
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

McKelvey School of Engineering Theses & 
Dissertations McKelvey School of Engineering 

Summer 8-15-2018 

Development and Application of Rotation and Curvature Development and Application of Rotation and Curvature 

Correction to Wray-Agarwal Turbulence Model Correction to Wray-Agarwal Turbulence Model 

Xiao Zhang 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds 

 Part of the Mechanical Engineering Commons 

Recommended Citation Recommended Citation 
Zhang, Xiao, "Development and Application of Rotation and Curvature Correction to Wray-Agarwal 
Turbulence Model" (2018). McKelvey School of Engineering Theses & Dissertations. 383. 
https://openscholarship.wustl.edu/eng_etds/383 

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington 
University Open Scholarship. It has been accepted for inclusion in McKelvey School of Engineering Theses & 
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, 
please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=openscholarship.wustl.edu%2Feng_etds%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/383?utm_source=openscholarship.wustl.edu%2Feng_etds%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


 

 

WASHINGTON UNIVERSITY IN ST. LOUIS 

School of Engineering & Applied Sciences 

Department of Mechanical Engineering & Material Science 

 

Dissertation Examination Committee: 

Ramesh Agarwal, Chair 

Kenneth Jerina 

Swami Karunamoorthy 

David Peters 

Palghat Ramachandran 

 

 

 

Development and Application of Rotation and Curvature Correction to Wray-Agarwal 

Turbulence Model 

by 

Xiao Zhang 

 

 

A dissertation presented to  

The Graduate School  

of Washington University in 

partial fulfillment of the 

requirements for the degree 

of Doctor of Philosophy 

 

 

 

 

August 2018 

St. Louis, Missouri 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2018, Xiao Zhang



ii 

 

Table of Contents 
List of Figures ........................................................................................................................... iv 

List of Tables ............................................................................................................................ vi 

Nomenclature ........................................................................................................................... vii 

Acknowledgments .......................................................................................................................x 

Abstract of the Dissertation ...................................................................................................... xii 

Chapter 1: Introduction ...............................................................................................................1 

1.1 Background ...................................................................................................................1 

1.2 Objectives .....................................................................................................................2 

1.3 Outline ..........................................................................................................................2 

Chapter 2: Turbulence Modeling .................................................................................................5 

2.1 Introduction ..................................................................................................................5 

2.2 Reynolds-Averaged Navier-Stokes Equations ...............................................................5 

2.3 Eddy Viscosity Turbulence Models ...............................................................................6 

2.3.1  Spalart-Allmaras (SA) Model ........................................................................................... 6 

2.3.2  Shear-Stress-Transport k-ω Turbulence Model ................................................................. 7 

Chapter 3: Development History of Wray-Agarwal (WA) Turbulence Model ..............................9 

3.1 WA2017m ....................................................................................................................9 

3.2 Wall Distance Free WA2018 Model ............................................................................ 12 

3.3 WA2018EB Model ..................................................................................................... 13 

Chapter 4: Introduction to Rotation and Curvature Correction ................................................... 15 

4.1 Background ................................................................................................................. 15 

4.2 Effect of Rotation and Curvature ................................................................................. 16 

4.3 Equilibria of the k and ε Equations .............................................................................. 18 

4.4 Modified Coefficients Approach ................................................................................. 22 

4.5 Bifurcation Approach .................................................................................................. 25 

4.6 Spalart-Shur RC Correction ........................................................................................ 29 

4.7 Zhang-Yang Correction............................................................................................... 30 

4.8 Arolla Correction ........................................................................................................ 31 

Chapter 5: Uncertainty Quantification ....................................................................................... 32 



iii 

 

Chapter 6: Validation Cases ...................................................................................................... 36 

6.1 Wall Bounded Flow .................................................................................................... 36 

6.1.1  2D Curved Duct ............................................................................................................. 36 

6.1.2  2D U-turn Duct .............................................................................................................. 39 

6.1.3  2D Rotating Channel ...................................................................................................... 44 

6.1.4  2D Stationary and Rotating Backward-facing Step .......................................................... 47 

6.1.5  Rotating Cavity .............................................................................................................. 50 

6.1.6  2D Stationary and Rotating Serpentine Channel .............................................................. 55 

6.1.7  Rotor-Stator Cavity ........................................................................................................ 59 

6.1.8  Hydrocyclone ................................................................................................................. 64 

6.2 Unbounded Flows ....................................................................................................... 66 

6.2.1  Circular Jet in Subsonic Cross Flow................................................................................ 67 

6.2.2  Glenn Jet: Supersonic Jet in Subsonic Cross Flow........................................................... 72 

6.3 Summary of Models Performance ............................................................................... 76 

Chapter 7: Detached Eddy Simulation (DES) ............................................................................ 78 

7.1 Introduction ................................................................................................................ 78 

7.2 WA2017m-RC-DES Model ........................................................................................ 79 

7.3 Validation Cases ......................................................................................................... 80 

7.3.1  Curved Duct ................................................................................................................... 80 

7.3.2  U-turn Duct .................................................................................................................... 82 

7.3.3  Rotating Channel ............................................................................................................ 85 

7.3.4  Rotating Backward-facing Step ...................................................................................... 86 

7.3.5  Stationary and Rotating Serpentine Channel ................................................................... 88 

Chapter 8: Summary and Future Work ...................................................................................... 91 

8.1 Summary .................................................................................................................... 91 

8.2 Future Work ................................................................................................................ 92 

References ................................................................................................................................ 94 

Vita ........................................................................................................................................... 99 

 

 



iv 

 

List of Figures 
Figure 1.1 Free shear flow illustrating laminar, transition and turbulent phases [1]. .....................2 

Figure 4.1 Sketch of (a) convex and (b) concave wall. ............................................................... 17 

Figure 4.2 Flow in a planar rotating channel. ............................................................................. 18 

Figure 4.3 Bifurcation diagram [15]. ......................................................................................... 29 

Figure 5.1 Sobol indices of WA2017m-RC model coefficients with respect to (a) Cp along the 

inner wall, (b) Cp along the outer wall, (c) Cf along the inner wall and (d) Cf along the outer wall.

 ................................................................................................................................................. 33 

Figure 5.2 Results for (a) Cp along the outer wall, (b) Cp along the inner wall, (c) Cf along the 

outer wall and (d) Cf along the outer wall using the trial and error process for values of 

coefficients cr1, cr2 and cr3. ........................................................................................................ 34 

Figure 6.1 (a) Computational grid and (b) coordinate system for the curved duct from Ref. [33].

 ................................................................................................................................................. 37 

Figure 6.2 Comparison of pressure coefficient along the convex wall of the curved duct. .......... 38 

Figure 6.3 Comparison of skin friction coefficient along the convex wall of the curved duct. .... 38 

Figure 6.4 Two-dimensional grid (204×100) inside the U duct. ................................................. 39 

Figure 6.5 Surface pressure coefficient Cp along the outer boundary of the U-duct. ................... 40 

Figure 6.6 Surface pressure coefficient Cp along the inner boundary of the U-duct. ................... 41 

Figure 6.7 Skin friction coefficient Cf along the outer boundary of the U-duct. .......................... 42 

Figure 6.8 Skin friction coefficient Cf along the inner boundary of the U-duct. .......................... 43 

Figure 6.9 Velocity profiles at different sections of the U-duct. ................................................. 44 

Figure 6.10 Rotating channel and coordinate system. ................................................................ 45 

Figure 6.11 Velocity distribution in the channel at different rotation numbers. .......................... 46 

Figure 6.12 Schematic of the span-wise rotating backward-facing step from Ref. [40]. ............. 48 

Figure 6.13 Comparison of mean velocity profile at (a) Ro = 0, (b) Ro = 0.05, and (c) Ro = 0.2 at 

multiple locations x/h = 0, 1, 2, 4, 7 and 24 on backward facing step. ........................................ 49 

Figure 6.14 Sketch of rotating cavity with radial outflow and radial inflow. .............................. 51 

Figure 6.15 Axial distribution of the mean tangential velocity profile at r* = 0.556. .................. 53 

Figure 6.16 Axial distribution of the mean radial velocity profile at r* = 0.556. ........................ 53 

Figure 6.17 Sketch of rotating cavity with radial outflow and axial inflow................................. 54 

Figure 6.18 Radial velocity profile at x/Ro = 0.633 and x/Ro = 0.833. ........................................ 55 

Figure 6.19 Definitions of geometry locations in serpentine channel [46]. ................................. 56 

Figure 6.20 Mean velocity profile in stationary serpentine channel. ........................................... 57 

Figure 6.21 Mean velocity profiles in rotating serpentine channel at Ro = 0.32. ......................... 58 

Figure 6.22 Sketch of the rotor-stator cavity with an axial through flow [43]. ............................ 60 

Figure 6.23 Axial profile of the (a) mean radial and (b) tangential velocity components at r* = 

0.56. .......................................................................................................................................... 61 

Figure 6.24 Axial profile of the (a) mean radial and (b) tangential velocity components at r* = 

0.56. .......................................................................................................................................... 62 



v 

 

Figure 6.25 Axial profile of the mean radial and tangential velocity components at three 

positions. ................................................................................................................................... 63 

Figure 6.26 Geometry [53] and mesh of the Stairmand cyclone. ................................................ 64 

Figure 6.27 Path lines colored by velocity showing the strongly swirling flow in hydrocyclone.65 

Figure 6.28 Radial profile of axial and radial velocity at two positions. ..................................... 66 

Figure 6.29 The mean flow field of an incompressible transverse jet [55]. ................................. 68 

Figure 6.30 Schematic of the round turbulent jet in cross flow [55]. .......................................... 69 

Figure 6.31 (a) Computational domain and (b) front view of the mesh with boundary types. ..... 70 

Figure 6.32 Vertical velocity profiles at three locations. ............................................................ 71 

Figure 6.33 Computational domain of the Glenn jet. ................................................................. 73 

Figure 6.34 Sketch of four jet locations downstream. ................................................................ 74 

Figure 6.35 Velocity profiles at four jet downstream locations. ................................................. 75 

Figure 7.1 Comparison of pressure coefficient along the convex wall of the curved duct. .......... 81 

Figure 7.2 Comparison of skin friction coefficient along the convex wall of the curved duct. .... 81 

Figure 7.3 Comparison of velocity profile at downstream locations in the curved duct. ............. 82 

Figure 7.4 Structured mesh inside the U- duct shown in 2D....................................................... 83 

Figure 7.5 Results for (a) Cp along the outer wall, (b) Cp along the inner wall, (c) Cf along the 

outer wall and (d) Cf along the outer wall. ................................................................................. 84 

Figure 7.6 Velocity profiles at different sections of the U-duct. ................................................. 85 

Figure 7.7 Velocity distribution in the rotating channel at different rotation numbers. ............... 86 

Figure 7.8 Comparison of mean velocity profile at (a) Ro = 0, (b) Ro = 0.05, and (c) Ro = 0.2 at 

multiple locations x/h = 0, 1, 2, 4, 7 and 24 on the backward facing step. .................................. 87 

Figure 7.9 Mean velocity profile in stationary serpentine channel. ............................................. 89 

Figure 7.10 Mean velocity profiles in rotating serpentine channel at Ro = 0.32. ......................... 90 

 

  



vi 

 

List of Tables 
Table 5.1 Computational parameters used in UQ analysis of WA2017m-RC. ............................ 33 

Table 5.2 Closure coefficients for original and modified WA2017m-RC model. ....................... 35 

Table 6.1 Values of the flow parameters for the three cases. ...................................................... 60 

Table 6.2 Summary of models behavior in each case. ................................................................ 77 

Table 7.1 Densities of three meshes employed. ......................................................................... 80 

 

 

 

  



vii 

 

Nomenclature 
 

Cp = pressure coefficient 

Cf = skin friction coefficient 

Cw =  volume flow rate coefficient 

cr1, cr2, cr3 =   closure coefficients for RC correction 

D =  diameter 

ER = WA2017m model destruction term 

Ebb = Baldwin-Barth destruction term 

Ek-ω = old WA2017 model destruction term 

ER = expansion ratio 

FDES = characteristic length scale ratio of DES model 

fμ = WA2017m model wall-damping function 

fν1 = SA model wall-damping function 

f1 = blending function of Wray-Agarwal model 

fr1 = RC correction function 

k =  turbulent kinetic energy 

LR = turbulent length scale of WA2018-EB model 

Lvk = von Karman length-scale 

lDES = characteristic length scale of DES model 

lLES = characteristic length scale of LES model  

lRANS = characteristic length scale of RANS model  

lref = reference length scale of WA2018EB model 

M =  Mach number 

n = number of uncertain variables 



viii 

 

np = oversampling ratio 

NS =   UQ sample number 

p =  order of the response surface polynomial 

Q =  volume flow rate 

R =   WA2017m model variable; k/ω 

Ri =   Richardson number 

Ri,Ro =   inner and outer radius 

Ro =   rotation number 

S =  strain rate magnitude 

Sij =  strain rate tensor 

uτ =  friction velocity 

Ub0 = upstream bulk velocity 

Ub = downstream bulk velocity 

Vr =  radial velocity  

Vz =  axial velocity   

Vθ =  tangential velocity  

Wij = vorticity tensor 

∆x = grid spacing along x direction 

∆y = grid spacing along y direction 

∆z = grid spacing along z direction 

Ω = vorticity magnitude 

χ =  undamped eddy-viscosity-to-laminar-viscosity ratio 

ε = turbulent dissipation 

νt = turbulent eddy viscosity 

ρ = density 



ix 

 

τw =  wall shear stress 

ω =  specific turbulent dissipation rate 

 

  



x 

 

Acknowledgments 
I would like to express my sincere gratitude to my academic advisor Dr. Ramesh K. Agarwal for 

his patient guidance, inspiring encouragement and continuous support. Without his help, my thesis 

has no chance to be accomplished. Besides the academic area, he is also an excellent mentor in my 

life. It is my great honor to be under his direction. 

