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Figure 6.15: Comparison of sinograms for the rotating line source phantom for direct
normalization. Top row: II, middle row: IS, bottom row: SS. Left column: measured
data, right column: forward projection of normalization phantom image.
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(a) (b) (c)

Figure 6.16: Reconstructions of the Jaszczak phantom. (a) CT image showing the
location and size of the cold rods; (b) reconstruction after 20 EM iterations using
all three coincidence types of data (direct normalization applied); (c) reconstruction
after 20 EM iterations using standalone scanner data (no normalization applied).

chapter. The standalone image does not suffer from such artifacts, but it too cannot

resolve all the cold rods in the two sectors containing the smallest rods.

6.6.4 Uniform Cylinder

The SS, IS, and II sinograms pertaining to the uniform cylinder acquisition are shown

in Figures 6.17, 6.18, and 6.19, respectively. Sinogram (a) in the figures is the mea-

sured prompt data, sinogram (b) is the estimated prompt data with component-based

normalization applied, and sinogram (c) shows the component-based normalization

factor itself. A profile through the indicated row in sinograms (a) and (b) is plot-

ted in subfigure (d) for the three coincidence types. The mean prompts estimate is

the normalized forward projection of the true cylinder image, plus the randoms and

scatter estimates. As can be seen in Figure 6.17(a)-(c), the small bright lines in the

central fan that are sloped at a steeper angle than the crystal diagonals correspond

to the gaps between the crystal blocks in the insert.

Note that for a normal standalone PET scanner, the sinogram for a centered uniform

cylinder would be constant across the view angles and symmetrical within each fan-

beam projection (neglecting the variation in crystal efficiencies). This is clearly not

Although the measurements and normalization factor estimation were performed in fully 3D,
these figures show a single 2D sinogram that was extracted from the fully 3D sinogram.
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the case when the insert is in the FOV, as shown by the sinograms. Despite the fact

that the insert attenuation introduces significant asymmetry into the sinograms, our

component-based normalization method models the attenuation correctly and leads

to excellent agreement for the SS and IS coincidence types. The II data was somewhat

more difficult to model, as seen by the profiles in Figure 6.19(d). This is due to the

difficulty of scaling the II scatter estimate to the measured data; the cylinder is so

large in the II FOV that there is no scatter-only tail. For the time being, it has to be

scaled very approximately, but we discuss an alternative solution to this problem in

Chapter 7.

In Figure 6.20, we plot the likelihood function (6.10) versus iteration number to

compare the convergence rate of the steepest ascent implementation to the L-BFGS

implementation for normalization factor estimation. The L-BFGS method converges

significantly faster, and in practice, each iteration is actually faster to compute be-

cause it uses a more efficient line-search method (More-Thuente line-search) than the

secant method. All normalization factors in this work were therefore computed with

L-BFGS.

6.6.5 Small Tumor Phantom

Figure 6.21(a) shows the CT slice through the center of the tumors. Using a very

narrow image display window, the plastic spherical shells holding tumor activity can

be seen. In Figure 6.21(b), the PET reconstruction of the phantom is shown, us-

ing data that was acquired with all four scanner rings without the insert in place.

This reconstruction was performed using the built-in reconstruction software on the

Siemens Biograph console.

The results from our reconstruction implementation (with insert in the FOV) are

shown in Figure 6.22. The image on the left used only the SS data for the recon-

struction. The middle image was reconstructed using all three coincidence types,

and is shown after performing 25 EM iterations. Finally, the image on the right was

reconstructed using the II and IS types after 20 EM iterations. However, to avoid

incomplete data artifacts in the rightmost image, the reconstruction was initialized

with the image in Figure 6.22(b). All three of these reconstructions made use of the
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Figure 6.17: SS sinograms and profile for the uniform cylinder acquisition for
component-based normalization. (a) measured prompt sinogram; (b) estimated mean
prompt sinogram; (c) ML normalization factor; (d) profile through the indicated row
in sinograms (a) and (b). The image window is the same for (a) and (b).

