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ABSTRACT OF THE DISSERTATION

Development and Implementation of Fully 3D Statistical Image Reconstruction

Algorithms for Helical CT and Half-Ring PET Insert System

by

Daniel Brian Keesing

Doctor of Philosophy in Biomedical Engineering

Washington University in St. Louis, 2009

Research Advisors: Joseph A. O’Sullivan and Yuan-Chuan Tai

X-ray computed tomography (CT) and positron emission tomography (PET) have

become widely used imaging modalities for screening, diagnosis, and image-guided

treatment planning. Along with the increased clinical use are increased demands for

high image quality with reduced ionizing radiation dose to the patient. Despite their

significantly high computational cost, statistical iterative reconstruction algorithms

are known to reconstruct high-quality images from noisy tomographic datasets. The

overall goal of this work is to design statistical reconstruction software for clinical

x-ray CT scanners, and for a novel PET system that utilizes high-resolution detec-

tors within the field of view of a whole-body PET scanner. The complex choices

involved in the development and implementation of image reconstruction algorithms

are fundamentally linked to the ways in which the data is acquired, and they require

detailed knowledge of the various sources of signal degradation. Both of the imaging

modalities investigated in this work have their own set of challenges. However, by
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utilizing an underlying statistical model for the measured data, we are able to use a

common framework for this class of tomographic problems.

We first present the details of a new fully 3D regularized statistical reconstruction al-

gorithm for multislice helical CT. To reduce the computation time, the algorithm was

carefully parallelized by identifying and taking advantage of the specific symmetry

found in helical CT. Some basic image quality measures were evaluated using mea-

sured phantom and clinical datasets, and they indicate that our algorithm achieves

comparable or superior performance over the fast analytical methods considered in

this work. Next, we present our fully 3D reconstruction efforts for a high-resolution

half-ring PET insert. We found that this unusual geometry requires extensive re-

development of existing reconstruction methods in PET. We redesigned the major

components of the data modeling process and incorporated them into our reconstruc-

tion algorithms. The algorithms were tested using simulated Monte Carlo data and

phantom data acquired by a PET insert prototype system. Overall, we have developed

new, computationally efficient methods to perform fully 3D statistical reconstructions

on clinically-sized datasets.
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Chapter 1

Introduction

Medical imaging plays a vital role in the diagnosis of numerous diseases and injuries,

and is also critical in a growing number of image-guided therapy applications. It

encompasses a wide array of technologies that collectively result in image resolutions

ranging from picometer (e.g., electron microscopy) to millimeter (e.g., clinical imaging

modalities).

Images are usually categorized as being either functional or structural, depending on

the contrast mechanism being imaged. For example, in-vivo optical imaging tech-

niques may measure the absorption of deoxygenated and oxygenated hemoglobin in

the blood (functional), while changes in x-ray attenuation may be used to distinguish

between soft tissue and bone (structural). There has recently been a push towards

multi-modality imaging, in which registered functional and structural images are ac-

quired at nearly the same time to enhance the value of having either image alone.

In general, an imaging system is designed to measure some spatially-variant (and

possibly time-variant) contrast mechanism given a specific type of energy input. The

image formation process requires a priori knowledge of how the incident energy phys-

ically interacts with biological tissue and how it is then detected by the system. This

energy could be in the form of mechanical pressure waves, as is used in ultrasound

imaging, or it could be in the form of electromagnetic radiation, such as visible light,

infrared, radio waves, x-rays, and gamma rays. To carry out an imaging task, at least

one radiation source and an array of detectors are needed. The detectors are opti-

mized to detect the form of energy that results from interactions with the body. In

the case of a digital imaging system, the detector array must also be able to convert

its measurements at each channel into electrical signals that can be transferred to
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and received by a computer. Finally, after any necessary data or image processing,

the image can be displayed for visual interpretation, or can be used in the extraction

of other quantitative data.

Unlike medical imaging modalities that acquire images directly, like optical microscopy,

we will concern ourselves here with tomographic imaging systems, in which some

known function of the image is acquired through indirect measurements. As will

be discussed in great detail in this dissertation, some form of image reconstruction

method is needed after tomographic data acquisition to obtain an actual image. The

fundamental significance of the image reconstruction process is that it enables one to

generate volumetric images of the body’s interior from the non-invasive measurements

taken outside the body.

The location of the radiation source and detectors relative to the body determines

whether the modality is considered transmission or emission tomography, or some

other type. In transmission computed tomography (CT), an external source transmits

photons of energy through the body. Some of these photons will be detected on the

other side of the body, depending on the attenuation characteristics of the tissue being

imaged. In single-photon emission computed tomography (SPECT) and positron

emission tomography (PET), the source is first allowed to distribute itself to target

molecules inside the body through the bloodstream or lungs. Its emitted photons of

energy are then detected outside the body.

CT, SPECT, and PET all depend on the fact that their respective source photons

travel along relatively straight paths through the body. At the other extreme, diffuse

optical tomography systems are designed to detect the source photons (near-infrared

light) after having scattered many times in the tissue; as such, they can be configured

in either a transmission or reflection geometry (depending on the application).

The next two sections will highlight the basics of the CT and PET imaging modalities,

followed by a third section describing a novel PET scanner geometry called virtual

pinhole PET. Collectively, these modalities will be the main focus of this dissertation.
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Figure 1.1: Cross-section of a CT scanner. (a) The x-ray source travels around
the circle in conjunction with an opposing arc of detectors on the other side of the
patient; (b) sinogram array, where each row corresponds to a fan-beam projection at
a particular view angle.

1.1 CT Data Acquisition

CT imaging uses a collimated x-ray source and an opposing array of detectors to

capture projections from many angles, called views, around the patient. Other radi-

ation sources may be used in place of x-rays, such as gamma rays (for the purpose of

attenuation correction in PET imaging). Figure 1.1(a) shows a third-generation CT

scanner in the process of acquiring fanbeam data in a single slice. For each slice to

be imaged, the gantry rotates at most 360◦ around the patient. At each view angle,

a large number of photons are randomly generated by the x-ray tube and collimated

to the shape of the fanbeam defined by the detector arc. As x-rays pass through the

body, they are either absorbed (by the photoelectric effect), scattered (by Compton

scattering), or transmitted in a straight path (without interaction). The spatially-

variant linear attenuation coefficient distribution of the tissue determines which parts

of the incident x-ray beam are attenuated, and by how much. Detector elements in

the opposing array measure the resulting attenuated x-ray beam, at which time the
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scanner transfers the result to a computer for storage and subsequent reconstruction.

Specifically, the detector measurements at a particular view angle are placed into

their respective row in a sinogram, as shown in Figure 1.1(b).

The primary means of attenuation in tissue at diagnostic x-ray CT energies is by

photoelectric absorption, in which all of an x-ray photon’s energy is absorbed by an

electron. When a photoelectric interaction occurs, the x-ray imparts sufficient energy

on the electron for it to overcome its binding potential, thereby ejecting it from its

atomic orbit. This aspect of x-ray CT is undesirable, since the ejection of an electron

has the effect of ionizing the atom. The ionizing radiation dose to a patient from

a CT scan has been raising concerns in recent years about the potentially increased

risk of developing cancer [43]. However, the benefit of the information obtained by

CT scans often greatly outweighs this risk.

Although single-slice scanners (like the one shown in Figure 1.1) are now obsolete,

their geometry still provides the underlying basis for a large class of reconstruction

algorithms. Current state-of-the-art scanners utilize cone-beam measurements, which

have a wider axial coverage (i.e., more than one detector row in the axial direction).

This allows a larger field of view (FOV) to be scanned in the same amount of time that

it would take to scan a single slice. Although the cone-beam geometry complicates

scatter rejection and makes it challenging to obtain enough samples in the outer

slices of the projection, it significantly speeds up the acquisition, thereby making

applications like cardiac imaging possible.

Scanners with a larger axial extent are not restricted to a circular orbit; helical source

trajectories are also widely used in practice, in which the patient bed translates

through the scanner bore while the gantry rotates simultaneously. The remarkably

fast gantry rotation speed of current helical scanners (∼ 0.3 seconds per rotation)

enables a whole body scan to be completed in a matter of seconds. The fast scan

time also makes helical CT extremely useful for cardiac and pulmonary exams, rapid

patient evaluation in an emergency room setting, and many other applications.
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1.2 PET Data Acquisition

Unlike CT, PET is a functional imaging modality. It is used as a powerful molecu-

lar imaging tool for clinical and pre-clinical applications in oncology, cardiology, and

neurology. PET imaging requires the uptake of a radiotracer by the body, which

indirectly behaves as an internal radiation source. The radiotracer consists of a ra-

dioactive isotope that has been chemically attached to, or incorporated into, some

pharmacologically relevant molecule.

The most commonly used radiotracer in current clinical practice is fluorine-18 fluo-

rodeoxyglucose (18F-FDG). FDG is a glucose analog, meaning it is taken up by the

body in the same way that glucose is. By using the positron-emitting fluorine iso-

tope 18F in the FDG molecule, radioactivity will become concentrated in cells with

high glucose uptake. As glucose is metabolized by a cell, it becomes phosphorylated,

thereby preventing it from readily leaving the cell. Patients who undergo a PET scan

with 18F-FDG typically must have fasted for several hours pre-injection, and wait

about an hour post-injection, for the radiotracer to adequately distribute itself in the

body. Malignant tumors are often the most metabolically active cells in the body,

and will therefore take up the largest proportion of 18F-FDG. Over time, the 18F will

also be found in organs responsible for clearance, such as the kidneys and bladder.

Each radioactive atom in a PET radiotracer will spontaneously emit positrons over

time according to the Poisson random distribution (with mean value equal to its

activity, i.e., emission rate). Each emitted positron will move in a random walk around

the nearby tissue (an effect known as positron range) before ultimately annihilating

with an electron. As shown in Figure 1.2, the annihilation of the positron and electron

results in the production of two gamma rays that travel approximately 180◦ apart

from each other. If the positron was not at rest when the annihilation took place, the

momentum is conserved by the gamma ray pair in the form of some small angular

deviation from 180◦. This undesirable effect is known as gamma ray acolinearity.

A typical PET scanner with patient lying in the FOV is shown in Figure 1.3. The

detectors fully encircle the patient within a small axial region to achieve maximum

sensitivity. “Prompt” coincidences are recorded by the scanner if two gamma rays are

detected within a tight coincidence timing window. Each recorded event is specified
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Figure 1.2: Positron emission leads to annihilation with a nearby electron, producing
two gamma rays that are approximately 180◦ apart.

by the pair of detectors involved in the coincidence detection; this pair defines what

is called a line of response (LOR). The key point of PET imaging is as follows: a

coincidence detection implies that a positron source was located somewhere along the

LOR connecting the two detectors that registered the event. In practice, however,

each LOR not only contains the true coincidences, but also randoms and scattered

counts. Randoms are due to the near-simultaneous detection of two gamma rays

from independent annihilation events, and scattered counts are due to one or both

gamma rays having scattered in the object or detectors. Randoms and scatter degrade

image contrast if not properly accounted for in the reconstruction procedure since they

constitute additive background. Additionally, positron range, gamma ray acolinearity,

and several other effects degrade the spatial resolution of the measured data.

PET holds great promise for future breakthroughs, as a properly designed radiotracer

can in principle target specific types of molecular receptors on cells. 18F-FDG is not

specific to cancer cells, but is generally taken up by these cells in higher quantities

than normal cells. As our understanding of molecular and cellular biology expands,

novel radiotracers can be developed that will provide ever greater specificity to certain

diseases. Higher specificity helps improve the accuracy of PET imaging for diagnostic

and treatment monitoring purposes, and provides pharmaceutical companies with the

ability to evaluate drug efficacy (e.g., pharmacokinetics) more quantitatively.
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Figure 1.3: Cross-section of a PET scanner. A positron source is located at the black
dot within the patient, and its indirectly-produced gamma ray emissions are detected
in coincidence by pairs of detectors located all around the circle. In the ideal PET
imaging scenario, a positron source physically resides somewhere along each line in
which a coincidence event was detected.

1.3 Virtual Pinhole PET

There are several fundamental factors that limit the spatial resolution of a conven-

tional circular PET scanner. The most basic factor is the intrinsic resolution of the

scintillating crystals, which is determined primarily by the crystal size. However, even

if high-resolution detectors are used throughout the scanner, gamma ray acolinearity

degrades the resolution proportionally to the distance D between two detectors. The

full-width at half-maximum (FWHM) blurring caused by the angular deviation from

180◦ annihilation is normally written as Raco ≈ 0.0022 · D. For a 90 cm diameter

scanner, this corresponds to ∼ 2 mm FWHM blurring at the isocenter. Another

factor responsible for resolution degradation in PET imaging is positron range. The

severity of this effect depends on the radioisotope; 18F has sub-millimeter positron

range in biological tissue, which is negligible in comparison to the aforementioned

factors. There are many other reasons for degraded system resolution, such as in-

tercrystal penetration and intercrystal scattering within a block of crystals, and the

photo-multiplier tube (PMT) readout system.
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Figure 1.4: (a) Pinhole SPECT geometry; (b) Virtual pinhole PET geometry. COR
denotes the center of rotation. (Reprinted by permission of the Society of Nuclear
Medicine from: Y.-C. Tai, H. Wu, D. Pal, and J. A. O’Sullivan. Virtual-Pinhole PET.
J Nucl Med. 2008; 49(3): 471-479, Figure 1.)

To improve sensitivity and to reduce costs, clinical whole-body PET scanners are

usually built with medium-resolution detectors. The larger crystal size provides a

larger interaction volume within each crystal (with a smaller proportion of dead space

in between crystals in a block), and fewer crystals means fewer electronics channels

are needed. High-resolution small animal PET scanners are often designed with a very

small bore diameter to reduce the effect of acolinearity and to increase sensitivity (via

larger solid angle) of the small crystals. As can be seen, there is a tradeoff between

resolution and sensitivity.

A novel class of PET imaging systems was proposed by Tai et al. [96], which seeks

to combine the advantages of small-animal imaging systems with the advantages of

clinical systems. It is based on the theory of pinhole SPECT cameras, which use

a lead pinhole collimator to acquire projections (as shown in Figure 1.4(a)). In the

figure, b is the distance between the object and pinhole, and f is the distance between

the pinhole and detector array. The projection of the gamma-emitting object onto

the detector array is magnified by a factor of f/b. It is known that the resolution of
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a SPECT system depends more on the pinhole aperture diameter than the intrinsic

resolution of the crystals, as long as the object is very close to the pinhole.

Figure 1.4(b) illustrates an analogous setup in PET. In this figure, detector 1 is higher-

resolution than the crystals in detector 2. The object is projected onto detector array

2, this time using electronic collimation instead of physical collimation. In this setup,

detector 1 can be thought of as a pinhole, hence giving the name of this concept

virtual pinhole PET (VP-PET). There are two major benefits to such a system. The

first is that degradation due to gamma ray acolinearity can be reduced, since there

is a smaller distance between the detectors than there would be if the object were

centered in a circular PET scanner. The second benefit is that the system resolution

depends more on the intrinsic resolution of detector 1 than that of detector 2.

In Tai et al. [96], the VP-PET system resolution near the center of rotation was

derived to be

Rsys ≈
√(

0.0088 · d1d2

d1 + d2

)2

+

[
d2w1 + d1w2 + |d2w1 − d1w2|

2(d1 + d2)

]2

+R2
src +R2

block,

(1.1)

where Rsrc is the resolution loss due to positron range, Rblock is the resolution loss due

to block effects, and d1, d2, w1, and w2 are as shown in Figure 1.4(b). As d1 becomes

small relative to d2, the acolinearity (first) term can become smaller than the standard

expression for Raco, and the coincidence detection (second) term approaches w1, the

intrinsic resolution of detector 1.

When incorporated as an accessory “insert” device into an existing scanner, it can

provide high-resolution imaging in the region near the insert crystals. It has the

potential to offer image quality benefits beyond those of a scanner made entirely from

high-resolution crystals, and at a fraction of the cost. VP-PET could be especially

important in translational research (i.e., from pre-clinical to clinical), as there is a

need for high-resolution imaging in humans to validate drug efficacy, etc. Finally, the

VP-PET concept can be applied in any number of configurations, ultimately allowing

for different types of applications.

The main disadvantage of a VP-PET system is that it significantly complicates the

reconstruction process. This was cited by Chatziioannou [13] as being one of the main
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challenges with such a system, and we will see in Chapters 5 and 6 that this is indeed

true.

1.4 Organization of the Dissertation

The general concept of image reconstruction from tomographic datasets is the same

for both CT and PET, but the differing source/detector arrangement and physics

necessitates algorithms specific to each. The focus of this dissertation work was the

application of a general statistical image reconstruction framework to particular types

of CT and PET scanners. This work has resulted in the development of several new

reconstruction algorithms and efficient implementations that offer the potential for

improved imaging performance over existing methods.

Chapter 1 (this chapter) was intended to provide a very brief overview of image

science with an emphasis on the imaging modalities pursued in this work. Chapter

2 provides background material on various image reconstruction approaches for CT,

PET, and virtual pinhole PET data. It also highlights the main contributions of

this work. In Chapter 3, we describe a statical reconstruction method that has been

applied to clinical multislice helical CT scanners. In Chapter 4, a modification of

the CT reconstruction algorithm is presented that aims to reduce artifacts associated

with incomplete datasets. Chapter 5 addresses the work that was done to reconstruct

2D PET insert data obtained from Monte Carlo simulations, and Chapter 6 addresses

the work that was done to reconstruct 3D PET insert data measured by our physical

prototype system. Chapter 7 provides the conclusions and some possible directions

for future work.

Since reconstruction of CT and PET data is a complex task (especially for a novel

system), there are many processing steps involved. It is recommended that the Table

of Contents be used alongside the rest of this document to keep better track of how

each section fits into the overall reconstruction framework.
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Chapter 2

Background

In the context of medical imaging, a digital image is implicitly an approximate rep-

resentation of some underlying continuous object (e.g., a patient). The rectangular

region represented by each pixel (in 2D images) or voxel (in 3D images) is simply

a convenient basis function, where the value in each pixel or voxel represents the

strength of that basis function. In other words, a discretized image is a model for

some physical object in continuous space, in which the value of each image element

is a parameter of the model. A simple rectangular basis function does not allow for

variation across each image element, and therefore the basis functions should be ade-

quately small to capture any high-frequency variations. There are many alternatives

to rectangular image elements, such as the “blob” model defined by Bessel functions

[57], but we will not consider them to any great extent in this work.

Having explained the role of a digital image, we can now describe tomographic image

reconstruction as the process of estimating a discretized image from a set of tomo-

graphic measurements. Reconstruction is a classic example of an inverse problem, in

that it attempts to infer the model parameters describing an object from measure-

ments of the object. The corresponding forward problem is that of predicting the

data that would be measured given an object and the acquisition specifications. We

will demonstrate in this chapter that modeling the forward problem is a key com-

ponent in the design of reconstruction algorithms. This chapter will discuss some of

the existing reconstruction algorithms used in CT and PET, and will also discuss two

realizations of the virtual pinhole PET geometry.
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2.1 Image Reconstruction Overview

Reconstruction algorithms for CT and PET can roughly be divided into two main

categories: analytical and statistical methods. Analytical algorithms are based on

a deterministic line integral model for the measured data, whereas statistical algo-

rithms are based on an arbitrarily accurate model that also reflects the probability

distribution of the measurements.

Both models apply to CT and PET data; however, in CT, the line integral approach is

more commonly used, and in PET, the statistical model is more commonly used. This

is because the count rate of photons at each measurement is usually several orders

of magnitude greater in CT than it is in PET. The CT acquisition is therefore not

count-limited in normal scan conditions, in which case a deterministic model works

well. Limitations to patient dose and scan time, and the relatively low sensitivity in

PET scanners (to detect all emitted gamma ray pairs) make the counting statistics

in PET much poorer. Modeling the actual statistics of the PET data often improves

the reconstructed image quality.

2.1.1 Reconstruction from Line Integral Data Model

The forward data model used by analytical methods is a line integral through the

object along the path of a collimated x-ray beam (in CT) or LOR defined by two

back-to-back gamma rays (in PET). As implied by the word analytical, the algo-

rithm is derived in the continuous space; it is subsequently discretized for practical

implementations. The following derivation is based on that of Kak and Slaney [42].

The derivation of the algorithm is simplest in parallel-beam geometry, shown in Fig-

ure 2.1. In the figure, t is the distance from the central ray, θ is the view angle with

respect to the x-axis, and n̂(θ) � (cos θ, sin θ) is the unit vector specifying the perpen-

dicular direction to the beam.1 The Radon transform is defined as the parallel-beam

1Boldface notation will be used to represent vector quantities throughout the dissertation.
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Figure 2.1: Parallel beam geometry used to define the Radon transform. The view
angle is defined by θ, and a projection ray within a view is represented by t. The unit
normal vector to the projection is given by n̂(θ).

projection through the object f(r), where r = (x, y), and is mathematically given by

Pθ(t) �
∫

n̂·r=t

f(r) dr =

∫
δ(t− n̂ · r)f(r) dr. (2.1)

Taking the 1D Fourier transform of Pθ(t) with respect to t yields the Projection-Slice

Theorem, which is the key to analytical reconstruction:

P̂θ(ω) �
∫ ∞

−∞
Pθ(t) exp(−j2πωt) dt (2.2)

=

∫ ∞

−∞

∫
δ(t− n̂ · r)f(r) dr exp(−j2πωt) dt (2.3)

=

∫
f(r) exp[−j2πω(n̂ · r)] dr (2.4)

= f̂(ω cos θ, ω sin θ). (2.5)

This shows that the Fourier transform of the projection at angle θ equals the 2D

Fourier transform of f(r) along the n̂(θ) direction.

We will now derive the fundamental analytical reconstruction algorithm for parallel-

beam projection data, making use of the Projection-Slice Theorem along the way.
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Figure 2.2: Linear FBP algorithm for CT and PET.

We start with the 2D inverse Fourier transform of the 2D Fourier transform of f(r),

f(r) =
1

(2π)2

∫
f̂(k) exp[j2π(k · r)] dk. (2.6)

Now, we replace the rectangular frequency coordinates given by k with polar fre-

quency coordinates, k � (ω cos θ, ω sin θ). The change of variables yields dk =

ω dω dθ, so (2.6) becomes

f(r) =
1

(2π)2

∫ 2π

0

∫ ∞

0

f̂(ω cos θ, ω sin θ) exp[j2πω(n̂ · r)]ω dω dθ. (2.7)

Using symmetry arguments and the Projection-Slice Theorem, this can be simplified

to

f(r) =
1

(2π)2

∫ π

0

∫ ∞

−∞
f̂(ω cos θ, ω sin θ)|ω| exp[j2πω(n̂ · r)] dω dθ (2.8)

=
1

(2π)2

∫ π

0

∫ ∞

−∞
P̂θ(ω)|ω| exp[j2πω(n̂ · r)] dω dθ. (2.9)

Finally, we write this as

f(r) =
1

2π

∫ π

0

Qθ(n̂ · r) dθ, (2.10)

where

Qθ(t) � 1

2π

∫ ∞

−∞
P̂θ(ω)|ω| exp(j2πωt) dω. (2.11)

From these two expressions, we observe that reconstruction of f(r) entails high-pass

filtering each parallel-beam projection using (2.11), and then backprojecting the result

across the image plane using (2.10). The algorithm is known as filtered backprojec-

tion (FBP) for this reason. Figure 2.2 shows a flowchart of the FBP reconstruction

procedure.

The high-pass filter is given by |ω| in the frequency domain, but should be apodized

in practice to avoid amplifying high-frequency noise in the projection. It can be
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designed to control the noise-resolution tradeoff for different imaging protocols. The

filtering operation can be performed very quickly in the frequency domain through

the use of the fast Fourier transform (FFT).

An exact Radon inversion formula can be derived in a similar manner for the fan-

beam geometry [42]. The resulting fan-beam algorithm is a weighted FBP formula.

Another common alternative to using the fan-beam reconstruction algorithm is to

use an approach that reorganizes, or rebins, the fan-beam projections into equivalent

parallel-beam projections. Then, once the set of projections are in parallel-beam

form, the standard FBP algorithm given by (2.10) can be applied. However, due

to sampling pattern differences between the Cartesian and polar coordinate systems,

interpolation is necessary in rebinning methods. Interpolation can adversely affect

the noise-resolution tradeoff if not performed carefully.

In a similar manner, 3D data (i.e., data collected from multi-row CT scanners or

multi-ring PET scanners) can be rebinned into approximately equivalent 2D fan-

beam projections in transverse planes. However, the accuracy of the approximation

depends on the obliqueness of the projection with respect to the axial direction. Some

newer analytical reconstruction algorithms attempt to interpolate and reconstruct 3D

data in more sensible oblique planes, as will be explained in more detail later.

2.1.2 Reconstruction from Statistical Data Model

Statistical reconstruction methods are generally based on maximum likelihood (ML)

estimation or maximum a priori (MAP) estimation techniques. These require knowl-

edge of the probability distribution from which the measured data arises. The Poisson

distribution is a reasonable statistical model for CT and PET, although a compound

Poisson model might be more appropriate for CT scanners with energy-integrating

detectors [53].

In the case of Poisson random variables, the probability distribution for a particular

measurement, di, is given by

P (di) = exp(−gi)g
di
i /di! , (2.12)
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where gi is the mean of the measurement. Determination of the mean value of the

measurement requires a model for the forward problem, known as the forward pro-

jection operation. Statistical algorithms for tomographic reconstruction rely heavily

on forward projections, which at their simplest, are line integrals like (2.1). However,

statistical algorithms are not constrained by the mathematics of the Projection-Slice

Theorem or Fourier theory. A forward projection can instead be modeled by a general

system matrix that relates the image space to the data space through a matrix-vector

multiplication. It is given by

li(f) �
N∑

j=1

aijfj, (2.13)

where N is the number of voxels in the image, aij is the system matrix, and fj is

the jth voxel of the image f . Since the forward problem is modeled discretely from

the outset, there is no need to perform interpolations if the system matrix is modeled

appropriately. A description of the specific system matrix calculations will be deferred

to Chapters 3-6.

In transmission tomography, the mean number of detected photons is governed by

Beer’s Law:

gi(f) � E[di] = Iie
−li(f), (2.14)

where Ii is the mean number of photons generated and subsequently detected at

source-detector pair i in the absence of an attenuating medium. A background term

may also be added to (2.14), although we did not consider that in our current CT

model; this is more important for transmission scans using a rotating positron source

in PET scanners, due to the coincidence detection of unwanted randoms and scatter.