I was grateful to receive the efforts and time contributed from my committee members and the 

staff of the MEMS department during my time at Washington University. 

I also want to thank all of my colleagues working in the Computational Fluid Dynamics Laboratory 

of the Department of Mechanical Engineering & Materials Science at Washington University in 

St. Louis, for creating a wonderful learning environment. 

Last but not the least, I especially want to thank my family for caring and supporting me. They are 

always there for me no matter what. 

The financial support for this work was provided by a MO NASA EPSCoR Grant. It is gratefully 

acknowledged. 

 

Xiao Zhang 

Washington University in St. Louis 

August 2018 

 

 

 



xi 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my grandparents. 

 

 

 

 

 

 

 

 

 

 

 



xii 

 

Abstract of the Dissertation 

Development and Application of Rotation and Curvature Correction to Wray-Agarwal 

Turbulence Model 

by 

Xiao Zhang 

Doctor of Philosophy in Mechanical Engineering 

Washington University in St. Louis, 2018 

Research Advisor: Ramesh Agarwal  

Computational Fluid Dynamics (CFD) is increasingly playing a significant role in the analysis and 

design of aircrafts, turbomachines, automobiles, and in many other industrial applications. In 

majority of the applications, the fluid flow is generally turbulent. The accurate prediction of 

turbulent flows to date remains a challenging problem in CFD. In almost all industrial applications, 

Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a turbulence model are 

employed for simulation and prediction of turbulent flows. Currently the one-equation (namely the 

Spalart-Allmaras (SA) and Wray-Agarwal (WA) and two-equation (namely the k-ε and Shear 

Stress Transport k-ω) turbulence models remain the most widely used models in industry. However, 

improvements and new developments are needed to improve the accuracy of the turbulence models 

for wall bounded flows with separation in the presence of adverse pressure gradients, and for flows 

with rotation and curvature (RC) such as those encountered in turbomachinery, centrifugal pumps 

and the rotating machinery in other industrial devices. The goal of this research is to enable the 

eddy-viscosity type turbulence models to accurately account for the rotation and curvature effects. 

To date, there have been two approaches for inclusion of RC effects in turbulence models, which 

can be categorized as the “Modified Coefficients Approach” which parameterizes the model 
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coefficients such that the growth rate of turbulent kinetic energy is either suppressed or enhanced 

depending upon the effect of system rotation and streamline curvature on the pressure gradient in 

the flow and the “Bifurcation Approach” which parameterizes the eddy-viscosity coefficient such 

that the equilibrium solution bifurcates from the main branch to decaying solution branches. In 

this research, the uncertainty quantification (UQ) is applied to examine the sensitivity of RC 

correction coefficients and the coefficients are modified based on the UQ analysis to improve the 

model’s behavior. Both these approaches are applied to the widely used turbulence models (SA, 

SST k-ω and WA) and they show some improvement in predictions of turbulent flow in all 

benchmark test cases considered, namely the flow in a 2D curved duct, flow in a 2D U-turn duct, 

fully developed turbulent flow in a 2D rotating channel, fully developed turbulent flow in a 2D 

rotating backward-facing step, flow in a rotating cavity, flow in a stationary and rotating serpentine 

channel, flow in a rotor-stator cavity and in a hydrocyclone as well as two wall-unbounded 

turbulent flow cases. All the simulations are conducted using the commercial software ANSYS 

Fluent and the open source CFD software OpenFOAM. The success of this research should 

enhance the ability of the RANS modeling for more accurate prediction of complex turbulent flows 

with rotation and curvature effects. In addition to the RANS modeling of RC effects, a new DES 

model incorporating the WA2017m-RC turbulence model (referred to as the WA2017m-RC-DES 

model) is developed and validated against experimental and DNS data. Further improvements are 

obtained with the DES model in some test cases. 
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Chapter 1: Introduction 

1.1 Background 
The Reynolds number (Re) is the single most important non-dimensional number in fluid dynamics. 

It is defined as the dimensionless ratio of the inertial forces to viscous forces. The Re allows us to 

characterize whether a flow is laminar or turbulent. Laminar flow is characterized by lower Re and 

higher diffusion over convection. Turbulent flow on the other hand is characterized by higher Re 

where inertial forces dominate considerably, resulting in largely chaotic flow. The flow may also 

undergo a transitioning phase whereby the flow exhibits neither completely laminar nor 

completely turbulent characteristics. The behavior of laminar flow is determined by a single length 

scale defined by the boundaries of the flow region. If one can accurately describe the boundaries 

of a laminar flow region, the flow behavior can be calculated precisely using the Navier-Stokes 

equation. Only for simple geometries and fully developed flows, it is possible to obtain the exact 

analytical solutions. Although the physics of turbulent flows is governed by the Navier-Stokes and 

continuity equations, turbulent flow has features that span many length and time scales. At present, 

even on the most powerful computers, it is difficult to capture all these scales by numerical 

simulations of governing equations for 3D turbulent flows past complex objects at high Reynolds 

numbers of industrial significance. Fig. 1.1 shows the transition from laminar to turbulent flow. 
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Figure 1.1 Free shear flow illustrating laminar, transition and turbulent phases [1]. 

1.2 Objectives 
The original scalar eddy viscosity turbulence models are not capable of accounting for the system 

rotation and streamline curvature. One of the goal of this work is to apply the rotation and curvature 

corrections to the very promising one equation turbulence model based on the k-ω closure, known 

as the ‘Wray-Agarwal (WA)’ model.  The uncertainty quantification (UQ) is the quantitative 

characterization and reduction of uncertainty in computational applications via running very large 

number of calculations to characterize the effects of minor differences in the systems. Another 

objective in this thesis, is to employ UQ to determine the modification direction of the closure 

coefficients in the RC correction. The final objective is to develop a new DES model using the 

WA2017m-RC RANS model with LES. In the literature, DES models have been developed based 

on the widely used one-equation Spalart-Allmaras (SA) model [2] and the two-equation SST k-ω 

model [3], and they are known to be more accurate than RANS models especially in the presence 

of flow separation. 

1.3 Outline 
Chapter 2: Turbulence Modeling: This chapter describes some general topics related to 

turbulence modeling. Main turbulence modeling methods including Direct Numerical Simulation 

(DNS), Large-Eddy Simulation (LES) and Reynolds-Averaged Naiver-Stokes (RANS) equations 
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are described. Two widely linear used eddy viscosity turbulence models namely Spalart-Allmaras 

(SA) and SST k-ω are briefly introduced. 

Chapter 3: Development of Wray-Agarwal (WA) Turbulence Model: This chapter discusses 

the history and evolution of the one equation Wray-Agarwal (WA) turbulence model. Its 

development from version WA2017m to WA2018 and finally to WA2018EB is described. 

Chapter 4: Rotation and Curvature Correction: This chapter gives a brief introduction to the 

theory behind the two rotation and curvature correction approaches, the “Modified Coefficients 

Approach” and the “Bifurcation Approach”. 

Chapter 5: Uncertainty Quantification: A brief introduction to uncertainty quantification (UQ) 

is given and how it is employed to improve the turbulence model coefficients is discussed in this 

chapter. Closure coefficients of the RC correction are modified based on the UQ analysis. 

Chapter 6: Validation Cases: This chapter describes several benchmark test cases in two main 

categories: wall bounded flows and unbounded flows. The flows in the first category are flow in a 

2D curved duct, flow in a 2D U-turn duct, fully developed turbulent flow in a 2D rotating channel, 

fully developed turbulent flow in a 2D rotating backward-facing step, flow in rotating cavity, flow 

in a stationary and rotating serpentine channel, flow in a rotor-stator cavity and in a hydrocyclone. 

The flows in the second category are a subsonic jet and a supersonic jet in cross flow. 

Chapter 7: Detached Eddy Simulation (DES): This chapter describes a new DES model named 

WA2017m-RC-DES. It is validated against experiment and DNS data in some test cases as 

described in Chapter 6. 
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Chapter 8: Summary and Future work: This chapter provides a summary of the work 

accomplished in this thesis, including modeling and testing of the WA2017m-RC, WA2017m-

RCM, WA2017m-Arolla, WA2018-RC, WA2018EB-RC and WA2017m-RC-DES models. And 

some potential future work is also discussed. 
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Chapter 2: Turbulence Modeling 

2.1 Introduction 
Direct Numerical Simulation (DNS) solves the full three-dimensional, time-dependent Navier-

Stokes equations to obtain instantaneous flow field and then performs averaging to get the statistics. 

DNS is only feasible for very simple geometries at low Reynolds numbers. Large Eddy Simulation 

(LES) resolves only the large energy containing scales and models the effects of small scales. LES 

is possible at relatively higher Reynolds numbers for simple geometries but at a very high 

computational effort and cost. Reynolds-Averaged Navier-Stokes (RANS) equations are obtained 

by time-averaging the Navier-Stokes equations over a laboratory time scale which are discussed 

below.  

2.2 Reynolds-Averaged Navier-Stokes Equations 
Dating back to early 1900 since Osborne Reynolds, there have been three major approaches that 

have been developed to model and approximate mathematically the turbulent fluid behavior; these 

are known as RANS, LES and DNS. The oldest approach developed in early 1900 is based on 

time-averaging of the Navier-Stokes equations which results in the Reynolds-Averaged Navier-

Stokes (RANS) equations. RANS averaging results in the so called “turbulent stresses” or 

“Reynolds Stresses” which are unknown and require modeling using empiricism. Thus, RANS 

equations are not closed; it is known as the “Closure Problem” in RANS equations. Closure of 

RANS equations requires empirical models for “Reynolds Stresses”; these models are called the 

“RANS Models.” The RANS models are generally developed by using the transport equations for 

turbulent quantities such as the turbulent kinetic energy, turbulent dissipation, a characteristic 
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turbulent length scale etc. using experimental and other empirical information. The main objective 

of the turbulence models for the RANS equations is to compute the Reynolds (turbulent) stresses, 

which are modeled by the scalar eddy-viscosity models of Boussinesq type or directly by the 

transport equations for various components of Reynolds-stresses. The solutions of RANS 

equations with turbulence models to date remains the most widely used method in industry for 

solving the turbulent flows. 

2.3 Eddy Viscosity Turbulence Models 
In 1877 Boussinesq proposed relating the turbulence stresses to the mean flow to close the system 

of equations. According to the Boussinesq hypothesis the Reynolds stress terms are modeled as 

𝑢𝑖
′𝑢𝑗

′ = −2𝜈𝑡𝑆𝑖𝑗 +
2

3
𝛿𝑖𝑗𝑘 (1)  

where 𝜈𝑡 is the turbulent kinematic eddy viscosity. 

2.3.1  Spalart-Allmaras (SA) Model 

The most commonly used one-equation eddy-viscosity turbulence model is the Spalart-Allmaras 

turbulence model. It was developed by Spalart and Allmaras [4] and was designed specifically for 

aerospace applications involving wall-bounded flows and has been shown to give good results for 

boundary layers subjected to adverse pressure gradients. The transport equation for an eddy-

viscosity-like variable is given by 

𝜕�̃�

𝜕𝑡
+ 𝑢𝑗

𝜕�̃�

𝜕𝑥𝑗
= 𝑐𝑏1(1 − 𝑓𝑡2)𝑆�̃� − [𝑐𝑤1𝑓𝑤 −

𝑐𝑏1

𝜅2
𝑓𝑡2] (

�̃�

𝑑
)

2

+
1

𝜎
[

𝜕

𝜕𝑥𝑗
((𝜈 + �̃�)

𝜕�̃�

𝜕𝑥𝑗
) + 𝑐𝑏2

𝜕�̃�

𝜕𝑥𝑖

𝜕�̃�

𝜕𝑥𝑖
] (2)  

The turbulent eddy viscosity is computed from 

 𝜈𝑇 = 𝑓𝜇𝑅 (3)  

The damping function 𝑓𝑣1 is given by: 
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𝑓𝑣1 =
𝜒3

𝜒3 + c𝜈1
3 , 𝜒 =

𝜈

𝜈
 (4)  

The additional definitions are given by the following equations: 

 �̃� ≡ 𝛺 +
𝜈

𝜅2𝑑2
𝑓𝑣2 (5)  

  𝑓𝑣2 = 1 −
𝜒

1 − 𝜒𝑓𝑣1
         𝑓𝑤 = 𝑔 [

1 + 𝑐6
𝑤3

𝑔6 + 𝑐6
𝑤3

]

1 6⁄

 (6)  

 𝑔 = 𝑟 + 𝑐𝑤2(𝑟6 − 𝑟) (7)  

 𝑟 = 𝑚𝑖𝑛 [
𝜈

�̃�𝜅2𝑑2
, 10] (8)  

 𝑓𝑡2 = 𝑐𝑡3𝑒𝑥𝑝(−𝑐𝑡4𝜒2) (9)  

 Ω = √2𝑊𝑖𝑗𝑊𝑖𝑗     𝑊𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
−

𝜕𝑢𝑗

𝜕𝑥𝑖
) (10)  

The constants are 

𝑐𝑏1 = 0.1355 𝜎 =
2

3
𝑐𝑏2 = 0.622 𝜅 = 0.41 

𝑐𝑤2 = 0.3 𝑐𝑤3 = 2 𝑐𝑣1 = 7.1 𝑐𝑡3 = 1.2 𝑐𝑡4 = 0.5 

𝑐𝑤1 =
𝑐𝑏1

𝜅2
+

1 + 𝑐𝑏2

𝜎
 

(11)  

