cancer cells on BCL-2 overexpression to sequester the 

elevated activator BH3s. On the other hand, resistance to ABT-737 was attributed to the 

overexpression of anti-apoptotic MCL-1, which cannot be targeted by the BAD BH3 

mimetic ABT-737 due to its distinct binding cleft (Konopleva et al., 2006; Lin et al., 
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2006; Van Delft et al., 2006). Cyclin-dependent kinase inhibitor or protein synthesis 

inhibitor has been used to reduce MCL-1 level that has relatively short half-life therefore 

sensitize cells refractory to ABT-737 (Chen et al., 2007; Lin et al., 2006; Van Delft et al., 

2006). However, since the strategy may have global impacts on transcription and 

translation with unknown side-effects, designing a more tailored BH3 mimetics is 

required to selectively target MCL-1 as anti-cancer drug. Although another BH3 mimetic 

TW-37 shows pleiotropic effects not only on BCL-2 and  BCL-XL, but also on MCL-1, 

the sole specificity to MCL-1 has not been achieved yet (Wang et al., 2006).  

The functional network of BCL-2 family members described in chapter 2 can be 

useful information in developing BH3 mimetics that will selectively induce apoptosis in 

cancer cells. It was demonstrated in chapter 2 that anti-apoptotic BCL-2 members are not 

functionally equivalent, and accordingly, they are differentially inactivated by inactivator 

BH3s depending on the different affinity and selectivity of the association among BH3s 

and anti-apoptotic BCL-2 members. By obtaining expression profile of both activator 

BH3s and anti-apoptotic BCL-2 members, the dependence of cancer cells on specific 

anti-apoptotic BCL-2 members can be determined prior to a targeted therapy. In addition, 

a more rational therapeutic approach would be possible using a fine-tuned BH3 mimetic 

that represents the unique range of a specific inactivator BH3. Furthermore, assessing the 

expression pattern of both anti-apoptotic BCL-2 members and activator BH3s would help 

determine what types of tumors are more susceptible to therapeutics.  

 

BAX-containing cytochrome c-releasing machinery 
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Although the ability of the liposome system to faithfully recapitulate the BAX-

mediated membrane permeabilization in vitro argues that activated BAX is sufficient to 

form pores to release cytochrome c (Saito et al., 2000; Kuwana et al., 2002; Walensky et 

al., 2006), the composition of the BAX-containing pore formed in the mitochondrial 

outer membrane during apoptosis remains uncharacterized. It is possible that a 

mitochondrial or a cytosolic protein that is not an essential component of the cytochrome 

c-releasing machinery may facilitate the BAX-containing pore-forming process. For 

instance, TOM22, a mitochondrial outer membrane translocator, was shown to be 

important for the insertion of BAX into the mitochondrial membrane (Bellot et al., 2007). 

However, whether this protein is also involved in the oligomerization process is unknown.  

Biochemical purification of mitochondria-inserted BAX oligomers from isolated 

mitochondria after treatment of activator BH3s or death stimuli may help identify new 

components of the pore complex or proteins that assist in pore formation.  

In addition, the question of whether lipids from the mitochondrial outer 

membrane directly participate in BAX-pore formation is an attractive topic of future 

research. The recently proposed “embedded together” model attempts to integrate both 

direct and indirect BAX/BAK activation models by incorporating the membrane as a 

critical component in regulating the dynamics of BCL-2 family members at the 

mitochondria (Leber et al., 2007). Moreover, the levels of cardiolipin and cholesterol 

present in the mitochondrial outer membrane have been implicated in regulating BAX 

insertion and oligomerization (Lucken-Ardjomande et al., 2008a, b). Also, tBID can 

interact with cardiolipin to produce a structural distortion in the lipid bilayer that 

contributes to BAX-mediated membrane permeabilization, suggesting that the lipid 
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content in the mitochondrial outer membrane may be a limiting factor for BAX-

containing pore formation in vivo (Terrones et al., 2004). 