In emission tomography, the mean number of detected gamma ray pairs is equal to

the forward projection plus some mean randoms and scattered counts:

gi(f) � E[di] = li(f) + r̄i + s̄i. (2.15)

ML estimation is an optimization problem that seeks to estimate the image parame-

ters most likely to have given rise to the measured data [101, p. 65]. The likelihood

function is given by P (d|f), and should be thought of as a function of f for the
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purpose of ML estimation. Mathematically,

f̂ � arg max
f≥0

P (d|f) (2.16)

= arg max
f≥0

∏
i

exp(−gi)g
di
i /di!, (2.17)

where f̂ is the ML estimate of the image, and the product is taken over all measure-

ments. By writing (2.17) as a product of Poisson probabilities, it is assumed that

each measurement is independent. It is easier then (yet completely equivalent2) to

maximize the log-likelihood function, which is given by

L(d|f) � lnP (d|f) =
∑

i

di ln gi − gi − ln(di!). (2.18)

The last term does not depend on f , and therefore plays no role in the maximization

process. From the definitions of gi(f) given in (2.14) and (2.15), it can be shown that

L(d|f) is concave over f [24]. This guarantees that a (possibly non-unique) global

maximum exists.

The ML solution is asymptotically unbiased (i.e., as the number of measurements

approaches ∞), and provides the lowest-variance estimate of all unbiased estima-

tors [101, p. 68–71]. Since tomographic systems have a finite limit to the number

of measurements available, this fact does not necessarily carry over to real scanners.

However, ML estimation offers a robust method in practice when the data is well-

modeled.

In the Bayesian framework, MAP estimation can be used when the image parameters

themselves are also random variables, i.e., they are generated from some underlying

probability distribution. This “prior” distribution, P (f), must be known in advance.

Under this framework, the estimation procedure becomes that of maximizing the

posterior distribution, which by Bayes rules is

P (f |d) =
P (d|f)P (f)

P (d)
. (2.19)

2Since the logarithm is a monotonically increasing function, lnP (d|f) will have the same maxi-
mizer(s) as P (d|f).
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By taking the logarithm of this expression, the MAP estimation problem becomes

f̂ � arg max
f≥0

L(d|f) + lnP (f). (2.20)

If we let P (f) be a Markov random field model, then

f̂ � arg max
f≥0

L(d|f) − βU(f), (2.21)

where β is a scalar weight determining the strength of U(f) relative to L(d|f), and

U(f) is the Gibbs potential energy function,

U(f) �
N∑

j=1

∑
j′∈Nj

φj,j′(fj − fj′). (2.22)

Here, Nj is a local neighborhood of voxels surrounding voxel j, and φj,j′(·) is often

chosen to be a convex function. In this sense, the prior imposes some enforcement

that the image be locally smooth, since U(f) effectively penalizes large differences

between neighboring voxel values. The prior expectation that images exhibit local

smoothness is taken to be a reasonable assumption in CT and PET imaging. By

varying β and choosing the function φj,j′(·) appropriately based on the application,

the resolution-noise tradeoff can be controlled over a wide range.

We take the point of view in this work that the U(f) term in (2.21) is simply a penalty

that leads to the construction of a penalized likelihood (PL) objective function; the

image variables are not viewed as random variables originating from an explicit prob-

ability distribution. PL estimation can provide a degree of regularization when the

reconstruction problem is particularly ill-posed. This avoids overfitting the noisy data

to the likelihood function alone. It also benefits from the fact that the resulting image

properties are determined by the objective function alone, not the algorithm used to

optimize the objective function [24].

Statistical reconstruction uses iterative methods to optimize the objective function,

as closed-form solutions to the optimization problem are not possible. Certain classes

of algorithms are known to resolve lower-frequency components in earlier iterations

than the high-frequency components. Depending on the convergence properties of

the particular algorithm employed, stopping the iterations before convergence can
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offer an alternative practical form of regularization. It is more difficult to predict

image quality in this case, but the implementation is simpler compared to MAP or

PL reconstruction.

A linearized local impulse response function was derived based on the PL objective

function in (2.21) and under the assumption of spatially-invariant scanner resolution

[26]. Extensions to that work have resulted in approximate methods to predict the

resolution, contrast, and variance properties of reconstructed images (without needing

to reconstruct them) [74]. Unfortunately, these are mainly appropriate for quadratic

penalties, which tend to over-smooth the image. Regardless of the limitations, Stay-

man and Fessler [91] provide the ability to systematically choose the β parameter as

a function of desired resolution, which otherwise is very difficult to do.

Up until this point, we have presented a statistical reconstruction framework that

is almost entirely identical for CT and PET. Since the particular form of L(d|f) is

unique for transmission and emission tomography (due to the differing gi(f) func-

tions), specific optimization methods to perform ML or PL estimation are needed for

each modality. A brief overview is given below.

CT Statistical Reconstruction Algorithms

Many algorithms have been developed to optimize the objective function in transmis-

sion tomography. The methods shown in this paragraph update all image variables

simultaneously. Lange and Carson [52] proposed an expectation-maximization (EM)

algorithm for CT, although a closed-form update step could not be obtained, and

convergence was slow. In Mumcuoğlu et al. [61], a preconditioned conjugate gra-

dient algorithm was derived for the MAP estimator (for both CT and PET). This

algorithm was shown to have a fast convergence rate compared to other algorithms.

Another method was proposed that monotonically increases the penalized likelihood

objective function at every iteration, even when there are background counts [22].

This method, as well as Elbakri and Fessler [21], used the concept of optimization

transfer and paraboloidal surrogate functions. Finally, the alternating minimization

(AM) algorithm proposed by O’Sullivan and Benac [66] provides a closed-form update

for a more advanced data model, with guaranteed monotonic convergence.
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Figure 2.3: Iterative AM reconstruction algorithm for CT.

Another class of algorithms uses iterative coordinate descent, which entails updating

each image variable sequentially [10]. It was shown to have a fast convergence rate,

especially for high-frequency image components. In general, methods that update a

larger number of variables simultaneously have slower convergence than methods that

update one or few variables in parallel. This led to the grouped coordinate ascent

method, which is a flexible approach that falls in between the fully parallel update

methods and the fully sequential update methods [27].

Chapter 3 makes extensive use of the alternating minimization (AM) algorithm for

transmission tomography [66]. A basic flowchart of this algorithm is shown in Figure

2.3.

PET Statistical Reconstruction Algorithms

Two independent derivations of the maximum-likelihood expectation-maximization

(ML-EM) algorithm for emission tomography have been published [87, 52]. Both

use the concept of a complete data space, which is a higher-dimensional space than

that of the measured data alone, but makes the algorithm derivation easier. An

alternative derivation is shown in Fessler [24] based solely on optimization transfer

function principles. Figure 2.4 shows a flowchart of the ML-EM algorithm.

Since the ML-EM algorithm is a simultaneous update method, it has poor conver-

gence properties. The preconditioned conjugate gradient algorithm [61] and iterative

coordinate descent algorithm [10] mentioned above also apply to emission tomog-

raphy, and improve the convergence rate compared to ML-EM. Another sequential
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Figure 2.4: Iterative ML-EM reconstruction algorithm for PET.

update method with good convergence properties is the space-alternating generalized

EM algorithm [25]. The interested reader is referred to the excellent review arti-

cle by Qi and Leahy [75] for more information on statical reconstruction algorithms

for emission tomography, which also includes a discussion of algorithms that process

list-mode data directly.

2.1.3 Comparison of Analytical and Statistical Methods

Iterative algorithms are not usually implemented on commercial CT scanners because

they are far too computationally intensive, and because the data collected often has

enough counts that FBP algorithms can produce high-quality images. PET scanners

generally use statistical reconstruction algorithms since the counting statistics are

poorer, and would result in high-variance images if reconstructed with FBP.

Most CT scanners preprocess the measured data and output it in the form of line

integral projection estimates, i.e., li ≈ − ln(gi/Ii). Taking the logarithm linearizes

the measurements so they can be used with FBP-type algorithms. Fessler [24] showed

that for random variables, the logarithm operation is systematically biased, especially

for transmission measurements in the low-count regime. Statistical reconstruction

methods do not use the measurements in projection space, so taking the logarithm

of the transmission data is unnecessary.3

3However, since we only have access to the projection data on current CT scanners, we must first
convert the measurement from the projection space back to the transmission space.
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Additionally, FBP treats all measurements with equal weight since no noise model is

used. This causes high-variance (i.e., low-count) measurements to be considered just

as valid as low-variance measurements. Some methods attempt to reduce artifacts

associated with high noise levels within the context of analytical reconstruction, such

as Hsieh [33], but they are not as directly related to the measurement statistics as

are methods that model the statistics upfront.

Despite the high computational cost, iterative methods for CT and PET are based

on highly accurate models that take the underlying x-ray or gamma ray physics

into consideration. For example, they can account for non-ideal scanning conditions

such as noise, scatter, non-uniform detector response, x-ray beam hardening, and

missing information due to low radiation dose or high-density attenuators (e.g., metal

implants) in the field of view. Even in CT imaging, there are clinically relevant

situations where the idealized analytical model breaks down (e.g., [105]). Statistical

reconstruction algorithms were also cited by Wang and Yu [102] as being important

for dose reduction strategies, and they predict this type of algorithm will be used more

widely on commercial scanners once the computations become more manageable.

Fully 3D scanner geometries present a number of challenges for analytical algorithms.

Scanner geometry is complicated by incomplete data sampling in some parts of the

scan, redundant data in other parts, and oblique rays passing through the body. If

not properly accounted for in the algorithm derivation for that particular scanner

geometry, image artifacts can result. As mentioned above, statistical reconstruction

algorithms use a general system matrix to represent the geometry and other effects; in

this sense, the reconstruction algorithm remains the same regardless of the geometry.

Particularly within an iterative statistical reconstruction framework, there is consid-

erable flexibility in terms of how the system matrix is designed to best model the

measured data. Unlike analytical methods, which do not usually account for the

finite spatial extent of each voxel and detector, the system matrix readily accounts

for both. Modeling the voxels and detectors accurately provides the opportunity to

better match the model to the intrinsic resolution of the system.

This dissertation is concerned with both the speed and accuracy of the reconstruction

algorithms. Although there are significant computational benefits to using analytical

reconstruction, we believe that the best accuracy can be achieved within the elegant
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statistical reconstruction framework. As will be shown in subsequent chapters, we

have developed several strategies that can be employed to reduce the computation

time of the statistical methods.

2.2 System Modeling

As seen in Section 2.1.2, statistical reconstruction algorithms have a similar structure

in both CT and PET; at their core, they are built upon the use of forward projection

and backprojection operations with a system matrix. The specific quantities that are

represented in the system matrix are different for CT and PET, and will be detailed

below.

2.2.1 CT Data

In the case of CT, the entries of the system matrix have the unit of length so that the

argument of the exponential in (2.14) is unitless. Data from commercial whole-body

CT scanners is usually precorrected for various effects, such as beam hardening and

non-uniform detector response, so we will focus on using a simpler monoenergetic

data model in this work. More sophisticated models exist, e.g., [50, 104].

There are many ways to forward project a volume of voxels into sinogram space, and

conversely, to backproject data from sinogram space into the image space. De Man

and Basu [17] provide a good review of some available methods in the literature,

but for completeness, we describe a few of the methods here as well. The projection

operations are similar to those used in ray tracing for computer graphics, except

in that case, the rays are optical and therefore do not transmit through the object

(unless transparent).

For forward projections, the most common method is the ray-driven approach; this

is essentially the numerical calculation of a line integral through a voxelized space.

A ray is drawn from the center of the x-ray tube’s focal spot to the center of a

detector element. The ray is then traversed at a given step increment, where at each

stepping point along the ray, the voxels in its neighborhood are interpolated to that
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point. The interpolated result, multiplied by the step length, is then added to the

projection value for the ray.

For backprojections, the most common method is the voxel-driven approach; this is

how the backprojections in FBP-type algorithms are typically performed. For each

voxel, a ray is drawn from the x-ray tube’s focal spot to the center of the voxel.

The ray is then extended further towards the detector array. If it intersects with

the detector array, the nearby measurements on the detector are interpolated to the

intersection point, and then added to the backprojection value for the voxel.

The calculations performed by these operations can be performed on-the-fly, but

they can also be represented in a sparse system matrix. Even with more advanced

interpolation methods, however, they do not accurately account for the finite size of

the voxels and detector elements. They are also not transpose operations, as required

by statistical reconstruction algorithms.

De Man and Basu [17] proposed distance-driven projectors as a more accurate method

to perform the forward and backprojections. In 2D, the concept is to “splat” or project

the voxel footprint and detector footprint onto a common axis, and then use the length

of overlap as the weighting for that particular voxel and source-detector pair. In 3D,

the footprints are projected onto a common plane, and the area of overlap is then

used for the weighting. This approach does account for the finite extent of voxels and

detectors, although some approximations are used to make the computations fast. In

particular, the footprints that are projected to a common plane are approximated as

being rectangular, even though they are actually a more complicated polygon that

depends on the orientation of the voxel and detector relative to the ray.

In Politte and Whiting [72], a highly accurate projector for 2D fan-beam projections

was proposed, which was also extended to 3D [73]. More details about this method

are given in Section 3.2. Briefly however, it analytically or numerically integrates the

length of intersection of each sub-ray with each voxel over the solid angle from the

focal spot to the detector.

Lastly, a method was analytically derived to compute the system matrix for fully 3D

circular-orbit cone-beam CT [109]. The method requires integration over different

geometrical regions that correspond to portions of a voxel seen from a given projection
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angle. It has the advantage that numerical integration is not needed, so one does not

need to calculate lengths of intersection over many sub-rays for sufficient accuracy.

However, it does not apply to other scanner geometries, such as helical CT, and the

implementation does not appear to be as straightforward as that of Politte et al. [73].

2.2.2 PET Data

The raw data from the PET scanner is usually saved in a list-mode file, which most

importantly contains the detector pair index of each coincidence event. The list-

mode data is not usually pre-corrected for any effects, as was the CT data. The

only processing that is done prior to storage in the list-mode file is the hardware

processing (e.g., coincidence timing window, energy discrimination). Although this

puts a large burden on the reconstruction algorithm to model the data appropriately,

it also provides the opportunity to model the main effects within a single statistical

reconstruction framework.

To distinguish between the system matrix for CT and PET, we will now denote the

PET matrix by P . In PET, each system matrix element pij represents a quantity that

is proportional to the probability that a positron emitted in voxel j is detected by

detector pair i. As done in Mumcuoğlu et al. [61] and as used in many other papers

since then, a factored system matrix offers the ability to separately model various

effects and to enhance the sparsity of the system matrix.

With respect to the basic model for PET data given by (2.15), where li(f) �∑N
j=1 pijfj, P can be factored as [61]

P � Pgeom · Pnorm · Patten · Pblur. (2.23)

Pgeom is the geometrical factor that links the image space to the data space (in much

the same way as the CT system matrix did). Pnorm and Patten are the diagonal

normalization and attenuation factors, respectively, whose size in both dimensions

is equal to the number of LORs. Pblur is a blur kernel used to model the positron

range, gamma ray acolinearity, intercrystal scatter, and intercrystal penetration (if

not modeled in Pgeom).
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The most important factor is Pgeom, and it is most accurately calculated based on solid

angle considerations. The relevant solid angle to use for this factor is the intersection

of the following two quantities: the solid angle from the voxel to detector 1, and the

solid angle from the voxel to detector 2 (which is subsequently extended backwards

towards detector 1) [55]. This is the maximum solid angle in which an emission from a

given voxel can be detected in coincidence by the detector pair. In practice, the voxel

should be subdivided into smaller point-like sources to find the effective solid angle

for the whole voxel and detector pair [76, 55]. To simplify the calculations, these

two references assume that the inherently 3D solid angle can be approximated by

the product of the 2D angle in the transverse direction and the 2D angle in the axial

direction. This holds when the area of the crystal front face is very small compared to

the squared distance between the emission point and the solid angle-limiting detector.

For whole-body PET scanners, the solid angle can normally be calculated using the

front faces of a detector pair if intercrystal penetration will be modeled separately

in Pblur, or if intercrystal penetration is not expected to lead to significant resolution

degradation. For small-animal or dedicated organ-specific imaging systems, there

has been recent interest in developing analytical detector response functions (DRFs)

that explicitly calculate the intercrystal penetration effect within the geometrical

computations, e.g., [94, 108]. These were designed to model depth-of-interaction

(DOI) detectors. The main concept is shown in Figure 2.5, from Yamaya et al. [108],

which modeled the transverse direction. Using their notation, they write the DRF

for a point source located at r and detected by the ith DOI layer index of detector

pair j, as

hi,j(r) =
1

2π

∫ 2π

0

{1 − exp[−μl(i,j),A(Ω, r)]}{1 − exp[−μl(i,j),B(Ω, r)]} (2.24)

· exp[−μl̄(i,j),A(Ω, r)] exp[−μl̄(i,j),B(Ω, r)] dΩ,

where μ is the attenuation coefficient of the detector crystal at 511 keV. This expres-

sion models the crystal interference lengths, l̄(i,j)(Ω, r), as well as the probability of

detection inside the layer of interest, based on the lengths l(i,j)(Ω, r).

As shown in Strul et al. [94], analytical DRFs are not as useful for large-diameter

systems since other factors like gamma ray acolinearity play a larger role. As the

methods are also very computationally intensive – especially in 3D – they have not
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Figure 2.5: Geometry and notation for the analytical DRF model. (Reprinted by
permission of IOP Publishing Ltd from: T. Yamaya et al. Transaxial System Models
for jPET-D4 Image Reconstruction. Phys Med Biol. 2005; 50: 5339-5355, Figure 1.)

been used to model whole-body scanners. The computations are most efficiently

performed by iterating over each voxel in the outer loop, and then iterating over all

possible detector pairs that see the voxel in the inner loop. For sequential-update

reconstruction methods, storing the system matrix in a lookup table in this order

makes sense. However, this ordering would not work well during parallel-update

reconstruction methods (such as ML-EM), since the reconstruction algorithm would

not be able to use the cache efficiently.

Less computationally demanding (but also somewhat less accurate) methods have

also been developed to model the solid angle with intercrystal penetration effects,

e.g., [37, 59]. These methods are based on subdividing the crystals into subvolumes,

and calculating the length of intersection of the sub-rays and voxels. Moehrs et al. [59]

used Gauss-Legendre quadrature for the optimal integration points, whereas Huesman

et al. [37] used a regular grid spacing within each crystal volume for the integration

points.

The attenuation and normalization factors will be discussed further in Chapters 5

and 6. In Chapter 6, we will discuss scatter and randoms estimation in more depth
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as well. We will not consider the Pblur factor in this work. It can be calculated using

small Monte Carlo (MC) simulations that assume rotational symmetry and spatial

invariance [76]. The blur kernel is essentially a sparse banded diagonal matrix, where

the size of the band is related to the extent of local blurring to other crystals.

It should be mentioned that other techniques can also be used to determine the

PET system matrix, with varying degrees of effort. Some groups have employed

MC simulations to calculate the entire system matrix without analytical calculations

[77, 78]. The system can be modeled quite accurately in this manner, at the expense

of computation time to simulate enough counts. Assuming there are no alignment

issues, the least biased method is to collect point source measurements on the scanner

itself. Using a robot to make the measurements, along with symmetry and model-

fitting techniques, this was done in a practical amount of time for a clinical whole-

body PET scanner [71]. They demonstrated superior image quality over conventional

system matrix generation methods.

2.3 Helical CT Reconstruction

Multislice helical x-ray CT has proven to be a successful imaging modality in many

clinical applications, and is now in widespread use. This type of CT is inherently

3D because the x-ray tube continuously projects a cone-beam through the patient

as the patient is translated through the scanner. Each detector row captures data

in a partial rotation of the gantry that corresponds to each image slice. Practically

all helical CT scanners use some form of analytical image reconstruction algorithms

based on filtered backprojection (FBP). Such algorithms are fast and usually yield

high-quality images.

Significant progress has been made in the development of analytical reconstruction

algorithms specific to helical CT. A number of techniques based on PI-lines [15]

have been developed for exact reconstruction [44, 63, 114]. Several heuristic FBP-

type algorithms (known as approximate algorithms) have also been developed that

offer more practical implementations. Among these, the adaptive multiple plane

reconstruction method rebins the helical CT data into oblique planes, upon which 2D
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FBP is performed; the reconstructed tilted slices are then interpolated into an image

volume with parallel slices [82].

Helical FDK is another well-known approximate method, in which weighted FBP

is performed using 3D backprojection. Tang et al. [97] account for redundancy in

the helical measurements through a 3D weighting function based on the concept of

complimentary (also called conjugate) rays. These are rays that pass through the

same voxel and are co-linear when projected onto the transverse plane. Although

the method is somewhat empirical, it was shown to produce high-quality images

under ordinary scan conditions. Stierstorfer et al. [93] propose another weighted

FBP approach, where in this case the weights associated with conjugate rays can be

calculated as part of the overall algorithm instead of requiring an explicit, possibly

complex, weighting function. However, they also recommend using a row-dependent

weighting function (which serves a different purpose).

The fast-paced advances in CT data acquisition hardware are making existing image

reconstruction algorithms inappropriate or impossible to use, however. For example,

since cone beam projection data is acquired in oblique planes, errors are often intro-

duced as a result of interpolation to the transverse plane. As the number of detector

rows increases, as is expected in future CT scanners, the interpolation errors will

continue to grow; a wider detector array in the axial direction requires a cone beam

with larger solid angle, thereby resulting in more oblique projections relative to the

transverse plane.

Due to sampling limitations inherent to the cone-beam geometry, an overscan length

is required on each side of the desired axial FOV. Some analytical reconstruction

methods for helical CT cannot make full use of the overscan data, thereby resulting

in an unnecessary increase in radiation dose to the patient. Some of the most state-

of-the-art CT scanners (e.g., the Siemens Somatom Definition Flash scanner and the

Toshiba Aquilion/Premium scanner) now have an active collimation system (pre-

patient) to shape the x-ray beam to the detectors whose measurements will actually

be used in the reconstruction.

Unlike some of the above methods, statistical iterative reconstruction algorithms in-

herently use 100% of the acquired data, which are weighted according to the statistics

of the measurements. Additionally, statistical methods do not depend explicitly on
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the scanner geometry. Instead, the scanner is modeled by a general system matrix

that describes the relationship between the discretized image and data spaces. The

matrix elements are designed to account for factors such as finite detector aperture,

finite voxel size, and focal spot blurring.

Very little work has been published on implementations of statistical reconstruction

algorithms applied to helical CT scanners. The first such study was done within

a maximum likelihood (ML) framework for single-slice helical CT using simulated

parallel-beam projections [64]. Our group has previously described an iterative recon-

struction implementation for multislice helical CT [73], also using ML principles. Due

to its large computational requirements, significant data downsampling was needed

to generate results using the non-optimized serial implementation.

Another group has worked on iterative reconstruction using the helical CT geometry,

with an emphasis on region of interest reconstructions [113, 38]. Their main appli-

cation was cardiac imaging, where the region of interest is very small compared to

whole-body CT. For applications where the region of interest is small, their meth-

ods provide a practical means to perform high-resolution 3D iterative reconstruction

without requiring a very large number of voxels. As such, their work did not focus on

the computational aspects of 3D iterative reconstruction for whole-body CT imaging.

A method that uses iterative coordinate descent (ICD) on a penalized, weighted least

squares objective function was also recently proposed [99]. Through detailed image

quality analysis, they found significant improvements in resolution and artifact reduc-

tion using ICD over FBP-type methods. Since they used the quadratic approximation

to the Poisson log-likelihood function – which leads to bias at low photon count rates

– this method may be sub-optimal for low-dose scanning. Additionally, ICD is not

readily parallelizable, unless for example, a grouped coordinate descent algorithm is

used [27]. Their results were therefore necessarily limited to small scan volumes.

One further method with questionable application to statistical reconstruction of he-

lical CT data was proposed [92]. The main point of the paper was to show that

image rotations could lead to a significant amount of symmetry, namely, the elimi-

nation of axial dependence on the weights. However, this method was only tested

with an analytical FDK method, and is unlikely to perform well within the context of

statistical reconstruction due to the requisite use of a very simple line integral model.
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Additionally, image rotation could lead to degraded resolution and difficulties in the

appropriate application of regularization.

2.4 Incomplete CT Data Reconstruction

One important problem in CT and PET is that of missing or incomplete data. In

this work, we will only focus on the CT problem, however.

When the support of an attenuating object lies partially outside the field of view

(FOV) of a scanner, artifacts may arise in the reconstructed image because the object

is undersampled. Most reconstruction algorithms implicitly assume the entire object

is confined to the FOV, but if this is not the case, excessively large attenuation values

may be reconstructed inside the boundary of the FOV. This observation results from

the attempt to reconstruct an image entirely within the FOV such that projections

through it will match the measured data; however, the reconstruction algorithm is

unaware that the measured data has been affected by the object’s attenuation outside

the FOV.

Common to both 2D and 3D imaging is the issue of transverse truncation, which can

arise when some part of the object – either deliberately or unintentionally – is not

fully contained within the FOV in the transverse plane. In some cases, for example,

it is desirable to scan just a region of interest (ROI) as a means of limiting the dose to

a radiation-sensitive organ. Unintentional truncation may occur when imaging obese

patients or when the bed does not fit in the FOV. In PET/CT scanners, patients often

leave their arms at their side for comfort during the PET scan. The CT scanner FOV

is not necessarily large enough to encompass their arms, which could then lead to

CT artifacts that propagate into the attenuation correction for PET reconstruction.

As a final example, during radiation treatment planning, patients are imaged in a

CT scanner with bulky immobilization devices that often do not fit in the FOV of a

general-purpose CT scanner.

Reconstruction methods have been specifically designed to reduce artifacts due to

transverse truncation. As mentioned above, in applications such as attenuation cor-

rection for PET reconstruction, it is important to obtain quantitatively accurate CT
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images that cover the entire extent of the object in each slice. Methods that attempt

to solve this problem reconstruct the image within the FOV as well as in the extended

FOV – the region between the bore of the scanner and the actual FOV. Hsieh et al.