2.3.2  Shear-Stress-Transport k-ω Turbulence Model 

Menter’s Shear Stress Transport (SST) [5] turbulence model is also a widely used robust two-

equation eddy-viscosity turbulence model. The model combines the features of k-ω turbulence 

model and k-ε turbulence model such that the k-ω model is used in the inner region of the boundary 

layer and switches to the k-ε model in the free shear flow region. The formulation of the SST model 

is based on information from many experiments and attempts to predict solutions to typical 

engineering problems. The two-equation model is given by the following equations: 
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𝜕(𝜌𝑘)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖𝑘)

𝜕𝑥𝑗
= 𝑃 − 𝛽∗𝜌𝜔𝑘 +

𝜕

𝜕𝑥𝑗

[(𝜇 + 𝜎𝑘𝜇𝑡)
𝜕𝑘

𝜕𝑥𝑗

] (12)  

𝜕(𝜌𝜔)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖𝜔)

𝜕𝑥𝑗
=

𝛾

𝜈𝑡
𝑃 − 𝛽𝜌𝜔2 +

𝜕

𝜕𝑥𝑗

[(𝜇 + 𝜎𝜔𝜇𝑡)
𝜕𝜔

𝜕𝑥𝑗

] + 2(1 − 𝐹1)
𝜌𝜎𝜔2

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
 (13)  

𝑃 = 𝜏𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
 (14)  

The turbulence eddy viscosity is computed from: 

𝜈𝑡 =
𝜌𝑎1𝑘

𝑚𝑎𝑥 (𝑎1𝜔, Ω𝐹2)
 (15)  

Each of the constants is a blend of an inner (subscript 1) and outer (subscript 2) constant via 

𝜙 = 𝐹1𝜙1 + (1 − 𝐹1)𝜙2 (16)  

Additional functions are defined as 

𝐹1 = 𝑡𝑎𝑛ℎ(𝑎𝑟𝑔1
4) (17)  

𝑎𝑟𝑔1 = 𝑚𝑖𝑛 [max (
√𝑘

𝛽∗𝜔𝑑
,
500𝜈

𝑑2𝜔
) ,

4𝜌𝜎𝜔2𝑘

𝐶𝐷𝑘𝜔𝑑2
] (18)  

𝐶𝐷𝑘 = max (2𝜌𝜎𝜔2

1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
, 10−20) (19)  

𝐹2 = 𝑡𝑎𝑛ℎ(𝑎𝑟𝑔2
2) (20)  

𝑎𝑟𝑔2 = max (2
√𝑘

𝛽∗𝜔𝑑
,
500𝜈

𝑑2𝜔
) (21)  

The constants are 

𝛾1 =
𝛽1

𝛽∗
−

𝜎𝜔1𝜅2

√𝛽∗
 𝛾2 =

𝛽2

𝛽∗
−

𝜎𝜔2𝜅2

√𝛽∗
 

𝜎𝑘1 = 0.85 𝜎𝜔1 = 0.5 𝛽1 = 0.075 

𝜎𝑘2 = 1.0 𝜎𝜔2 = 0.856 𝛽2 = 0.0828 𝛽∗ = 0.09 𝜅 = 0.41 𝑎1 = 0.31 

(22)  
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Chapter 3: Development History of Wray-

Agarwal (WA) Turbulence Model 

3.1 WA2017m 
Wray-Agarwal (WA) model is a newly developed one-equation eddy-viscosity turbulence model 

derived from k-ω closure. In this model, a new variable R is introduced which is defined as k/ω. It 

has been applied to several canonical flows [6] and has shown improved accuracy over the SA 

model and competitiveness with the SST k-ω model. An important distinction between the WA 

model and previous one-equation models based on two equation k-ω models is the inclusion of the 

cross diffusion term in the ω-equation and a blending function which allows smooth switching 

between two destruction terms. The equations of the WA2017 turbulence model are given below. 

𝜕𝑅

𝜕𝑡
+ 𝑢𝑗

𝜕𝑅

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
[(𝜎𝑅𝑅 + 𝜈)

𝜕𝑅

𝜕𝑥𝑗
] + 𝐶1𝑅𝑆 + 𝑓1𝐶2𝑘𝜔

𝑅

𝑆

𝜕𝑅

𝜕𝑥𝑗

𝜕𝑆

𝜕𝑥𝑗
− (1 − 𝑓1)𝐶2𝑘𝜀 𝑅2 (

𝜕𝑆
𝜕𝑥𝑗

𝜕𝑆
𝜕𝑥𝑗

𝑆2
) (23)  

𝑓1 = min(𝑡𝑎𝑛ℎ(𝑎𝑟𝑔1
4), 0.9) (24)  

𝑎𝑟𝑔1 =
1 + 20𝜂

1 + (
𝑑 max(√𝑅𝑆, 1.5𝑅)

20𝜈 )

2 

(25)  

𝜂 =
𝑑√𝑅𝑆

20𝜈
 (26)  

The eddy viscosity is calculated through the new variable R 

 𝜈𝑡 = 𝑓𝜇𝑅 (27)  
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Again, to account for the wall blocking effect, the damping function 𝑓𝜇  is defined in the same form 

as in the SA model. 

𝑓𝜇 =
𝜒3

𝜒3 + 𝐶𝑤
3

,        𝜒 =
𝑅

𝜈
 (28)  

While the C2kω term is active, Eq. (25) behaves as a one equation model based on the standard k-

ω equations. The inclusion of the cross diffusion term in the derivation causes the additional C2kε 

term to appear. This term corresponds to the destruction term of one equation models derived from 

standard k-ε closure. The presence of both terms allows the new model to behave either as a one 

equation k-ω or one equation k-ε model based on the switching function f1. Being a one equation 

model, it is more computationally efficient than the multi-equation models. Even though the WA 

model appears promising, it also has limitations in accuracy for computing wall bounded separated 

flows.  

The last term in Eq. (25) involves the inverse of the von Karman length-scale: 

𝐸𝑘−𝜔 = 𝑅2 (
1

𝐿𝑉𝐾
) = 𝑅2 (

𝜕𝑆
𝜕𝑥𝑗

𝜕𝑆
𝜕𝑥𝑗

𝑆2 ) (29)  

As has been pointed out previously in Ref. [7], 𝐸𝑘−𝜔 can become singular whenever S goes to zero 

leading to an infinite destruction term. In order to prevent this from happening, the last destruction 

term is limited by a multiple of the Baldwin-Barth destruction term, Ebb: 

𝐸𝑅 = 𝐶𝑚𝐸𝑏𝑏 tanh (
𝐸𝑘−𝜔

𝐶𝑚𝐸𝑏𝑏
) (30)  

with a constant Cm = 8.0. Ebb is defined as: 



11 

 

𝐸𝑏𝑏 =
𝜕𝑅

𝜕𝑥𝑗

𝜕𝑅

𝜕𝑥𝑗

 
(31)  

Eq. (30) provides a smooth transition between the two formulations whenever 𝐸𝑘−𝜔  goes to 

infinity. For majority of the flow region, 𝐸𝑘−𝜔 ≪ 𝐶𝑚𝐸𝑏𝑏  and the original formulation is recovered. 

A less smooth transition could be achieved by 𝐸𝑅 = min (𝐸𝑘−𝜔, 𝐶𝑚𝐸𝑏𝑏). For all the test cases 

considered in this paper, these two methods for 𝐸𝑘−𝜔  yield almost the same results. The constant 

Cm is calibrated by computing flow past a zero pressure gradient the flat plate and in a channel 

flow. There is major difference between the new WA2017m and the old WA2017 model. The final 

formulation of the WA2017m model becomes [8]: 

𝜕𝑅

𝜕𝑡
+ 𝑢𝑗

𝜕𝑅

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗

[(𝜎𝑅𝑅 + 𝜈)
𝜕𝑅

𝜕𝑥𝑗

] + 𝐶1𝑅𝑆 + 𝑓1𝐶2𝑘𝜔

𝑅

𝑆

𝜕𝑅

𝜕𝑥𝑗

𝜕𝑆

𝜕𝑥𝑗
− (1 − 𝑓1)𝐶2𝑘𝜀𝐸𝑅  (32)  

𝐸𝑅 = 𝐶𝑚𝐸𝑏𝑏 tanh (
𝐸𝑘−𝜔

𝐶𝑚𝐸𝑏𝑏
)    or min (𝐸𝑘−𝜔, 𝐶𝑚𝐸𝑏𝑏) (33)  

The model constants are as follows: 

𝐶1𝑘𝜔 = 0.0829    𝐶1𝑘𝜀 = 0.1127 

𝐶1 = 𝑓1(𝐶1𝑘𝜔 − 𝐶1𝑘𝜀) + 𝐶1𝑘𝜀  

𝜎𝑘𝜔 = 0.72    𝜎𝑘𝜀 = 1.0 

𝜎𝑅 = 𝑓1(𝜎𝑘𝜔 − 𝜎𝑘𝜀) + 𝜎𝑘𝜀 

𝜅 = 0.41 

𝐶2𝑘𝜔 =
𝐶1𝑘𝜔

𝜅2
+ 𝜎𝑘𝜔     𝐶2𝑘𝜀 =

𝐶1𝑘𝜀

𝜅2
+ 𝜎𝑘𝜀 

𝐶𝑤 = 8.54 

(34)  
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3.2 Wall Distance Free WA2018 Model 
In order to improve the generality and efficiency of the WA model, new formulation avoiding the 

use of wall–distance d is devised. Since the transport equation does not contain explicitly the 

distance to the wall d, it can be replaced without any rigorous modifications to the model equation. 

There is wall distance d in Eq. (25) which can create inaccuracies in flow past complex curved 

surfaces and moving boundaries. Therefore, a wall-distance free formulation WA model is 

developed and is designated as WA2018 which is described below. The transport equation of 

WA2018 is the same as WA2017m given in Eq. (32). The newly designed wall distance free 

blending function is 

𝑓1 = 𝑡𝑎𝑛ℎ(𝑎𝑟𝑔1
4) 

(35)  

𝑎𝑟𝑔1 =
𝜈 + 𝑅

2

𝜂2

𝐶𝜇𝑘𝜔
 

𝑘 =
𝜈𝑇𝑆

√𝐶𝜇

, 𝜔 =
𝑆

√𝐶𝜇

, 𝜂 = 𝑆 max (1, |
𝑊

𝑆
|) 

𝑊 = √2𝑊𝑖𝑗𝑊𝑖𝑗 , 𝑊𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
−

𝜕𝑢𝑗

𝜕𝑥𝑖
) 

(36)  

Most of the coefficients and constants are the same as in WA2017m given in Eq. (34); the only 

constant changed is 𝐶1𝑘𝜀 . 

𝐶1𝑘𝜀 = 0.1284 
(37)  

The WA2018 model was extensively validated by computing a number of benchmark flows listed 

on NASA TMR website [10]. Although WA2018 gives excellent results in a large number of 

benchmark test cases, it cannot compute accurately the log layer in the turbulent boundary layer 



13 

 

compared to DNS data. This problem is addressed by including the elliptic blending/elliptic 

relaxation in the model as described in the next section. 

3.3 WA2018EB Model 
It has been shown by several investigators [11-14] that by including an elliptic relaxation model 

with a turbulence model, the anisotropic low Reynolds number near wall effects can be more 

accurately captured. The model equation for elliptic blending is generally expressed as 

−𝐿𝑅
2∇2𝑃𝑅 + 𝑃𝑅 = −𝐶3𝑘𝜔 𝑅

𝜕2𝑅

𝜕𝑥𝑗
2

+ 𝑅𝑆 (38)  

where PR is a production term which couples Eq. (38) and a modified model Eq. (39) given below. 

In Eq. (38), the diffusion/destruction term 𝐶3𝑘𝜔𝑅
𝜕2𝑅

𝜕𝑥𝑗
2 can be neglected in most cases without 

affecting the accuracy. The coupled WA model equations with elliptic blending take the form 

𝜕𝑅

𝜕𝑡
+ 𝑢𝑗

𝜕𝑅

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
[(𝜎𝑅𝑅 + 𝜈)

𝜕𝑅

𝜕𝑥𝑗
] + 𝑅𝑆(𝐶1 − 1) + 𝑃𝑅 + 𝑓1𝐶2𝑘𝜔

𝑅

𝑆

𝜕𝑅

𝜕𝑥𝑗

𝜕𝑆

𝜕𝑥𝑗
− (1 − 𝑓1)𝐶2𝑘𝜀 𝐸𝑅 

−𝐿𝑅
2∇2𝑃𝑅 + 𝑃𝑅 = 𝑅𝑆 

(39)  

It should be noted that the near-wall turbulence eddies follow the Kolmogorov scaling (i.e. the 

turbulence fluctuations depend on the laminar viscosity). Therefore, ν/S can be used for the viscous 

scaling serving as a lower bound on the turbulent length scale 𝐿𝑅. In Eq. (40), Lref is the reference 

length scale. 

𝐿𝑅
2 =

max(𝐶3𝑘𝜔 𝑅, 𝐶𝑙𝜈)

𝑆 +
𝐶𝑙𝜈

𝐿𝑟𝑒𝑓
2

 
(40)  
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The WA model given by Eq. (39) and Eq. (40) is designated as WA2018EB [9]. It is a wall distance 

free model; therefore 𝑓1 function in this model is the same as that given in Eqs. (37) and (38). The 

values of the changed and new constants in WA2018EB model are listed below. It should be noted 

that some of these constants are different from Eq. (34) and Eq. (37), and there are two additional 

constants given in Eq. (41). 