126



(a) (b)

(c)

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60
Prompt measured
Prompt estimated

(d)

Figure 6.18: IS sinograms and profile for the uniform cylinder acquisition for
component-based normalization. (a) measured prompt sinogram; (b) estimated mean
prompt sinogram; (c) ML normalization factor; (d) profile through the indicated row
in sinograms (a) and (b). The image window is the same for (a) and (b).
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Figure 6.19: II sinograms and profile for the uniform cylinder acquisition for
component-based normalization. (a) measured prompt sinogram; (b) estimated mean
prompt sinogram; (c) ML normalization factor; (d) profile through the indicated row
in sinograms (a) and (b). The image window is the same for (a) and (b).

128



0 100 200 300 400 500 600 700 800 900
1.0175

1.018

1.0185

1.019

1.0195

1.02

1.0205
x 10

9

Iteration Number

Li
ke

lih
oo

d

 

 

Steepest Ascent
L−BFGS

Figure 6.20: Comparison of convergence rate using steepest ascent versus L-BFGS
for normalization factor estimation.

ML component-based normalization approach. Since the phantom was scanned twice

(once without the insert, and once with the insert), the acquisition time was adjusted

to account for the radioactive decay of 18F; this ensured that approximately the same

number of events occurred during each scan.

6.7 Discussion

In this chapter, we have developed and implemented a fully 3D reconstruction algo-

rithm to jointly estimate an image using all three coincidence types. We used the

geometrical factor derived in Chapter 5, but performed the calculations in 3D for

all ring combinations. The body attenuation factor is also similar to that used in

Chapter 5, except here it is calculated using a CT scan that has been converted to

attenuation coefficients at 511 keV. A scatter estimate was calculated using the SSS

method based on the Klein-Nishina formula. An initial scatter-free emission image

estimate is required, as is an attenuation map of the body.
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(a) (b)

Figure 6.21: Small tumor phantom images reconstructed using Siemens Biograph
console. (a) CT slice that passes through the three spherical tumors; (b) PET recon-
struction of the same slice using data from standalone PET scanner.

(a) (b) (c)

Figure 6.22: Small tumor phantom images reconstructed using our algorithm. The
slice shown is the same as that in Figure 6.21. (a) Reconstruction using only SS
data after 25 EM iterations; (b) reconstruction using II+IS+SS data after 25 EM
iterations; (c) reconstruction using II+IS data after 20 EM iterations, initialized with
the image in (b).
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We used two rotating line sources for the direct normalization phantom. As shown in

Figure 6.15, the measured data looks very similar to the forward-projected normal-

ization phantom image. However, it is difficult to match the normalization phantom

image exactly to the actual rotating line source trajectory. This creates a small mis-

match between the two sinograms that is primarily visible when looking at the ratio

sinogram. This shift leads to bias in the direct normalization factors, and is especially

difficult to avoid when using thin line sources that are not perfectly aligned with the

axial direction. This might not be as much of an issue if the rotation stage were built

into the scanner, but in this work, the rotation stage is independent.

The bright vertical edges in the sinograms (which correspond to the radius at which

each source rotates) are also difficult to model in the forward projection. Edges are

particularly difficult to model because of insufficient sampling of the edge over the

extent of the LOR, as already noted for the insert attenuation calculations in Section

6.4.

The Jaszczak phantom was reconstructed to demonstrate the performance of the

direct normalization approach. As can be seen in the combined II+IS+SS recon-

struction, there are some significant non-uniformity artifacts that are most likely due

to the two problems mentioned above. The phantom is 21.6 cm diameter, which is

barely smaller than the half-ring insert diameter. Therefore, part of the Jaszczak

phantom projection is affected by the biased normalization factor in the region of the

bright edge. Additionally, the direct normalization approach considered here did not

estimate scatter, which could explain the bright region in the middle of the phantom

reconstruction.