[34] and Sourbelle et al. [90] extrapolate the missing data in each projection using 2D

parallel beam consistency conditions (e.g., constant area under the projection curve

for each view) and other constraints. In practice, methods that first extrapolate the

missing data can use either analytical or statistical reconstruction algorithms on the

modified sinogram; however, it is not clear what effect this might have on the data

statistics if using statistical reconstruction.

Among other approaches are wavelet-based multi-resolution analysis [86] and total

variation minimization image reconstruction [88]. To address the limited data prob-

lem in radiotherapy online CT systems, Ruchala et al. [79] proposed aligning and

merging the data from a planning CT scan (used as prior information) with the

truncated data collected by an online CT system at the time of therapy.

Modern multislice helical CT scanners cannot fully sample the beginning and end

slices of a scan since the x-rays are collimated into a wide cone-beam originating from

a single x-ray tube. In the axial direction, this implies that an incomplete set of

projection data will be collected when scanning a portion of a long object. Unless

an overscan is employed, it is currently difficult to image a patient without z-axis

undersampling in the ROI. In recent years, the so-called long object problem has

been of considerable interest to those developing analytical reconstruction techniques

for multi-slice spiral CT and cone-beam CT, e.g., [49, 81, 19, 114]. It appears that less

work has been reported on this problem using statistical reconstruction approaches,

most likely due to the fact that statistical methods are not specific to a particular

system geometry.

The analytical and statistical methods are typically quite different from one another,

although there have been recent attempts to relate analytical data sufficiency con-

ditions to iterative reconstruction methods in emission tomography [29, 112]. Addi-

tionally, Defrise et al. [20] have developed a sufficiency condition that depends on the

inversion of the truncated Hilbert transform; since the inversion formula is not known

analytically, they used MAP reconstruction to evaluate the sufficiency condition.
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Within the context of analytical reconstruction, a number of papers have specifically

addressed the long object problem, which can be considered a type of ROI tomog-

raphy. For example, Schaller et al. [81] used an exact rebinning method called the

PHI-method, while other groups have made use of differentiated backprojection along

PI-line segments [19, 114].

Zeng et al. [111] published a method that uses iterative reconstruction to address the

long object problem. It is similar in principle to the first approach of Snyder et al. [89]

(with one major exception being the choice of reconstruction algorithm). In Zeng’s

method, rays that pass through both the ROI slices and outside slices of the object are

not used. More recently, La Rivière [50] described a method that performs statistical

reconstructions within the FOV from truncated data. An initial estimate of the

projections outside the FOV is obtained by computing an analytical reconstruction

inside the FOV, and then subtracting its reprojection from the measured projections.

The projection estimates are iteratively refined along with the pixel values within the

FOV through a joint estimation procedure.

Finally, the two methods presented in Snyder et al. [89] are general, straightforward

extensions of the AM reconstruction algorithm described previously. They can be

applied to any system geometry, and are therefore suitable candidates for investigating

transverse and longitudinal truncation. In particular, we will demonstrate in Chapter

4 that the missing data problem can be addressed directly in 3D without needing to

rebin projections to simpler system geometries. For example, this could potentially

allow for extended FOV reconstructions without using consistency conditions specific

to the parallel beam geometry.

2.5 Virtual Pinhole PET Systems and their Re-

construction

In addition to the proof-of-principle setup shown in Figure 1.4(b), our group has devel-

oped two prototype VP-PET systems that integrate with existing scanners. The first

is a full-ring insert for a microPET F220 scanner (Concorde Microsystems, Knoxville,
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TN), and the second is a half-ring insert for a clinical Siemens Biograph 16 PET/CT

scanner (Siemens Medical Solutions, Knoxville, TN).

2.5.1 Full-Ring Insert

The full-ring insert was developed to enhance the resolution of existing small-animal

imaging systems. It consists of a ring of high-resolution scintillation crystals oriented

inside the boundary of the scanner FOV. Given the small radius of the microPET

scanner, it would be impossible to fit the PMTs and readout electronics behind the

insert crystals (within the bore of the scanner). Instead, fiber optics are used to

carry the scintillation light from the crystals to PMTs located outside the scanner

FOV. A side benefit of this design is that it reduces the overall amount of attenuation

and scatter compared to the (impossible) case where the insert PMTs and readout

electronics are coupled directly behind the insert crystals in the FOV.

Since the entire imaging FOV is inside the insert ring, the geometry of this system

resembles that of a fourth-generation x-ray CT scanner. Three types of coincidence

are allowed: between two scanner crystals (SS), between two insert crystals (II), or

between one insert crystal and one scanner crystal (IS). The II data is the noisiest,

but has the highest resolution, and the opposite is true of the SS data; IS falls in

the middle. A 2D FBP algorithm was derived to handle the asymmetric insert-

scanner coincidences [70]. In the same work, a more robust reconstruction method

was developed, based on a variation of the ML-EM algorithm, that utilized all three

types of coincidence. The ML-EM approach was also extended to 3D [68].

2.5.2 Half-Ring Insert

To translate the virtual pinhole PET concept to clinical PET scanners, a second

type of insert geometry was proposed. Rather than use a full-ring insert as in the

small-animal imaging system above, a half-ring insert design was introduced to ac-

commodate a larger range of object shapes and sizes. The half-ring insert gantry

contains detector modules that are arranged such that they form the lower half of a

circle, with the circle’s center aligned with the center of the PET scanner’s FOV.
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Two main directions of study have been carried out for this geometry, which will

be briefly reviewed below. Much of this work will be the focus of later chapters in

this dissertation. The half-ring insert was first studied using Monte Carlo simulations,

where the main application was breast cancer imaging. A physical half-ring prototype

insert system has also been developed, and is primarily designed for high-resolution

head and neck cancer imaging. High-resolution breast cancer imaging is another

potential application for the physical prototype, although that is beyond the scope

of this work.

With regard to breast cancer imaging, many groups have built dedicated PET scan-

ners for breast cancer detection (known as positron emission mammography) that

offer higher spatial resolution and higher sensitivity than a conventional whole-body

PET scanner. These dedicated systems use detectors that surround (or rotate around)

the breast. However, one of the main limitations of this approach is that the scan-

ner geometry precludes the imaging of the chest wall and axillary lymph nodes since

these regions are typically outside the scanner FOV [28]. Lesions are commonly found

in these regions as well as in the breast tissue, and therefore it is important to be

able to image them in addition to the breast. Our half-ring insert design overcomes

this limitation by making it possible to image the breast with higher resolution than

the standalone scanner, while still maintaining the FOV that includes the chest wall

and the rest of the thorax. A similar half-ring system for breast cancer imaging was

proposed in Tai et al. [95].

Our physical prototype system for head and neck cancer imaging was first described in

Wu et al. [106]. The insert device is centered in the clinical whole-body PET scanner,

and connected to the electronics within the scanner. The patient bed has a narrow

extension at the end closest to the scanner for the patient’s head to rest during the

scan. This extension, unlike the bed itself, fits into the FOV of the insert device. If

this prototype system were to be used for breast cancer imaging, the patient bed and

other components of the insert system would need to be modified.

Irrespective of the application, the insert can be thought of as an accessory device

for a whole-body PET scanner, providing a high-resolution FOV without the need

for a dedicated PET scanner. The use of a half-ring insert inside a whole-body

scanner enables the acquisition of II, IS, and SS coincidences like in the full-ring
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insert system. Since the II and IS datasets provide incompletely sampled data in

the half-ring geometry, and all three coincidence types are of different resolution,

there are a number of unique challenges posed by this system. For example, FBP

reconstruction algorithms cannot be used due to the incomplete sampling and our

desire to jointly use all three datasets to form a single image. We have therefore

chosen to take advantage of the flexibility offered by the statistical reconstruction

framework.

At a high level, the half-ring ML-EM reconstruction procedure is similar to the algo-

rithm used for the full-ring insert system, although the half-ring insert requires more

advanced system modeling. This is partly due to the fact that the side faces of the

insert crystals are also exposed to gamma ray radiation, whereas in the full-ring in-

sert system, this was not the case. Initial work on the 2D reconstruction of simulated

half-ring insert data was described in Pal et al. [69]. We will improve upon that initial

modeling effort in Chapter 5, and extend it to the real 3D system in Chapter 6.

2.6 Acceleration of Statistical Reconstruction Al-

gorithms

Most of the time spent in statistical iterative reconstruction algorithms is in the

computation of the forward projections and backprojections. Considering the many

benefits of statistical reconstruction, one goal in the research community is to speed

up these methods to clinically feasible computation times. A variety of acceleration

techniques have been developed, and can be divided into algorithmic and hardware

approaches.

2.6.1 Algorithmic Speedup

Ordered subsets (OS) were introduced in Hudson and Larkin [36], and are able to

speed up the convergence of parallel-update iterative reconstruction algorithms sig-

nificantly. An algorithm that utilizes OS iteratively computes image updates using
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only a subset of the available projection data. During each iteration, the OS algo-

rithm cycles through each subset of data, performing an image update after each

sub-iteration. OS is able to improve the convergence rate by a factor roughly equal

to the number of subsets, since

∇f L(d|f) = ∇f

∑
i

(di ln gi − gi) ≈M · ∇f

∑
i∈Sm

(di ln gi − gi) (2.25)

(at least in the early iterations). Here, M is the number of subsets, and Sm is the

subset of measurements corresponding to subset indexm. There is negligible overhead

with ordered subsets; the computation time for each sub-iteration is simply scaled

down by the number of subsets.

The original OS method removes the monotonic convergence guarantee of most statis-

tical reconstruction algorithms. Convergent OS methods have been developed [1], but

their memory demands may be too high for clinical practice. However, even without

the convergence guarantee, the original OS method tends to be stable in practice.4

A different class of approaches that are specific to 3D PET entail first rebinning the

data into 2D sinograms, and then performing iterative reconstruction (or FBP) in

2D. The simplest way to do this is to use the single slice rebinning algorithm (SSRB)

[16], although this is only accurate when the activity is near the isocenter. A better

method is to use Fourier rebinning (FORE) [18], in which the obliqueness of the rays is

properly accounted for in the rebinning. This method is an approximate discretization

of an exact inversion formula (based on line integrals). Another rebinning approach

makes use of both FORE and inverse FORE [14]. In this method, the forward and

backprojection operations are performed quickly in 2D, but in between each iteration,

the data is converted back into fully 3D sinograms so 3D blur kernels and other system

matrix factors can be applied. This method offers the potential for some additional

resolution recovery over FORE alone.

Another method for CT and PET is the hierarchical decomposition strategy of Basu

and Bresler [7], which reduces the computational complexity of the forward and back-

projections in a manner similar to the decomposition of the discrete Fourier transform

4The chosen number of subsets cannot be too aggressive, and the subsets must be approximately
balanced.
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into the fast Fourier transform. Symmetry can also be exploited in the system ma-

trix, depending on the scanner geometry and image space. We discuss symmetry in

our CT and PET reconstruction algorithms in subsequent chapters. An interesting

alternative to rectangular voxels is the use of polar voxels as the image basis functions

[60]. For PET scanners, this could lead to a significant increase in transverse symme-

try (under a few assumptions). Unfortunately, to display such voxels on a computer

screen, scan conversion would be needed to reformat the image to rectangular vox-

els; this process could potentially lead to resolution degradation. The system matrix

would also be difficult to compute analytically, and might therefore require lengthy

MC simulations.

2.6.2 Hardware Speedup

Multicore and multiprocessor implementations of 3D statistical reconstruction algo-

rithms are becoming increasingly necessary to keep up with the massive amount of

data that needs to be processed from the scanner. Parallelized implementations have

been reported in the literature for certain modalities. Examples can be found in PET

[39, 40, 100, 84] and circular-orbit cone-beam CT (CBCT) [47, 9], for example. An-

alytical and statistical reconstruction algorithms for circular-orbit CBCT have also

been implemented on the Cell Broadband Engine to perform extremely fast recon-

structions [41, 46].

Implementations for PET and circular-orbit CBCT do not need to account for move-

ment along the axial direction of the scanner during data acquisition, as they would

need to do in helical CT. This added challenge, along with the fact that very few

articles have been published on helical CT statistical reconstruction in the first place,

could explain why there is no existing literature on parallelized statistical reconstruc-

tion methods for helical CT. We will revisit this topic in Chapter 3.

Another emerging trend is the use of graphical processor units (GPUs) in image re-

construction. These are by far the least costly option in terms of parallel computing

power, and they can provide large speedups over single-CPU reconstruction imple-

mentations due to their specialized ability to handle graphics operations efficiently

[107, 48]. However, it is currently difficult to fit the full data and image arrays
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into the limited graphics card memory. There are high latency penalties if the GPU

has to utilize the external memory bus to retrieve data. Additionally, GPUs can-

not execute branches (“if” statements) unless all processor cores take the branch,

whereas CPUs are much better at this type of control flow. A modification to the

distance-driven projector mentioned above was proposed that eliminates branching

[8]. In general though, despite significant advances in the programming of GPUs

(e.g., Nvidia CUDA), it is still not easy or even possible to compute highly accurate

system matrices on GPUs.

As seen by the variety of implementations that exist for 3D image reconstruction,

there are clearly significant tradeoffs that one must make between writing fast, highly

optimized code for a particular architecture and writing slower, portable software that

can be used in a more flexible manner. For certain applications, such as CBCT, GPUs

are a natural choice since the geometry of flat-panel detector cone-beam systems is

essentially the same as that for which GPUs were originally designed. However,

implementing multi-row helical CT reconstruction on a GPU would be less straight-

forward because of the curved detector design and continuous patient feed through

the scanner.

2.7 Main Contributions

The primary focus of this work was to apply general statistical image reconstruction

concepts to specific clinical imaging modalities and scanner geometries. In the case

of multislice helical CT, only a handful of papers appear in the literature describing

fully 3D statistical reconstruction algorithms, and none of them focus on being able

to process large clinical datasets; most research pertaining to this scanner geometry

has focused on analytical approaches due to their relatively low computational cost.

In the case of virtual pinhole PET, our group is a pioneer in developing this novel

imaging geometry for PET. Many of the reconstruction methods found in the liter-

ature for PET imaging do not apply directly to our novel insert system, and had to

be redeveloped by the author and lab members. This work required extensive under-

standing and modeling of the data acquisition process. Through detailed comparison

with simulated and measured data, the author developed and refined appropriate
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models and normalization methods that could be used to estimate the data and im-

age during the course of the reconstruction process.

Given the enormous computational requirements of fully 3D statistical reconstruction

algorithms compared to most commercially-implemented methods, it was necessary

to develop custom parallelized approaches and other forms of optimization within the

3D reconstruction code. For example, a new encoding of the helical CT system matrix

lookup table was developed to ensure that it would fit within the memory limitations

of a workstation, and that it would lead to faster reconstructions. Specific forms of

symmetry were identified and implemented in the helical CT and PET insert system

code as well.

Some of the basic ideas that went into the helical CT code were based on previous work

by Shenyu Yan and Dr. David Politte, although the code itself was written completely

independently. Even without parallelization, the optimized code for generating the

system matrix is orders of magnitude faster than a previously-written version. The

reconstruction framework that was developed by the author has enabled our group to

reconstruct clinical data using fully 3D statistical reconstruction algorithms for the

first time. Another contribution to the helical CT work was the addition of a non-

quadratic penalty term to the objective function used by the AM algorithm. The

helical CT data was acquired with the help of Dr. Bruce Whiting.

For the MC simulations of the half-ring insert system, the input scripts were initially

based on work by Dr. Martin Janecek and Dr. Sergey Komarov. Over time, the

author wrote other advanced MC scripts and methods to process the raw output for

use in the reconstruction code. The prototype half-ring insert was designed and built

primarily by Dr. Heyu Wu, Dr. Yuan-Chuan Tai, and Dr. Tae Yong Song. Dr.

Komarov implemented a scatter simulation technique whose input and output files

are based on the author’s reconstruction code specifications. The method that was

implemented by Dr. Komarov is described in Section 6.2.4.

The author traveled with the group to Siemens (Knoxville, TN) on multiple occasions

to be involved in the hardware integration of the insert with the whole-body PET

scanner. Code was written by the author to communicate certain hardware settings,

such as the peak positions in flood images and crystal energy photopeaks, to the

Siemens scanner firmware. Additionally, custom list-mode sorting code was written

40



by the author to process the raw encoded output from the scanner into fully 3D II,

IS, and SS detector matrices for the prompt counts and delayed counts. Based on this

code, the author helped develop a procedure to align the insert within the scanner

based on multiple point source acquisitions. He has also been actively involved in

the design and acquisition of all experiments, and originally proposed the idea of

acquiring a separate attenuation map of the insert for normalization. He led the

efforts in obtaining a useful transmission image of the insert. It is expected that

the reconstruction system developed by the author for the half-ring insert will be

used for all future reconstructions of data acquired with this prototype. The original

methodology that was developed should also be useful in future virtual pinhole PET

designs.
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Chapter 3

Reconstruction of Multislice

Helical CT Datasets

In this chapter, we present the details of the efficient fully 3D reconstruction frame-

work that has been developed for helical CT. Section 3.1 describes the scanner geom-

etry and statistical iterative reconstruction theory. Section 3.2 derives an accurate

expression for the system matrix elements, and discusses the symmetry inherent to

the helical CT geometry. In Section 3.3, we present our parallelization method. Sec-

tion 3.4 explains the experiments we have conducted to validate our approach, while

Section 3.5 provides these results. We discuss the results in Section 3.6.

3.1 Theory

Statistical reconstruction algorithms require an accurate model of the system geom-

etry and the data that is to be collected. Below, we highlight the main aspects of

these components, along with a formulation of the reconstruction algorithm.

3.1.1 System geometry

The geometry of the multislice helical CT scanner is shown in Figure 3.1. The focus of

the x-ray source rotates at a radius of Rf from the isocenter, and the detector array,

described by a circular arc of radius (Rf + Rd), rotates in the same direction at a

radius of Rd from the isocenter. Using continuous coordinates, β is the angle between
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Figure 3.1: The multislice helical CT geometry used in this chapter.

the positive x axis and the line connecting the focal spot to the isocenter. This angle

is not restricted to [0, 2π), but rather, continues increasing with subsequent gantry

rotations. A particular location on the curved detector array is specified by the fan

angle, γ, and the cone angle, η. Finally, zfeed is the axial distance traveled by the

patient bed (or equivalently, the gantry) in one rotation.

3.1.2 Statistical data model

Detailed data models that account for scatter, noise, and beam hardening exist in

the literature [24, 104, 53, 66]. In this chapter, we consider a mono-energetic, scatter-

free statistical model that accounts for the randomness in the x-ray photons. Such a

model can capture the x-ray physics and scanner geometry reasonably well, while also

simplifying the computations in the fully 3D reconstruction problem to be described.

The basic statistical model for the measured transmission data, di, assumes the pho-

tons arrive at the detector elements according to a Poisson counting process. The
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index i refers to a particular source-detector pair. In discretized form, the mean value

of di is modeled as

gi(μ) � Iie
−li(µ), (3.1)

where li(μ) is the forward projection given by

li(μ) �
∑

j

aijμj. (3.2)

Here, Ii is the mean number of counts in the absence of an attenuating medium, and

μj is the linear attenuation coefficient in voxel j. The system matrix elements aij

comprise the appropriately discretized point spread function relating the projection

space to the image space; it is described further in Section 3.2. If projection i does

not pass through voxel j, then aij is identically equal to zero.

3.1.3 Image reconstruction formulation

The basic goal of image reconstruction in transmission tomography is to estimate μ

from d. In the context of statistical estimation problems, this is often achieved by

maximizing the data likelihood objective function.

Maximum likelihood

Using a more sophisticated data model (in which the above model is a special case),

O’Sullivan and Benac [66] derived an alternating minimization (AM) algorithm to

find the ML solution. The problem was formulated as the double minimization of an

I-divergence over a linear and exponential family, thereby resulting in a closed-form

update for each iteration. (Readers unfamiliar with I-divergence are referred to the

references cited within the above paper.) Omitting terms that do not depend on μ,

the objective function for the mono-energetic case is

I [d||g(μ)] �
∑

i

[−di ln gi(μ) + gi(μ)] . (3.3)
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It should be noted that for this simpler data model, minimization over the linear

family is trivial, so there is no need to actually perform alternating minimization.

We will still refer to our reconstruction method as the AM algorithm, however.

For the AM algorithm, we need to compute the two backprojections given by

bj �
∑

i

aijdi (3.4)

b̂
(k)
j �

∑
i

aijgi(μ̂
(k)), (3.5)

where μ̂(k) is the estimate of μ at iteration k. From O’Sullivan and Benac [66], the

update

μ̂
(k+1)
j =

[
μ̂

(k)
j − 1

Zj

ln

(
bj

b̂
(k)
j

)]
+

(3.6)

monotonically decreases (3.3) (or equivalently, monotonically increases the Poisson

likelihood objective function). The (·)+ notation is shorthand for max(· , 0), and Zj

is a normalization function that satisfies
∑

j aij/Zj ≤ 1 ∀i.

For simplicity, Zj can be chosen to be constant, in which case it should be the smallest

constant such that the above condition on Zj holds. Since aij is approximately equal

to the length of projection i through voxel j, Zj can be set equal to the maximum

projection length through the reconstruction cylinder. Unlike the ICD method used

by Thibault et al. [99], the AM algorithm does not need to be initialized with a FBP

image; we start with a uniform image of all zeros.

Penalized likelihood

Since the measured data are noisy, it is necessary to regularize the optimization

problem to prevent the algorithm from over-fitting the data through unrealistic im-

ages. With algorithms that perform simultaneous image updates on all voxels (like

the AM algorithm), it is common to simply restrict the number of iterations, since

low-frequency components tend to converge faster. Another standard regularization

method is to add a penalty function to the original objective function as a means of
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discouraging large changes between neighboring voxels. If the reconstruction algo-

rithm is run to convergence, the penalized objective function solely determines image

quality – not the algorithm used to optimize the objective function [24].

We take an approach analogous to that of Erdoğan and Fessler [22] and other groups,

and decouple the image variables of our penalized objective function in such a way

that all the voxels can still be updated in parallel. Although the math is somewhat

simpler for quadratic penalties, the derivation in Appendix A is general enough to

allow for non-quadratic, edge-preserving functions.

To derive the penalized AM (P-AM) algorithm, we add a penalty term, R(μ), to the

objective function used in the AM reconstruction, and weight it by a regularization

parameter, λ. More specifically, the penalized I-divergence objective function is

Φ(μ) � I [d||g(μ)] + λR(μ), (3.7)

where

R(μ) �
∑

j

∑
j′∈Nj

wj,j′ψ(μj − μj′). (3.8)

For 3D regularization, we use the 26-voxel neighborhood Nj surrounding voxel j.

The weights wj,j′ control the relative contribution of each neighbor; we have used a

standard choice of inverse distance between voxel centers. The potential function ψ(t)

is a symmetric convex function that penalizes the difference between the values of two

neighboring voxels. This implies that rough regions of the image are penalized more

heavily than smooth regions. The parameter λ is a scalar that reflects the amount

of smoothing desired. A larger value will give emphasis to the penalty term (i.e., the

prior expectation that the image will be smooth), whereas a smaller value will give

more emphasis to the I-divergence term (i.e., the discrepancy between the measured

data and the data estimated by the model).

Due to its computational simplicity, we use a modified potential function from Lange

[51],

ψ(t) � 1

δ
[|δt| − ln(1 + |δt|)] , (3.9)
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where δ is a parameter that controls the transition between a quadratic region (for

smaller t) and a linear region (for larger t). This penalty has also been studied by

others, e.g., [27].

The addition of a penalty term prevents us from using a closed-form update at each

iteration, as was possible in Section 3.1.3. Instead, we use Newton’s Method on the

decomposed I-divergence and penalty terms, as shown in Appendix A. (If the OS

method is used, λ is scaled down in each sub-iteration by the number of subsets used.)

3.2 Fully 3D system matrix

3.2.1 Derivation

To preserve the original resolution of the measured data, we modeled the native

geometry of the scanner in our system matrix. The system matrix derivation, as first

described in Politte and Whiting [72] for 2D fan-beam CT, and later expanded to 3D

helical CT [73], leads to forward projection/backprojection operations that are neither

ray-driven nor voxel-driven. Rather, the computations are based (more accurately)

on the solid angle seen from the focal spot to a particular detector element, as well as

the finite size and location of each voxel. In this regard, the method has somewhat

similar characteristics to the distance-driven projector kernel proposed in De Man

and Basu [17].

To calculate the system matrix elements for the helical CT geometry, first assume all

detector elements and voxels are infinitesimally small, and that there is no focal spot

blurring. Then the ideal 3D point spread function is a Dirac delta function of the

three continuous spatial coordinates, and is denoted by h̃(x, y, z|β, γ, η). It is nonzero

only at points (x, y, z) along the source-detector ray specified by (β, γ, η). Integrating

the ideal point-spread function over the spatial extent of voxel j therefore yields the

length of intersection, lj(β, γ, η), between the ideal source-detector ray and the voxel,

i.e.,

lj(β, γ, η) �
∫ ∫ ∫

voxel j

h̃(x, y, z|β, γ, η) dx dy dz. (3.10)
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As derived in Politte and Whiting [72], and assuming isotropic propagation of photons

from the x-ray source to detector array, a good approximation for the discrete point

spread function is the average path length through a voxel along equiangular lines

from the focal spot to a finite detector element. Mathematically, this is given by

aij � 1

σi

· 1

Δγ

ηmax,i∫
ηmin,i

γmax,i∫
γmin,i

lj(βi, γ, η) dγ cos η dη, (3.11)

where βi and the angular extent of the detector element are determined from the

geometry of source-detector pair i. If blurring due to gantry rotation is to be modeled,

lj(β, γ, η) would be averaged over the azimuthal extent of the measurement as well.

The value Δγ is the constant fan angle spacing of each detector element, and σi �∫ ηmax,i

ηmin,i
cos η dη. Since the integration in (3.11) is performed over a spherical surface,

the proper spherical surface element has been used, i.e., dS = (Rf +Rd)
2 dγ cos η dη.

(The radius factor cancels when taking the average.)

3.2.2 Fast computation using voxel traversal algorithm

To simplify the calculations, we replace the double-integral over the detector area

with a 2D Riemann sum. We assume the detector elements are so small relative to

the source-detector distance that the integral can be well-approximated by a grid of

uniformly spaced points over the detector element.