𝐶1𝑘𝜔 = 0.2    𝐶1𝑘𝜀 = 0.094 

𝐶2𝑘𝜔 = 2.63    𝐶2𝑘𝜀 = 1.24 

𝐶𝑤 = 5.97 

𝐶𝑙 = 4.0 + √𝜒 

𝐶3𝑘𝜔 = 0.17 

(41)  
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Chapter 4: Introduction to Rotation and 

Curvature Correction 

4.1 Background 
In many industrial applications, rotation and curvature effects are very important. For example, in 

a gas turbine engine, cool air taken form the middle stages of the compressor is circulated through 

the internal cooling passages inside the turbine blades to reduce temperature levels below the 

melting point of the blade material. These passages often have strongly curved surface where both 

rotation and curvature play an important role in prediction of the heat transfer. Similarly, in a 

circulation control airfoil, streamline curvature effects need to be considered to accurately 

calculate the lift coefficient. Some other applications include particle separation in a hydrocyclone, 

vortex evolution in tip clearance flow in a centrifugal pump etc. 

RANS equations with scalar turbulence closure models are still the workhorse in the industrial 

design process and will remain so far at least next few decades. However, these closure models do 

not respond well to the imposed system rotation and streamline curvature. The modifications to 

the scalar eddy viscosity models to include the effects of rotation and curvature (RC) are called 

the rotation and curvature corrections, which can be categorized into two approaches, namely the 

“Modified Coefficient Approach” and the “Bifurcation Approach”. A review of the methodology 

used in these approaches can be found in Durbin [15]. The modified coefficients approach dates 

back to 1980s. In 1997, Spalart and Shur [16] introduced a correction to the production term in a 

transport equation for eddy viscosity. They proposed a unified measure for rotation and curvature 

in terms of the material derivative of the strain rate tensor, making the model frame independent 
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and Galilean invariant. In 2000, a more detailed assessment of Spalart-Shur correction approach 

was given by Shur et al. [17]. In 1999, Reif and Durbin [18] proposed a novel approach for 

including the rotational effects in scalar turbulence models. Bifurcation analysis of Second-

Moment Closure (SMC) in rotating homogeneous shear flow forms the basis for this work. This 

model is formulated such that the equilibrium solution bifurcates from the main to the decaying 

solution branches. In 2013, Arolla [19] proposed a new and simpler form based on the work of 

Reif and Durbin [18].  

4.2 Effect of Rotation and Curvature 
First, we consider the effect of streamline curvature. The way to include the effect of streamline 

curvature in the turbulent flow is to alter the turbulent intensity. More specifically, the convex 

curvature reduces turbulent intensity while the concave curvature enhances turbulent intensity. 

The term “convex” refers to a boundary layer along a wall with the center of curvature inside the 

surface; e.g., the outside surface of a circular arc. The boundary layer velocity profile is such that 

it increases radially outward from the center of curvature. On the other hand the “concave” wall 

curves opposite to the center of curvature outside the surface; e.g., the inside surface of a bowl, 

and the boundary layer velocity increases towards the center of curvature. A sketch of both convex 

and concave walls are shown in Fig. 4.1. To characterize the effect of curvature on a shear flow, 

two types of rotations are considered. The first one is such that, as the flow passes over a curved 

wall, the direction of the velocity vector rotates. The second one is such that, the fluid elements 

within a shear flow also rotate: they rotate clockwise if 𝑑𝑈/𝑑𝑦 > 0. The streamline curvature effect 

on turbulence is determined by these two types of rotation: along a convex wall, the velocity vector 

rotates in the same direction as fluid elements; along a concave wall the rotations are in opposite 

directions. Co-rotation suppresses turbulence, and counter-rotation enhances it. Another way to 
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analyze this problem is to compare it with flat plate, the flow over a convex wall can be regarded 

as “expanded” while over a concave wall as “shrunk”. The result of “expanded” and “shrunk” flow 

is the turbulent intensity being reduced and enhanced, respectively. 

 
Figure 4.1 Sketch of (a) convex and (b) concave wall. 

Secondly, we examine the effect of reference frame rotation. An analogy exists between system 

rotation and streamline curvature. If the frame rotation is in the same direction as the shear, 

turbulent intensity is reduced by rotation; if they are opposite turbulent intensity increases. Let us 

consider a flow configuration that a planar rotating channel with span-wise rotation shown in the 

Fig. 4.2. The direction of shear next to wall is opposite to each other; so the rotation will enhance 

the turbulence next to one wall and reduce it next to the other. Here, with a counter-clock wise 

rotation, the upper wall is on the suction side and the turbulence intensity is reduced on this side; 

it is categorized as stable side. On the other hand, the lower wall is on the pressure side and the 

turbulence intensity is enhanced; it is known as the unstable side. More fundamentally, the shear 

next to the upper wall rotates fluid elements in the counter-clock direction which is in the same 

direction as the frame rotation; while they are opposite on the lower wall. The surface shear stress 

increases on the unstable side; the shear stress decreases on the stable side.  
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Figure 4.2 Flow in a planar rotating channel. 

This effect cannot be captured by standard scalar eddy viscosity models: they are insensitive to 

rotation and predict the flow profiles that maintain symmetry about the channel centerline. In the 

following section, we discuss the inherent limitation of scalar eddy viscosity models that cause 

this problem. 

4.3 Equilibria of the k and ε Equations  
Equilibrium analysis provides insights into the properties of closure schemes, for example it shows 

how the model responds to imposed forcing. It is also the basis for a systematic derivation of 

nonlinear, algebraic constitutive formulas. The reason of choosing k-ε model is that the two 

transport variables — the turbulent kinetic energy k and turbulent dissipation ε directly reflect the 

turbulence level in the flow field. The transport equations for k and ε can be written as: 

𝜕𝑘

𝜕𝑡
+

𝜕(𝑢𝑗𝑘)

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗

[
𝜈𝑡

𝜎𝑘

𝜕𝑘

𝜕𝑥𝑗

] + 2𝜈𝑡𝑆𝑖𝑗𝑆𝑖𝑗 − 𝜀 (42)  

𝜕𝜀

𝜕𝑡
+

𝜕(𝑢𝑗𝜀)

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗

[
𝜈𝑡

𝜎𝜀

𝜕𝜀

𝜕𝑥𝑗

] + 𝐶1𝜀

𝜀

𝑘
2𝜈𝑡𝑆𝑖𝑗𝑆𝑖𝑗 − 𝐶2𝜀

𝜀2

𝑘
 (43)  

Consider the k – ε model in incompressible homogenous turbulent flow; the governing equations 

can be simplified to: 



19 

 

𝜕𝑘

𝜕𝑡
= 𝑃 − 𝜀 (44)  

𝜕𝜖

𝜕𝑡
=

𝐶1𝜀𝑃 − 𝐶2𝜀𝜀

𝑇
 (45)  

where 𝑇 = 𝑘/𝜀 is the turbulent time-scale and 𝑃 = −𝑢𝑖
′𝑢𝑗

′𝑆𝑖𝑗 is the rate of energy production. 

Following Durbin [15], Eq. (44) and Eq. (45) can be combined into  

𝜕

𝜕𝑡
(

𝜀

𝑘
) = (

𝜀

𝑘
)

2

[(𝐶1𝜀 − 1)
𝑃

𝜀
− (𝐶2𝜀 − 1)] (46)  

Equation (44) is the evolution equation for the scalar (ε/k) and it has two equilibria (𝑡 → ∞), 

obtained by setting 
𝜕

𝜕𝑡
(

𝜀

𝑘
) = 0 on the left hand side, which are 

branch 1:   
𝑃

𝜀
=

𝐶2𝜀 − 1

𝐶1𝜀 − 1
 (47)  

and 

branch 2:   
𝜀

𝑘
= 0 (48)  

Using the standard values of constant coefficients 𝐶1𝜀 = 1.44 and 𝐶2𝜀 = 1.92, 𝑃/𝜀 is equal to 2.09 

on branch 1. As for other version of k – ε model (e.g. Chien [20]), the constant coefficients 𝐶1𝜀 

and 𝐶2𝜀 are set to be 1.35 and 1.80 giving 𝑃/𝜀 equals to 2.29. In general, 𝑃/𝜀 > 1 and k grows with 

time according to Eq. (44). The equilibria is divided into two solutions, “healthy” (Eq. (47)) and 

“decaying” (Eq. (48)). On the healthy branch (Eq. (47)) turbulent energy grows exponentially in 

time. For the branch 1, we can re-write Eq. (44) and (45) as 
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𝜕𝑘

𝜕𝑡
= (𝛼 − 1)𝜀 (49)  

𝜕𝜀

𝜕𝑡
= (𝛼 − 1)

𝜀2

𝑘
 (50)  

where 𝛼 = 𝑃/𝜀 = (𝐶2𝜀 − 1)/(𝐶1𝜀 − 1). Thus, the solutions of Eq. (49) and Eq. (50) have the form 

[15]:  

branch 1:   𝑘 = 𝑘∞𝑒𝜆𝑡 ,   𝜀 = 𝜀∞𝑒𝜆𝑡  (51)  

The subscript ∞ represents the equilibrium value (t→ ∞), depending on the initial conditions. 

Substituting these solutions (Eq. (51)) into Eq. (49) or Eq. (50) gives 

𝜆 = (𝛼 − 1) (
𝜀

𝑘
)

∞
=

𝐶2𝜀 − 𝐶1𝜀

𝐶1𝜀 − 1
(

𝜀

𝑘
)

∞
 (52)  

All the linear eddy viscosity turbulence models are based on Boussinesq assumption. Thus, the 

linear constitutive relationship Eq. (53) can be used. 

𝑢𝑖
′𝑢𝑗

′ = −2𝜈𝑡𝑆𝑖𝑗 +
2

3
𝛿𝑖𝑗𝑘 (53)  

With Eq. (53), the rate of energy production becomes 

𝑃 = 2𝜈𝑡|𝑆|2 (54)  

where |S| is the magnitude of the strain rate. The eddy viscosity for k – ε model is 𝜈𝑡 = 𝐶𝜇𝑘2/𝜀, 

thus 

𝑃

𝜀
= 2𝐶𝜇|𝑆|2 (

𝑘

𝜀
)

2

 (55)  
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Substituting it into Eq. (47) yields the equilibrium value 

(
𝜀

𝑘|𝑆|
)

∞

= √2𝐶𝜇√
𝐶1𝜀 − 1

𝐶2𝜀 − 1
 (56)  

Then the exponential growth rate 𝜆 in Eq. (52) becomes 

𝜆 =
𝐶2𝜀 − 𝐶1𝜀

√(𝐶1𝜀 − 1)(𝐶2𝜀 − 1)
√2𝐶𝜇|𝑆|2 

(57)  

It is always positive by applying the standard coefficient constants, which matches with the 

observation for the healthy branch. For the second branch, the solution has the power law form 

[15]:  

branch 2:   𝑘 = 𝐴∞𝑡𝑚 ,    𝜖 = 𝐵∞𝑡𝑚−1 (58)  

In this case, 𝜀/𝑘 ∝ 1/𝑡 → 0 as 𝑡 → ∞. Again substituting these solutions into Eq. (44) and Eq. (45) 

gives  

𝜕𝑘

𝜕𝑡
= 𝑃 − 𝜖 = 𝐴∞𝑚𝑡𝑚−1 (59)  

𝜕𝜀

𝜕𝑡
=

𝐶1𝜀𝑃 − 𝐶2𝜀𝜀

𝑇
= 𝐵∞(𝑚 − 1)𝑡𝑚−2 (60)  

where 𝑇 = 𝑘/𝜀 = (𝐴∞/𝐵∞)𝑡. Solving for m, we obtain:  

𝑚 =

𝑃
𝜀

− 1

(𝐶2𝜀 − 1) −
𝑃
𝜀

(𝐶1𝜀 − 1)
 (61)  
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If 𝑃/𝜀 < 1, the exponent m has negative value and turbulent energy decays, which is also indicated 

in Eq. (44). After examining the two branches of solutions, it can be concluded that within the 

scalar eddy viscosity assumption, the rotation is not able to stabilize or destabilize the solution 

since the rotation does not appear in the equations of the k-ε model. In the next two sections, we 

introduce two approaches, “Modified Coefficients Approach” and “Bifurcation Approach” that are 

designed to overcome this deficiency. 

4.4 Modified Coefficients Approach 
It has been proposed in the literature that the coefficients of the k-ε model should be given a 

parametric dependence on the rotation number 

𝑅𝑜 ≡ −2Ω𝐹/(∂U/ ∂y) (62)  

so that the turbulent kinetic energy decays in the stabilization region and grows in the 

destabilization region. According to Eq. (52), the exponential growth rate 𝜆 is a function of 𝐶1𝜀 

and 𝐶2𝜀 which are constants in the standard k-ε model. The basic idea of “Modified Coefficients 

Approach” is to make either 𝐶1𝜀 or 𝐶2𝜀 or both functions of rotation and strain rate so that growth 

rate 𝜆 becomes negative in stable regions.  

An early proposal to model rotational stabilization was [21] 

𝐶2𝜀 = 𝐶2𝜀
0 (1 − 𝐶𝑠𝑐𝐵𝑟) (63)  

The Bradshaw number Br is defined as: 

𝐵𝑟 ≡ 𝑅𝑜(𝑅𝑜 + 1) (64)  
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The critical Bradshaw number Brcrit is defined when 𝑃/𝜖 = 1, which is found from 𝐶1𝜀 = 𝐶2𝜀, 

according to Eq. (47). 

𝐶1𝜀 = 𝐶2𝜀 = 𝐶2𝜀
0 (1 − 𝐶𝑠𝑐𝐵𝑟crit) 

𝐵𝑟crit =
𝐶2𝜀

0 − 𝐶1𝜀

𝐶2𝜀
0 𝐶𝑠𝑐

 
(65)  

If Br > Brcrit, which corresponds to 𝐶1𝜀 > 𝐶2𝜀 from Eq. (52), the exponential growth rate 𝜆 becomes 

negative. With the standard k-ε model coefficients 𝐶1𝜀 = 1.44, 𝐶2𝜀
0  = 1.92 and 𝐶𝑠𝑐 = 2.5, Brcrit is 

equal to 0.1; substituting into Eq. (64) we obtain Ro > 0.0916 or Ro < -1.091. This is the range in 

which the rotation stabilizes turbulence. 

