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1 Introduction

Carlos Alchourrén was a scholar in the old tradition, with a vast culture and
a passion for knowledge. His initial research, with Eugenio Bulygin on Ner-
mative Systems ([Alchourrén-Bulygin 71]), led him to the realization that legal
reasoning is actually representative of a more general kind of reasoning. He
subsequently concluded that classical mathematical logic was not appropiate
for formalizing this empliative and non-deterministic kind of reasoning.

His line of attack shows clearly in the characteristics of the AGM system
of belief revision [AGM 85]. The language of mathematical logic was preserved
and the only big departure from that tradition is the addition of a formalism
to represent changes of a theory. The key element is a non-constructive choice
Junction that provides for a selection of “worlds” (maximally consistent exten-
sions of a theory), which allows a consistent view of the revision to be applied
(meet contraction).

AGM thus provides a definition of a revised theory in terms of a fix point
of the consequence operator. The real advantage of this system is not so much
that of being a depiction of ampliative reasoning, but that of providing a for-
malization of a non-bayesian change of beliefs.

Several authors tailored AGM in order to implement computational proce-
dures of ampliative reasoning ([Williams 96},[Boutillier 93]). All of these at-
tempts raise the issue of defining the choice funcéion. There are two hidden
assumptions in Alchourrdn’s view. The first is that the final decision on the

*We aknowledge the warm hospitality of Antonio Martino and all the people we met in
Pisa in October 1998, during the Workshop on Logic, Computation and Law in Honor of
Carlos Alchourrén.



relevance of worlds rests entively with an agent, individual or collective. The
second one is that this agent delegates the routine tasks of computing all the
theorems to the revision operator. The real procedural aspects of the reasoning
are lost in the assumption that the agent can do the computation.

Almost in parallel with developments in belief revision, the Artificial Intel-
ligence community advanced several formal representations of “common-sense”
reasoning. Although much of that reasearch can hardly be distinguished from
research on non-standard logics, the concern with the possibility of implemen-
tation gave it a special flavor. After a decade or so, in which all this research
was collectively described as non-monolonic logics, a consensus began to arise
that, in order to be implementable, systems should depart drastically from the
classical logic tradition. The computation of consequence operators (the key
elements in logical systems, according to Tarski) is equivalent to the entschei-
dung or decision problems in the respective logics. It i1s well known that decision
problems are only solvable for particulary “well behaved” formal systems. So
in general the dream of implementing non-monotonic systems in terms of con-
sequence operators was abandoned. Instead of that, the ensuing consensus is
that what really matters is the jusiification of an assertion, and that this justi-
fication is a result of a partial computation [Loui 91] [Pollock 87]. Moreover, a
justification can be defeated by another one, if the last one involved more com-
putation. Several systems were proposed, in which sentences are only accepted
after a comparisson among the justifications for and against it. These different
systems perform what is called defeastble reasoning (most recent examples can
be found in [Vreeswijk 93],[Verheij 96]).

Alchourrén devoted his last years to the analysis of the notion of defeasibility.
His idea was to develop a formal system capturing the essentials of defeasibility.
Following the tradition in non-standard logics he proposed a new connective for
the implication, with new properties. A defeasible conditionalization replaced
material implication, in such a way that the consequence operator of the logic
no longer has the properties of modus ponens and sirengthening the antecedent.
These properties of logical inference seemed to Alchourrén incompatible with
the possibility of changing the status of a concluded proposition from “ustified”
to “non-justified”.

The definition of the defeasible conditional is given in terms of material im-
plication and a syntactic operator. Given a defeasible implication, this operator
is the syntactic version of a choice function on worlds. The model theory pro-
vided by Alchourrén shows clearly how the idea of a choice function on worlds
was his preferred device to make logical systems manageable. The idea is simply
that in any interpretation the syntactic operator must be translated into a choice
function, identifying chosen worlds, the worlds in which all the preconditions
for a defeasible rule are met.

Again, an unstated assumption is that the “choice” is made by an agent
able to evaluate all the possible consistent extensions of a theory. Clearly,
Alchourrén had not in mind the possibility of computational implementation.