Once this is done, computing aij is essentially a matter of computing the lengths

of intersection between voxels and rays over the subdivided detector area. These

intersection lengths can be calculated quickly using an algorithm that traverses a

regular voxel grid along a given ray path [3]. Parallelization of these system matrix

computations is trivial if desired.

3.2.3 Symmetry and storage details

Since the system matrix is extremely large, efforts were made to reduce the memory

and computational requirements. This was accomplished by exploiting the symmetry
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pitch = 0.5 pitch = 1.0 pitch = 1.5
Nq (zfeed = 12.0 mm) (zfeed = 24.0 mm) (zfeed = 36.0 mm)

1 3.0 6.0 9.0
2 1.5 3.0 4.5
3 1.0 2.0 3.0
4 0.75 1.5 2.25
5 0.6 1.2 1.8
6 0.5 1.0 1.5

...

Table 3.1: Table of valid reconstruction slice thicknesses (in mm) for various pitch
settings using 16×1.5 mm collimation. These values are determined by (zfeed÷4)/Nq,
where Nq is the number of slices chosen to correspond to one quarter rotation.

in the helical CT geometry and by storing only the nonzero elements in a lookup

table (LUT).

Most importantly, we have determined that only the source-detector pairs in the first

quarter rotation of the gantry need to be computed and stored – regardless of the

length of the scan. For this symmetry to be valid, an integer number of image slices

must correspond to the distance the bed travels in a quarter rotation of the gantry.

This is actually not much of a restriction, as any helical pitch may be used, and

the reconstruction slice thickness can be made arbitrarily small. Table 3.1 gives an

example for a 16-row scanner with 1.5 mm collimation at isocenter to illustrate the

fact that this is a negligible limitation. In fact, it becomes even less limiting for

scanners with larger axial coverage since they have a higher travel per rotation at a

given pitch.

The symmetry is illustrated in Figure 3.2(a) for the case where the bed translates

two slices per quarter-rotation (denoted by Nq). The solid box indicates the portion

of the scan (i.e., the first quarter rotation) for which the LUT must be computed,

while the dashed boxes represent the symmetrically-related LUTs. Also in this top

part of the figure are two diagonal lines, which correspond to the axial coverage of

the cone-beam at each view angle. As shown, the LUT stores the nonzero matrix

elements for all the slices that are hit by the cone-beam projections in β ∈ [0, π/2).
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Figure 3.2: (a) Axial view of the quarter rotation symmetry found in helical CT.
When an integer number of slices is chosen per quarter rotation of the gantry, only the
system matrix elements in the first quarter rotation of the scan need to be computed
and stored in the LUT (as indicated by dark solid box). (b) Transverse view of the
quarter rotation symmetry. The length through the voxel shown in each 90◦-rotated
view is the same.

Figure 3.2(b) shows the familiar four-fold rotational symmetry in the x-y plane. This

is used in conjunction with the appropriate slice offset to identify the symmetric voxels

in each quarter rotation. Note that the top half of Figure 3.2 lines up vertically with

the bottom half. Both the x and y dimensions must have the same (even) number of

voxels, and the number of source angles per rotation must be divisible by four.

It should be noted that an additional two-fold savings can be obtained if the scanner

does not employ quarter detector offset (QDO). Assuming the focal spot is at z = 0

when β = 0, the first measured source angle would need to be located at β = Δβ/2,

where Δβ is the source angle spacing. In this case, the LUT would only need to

be computed and stored for half of the detector rows. We did not pursue eight-fold

symmetry per rotation because the CT scanner used for testing does employ QDO.

(The four-fold symmetry per rotation discussed above still holds even when QDO is

50



used.) Appendix B provides a more mathematical discussion of the quarter rotation

and axial mirror symmetries.

The precomputed LUT should fit in system memory to avoid having the reconstruc-

tion algorithm read in parts of the LUT from the hard disk during each iteration. We

have developed an encoding of the sparse system matrix that requires three bytes per

matrix element (plus a small header for the matrix). The encoding was designed to

use the cache efficiently, and to work well with ordered subsets.

3.3 Parallelization scheme

This section discusses the method we developed to parallelize the AM and P-AM

algorithms. The fact that the system matrix is symmetric for each quarter rotation

makes it quite natural to implement parallelism at the granularity of a quarter rotation

of data. Each processor or core p ∈ {0, 1, . . . , Np − 1} is assigned a contiguous group

of projections, Dp, that is a multiple of a quarter rotation. With OS, each subset

consists of evenly-distributed projections among all processors. For example, if two

subsets are used, the even-indexed source angles on each processor will be used in

the first sub-iteration, and the odd-indexed source angles will be used in the second

sub-iteration.

Regardless of whether OS is used, this design allows for theoretically perfect load

balancing (in the absence of communication overhead) during forward and backpro-

jections, since each processor will make use of exactly the same number of nonzero

aij elements. In fact, even the communication among processors is small for typical

problem sizes. This is due to the inherent locality exploited by our implementation;

each quarter rotation of data is related to a small local neighborhood of slices, as

already shown in Figure 3.2(a).

Our approach is currently most appropriate for a shared memory system (such as

a multi-processor, multi-core workstation), so it is necessary to distinguish whether

each array is stored in shared memory or private memory. The only arrays that need

to be stored in shared memory are μ̂(k), the two backprojection images b and b̂
(k)

, and

the system matrix LUT (due to its large size and the fact that each processor needs
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read-only access to the entire LUT). All other arrays are stored in private memory.

The image arrays have been stored in shared memory since a given slice may need to

be accessed by multiple processors during each iteration.

Figure 3.3 illustrates the main components of the parallelized algorithm. The vast

majority of this flowchart is enclosed in a dashed box, which indicates that these steps

are executed in parallel.

3.3.1 Reading in the data

Step 1 of the flowchart simply reads in the assigned portion of the measured data to

the private memory associated with each processor.

3.3.2 Forward and backprojections

Step 2 contains the forward and backprojection calculations. This step takes up

almost all of the time spent in each iteration. The forward projections and expo-

nentiations are straightforward, because this part only requires read access from the

shared μ̂(k) image. However, if we were to perform the backprojections directly into

the shared backprojection images, we would have serious memory contention issues

since multiple processors would be writing to the same array elements simultaneously.

Instead, we perform partial backprojections to smaller private image arrays associ-

ated with each processor. This eliminates any need for synchronization during the

partial backprojection computations.

It is easiest to illustrate this concept with an example. Referring to Figure 3.2(a),

suppose there are two processors; the first one is assigned β ∈ [0, π), and the second

one is assigned β ∈ [π, 2π). It can be observed that processor 0 will only ever need to

access slices 0-7, while processor 1 will only ever need to access slices 4-11. Therefore,

each private backprojection array consists of eight slices, and each processor can easily

determine what its starting slice index should be.

Although the backprojection of the measured data is constant from iteration to iter-

ation, when OS is used, a full backprojection image corresponding to each subset is
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ĝ
(k)
i = Iie

−l̂
(k)
i

Next j

l̂
(k)
i = l̂

(k)
i + aijµ̂

(k)
j

Next j

bpartial,j = bpartial,j + aijdi

b̂
(k)
partial,j = b̂

(k)
partial,j + aij ĝ
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Figure 3.3: Flowchart for the parallelized AM and P-AM algorithms.
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Figure 3.4: Summing of private partial backprojections on processors 0 and 1 into
complete backprojection image. At each stage, the shaded block of slices from each
processor are simultaneously summed into the full backprojection image. In this ex-
ample, both processors use slices 4-7, so this approach systematically adds these slices
with minimal synchronization overhead between the stages. The code determines the
maximum block size that can be summed concurrently by all processors.

required. When using a large number of subsets, it is infeasible to store all of these

3D images in memory. Therefore, we compute the measured data backprojection in

each (sub-)iteration, along with the estimated data backprojection.

3.3.3 Summing the partial backprojections

Step 3 takes these partial backprojections, and systematically sums them into the

full backprojection images, b and b̂
(k)

. Figure 3.4 illustrates the process by which

independent slices from each partial backprojection (denoted Vp,block in the flowchart)

can be added simultaneously without memory contention. After each block, a syn-

chronization construct called a barrier is used to ensure each processor has finished

summing the current block of slices to the complete backprojection arrays.

3.3.4 Image update

Finally, Step 4 performs the image update. Nv is the number of voxels in the entire

image. Since the image variables were decoupled in the AM and P-AM algorithms,
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each processor simultaneously performs the update on a unique group of slices. This

is followed by another barrier before proceeding to the next iteration or stopping.

Using the regularized AM method, there is one slight complication that takes place

during the calculation of the penalty derivative term in (A.9). Using 3D regulariza-

tion, penalties are calculated using neighboring slices. Therefore, when a processor

calculates the penalty for either its first or last slice, the calculation involves the last

or first slice, respectively, on a neighboring processor. Suppose the updates are done

starting from the smallest slice index up to the largest slice index on a given processor.

Then the last (yet to be updated) slice will use the next processor’s first slice, which

will have already been updated. To avoid the unknown effects of using both updated

and non-updated slices in the penalty calculation, we store the not-yet-updated first

slice on each processor in temporary memory for use in the penalty calculation of the

last slice on other processors. (Although there is a remote possibility that a processor

would only finish computing the penalty on its first slice after the neighboring proces-

sor’s last slice had already been updated, we did not consider this unlikely scenario

in our current implementation.)

3.4 Experiments

We implemented our algorithm using OpenMP, an industry-standard parallel com-

puting library designed for shared memory systems. The C code was compiled using

the Intel Compiler 9.1 with certain optimizations enabled. The code was run on a

Dell Precision T7400 workstation, equipped with two quad-core Intel Xeon X5450

processors (3.0 GHz, 1333 MHz front-side bus) and 16 GB RAM (667 MHz). The

operating system running on this machine was Microsoft Windows XP Professional

x64.

Phantom and clinical data were acquired on a Siemens Somatom Sensation 16 scanner

(Siemens Medical Solutions, Forchheim, Germany) without using the flying focal spot

mode. The scanner acquires 1160 views per rotation, using a 16 row × 672 channel

curved detector array. The distance between the source and isocenter is 570 mm, and

the distance between the source and detector is 1040 mm. Our phantom experiments

used the Catphan 500 (The Phantom Laboratory, Salem, NY).

55



We first scanned the high resolution module of the Catphan phantom, which contains

a ring of resolution bar patterns ranging from 1-21 line pairs per cm. This module

also contains a tungsten carbide bead of diameter 0.28 mm that is positioned 20 mm

below the x axis. The data from this scan was reconstructed using three algorithms:

(1) P-AM with 145 subsets, (2) our implementation of the most basic helical FDK

method described in Stierstorfer et al. [93], and (3) investigational offline reconstruc-

tion software provided by Siemens Medical Solutions that is similar to the software

on the scanner console [80]. Convergence in our iterative algorithm was defined as

being met when the mean absolute value change in voxel values in each slice was less

than 2.0 × 10−5 mm−1 (∼1 HU) from one iteration to the next. Captions on images

in the next section indicate the iteration number at which this criterion was satisfied.

The bar pattern reconstructions will be shown for visual comparison at matched noise

level (as determined by the standard deviation in a central constant-attenuation

region of interest), while reconstructions of the bead will be used to generate a

resolution-noise tradeoff curve both in-plane and axially. For the P-AM algorithm,

we fix δ at 0.0002 mm−1 (chosen to match the equivalent parameter, c, in Thibault

et al. [99]) and sweep λ over a wide range of values to produce the tradeoff curve.

For both the helical FDK and Siemens algorithms, we use the body kernels B10-B60

described in Schaller et al. [83]. Voxel size was 0.5 × 0.5 × 0.75 mm for all three

reconstructions.

Next, we will show the effect of using ordered subsets on the convergence rate of

the AM algorithm. Using the data from a clinical abdominal scan, we performed

a reconstruction using AM without OS, and AM with 145 subsets. (The maximum

number of subsets allowed by our implementation is 290, which corresponds to subsets

containing one view per quarter rotation; this was deemed to be too aggressive, as it

sometimes resulted in image artifacts.) We also examined the effect on convergence

rate of initializing the AM iterations with the helical FDK image. In all the other

results presented here, we initialized the iterations with an image of all zeros.

Data from the abdominal scan and a hip implant scan were reconstructed using AM

and P-AM, respectively (with 145 subsets) and the Siemens reconstruction software.

The abdominal reconstruction was done using 16 gantry rotations of data collected

with pitch = 1.0 and 16×1.5 mm collimation at isocenter. The reconstructed image
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was 512 × 512 × 224 with 1.0 × 1.0 × 2.0 mm voxels. For the hip implant recon-

struction, we used 16 gantry rotations of data collected at pitch = 0.5 and 16×0.75

mm collimation. The reconstructed image was 512× 512 × 160 with 1.0 × 1.0 × 0.75

mm voxels. Efforts were made to match the noise in one relatively uniform region of

interest in the P-AM and Siemens reconstructions.

Finally, we performed timing tests using the full-scale abdominal dataset to inves-

tigate the performance of our computational approach on clinically-sized data. The

reconstruction was done using one iteration of AM without subsets, and one iteration

of AM with 145 subsets. In the latter case, the image update step is invoked 145

times, which could have an impact on timing performance due to the need for more

frequent synchronization.

We tested the timing of both regularized AM and unregularized AM, but found neg-

ligible difference; hence, we will only show results for the unregularized algorithm.

The timing results are based on Steps 2-4 from Figure 3.3, which prevents file I/O

operations from being included (e.g., initially reading in the LUT). To generate a

speedup curve, a separate serial version of the implementation was written and com-

piled without OpenMP. Step 3 was omitted from the serial code since the partial

backprojection arrays are equivalent to the complete backprojection arrays in that

case.

3.5 Results

3.5.1 Resolution phantom

In Figure 3.5, reconstructed images of the line pair test pattern are shown – all

reconstructed using the same dataset. The phantom was not aligned perfectly with

the scanner, and the voxels were not small enough to be able to resolve the very high

frequency line pair spacings. However, these images are at matched noise level in

the center of the image, and clearly show the better resolution recovery of the P-AM

algorithm.
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(a) (b) (c)

Figure 3.5: Line pair phantom reconstructions at matched noise. Window width=0.03
mm−1, center=0.03 mm−1. Voxel size 0.5 × 0.5 × 0.75 mm. Scan parameters: 200
mAs, pitch 1.0, 16×0.75 mm collimation. (a) P-AM (iteration 9, λ = 3000); (b)
Siemens reconstruction (filter B40); (c) helical FDK (filter B45).

The resolution-noise tradeoff curve is shown in Figure 3.6 for the transverse and

axial directions. The transverse full width at half maximum (FWHM) resolution was

obtained by fitting a Gaussian curve to the horizontal profile of maximum intensity.

This was repeated for the axial direction in a similar manner. The P-AM curve gives

the best quality with respect to this tradeoff because it is the farthest down on the

plots and is relatively flat. These curves are specific to the bead location and the

choice of reconstruction parameters. All three reconstruction methods used the same

voxel size and spacing. Although many other filter designs could have been tested

with the analytical methods, a more extensive quantitative image analysis is beyond

the scope of this work.

3.5.2 Ordered subsets and FDK initialization

The use of OS has a significant effect on convergence rate. Figure 3.7 shows that

using a large number of subsets leads to much faster convergence than not using OS.

Although the AM objective function is not guaranteed to converge monotonically

when using OS, we have yet to see an example using ≤145 subsets where it has not

decreased monotonically at each iteration. The reconstructions we have performed

using 145 subsets tend to converge after about 10-15 iterations. Increasing λ in the
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Figure 3.6: Resolution-noise tradeoff curves for 0.28 mm diameter tungsten carbide
bead embedded in uniform background in Catphan phantom. Voxel size 0.5×0.5×0.75
mm. Scan parameters: 200 mAs, pitch 1.0, 16×0.75 mm collimation. (a) transverse
direction; (b) axial direction.

P-AM algorithm (for a given dataset) usually leads to faster convergence as well, due

to the image-based convergence criterion.

This plot also shows the effect of initializing the AM iterations with the helical FDK

image. This does lead to fewer iterations to reach convergence, but its effect is not

very significant for 145 subsets. We have observed that if our algorithm is initialized

with a very noisy FDK image, the noise remains in the AM image even after many

iterations.

3.5.3 Clinical datasets

We show the axial, coronal, and sagittal views of the abdominal reconstructions in

Figure 3.8. The AM and Siemens reconstructions are quite similar for this dataset,

which provides further validation of our method.

Figure 3.9 shows the hip implant reconstructions. The noise structure is very different

between these two reconstructions. In the Siemens reconstruction, the excessive noise

due to the metal implant is propagated throughout the FOV, whereas in the P-AM
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Figure 3.7: Unregularized objective function versus iteration comparing the use of
OS and FDK initialization of the AM algorithm. Reconstructions of the abdominal
dataset were used to generate this plot.

image, it is not. However, both images suffer from beam hardening artifacts, as

evidenced by the shadows.

3.5.4 Timing Performance

As mentioned above, the abdominal dataset was used as a benchmark for the timing

performance. The wall-clock time to run one iteration using all eight cores was 16.1

minutes with 145 subsets, and 14.1 minutes without subsets. Using the Intel Thread

Profiler, we determined that in the case of no subsets, 96.2% of the execution time

was in parallel, with the rest of the time spent waiting in barriers. Using 145 subsets,

95.1% of the execution time was in parallel, with the rest in barriers. These profiler

results confirm that load balancing was well-maintained within each iteration.

The speedup as a function of the number of cores is plotted in Figure 3.10. As

expected, the 145 subsets speedup is less than the speedup without OS, due to more

synchronization points in each iteration. The plot also indicates superlinear speedup,

i.e., speedup beyond the theoretical algorithmic capability. This type of behavior is
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Figure 3.8: Clinical abdominal reconstructions at matched noise. Window
width=0.03 mm−1, center=0.02 mm−1. Voxel size 1.0 × 1.0 × 2.0 mm. Scan pa-
rameters: 180 mAs, pitch 1.0, 16×1.5 mm collimation. Rows correspond to axial,
coronal, and sagittal views. Left column: AM (iteration 9); right column: Siemens
reconstruction (filter B45).
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(a)

(b)

Figure 3.9: Clinical hip implant reconstructions at matched noise (in a slice not af-
fected by metal implant). Window width=0.03 mm−1, center=0.02 mm−1. Voxel size
1.0× 1.0× 0.75 mm. Scan parameters: 450 mAs, pitch 0.5, 16×0.75 mm collimation.
(a) P-AM (iteration 14, λ=6300); (b) Siemens reconstruction (filter B20).

fairly common for memory-intensive applications that are run on multi-core systems

and some other architectures, and is largely due to the performance of the processor

cache [98].

In our application, a smaller amount of data is assigned to each core as the number of

cores increases. This leads to a larger effective cache size available to each core (i.e.,

a larger percentage of the data can fit in the fast L2 cache instead of remaining in

RAM). Through the use of the Intel VTune Performance Analyzer, we found that the

L2 cache miss rate approximately doubled with half as many cores. These speedup

results were not only repeatable on the same machine, but similar results were also

observed using the same parallelized implementation on a large-scale shared memory

system, the SGI Altix 3700, at the National Center for Supercomputing Applications

(University of Illinois at Urbana-Champaign). However, it should be noted that the

speedup will depend to some extent on the size of the dataset and the scan parameters.

The performance shown here is for one typical clinical scan protocol.
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Figure 3.10: Speedup plot for one AM iteration with and without OS. Linear speedup
also shown. Performance based on reconstruction of clinical abdominal dataset. Size
of data space: 18 560 view angles, 672 channels per detector row, 16 detector rows.
Size of image space: 512 × 512 × 224 voxels.

3.6 Discussion

The images and other results presented show some of the benefits of using statistical

reconstruction for helical CT. We demonstrated the improvement in the resolution-

noise tradeoff in both the transverse and axial directions, and showed that OS provides

the means to accelerate the reconstruction considerably. A further benefit of our

algorithm is that initialization with an FDK image is not necessary; this simplifies

the reconstruction workflow. More thorough image quality evaluation would certainly

be needed before deployment in the clinical environment, but these initial results

indicate it is worth pursuing further.

Our current implementation is limited mainly by the memory needed to hold the

LUT. The LUT size changes with the voxel dimensions, the scan parameters, and the

number of detector element subdivisions (currently 20×20), but for typical parameters

on a 16-row scanner, the LUT takes about 10-13 GB in our sparse encoded format.

If memory is an issue, the system matrix could alternatively be computed on-the-fly.
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In this case, only a small number of detector element subdivisions would be possible

using current workstation capabilities (in order to keep the reconstruction runtime to

a minimum). All the concepts from Sections 3.2 and 3.3 would still apply, regardless

of whether the LUT is stored in memory or computed on-the-fly.

A significant additional computational savings could come from precomputing the

measured data backprojection image (averaged over all subsets), as was done in

Erdoğan and Fessler [22]. This would reduce the computations per iteration to one

forward projection and one backprojection (instead of one forward projection and two

backprojections).

We did not test our parallelized algorithm on more than one node. It would be

possible to extend it to a multi-node system using a hybrid OpenMP/MPI approach,

or by using some other parallelization library like Intel Cluster OpenMP. Each node

would need a copy of the LUT, as well as the portion of the image that affects

any projections on that node. The favorable timing performance results imply that

our implementation can scale well to more than one node, although the increase in

speedup with additional processors would likely drop due to the need for inter-node

communication.

Overall, we have presented the implementation details for a new fully 3D statistical

iterative reconstruction algorithm for multislice helical CT. Few statistical algorithms

and results have appeared in the literature pertaining to this scan geometry, despite

its widespread clinical usage. To reduce the computational burden of reconstructing

large clinical datasets iteratively, we have taken advantage of the quarter rotation

symmetry that applies to helical CT, and parallelized the algorithm according to this

symmetry. The image quality results obtained with this new method demonstrate its

potential to perform well in comparison to existing analytical methods.
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Chapter 4

Reconstruction of Incomplete CT

Datasets

Motivated by the promising 2D results attained with the incomplete data techniques

of Snyder et al. [89], we present experimental results showing the effectiveness of

using these methods to reduce such problems in fully 3D statistical reconstructions

from multislice helical CT data. We will use a modified version of the reconstruction

implementation described in Chapter 3 for the experiments in this chapter.

The rest of the chapter is organized as follows. Our application of Snyder et al. [89]

to fully 3D reconstructions is given in Section 4.1. Sections 4.2 and 4.3 describe our

initial experiments on simulated phantom data and clinical data. Following this, we

provide a discussion of the results in Section 4.4.

4.1 Theory

In our approach, we update all the voxels in the image, with the potential to accurately

reconstruct even the values outside the FOV. We use Snyder et al. [89] as the basis

for our present work. For completeness, we give an overview of the two methods

contained in that paper using its original notation. We take X to represent an image

space that fully contains any part of the object affecting the measured rays. The

Some material in Chapter 4 is based on “Missing Data Estimation for Fully 3D Spiral CT Image
Reconstruction,” by D. B. Keesing, J. A. O’Sullivan, D. G. Politte, B. R. Whiting, and D. L. Snyder,
which appeared in Proceedings of SPIE, Medical Imaging 2007: Physics of Medical Imaging, Vol.
6510; c© 2007 SPIE.
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measured rays comprise the incomplete data space denoted by Dinc, while D is the

data space that corresponds to a complete set of projections through all elements of

X . The missing measurements are defined to be Dmiss � {i ∈ D | i 
∈ Dinc}.

O’Sullivan and Benac [66] showed that maximization of the transmission Poisson

likelihood function is equivalent to double-minimization of the I-divergence between

elements of a particular linear and exponential family. This can be thought of as

minimizing the discrepancy between the measured data and the mean estimate of

the data. Snyder et al. [89] modified the linear family over which to perform the

minimization to account for the fact that D 
= Dinc in missing data problems. Using

a standard monoenergetic, scatter-free Poisson data model in the derivation, the

image update step

μ̂
(k+1)
j = max

{
μ̂

(k)
j − 1

Zj

ln

[ ∑
i∈Dinc

aij di +
∑

i∈Dmiss
aij ĝ

(k)
i∑

i∈Dinc
aij ĝ

(k)
i +

∑
i∈Dmiss

aij ĝ
(k)
i

]
, 0

}
(4.1)

guarantees monotonic convergence to the minimum I-divergence, where μ̂
(k)
j is the

attenuation value at the kth iteration at voxel j, Zj is a normalizing function, aij is the

system matrix relating the image and data spaces, di is the data collected at source-

detector pair i, and ĝ
(k)
i is the data estimate at source-detector pair i based on the kth

image estimate. As in Chapter 3, ĝ
(k)
i � Ii exp

[
−∑j aijμ̂

(k)
j

]
, where Ii is the incident

flux detected by source-detector pair i in the absence of attenuation. It is important

to note that the update step is applied to all x ∈ X . Equation (4.1), as shown, is

referred to as Method 2; setting Dmiss = ∅ yields Method 1. Therefore, Method 1

uses just the measured data (even if incomplete), whereas Method 2 estimates the

missing data at each iteration in conjunction with the update of all elements in the

image space. In the case where D = Dinc, we obtain the original AM algorithm [66]

(for the simplified data model used here).

4.2 Experiments

We first generated a complete sinogram of the inner slices of the 3D NCAT phantom.

To effectively reduce the radius of the FOV, we then artificially truncated 60 detector
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elements in all detector rows (30 from each end). In slices with smaller body cross-

sections, this truncation did not affect the nonzero projections; however, projections

were truncated for a number of slices containing wider cross-sections. This experiment

therefore allowed us to evaluate the performance of different reconstruction techniques

on a simulated dataset in which the patient was larger than the scanner FOV. Since

the full data was also available, it was straightforward to compare the accuracy with

and without the missing data approaches.

Since the beginning and end slices of the reconstruction volume are severely under-

sampled, we initialized these outer slices to the values of the nearest fully sampled

slice after the first iteration of the algorithm. The rationale is that the undersampled

slices at the ends of the reconstruction cylinder will typically be similar to the nearest

fully sampled slice. This new initial guess, which is more representative of the atten-

uation in the long object than an image of all zeros, should help the algorithm reach

convergence in fewer iterations. An alternative choice for the starting guess could be

a filtered backprojection (FBP) image.

By definition, Dmiss consists of all the rays that are not measured but that fit com-

pletely within the reconstruction volume boundary defined by the start and end slice.