Another example of the “Modified Coefficients Approach” is the work by Spalart and Shur [16]. 

Before their work, proposals were made based on the streamline curvature, but streamlines are not 

Galilean invariant, since they are referred to axes aligned with the velocity. For this reason, efforts 

to literally represent streamline curvature have been replaced by a method that unifies rotation and 

curvature via the rate of rotation of the principal axes of the strain rate tensor (Spalart and Shur 

[16]). 

The strain rate tensor is symmetric, so it can be expressed as [15] 

𝐒 = ∑ 𝜆𝛼

3

𝛼=1

𝐞𝛼𝐞𝛼  (66)  

where the e’s  are unit eigenvectors and 𝜆’s are eigenvalues. Unit vectors can only be changed by 

rotation. 



24 

 

𝐷𝐞𝛼

𝐷𝑡
= 𝛀𝛼𝛽

𝑆 𝐞𝛽  (67)  

The rotation rate tensor 𝛀𝛼𝛽
𝑆  can be computed from the mean velocity field. During a computation, 

the eigenvector of the strain rate tensor must be evaluated at each time step and at every grid point. 

Then their substantial derivative (D/Dt) can be computed. This process usually takes high 

computational cost. On the grounds of computational efficiency, Spalart and Shur [16] proposed 

to replace the eigenvector by the full rate of strain tensor and introduced the Spalart-Shur tensor:  

𝐖ss ≡
𝐒 ∙ (𝐷𝐒/𝐷𝑡) − (𝐷𝐒/𝐷𝑡) ∙ 𝐒

2|𝐒|2
 (68)  

Wallin and Johansson [22] derived the connection of the Spalart-Shur tensor to rotation of the 

principal axes in three dimensions. If rotation vectors are introduced via 𝜔𝑖
SS =

1

2
𝜀𝑖𝑗𝑘 𝑊𝑗𝑘

SS for the 

Spalart-Shur tensor and Ω𝑖𝑗
S = 𝜀𝑖𝑗𝑘𝜔𝑘

S  for the rotation of eigenvector, then the exact relation 

between the Spalart-Shur tensor and the rotation rate of the principal axes is  

𝜔𝑖
SS = 𝜔𝑖

S −
3𝑆𝑖𝑗

2

2|𝐒|2
𝜔𝑗

S (69)  

Notice that, in two dimensions, 𝜔S is in the 𝑥3 direction, so that 𝛀S = 𝐖ss. This surrogate for 

curvature and rotation represents a unification of rotation and curvature, because in a rotating 

reference frame, 𝛀S includes the system rotation tensor. In this way, any model that was designed 

for system rotation is devised into a model for both rotation and streamline curvature by replacing 

coordinate frame rotation 𝛀F by rotation of the principal axes of the strain rate 𝛀S [23].  

For example, the absolute rotation tensor is defined as 
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𝛀A = 𝛀 + 𝛀F (70)  

where 𝛀 is the vorticity tensor relative to a rotating frame. Alternatively, the 𝛀A is redefined as 

𝛀A = 𝛀 + 𝛀S (71)  

Another example is from Reynolds stress models, the frame rotation enters via 

𝛀∗ = 𝛀 + 𝐶𝑟𝛀F (72)  

where 𝐶𝑟 is a model coefficient constant [22, 24]. Again, the unification of rotation and curvature 

is invoked by supplanting 𝛀F with 𝛀S to obtain 

𝛀∗ = 𝛀 + 𝐶𝑟𝛀S (73)  

The Spalart-Shur rotation and curvature correction [16] was based on the Spalart-Shur tensor (Eq. 

(68)), and they devised a function of the parameter 

�̃� =
|𝐒|2𝛀 ∶ 𝐖ss

(|𝐒|2 + |𝛀|2)2
 (74)  

This ad hoc function was added into an eddy viscosity transport equation in order to enhance or 

reduce production, depending on the sign of this inner product. In homogeneous turbulence the 

transport equation contains only a production term, so this approach is inescapable. It is like 

altering the growth exponent 𝜆. More details of the Spalart-Shur rotation and curvature correction 

are given in the section 4.6. 

4.5 Bifurcation Approach 
The idea behind the “Modified Coefficients Approach” is to parameterize the coefficient 𝐶2𝜀 in 

the Bradshaw number Br so that the rotation increases the kinetic energy and dissipation rate 
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for 𝑃/𝜀 > 1. But in general, 𝐶2𝜖  remains a constant value. The equilibrium analysis of the second 

moment closure models shows that there are two types of equilibrium solutions (Speziale and M. 

G. Mhuiris [25]): one is (𝜀/𝑆𝑘)∞  = 0 which exists for all dimensionless parameter Ω/𝑆  and 

another is (𝜀/𝑆𝑘)∞  > 0 which exists only for a small intermediate range of  Ω/𝑆 . The zero 

equilibrium solution is associated predominantly with stable flow wherein k and ε undergo a power 

law time decay; the nonzero equilibrium solution is associated with unstable flow wherein k and ε 

undergo an exponential time growth. In this fashion, the second order closure models are able to 

account for both the shear instability – with its exponential time growth of disturbance kinetic 

energy – and the stabilizing (or destabilizing) effect of rotations on shear flow [26]. In other words, 

the branch 1 (Eq. (47)) ceases to exist and switches to branch 2 (Eq. (48)) when rotation rate is 

above one limit, or below another, which corresponds approximately to Ro > 0 or Ro < -1. The 

term “bifurcation” is used to describe this behavior; “Bifurcation Approach” is to introduce this 

characteristic behavior into scalar eddy-viscosity models by making 𝐶𝜇 depend on the rate of strain 

and rotation [18]. In particular, let 

𝑆𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) 

Ω𝑖𝑗
∗ = Ω𝑖𝑗

rel + 𝐶𝑟𝜀𝑖𝑗𝑘𝜔𝑘
F = Ω𝑖𝑗

rel + 𝐶𝑟Ω𝑖𝑗
F  

(75)  

𝐶𝑟  depends on the constants of the closure model. In the SSG pressure-strain model by Spezial 

and Gtaski [26], 𝐶𝑟 = 2.25 is adopted. The dimensionless parameters are defined as:  

𝜂1 = 𝑆𝑖𝑗𝑆𝑖𝑗(𝑘/𝜀)2 = |𝐒𝑘/𝜀|2 
(76)  
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𝜂2 = Ω𝑖𝑗
∗ Ω𝑖𝑗

∗ (𝑘/𝜀)2 = |𝛀∗𝑘/𝜀|2 

Eq. (55) becomes 

𝑃

𝜀
= 2𝐶𝜇𝜂1 (77)  

The eddy viscosity formula can be made of a function of 𝜂1  and  𝜂2/𝜂1 , such that  𝐶𝜇 =

𝐹𝜇(𝜂1, 𝜂2/𝜂1). The argument 𝜂2/𝜂1 (= Ω/𝑆) is a generalization of the rotation parameter. Then on 

branch 1, the Eq. (47) becomes 

𝐶2𝜀 − 𝐶1𝜀

𝐶1𝜀 − 1
= 2𝜂1𝐹𝜇  (78)  

The left hand side in Eq. (78) is a constant, therefore it defines a curve 𝜂1 = function (𝜂2/𝜂1). 

There are several constrains of the function [18]: 1) the model should bifurcate only between two 

possible stable solutions (𝑃/𝜀)∞ = (𝐶2𝜀 − 𝐶1𝜀)/(𝐶1𝜀 − 1) and (𝜀/𝑆𝑘)∞ = 0; 2) the bifurcation 

diagram should have a maximum value of 𝜀/𝑆𝑘  close to Ω/𝑆  = 0.5, according to the Rapid 

Distortion Theory (Sahli et al. [27]) restabilization, 𝑃/𝜀 < 1, should occur near to Ω/𝑆 = 0 and 

Ω/𝑆 = 1 in homogeneous shear flow. 

Following the bifurcation diagram of SSG model [26] in rotating parallel shear flow, where the 

trivial solution (𝜀/𝑆𝑘)∞ = 0 occurs at ℜ = 1 + 𝐶𝑟𝑅𝑜 = ±1.39, Reif and Durbin [18] developed 

the modified eddy viscosity coefficient, and it is in the form 

𝐶𝜇
∗ = 𝐶𝜇𝐹1𝐹2 (79)  

where F1 and F2 are introduced to separately determine the model behavior for |ℜ| > 1 and |ℜ| <

1, repectively. Among many possible forms, they chose the following relations 
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𝐹1 =
1

1 + 𝛼1√𝜂2√|𝜂3| − 𝜂3

 

𝐹2 =
1 + 𝛼2|𝜂3| + 𝛼2𝜂3

1 + 𝛼4|𝜂3|
 

𝜂3 ≡ 𝜂1 − 𝜂2 (80)  

The final form of the model can be written as 

𝐶𝜇
∗ = 𝐶𝜇

1 + 𝛼2|𝜂3| + 𝛼2𝜂3

1 + 𝛼4|𝜂3|
(√

1 + 𝛼5𝜂1

1 + 𝛼5𝜂2
+ 𝛼1√𝜂2√|𝜂3| − 𝜂3)

−1

 (81)  

The model coefficients are given by 

𝛼1 = 0.055, 𝛼2 = 0.5, 𝛼3 = 0.25, 𝛼4 = 0.2, 𝛼5 = 0.025 (82)  

The bifurcation diagram is shown in the Fig. 4.3. It is compared to the SSG model. Their model 

bifurcates to the trivial solution (𝜀/𝑆𝑘)∞ = 0 very close to the SSG model at ℜ = ±1.39. Those 

coefficients in Eq. (82) are further modified to address the wall-bounded, non-equilibrium flows 

[18]. 
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Figure 4.3 Bifurcation diagram [15]. 

In the following sections, we introduce two correction methods from “Modified Coefficients 

Approach” and one from “Bifurcation Approach.” 

4.6 Spalart-Shur RC Correction 
As described by Shur et al. [17], to account for the effects of rotation and curvature in an eddy 

viscosity turbulence model, the Spalart-Shur correction has been extensively used in the literature 

which is described by empirical function given in Eq. (83).  This function multiplies the production 

term in the SA eddy viscosity transport equation and multiplies the production terms of both k and 

ω equation in the SST k-ω model. In WA model, the source term (𝐶1𝑅𝑆) is multiplied by this 

function. 

𝑓𝑟1(𝑟∗, �̃�) = (1 + 𝑐𝑟1) [
2𝑟∗

1 + 𝑟∗
] [1 − 𝑐𝑟3 tan−1(𝑐𝑟2�̃�)] − 𝑐𝑟1 (83)  

where 𝑟∗ and �̃� are non-dimensional quantities given by the equations: 

𝑟∗ =
𝑆

𝜔
, �̃� =

2𝜔𝑖𝑗𝑆𝑗𝑘

𝐷4
[
D𝑆𝑖𝑗

D𝑡
+ (𝜀𝑖𝑚𝑛𝑆𝑗𝑛 + 𝜀𝑗𝑚𝑛𝑆𝑖𝑛)Ω𝑚

` ] (84)  
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𝑆𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) , 𝜔𝑖𝑗 =

1

2
[(

𝜕𝑢𝑖

𝜕𝑥𝑗
−

𝜕𝑢𝑗

𝜕𝑥𝑖
) + 2𝜀𝑚𝑗𝑖Ω𝑚

` ] (85)  

𝑆2 = 2𝑆𝑖𝑗𝑆𝑖𝑗 , 𝜔2 = 2𝜔𝑖𝑗𝜔𝑖𝑗  (86)  

𝐷2 =  𝑆2 + 𝜔2 (87)  

The derivative D𝑆𝑖𝑗/D𝑡 in Eq. (84) is the Lagrangian derivative of the strain tensor. All derivatives 

are defined with respect to the reference frame with a rotation rate Ω𝑚
` . For the finite volume 

method based CFD codes, it is more convenient to represent this derivative using an Eulerian 

formulation. The recommended values of the three constants in Eq. (83) are cr1 = 1.0, cr2 = 12.0, 

and cr3 = 1.0 [4]. The procedure for implementing Eq. (83) is given in Ref. [17] and was used in 

the OpenFOAM implementation for the results reported in this thesis. In rest of the thesis, the 

Spalart-Shur correction will be simply denoted by the letters “RC”. 

4.7 Zhang-Yang Correction 
The appearance of the term D𝑆𝑖𝑗/D𝑡  in Eq. (84) increases the programming complexity and 

computational cost, especially for transient simulations. To address this problem, the Richardson 

number 𝑅𝑖  given by Eq. (88) in the form described by Hellsten [28] has been used by Zhang and 

Yang [29] to develop the rotation & curvature correction for eddy viscosity turbulence models.  

𝑅𝑖 =
𝜔

𝑆
(
𝜔

𝑆
− 1) (88)  

Richardson number given by Eq. (88) is a measure of the mean-flow deformation, thus it can 

reflect the effects of rotation and curvature. Therefore the rotation and curvature factor  �̃� used in 

Eq. (84) can be replaced by 
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�̃� =
𝜔

𝑆
(
𝜔

𝑆
− 1) (89)  

In Eq. (89), �̃� is the equation of a parabola with the global minimum value of -0.25 when 𝑆/𝜔 is 

equal to 0.5. Now, a modified rotation-curvature correction abbreviated as RCM can be obtained 

by employing the Richardson number as a correction factor to account for the effects of rotation 

and curvature. In general, Zhang and Yang [29] rotation and curvature correction is numerically 

more stable, converges faster and is easier to implement than the Spalart-Shur correction. After 

some trial and error, the three model constants in Eq. (83) were calibrated as cr1 = 1.0, cr2 = 2.0, 

and cr3 = 0.6 for the WA2017m-RCM model. 