Moreover, in his 1993 paper he rejected this approach in favor of one based on
AGM [Alchourrén 93). But in his posthumous paper of 1996, the epistemological
reasons that led to that rejection are no longer present (maybe because he
realized the deep connection between both approaches) [Alchourrén 96].

The rest of this paper will be devoted to showing that Alchourrén’s defeasible
conditionals are a cumbersome way to handle defeasibility: these conditionals
hide defeasibility’s essential procedural aspects, and relegate them to a mere
clerical task of explicitating the consequences of the choices made by an exter-
nal agent. We aver that defeasible reasoning is more than that: it is a process
of deliberation that provides constructive justifications and avoids the struggle
with complexity, simply because every partial justification counts. More com-
putation may lead to the defeat of a previously justified conclusion. Defeasible
reasoning is an open process, where the notions of enischeidung or compleie-
ness are no longer relevant. Their importance is overthrown by the relevance of
criteria for efficient adjudication.

So it seems paradoxical that, the representation of legal reasoning being his
main goal, Alchourrdn chose the logical approach instead of defeasible reasoning.
In the following scctions we will briefly introduce both approaches, in order to
compare them and to show why the Zeitgeist favors defeasible reasoning,.

2 A Logic for Defeasible Conditionals

The vocabulary of the logical system presented by Alchourrdn is typical of a
modal sentential logic with the addition of a strict implication =>. The syntax
is the sarne as that of system T, but not allowing nested strict implications.

To this modal framework, a monadic operator f is added such that
([Alchourrén 93),[Alchourrén 96]):

o if A is a sentence then fA is a sentence
o (ezpansion)F fA — A
This operator allows the definition of the defeasible conditional connective >

Definition 1
A>B = fA=1B
The following are properties of the defeasible conditionals:
o (extensionality) - (A< B) — (fA & fB)
o (limit ezpansion) - OA — OfA (where < is the modal operator possible)
o (hierarchical ordering)

F(fIAVB) = fA)V(f(AVB) & fFB)V(fIAVB) & (fAV fB)



And properties lacking in the behavior of these conditionals are (in order to
avoid a colapse of defeasible conditionals into material implication):

¢ (defeasible modus ponens) - (A > B) — (A — B)
* (strengthening the antecedent) F (A > B) — ((AAC) > B)

All these conditions define the system DFT. Its semantics is given in the
following:

Definition 2 A model for DET is:

(Wil 1, Ch%)

where W is the set of worlds, [| [] s such that for any sentence A, [|A[] € 2V
(that is, to each senience it assigns a subset of W). Ch* is a choice function
that, for any sentence A gives a subset of W, the worlds in which f is true,
from the point of view of an agent

The following are the semantic versions of the axioms for f and >:
e (expansion) Che(A) C [|4]]

o (extensionality) If [|A]] = [| B|] then Ch®(A4) = Ch*(B)

o (limil expansion) If [|A]] # @ then Ch¥(A) # 0

o (hierarchical ordering)

Ch®(A) or
Ch*(AV B) = { Ch*(B) or
Ch*(A) U Ch(B)

The interpretations of f, = and > are:
o [|fA]] = Ch*(4)

* we[lA= Bl iff |A]] C[|B]]

o wE[|A> B[] iff Ch*(A) C{|B]]

f (as the syntactic counterpart of Ch®), being defined in terms of an agent
e, licenses arbitrariness in the definition of this system. The intuitive meaning
of fAIs ANAI V.. A Ap, where Ay, ... A, are the assumptions “associated”
(according to o) with A. So, if A > B, A is not a sufficient condition for B. It
is a part of a suficient condition (fA4) or, in von Wright’s terms, a confribuiory
condition.

When particular knowledge is incorporated as a set of proper axioms K, the
system DFT 4 K provides theorems that differ according the agents that define
f (therefore the system should be called DFT™ + K).