The nature of the BAX-containing pore also remains obscure. On the one hand, it 

was suggested that tBID and BAX synergistically form supramolecular openings that are 

lipidic in nature (Kuwana et al., 2002; Terrones et al., 2004). Cryoelectron microscopy of 

proteo-liposomes acquired from mitochondrial outer membrane revealed that tBID and 

BAX form large pore-like lipidic openings with a diameter of 25-100 nm (Schafer et al., 

2009). On the other hand, a mitochondrial apoptosis-induced channel (MAC) was 

initially reported to form in the presence of BAX and/or BAK and correlate with 

cytochrome c release and initiation of apoptosis (Pavlov et al., 2001). It was recently 

demonstrated that this channel is a circular pore with a diameter of 5.5-6 nm, formed by 

successive insertion of BAX α5 and α6 helices, which ultimately contains 9-10 BAX 

monomers (Martinez-Caballero et al., 2009). The stepwise increase in permeability and 

conductance shown by the patch clamp analysis of MAC argues against the lipidic nature 

of the BAX pores (Martinez-Caballero et al., 2009).  In this sense, it is crucial to develop 

a technique that can visualize the formation of BAX-containing pores in real-time, 

especially at a single-molecule level with isolated mitochondria, so that one can follow 

the process of how BAX grows to dimer, tetramer, and higher-ordered oligomers.  

 

The BAX/BAK oligomerization process 

The work of chapter 3 demonstrated that activator BH3s induce the 

oligomerization of the mitochondria-inserted BAX/BAK monomers, with both BH1 and 

BH3 domains required to form BAX/BAK homo-dimers. However, the subsequent 
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conformational changes and domains required for the assembly into higher-ordered 

oligomers remain a mystery. BAK activation was shown to involve the formation of 

symmetrical dimers through reciprocal binding between the exposed BH3 domain and the 

hydrophobic pocket, implying that the opposing interface, including α4 and/or α6 helix, 

may be important for the assembly of higher-ordered oligomers (Dewson et al., 2008). 

Intriguingly, X-ray crystallography of N/C-terminus-deleted BAK revealed that BAK can 

constitute a Zn2+-dependent symmetrical dimer, whose interface includes Zn2+ binding 

residues of Asp160 and His164 at the α6 helix and the opposite end of the α4 helix, which 

does not involve any BH1-3 domain (Moldoveanu et al., 2006). This indicates that 

besides the canonical dimerization pocket, the opposing interface can mediate BAK-BAK 

interactions.  In contrast, it was suggested that the central α5 and α6 helices of BAX are 

potential pore-forming domains that are inserted into the mitochondrial outer membrane, 

constituting a multi-spanning BAX monomer (Annis et al., 2005; Nouraini et al., 2000). 

In this scenario, membrane insertion of the central helices would disassemble the BH3-

binding hydrophobic pocket, indicating that an alternative mechanism should exist to 

form dimers. Substantial interaction of a multi-spanning BAX monomer with 

mitochondrial lipids may assist the assembly of BAX molecules. However, detailed 

information on the orientation of the central helices or the degree of penetration into the 

membrane is lacking, and the requirement of this configuration for proceeding to 

oligomerization is currently unknown. Therefore, identification of BAX/BAK point 

mutants that are not able to insert efficiently into the membrane or proceed to 

oligomerization from dimerization will increase our understanding of the molecular 

mechanisms by which BAX/BAK oligomers are formed at the mitochondria.  
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Hit-and-run mechanism of BAX/BAK activation 

 The work of chapter 3 emphasizes the transient ‘hit-and-run’ mechanism in 

activator BH3-induced BAX/BAK activation. The BH3-BAX/BAK interaction must be 

transient in nature to allow BAX/BAK to homo-oligomerize since both homo-

dimerization and hetero-dimerization involve the same hydrophobic pocket. Recently, the 

ordered series of tBID-induced BAX oligomerization and membrane permeabilization 

was monitored by a FRET-based liposome-reconstitution experiment (Lovell et al., 2008). 

Also, real-time single cell analysis by FRET made it possible to examine the 

spatiotemporal change of BAX subcellular localization induced by PUMA (Zhang et al., 

2009). These two studies open a new avenue for visualizing the dynamic interactions 

among BCL-2 family proteins in controlling BAX/BAK activation via such a ‘hit-and-

run’ mechanism. By using BAX BH1 or BH3 domain mutants that cannot be activated by 

activator BH3s, the real-time FRET between BH3s and BAX can be monitored upon 

expression of different activator BH3s and compared with the translocation kinetics of 

wild-type BAX. Also, the mutagenesis at the novel BIM interaction site within the BAX 

α1 and α6 helices identified by Gavathiotis et al., when combined with FRET, will help 

reveal the detailed binding interfaces of BH3s to BAX for BAX conformational change. 