4.8 Arolla Correction 
Arolla’s correction [19] was developed for SST k-ω model. Similar to the method by Reif and 

Durbin [18], to mimic the bifurcation behavior of RSMs, Arolla [19] introduced a correction to 

the eddy viscosity coefficient as 𝜈𝑡 = 𝐶𝜇
∗𝑘/𝜔, where 

𝐴 = 𝐶𝜇 (𝛼1(|𝜂3| − 𝜂3) + √1 − 𝑚𝑖𝑛(𝛼2𝜂3, 0.99))
−1

 (90)  

𝐶𝜇
∗ = 𝑚𝑖𝑛 (2.5, 𝐴) (91)  

𝜂1 = 𝑆𝑖𝑗𝑆𝑖𝑗𝑇2;   𝜂2 = Ω𝑖𝑗
𝑚𝑜𝑑Ω𝑖𝑗

𝑚𝑜𝑑𝑇2;   𝜂3 = 𝜂1 − 𝜂2 (92)  

𝑇 = 𝑚𝑎 𝑥(𝑇1, 𝑇3) ; 𝑇1 =
1

𝛽∗𝜔
; 𝑇2 =  6√

𝜈

𝛽∗𝑘𝜔
; 𝑇3 = (𝑇1

𝑛𝑇2)1/𝑛+1; 𝑛 = 1.625 (93)  

Based on the bifurcation diagram of RSMs, the constant coefficients 𝛼1 = 0.04645 and 𝛼2 =

0.25 are selected. The invariants used in the models are defined in Eq. (92). 
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Chapter 5: Uncertainty Quantification 
Uncertainty Quantification (UQ) can be used to assess the effect of variations in the turbulence 

model coefficients on the computed results. UQ is the process of determining the effect of input 

uncertainties on the response metrics of interest. These input uncertainties may be characterized 

as either aleatory uncertainties which are irreducible variabilities inherent in nature, or epistemic 

uncertainties which are reducible uncertainties resulting from a lack of knowledge (which is the 

case with turbulence models). 

In the previous literature, Schaefer et al. [30] and Stephanopoulos et al. [31] have applied the Non-

Intrusive Polynomial Chaos (NIPC) to quantify the uncertainty in closure coefficients of 

commonly used RANS turbulence models. It is of interest to investigate the uncertainty in the 

coefficients of rotation and curvature corrections in a turbulence model. In this study, we select 

WA2017m along with Spalart-Shur RC correction and use NIPC to assess the uncertainty in the 

three coefficients in the RC correction. DAKOTA is used to compute the Sobol indices which 

represent the sensitivity of each coefficient to some physical quantity of interest. The strategy of 

NIPC is to create a surrogate model via Least-Squares approach by using the CFD output obtained 

at a number of Latin Hypercube sample points for the propagation of uncertainty. There are three 

parameters which determine the number of samples required to generate the response surface: the 

number of uncertain variables n, the order of the response surface polynomial p, and the 

oversampling ratio np. The total number of samples NS is then given by Eq. (94). A summary of 

the computational parameter used in UQ analyses of WA2017m with RC is given in Table 5.1. 
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𝑁𝑠 = 𝑛𝑝 [
(𝑛 + 𝑝)!

𝑛! 𝑝!
] (94)  

Table 5.1 Computational parameters used in UQ analysis of WA2017m-RC. 

Turbulence model n p np Ns 

WA2017m-RC 3 2 2 20 

For UQ analysis, flow in a U-turn duct is selected as the benchmark case. The computational details 

for this case are provided in the next section. The Sobol indices of three RC model coefficients in 

WA2017m-RC model described above are plotted along the inner and outer wall with respect to 

coefficient of pressure Cp and coefficient of skin-friction Cf. The value of Sobol indices change 

dramatically near the U-turn section of the duct as shown in Fig. 5.1. Model coefficient cr2 in 

WA2017m-RC model dominates both in the calculation of pressure coefficient Cp and skin friction 

coefficient Cf, which indicates that modification of cr2 should be considered in improving the 

model’s predictions.  

 
Figure 5.1 Sobol indices of WA2017m-RC model coefficients with respect to (a) Cp along the inner wall, (b) Cp 

along the outer wall, (c) Cf along the inner wall and (d) Cf along the outer wall. 
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Therefore, first the closure coefficient cr2 was modified since it is most dominant among the three 

coefficients in contributing to uncertainty. It was fixed at cr2 = 0.5 and the closure coefficient cr3 

was modified since it is the second most important contributor to uncertainty. Changes in the 

closure coefficient cr1 appeared to contribute little to the uncertainty in the predictions. Figure 5.2 

shows the results of trial and error process used in tuning the coefficients and Table 5.2 gives the 

optimal combination of the closure coefficients. As can be seen, the modified RC coefficients in 

WA2017m-RC (red line) are giving much better predictions for Cp and Cf than the original 

WA2017m-RC model (blue line). The three RC closure coefficients for original and modified 

WA2017m-RC models are summarized in Table 5.2. 

 
Figure 5.2 Results for (a) Cp along the outer wall, (b) Cp along the inner wall, (c) Cf along the outer wall and 

(d) Cf along the outer wall using the trial and error process for values of coefficients cr1, cr2 and cr3. 
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Table 5.2 Closure coefficients for original and modified WA2017m-RC model. 

Turbulence model coefficient 𝑐𝑟1 𝑐𝑟2 𝑐𝑟3 

Original WA2017m-RC 1.0 12.0 1.0 

Modified WA2017m-RC 1.0 0.5 0.6 

In the following section, WA2017m-RC model with the modified values of RC coefficients cr1, 

cr2 and cr3 is applied in simulations and from now on it will be referred to as the WA2017m-RC 

model. As mentioned before, there is little difference in results obtained using the hyperbolic 

tangent function or the minimum function for the destruction term ER in Eq. (33); thus all the 

results in Chapter 6 are based on the hyperbolic tangent function for ER. 
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Chapter 6: Validation Cases 

6.1 Wall Bounded Flow 

6.1.1 2D Curved Duct 

This flow is considered to assess the capability of three turbulence models with rotation and 

curvature correction to capture the effects of curvature on the turbulent boundary layer. This flow 

is computed at flow conditions corresponding to the experiment of Smits et al. [32]. The 

experiment measured the flow through a constant area square duct of height 0.127 m with a rapid 

30o bend. The aspect ratio of the experimental duct was 6:1; therefore this case is modeled as a 2D 

curved duct in this thesis. The experiment showed the presence of Gortler vortices which cannot 

be predicted by the 2D simulation. For this reason, comparison of the 2D CFD and 3D 

experimental results should be considered with caution keeping in mind the limitations of the 2D 

simulation; nevertheless a comparison of results using various models can still be useful. 

The Reynolds number of the flow is Re = 2.1×106 based on the inlet flow velocity and a reference 

length of one meter. The computational grid was taken from the NASA Turbulence Modeling 

Resource [33] website.  Computations were performed with OpenFOAM using an incompressible 

steady-state solver with second order discretization scheme. The standard versions of the SA and 

SST k-ω models have already been implemented in OpenFOAM and have been validated for the 

case of subsonic flow past a flat plate from the NASA Turbulence Modeling Resource (TMR) 

website. The computational grid with every other node is shown in Fig. 6.1 (a) and the coordinate 

system is shown in Fig. 6.1 (b). 
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Figure 6.1 (a) Computational grid and (b) coordinate system for the curved duct from Ref. [33]. 

Figure 6.2 shows the calculated and experimental values of the pressure coefficient Cp along the 

convex wall of the duct.  It can be noted that there is no discernible difference in the results 

obtained from different turbulence models; all are in excellent agreement with the experimental 

data.  The addition of the RC and RCM correction has little effect on the pressure coefficient. 

Comparisons of the calculated and experimental skin friction coefficients Cf are shown in Fig. 6.3. 

The positive effect of RC correction is clearly demonstrated in this figure. The results of the SA-

RC and SST-RC are in excellent agreement with FUN3D results from the NASA TMR [33], 

verifying their correct implementation in OpenFOAM. An improvement in the accuracy of SA and 

SST k-ω model is obtained with the addition of the RC correction. WA2017m model also performs 

quite well; the RCM correction to WA2017m model provides slight improvement. WA2017m-

Arolla and WA2018-RC are not as good as original WA2017m model. While WA2018EB-RC 

does fairly well in capturing the minimum and downstream value of Cf. Three best results from 

each models (SA, SST and WA) are plotted in the same graph as shown at the bottom right in Fig. 

6.3. 

(a) (b) 
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Figure 6.2 Comparison of pressure coefficient along the convex wall of the curved duct. 

 
Figure 6.3 Comparison of skin friction coefficient along the convex wall of the curved duct. 
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6.1.2 2D U-turn Duct 

To understand and validate the effect of RC correction methods on the turbulence models, the flow 

through a U-duct was computed and the results were compared with the experimental data and full 

Reynold Stress Model (RSM) results. Strong streamline curvature as well as the formation of a 

separation bubble make this case very challenging for linear eddy-viscosity turbulence models. 

The flow conditions correspond to the experiment of Monson et al. [34]. The Reynolds number of 

the flow is Re = 106 based on the mean flow velocity and channel height. The solution was obtained 

on a 204×100 grid which is shown in Fig. 6.4. For clarity only every second grid point is shown 

in Fig. 6.4. The simulation was conducted in OpenFOAM using the second order accurate SIMPLE 

algorithm. The results of computations are presented in Figs. 6.5-6.9. 

 

Figure 6.4 Two-dimensional grid (204×100) inside the U duct. 

Figure 6.5 shows the comparison of simulations using various models with the experimental data 

and the Reynolds Stress Model (RSM) results [35] for pressure coefficient on the outer wall of the 

duct. It can be seen that before S/H~3, there is no clear distinction among the results from various 

models. After S/H~3, the positive effect of the Spalart-Shur RC correction is clearly evident. Both 

the SA-RC and SST-RC more accurately predict the pressure coefficient along the outer wall than 

the standard models without curvature correction. However, the results from WA2017m-RC (blue 

line) and WA2018EB-RC (back line) are the most accurate among all the models considered in 

this study. They are not only successful in capturing the minimum value of Cp but are also fairly 
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accurate in calculating Cp in the reattached region. While the SST-RC model accurately estimates 

the Cp downstream of the duct at cross section θ = π (at the end of the turn), it completely misses 

the minimum value of Cp. Compared to SA-RC and WA2017m-RC, WA2017m-RC performs 

slightly better than SA-RC both in the separation  region and in the downstream region. 

WA2017m-RC and WA2018EB-RC do not perform very accurately in the downstream region like 

any other models except SST-RC. 

 
Figure 6.5 Surface pressure coefficient Cp along the outer boundary of the U-duct. 

Figure 6.6 shows the surface pressure coefficient Cp along the inner wall of the U-duct. From this 

figure, it is difficult to distinguish among the simulations from all the models. However, it is clear 

that both RC and Arolla corrections have positive effect on the accuracy of simulations. All the 

models calculate the almost same minimum value of Cp, but there are only two experimental data 

locations available along the U-turn section. By comparing with the RSM results, both RC and 

Arolla corrections give reasonable predictions. In the reattached flow region, WA2017m-Arolla 

and WA2018EB-RC are slightly better than other models. 
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Figure 6.6 Surface pressure coefficient Cp along the inner boundary of the U-duct. 

Figures 6.7 and 6.8 show the skin friction coefficient Cf along the outer and inner walls of the U-

duct respectively. In Fig. 6.7, the WA2018-RC and WA2018EB-RC models underestimate the Cf 

in the upstream region before θ = 0 (beginning of the U-turn of the duct), which affect the U-turn 

section and downstream value. In general, none of the turbulence models employed in this study 

accurately capture all the features in this case. As for the minimum value of Cf after θ = π (the end 

of U-turn), WA2018-RC and WA2018EB-RC are the only two models that predict the accurate 

value, but they completely miss the peak value of Cf. SST-RC model gives accurate prediction in 

the upstream and downstream region and also along the U-turn section, while it is way off the 

minimum value of Cf. SA-RC, WA2017m-RC and WA2017m-Arolla models underestimate the 

maximum value of Cf. WA2017m-RC and SST-RC appear to be the two best models that capture 

the overall trend of the Cf  with respect to the experimental data and RSM results. 
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Figure 6.7 Skin friction coefficient Cf along the outer boundary of the U-duct. 

In Fig. 6.8, WA2018-RC and WA2018EB-RC models again underestimate the Cf in the upstream 

region before θ = 0 (beginning of the U-turn of the duct). There is only one experimental data point 

between S/H=0 and S/H=5, therefore it is difficult to make an assessment of how these models 

perform along the U-turn section of the duct. Nevertheless, comparing the results among the 

models themselves, WA2018-RC predicts larger maximum value of Cf than other models, which 

is close to the RSM result. All the models fail to predict the downstream Cf after S/H~6 compared 

to the experimental data, but the results of WA2017m-RC and WA2017m-Arolla are close enough 

to the RSM results. 



43 

 

 
Figure 6.8 Skin friction coefficient Cf along the inner boundary of the U-duct. 

As expected, all the solution trends described above for the pressure and skin friction distributions 

are also found in the velocity profiles shown in Fig. 6.9. At sections θ = 0 and θ = π/2 of the U-

turn of the duct, the results obtained from all the models have slight differences but overall are in 

reasonable agreement with the experimental data. After flow separation at θ = π section, the results 

deviate significantly from each other, and none of the models accurately determines the velocity 

profile. From the bottom right plot in Fig. 6.9, where the flow is at θ = π+2, it can be seen that all 

models overestimate the length of the recirculation region and predict a very slow recovery after 

reattachment. 
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Figure 6.9 Velocity profiles at different sections of the U-duct. 