To see how this system works and how little it captures of the idea of defea-
sible reasoning we present the following example:



Example 1 Consider the following sentences:
e Birds fly
e Penguins do not fly
+ Penguins are Birds
Their representation in the language of DFT -+ K is, respectively:
e Ba) > F(a)
e Pla) > ~F(a)
s P(a) = B(a)

where we assume that each formula is a schema, where a represents a constant
provided by the finile knowledge base K. Then we have the following:

K = {B(Opus), P(Opus)}
Given two eziernal agents, o, 8 suppose that their choices are:
* Ch®(B(Opus)) = [|B(Opus) A ~P(Opus)|]; Ch*(P(Opus)) = [[P(Opus)]]

o Ch#(B(Opus)) = [|B(Opus) A=P(Opus)[]; ChP(P(Opus)) = [|P(Opus) A
=D(Opus)]] (where D(Opus) represents the sentence “Opus is dead”)

Thus f*(B(Opus)) = [fP(B(Opus)) = (B(Opus) A —P(Opus)) but
f*(P(Opus)) = P(Opus) and f2(P(Opus)) = (P{Opus) A ~D(Opus)).
For o, therefore the defeasible conditionals are equivalent to:

B(Opus) A ~P(Opus) = F(Opus)
P(Opus) = ~F(Opus)
and so (since the first statement has a non valid antecedent) - F(Opus) can be

inferred.
But for 8 the defeasible conditionals are equivalent {o:

B{Opus) A ~P(Opus) = F(Opus)
P(Opus) A =D(Opus) = ~F(Opus)

and so, nothing can be inferred about the flying capabilities of Opus, because
both rules heve non-valid aniecedents.

This example shows also that Alchourrén’s notion of defeasibility is more
conservative than the most conservative logical formalisms of non-monetonic
reasoning in Artificial Intelligence. Even Circumscription (see [McCarthy 86}),
solves in itself (without relaying on an “external agent”) the problem of defining
the relevant frame for the problem.

It is, simply put, that the defeasible conditionals in DFT' represent incom-
plete information and the system in itself does not even attempt to give an
answer without external interference.



3 Defeasible Reasoning

Defeasible reasoning is concerned with finding warrants for sentences. What
distinguishes this type of reasoning from logic is that it is fundamentally pro-
cedural: the warrant of sentences is not defined in terms of the consistency of
the warranted sentences with a set of axioms, but in terms of the procedure
followed to support them [Simari-Loui 92], [Vreeswijk 97).1

The procedure of justification is called argumentation. The idea is that
arguments or defeasible proofs are derived for and against a sentence. Arguments
can be partially ordered in terms of their “conclusive strength”. If given two
arguments H1 and Ha support A and —A, respectively, and H; < Hy (where <
represents the relation less strong) then we say that Ha defeats Hy. It follows
that —A4 is justified (if no Ha defeats H,).

The choice of the formal language in which to develop this approach implies
a departure from Alchourrdn’s approach. While he incorporates the defeasible
conditional in the object language, we lift all the conditionals to the meta-
language, treating them as rules. Rules are easy to implement, and this is a very
important consideration in the design of defeasible reasoning systems. Rules,
with thetr “IF-THEN” nature, seem to be more adequate to represent the means
by which a reasoner generates arguments. In contrast, in classical logic, the
equivalence of the material implication A — B with =4 V B eliminates all the
rule-like characteristics from the conditional.

We will consider a finite set £ of instantiated sentences in a first order
language (with the conventional connectives, except material implication).? £
is constructed applying a finite set of rules of inference on a finite atomical
knowledge base K:

o sirict rules of inference A = A, where A C L, Ac L3

o defeasible rules of inference A > A (where > is no longer a connective but
a meta-linguistic symbol)

The recursive application of rules of inference defines what is called an ar-
gument:

Definition 3 The pair (H, A) is called an argument for A, where:
e Ael

1We present a very simplified version of defeasible reasoning, in which important features
are omitted. This is in order to not mislead the reader with technical details that are not
relevant for the comparison with Alchourrén's system.

280, £ does not include universal or existential quantified formulas, as well as instantiated
material implications.