In our implementation, we took Dmiss to be all the rays along the helical source tra-

jectory (beyond Dinc) whose affected voxels were contained entirely within the recon-

struction cylinder. Virtual extension of the helical source trajectory (i.e., estimation

of the missing rays in Method 2) could therefore employ the same pre-computed

system matrix lookup table that was used in the computations for i ∈ Dinc.

For all of our experiments below except the clinical data experiments, we generated

numerically simulated data for the NCAT phantom [85] using a system matrix twice

as fine as that which was used in the reconstructions. Reconstructions using Method

1 or Method 2 were performed for noiseless and noisy datasets, starting with an

initial image of all zeros. The noisy datasets were obtained by running the simulated

mean data through a Poisson random number generator. Transverse and longitudinal

truncation were studied separately.
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4.3 Results

4.3.1 Transverse Truncation

In our simulation experiments, we compare the methods described in this chapter by

reconstructing images of the NCAT phantom on a 128×128×84 voxel grid. All of

the images in Figure 4.1 are shown after 100 full iterations using 73 ordered subsets.

Decrease in the I-divergence from iteration-to-iteration had become very small well

before 100 iterations (see Figure 4.2), although this is not to say the image had

fully converged; small improvements to the image were still occurring beyond 100

iterations.

Without truncation, there were 168 detector elements per row, 8 detector rows, and

584 views per rotation. A pitch of 2 was used in the simulations. When artificial

truncation was applied, only the measured data corresponding to the central 108

detector elements per row was available during the reconstruction. The truncated

FOV circle can be readily seen in some of the images. The smallest square that

encompassed the reconstruction circle subtended by 108 detector elements was 84×84.

When using Method 2, the missing data was estimated for all 60 missing detector

elements per row.

In each panel of Figure 4.1, slice 70 is shown on the left, and slice 74 is shown

on the right. Figure 4.1(a) shows the truth image; the gray background value was

approximately 0.04 mm−1. Without using a missing data approach to reconstruct this

truncated dataset, the reconstruction would by default take place on an 84×84×84

image. The results of such a reconstruction are shown in Figure 4.1(b). Note the

bright voxel values at the boundary of the FOV; no image values are reconstructed

outside the FOV in this case. Figures 4.1(c) and 4.1(d) show the results of applying

Methods 1 and 2, respectively, to noiseless data. Although the methods behave

differently, they are clearly able to perform a good reconstruction within the FOV

and a reasonable reconstruction outside the FOV.

To illustrate the convergence properties of the above methods, Figure 4.2 shows the

I-divergence as a function of iteration number for the corresponding reconstructions

in Figures 4.1(b)-4.1(d). For comparison, the “complete data available” curve shows
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(a) (b)

(c) (d)

Figure 4.1: Truth image and unregularized image reconstruction results shown for
slices 70 and 74 using various methods. Image window set to [0.0, 0.07] mm−1.
(a) Truth image; (b) reconstruction without a missing data approach; (c) Method 1
reconstruction using noiseless data; (d) Method 2 reconstruction using noiseless data.
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Figure 4.2: I-divergence versus iteration number for the unregularized reconstruc-
tions. The “complete data available” curve corresponds to a reconstruction without
missing data, and the other three curves correspond to Figures 4.1(b)-4.1(d), respec-
tively.
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(a) (b)

(c) (d)

Figure 4.3: Regularized image reconstruction results shown for slices 70 and 74 using
various methods. Image window set to [0.0, 0.07] mm−1. (a) Method 1 reconstruction
using noiseless data; (b) Method 2 reconstruction using noiseless data; (c) Method 1
reconstruction using noisy data; (d) Method 2 reconstruction using noisy data.

the convergence behavior had all the data been available for reconstruction. With

the exception of the “no missing data approach” curve, the methods converge toward

the same I-divergence value.

As seen in Figures 4.3(a) and 4.3(b), the delineation between the truncated FOV

and extended FOV is less noticeable when using regularization. These two images

were generated specifically to illustrate this point; however, the images are excessively

smooth compared to the unregularized images. Figures 4.3(c) and 4.3(d) show the

results of running Methods 1 and 2, respectively, on noisy data. The mean incident

photon count per detector element in air was 500. (We were able to use such a low

count because the object volume was so small and no high density attenuators were

present in the object.) We used the log cosh penalty [30] with β = 1 and δ = 100 for

all the image reconstructions shown in Figure 4.3.

We also applied Methods 1 and 2 to real clinical data collected on a Somatom Sensa-

tion 16, a 16-row spiral CT scanner (Siemens Medical Systems, Forchheim, Germany).
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(a) (b)

Figure 4.4: One slice of obese patient reconstruction. Image window set to [0.005,
0.035] mm−1. (a) Method 1 after six iterations; (b) FBP reconstruction.

This scanner has a FOV of 50 cm, and a bore diameter of 70 cm. The first clinical

dataset was of a large patient, and therefore had a significant amount of transverse

truncation. Figure 4.4(a) shows a slice of the reconstructed image (512×512×64)

after performing six full iterations of Method 1 (using 145 ordered subsets). For com-

parison, we show the corresponding FBP image in Figure 4.4(b). The Siemens FBP

software automatically stores its reconstructed images in HU, so we converted it to an

image of attenuation coefficients (assuming an effective energy of ∼75 keV) in order

to display the two images using the same window setting. Despite the same display

window, the two images look rather different. FBP was successful in reconstruct-

ing the detailed structure inside the scanner FOV, but not in the extended FOV.

Our method does not show such fine structure, but the full extent of the patient in

this slice is visible. Even though our reconstruction could be improved, applications

such as attenuation correction might perform better using this reconstructed image

because the support of the patient is more accurately quantified. The lack of high

contrast is not surprising given the small number of iterations performed.

The image reconstructions (512×512×176) from a second clinical dataset are shown

in Figure 4.5. Scan parameters were typical for abdominal imaging. We artificially

71



(a) (b)

Figure 4.5: One slice of abdominal scan reconstruction. Image window set to [0.005,
0.035] mm−1. (a) Method 2 after 39 iterations; (b) Complete data reconstruction
after 39 iterations.

truncated 125 detector elements (in each detector row) from both sides of the sino-

gram. This led to undersampling of the bed and a lateral portion of the patient’s

body. The left image was reconstructed using Method 2 on the truncated data. The

qualitative appearance of the reconstructed image was similar to that which was ob-

served in the unregularized simulated data experiment. For comparison, the image

on the right was generated using the complete sinogram. A total of 39 full iterations

were run using 145 ordered subsets to generate Figure 4.5.

4.3.2 Longitudinal Truncation

To study longitudinal truncation, we again use the NCAT phantom sampled with

168 detector elements per row, 8 detector rows, 584 views per rotation, and a pitch

of 2. The true end slices of the reconstruction volume used to study the long object

problem are shown in Figure 4.6(a). To demonstrate the appearance of artifacts

due to the long object problem in Figure 4.6(b), we performed Method 1 without

initializing the end slices as described in Section 4.2. Without prior information, the

algorithm cannot perform a reasonable reconstruction because the end slices are so
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severely undersampled. When Methods 1 and 2 are initialized according to Section

4.2, we are able to improve the quality of slices closer to the end of the reconstruction

cylinder, as seen in Figures 4.6(c) and 4.6(d), respectively.

However, careful inspection of the last one or two slices reveals that they are not

very similar to the corresponding truth slices, but rather, are more similar to their

initialized values (taken from slice 75). All reconstructed images in this figure were

computed by running 100 full iterations. To account for the fact that fewer valid rays

are available in each subset of Dmiss than in each subset of Dinc, we increased the

number of source angles that are included in each subset of Dmiss. Specifically, we

chose to use 73 source angles per rotation for each subset of Dmiss while using eight

source angles per rotation for each subset of Dinc.

4.4 Discussion

The NCAT phantom and abdominal reconstructions using transversely truncated

datasets demonstrate that it is possible to reconstruct the image inside the FOV

quite accurately without many iterations. Outside the FOV, we again did reasonably

well, although some artifacts are present. These artifacts diminish with increased

numbers of iterations, but at a computational cost. We verified this by performing

a 2D reconstruction on slice 70 of the NCAT phantom, in which case it was fea-

sible to run thousands of iterations. Since this was a feasibility study, we omitted

quantitative figures of merit to compare truth images to reconstructed images; once

general improvements have been made to these methods, more in-depth studies can

be performed.

If information in the extended FOV is needed for a particular application, then con-

vergence rate appears to be the largest challenge in putting these methods into prac-

tice. If the goal is to perform ROI imaging, the reconstructions inside the FOV are

consistently good after just tens of iterations. Regardless, to make these methods

more clinically feasible, it will be necessary to look further into convergence acceler-

ation techniques; as it is currently, each iteration of fully 3D reconstruction is still

quite computationally demanding. Perhaps an additional prior penalty will help, or

perhaps some more fundamental change to the algorithm can be made.
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(a)

(b)

(c)

(d)

Figure 4.6: Truth image and unregularized image reconstruction results shown for
end slices 76-81 using various methods. Image window set to [0.0, 0.07] mm−1. (a)
Truth image; (b) Method 1 without end slice initialization; (c) Method 1 with end
slice initialization; (d) Method 2 with end slice initialization.
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Based on Figure 4.2, Method 2 may have slightly better convergence properties than

Method 1 for transverse truncation problems; this was also experimentally found in

Snyder et al. [89]. However, Method 1 has the advantage that it is easier to implement

and there are fewer computations compared to Method 2. One potential disadvantage

of both Methods 1 and 2 is that the image space must be large enough to encompass

all measured rays. For example, despite the larger required image space in our obese

patient reconstruction, we decided to continue using 512×512 slices for the sake of

computational convenience; this resulted in 1.4 mm voxels in the transverse plane

rather than the original 1.0 mm voxels. The low contrast in Figure 4.4(a) could

possibly be explained by this fact as well.

Viewing our proposed longitudinal truncation method from a computational stand-

point, it would be preferable to estimate the missing projections using the same system

matrix lookup table that is used in the computations over i ∈ Dinc. However, since

we are estimating the projection data on a computer (i.e., not physically), we are

free to use a different source trajectory and/or finer detector sampling. For example,

this would allow us to use a virtual circle trajectory at the ends of the reconstruction

volume instead of our current helical trajectory (if desired). Although not tested here,

there may be better sampling trajectories that can be employed for the purpose of

improving Method 2.

75



Chapter 5

Reconstruction of Simulated

Half-Ring PET Insert Datasets

The main purpose of the work described in this chapter was to develop a prelimi-

nary 2D reconstruction framework for the half-ring insert system while the physical

half-ring prototype system was being built by our group. We focused on modeling

the geometrical and attenuation factors of the system matrix, with the intention that

these factors could be extended to 3D for use in the reconstructions described in

Chapter 6. This work is itself an extension of the initial half-ring reconstruction

approach described in Pal et al. [69], in that it now accounts for intercrystal pen-

etration, crystal interference, and body attenuation; all three effects are important

components in realistic models for PET data. It also models the native geometry of

the insert system, unlike our previous work, which did not account for the detector

block structure.

The organization of this chapter is as follows. Section 5.1 describes the 2D system

geometry, the underlying data model, and the reconstruction algorithm that jointly

estimates a single image from the three types of coincidence acquired by our system.

Section 5.2 expands on each of the system matrix factors, and provides a derivation

of the geometrical factor. We then briefly describe the MC simulations in Section 5.3.

Finally, the experiments, results, and discussion are the subject of Sections 5.4-5.6,

respectively.

Some material in Chapters 5 and 6 is based on “System Modeling of a DOI-Capable PET Insert
Device for Breast Imaging,” by D. B. Keesing, D. Pal, J. A. O’Sullivan, S. Komarov, and Y.-C.
Tai, which appeared in the 2008 IEEE Nuclear Science Symposium Conference Record, 4218-4222;
c© 2008 IEEE.
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Figure 5.1: PET insert system geometry showing the II, IS, and SS coincidence types.
Drawn to scale. Shown in gray is a body phantom, where one breast is positioned in
the insert FOV.

5.1 Theory

5.1.1 System Geometry

Figure 5.1 shows the arrangement of our system, which consists of a half-ring of

high-resolution detector crystals inside the FOV of a clinical scanner with medium-

resolution crystals. Also shown in this figure is a body phantom with one breast

positioned in the insert FOV. As indicated, three sets of coincidence data are acquired

during a single scan: insert-insert (II), insert-scanner (IS), and scanner-scanner (SS).

The II and IS datasets provide incompletely sampled data.

For the purpose of the MC simulations described in this chapter, the insert is made

of 16 blocks each containing 16 crystals, and each crystal has dimension 1.6×1.6×10

mm. The blocks span 180◦ with radius 130 mm, resulting in a total of 256 crystals.

The scanner is built using blocks of 13 crystals, with each crystal having dimension

4.15×1.6×20 mm. The blocks spanned 360◦ with radius 412 mm, resulting in a total

of 624 crystals. The insert and scanner crystals were made of lutetium oxyorthosilicate

(LSO) scintillation material.

Unlike conventional PET scanners, where it is acceptable to use parallel-beam rebin-

ning of data, we cannot rebin data from our system since the IS geometry inherently
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acquires fan-beam projections between multi-resolution detectors. Given the com-

plexity of our system, it is more natural to model the native geometry; this may lead

to resolution improvements, and it eliminates the need to perform arc correction [12]

to compensate for the non-uniformly spaced parallel beams.

5.1.2 Statistical Data Model

A pair of gamma ray photons are produced when a positron emitted from the ra-

diotracer annihilates with a nearby electron. Given the nature of radioactive decay,

the basic statistical model for the measured data assumes the photons arrive at the

detector crystals according to a Poisson counting process. Let dt,i be the number of

counts detected by a detector pair, where index t ∈ {0, 1, 2} refers to coincidence

type II, IS, and SS, respectively, and index i denotes a particular LOR within that

coincidence type. In discretized form, the mean value of dt,i is modeled as

gt,i(λ) � E[dt,i] �
∑

j

pt,ijλj, (5.1)

where for coincidence type t, pt,ij is the probability that a gamma ray pair emitted

from voxel j is detected in LOR i, and λj is the activity in voxel j. The summation in

(5.1) is the forward projection of the image representing the true activity distribution.

We did not consider scatter or randoms in the 2D MC simulations, which is why these

additive terms do not appear in (5.1) as they had in (2.15).

Following the general strategy of Mumcuoğlu et al. [61] and Qi et al. [76], we factor

the system matrix into a number of components. The factorization enables different

effects to be calculated (or measured) separately, thereby preserving the maximum

degree of sparseness in the system matrix. This will be especially important in the

next chapter when we address 3D PET scanners, which have a very large number of

possible LORs. Specifically, we factor the system matrix P as

P � Pnorm · Patten · Pgeom, (5.2)

where [P ]ij � pij. The t index was dropped for convenience, but note that there is a

separate system matrix for each coincidence type. Alternatively, one can think of (5.2)
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as a generalized notation, in which the matrices corresponding to each coincidence

type have been concatenated together to form one larger matrix; this is possible since

all the data measurements are assumed to be independent and will be used in the

same general manner in the reconstruction.

5.1.3 Image Reconstruction Formulation

The basic goal of image reconstruction in emission tomography is to estimate λ from

d. Most analytical reconstruction methods and rebinning methods cannot readily be

extended to work with non-circular scanner geometries. Therefore, we take advan-

tage of the flexibility offered by statistical reconstruction algorithms to handle the

complexity of our system. More specifically, we seek to estimate a single emission

image using all acquired data from the insert and scanner system.

The II, IS, and SS datasets are considered independent Poisson measurements, so

at a high level, we have chosen to use the classic expectation-maximization (EM)

algorithm [52, 87] to maximize the Poisson log-likelihood function with respect to the

emission image voxels. The log-likelihood function for our system is given by

L(d|λ) =
∑

t

∑
i

dt,i ln gt,i(λ) − gt,i(λ) − ln dt,i!, (5.3)

and the maximum likelihood image estimate is therefore

λ̂ = arg max
λ≥0

∑
t

∑
i

dt,i ln gt,i(λ) − gt,i(λ). (5.4)

The EM algorithm (adapted to the three types of coincidence) maximizes the expres-

sion in (5.4), and is given by

λ̂
(k+1)
j =

λ̂
(k)
j∑

t

∑
i pt,ij

∑
t

∑
i

pt,ij
dt,i∑

j pt,ijλ̂
(k)
j

. (5.5)

As it is written, the denominator
∑

t

∑
i pt,ij serves as a normalization factor for each

voxel. The main part of the image update step is the backprojection of the ratio
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between the uncorrected simulated true counts and the mean estimate of the true

counts at iteration k.

5.2 System Model

One challenge for our system geometry is the fact that both the front face and the

lateral faces of the insert crystals are directly exposed to gamma rays emitted from

the patient. This is in contrast to most cylindrical PET scanners, in which the geo-

metrical component of the system matrix can be accurately modeled by determining

the probability that an emission in a given voxel reaches just the front faces of the

crystal pair [76].

The method presented in [69] for calculating the system matrices was to first subdivide

the crystal faces into small areas. For the IS type, the insert crystals were subdivided

along the front and lateral faces, while the scanner crystals were subdivided just along

the front face. Next, sub-rays were formed by connecting the center of one subface

on the first crystal to the center of a subface on the second crystal. Finally, the

weight for a given pixel/LOR pair was determined by taking the average length of

intersection of the pixel with all combinations of the sub-rays.

Although this approach accounted for activity above the side face of the insert crys-

tals, it was not a very realistic model, in that the sensitivity calculated at each face

was weighted improperly before adding the sensitivities from multiple faces together.

This was particularly true when the data was attenuated by the body (which is al-

ways the case in reality except in some initial MC simulations, where the body was

modeled as air.)

5.2.1 Geometrical Factor

The geometrical effects related to the incidence angle of the LOR with respect to the

front face of the detectors are often accounted for in the normalization factor [58].

This works well for circular PET scanners, but the methodology used to compute

these effects cannot readily be extended to the II or IS coincidence types. We will
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therefore account for the LOR incidence angle effects within the calculation of Pgeom,

along with the image to data space transformation.

In Figure 5.2, we show a large plane source oriented perpendicular to two detectors, d1

and d2. The activity at point (x, y) within the plane source is seen by the LOR with

coincident solid angle approximately proportional to the small shaded area. We define

the coincidence response function of the LOR (based on solid angle considerations)

as

ξΩ(l) �
∫ ∫

Ω(x, y, l) dx dy, (5.6)

where Ω(x, y, l) is the coincident solid angle subtended by the point (x, y) within the

plane identified by length l, and the integral is performed over the surface of the plane

source. If the size of the detectors is much smaller than the length of the LOR, then

it can be shown [37, 55] that ξΩ(l) is approximately constant regardless of the plane

source location along the LOR, i.e., ξΩ(l) ≈ ξΩ.

This approximation leads to the derivation of Pgeom. Based on solid angle principles,

ξΩ ≈ A1A2

2πL2
, (5.7)

where Ai is the projected area of crystal i ∈ {1, 2} onto the plane perpendicular to

the LOR, and L is the distance between the crystals.

For a continuous object attenuation distribution μ(l) and emission distribution λ(l)

along the LOR, Huesman et al. [37] showed that as long as these distributions do not

vary much along the perpendicular direction to the LOR, the coincidence response is

ξΩ ≈ A1A2

2πL2
e−

∫
μ(l) dl

∫
λ(l) dl. (5.8)

Huesman et al. [37] then accounted for the depth of interaction (DOI) within the

crystal volumes by weighting the coincidence response, which up until this point, has

been based solely on solid angle considerations. Letting ξ be the new coincidence

response,

ξ ≈ ξΩ

∫ L′
1

L1

μdete
−μdett1 dt1

∫ L′
2

L2

μdete
−μdett2 dt2 , (5.9)
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Figure 5.2: Plane source oriented perpendicular to an LOR formed by detectors d1

and d2. The small shaded region corresponds to the solid angle that is common to
the detector pair for the point (x, y). In this diagram, both detectors are intended to
be the same size and l < L/2, thereby making d1 the solid angle limiting detector.
(Based on figure by Dr. Sergey Komarov.)

where Li is the length the gamma ray travels through detector material in front of

the crystal of interest, L′
i is the total length the gamma ray travels through detector

material including the crystal of interest, and μdet is the linear attenuation coefficient

of the detector material. This is identical to the weighting used in Yamaya et al.

[108] (previously discussed in Chapter 2), although here it is being used in a slightly

different context.
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Once the emission distribution has been discretized into voxels, the final coincidence

response becomes [37]

ξ ≈ A1A2

2πL2
e−

∫
μ(l) dl

∫ L′
1

L1

μdete
−μdett1 dt1

∫ L′
2

L2

μdete
−μdett2 dt2

N∑
j=1

ljλj (5.10)

=
A1A2

2πL2
e−

∫
μ(l) dle−μdet(L1+L2)

[
1 − e−μdet(L

′
1−L1)

] [
1 − e−μdet(L

′
2−L2)

] N∑
j=1

ljλj

≈ A1A2

2πL2
e−

∫
μ(l) dle−μdet(L1+L2)μ2

det(L
′
1 − L1)(L

′
2 − L2)

N∑
j=1

ljλj,

where lj is the length of intersection of the LOR with voxel j, λj denotes the constant

activity inside voxel j, and N is the number of voxels in the reconstruction FOV. The

second approximation comes from the first-order Taylor series for the exponential

function, which holds when the detectors are very small.

The detectors modeled above were also assumed to be very small for the spatially-

invariant plane source coincidence response approximation to hold. As shown in

Figure 5.3, we therefore subdivide the full crystal volume into subvolumes, with sub-

rays joining each combination of subvolumes [37]. The coincidence response for the

complete detector pair is then the sum of the coincidence responses for all sub-rays.

For layered crystals (as in the case of DOI-capable detectors), only those subvolumes

that constitute a given layer are summed. It is apparent that the crystal subvolume

approach is more natural for DOI crystals than our previous crystal subface approach.

In the context of our reconstruction framework, the body attenuation is treated as

a separate factor. Therefore, to fit the expression for ξ into our geometric forward

projection operator, Pgeom, we write

[Pgeom]ij � e−μdet(Li1+Li2)

Li
2 lij, (5.11)

where lij is the length of intersection of LOR i with voxel j, and the expression is

implicitly summed over all sub-rays comprising the LOR. As in Huesman et al. [37]
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Figure 5.3: Subdivision of crystals to calculate the geometric system matrix elements.
Note that the ray passes through other crystal material (and air between blocks)
before reaching the two crystal subvolumes of interest.

and Hu et al. [35], the expression

μ2
det

2π
A1A2(L

′
1 − L1)(L

′
2 − L2) (5.12)

is assumed to be constant for small enough subdetectors. In our method, this ap-

proximate constant is accounted for through the separate Pnorm factor.

5.2.2 Body Attenuation Factor

In our current implementation, the gamma ray survival probability (after attenuation

by the body) is calculated along each LOR as

[Patten]ii � exp

(
−

N∑
j=1

aijμj

)
, (5.13)

where aij is the geometric system matrix for transmission forward projections, and μj

is the linear attenuation coefficient (at 511 keV) at voxel j of the body attenuation

map. In this work, aij was computed by taking the average length of intersection of

voxel j with LOR i, where the average was taken over all subvolume combinations

within the crystal pair. To determine Patten for the MC simulations performed in this
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Figure 5.4: Image of the phantom used for direct normalization.

work, the analytical specifications for the body were voxelized into an attenuation

map with the same dimensions as the emission image.

5.2.3 Normalization Factor

We have developed a normalization procedure to account for the insert attenuation

and any other effects that are not modeled by the system matrix factors. For example,

although the crystals had the same intrinsic efficiency in our simulations, variations

in efficiency could be accounted for using this normalization factor.

The diagonal normalization factor is calculated using a direct normalization approach,

in which a known source distribution is used to illuminate all LORs in the FOV. In

this work, we use the uniform source distribution shown in Figure 5.4, which is large

enough to cover all LORs that would ever be illuminated by arbitrary body source

distributions. The normalization activity is suspended in air in the simulation so

attenuation does not need to be calculated.

To obtain the normalization factor, we first run a high-statistics MC simulation us-

ing the uniform normalization phantom. Next, we calculate the forward projection

through the voxelized normalization phantom image using the P matrix with all

factors except for Pnorm. The normalization factor for each detector pair is then

determined by taking the ratio of the MC simulation data to the forward projection.
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5.3 Monte Carlo GATE Simulations

We use the GATE software package (Geant4 Application for Emission Tomography)

[56] to perform the MC simulations of our insert PET device. This is well-validated

code for simulating medical imaging scanners, and is built on top of Geant4, a lower-

level MC engine developed at CERN. GATE gives the user a large degree of control

over the simulation parameters through scripts and macros that the user creates.

Based on these scripts, GATE can simulate arbitrary systems with as many or few

physical effects as desired, such as the detector electronics processing chain.

For our insert system, we have to perform each simulation twice, due to the fact that

only one set of active detectors is allowed at a time. Therefore, when simulating

data recorded by the insert detectors, the scanner is considered a phantom ring of

LSO crystals; when simulating data recorded by the scanner detectors, the insert is

considered a phantom half-ring of LSO crystals. The random number generator seed

is kept the same so the events generated in both simulations are identical.

The 2D simulations were set up such that all the objects and detectors had a thickness

equal to the thickness of a single insert crystal in the axial direction of the scanner

(1.6 mm). Sorting was performed by annihilation event ID rather than by time-

based coincidence processing, so there were no randoms included in the dataset.

Additionally, we used a 510 keV lower energy threshold and assumed the detectors had

perfect energy resolution, so there were no scattered counts included in the dataset

either.

In addition to the elimination of randoms and scattered counts, many other effects

were omitted from these simulations as well, in order to focus on the most important

aspects of the 2D system model and the reconstruction procedure itself. For example,

there were no alignment errors between the normalization phantom image and the

actual phantom used in the simulation. Similarly, the insert was centered exactly in

the scanner. The simulations were accelerated by simulating back-to-back gamma

rays instead of positron emissions (i.e., positron range and gamma ray acolinearity

were not simulated), and the gamma rays were forced to be emitted in-plane for

efficiency.
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Figure 5.5: Breast phantom. (Figure courtesy of Dr. Sergey Komarov.)