6.1.3 2D Rotating Channel 

A rotating body/system experiences Coriolis and centrifugal forces in a fixed inertial frame. These 

forces affect the turbulence in the system. Depending upon the magnitude and orientation of the 

rotation vector; turbulence can be enhanced or suppressed. 

The most frequently used test case for assessing the accuracy of a turbulence model in a rotating 

frame is the 2D fully developed flow in a planar channel rotating about an axis perpendicular to 

the flow vectors as shown in Fig. 6.10. This configuration has been studied experimentally by 

Halleen and Johnston [36] and Johnson et al. [37], and numerically employing DNS by 

Kristoffersen and Andersson [38] and by Lamballais et al. [39]. In current study, SRFSimpleFoam 

solver in OpenFOAM is used to perform the simulation. Let 𝑢𝑅 be the relative flow velocity. The 

governing equations for incompressible turbulent flow are 
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∇ ∙ 𝑢𝑅 = 0 (95)  

∇ ∙ (𝑢𝑅𝑢𝑅) + 2Ω × 𝑢𝑅 + Ω × (Ω × 𝑟) = −∇𝑝 + ∇ ∙ (𝜐𝑒𝑓𝑓(∇𝑢𝑅 + (∇𝑢𝑅)𝑇)) (96)  

In Eq. (96), the second term on the left hand side represents the Coriolis force while the third term 

represents the centrifugal force. For the computations, Eq. (96) is rearranged such that the 

centrifugal force term is absorbed in the pressure term. Consider fully developed channel flow, 

𝑢𝑅 = (𝑈(𝑦), 0,0) which is subjected to a constant angular velocity Ω = (0,0, Ω) about the z-axis 

as shown in Fig. 6.10. Simulation results are compared with the DNS data of Kristoffersen and 

Andersson [38] at 𝑅𝑒𝜏 ≡ ℎ𝑢𝜏/𝜈 = 194  for four different rotation numbers  𝑅𝑜 ≡ 2ℎΩ/𝑈𝑚 =

0, 0.1, 0.2, and 0.5. The friction velocity 𝑢𝜏 ≡ √𝜏𝑤/𝜌 is calculated for the non-rotating channel to 

make sure that  𝑅𝑒𝜏 is equal to 194. The grid size is 4 × 200 which is sufficient to ensure a grid 

independent numerical solution. 

 
Figure 6.10 Rotating channel and coordinate system. 

For this case, WA2017m-RCM model fails to accurately predict the velocity distribution across 

the width of the channel due to limitation of the RCM correction for rotating flows. Therefore for 

this case, we employ the RC correction to different versions of WA models and also use the SA-
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RC, SST-RC and WA2017m-Arolla models to perform the simulation. The mean velocity 

distribution scaled by 1/𝑈𝑚 in Fig. 6.11 shows the characteristic asymmetry caused by the rotation. 

The predictions from all models are in close agreement with the DNS data for all Ro and are 

capable of reproducing the almost irrotational core region in which  𝑑𝑈/𝑑𝑦~2Ω. SA-RC and 

WA2017m-RC models almost predict the same profile at low Ro, but at high Ro (e.g. Ro = 0.5), 

WA2017m-RC results match the DNS data best among the three models and also WA2018-RC 

model is very close to WA2017m-RC. At low Ro (e.g. Ro = 0.1, 0.2) WA2018EB-RC is accurate 

on the suction side while not very accurate on the pressure side. WA2017m-Arolla is fairly 

accurate on the pressure side for all the three rotation numbers. 

 
Figure 6.11 Velocity distribution in the channel at different rotation numbers. 
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6.1.4 2D Stationary and Rotating Backward-facing Step 

The backward-facing step configuration is rotated about a span-wise axis such that the sudden 

expansion of the channel is on the pressure side. The upstream flow is fully developed and is 

subjected to orthogonal mode rotation, which results in detaching the separation bubble from the 

step corner and eventually reattaching it further downstream as illustrated in Fig.6.12. Flow 

separation also occurs at the upper wall when the Ro increases. If the rotation is in the direction of 

the mean shear, the turbulent mixing is enhanced and the size of the recirculation bubble decreases. 

If the rotation is anti-parallel to the direction of mean shear, the turbulent mixing is suppressed and 

the size of the recirculation bubble increases. We use the recent DNS data from Barri and 

Andersson [40] at 𝑅𝑒 = 𝑈𝑏(𝐻 − ℎ)/𝜈 = 5600  to assess the rotation and curvature correction to 

this complex flow configuration. The expansion ratio is 𝐸𝑅 = 𝐻/(𝐻 − ℎ) = 2 with h being the 

step height and H being the downstream height of the channel. Following the DNS setup, the span-

wise rotation is imposed such that the turbulence over the stepped wall is enhanced and over the 

opposite wall is suppressed. 

The definition of rotation number is 𝑅𝑜 = Ω(𝐻 − ℎ)/𝑈𝑏0 where 𝑈𝑏0 is the bulk velocity upstream 

of the step in the stationary case. However, the local rotation number in the downstream part of 

the channel is 4 times greater than upstream because the bulk velocity 𝑈𝑏 , downstream of the step 

is related to that upstream by 𝑈𝑏0(𝐻 − ℎ)/𝐻. Hence, the effect of rotation is much stronger 

downstream of the step. 
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Figure 6.12 Schematic of the span-wise rotating backward-facing step from Ref. [40]. 

In a backward-facing step, the free-shear layer emanating from the step undergoes geometry 

induced separation. When subjected to rotation, the turbulence on this wall is amplified. Due to 

enhanced turbulence levels, higher momentum fluid away from the wall is transported towards the 

wall. This shortens the reattachment length. For the purpose of validation, we ran the stationary 

case with a very long upstream channel (36H) which allows the flow to be fully developed. 

Rotating cases were run at two different Ro = 0.05 and Ro = 0.2; in these cases rather than having 

the long upstream channel, we directly injected the fully developed velocity profile upstream from 

DNS data. 

For this case, we employ the RC correction to SST and various WA models also along with 

WA2017m-Arolla to perform the simulation. Fig. 6.13 presents the mean velocity profile at x/h = 

0, 1, 2, 4, 7 and 24 for Ro = 0, 0.05 and 0.2. 
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(a) 

 
(b) 

 
(c) 

 
Figure 6.13 Comparison of mean velocity profile at (a) Ro = 0, (b) Ro = 0.05, and (c) Ro = 0.2 at multiple 

locations x/h = 0, 1, 2, 4, 7 and 24 on backward facing step. 

The stationary result without rotation in Fig. 6.13 (a) matches with the DNS data quite well and 

predicts the accurate reattachment length. The results from different models hardly differ from 

each other; therefore for clarity only the result from SST-RC is given. However, the situation 

changes after imposing the rotation. All the models completely fail in computing the reattachment 

location and predict a very slow recovery. At moderately high rotation number (Ro = 0.2) in Fig. 

6.13 (c), DNS data shows a separation bubble on the upper wall, opposite to the step, which is due 
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to the stabilizing effect of rotation on that wall. The turbulence is suppressed on this surface and 

hence the flow is susceptible to separation. None of the models successfully capture this feature. 

In general, all the models completely fail to capture the accurate velocity profile and over predict 

the reattachment location. 

6.1.5 Rotating Cavity 

The flow inside a rotating cavity is of basic interest in fluid mechanics; it is a common feature in 

rotating machinery and in particular in gas turbine engine compressor and turbine rotor assemblies. 

This configuration is also well suited for meteorological studies of the Earth’s lower atmosphere. 

In case of a radial outflow, the mean secondary flow in the cavity can be characterized by a rotating 

inviscid core and two disk boundary layers. The flow structure may be highly complex with the 

coexistence of laminar and turbulent flow regions and/or the presence of three-dimensional 

vortical structures embedded in a turbulent flow regime.  For several decades, the problem has 

been addressed by many authors with different approaches and for different applications. The case 

of radial outflow was investigated by Breiter and Pohlhausen in 1962 to study the performance of 

parallel disk pumps [41]. From a brief literature review, this arrangement is very challenging for 

turbulence modeling. The main objectives of this study are the calculations of turbulent flow fields 

of a rotating cavity with radial outflow, and radial and axial inflow. 

Radial Inflow 

The cavity sketched in Fig. 6.14 is formed by two smooth parallel disks of outer radius Ro = 190 

mm and inner radius Ri = 19 mm separated by an axial gap h = 50.73 mm. All walls rotate at the 

same rotation rate Ω. A volume flow rate Q of air is supplied radially to the cavity through the 

entire disk gap h. The mean flow is mainly governed by four flow control parameters: the aspect 

ratio of the cavity L, its radius ratio s, the rotational Reynolds number Re based on the outer radius 
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of the rotating disk Ro and the volume flow rate coefficient Cw, where ν is the fluid kinematic 

viscosity. 

𝐿 =
𝑅𝑜 − 𝑅𝑖

ℎ
= 3.37             𝑠 =

𝑅𝑖

𝑅𝑜
= 0.1 (97)  

𝑅𝑒 =
Ω𝑅𝑜

2

𝜈
= 105              𝐶𝑤 =

𝑄

𝜈𝑅𝑜
 (98)  

 
Figure 6.14 Sketch of rotating cavity with radial outflow and radial inflow. 

Computations are performed using the RC correction applied to SA, SST, and various WA models 

and WA2017m-Arolla. For all models, a 160 × 100 mesh in the (r, z) frame provides a grid 

independent solution for the configuration corresponding to the experiments of Owen and 

Pincombe [42]. The computational domain is axisymmetric about the z-axis. The same initial and 

boundary conditions are imposed for all models. At the boundaries, all the variables are set to zero 

at the walls except for the tangential velocity, which is set to Ωr on the rotating walls. At the inlet, 

an averaged radial velocity is imposed with a given low level of turbulence (3%). The mean 

tangential velocity is also fixed to the disk speed. At the outlet, the pressure is set to a constant 

value. The following dimensionless quantities are defined: the radial position 𝑟∗ = (𝑟 − 𝑅𝑖)/

(𝑅𝑜 − 𝑅𝑖) and axial position 𝑧∗ = 𝑧/ℎ. 
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The axial profile of the dimensionless tangential 𝑉𝜃
∗ = 𝑉𝜃/(Ω𝑟) and 𝑉𝑟/ 𝑉𝑟𝑚 velocity profiles are 

displayed in Fig. 6.15 and 6.16 respectively at 𝑟∗ = 0.556; 𝑉𝑟𝑚(= 𝑄/(2𝜋𝑅𝑖ℎ)) is the mean radial 

velocity injected at the inlet. The predictions of the turbulence models are compared with the 

experimental measurements of Owen and Pincombe [42] and also with the RSM results from 

Poncet [43]. The flow is symmetrical about the mid-cavity plane 𝑧∗ = 0.5. Fluid entering the 

cavity at 𝑟∗ = 0 is progressively entrained from the source region into the entraining boundary 

layers along the rotating wall. For the tangential velocity, all the three models’ calculation results 

are in reasonably good agreement with the experimental data and RSM result. Among these, 

WA2017m-RC model result matches with the experimental data and RSM result very closely 

especially in the mid-plane region. There are no available measurements very close to the disks 

but by comparing the computations with the RSM result, it is clearly shown that all three models 

fail to predict the thickness of the boundary layer for the 𝑉𝑟  profiles. The discrepancies may be 

explained by the appearance of three-dimensional instabilities either in the core or in the boundary 

layers depending on the flow conditions [44]. These structures strongly affect the mean flow. 

Away from the rotating wall, WA2017m-RC prediction is again most close to the experimental 

data. 
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Figure 6.15 Axial distribution of the mean tangential velocity profile at r* = 0.556. 

 
Figure 6.16 Axial distribution of the mean radial velocity profile at r* = 0.556. 

Axial Inflow 

For the rotating cavity with axial inflow as sketched in Fig. 6.17, air enters the cavity axially 

through a central hole in the upstream disk and is deflected after impinging on the downstream 

disk; then, it exits through a small hole on the outer shroud. The flow is characterized by a toroidal 
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vortex located close to the upstream disk and, depending on the rotational velocity, by the 

establishment of two symmetric boundary layers on the disks. 

A 200 × 150 uniform grid was used for all calculations. Inner and outer radius are exactly the same 

as in the radial flow case with Ro = 190 mm and Ri = 19 mm. The flow conditions are characterized 

by the rotation number 𝑅𝑜 ≡ Ω𝑠/𝑈𝑖 and the Reynolds number 𝑅𝑒 ≡ 𝑈𝑖𝑠/𝜈, where s (= 50.73mm) 

is the disk spacing and 𝑈𝑖 is the inlet velocity. In this study, flow condition of 𝑅𝑜 = 2.0 and 𝑅𝑒 = 

4000 is considered. The models employed in this simulation are the same as those in radial inflow 

case. 

 
Figure 6.17 Sketch of rotating cavity with radial outflow and axial inflow. 

Figure 6.18 shows the radial velocity profile in the boundary layer at two locations. Results 

predicted by various turbulence models are compared to the experimental data of Owen and 

Pincombe [42] as well as to the results of RSM [45]. At both positions, none of the models correctly 

predict the presence of a recirculation cell between the disks. At this relatively high rotation 

number, RC and Arolla corrections fails to improve the behavior of the RANS models. 
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Figure 6.18 Radial velocity profile at x/Ro = 0.633 and x/Ro = 0.833. 