3Every implication in the object language should be subsituted by a strict rule of inference,
in order to treat the conditicnals (defeasible or strict) in a similar way.




s H is @ finile tree, with nodes in L. The rool node is A and each node B
has children B iff it exists a rule B = B or a rule B > B. The leaves of
H are seniences in K

o for at least one node B in H, and its children B, it exists a defeasible rule
of inference B > B

Probative strength can have several characterizations. We will consider here
the following:

Definition 4 Given two arguments (M, A) and (M, A'), we say the first one
has less probative strenght (M, Ay < (H , A} iff

e there exists a node A" inH suck ihat there exists a subsel of nodes A" of
the tree M and a strict rule A" = A"

o there exists @ node A" in H such ihat there is no subset of nodes A" of
the tree H and a strict rule A" = A"

This relation allows to define the stronger relationship of defeat:

Definition 5 Given (H, A) and (H', A"), we say that (H', 4"Y defeats {H, A)
(symbolized (M, A) < (H',A")) if:

o there exists a subiree H of H, with root =A and (H”, —IA') < (’H',A')
o it does not exist @ sublree’ H of N, with rooi —=A and (’Hm,—'A) < (M, A)

The following property is straightforward:

Proposition 1 <€ is en asymmetric relationship

Proof 1 If (M, A) < (H ,A) then it is immediate, from lhe definition of <
that il does not exist o sublree H" of H', with rool =A such that (H ,—A) «
(M, A). Therefore (H , A') & (H, A).

Argumentation is the process by which arguments are generated for and
against sentences. The goal is to decide if an initial sentence is warranted or
not. A search procedure defines the notion of warranted senience. Given the
set of arguments on £, ARG this procedure generates alternatively arguments
supporting a sentence and arguments against that sentence or against sentences
in their supports:

Procedure 1 To decide if a sentence Ay = A is warranted or noi the following
search procedure must be applied:

¢ PRO generate a set of possible arguments supporting Ag, ARG, that is,
arguments of the form (Hg, Ag) *

1We assume here that there exists at least one argument supporting 4g, otherwise it wounld
be trivially not warranted.



e CON generate the sel of arguments ARG, C ARG — ARGy, such that
{H1, A1) € ARG, iff there is a (Ho, Ao) € ARGo such that (Hg, Ag) <
{Hi, A1)

if there is one of the supporting arguments, say (H§, Ao) € ARGy, for
which there is no (M, A1), such that (Hy, Ao) < {H1, A1), we can say
that Ag is warranted. If noi,

¢ PRO generale the sel of arguments ARG: C ARG — U <2 ARG such
that (Hq, As) € ARGy iff there exists (Hi, A1) € ARGy, wzth (H1, A1) <
(Ha, Aa)

if there is one of the arguments, say {H7, A;} € ARG, thal cannol be
defeated by any {Ha, As), we say that Ag is nol warrenied. If not,

¢ PRO generate the set of argumenis ARGy C ARG — U icon ARG such
that (Hay, Aag) € ARG sy, iff there exists (Hap—1, Aag—1) E ARGy —1, with
(Hak-1, Azp—1) € (Hop, Aor}

if there is one of the arguments, say (Hy,_i, Aok—1) € ARGop_1, that
cannotl be defeated by any (Mag, Asr), we say that Ag is not warranted. If
not,

+ CON generate the set of arguments ARGa11 C© ARG — |J; cop1 ARG,
such that (Hapy1, Asry1) € ARGapqr iff there is a (Hap, Aag) € ARG o
such that (Hok, Aar) € (Hakys, Azk+1)

if there is one of the supporting arguments, say (H3,, Aax) € ARGy, for
which there is no (Hapy1, Aagpt1), such that (Hi, Asp) <€ (Hap1, Aovtr),
we can say that Ay is warranted. If not,

| I

One of the properties of arguments generated in the search is that there are
no cycles. That means that if an argument (H,,, A} is in ARG, it cannot be
in ARGy, for & > m. This requirement, togheter with the fact that ARG is
finite ® ensure the following result:

Lemma 1 The search procedure applied to a sentence A € L terminates in
finite time, indicating that A is warranied or not warranied

5Because £ and the sct of rules of inference are both finite.