It was also determined after performing the rotating line source scan that the hot

region within the line sources inadvertently covered slightly less than the entire axial

FOV. In turn, this could have resulted in incorrect normalization factors for some

of the sinograms, which would then be propagated to other slices in the fully 3D

reconstruction through oblique sinograms. It seems unlikely that this would have

caused the severe artifacts in the reconstruction, but it is a possibility.

To overcome these difficulties, the ML component-based method was developed and

tested, as shown in Figure 6.22. In each fan-beam sinogram, the visible horizontal

lines correspond to detector 1 of an LOR, and the visible diagonal lines correspond to
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detector 2 of the LOR. The product of the single crystal efficiencies therefore yields

the patterns shown. When the insert is in the scanner FOV, the number of detected

coincidences is significantly attenuated due to the insert material. We have modeled

the insert attenuation and incorporated it as a fixed component of the component-

based normalization method; it does not change from scan to scan. This allows us to

obtain a separate CT scan of the body without the insert, and use that for the body

attenuation factor.

The fact that the measured cylinder data and normalized mean cylinder data closely

match each other implies that we have appropriately modeled the normalization factor

components, as well as other system matrix factors. A profile through the SS and

IS sinograms also reveals the similarity of the shape and scaling of the scatter and

randoms tail. Some approximations are currently needed to determine the II scatter

scaling factor due to the fact that no scatter tail is available for the scaling procedure.

Additionally, the estimated mean profiles are noisy due to the lack of a variance

reduction method when estimating the randoms. Such an approach may reduce the

noise in what is intended to be a mean estimate of the randoms.

The small tumor phantom reconstructions demonstrate the ability of the insert system

to resolve the smallest tumor. As mentioned above, this is a challenging object

to image due to the very small size and low contrast ratio of the tumor. Since

the details of the Siemens reconstruction algorithm were not available, it cannot

be fully concluded from this study that the insert is able to resolve objects that

the scanner itself cannot. To compare the performance of the insert system to a

standalone system, the standalone scanner data should be reconstructed using the

same algorithm implementation used for the insert system, but only using the scanner

data. A separate set of normalization factors would need to be determined without

the insert in the scanner FOV.

Nevertheless, the II+IS+SS reconstructions of this phantom are promising, and will

lead naturally to further work in determining the optimal reconstruction strategy. For

example, a more quantitative study would be useful to determine whether the best

strategy is to perform a multi-stage reconstruction, where each stage is initialized by

the preceding stage, e.g., first reconstruct using II+IS+SS data, then II+IS data, and
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finally, II data. Ordered subsets were not applied, so it may simply be the case that

more iterations are needed to further enhance the image quality.

Much of the work described in this chapter was complicated by the fact that many

factors depend on other factors being modeled accurately. We made use of standard

methods where applicable, and modified them to suit the needs of the insert system

as required. Since it is very challenging to separate out all the effects for independent

study, there are many important directions for future research as a result of this

work.
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Chapter 7

Conclusions and Future Work

In this work, fully 3D statistical image reconstruction algorithms were developed

and applied to helical CT and a novel half-ring PET insert system. While many of

the challenges are specific to each modality, we have demonstrated that the same

general approaches apply to both CT and PET. For both systems, we have modeled

the scanners in their native 3D geometry to obtain the best possible image quality.

Although fully 3D reconstruction is computationally expensive, we have developed

algorithmic and hardware-based methods to optimize the reconstruction workflow

as much as possible. As a result, we have been able to reconstruct clinically-sized

datasets.

In each iteration of the statistical reconstruction algorithms for CT and PET, a

comparison is performed between the measured data and the estimated data based on

the current image iterate. If an accurate model for the measured data is used, the final

reconstructed image will have little bias. Therefore, we have focused on developing

accurate system models and integrating them into our reconstruction framework to

obtain high-quality images.

The raw CT data that is output from the scanner has been preprocessed for effects like

detector sensitivity variations, beam-hardening, and x-ray tube current modulation.