5.4 Experiments

To compare the performance of the subvolume approach to that of the subface ap-

proach for computing Pgeom, we simulated one slice of the body phantom shown in

Figure 5.5. Insert and scanner crystals were subdivided four times in the tangen-

tial direction, and eight times in the depth direction. The chest was modeled as a

30×15×0.16 cm box rotated 10◦ from horizontal. The breast was modeled as a half-

cylinder with radius 7.5 cm and thickness 0.16 cm. Activity was distributed uniformly

throughout the phantom, and the phantom material was specified to be water. Once

the simulation was run, the data was sorted into II, IS, and SS sinograms, and sub-

sequently reconstructed using the EM algorithm. One reconstruction was performed

with the subface-based system matrix, and the other, with the subvolume-based sys-

tem matrix. The EM iterations were initialized with the normalization phantom

image; as can be seen in (5.5), the initial image must be positive to ensure the image

update does not simply get multiplied by a zero image.

To further test the subvolume approach, we ran a simulation of eleven 0.5 mm diam-

eter point sources placed horizontally and vertically in the insert FOV. The data was

first sorted into II, IS, and SS sinograms as done above. However, we also sorted the

Although the 3D model of the breast in Figure 5.5 is hemispherical, the simulated slice was
sufficiently thin that it was assumed to have a cylindrical cross section.
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data into sinograms corresponding to a four-layer DOI insert system, where each layer

in the insert crystals was 2.5 mm thick. This increased the number of II sinograms

ten-fold, and the number of IS sinograms four-fold . Sorting of the events into the

appropriate DOI sinograms was done based on the spatial coordinates where each

gamma ray interacted with the detector volume (as recorded in the detector singles

file). The main reason for testing DOI insert detectors was to determine how well it

could reduce the parallax error that results when sources are far from the center of

the FOV. Since the body can come much closer to the edge of the insert FOV than

it can to the edge of the scanner FOV, it is expected that parallax error could be

significant in the insert.

5.5 Results

5.5.1 Body Phantom Simulation

Figure 5.6(a) shows the reconstruction of the body phantom using the subface-based

system matrix, and Figure 5.6(b) shows the reconstruction using the subvolume-

based system matrix. As can be seen, significant artifacts are produced when using

the subface approach with body-attenuated data. These artifacts are avoided using

the subvolume method.

The data sinograms from the body phantom simulation are displayed in the left

column of Figure 5.7 for II, IS, and SS. For comparison, the mean forward projections

from the last iteration of the subvolume-based reconstruction are displayed in the right

column of Figure 5.7.

5.5.2 Point Source Simulation

Figure 5.8 shows the reconstructions of the point source data using non-DOI insert

crystals and four-layer DOI insert crystals. These reconstructions were done only

The increase in the number of sinograms corresponds to the number of unique layer combinations
that exist between crystal types.
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(a) (b)

Figure 5.6: II+IS+SS reconstructions of the body phantom after 100 EM iterations.
(a) Reconstruction in which Pgeom was calculated using the crystal subface approach;
(b) reconstruction in which Pgeom was calculated using the crystal subvolume ap-
proach.

using the subvolume approach. The images demonstrate that parallax error is an

issue for sources near the bottom edge of the insert FOV in the non-DOI insert

system, as seen by the elongated point sources. As expected, the DOI insert system

can effectively remove such radial distortions.

In Figure 5.9, we plot profiles through the point sources that were arranged vertically;

the left side of the profile corresponds to the upper point sources. It is clear from

these profiles that the point source resolution is higher for the DOI reconstruction.

5.6 Discussion

In this chapter, we have established the data model and framework for reconstructing

2D simulated half-ring insert PET data. We have applied the main aspects from

Huesman et al. [37] to the geometrical factor of our system matrix. It includes

weights that account for the intercrystal penetration and crystal interference. By

systematically accounting for these effects in the geometrical factor, we avoid needing

to compute them in the normalization factor using a different type of method that

89



(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Comparison of sinograms for the simulated body phantom. Top row: II,
middle row: IS, bottom row: SS. Left column: MC simulated data, right column:
mean forward projection after 100 EM iterations.
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(a) (b)

Figure 5.8: II+IS+SS reconstructions of point sources using (a) non-DOI insert crys-
tals; (b) 4-layer DOI insert crystals. The insert blocks have been overlaid on the
reconstructed images for reference.
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Figure 5.9: Profiles through reconstructed images of point sources in the II FOV.
The left side of the profile corresponds to the upper portion of the FOV. (a) non-DOI
insert crystals used for data acquisition and reconstruction; (b) four-layer DOI insert
crystals used for data acquisition and reconstruction.
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does not readily apply to the half-ring insert. This geometrical method, which is

based on subdividing the crystals into subvolumes, can also naturally handle DOI

detectors.

The simulations that we performed in this chapter modeled the insert as consisting

entirely of LSO crystals, e.g., the simulations did not include photomultiplier tubes

or an insert cover. We were able to employ a simple direct normalization method

since we did not record randoms or scattered counts.

It was shown that the subface method for computing Pgeom leads to artifacts in the

reconstructed images. In previous work, we had incorporated the body attenuation

factor directly into the geometric factor calculations over all sub-rays to avoid such ar-

tifacts. We could do this very accurately since the shape and attenuation parameters

for the body were specified in the MC simulations. Although this method of modeling

the system and body worked reasonably well, it was not practical, as it removed all

symmetry from the geometrical factor. Instead, by using the subvolume-based ap-

proach derived in this chapter for the geometric factor, along with a separate diagonal

body attenuation factor, it is possible to avoid artifacts in the reconstructions.

We compared the measured and mean data sinograms, which provides direct insight

into how accurately the data is modeled and normalized. The fact that these sino-

grams look so similar suggests that the system matrix (consisting of the geometric,

attenuation, and normalization factors) is indeed able to sufficiently model the sim-

ulated data.

As discussed in the derivation of Pgeom, the subvolume approach assumes there is not

significant variation in the attenuation perpendicular to a given LOR. In the case of

LORs pairing the side face of an insert crystal to the scanner, this assumption might

not be entirely valid since the side face has a much broader area than the front face.

The use of DOI insert crystals would help alleviate this problem since they narrow

the solid angle over which counts for a given LOR are detected. The point source

results shown here simply indicate that DOI crystals are able to reduce the parallax

error that occurs at LORs far from the center (due to the increased angle of incidence

the LOR makes with the crystals).
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Chapter 6

Reconstruction of Half-Ring PET

Insert Datasets Acquired with

Physical Prototype

In this chapter, we present the details of the PET half-ring insert prototype and

the reconstruction procedure that has been developed. As previously discussed in

Chapter 5, a new type of PET insert system has been developed and integrated into

a whole-body PET scanner. It offers the possibility of imaging a central region of the

FOV with higher resolution than a whole-body PET scanner alone [95, 96]. Unlike

most dedicated high resolution PET systems that are designed solely to image one

part of the body, our system maintains the FOV that includes the entire cross-section

of the body, thereby potentially allowing for detection of tumors inside and outside

the high-resolution insert FOV.

The data acquired by the physical system includes many sources of degradation,

mainly due to the presence of the highly attenuating insert system within the imaging

FOV of the scanner. This novel scanner geometry makes the reconstruction problem

substantially more challenging than for a standalone PET scanner, as new techniques

are needed to model and correct for the non-standard acquisition. Compared to the

full-ring insert system [68], the half-ring system presents additional complications due

to its incomplete sampling geometry and lack of circular symmetry.

In the MC simulations discussed in Chapter 5, we were able to simplify the recon-

struction problem to some extent by disabling or removing some of the effects that

degrade the data. There were no physical alignment issues to consider either, since
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the detector geometry was specified exactly. It is difficult if not impossible to prevent

these effects from negatively affecting the physically measured data, however.

The organization of this chapter is as follows. We will explain the geometry of the sys-

tem, along with a description of the chosen data model and reconstruction method, in

Section 6.1. Section 6.2 expands on each of the system matrix factors, and establishes

the methodology by which randoms and scatter are estimated. The major emphasis

in this section is the normalization factor. Section 6.3 highlights the computational

aspects of the reconstruction procedure. The prototype system and procedure for

calculating the attenuation due to the insert is described in Section 6.4. We present

a number of phantom scans and their results in Sections 6.5 and 6.6. Finally, a

discussion is provided in Section 6.7.

6.1 Theory

6.1.1 System Geometry

Figure 6.1 shows the arrangement of our system, which consists of a semicircular

ring of high-resolution detectors inside the FOV of a clinical scanner with medium-

resolution crystals. By integrating the insert detector electronics with the clinical

scanner hardware, three sets of coincidence data are acquired simultaneously: insert-

insert (II), insert-scanner (IS), and scanner-scanner (SS). We used a Biograph 40

PET/CT scanner (Siemens Medical Solutions, Knoxville, TN), which has 48 blocks

of crystals in-plane and 4 blocks axially. Each block consists of 13× 13 LSO crystals,

and each crystal is 4×4×20 mm. As shown in Figure 6.1, our system only uses three

axial blocks of scanner crystals; the electronics for the last block are instead used by

the insert detectors.

The half-ring insert gantry has 14 blocks of crystals in-plane and 2 blocks axially.

Each block consists of 13 × 13 LSO crystals, and each crystal is 2 × 2 × 5 mm. The

radius to the center of the scanner blocks’ front face is 428 mm, and the radius to the

center of the insert blocks’ front face is 122 mm. The insert is centered axially over

the three active scanner ring blocks, and in the in-plane direction, it is concentrically
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Figure 6.1: PET insert system geometry showing the II, IS, and SS coincidence types.
Drawn to scale.

centered within the scanner FOV. Since the insert crystals have the same physical

dimensions in the transverse and axial directions, the benefits of the insert VP-PET

system apply to both directions.

6.1.2 Statistical Data Model

We use the same general statistical data model as in Chapter 5, except now we

also must account for randoms and scattered counts. These background counts are

unavoidable during acquisition, but can be estimated and incorporated into the data

model. Again, let dt,i be the number of counts detected by a detector pair, where

index t ∈ {0, 1, 2} refers to coincidence type II, IS, and SS, respectively, and index

i denotes a particular LOR within that coincidence type. In discretized form, the

mean value of dt,i is now modeled as

gt,i(λ) � E[dt,i] �
∑

j

pt,ijλj + r̄t,i + s̄t,i, (6.1)
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where for coincidence type t, pt,ij is the probability that a gamma ray pair emitted

from voxel j is detected in LOR i, λj is the activity in voxel j, r̄t,i is the mean number

of random coincidences detected by the LOR, and s̄t,i is the mean number of scattered

coincidences detected by the LOR. The first term in (6.1) is the forward projection

of the image representing the true activity distribution.

To maintain the validity of the Poisson model, we do not pre-correct the prompt data

for randoms by subtracting the delayed counts. If the subtraction were performed,

the measured data variance would increase by the delayed counts variance, while

the mean would decrease by the delayed counts mean. The mismatched mean and

variance would no longer be in accordance with the Poisson distribution, thereby

necessitating the use of another distribution, such as the shifted Poisson model [110].

Instead, as shown in (6.1), adding a relatively smooth background estimate to the

forward projection avoids this complication.

As in the previous chapter, the system matrix P is factored as

P � Pnorm · Patten · Pgeom, (6.2)

where [P ]ij � pij. The factors serve the same purpose as before, but will be deter-

mined differently for the physical system.

6.1.3 Image Reconstruction Formulation

Due to the general nature of statistical reconstruction algorithms, the same EM algo-

rithm can be used regardless of whether the reconstruction is to be performed in 2D

or 3D. The nonzero randoms and scattered counts contribution to the data model is

reflected in the denominator of the EM image update given by

λ̂
(k+1)
j =

λ̂
(k)
j∑

t

∑
i pt,ij

∑
t

∑
i

pt,ij
dt,i∑

j pt,ijλ̂
(k)
j + r̄t,i + s̄t,i

. (6.3)

The main part of the image update step is the backprojection of the ratio between

the uncorrected measured prompts data and the mean estimate of the prompts data

at iteration k. Note that the prompts data includes trues, randoms, and scattered
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counts. We assume the mean randoms and scatter estimates are accurately known in

advance. If this is not the case, the estimates can be refined between iterations using

various update strategies.

6.2 System Model

Determination of the factors that constitute P for the real prototype system require

more extensive work than for the MC simulations, and will be the focus of this section.

A method to estimate the randoms and scattered counts will also be described.

6.2.1 Geometrical Factor

We have already derived the geometrical factor in Section 5.2.1. This factor is general

enough to apply to the 3D system by calculating (5.11) for the oblique detector pairs.

Due to the irregular sampling of the insert system, we compute the system matrix

using the native detector geometry. To do this, the 3D position and orientation of

every crystal and block is used in the calculations. This is unlike many other recon-

struction algorithms that simplify the geometry by using parallel-beam projections

taken around a smooth circle. As before, the number of subdivisions within each

crystal can be adjusted to achieve the desired accuracy. Since the main computation

in (5.11) is the voxel-ray intersection length calculation, the geometrical factor can

be calculated efficiently using a fast voxel traversal algorithm [3]. Calculation of Li1

and Li2 was done using a fast oriented bounding box/ray intersection method [2] with

the calculated detector block geometry.

6.2.2 Body Attenuation Factor

The Patten factor only accounts for the attenuation due to the body in our current

implementation; the insert attenuation is treated separately in Pnorm, since it does

not change from scan to scan. Since the insert is integrated with a clinical PET/CT

scanner, an x-ray CT attenuation map of the body (scanned without the insert in
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Parameter Value

Tube voltage 120 kVp
Tube current (depends on object)
Pitch 1.0
Convolution kernel B19f
Number of voxels 512×512×111
Reconstruction diameter 500 mm
Slice thickness 2 mm

Table 6.1: CT scan and reconstruction protocol for the body attenuation correction
factor.

the FOV) can be obtained. To determine Patten, we first perform a CT scan of the

object using a protocol whose main parameters are specified in Table 6.1. The CT

data is reconstructed on the Siemens Biograph 40 console, and subsequently saved to

standard DICOM image files as an affine transform of Hounsfield units.

Based on an assumed effective energy of about 80 keV, we convert the attenuation im-

age to units of mm−1. This conversion estimates the linear attenuation coefficients at

an effective energy of 80 keV, which is valid for CT but not for PET. We determine the

attenuation coefficients at the gamma ray energy of 511 keV using a piecewise linear

transformation [45, 11]. This standard approach performs an appropriate conversion

for soft tissue and bone. The image dimensions and voxel size are then rescaled to

those of the PET image. Finally, the attenuation factor is computed in the same

manner as in Chapter 5, i.e.,

[Patten]ii � exp

(
−

N∑
j=1

aijμj

)
. (6.4)

The aij factors are calculated without subdividing the depth direction of the crystals

in our current implementation. Based on our 2D MC simulation work, the number of

subdivisions might need to be increased if large phantoms that extend over the side

face of the insert are scanned.
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6.2.3 Normalization Factor

We have investigated two approaches to compute the normalization factor for the real

system. The first one uses direct normalization; it is similar to the method described

in Chapter 5, but uses a more practical source distribution. The second approach

uses component-based normalization, which requires a model for the variations in

sensitivity among all the LORs.

Direct Normalization

The direct normalization method is designed to be simple to use, as it does not require

a model of the individual normalization effects. For the insert system, this would

eliminate the need to explicitly determine the attenuation due to the insert gantry.

A rotating line source or plane source is typically used to illuminate all LORs in the

FOV during the direct normalization acquisition. Next, a digital image of the source

distribution is created and forward-projected using the modeled system matrix factors

(besides Pnorm). Finally, the ratio of the measured data to the forward-projected data

is used as the normalization factor.

This method suffers from several important drawbacks, however. First, in a fully 3D

PET acquisition without axial compression, the statistics are not very good (even after

a long scan), since the source activity is kept low to avoid dead time effects. Second,

it is difficult to align the source exactly the same way between the real system and the

digital image. Especially for a thin rotating rod source, a small error in positioning

can lead to a large error in the normalization factors. This is less of an issue for

scanners that have a built-in holder for rotating line sources. Lastly, the treatment

of scattered counts is not included in the direct normalization approach. Although

the normalization phantoms themselves are designed to minimize the scatter volume,

the scattered gamma rays arising from the half-ring insert may complicate the issue.

The large uniform normalization phantom that was used in the 2D MC simulations is

not practical for the real system for a number of reasons: (1) it would be difficult to

Direct normalization can also be used to precorrect the measured data (i.e., prior to reconstruc-
tion), in which case the inverse ratio is applied to an unnormalized dataset to artificially make all
LORs equally sensitive [58].
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(a) (b)

Figure 6.2: The normalization phantom consists of two line sources (oriented out of
the page) that are rotated 180◦ around the isocenter. (a) The rotation stage has its
center of rotation at the black dot, and sweeps out the source distribution shown in
red; (b) photograph of the rotation stage inside the insert and scanner FOV.

maintain a uniform activity distribution throughout the large phantom, (2) the scatter

fraction would be quite large, and (3) it would be too expensive and heavy (when

filled with water and 18F-FDG). Instead, we used two line sources placed on a motor-

controlled rotation stage, as shown in Figure 6.2. With the rotation stage centered

at the system isocenter, we rotated the line sources back and forth 180◦ to sweep out

the source distribution shown in red in the diagram. This source distribution is able

to illuminate all LORs.

Component-Based Normalization

To avoid some of the problems with direct normalization, we also tested a component-

based approach, in which each source of LOR sensitivity variation (other than those

already accounted for in Pgeom and Patten) is modeled as a normalization component.

Since there are far fewer parameters to estimate than the total number of LORs, it

can effectively produce a normalization factor that has lower variance than direct

normalization. However, bias may be inadvertently introduced if the normalization

components are not modeled or computed appropriately.
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Component-based normalization models of varying complexity have been proposed,

e.g. [12, 6, 4]. Among the main components are single crystal efficiencies and geomet-

rical effects, which account for intrinsic detector efficiency and sensitivity changes as

a function of angle of incidence and crystal position in a block. Without proper nor-

malization, reconstructed images may have artifacts in the form of periodic patterns

or other non-uniformities that have been propagated from the data space into the im-

age. Variations in detector response can be quite significant, making normalization

an important aspect of the reconstruction process for quantitative accuracy.

The method of Bailey et al. [6] was adapted for the full-ring PET insert system recon-

struction [67]. Since the three data types (II, IS, and SS) in the full-ring insert system

are circularly symmetrical, and the FOV is entirely inside the insert ring, calculating

the components is relatively straightforward. Calculation of the crystal efficiencies,

for example, depends on the use of a fan-sum algorithm to process uniform cylinder

emission data [4]. This algorithm assumes that the sum of fan-beam measurements

for each view angle should be constant among all views. Under this assumption, it

becomes possible to find the efficiency for the vertex crystal of each fan. Unfortu-

nately, the circular asymmetry of the half-ring insert invalidates this assumption; the

insert attenuation affects each view differently, and the II fan-beam measurements

are truncated at every view angle.

We first tried to bring the SS dataset into conformance with the fan-sum assump-

tion by subtracting randoms and scatter and then dividing by the insert attenuation

(described in Section 6.4), i.e.,

d̃2,i � d2,i − r̄2,i − s̄2,i

e
− ∫L2,i

μinsert dl
, (6.5)

where the integral in the denominator represents the forward projection through an

attenuation map of the insert along the ith SS LOR. Some fan angles pass through

a significant amount of LSO, leading to a denominator � 1. These LORs mainly

contain randoms and scattered counts, which have been corrected for in mean, but

not on a count-by-count basis; in fact, many of these LORs have negative counts

after the subtractions in the numerator. Therefore, the counts in these LORs become

over-amplified (in the positive and negative directions), leading to poor normalization

factors using the standard fan-sum algorithm.
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We determined that a more principled approach for the half-ring insert system is

to use a maximum likelihood technique to jointly estimate all normalization compo-

nents simultaneously. Bai et al. [5] emphasized that by using the same statistical

framework for both the image estimation (reconstruction) and the normalization fac-

tor estimation, the normalization factor estimates will be consistent with the other

factors comprising the data model. In contrast, the more standard component-based

methods cited above sequentially calculate the various components using a different

method for each component.

Hogg et al. [31] and Bai et al. [5] independently proposed ML-based normalization

approaches, although the modeled components were slightly different. They both

modeled the crystal efficiencies and geometric effects, which are the main normaliza-

tion components. The geometric modeling accounts for the angle of incidence that is

formed between an LOR and the detectors. It also accounts for crystal interference,

which is related to the position of the crystal within a block in the transverse and

axial directions [12]. These geometric effects are usually modeled in the diagonal

normalization factor as opposed to in Pgeom. For the purpose of computing the ML

normalization factors, the emission image variables are taken to be the known source

distribution (e.g., uniform cylinder or rotating rod source), and the normalization fac-

tor variables are the only unknowns. The ML solution can be obtained using steepest

ascent, coordinate ascent, or any other optimization method.

In our work, we have already accounted for all the geometric effects through the

modeling of block detectors in their native geometry in Pgeom. It is more natural to

account for these effects in Pgeom rather than in the normalization factor, since the

physics of intercrystal penetration and crystal interference can actually be calculated

directly. Additionally, the geometric normalization effects are usually computed using

various types of LOR symmetry in the PET scanner; this type of symmetry is reduced

or difficult to identify due to the half-ring insert.

For our system, we express the normalization components that form the diagonal

entries of Pnorm as

[Pnorm]ii � εki1 εki2 ηmi αi, (6.6)

where i is the LOR index, k is the absolute crystal index, m is the sinogram index, εki1

is the efficiency of crystal 1 in the LOR, εki2 is the efficiency of crystal 2 in the LOR,
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ηmi is the efficiency of the sinogram which contains the LOR, and αi is the attenuation

due to the insert along the LOR. The coincidence type index has been suppressed for

more convenient notation. We will only estimate the crystal and sinogram efficiencies

in the ML optimization; αi is treated as a component of the normalization factor,

but is determined beforehand from the forward projection and exponentiation of the

insert attenuation map obtained in Section 6.4.

Although ηmi does not typically appear as a component in component-based normal-

ization methods, we include it here as an overall scale factor for each sinogram. It

is necessary to include this factor in the model since certain IS sinograms are always

zero, due to the wiring of our insert to the PET scanner’s coincidence processing

hardware; for these sinograms, the crystal efficiencies should still be nonzero (since

the same crystals are used in other sinograms too), but the overall sinogram weighting

should be zero. This scale factor could also become useful if the fully 3D acquired

data is compressed axially prior to reconstruction, in which case the sinograms could

have a variable number of ring combinations added together. (Axial compression is

an added feature that was not extensively tested or used in this work.)

Let θ � [ε; η] represent the parameter vector to be estimated. Our expanded mean

data model from (6.1), now as a function of θ instead of λ, therefore becomes

gi(θ) = εki1 εki2 ηmi hi + r̄i + s̄i, (6.7)

where

h � diag{α} · Patten · Pgeom · λ (6.8)

is the forward projection of the known emission image using all factors other than

those to be estimated. Note that the scatter estimate is not multiplied by the crystal

efficiencies in our current implementation, although it is unlikely to make a significant

difference in the final reconstruction. The Poisson likelihood function is then given

by

L(θ) =
∑

i

di ln gi(θ) − gi(θ) (6.9)

≡
∑

i

di ln(εki1 εki2 ηmi hi + r̄i + s̄i) − εki1 εki2 ηmi hi , (6.10)
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where ‘≡’ indicates that terms not dependent on θ were left out of the expression.

We implemented a steepest ascent method (with line search) and the well-known

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method to perform the maximization of

(6.10). Both methods require the calculation of ∇L(θ), but not the Hessian (which

would be complicated to write down analytically). For completeness, we provide the

gradient components here:

∂L

∂εk′
=

∑
{i: ki1=k′}

εki2 ηmi hi ·
[

di

gi(θ)
− 1

]
+

∑
{i: ki2=k′}

εki1 ηmi hi ·
[

di

gi(θ)
− 1

]
(6.11)

∂L

∂ηm′
=

∑
{i: mi=m′}

εki1 εki2 hi ·
[

di

gi(θ)
− 1

]
(6.12)

The optimization methods are iterative and therefore need to be run to convergence.

They also must be initialized with a reasonable guess for the components (e.g., a uni-

form guess that is approximately the same order of magnitude as the final estimate).

One major benefit of the ML method for determining the normalization factors is

that negative numbers are not encountered; randoms and scatter are not subtracted

from the measured data, but are instead incorporated directly into the complete data

model.

6.2.4 Randoms and Scatter Estimation

The mean number of randoms and scattered counts are assumed to be known prior to

the reconstruction. An estimate of the randoms is measured during each acquisition

using a delayed coincidence timing window. The unprocessed delayed counts data has

statistical noise modeled by the Poisson distribution. Therefore, the mean estimate

of r̄t,i should ideally include some form of smoothing to prevent the introduction of

extraneous noise into the reconstruction. A variance-reduced estimate can be obtained

using a maximum-likelihood procedure that first estimates the singles rate at each

crystal, and then takes the product of the singles rate at the two crystals forming an

LOR [62, 32]. The product of the singles rates, multiplied by the coincidence timing

window, gives the smoothed randoms estimate at each LOR. Since the ML methods
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for estimating the singles rates do not easily apply to the insert system geometry,

and other methods are comparably difficult to apply (e.g., [58]), we have forgone the

use of variance-reduction techniques at this time; they could lead to bias without

careful design and study. By using the noisy delayed counts directly for the randoms

estimate, the image update might be noisier than if we had used a smoothed estimate.

However, this only affects the variance of the image, and not the mean value.

Unlike randoms, the scattered counts estimate cannot be measured by our system,

and must be determined by some other means. Compton scattering is the predomi-

nant form of interaction of 511 keV gamma rays in biological tissue. In a Compton

interaction, a gamma ray collides with an electron, loses some energy to the electron,

and continues in a different path according to the Compton scattering equation. En-

ergy discrimination hardware implemented on a PET scanner is only somewhat able

to prevent scattered counts from being recorded, as the energy resolution of detector

materials is not good enough to fully distinguish between scattered gamma rays (en-

ergy < 511 keV) and unscattered gamma rays (energy = 511 keV). Therefore, some

other method is needed to account for the scattered coincidences that were recorded.

Markiewicz et al. [56] provides a good review of various scatter estimation meth-

ods, along with a method to perform accurate scatter estimation by using a multiple

scatter model.