Proof 1 Suppose that the procedure does not terminale. Then, for each argu-
ment in support of A, {Ho, Ag), it can be generated o sequence {{Hp, Az)}S2,,
where (Hy, Ap) <€ (Hig1, Avar1). As eyclicity is not allowed, there does not
exist a repeated argument in the sequence. Absurd, because ARG is finite.

Therefore, there ewists an argument {Hy,A), such that there is no
(M1, Apq1), (Hi, Ar) € (Mir, Akgr). If b is an even number, (My, Ay)
was generated in a pro stage, and it follows that Ay is warranted. If k is odd,
it follows that Ag is notl warranied.

The following version of Example 1, shows how the search procedure can be
applied:

Example 2 Consider again the case of Opus. Now, we represent the condi-
tional expressions by means of rules of inference:

¢ P(a) = B{a)
* B(a) > F(a)
. P(a) > —|F(a)

®There exist another inductive characterization of argumenialion in stages, by a labeling
procedure:

Procedure 2 The generation of arguments and the comparison among them is dene in
several stages:

o cvery (H,A), defines a level-G argument

* an argument ('H’,AI) is an level-(n+1) argument if there is no level-k argument
('H”,A"), for k < n, such that ('HJ,A') < ('H”,A")

This process has also as a goal to warrent conclusions. Formally:

Definition 6 A sentence A € £ is warranted if it exist an argument {H, A) and en m such
that for each n > m, (H, A} is a level-n argument

The set of arguments ARG with the relation € verifies the following:

Theorem 1 There exists a warranted sentence A in £

Proof 1 Suppose not. So, for any A® € £ end any (K", A% € Z, if {H9, A% is a leveln
argument, there is ¢ m > n such that {'HO,AO) is not a level-m argument, Therefore il exists
(HY,AY) € L, en level-(m-1) argument such that (%, A®) < (H1, A}). This procedure con
be repeated indefinitely: for each argument (H”, A¥) exists an argument (HEFL AR such
that (H*, ARY @ (HFH, AR+,

The sequence {(Hk,Ak)}mo has, by definition, no repeated elements. Absurd, because
ARG is finite.

This result shows that when working with a finite knowledge base (that is the meaning of a
finite £}, there is a procedure that without external intervention finds the sentences that the
knowledge base justifies.



And again, we have that P(Opus).
We wani to see if F(Opus) is a warranied senience. We can generate an
argument for ii:

* argo = ({P(Opus) = B(Opus), B(Opus) > F{Opus)}, F(Opus))
Now we can generate an argument against F(Opus):
o arg: = ({P(Opus) > ~F(Opus)}, =F(Opus))

It is immediale to see thal argy < argy, because from P{Opus) in arg
can be derived B(Opus) (via P(Opus) => B(OPus)) in argg, while from
P(Opus), B(Opus) no node in the iree in arg, can be inferred. As the con-
clusions of both arguments are contradictory it follows that argy < arg, .
Moreover, no argument args can be generated against argy, so F(Opus) is
not warranted.
To apply the procedure to —F(Opus), we can say thai:

s argy = {{P(Opus) > ~F(Opus)}, ~F(Opus))

and the argument againsi is:

o arg; = ({P(Opus) = B(Opus), B(Opus) > F(Opus)}, F(Opus))

Bul is clear that (us argé, = arg; and av‘g’l = arge)} aa'gé & arg’l, and
therefore ~F(Opus) is warranied.

An interesting feature of the search procedure is what happens in the case
of bounded resources (time, computational power, etc.). The procedure can
stop in any stage and provide a {eniative answer. This aspect of defeasible
reasoning makes it appropiate for representing ampliative inference where both
computation and corrigibility can force revision. An outstanding example is
legal reasoning with its open {fezture, which provides for robustness in both
procedure and specification [Hart 61].