Our efforts in modeling the CT data were therefore largely spent calculating the

geometrical factor properly (and efficiently). In contrast, very little preprocessing

has been applied to the raw PET data that is output from the scanner. Therefore,

a significant effort was devoted to modeling and correcting for the various effects

pertaining to the half-ring insert system.
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7.1 CT-Specific Remarks

The CT work focused on maximizing the efficiency of the reconstruction algorithm by

taking advantage of certain symmetries that underlie the complex multislice helical

CT geometry. By formalizing the symmetries that exist, we were able to develop

parallelized methods that perform well on large clinical datasets. In particular, we

explicitly partitioned the data and image spaces across the processors in such a way

that each processor performs exactly the same number of computations during the

forward projections and backprojections, even when the OS method is employed. We

showed that OS can increase the convergence rate significantly, and demonstrated that

our convergence criterion was met in roughly 10-15 iterations with the use of a large

number of subsets. Although this translates to about 30-45 times more computations

than FBP-based techniques, it is still promising that the number of iterations required

is relatively low.

The resolution-noise tradeoff results obtained using the Catphan phantom demon-

strate the benefits of using statistical reconstruction compared to the analytical recon-

struction methods we tested. By modeling the full extent of each voxel and detector

element rather than using simpler voxel-driven backprojection methods, we ensure the

resolution of each measurement is preserved. The clinical reconstructions appeared

visually to be at least as good as the analytical methods considered, although further

validation and analysis is needed.

We also conducted a small study to apply two recently-developed geometry-independent

methods to the 3D multislice helical CT image reconstruction problem. The first

method reconstructs images without the missing data, and the second method seeks

to jointly estimate the missing data and attenuation image in a statistical framework.

We showed simulated data and clinical data reconstructions using these methods to

handle the problem of transverse truncation. Along these lines, a method was pro-

posed to handle the long object problem. We showed that it is possible to achieve

accurate reconstructions within the FOV – and potentially outside the FOV as well –

without using analytical data sufficiency or consistency conditions. One final advan-

tage of these methods is that they provide a great deal of flexibility in their imple-

mentation for arbitrary system geometries. For example, this work could also apply

to other 3D imaging modalities, such as C-arm cone-beam CT, in which the number
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of views is often limited. It could possibly even be used in 4D imaging (3D + time),

in which each gated frame may have missing projections. It should be mentioned,

however, that most of the missing data methods investigated in this work break the

parallelism and symmetry constructs that exist when the complete data is available.

Regarding the regularization that was added to the AM algorithm, choosing suitable

regularization parameters is notoriously difficult (especially in 3D). One could pos-

sibly test a range of parameters by performing several “trial” reconstructions on a

downsampled dataset, or on just a few slices, and then attempt to scale the param-

eters accordingly for the full-scale problem. Other more systematic methods exist,

but are also more computationally demanding.

There is some concern that the “quarter-detector offset” implemented on the com-

mercial CT scanner we used for testing is not exactly a quarter-detector offset. Our

reported results were based on an offset of -1.25 detectors in the data model instead

of -0.25, due to the significantly better results. But even with an offset of -1.25 detec-

tors, there is a very subtle rotating artifact that appears when scrolling through the

stack of slices in the reconstructed image volume. If the actual detector offset can be

known more accurately, there is a possibility of obtaining even higher-quality images,

and of reducing the number of iterations required to reach convergence.

We will briefly discuss a second potential cause for the subtle rotating artifact, after

describing this artifact in more detail. When visualized in a coronal or sagittal view,

the image appears to have a striped pattern, as shown in Figure 7.1. These stripes are

not horizontal, but are inclined slightly like the helical trajectory. As the iterations

progress, the striped pattern becomes gradually less prevalent.

We believe the cause of this artifact relates to the inherently slow convergence of

high frequencies using AM-type algorithms. Specifically, each voxel is seen a different

number of times over the course of the scan; that is, there is nonuniform voxel illumi-

nation [92]. In analytical reconstruction algorithms (e.g., helical FDK), artifact-free

backprojection requires that every voxel be seen the same number of times by each

view angle. These algorithms account for this requirement with a weighting function

that depends on the view angle and voxel. The AM algorithm does not need to use

an explicit weighting function of this sort.
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(a) (b)

Figure 7.1: Clinical reconstructions showing the striping artifact, and how it becomes
less prevalent with more iterations. The AM algorithm was initialized with an image
of all zeros, and OS was not used in the generation of these images. (a) Iteration 1;
(b) iteration 50.