Our scatter estimate is currently based on the single scatter simulation (SSS) method

[103], in which one gamma ray in the pair is assumed to scatter once. This method

uses the analytical Klein-Nishina formula to calculate the differential Compton scat-

tering cross section, dσ/dΩ. The scatter geometry as it is applied to the SSS method

is shown in Figure 6.3. For simplicity, it has been drawn in 2D, but the actual com-

putations are performed in 3D. For each LOR, an integration is performed over the

scattering volume. From Watson [103], the scatter contribution for the LOR defined

by detectors A and B is calculated as

sAB = k

∫
Vscatter

σASσBS

4πR2
ASR

2
BS

μdσ

σdΩ
[I(A) + I(B)] dV, (6.13)
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Figure 6.3: For the LOR defined by detectors A and B, the SSS method calculates
the scatter contribution from each possible scatter point (S) in the object volume.
The asterisk (*) represents a hypothetical annihilation location. The LOR and scat-
ter point together define the scatter angle Ω at which the Klein-Nishina formula is
evaluated.

where

I(A) = εAS(E)εBS(E ′) exp
[
− ∫ S

A
μ(E, l1) dl1 −

∫ B

S
μ(E ′, l2) dl2

] ∫ A

S
λ(l1) dl1(6.14)

I(B) = εAS(E ′)εBS(E) exp
[
− ∫ S

A
μ(E ′, l1) dl1 −

∫ B

S
μ(E, l2) dl2

] ∫ B

S
λ(l2) dl2.(6.15)

In these equations, k is a scaling coefficient, σAS and σBS are the detector cross sec-

tions seen by the scatter point, RAS and RBS are the lengths between the detectors

and scatter point, μ is the spatially-variant and energy-dependent attenuation coef-

ficient, σ is the total Compton scattering cross section, and finally, εAS and εBS are

the detection efficiencies at E = 511 keV or E ′, the scattered photon energy. E ′ can

be determined from the Compton scattering equation,

E ′(Ω) =
E

1 + E
mc2

(1 − cos Ω)
, (6.16)

where m is the resting mass of the electron prior to scattering, c is the speed of light,

and Ω is the scatter angle corresponding to the current scatter point.
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The body attenuation map has already been determined from a CT scan, as explained

in Section 6.2.2. Since the SSS line integral calculations through the μ map are energy

dependent, the body attenuation coefficients are scaled using the same approach as

for the conversion from CT energies to 511 keV. However, the insert attenuation

map cannot be readily scaled to other energies without knowledge of the material

composition at each voxel. Although the insert device contains other materials in

addition to LSO (e.g., the aluminum casing, PMTs, and electronics), we focus on

the LSO, since it is the most highly attenuating medium within the insert. In the

SSS calculations, we analytically compute the line integral through the insert LSO

crystals, using their known geometry and energy-dependent attenuation coefficients.

The body attenuation map is discretely forward projected. These calculations are

performed from the scatter point to each detector in the LOR.

The emission activity distribution required by the SSS method is based on an initial

reconstruction in which scatter has not been corrected. The scatter estimate can be

improved after every few iterations of the EM algorithm (e.g., by using new estimates

for λ), but this was not considered in the present work; it was assumed that the

preliminary scatter-uncorrected reconstruction was sufficiently accurate for the final

scatter estimation.

MC simulations have shown that few coincidence events are detected when one or

both of the gamma rays have been scattered by LSO in a different detector block.

This obviates the need to include the insert crystals in the scattering volume integral

calculations, as the probability of detection after scattering in the insert is negligibly

small. The simulations also indicate that the single-scatter model is appropriate, as

the number of multiply-scattered events that were detected is much smaller than the

number of detected events in which there was only one Compton scatter interaction.

Finally, it is necessary to scale the scatter estimate to the measured data via the scale

factor, k. To find an appropriate scaling, we first compress the fully 3D sinograms

axially into a 2D sinogram; this is done separately for the prompts data, the delayed

counts data, and the scatter estimate. Since the measured prompts data consists

of trues, randoms, and scattered counts, the delayed counts sinogram is subtracted

from the prompts data to remove the randoms. The resulting sinogram will then

approximately contain only trues and scattered counts. Furthermore, the outer fan
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portion of this sinogram will contain only scattered counts (assuming the object is

smaller than the FOV). A constant scale factor for the scatter estimate is finally

determined from these scatter-only tail regions of the sinogram. This procedure is

done separately for the II, IS, and SS data.

6.3 Symmetry and Parallelization Approach

As in the helical CT work, we use lookup tables to store the precomputed system

matrix for fast access. The size of the fully 3D system matrix lookup tables can be

reduced significantly through symmetry considerations. Due to the half-ring insert

geometry, only two-fold mirror symmetry is possible for II and IS in the transverse

direction; eight-fold rotational and mirror symmetry can be exploited for SS since

the attenuation due to the half-ring insert is not factored into the spatially variant

system matrix weights (i.e., Pgeom), but is instead treated as part of the diagonal

normalization matrix.

In the axial direction, mirror and translational symmetry exist for all three coincidence

types. Like above, SS translational symmetry is possible since the attenuation due

to the insert is treated separately from the spatially variant weights. To obtain

maximum axial symmetry, the positioning and thickness of the slices needs to be

carefully considered. Figure 6.4 shows the placement of the slices relative to the

crystals. The slices were designed to have the same thickness as the insert crystal

pitch, and for their edges to line up with the insert crystal edges. The slices line up

with the center or adjacent edges of the scanner crystals, which are twice as thick.

We approximate the gap between axial blocks by one extra crystal ring to preserve

translational symmetry; the crystal ring and gap dimensions are approximately the

same for both the insert and scanner crystals, respectively.

As an example, Figure 6.5 shows the axial base symmetry LORs and symmetrically

related LORs for the IS type. The two thick solid lines are the base symmetry LORs,

and the thinner dotted lines represent the symmetrically related LORs. There are

two base symmetry LORs since the IS symmetry only applies to every other insert

ring.
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Figure 6.4: Axial view of insert system showing image slices in relation to the insert
and scanner crystals. Slices are shown as blue vertical lines, and each ring of crystals
is shown as a yellow block.

Figure 6.5: Axial symmetry for the IS coincidence type shown for a particular ring
difference. Scanner rings are shown on top, and insert rings on bottom.
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We use three Michelograms (one for each coincidence type) to specify the ring com-

binations to use in the reconstruction. A Michelogram is a table that conveniently

indexes the particular ring combinations to be used in the reconstruction; one axis

corresponds to the first ring index in an LOR, and the second axis corresponds to the

second ring index in an LOR [23]. The maximum ring difference is a user-specified

value in our implementation that provides flexibility over how many computations are

performed in the forward and backprojections. Additionally, axial compression was

partially implemented, but will need further work. Adjusting the axial compression

is more difficult than adjusting the maximum ring difference, since the normalization

factors are typically determined using the uncompressed data. Using all ring differ-

ences without axial compression, the maximum number of 2D sinograms is 378 for

II, 1107 for IS, and 861 for SS.

Based on the transverse/axial symmetry considerations and the structure of the Mich-

elograms, we have parallelized the forward and backprojections to fully utilize the

available computational resources on a multi-core workstation. As in the CT chap-

ter, the symmetry is inherently connected with the parallelization approach because

it determines the granularity of the parallelization. The parallelization performed

here is done at the granularity of a 2D sinogram, which corresponds to the LORs in

one ring combination. Each 2D sinogram array can be thought of as a single entry

in the Michelogram. Since this is a finer level of granularity than that of the helical

CT reconstruction algorithm, we use the dynamic scheduling capabilities of OpenMP

to assign the forward and backprojections to the threads as they become available.

The amount of time to process each 2D sinogram (regardless of whether it is for

forward or backprojection) is approximately the same. This ensures the threads are

well-balanced. The scheduling is done in such a way that for each lookup table that

is read into memory, all symmetric 2D sinograms will be processed at the same time

to minimize LUT file reading time and to maximize cache performance.

6.4 Prototype Insert System

Figure 6.6 shows the front and back views of the insert positioned in the gantry of the

clinical PET/CT scanner. The insert (without its cover) is shown in Figure 6.7(a),
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and a single detector block is shown in Figure 6.7(b). Each detector module consists

of a 13×13 array of LSO crystals, light guide, position-sensitive PMT (to convert the

scintillation light into measurable electrical current), and readout electronics. The

system configuration is described in more detail in Wu et al. [106].

To determine the αi factors in the component-based normalization model, it is nec-

essary to obtain an accurate attenuation map of the insert system. The LSO crystals

are very dense, as they must be able to stop 511 keV gamma rays. This unfortu-

nately makes it impossible to scan the insert device using a medical CT scanner like

we are able to do for the body; the maximum energy of the x-ray photons emitted

from the x-ray tube is about 120 keV, which is far less than the amount of energy

needed to penetrate the LSO crystals for transmission tomography. There are also

concerns that the large number of absorbed x-ray photons could damage the PMTs

and detector module electronics.

For these reasons, we set up a rotation stage to use positron-emitting line sources

as a transmission source, and the scanner crystals operating in coincidence mode as

the detectors. The use of a positron source instead of x-rays makes it unnecessary

to scale the attenuation coefficients from one energy level to another. However, the

rotation stage was completely independent of the scanner, therefore precluding the

use of sinogram windowing to reduce the scatter contribution to the transmission

scan. A long blank scan and transmission scan of the insert (each about 24 hours)

were acquired. Single-slice rebinning was performed on both datasets, which were

subsequently reconstructed using a 2D version of the AM algorithm. One slice of the

reconstructed image volume is shown in Figure 6.8. Due to the inclusion of scatter,

the entire reconstruction FOV looks noisy. More importantly, the LSO attenuation

coefficients were more than five times smaller than expected , and voxels that should

have the same value (e.g., all LSO voxels) were actually highly non-uniform. This

attenuation map is clearly not accurate enough to use in the calculation of the αi

factors.

To understand the cause of these discrepancies, we performed a series of analytical

and MC simulations that used the same acquisition geometry as the real transmission

scan (albeit in 2D). Only the attenuation from the LSO crystals was simulated, as

LSO has a linear attenuation coefficient of 0.087 mm−1 at 511 keV [54, p. R291].
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(a)

(b)

Figure 6.6: Siemens Biograph 16 PET/CT scanner with insert in FOV. (a) View from
front of scanner; (b) view from back of scanner, with subject’s head centered in the
insert FOV (for demonstration purposes only).
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(a)

(b)

Figure 6.7: Close-up photographs of the insert system. (a) The insert gantry with
its cover removed; (b) an individual detector block consisting of a 13×13 array of
LSO crystals, light guide, position-sensitive PMT, and electronics. (Reprinted by
permission of the IEEE from [106]. c© 2008 IEEE.)
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Figure 6.8: Insert transmission image from the rotating line source scan. The LSO
crystals form the innermost arc in the image. Window min/max = [0.0, 0.016] mm−1

(full window display).

the crystals have a higher attenuation coefficient than the insert’s aluminum housing

and the other components of the detector module. The simulations were performed

without saving randoms or scattered coincidences so as to determine whether a strictly

narrow-beam acquisition could improve the quantitative accuracy of the reconstructed

image. Figures 6.9(a) and 6.9(b) show the reconstruction of the LSO half-ring from

analytically-generated data, and Figures 6.9(c) and 6.9(d) show the reconstruction

of the LSO half-ring from the MC simulation. The left column uses a narrow image

window, while the right column uses the full window. It can be observed in these

images that the uppermost LSO crystals have higher attenuation coefficients than

the other crystals. This indicates that non-uniformity among the LSO voxels is still

present, even without randoms or scatter (or noise, in the case of the analytical

simulation).

Given these results, it was then hypothesized that the problem was caused during

the transmission reconstruction by invalid assumptions made in the linear forward

projection and subsequent exponentiation in the LORs passing through a long path

of LSO. Since the insert LSO crystals are only 5 mm thick, and the scanner crystals

(being used as transmission detectors) have a 4×4 mm front face, individual LORs

may detect activity passing tangentially through the LSO but also through non-LSO
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(a) (b)

(c) (d)

Figure 6.9: Reconstructions of the simulated LSO half-ring transmission scans. The
attenuation coefficients were smaller than expected, and were non-uniform over the
crystals in the half-ring. Top row: analytical simulation, bottom row: MC simulation.
Left column window min/max = [0.04, 0.09] mm−1, right column window min/max
= [0.0, 0.09] mm−1.
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material on either side. These LORs experience a large variation in the measured

signal over the spatial extent of the LOR, i.e., they have not been sufficiently sampled.

Mathematically, this can be understood by examining the derivation of the forward

projector in Politte and Whiting [72], which approximates the exponential function

by the Maclaurin series expansion to first order. For this linear approximation to

hold, the argument of the exponential must be much smaller than 1. Specifically, the

argument is the variation in the line integrals through the attenuation map, taken

over the face of a detector (or in our case with coincidence detection, over both

detector faces comprising an LOR). The variation will be large if certain sub-rays of

a given LOR pass through a long path of LSO, while others do not.

We ran another analytical simulation to show that the dense LSO crystals are indeed

responsible for the problems with the reconstructed insert attenuation map. Instead

of specifying the half-ring crystal material as LSO in the simulation, we specified it

as water (which has an attenuation coefficient almost an order of magnitude less than

LSO). Everything else in the simulation remained exactly the same; the only change

was to the insert crystal material.

In Figure 6.10, we show the reconstruction of this simulated data using a narrow

and wide image window. There is no non-uniformity in the crystal values, and the

attenuation coefficients are quantitatively correct. This leads to the conclusion that

attenuation along LORs passing tangentially through the insert cannot be accurately

modeled using our current projection operator.

Not only does this have implications on the manner in which we form an attenuation

map of the insert, it also affects the forward projection of the insert attenuation map

(once we have one) for the purpose of calculating the αi factors accurately. It implies

that a diagonal attenuation matrix factor for the insert cannot adequately model

these particular LORs. For the time being, we have therefore chosen to restrict the

maximum diameter of objects being scanned to ensure that their fan-width is smaller

than the fan-width of the insert half-ring crystals (as seen by the SS coincidence

type). While it might be possible to incorporate the insert attenuation calculations

A more physically meaningful term that some authors use instead of “LOR” is “tube of re-
sponse”; the tube of response is the finite volume that connects the two crystals forming a detector
pair.
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(a) (b)

Figure 6.10: Reconstructions of the analytically-simulated water half-ring transmis-
sion scan. (a) Window min/max = [0.0075, 0.0115] mm−1; (b) window min/max =
[0.0, 0.012] mm−1.

on a sub-ray basis into the Pgeom factor, this would be computationally expensive in

fully 3D. It was done in 2D in Chapter 5, but we have not investigated it in the 3D

work.

To circumvent this fundamental problem, we performed a transmission scan of a single

detector block using a microPET Focus 220 small-animal scanner (CTI/Concorde

Microsystems, Knoxville, TN). A 68Ge positron point source was rotated helically

through the scanner FOV to acquire a high-statistics 44-hour blank scan and 60-hour

transmission scan. By scanning only one block instead of the full insert gantry, we

were able to avoid acquiring LORs that pass through a large amount of LSO material.

Since the rotation stage is a built-in feature of the microPET scanner, we were able

to use its sinogram windowing feature to reduce the number of recorded scattered

counts.

The scan was reconstructed using a MAP algorithm on the microPET console. From

the small reconstructed image of the detector block and a CAD drawing of the insert

gantry, we manually generated a composite 3D attenuation map of the entire insert

device. To do this, we used image processing techniques to position and rotate the

detector image into the 28 exact block locations in the attenuation map. The dimen-

sions and shapes of the metal structures supporting the detectors were determined

from the CAD drawing, and were subsequently voxelized into the correct positions in
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(a) (b)

Figure 6.11: One slice of the composite insert attenuation map. (a) Window min/max
= [0.04, 0.09] mm−1; (b) window min/max = [0.0, 0.09] mm−1.

the attenuation map. We used our knowledge of the metal composition to approxi-

mate the attenuation coefficients at 511 keV for all nonzero voxels other than those

containing the detector modules. The front cover design had been changed since the

CAD drawing was last updated, so we performed a CT scan of the front cover and

segmented it for inclusion in the composite map.

We show a slice of the composite insert attenuation map in Figure 6.11 using a

narrow and wide image window. By design, the LSO voxel values are uniform in

all detector blocks, and due to the high-quality transmission scan on the microPET,

they are close to the true narrow-beam attenuation coefficient for LSO at 511 keV.

A rendering of the CAD drawing (with the original front cover pattern) is shown in

Figure 6.12(a), and a rendering of the composite attenuation map (with the actual

front cover pattern) is shown in Figure 6.12(b).

6.5 Experiments

To test the basic functionality of the insert system, we first positioned a 68Ge line

source in the gantry so it was parallel to the axial direction. The line source was

scanned in eight different locations within the II and IS FOV. We then sorted the

list-mode data into II, IS, and SS detector matrices, and summed the matrices of each
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(a) (b)

Figure 6.12: (a) CAD drawing of insert gantry (without detectors or cover); (b)
rendering of the 3D voxelized insert attenuation map.

coincidence type together. The sorting was done without regard to the detector rings

in which the coincidence was registered, thereby making this first experiment a com-

pressed 2D dataset. EM reconstructions were performed using different combinations

of coincidence types to demonstrate the higher resolution of the insert compared to

the scanner crystals. Since the line sources do not produce a large randoms or scatter

distribution, we omitted the estimation of these background counts. Furthermore,

Patten and Pnorm were set to the identity matrix for this initial reconstruction experi-

ment.

Next, we acquired a fully 3D dataset to be used for the direct normalization approach.

We set up the normalization phantom shown in Figure 6.2, which consisted of two

rotating line sources (each with about 760 μCi activity). One line source was placed at

a radius of 33.5 cm, and the other was positioned at a radius of 11.5 cm. The rotating

line source data was collected for about 30 hours. An image of the normalization

phantom was generated based on the source distribution, taking into account the

fact that the source moving at a smaller radius spent 33.5/11.5 times longer at each

The sinograms that are used in the reconstruction are obtained by converting the detector
matrices (with absolute detector indices) into matrices that use relative detector indexing within
each fan-beam projection.
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position than the source moving at a larger radius. This image was then forward-

projected using just the Pgeom factor, as Patten is approximately equal to the identity

matrix for line sources. For the calculation of Pgeom, the insert and scanner crystals

were subdivided four times in-plane, two times axially, and six times in the depth

direction.

The direct normalization approach was then tested by scanning a 21.6 cm diameter

cylindrical Jaszczak phantom (Data Spectrum Corporation, Hillsborough, NC). One

module of this phantom contained cold rods of various diameters surrounded by a

warm background. We performed a fully 3D reconstruction on this data using the

Pnorm factor from the rotating line source scan, along with the Patten factor that

was estimated from a CT scan of the phantom. Scatter was not estimated since

the SSS code was not available at the time the reconstruction was performed. We

used all possible ring combinations for II and IS; for SS, we used a maximum ring

difference of 10 with span of 1. For comparison with this reconstruction, we performed

another scan of the same phantom without the insert in the FOV. This SS data

was then reconstructed using our same code, but without normalization; a separate

normalization scan had not been acquired for the standalone scanner.

To perform the ML component-based normalization method, we scanned a 20 cm

diameter uniform 68Ge cylinder for 18 hours with the insert in the FOV. We compared

a steepest ascent method (with secant method for line-search) to a low-memory BFGS

implementation [65] to estimate Pnorm.

Finally, to test this ML normalization approach, we scanned a 9.5 cm diameter cylin-

drical phantom containing a number of small, low-contrast spheres filled with an 18F

solution that resembled tumor activity. The tumor-to-background ratio was 2:1 for

these spheres, and they were 0.06, 0.1, and 0.5 mL in volume. This experiment repre-

sents a challenging but realistic situation in which there is not much contrast between

the tumor and background, and the tumors are very small. A fully 3D reconstruction

was then performed using the ML-based Pnorm and the CT-based Patten factors. We

again used all possible ring combinations for II and IS, and for SS, we used a maxi-

mum ring difference of 10 with span of 1. A separate reconstruction was performed

120



(a) (b) (c)

Figure 6.13: Line source sinograms. (a) II; (b) IS; (c) SS (scaled down and cropped
to show only the upper half of view angles).

using only the II and IS data, but initialized with the II+IS+SS reconstruction re-

sults. Although somewhat heuristic, we wanted to determine if including the SS data

in the joint reconstruction adversely affected image resolution in the insert region.

6.6 Results

6.6.1 Line Sources

Figure 6.13 shows the sinograms for the summed line source scans, and Figure 6.14

shows the resulting reconstructions. For reference, the horizontal row of points is just

below the upper edge of the II FOV. The reconstructions that incorporate the IS data

are able to resolve the line sources better than the SS-only reconstruction, therefore

confirming the expected behavior of the insert system and reconstruction algorithm

for this simplistic source distribution.

6.6.2 Rotating Line Sources

The sinograms in Figure 6.15 show a comparison of the measured normalization data

(left column) to the forward projection of the normalization phantom image using

our system model (right column). It should be noted that while the measured and

predicted sinograms for each coincidence type look similar, there will still be some

differences; the ratio of these two sinograms is used as the normalization factor to
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(a) (b) (c)

Figure 6.14: Line source reconstructions after 10 EM iterations. (a) IS; (b) II+IS+SS;
(c) SS.

account for these differences. Since the line sources were located so close to the

edge of the insert and scanner FOVs, and since the scanner had been modified to

accommodate the insert electronics, the coincidence processing hardware is not able

to detect events in the outermost fan angles. This leads to the jagged appearance seen

at the edges of the measured normalization sinograms. The measured II sinogram is

most affected, as seen by the truncation of the fan relative to the forward projection

sinogram. This effect is automatically accounted for in the direct normalization factor.

It is also accounted for in the component-based approach by setting gi(θ) = 0 for the

LORs that are outside the coincidence detection region.

6.6.3 Jaszczak Phantom

In Figure 6.16(a), we show a CT slice of the Jaszczak phantom to indicate the loca-

tion and size of the cold rods. Figure 6.16(b) shows the image reconstructed using

data from all three coincidence types (i.e., using the data acquired when the insert

was in the FOV). Figure 6.16(c) shows the image reconstructed using data from the

standalone scanner.

In the CT image, the cold rods show up brighter than the background, and in the PET

images, they show up as dark circles. However, there appear to be some significant

non-uniformity artifacts in the II+IS+SS image that we will discuss later in this
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(a) (b)

(c) (d)

(e) (f)

Figure 6.15: Comparison of sinograms for the rotating line source phantom for direct
normalization. Top row: II, middle row: IS, bottom row: SS. Left column: measured
data, right column: forward projection of normalization phantom image.
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(a) (b) (c)

Figure 6.16: Reconstructions of the Jaszczak phantom. (a) CT image showing the
location and size of the cold rods; (b) reconstruction after 20 EM iterations using
all three coincidence types of data (direct normalization applied); (c) reconstruction
after 20 EM iterations using standalone scanner data (no normalization applied).

chapter. The standalone image does not suffer from such artifacts, but it too cannot

resolve all the cold rods in the two sectors containing the smallest rods.

6.6.4 Uniform Cylinder

The SS, IS, and II sinograms pertaining to the uniform cylinder acquisition are shown

in Figures 6.17, 6.18, and 6.19, respectively. Sinogram (a) in the figures is the mea-

sured prompt data, sinogram (b) is the estimated prompt data with component-based

normalization applied, and sinogram (c) shows the component-based normalization

factor itself. A profile through the indicated row in sinograms (a) and (b) is plot-

ted in subfigure (d) for the three coincidence types. The mean prompts estimate is

the normalized forward projection of the true cylinder image, plus the randoms and

scatter estimates. As can be seen in Figure 6.17(a)-(c), the small bright lines in the

central fan that are sloped at a steeper angle than the crystal diagonals correspond

to the gaps between the crystal blocks in the insert.

Note that for a normal standalone PET scanner, the sinogram for a centered uniform

cylinder would be constant across the view angles and symmetrical within each fan-

beam projection (neglecting the variation in crystal efficiencies). This is clearly not

Although the measurements and normalization factor estimation were performed in fully 3D,
these figures show a single 2D sinogram that was extracted from the fully 3D sinogram.
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the case when the insert is in the FOV, as shown by the sinograms. Despite the fact

that the insert attenuation introduces significant asymmetry into the sinograms, our

component-based normalization method models the attenuation correctly and leads

to excellent agreement for the SS and IS coincidence types. The II data was somewhat

more difficult to model, as seen by the profiles in Figure 6.19(d). This is due to the

difficulty of scaling the II scatter estimate to the measured data; the cylinder is so

large in the II FOV that there is no scatter-only tail. For the time being, it has to be

scaled very approximately, but we discuss an alternative solution to this problem in

Chapter 7.

In Figure 6.20, we plot the likelihood function (6.10) versus iteration number to

compare the convergence rate of the steepest ascent implementation to the L-BFGS

implementation for normalization factor estimation. The L-BFGS method converges

significantly faster, and in practice, each iteration is actually faster to compute be-

cause it uses a more efficient line-search method (More-Thuente line-search) than the

secant method. All normalization factors in this work were therefore computed with

L-BFGS.

6.6.5 Small Tumor Phantom

Figure 6.21(a) shows the CT slice through the center of the tumors. Using a very

narrow image display window, the plastic spherical shells holding tumor activity can

be seen. In Figure 6.21(b), the PET reconstruction of the phantom is shown, us-

ing data that was acquired with all four scanner rings without the insert in place.

This reconstruction was performed using the built-in reconstruction software on the

Siemens Biograph console.

The results from our reconstruction implementation (with insert in the FOV) are

shown in Figure 6.22. The image on the left used only the SS data for the recon-

struction. The middle image was reconstructed using all three coincidence types,

and is shown after performing 25 EM iterations. Finally, the image on the right was

reconstructed using the II and IS types after 20 EM iterations. However, to avoid

incomplete data artifacts in the rightmost image, the reconstruction was initialized

with the image in Figure 6.22(b). All three of these reconstructions made use of the
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Figure 6.17: SS sinograms and profile for the uniform cylinder acquisition for
component-based normalization. (a) measured prompt sinogram; (b) estimated mean
prompt sinogram; (c) ML normalization factor; (d) profile through the indicated row
in sinograms (a) and (b). The image window is the same for (a) and (b).
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Figure 6.18: IS sinograms and profile for the uniform cylinder acquisition for
component-based normalization. (a) measured prompt sinogram; (b) estimated mean
prompt sinogram; (c) ML normalization factor; (d) profile through the indicated row
in sinograms (a) and (b). The image window is the same for (a) and (b).
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Figure 6.19: II sinograms and profile for the uniform cylinder acquisition for
component-based normalization. (a) measured prompt sinogram; (b) estimated mean
prompt sinogram; (c) ML normalization factor; (d) profile through the indicated row
in sinograms (a) and (b). The image window is the same for (a) and (b).
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Figure 6.20: Comparison of convergence rate using steepest ascent versus L-BFGS
for normalization factor estimation.