4 Comparison between systems

Alchourrén’s DFT and the defeasible reasoning system presented in the pre-
vious section differ in several aspects. One of the differences is that defeasible
reasoning is not concerned with semantical versions of the procedures. Anyway,
it is possible to give one in order to make the differences more clear:

Definition 7 A model for defeasible reasoning on I is:
(VV$ “ I]) Ch)
where w € W is a sel A C L, where there is no senience A, such that both A

gnd ~A are in w. A particular world w* is distinguished, X C w*, containing

10



all the sentences of the knowledge base, and such thai for every A such that
KF A Aeguw

The interpretation correspondence {| || is such that for any sentence A €
L,AEw, [|A]] = {w: whkg A}, while for A & w*, [|A]] = w*. Ch, the choice
function, gives, for each sentence A, all the worlds that warrant A. That is,
Ch(A) = {w :such that {(w, A) and A is warranted }. For the case in which
A € w*, we specify that Ch(4) = w*

These definitions show immediatly that the following properties are valid:
s (ezpansion) Ch(A4) C [|A4]]
¢ (extensionality) If [|Af] = [| B]} then Ch(A4) = Ch(B)

and the following ones are not valid in general:
o (Limil ezpansion} If [|A|] # @ then Ch(A) # 0

o (hierarchical ordering)

Ch{A) or
Ch{Av By= < Ch(B) or
Ch{A)U Ch(B)

The non-validity of the property of limil ezpansien is a natural consequence
of the fact that a prima facie derivation of a sentence (the possibility of finding
an argument for a conclusion) does not imply that in the end the conclusion
will be accepted (warranted). On the other hand, the property of hierarchical
ordering seems to be also excessive for a defeasible system: the fact that a
disjunction is warranted, does not mean that any one component sentence is
warranted, nor that the support for the disjunction is equal to the union of the
supports of the components,

It is obvious that DF'”s semantics differs from this one, but the most im-
portant feature to note is that the key difference resides in Alchourrén’s f. In
his system:

o [|fAllppr =Ch*(4) 7

For defeasible reasoning we can extend the analogy, saying that there must exist
a “function” f such that:

o [FAlle = Che(A)

"We use the subscript to distinguish, when necessary, the system in which the property
holds.

11



Of course, f is nothing other than the result of the search procedure. Not
only the semantics is superfluous, but also the possibility of violating limit ex-
pansion and hierarchical ordering permit a more honest depiction of defeasibility.

The intuitive notion of defeasibility that Alchourrén intended is not fully
captured in his system. But what eluded completely his analysis was the fact
that what he needed was not a function giving the beliefs of an agent, but a
procedure. That is, he lost sight of the fact that reasoning with defeasibility is
a process of deliberation.

5 Conclusions

Logic was always considered as a discipline studying the process of inference.
This notion encompassed deductive as well as non-deductive (or ampliative)
inference. But in a short period in historical terms, from 1840 to 1910, logic
was reduced only to the study of deductive inference, a process that can be
explained by the heavy demand of solid foundations required by mathematics.

This trend is still very powerful, and well into the 1980s was even very influ-
ential in Artificial Intelligence. But the slow realization that deductive reasoning
is the exception rather than the rule when the reasoner faces uncertainty, in-
complete knowledge or limited deductive power, led the community to change
the focus from axiomatic representations to procecdural characterizations. De-
feasible reasoning seems to be the paradigmatic case of this trend. Moreover, it
can be seen as the appropiate formalism to represent ampliative inference.

The trend towards processes instead of axiomatic characterizations is cer-
tainly gaining momentum. New generations are learning (using computers) to
think in terms of processes. Even mathematics is shaken by this trend, so it
seems that the very core of logics is on the verge of great changes, maybe equal
in magnitude (but in opposite sense) to those of the beginning of this century.

Therefore it is surprising, in a sense, that such a distinguished scholar as
Carlos Alchourrén, while trying to establish the appropiate logic for legal rea-
soning (one of the most patent examples of ampliative reasoning) decided to
remain in the waters of deductive logic.
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