Starting from an initial uniform image of all zeros, the estimated backprojection in the

first AM iterations will be mismatched from the measured data backprojection. Since

the AM algorithm uses the ratio of these two backprojection images, the effects due to

the nonuniform voxel sampling do not cancel out (i.e., since they are voxel and angle

dependent, not just voxel dependent). This could lead to the striping pattern in early

iterations. Assuming the system model used during the reconstruction is accurate,

running more AM iterations should in theory lead to convergence, even when starting

from an initial image of all zeros. However, even with OS, we have found that the

stripes may take many iterations to remove completely. Therefore, this should be

investigated further in future work to identify appropriate strategies for avoiding this

artifact. For example, using a weighting function explicitly or initializing the image

might help to reduce the discrepancy between the mean backprojection and measured

data backprojection from the outset.

7.2 PET-Specific Remarks

The half-ring PET insert work described in this dissertation included MC simulations,

experimental data acquisitions on our prototype system, data and system modeling,
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as well as 2D/3D reconstruction algorithm development and implementations. We

placed emphasis on the system modeling aspects in this work, which include the

geometrical, body attenuation, and normalization factors of the system matrix, along

with estimation methods for randoms and scatter. Our reconstruction code allows the

user to select any combination of coincidence types to be used in the reconstruction,

which can be useful for evaluating the contributions of each coincidence type to the

image.

We first introduced the 2D reconstruction framework, where the geometry, atten-

uation, and normalization were the only modeled components. Normalization was

relatively straightforward since it provided a high-statistics dataset without scatter

or randoms. We demonstrated that using the subvolume approach within the geomet-

ric factor calculations could lead to artifact-free reconstructions, even when activity

was located above the side face of the insert crystals. We also showed in our recon-

struction of 2D MC simulated data that DOI insert crystals could significantly reduce

parallax error. However, the limited number of effects that we included in the MC

simulation make it difficult to gain too much insight into the true performance of a

real insert system.

For the real prototype system, we found that the LORs passing through long paths of

LSO crystals cannot be modeled properly. We explained that the insert attenuation

calculations fall apart for LORs passing tangentially through the insert crystals due

to the invalid use of the linear approximation to the exponential function. For this

reason, we have currently reduced the FOV to be inside the fan-width spanned by the

insert. Further investigation on how to treat these LORs is warranted so that larger

source distributions may be used in the future. It might be simplest to ignore these

LORs completely, as they cannot be modeled properly and primarily contain randoms

and scattered events from other parts of the FOV. Until this problem is addressed,

the main application of the prototype insert system is limited to high-resolution head

and neck imaging, as opposed to breast imaging.

Even when performing reconstructions on data in the reduced FOV, there are still

some remaining issues that prevent uniform activity distributions from being recon-

structed as uniformly as they should be. Most likely, these are caused by small
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discrepancies between the composite insert attenuation map and the true attenua-

tion distribution of the insert. Addressing this could involve tweaking the attenuation

coefficients slightly to obtain a better fit, as it appears that the reconstruction is very

sensitive to the insert attenuation. A better mean randoms and/or scatter estimate

may also help. Furthermore, poor alignment of the insert within the scanner may

play some role in the uniformity problems as well; there are six degrees of freedom

(horizontal, vertical, axial, yaw, pitch, and roll), but we only align the former three.

Unfortunately, it is difficult to know where specifically the problem arises, as all the

system matrix factors become interconnected in the reconstruction, and since the

insert is cumbersome to align in a repeatable manner due to slight wobbling of the

translation stage.