Furthermore, the FRET-based liposome experiment will allow us to explore the 

differential binding specificities among different BCL-2 subfamily binding partners and 

their effect on membrane permeabilization by measuring the FRET of specific partner 

molecules in the presence of membranes. 

 

VDAC, cell death, and cancer 
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 The work of chapter 4 suggests that decreased ATP production from oxidative 

phosphorylation due to a defect of ATP/ADP transport is an important determinant in 

triggering BH3s-induced BAK-dependent mitochondrial dysfunction. Another source of 

ATP production inside the cell is the substrate-level phosphorylation from the glycolytic 

pathway, which generates two net molecules of ATP per glucose. Hexokinase (HK) is 

responsible for the first step of glycolysis by catalyzing the ATP-dependent 

phosphorylation of glucose. Interestingly, HK-I and -II isoforms are bound to the 

mitochondrial outer membrane through the interactions with VDAC, which gives HK 

preferential access to mitochondrial ATP generated from the respiratory chain by 

positioning it at the point of mitochondrial ATP export (Robey and Hay, 2006). The 

coupling of intra-mitochondrial oxidative phosphorylation and extra-mitochondrial 

glycolysis has been implicated in cancer cells that exhibit a high rate of glycolysis even 

in the presence of oxygen (Jones and Thompson, 2009). One of the molecular bases for 

this phenomenon is the overexpression of the VDAC-associated HK at the mitochondria 

of cancer cells to increase the rate of ATP production (Pedersen, 2007). In addition, 

AKT-mediated promotion of HK activity and an increase in its association with 

mitochondria are implicated in protecting cells from growth factor-withdrawal induced 

cell death (Gottlob et al., 2001; Rathmell et al., 2003). This proposed mechanism may 

also provide significant advantage for cancer cells to survive. Accordingly, it was 

recently reported that a plant stress, hormone methyl jasmonate, affects the mitochondrial 

function of cancer cells by disrupting VDAC-HK association and triggers cell death, 

suggesting that uncoupling intra- and extra-mitochondrial metabolism can be an useful 

approach for anti-cancer therapy (Goldin et al., 2008). In this sense, it is possible that the 
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cell death signals converging on mitochondria promote cell death not only by inducing 

mitochondrial membrane permeabilization, but also by actively shutting down glycolysis 

through interfering with the VDAC-HK interaction. Therefore, it will be interesting to 

determine whether BH3s are recruited to the higher-ordered BAK complex not only to 

trigger BAK-dependent VDAC channel dysfunction but also to dissociate HK from the 

complex, which can further contribute to the cellular demise induced by mitochondrial 

dysfunction.  

 Finally, VDACs are found to be highly expressed in cancer cells when compared 

to normal cells (Simamura et al., 2006; Yagoda et al., 2007). Given that in cancer cells, a 

high rate of glycolysis may require the upregulation of VDAC-mediated ATP/ADP 

transport, VDACs may be novel pharmacological targets for anti-cancer therapy. For 

instance, furanonaphthoquinones (FNQs) induce caspase-dependent apoptosis by the 

production of ROS via VDAC1 (Simamura et al., 2003; Simamura et al., 2006). Erastin 

triggers RAS-RAF-MEK-dependent oxidative cell death by acting through a direct 

association with VDAC2, indicating that the VDAC ligand can serve to selectively target 

cancer cells (Yagoda et al., 2007).  

 

Concluding remarks 

Here, I have explored the underlying mechanism of how the BAX/BAK-

dependent cell death program operates and demonstrated that tightly controlled 

intermolecular interactions and conformational changes of BCL-2 family members 

dictate the response to various apoptotic stimuli. Integration of apoptotic signaling with 

mitochondrial physiology, which converges on BAK at the mitochondria, also ensures 



 188

the execution of cell death with high fidelity. Although understanding the details of basic 

biology of BCL-2 family members in regulating mitochondrion-dependent cell death is 

far from complete, this work along with others will advance our knowledge of how cells 

are programmed to die and set the stage for developing rational therapeutics to target 

cancer, where programmed cell death pathways are often derailed.  
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