ML component-based normalization approach. Since the phantom was scanned twice

(once without the insert, and once with the insert), the acquisition time was adjusted

to account for the radioactive decay of 18F; this ensured that approximately the same

number of events occurred during each scan.

6.7 Discussion

In this chapter, we have developed and implemented a fully 3D reconstruction algo-

rithm to jointly estimate an image using all three coincidence types. We used the

geometrical factor derived in Chapter 5, but performed the calculations in 3D for

all ring combinations. The body attenuation factor is also similar to that used in

Chapter 5, except here it is calculated using a CT scan that has been converted to

attenuation coefficients at 511 keV. A scatter estimate was calculated using the SSS

method based on the Klein-Nishina formula. An initial scatter-free emission image

estimate is required, as is an attenuation map of the body.
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(a) (b)

Figure 6.21: Small tumor phantom images reconstructed using Siemens Biograph
console. (a) CT slice that passes through the three spherical tumors; (b) PET recon-
struction of the same slice using data from standalone PET scanner.

(a) (b) (c)

Figure 6.22: Small tumor phantom images reconstructed using our algorithm. The
slice shown is the same as that in Figure 6.21. (a) Reconstruction using only SS
data after 25 EM iterations; (b) reconstruction using II+IS+SS data after 25 EM
iterations; (c) reconstruction using II+IS data after 20 EM iterations, initialized with
the image in (b).
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We used two rotating line sources for the direct normalization phantom. As shown in

Figure 6.15, the measured data looks very similar to the forward-projected normal-

ization phantom image. However, it is difficult to match the normalization phantom

image exactly to the actual rotating line source trajectory. This creates a small mis-

match between the two sinograms that is primarily visible when looking at the ratio

sinogram. This shift leads to bias in the direct normalization factors, and is especially

difficult to avoid when using thin line sources that are not perfectly aligned with the

axial direction. This might not be as much of an issue if the rotation stage were built

into the scanner, but in this work, the rotation stage is independent.

The bright vertical edges in the sinograms (which correspond to the radius at which

each source rotates) are also difficult to model in the forward projection. Edges are

particularly difficult to model because of insufficient sampling of the edge over the

extent of the LOR, as already noted for the insert attenuation calculations in Section

6.4.

The Jaszczak phantom was reconstructed to demonstrate the performance of the

direct normalization approach. As can be seen in the combined II+IS+SS recon-

struction, there are some significant non-uniformity artifacts that are most likely due

to the two problems mentioned above. The phantom is 21.6 cm diameter, which is

barely smaller than the half-ring insert diameter. Therefore, part of the Jaszczak

phantom projection is affected by the biased normalization factor in the region of the

bright edge. Additionally, the direct normalization approach considered here did not

estimate scatter, which could explain the bright region in the middle of the phantom

reconstruction.

It was also determined after performing the rotating line source scan that the hot

region within the line sources inadvertently covered slightly less than the entire axial

FOV. In turn, this could have resulted in incorrect normalization factors for some

of the sinograms, which would then be propagated to other slices in the fully 3D

reconstruction through oblique sinograms. It seems unlikely that this would have

caused the severe artifacts in the reconstruction, but it is a possibility.

To overcome these difficulties, the ML component-based method was developed and

tested, as shown in Figure 6.22. In each fan-beam sinogram, the visible horizontal

lines correspond to detector 1 of an LOR, and the visible diagonal lines correspond to
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detector 2 of the LOR. The product of the single crystal efficiencies therefore yields

the patterns shown. When the insert is in the scanner FOV, the number of detected

coincidences is significantly attenuated due to the insert material. We have modeled

the insert attenuation and incorporated it as a fixed component of the component-

based normalization method; it does not change from scan to scan. This allows us to

obtain a separate CT scan of the body without the insert, and use that for the body

attenuation factor.

The fact that the measured cylinder data and normalized mean cylinder data closely

match each other implies that we have appropriately modeled the normalization factor

components, as well as other system matrix factors. A profile through the SS and

IS sinograms also reveals the similarity of the shape and scaling of the scatter and

randoms tail. Some approximations are currently needed to determine the II scatter

scaling factor due to the fact that no scatter tail is available for the scaling procedure.

Additionally, the estimated mean profiles are noisy due to the lack of a variance

reduction method when estimating the randoms. Such an approach may reduce the

noise in what is intended to be a mean estimate of the randoms.

The small tumor phantom reconstructions demonstrate the ability of the insert system

to resolve the smallest tumor. As mentioned above, this is a challenging object

to image due to the very small size and low contrast ratio of the tumor. Since

the details of the Siemens reconstruction algorithm were not available, it cannot

be fully concluded from this study that the insert is able to resolve objects that

the scanner itself cannot. To compare the performance of the insert system to a

standalone system, the standalone scanner data should be reconstructed using the

same algorithm implementation used for the insert system, but only using the scanner

data. A separate set of normalization factors would need to be determined without

the insert in the scanner FOV.

Nevertheless, the II+IS+SS reconstructions of this phantom are promising, and will

lead naturally to further work in determining the optimal reconstruction strategy. For

example, a more quantitative study would be useful to determine whether the best

strategy is to perform a multi-stage reconstruction, where each stage is initialized by

the preceding stage, e.g., first reconstruct using II+IS+SS data, then II+IS data, and
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finally, II data. Ordered subsets were not applied, so it may simply be the case that

more iterations are needed to further enhance the image quality.

Much of the work described in this chapter was complicated by the fact that many

factors depend on other factors being modeled accurately. We made use of standard

methods where applicable, and modified them to suit the needs of the insert system

as required. Since it is very challenging to separate out all the effects for independent

study, there are many important directions for future research as a result of this

work.
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Chapter 7

Conclusions and Future Work

In this work, fully 3D statistical image reconstruction algorithms were developed

and applied to helical CT and a novel half-ring PET insert system. While many of

the challenges are specific to each modality, we have demonstrated that the same

general approaches apply to both CT and PET. For both systems, we have modeled

the scanners in their native 3D geometry to obtain the best possible image quality.

Although fully 3D reconstruction is computationally expensive, we have developed

algorithmic and hardware-based methods to optimize the reconstruction workflow

as much as possible. As a result, we have been able to reconstruct clinically-sized

datasets.

In each iteration of the statistical reconstruction algorithms for CT and PET, a

comparison is performed between the measured data and the estimated data based on

the current image iterate. If an accurate model for the measured data is used, the final

reconstructed image will have little bias. Therefore, we have focused on developing

accurate system models and integrating them into our reconstruction framework to

obtain high-quality images.

The raw CT data that is output from the scanner has been preprocessed for effects like

detector sensitivity variations, beam-hardening, and x-ray tube current modulation.

Our efforts in modeling the CT data were therefore largely spent calculating the

geometrical factor properly (and efficiently). In contrast, very little preprocessing

has been applied to the raw PET data that is output from the scanner. Therefore,

a significant effort was devoted to modeling and correcting for the various effects

pertaining to the half-ring insert system.

134



7.1 CT-Specific Remarks

The CT work focused on maximizing the efficiency of the reconstruction algorithm by

taking advantage of certain symmetries that underlie the complex multislice helical

CT geometry. By formalizing the symmetries that exist, we were able to develop

parallelized methods that perform well on large clinical datasets. In particular, we

explicitly partitioned the data and image spaces across the processors in such a way

that each processor performs exactly the same number of computations during the

forward projections and backprojections, even when the OS method is employed. We

showed that OS can increase the convergence rate significantly, and demonstrated that

our convergence criterion was met in roughly 10-15 iterations with the use of a large

number of subsets. Although this translates to about 30-45 times more computations

than FBP-based techniques, it is still promising that the number of iterations required

is relatively low.

The resolution-noise tradeoff results obtained using the Catphan phantom demon-

strate the benefits of using statistical reconstruction compared to the analytical recon-

struction methods we tested. By modeling the full extent of each voxel and detector

element rather than using simpler voxel-driven backprojection methods, we ensure the

resolution of each measurement is preserved. The clinical reconstructions appeared

visually to be at least as good as the analytical methods considered, although further

validation and analysis is needed.

We also conducted a small study to apply two recently-developed geometry-independent

methods to the 3D multislice helical CT image reconstruction problem. The first

method reconstructs images without the missing data, and the second method seeks

to jointly estimate the missing data and attenuation image in a statistical framework.

We showed simulated data and clinical data reconstructions using these methods to

handle the problem of transverse truncation. Along these lines, a method was pro-

posed to handle the long object problem. We showed that it is possible to achieve

accurate reconstructions within the FOV – and potentially outside the FOV as well –

without using analytical data sufficiency or consistency conditions. One final advan-

tage of these methods is that they provide a great deal of flexibility in their imple-

mentation for arbitrary system geometries. For example, this work could also apply

to other 3D imaging modalities, such as C-arm cone-beam CT, in which the number
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of views is often limited. It could possibly even be used in 4D imaging (3D + time),

in which each gated frame may have missing projections. It should be mentioned,

however, that most of the missing data methods investigated in this work break the

parallelism and symmetry constructs that exist when the complete data is available.

Regarding the regularization that was added to the AM algorithm, choosing suitable

regularization parameters is notoriously difficult (especially in 3D). One could pos-

sibly test a range of parameters by performing several “trial” reconstructions on a

downsampled dataset, or on just a few slices, and then attempt to scale the param-

eters accordingly for the full-scale problem. Other more systematic methods exist,

but are also more computationally demanding.

There is some concern that the “quarter-detector offset” implemented on the com-

mercial CT scanner we used for testing is not exactly a quarter-detector offset. Our

reported results were based on an offset of -1.25 detectors in the data model instead

of -0.25, due to the significantly better results. But even with an offset of -1.25 detec-

tors, there is a very subtle rotating artifact that appears when scrolling through the

stack of slices in the reconstructed image volume. If the actual detector offset can be

known more accurately, there is a possibility of obtaining even higher-quality images,

and of reducing the number of iterations required to reach convergence.

We will briefly discuss a second potential cause for the subtle rotating artifact, after

describing this artifact in more detail. When visualized in a coronal or sagittal view,

the image appears to have a striped pattern, as shown in Figure 7.1. These stripes are

not horizontal, but are inclined slightly like the helical trajectory. As the iterations

progress, the striped pattern becomes gradually less prevalent.

We believe the cause of this artifact relates to the inherently slow convergence of

high frequencies using AM-type algorithms. Specifically, each voxel is seen a different

number of times over the course of the scan; that is, there is nonuniform voxel illumi-

nation [92]. In analytical reconstruction algorithms (e.g., helical FDK), artifact-free

backprojection requires that every voxel be seen the same number of times by each

view angle. These algorithms account for this requirement with a weighting function

that depends on the view angle and voxel. The AM algorithm does not need to use

an explicit weighting function of this sort.
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(a) (b)

Figure 7.1: Clinical reconstructions showing the striping artifact, and how it becomes
less prevalent with more iterations. The AM algorithm was initialized with an image
of all zeros, and OS was not used in the generation of these images. (a) Iteration 1;
(b) iteration 50.

Starting from an initial uniform image of all zeros, the estimated backprojection in the

first AM iterations will be mismatched from the measured data backprojection. Since

the AM algorithm uses the ratio of these two backprojection images, the effects due to

the nonuniform voxel sampling do not cancel out (i.e., since they are voxel and angle

dependent, not just voxel dependent). This could lead to the striping pattern in early

iterations. Assuming the system model used during the reconstruction is accurate,

running more AM iterations should in theory lead to convergence, even when starting

from an initial image of all zeros. However, even with OS, we have found that the

stripes may take many iterations to remove completely. Therefore, this should be

investigated further in future work to identify appropriate strategies for avoiding this

artifact. For example, using a weighting function explicitly or initializing the image

might help to reduce the discrepancy between the mean backprojection and measured

data backprojection from the outset.

7.2 PET-Specific Remarks

The half-ring PET insert work described in this dissertation included MC simulations,

experimental data acquisitions on our prototype system, data and system modeling,
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as well as 2D/3D reconstruction algorithm development and implementations. We

placed emphasis on the system modeling aspects in this work, which include the

geometrical, body attenuation, and normalization factors of the system matrix, along

with estimation methods for randoms and scatter. Our reconstruction code allows the

user to select any combination of coincidence types to be used in the reconstruction,

which can be useful for evaluating the contributions of each coincidence type to the

image.

We first introduced the 2D reconstruction framework, where the geometry, atten-

uation, and normalization were the only modeled components. Normalization was

relatively straightforward since it provided a high-statistics dataset without scatter

or randoms. We demonstrated that using the subvolume approach within the geomet-

ric factor calculations could lead to artifact-free reconstructions, even when activity

was located above the side face of the insert crystals. We also showed in our recon-

struction of 2D MC simulated data that DOI insert crystals could significantly reduce

parallax error. However, the limited number of effects that we included in the MC

simulation make it difficult to gain too much insight into the true performance of a

real insert system.

For the real prototype system, we found that the LORs passing through long paths of

LSO crystals cannot be modeled properly. We explained that the insert attenuation

calculations fall apart for LORs passing tangentially through the insert crystals due

to the invalid use of the linear approximation to the exponential function. For this

reason, we have currently reduced the FOV to be inside the fan-width spanned by the

insert. Further investigation on how to treat these LORs is warranted so that larger

source distributions may be used in the future. It might be simplest to ignore these

LORs completely, as they cannot be modeled properly and primarily contain randoms

and scattered events from other parts of the FOV. Until this problem is addressed,

the main application of the prototype insert system is limited to high-resolution head

and neck imaging, as opposed to breast imaging.

Even when performing reconstructions on data in the reduced FOV, there are still

some remaining issues that prevent uniform activity distributions from being recon-

structed as uniformly as they should be. Most likely, these are caused by small
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discrepancies between the composite insert attenuation map and the true attenua-

tion distribution of the insert. Addressing this could involve tweaking the attenuation

coefficients slightly to obtain a better fit, as it appears that the reconstruction is very

sensitive to the insert attenuation. A better mean randoms and/or scatter estimate

may also help. Furthermore, poor alignment of the insert within the scanner may

play some role in the uniformity problems as well; there are six degrees of freedom

(horizontal, vertical, axial, yaw, pitch, and roll), but we only align the former three.

Unfortunately, it is difficult to know where specifically the problem arises, as all the

system matrix factors become interconnected in the reconstruction, and since the

insert is cumbersome to align in a repeatable manner due to slight wobbling of the

translation stage.

We did seem to have success using the ML estimation technique for component-based

normalization, as seen by the good match between the measured and estimated uni-

form cylinder sinograms. The estimation technique is quite flexible, and can readily

accommodate more components as necessary. For example, it might even be possible

(and useful) to obtain a better estimate of the attenuation coefficients in a segmented

insert attenuation map with this method. Additionally, ML estimation may be used

to form a mean randoms estimate (rather than using the delayed counts directly as

the estimate). Unlike whole-body clinical PET scanners, where there is usually a

scatter-only tail outside the body projections, there is not necessarily a scatter-only

tail in the II and IS measurements; whether it exists or not depends on the size of

the object inside the insert FOV. Especially for the 20 cm diameter uniform normal-

ization cylinder, it might therefore be useful to estimate the scatter scaling factors

within the ML normalization method as well. This would only require that up to

three more parameters be estimated (i.e., one each for II, IS, and SS). One other

direction for the ML normalization framework is to try using source geometries other

than a uniform cylinder, such as a uniform plane source or rotating rod sources. As

long as an accurate normalization phantom image can be generated, the estimation

procedure should be able to compute the component-based normalization factors.

Using the system model proposed in this work, it is possible to obtain high-resolution

images that are jointly estimated from the three coincidence types. However, better

resolution recovery may require the inclusion of a blur kernel in the system matrix

to account for other sources of blurring, such as gamma ray acolinearity. It might
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also be interesting to compare the geometrical factor used in this work to a more

accurate approach, such as an analytical detector response function model that does

not subdivide the crystal volumes explicitly.

Other secondary future work for the half-ring PET insert reconstruction system would

be the implementations of a regularization penalty and an ordered subsets method.

Ordered subsets might be difficult to implement, however, since balancing the subsets

in a non-circular ring is nontrivial. Alternative reconstruction algorithms that do

not rely on ordered subsets for fast convergence, such as preconditioned conjugate

gradient, could be investigated and compared to the EM algorithm.

7.3 Concluding Remarks

In this chapter, we highlighted our main contributions, and also showed that there

is a large amount of interesting future work that could be pursued for both helical

CT and the half-ring PET insert system. As the half-ring insert was the first clinical

system ever built using the concept of virtual pinhole PET, it is to be expected that

significant challenges would be encountered along the way. We have learned many

valuable lessons from this work, and future virtual pinhole PET system designs should

be able to make use of this newfound knowledge.

In conclusion, the work described in this dissertation has established a solid computa-

tional framework for statistical reconstruction, upon which improved techniques may

be tested. It is anticipated that the fully 3D CT and PET reconstruction implemen-

tations and methodology presented here will be used in future projects.
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Appendix A

Derivation of the Penalized AM

Algorithm

To minimize (3.7), the two coupled variables in the argument of the potential function

must be separated. The definition of a 1D convex function (instead of the more general

Convex Decomposition Lemma applied in O’Sullivan and Benac [66]) can be used to

achieve this. A function f(t) is convex if

f [αt1 + (1 − α)t2] ≤ αf(t1) + (1 − α)f(t2), where 0 ≤ α ≤ 1. (A.1)

Using this property,

ψ(μj − μj′) = ψ

{
α

[
1

α
(μj − μ̂j) + (μ̂j − μ̂j′)

]
(A.2)

+ (1 − α)

[ −1

1 − α
(μj′ − μ̂j′) + (μ̂j − μ̂j′)

]}
≤ αψ

[
1

α
(μj − μ̂j) + (μ̂j − μ̂j′)

]
(A.3)

+ (1 − α)ψ

[ −1

1 − α
(μj′ − μ̂j′) + (μ̂j − μ̂j′)

]
.

To further simplify (A.3), let α � 1/2 to obtain

ψ(μj − μj′) ≤ 1

2
ψ [2(μj − μ̂j) + (μ̂j − μ̂j′)] +

1

2
ψ [2(μ̂j′ − μj′) + (μ̂j − μ̂j′)](A.4)

=
1

2
[ψ(2μj − μ̂j − μ̂j′) + ψ(2μj′ − μ̂j − μ̂j′)] . (A.5)
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We plug this surrogate for ψ(μj − μj′) into (3.8), and denote the modified penalty

function by R̂(μ). We now want to solve

∂Φ(μ)

∂μj

=
∂I (d||g)

∂μj

+ λ
∂R̂(μ)

∂μj

= 0. (A.6)

In the final step before obtaining the voxel update function in the AM algorithm, the

derivative of the I-divergence was determined to be

∂I (d||g)

∂μj

= bj − b̂j exp [Zj(μ̂j − μj)] . (A.7)

Additionally, from (3.8) and (A.5),

∂R̂(μ)

∂μj

=
∑

j′∈Nj

wj,j′
∂ψ(t)

∂t

∣∣∣∣
t=2μj−μ̂j−μ̂j′

. (A.8)

Finally, combining (A.6)-(A.8), we obtain the following equation for which we can

readily use Newton’s Method to solve for μj:

bj − b̂j exp [Zj(μ̂j − μj)] + λ
∑

j′∈Nj

wj,j′
∂ψ(t)

∂t

∣∣∣∣
t=2μj−μ̂j−μ̂j′

= 0. (A.9)
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Appendix B

Helical CT Symmetry Validation

In this appendix, we mathematically prove the symmetry discussed in Chapter 3 for

helical CT. In particular, we will evaluate h̃(x, y, z|β, γ, η), the ideal point spread

function, at multiples of a quarter rotation of the gantry.

To begin, we first express the x-ray source position, based on β, as

xf = Rf cos β (B.1)

yf = Rf sin β (B.2)

zf =
β

2π
zfeed. (B.3)

Using the geometry of the CT scanner shown in Figure 3.1, we can parametrically

describe the ray originating at the source position and traveling in the direction of

the detector (γ, η) by

xray(l) = Rf cos β − l cos(β + γ) (B.4)

yray(l) = Rf sin β − l sin(β + γ) (B.5)

zray(l) =
β

2π
zfeed + l tan η, (B.6)

where l is the ray parameter.
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As discussed in Section 3.2.1, the ideal point spread function is nonzero only at points

(x, y, z) along the x-ray path from source to detector. Therefore, we can write

h̃(x, y, z|β, γ, η) � (B.7)

δ[Rf cos β − l cos(β + γ) − x,Rf sin β − l sin(β + γ) − y,
β

2π
zfeed + l tan η − z],

where δ(·, ·, ·) is the Dirac delta function defined in three dimensions with the prop-

erties

δ(ν1, ν2, ν3) �
{

0, ν2
1 + ν2

2 + ν2
3 
= 0

∞, ν2
1 + ν2

2 + ν2
3 = 0

(B.8)

and ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(ν1, ν2, ν3) dν1 dν2 dν3 � 1. (B.9)

Equation (B.7) is the ideal point spread function for any source-detector pair. We

will show that the ideal point spread function for any source-detector pair beyond the

first quarter rotation can be rewritten in terms of the corresponding base symmetry

source-detector pair in the first quarter rotation (i.e., 0 ≤ β < π/2).

When the ray and point are both rotated by 2πk (k ∈ Z> 0) and translated axially

according to zfeed, the resulting point spread function is

h̃[x, y, z + k · zfeed|β + 2πk, γ, η] = (B.10)

δ{Rf cos(β + 2πk) − l cos(β + 2πk + γ) − x,

Rf sin(β + 2πk) − l sin(β + 2πk + γ) − y,

β + 2πk

2π
zfeed + l tan η − [z + k · zfeed]}

= δ[Rf cos β − l cos(β + γ) − x, (B.11)

Rf sin β − l sin(β + γ) − y,

β

2π
zfeed + l tan η − z]

= h̃(x, y, z|β, γ, η). (B.12)
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When the ray and point are both rotated by π/2 + 2πk (k ∈ Z≥ 0) and translated

axially according to zfeed, the resulting point spread function is

h̃[−y, x, z + zfeed(1/4 + k)|β + π/2 + 2πk, γ, η] = (B.13)

δ{Rf cos(β + π/2 + 2πk) − l cos(β + π/2 + 2πk + γ) + y,

Rf sin(β + π/2 + 2πk) − l sin(β + π/2 + 2πk + γ) − x,

β + π/2 + 2πk

2π
zfeed + l tan η − [z + zfeed(1/4 + k)]}

= δ[−Rf sin β + l sin(β + γ) + y, (B.14)

Rf cos β − l cos(β + γ) − x,

β

2π
zfeed + l tan η − z]

= h̃(x, y, z|β, γ, η). (B.15)

When the ray and point are both rotated by π+2πk (k ∈ Z≥ 0) and translated axially

according to zfeed, the resulting point spread function is

h̃[−x,−y, z + zfeed(1/2 + k)|β + π + 2πk, γ, η] = (B.16)

δ{−Rf cos(β + π + 2πk) + l cos(β + π + 2πk + γ) + x,

−Rf sin(β + π + 2πk) + l sin(β + π + 2πk + γ) + y,

β + π + 2πk

2π
zfeed + l tan η − [z + zfeed(1/2 + k)]}

= δ[−Rf cos β + l cos(β + γ) + x, (B.17)

−Rf sin β + l sin(β + γ) + y,

β

2π
zfeed + l tan η − z]

= h̃(x, y, z|β, γ, η). (B.18)
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When the ray and point are both rotated by 3π/2 + 2πk (k ∈ Z≥ 0) and translated

axially according to zfeed, the resulting point spread function is

h̃[y,−x, z + zfeed(3/4 + k)|β + 3π/2 + 2πk, γ, η] = (B.19)

δ{Rf cos(β + 3π/2 + 2πk) − l cos(β + 3π/2 + 2πk + γ) − y,

Rf sin(β + 3π/2 + 2πk) − l sin(β + 3π/2 + 2πk + γ) + x,

β + 3π/2 + 2πk

2π
zfeed + l tan η − [z + zfeed(3/4 + k)]}

= δ[Rf sin β − l sin(β + γ) − y, (B.20)

−Rf cos β + l cos(β + γ) + x,

β

2π
zfeed + l tan η − z]

= h̃(x, y, z|β, γ, η). (B.21)

Finally, when there is no quarter detector offset, axial mirror symmetry can also be

obtained. This symmetry, if available, eliminates the need to compute and store the

system matrix for all detector rows. Only half the rows need to be computed and

stored, as the other half follows symmetrically.

Consider the ray that has opposite source, fan, and cone angles from the base source-

detector pair. Also consider the point that is the reflection of the base point across

the y = 0 and z = 0 planes. Note that although this point and ray are located in

front of the axial FOV of the scanner, they can be rotated and translated axially

into the FOV using the above quarter rotation symmetry. Mathematically, the axial
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mirror symmetry follows as

h̃(x,−y,−z| − β,−γ,−η) = (B.22)

δ[Rf cos(−β) − l cos(−β − γ) − x,

Rf sin(−β) − l sin(−β − γ) + y,

−β
2π

zfeed + l tan(−η) + z]

= δ[Rf cos β − l cos(β + γ) − x, (B.23)

−Rf sin β + l sin(β + γ) + y,

−β
2π

zfeed − l tan η + z]

= h̃(x, y, z|β, γ, η). (B.24)

In this appendix, we have focused our discussion on the symmetry that is present in

h̃(x, y, z|β, γ, η). As explained next, the integrations over the extent of each voxel and

detector element in (3.10) and (3.11), respectively, do not change the symmetry. For

the integral over each voxel, the ideal point spread function is simply being evaluated

at different points. For the integral over the detector element surface, the symmetry

applies to each infinitesimally thin subray that lies within the integration bounds. The

cos η factor in (3.11) does not present any difficulty for the axial mirror symmetry

since cos(−η) = cos η.
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