We did seem to have success using the ML estimation technique for component-based

normalization, as seen by the good match between the measured and estimated uni-

form cylinder sinograms. The estimation technique is quite flexible, and can readily

accommodate more components as necessary. For example, it might even be possible

(and useful) to obtain a better estimate of the attenuation coefficients in a segmented

insert attenuation map with this method. Additionally, ML estimation may be used

to form a mean randoms estimate (rather than using the delayed counts directly as

the estimate). Unlike whole-body clinical PET scanners, where there is usually a

scatter-only tail outside the body projections, there is not necessarily a scatter-only

tail in the II and IS measurements; whether it exists or not depends on the size of

the object inside the insert FOV. Especially for the 20 cm diameter uniform normal-

ization cylinder, it might therefore be useful to estimate the scatter scaling factors

within the ML normalization method as well. This would only require that up to

three more parameters be estimated (i.e., one each for II, IS, and SS). One other

direction for the ML normalization framework is to try using source geometries other

than a uniform cylinder, such as a uniform plane source or rotating rod sources. As

long as an accurate normalization phantom image can be generated, the estimation

procedure should be able to compute the component-based normalization factors.

Using the system model proposed in this work, it is possible to obtain high-resolution

images that are jointly estimated from the three coincidence types. However, better

resolution recovery may require the inclusion of a blur kernel in the system matrix

to account for other sources of blurring, such as gamma ray acolinearity. It might
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also be interesting to compare the geometrical factor used in this work to a more

accurate approach, such as an analytical detector response function model that does

not subdivide the crystal volumes explicitly.

Other secondary future work for the half-ring PET insert reconstruction system would

be the implementations of a regularization penalty and an ordered subsets method.

Ordered subsets might be difficult to implement, however, since balancing the subsets

in a non-circular ring is nontrivial. Alternative reconstruction algorithms that do

not rely on ordered subsets for fast convergence, such as preconditioned conjugate

gradient, could be investigated and compared to the EM algorithm.

7.3 Concluding Remarks

In this chapter, we highlighted our main contributions, and also showed that there

is a large amount of interesting future work that could be pursued for both helical

CT and the half-ring PET insert system. As the half-ring insert was the first clinical

system ever built using the concept of virtual pinhole PET, it is to be expected that

significant challenges would be encountered along the way. We have learned many

valuable lessons from this work, and future virtual pinhole PET system designs should

be able to make use of this newfound knowledge.

In conclusion, the work described in this dissertation has established a solid computa-

tional framework for statistical reconstruction, upon which improved techniques may

be tested. It is anticipated that the fully 3D CT and PET reconstruction implemen-

tations and methodology presented here will be used in future projects.
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Appendix A

Derivation of the Penalized AM

Algorithm

To minimize (3.7), the two coupled variables in the argument of the potential function

must be separated. The definition of a 1D convex function (instead of the more general

Convex Decomposition Lemma applied in O’Sullivan and Benac [66]) can be used to

achieve this. A function f(t) is convex if

f [αt1 + (1 − α)t2] ≤ αf(t1) + (1 − α)f(t2), where 0 ≤ α ≤ 1. (A.1)

Using this property,

ψ(μj − μj′) = ψ

{
α

[
1

α
(μj − μ̂j) + (μ̂j − μ̂j′)

]
(A.2)

+ (1 − α)

[ −1

1 − α
(μj′ − μ̂j′) + (μ̂j − μ̂j′)

]}
≤ αψ

[
1

α
(μj − μ̂j) + (μ̂j − μ̂j′)

]
(A.3)

+ (1 − α)ψ

[ −1

1 − α
(μj′ − μ̂j′) + (μ̂j − μ̂j′)

]
.

To further simplify (A.3), let α � 1/2 to obtain

ψ(μj − μj′) ≤ 1

2
ψ [2(μj − μ̂j) + (μ̂j − μ̂j′)] +

1

2
ψ [2(μ̂j′ − μj′) + (μ̂j − μ̂j′)](A.4)

=
1

2
[ψ(2μj − μ̂j − μ̂j′) + ψ(2μj′ − μ̂j − μ̂j′)] . (A.5)
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We plug this surrogate for ψ(μj − μj′) into (3.8), and denote the modified penalty

function by R̂(μ). We now want to solve

∂Φ(μ)

∂μj

=
∂I (d||g)

∂μj

+ λ
∂R̂(μ)

∂μj

= 0. (A.6)

In the final step before obtaining the voxel update function in the AM algorithm, the

derivative of the I-divergence was determined to be

∂I (d||g)

∂μj

= bj − b̂j exp [Zj(μ̂j − μj)] . (A.7)

Additionally, from (3.8) and (A.5),

∂R̂(μ)

∂μj

=
∑

j′∈Nj

wj,j′
∂ψ(t)

∂t

∣∣∣∣
t=2μj−μ̂j−μ̂j′

. (A.8)

Finally, combining (A.6)-(A.8), we obtain the following equation for which we can

readily use Newton’s Method to solve for μj:

bj − b̂j exp [Zj(μ̂j − μj)] + λ
∑

j′∈Nj

wj,j′
∂ψ(t)

∂t

∣∣∣∣
t=2μj−μ̂j−μ̂j′

= 0. (A.9)
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Appendix B

Helical CT Symmetry Validation

In this appendix, we mathematically prove the symmetry discussed in Chapter 3 for

helical CT. In particular, we will evaluate h̃(x, y, z|β, γ, η), the ideal point spread

function, at multiples of a quarter rotation of the gantry.

To begin, we first express the x-ray source position, based on β, as

xf = Rf cos β (B.1)

yf = Rf sin β (B.2)

zf =
β

2π
zfeed. (B.3)

Using the geometry of the CT scanner shown in Figure 3.1, we can parametrically

describe the ray originating at the source position and traveling in the direction of

the detector (γ, η) by

xray(l) = Rf cos β − l cos(β + γ) (B.4)

yray(l) = Rf sin β − l sin(β + γ) (B.5)

zray(l) =
β

2π
zfeed + l tan η, (B.6)

where l is the ray parameter.
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As discussed in Section 3.2.1, the ideal point spread function is nonzero only at points

(x, y, z) along the x-ray path from source to detector. Therefore, we can write

h̃(x, y, z|β, γ, η) � (B.7)

δ[Rf cos β − l cos(β + γ) − x,Rf sin β − l sin(β + γ) − y,
β

2π
zfeed + l tan η − z],

where δ(·, ·, ·) is the Dirac delta function defined in three dimensions with the prop-

erties

δ(ν1, ν2, ν3) �
{

0, ν2
1 + ν2

2 + ν2
3 
= 0

∞, ν2
1 + ν2

2 + ν2
3 = 0

(B.8)

and ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(ν1, ν2, ν3) dν1 dν2 dν3 � 1. (B.9)

Equation (B.7) is the ideal point spread function for any source-detector pair. We

will show that the ideal point spread function for any source-detector pair beyond the

first quarter rotation can be rewritten in terms of the corresponding base symmetry

source-detector pair in the first quarter rotation (i.e., 0 ≤ β < π/2).

When the ray and point are both rotated by 2πk (k ∈ Z> 0) and translated axially

according to zfeed, the resulting point spread function is

h̃[x, y, z + k · zfeed|β + 2πk, γ, η] = (B.10)

δ{Rf cos(β + 2πk) − l cos(β + 2πk + γ) − x,

Rf sin(β + 2πk) − l sin(β + 2πk + γ) − y,

β + 2πk

2π
zfeed + l tan η − [z + k · zfeed]}

= δ[Rf cos β − l cos(β + γ) − x, (B.11)

Rf sin β − l sin(β + γ) − y,

β

2π
zfeed + l tan η − z]

= h̃(x, y, z|β, γ, η). (B.12)
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When the ray and point are both rotated by π/2 + 2πk (k ∈ Z≥ 0) and translated

axially according to zfeed, the resulting point spread function is

h̃[−y, x, z + zfeed(1/4 + k)|β + π/2 + 2πk, γ, η] = (B.13)

δ{Rf cos(β + π/2 + 2πk) − l cos(β + π/2 + 2πk + γ) + y,

Rf sin(β + π/2 + 2πk) − l sin(β + π/2 + 2πk + γ) − x,

β + π/2 + 2πk

2π
zfeed + l tan η − [z + zfeed(1/4 + k)]}

= δ[−Rf sin β + l sin(β + γ) + y, (B.14)

Rf cos β − l cos(β + γ) − x,

β

2π
zfeed + l tan η − z]

= h̃(x, y, z|β, γ, η). (B.15)

When the ray and point are both rotated by π+2πk (k ∈ Z≥ 0) and translated axially

according to zfeed, the resulting point spread function is

h̃[−x,−y, z + zfeed(1/2 + k)|β + π + 2πk, γ, η] = (B.16)

δ{−Rf cos(β + π + 2πk) + l cos(β + π + 2πk + γ) + x,

−Rf sin(β + π + 2πk) + l sin(β + π + 2πk + γ) + y,

β + π + 2πk

2π
zfeed + l tan η − [z + zfeed(1/2 + k)]}

= δ[−Rf cos β + l cos(β + γ) + x, (B.17)

−Rf sin β + l sin(β + γ) + y,

β

2π
zfeed + l tan η − z]

= h̃(x, y, z|β, γ, η). (B.18)
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When the ray and point are both rotated by 3π/2 + 2πk (k ∈ Z≥ 0) and translated

axially according to zfeed, the resulting point spread function is

h̃[y,−x, z + zfeed(3/4 + k)|β + 3π/2 + 2πk, γ, η] = (B.19)

δ{Rf cos(β + 3π/2 + 2πk) − l cos(β + 3π/2 + 2πk + γ) − y,

Rf sin(β + 3π/2 + 2πk) − l sin(β + 3π/2 + 2πk + γ) + x,

β + 3π/2 + 2πk

2π
zfeed + l tan η − [z + zfeed(3/4 + k)]}

= δ[Rf sin β − l sin(β + γ) − y, (B.20)

−Rf cos β + l cos(β + γ) + x,

β

2π
zfeed + l tan η − z]

= h̃(x, y, z|β, γ, η). (B.21)

Finally, when there is no quarter detector offset, axial mirror symmetry can also be

obtained. This symmetry, if available, eliminates the need to compute and store the

system matrix for all detector rows. Only half the rows need to be computed and

stored, as the other half follows symmetrically.

Consider the ray that has opposite source, fan, and cone angles from the base source-

detector pair. Also consider the point that is the reflection of the base point across

the y = 0 and z = 0 planes. Note that although this point and ray are located in

front of the axial FOV of the scanner, they can be rotated and translated axially

into the FOV using the above quarter rotation symmetry. Mathematically, the axial
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mirror symmetry follows as

h̃(x,−y,−z| − β,−γ,−η) = (B.22)

δ[Rf cos(−β) − l cos(−β − γ) − x,

Rf sin(−β) − l sin(−β − γ) + y,

−β
2π

zfeed + l tan(−η) + z]

= δ[Rf cos β − l cos(β + γ) − x, (B.23)

−Rf sin β + l sin(β + γ) + y,

−β
2π

zfeed − l tan η + z]

= h̃(x, y, z|β, γ, η). (B.24)

In this appendix, we have focused our discussion on the symmetry that is present in

h̃(x, y, z|β, γ, η). As explained next, the integrations over the extent of each voxel and

detector element in (3.10) and (3.11), respectively, do not change the symmetry. For

the integral over each voxel, the ideal point spread function is simply being evaluated

at different points. For the integral over the detector element surface, the symmetry

applies to each infinitesimally thin subray that lies within the integration bounds. The

cos η factor in (3.11) does not present any difficulty for the axial mirror symmetry

since cos(−η) = cos η.

147



References

[1] S. Ahn, J. A. Fessler, D. Blatt, and A. O. Hero. Convergent incremental op-
timization transfer algorithms: application to tomography. IEEE Trans. Med.
Imag., 25(3):283–296, 2006.
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