6.1.6 2D Stationary and Rotating Serpentine Channel  

Serpentine channels are found in a number of engineering applications including turbine blade 

cooling passages. These channels are subjected to strong curvature and rotational effects, and the 

resulting turbulent flow field is fairly complex. An understanding of the flow physics for flows 

with strong curvature and rotation is required in order to improve the design of turbine blade 

cooling passages. The coupled effect of centrifugal forces due to curvature and Coriolis forces due 

to rotation makes this case very challenging for the turbulence models. Recent DNS data from 

Laskowski & Durbin [46] is employed for assessing the rotation and curvature correction. The 

geometry of the serpentine channel is depicted in Fig. 6.19. Station 1 and 5 are at the same “x” 

location and represent the inflow into U-bend 1 and U-bend 2, respectively. Station 5 is also the 

exit of U-bend 1. Stations 2 and 6 represent the inflow planes into the bend region corresponding 

to θ = 0o. Station 3 and 7 are located at θ = 90o for U-bends 1 and 2. Finally, stations 4 and 8 are 

located at the exit of the bend section, θ = 180o.The span-wise rotating origin is located at the 

center of Section 5. The geometry under investigation is 12𝜋𝛿 × 2𝛿 with a curvature ratio 𝑅𝑐/𝛿 =

2 based on the channel half-width 𝛿 . The simulation is carried out at Reynolds number 𝑅𝑒 ≡

2𝛿𝑈𝑏/𝜈 = 5600 and rotation number 𝑅𝑜 ≡ 2𝛿Ω/𝑈𝑏 = 0.32. The inlet and outlet are paired as 



56 

 

cyclic to have the stream-wise periodic inflow boundary conditions. A constant pressure source 

term is added along the stream-wise direction to invoke the flow. 

 
Figure 6.19 Definitions of geometry locations in serpentine channel [46]. 

In the stationary case, the qualitative trends are predicted well by all the models as shown in the 

Fig. 6.20. Except at the Station 2, 6 and Station 3, 7, SST-RC predicts a recirculation region near 

the outer wall, which is not seen in the DNS and other models. Overall, the WA2017m-RC model 

performs the best among all the models and matches with the DNS results reasonably well. 

Especially in the first two sections, WA2017m-RC almost duplicates the DNS results. But in the 

later sections, WA2017m-RC model can only predict the velocity profile trend while 

underestimates the peak value; while WA2017m-Arolla matches the DNS data quite well. The 

benefit of applying the RC correction is clearly seen in the first two sections but is not much in the 

later sections. 
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Figure 6.20 Mean velocity profile in stationary serpentine channel. 

For the serpentine channel with span-wise rotation, the addition of orthogonal mode rotation 

results in a strong asymmetry between U-bend 1 and U-bend 2. It is informative to compare the 

flow field for the stationary and rotating cases at the same station locations for U-bend 1 and U-

bend 2. Station 1 is both the entrance of U-bend 1 and the exit of U-bend 2. Thus the flow into U-

bend 1 is strongly influenced by the rotation and curvature in U-bend 2. Likewise the flow entering 

U-bend 2 at station 5 is strongly influenced by the curvature of U-bend 1. This detail is not 

important in the stationary case but plays a significant role in understanding the rotating case. Flow 

separation is observed in both U-bend 1 and U-bend 2. RC correction based models over-predict 

the separation bubble size. Although, DNS data shows very low velocities, it did not quite reach 

separation in the DNS. The skin friction plot shown in Laskowski & Durbin [46] does suggest that 

this region is susceptible to separation. WA2017m-RC and WA2017m-Arolla models capture most 

of the velocity profile trend as shown in Fig. 6.21. While WA2018-RC and WA2018EB-RC both 

diverge in this case. The reason is still under investigation.  
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To summarize, the models are not capable of predicting the mean flow for the coupled curvature 

and rotation effect. Only a qualitative agreement is obtained by WA2017m-RC and WA2017m-

Arolla models. Between these two, WA2017m-Arolla is more accurate especially along and after 

the U-bend 1. This could also be attributed to the fact that DNS is carried out at low Reynolds 

numbers. Data at high Reynolds numbers is essential to assess the models more rigorously. 

 

 
Figure 6.21 Mean velocity profiles in rotating serpentine channel at Ro = 0.32. 
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6.1.7 Rotor-Stator Cavity 

The study of the flow in a rotor-stator cavity has significant relevance to many configurations 

encountered in turbomachinery. There have been many fundamental experimental and theoretical 

studies [47-49] of the flow in a closed rotor-stator system. In this study, we considered the rotor-

stator cavity with a superimposed axial through flow which has been studied experimentally by 

Poncet et al. [50, 51]. These flows are encountered in many industrial devices such as cooling-air 

systems in gas turbine engines and have been the subject of intense research during the last several 

decades as they offer a relatively simple configuration to study the influence of rotation on 

turbulence. 

The cavity sketched in the Fig. 6.22 is composed of two smooth parallel disks of outer radius Ro = 

250 mm and inner radius Ri = 38 mm separated by an axial gap h. The rotor is simulated as a 

rotating wall at a constant rate Ω and the stator is simulated as a stationary wall. A centripetal or 

centrifugal volume flow rate Q of water can be supplied axially to the cavity through two openings 

jh = 17 mm and js = 3 mm. Again, since there is no evident three-dimensional structure embedded 

in the turbulent flow, the numerical domain consists of a 5o sector. All the calculations are 

conducted on a 300 × 100 mesh in the (r, z) frame. All the variables are set to zero at the walls 

except for the tangential velocity Vθ, which is set to Ωr on the rotor. At the inlet, a linear profile 

for the mean tangential velocity Vθ and a parabolic profile for the axial velocity Vz are imposed 

together with a given low turbulence level of 1%. In the outflow section, the pressure is 

permanently fixed, whereas all other independent quantities are set to zero gradients if the fluid 

leaves the cavity. 



60 

 

 
Figure 6.22 Sketch of the rotor-stator cavity with an axial through flow [43]. 

Different values of the physical parameters are considered which are summarized in Table 6.1. 

Note that a positive value of the flow rate coefficient Cw corresponds to a centripetal through flow 

while a negative value of the flow rate coefficient Cw corresponds to a centrifugal through flow. 

The dimensionless quantities are defined as follows: 

𝐿 =
𝑅𝑜 − 𝑅𝑖

ℎ
        𝑅𝑒 =

𝛺𝑅𝑜
2

𝜈
      𝐶𝑤 =

𝑄

𝜈𝑅𝑜
 (99)  

Table 6.1 Values of the flow parameters for the three cases. 

Case Aspect ratio L Radius ratio s Reynolds number Re Flow rate coefficient Cw 

1 23.56 0.152 4.15 × 106 0 

2 23.56 0.152 1.04 × 106 9881 

3 70.67 0.152 1.04 × 106 -5159 

 

Rotor-Stator with no Through Flow 

The first test case is the rotor-stator with no through flow. Simulation results are compared to 

experimental data [50] and RSM [43]. The flow field is characterized by two boundary layers on 

each disk, separated by a central inviscid core region. The core is characterized by a zero radial 
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velocity, which ensures that there is no viscous shear stress and by a constant tangential one. The 

dimensionless quantities are defined as follows: 

𝑟∗ =
𝑟

𝑅𝑜
       𝑧∗ =

𝑧

ℎ
       𝑉𝑟

∗ =
𝑉𝑟

𝛺𝑟
       𝑉𝜃

∗ =
𝑉𝜃

𝛺𝑟
 (100)  

An overall good agreement is obtained between the experimental data and the models’ predictions 

for the mean velocity field at the location of 𝑟∗ = 0.56 as shown in the Fig. 6.23. In the core region, 

all the models predict very similar profile. For the radial velocity profile, WA2017m-Arolla and 

WA2017m-RC give better agreement near the stator, while the SST-RC and WA2018-RC show 

good agreement near the rotor. There is negligible difference among the experimental data and the 

results from all the turbulence models for tangential velocity. 

 
Figure 6.23 Axial profile of the (a) mean radial and (b) tangential velocity components at r* = 0.56. 

Rotor-Stator with Centripetal Through Flow 

In this second case, an axial inflow is supplied to the cavity from js. The imposed inflow is strong 

enough to suppress the outflow along the rotor due to the centrifugal force. Hence, the radial 
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velocity is negative at all z*. None of the model accurately calculates the boundary layer shape 

seen from the radial velocity profile displayed in Fig. 6.24 (a). Away from the wall, WA2017m-

RC is the closest match with the DNS data among all the models. One interesting phenomenon is 

that the central core region observed in the first test case can rotate faster than the rotor under 

certain conditions of rotation and imposed flow rate. For the flow condition considered here, the 

inviscid core is still present at 𝑟∗ = 0.56 but rotates at a higher angular velocity than the rotor which 

is captured by all the models. However, the SST-RC model predicts a large tangential velocity as 

shown in Fig. 6.24 (b). This discrepancy may be attributed to different pre-rotation levels imposed 

at the inlet between the experiment and the simulations. Its value is fixed to half the maximum 

disk speed in the turbulence models, whereas it slightly varies between 0.5 and 0.55 in the 

experiments depending on Cw [52]. 

 
Figure 6.24 Axial profile of the (a) mean radial and (b) tangential velocity components at r* = 0.56. 
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Rotor-Stator with Centrifugal Through Flow 

The last case is the rotor-stator with centrifugal through flow. Figure 6.25 displays the radial and 

tangential velocity profile at different radial positions. The radial velocity distribution becomes 

asymmetric at these positions. Even if the flow is outward along the stator, the radial velocity is 

greater along the rotor due to the combined effect of the centrifugal force. There is little variance 

among various versions of WA models with RC and Arolla corrections. For the radial profile, the 

SST-RC and WA based models behave differently at early position 𝑟∗ = 0.44, and results from 

WA based models are closer to the RSM results. At later positions 𝑟∗ = 0.68 and 𝑟∗ = 0.92, all the 

models are close to each other and match with the RSM results.  For the tangential velocity, the 

SST-RC model performs slightly better than the WA based models. 

 
Figure 6.25 Axial profile of the mean radial and tangential velocity components at three positions. 
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6.1.8 Hydrocyclone 

The cyclone separator is perhaps the most widely used separation device to be found in industry. 

It owes its popularity to the low manufacturing and maintenance costs due to its simple design. 

There are no moving parts in the device itself, which can be constructed from a wide range of 

materials. Combined with ideal pressure drop and a range of throughputs and efficiencies, these 

advantages have made the cyclone the most attractive solution to separation in both solid-gas and 

liquid-solid systems. Cyclones can be distinguished from other separation devices by noting that 

the centrifugal forces caused by the swirling motion of the flow in a cyclone results in separation. 

The experimental cyclone configuration is depicted in Fig. 6.26 which is a typical high-efficiency 

cyclone designed by Stairmand [53]; it has a diameter D = 0.205 m. The volume of the cyclone is 

0.0203 m3. A relatively fine grid is used with approximately 560,000 cells in all calculations. 

 
Figure 6.26 Geometry [53] and mesh of the Stairmand cyclone. 

Flow through the hydrocyclone is characterized by strongly swirling motion as shown in Fig. 6.27. 

The path lines are calculated by RSM in Fluent 14.5. Swirl induced suppression of the turbulence 

at the core of the hydrocyclone cannot be predicted by the scalar eddy viscosity closure, which 

motivates the use of rotation and curvature correction for this case. The RC corrected SST and 
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various WA models as well as WA2017m-Arolla are employed to conduct the steady state 

simulations. 

 
Figure 6.27 Path lines colored by velocity showing the strongly swirling flow in hydrocyclone. 

Predicted radial and axial velocity at the axial stations x = 0.32 m and 0.35 m are compared with 

the experimental data [54] and RSM as shown in Fig. 6.28. The original scalar viscosity models 

(SST, WA2017m) are not able to predict the downward flow in the core region. When RC and 

Arolla corrections are added, the flow direction is correctly predicted in the first location, which 

is very critical in the design of the hydrocyclones since it determines the separation efficiency of 

these devices. In general, the agreement between the models and experimental data is not good. 

SST-RC, WA2017m-RC and WA2017m-Arolla models satisfactorily calculate the shape of the 

axial velocity profile, but for the radial velocity they can only estimate the profile around the core 

region and fail to capture the velocity drop when leaving the core region. Even though the RC and 

Arolla corrections enable the SST and WA2017m models to predict the downward flow at the core, 

the models do not match the experimental data to a large degree especially at later locations. There 

are several more locations where the simulation results were obtained and compared with 

experiment, but since the agreement was very poor, the results are not presented here. Obviously 
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among all the models employed, the RSM is the only turbulence model that provides reasonably 

good prediction for this complex case. 

 
Figure 6.28 Radial profile of axial and radial velocity at two positions. 

6.2 Unbounded Flows 
Unbounded flows also known as the free shear flows are inhomogeneous flows with mean velocity 

gradients that develop in the absence of boundaries. Free shear flows in the real world are most 

often turbulent. Even if they start as laminar flows, they tend to become turbulent much more 

rapidly than wall bounded flows. This is due to the fact that the three-dimensional vorticity 

necessary for transition to turbulence can develop much more rapidly in the absence of wall that 

inhibits the growth of velocity components normal to the wall.  

All the test cases presented in section 6.1 are for wall bounded flows and the model coefficients 

of all the turbulence models were calibrated for wall bounded flows. Even though it is not expected 

that the rotation and curvature corrections developed for turbulence models for wall bounded flows 
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would be able to capture all the important features of unbounded shear flows; they are nevertheless 

tested for computing two test cases of a circular jet in subsonic crossflow and a supersonic jet in 

subsonic crossflow. 

6.2.1 Circular Jet in Subsonic Cross Flow 

The flow field of a jet of fluid interacting with a crossflowing fluid is defined as a jet in crossflow. 

Some examples of jets in crossflow are fuel injectors, smokestacks, film cooling on turbine blades 

and dilution holes in gas turbine combustors. 

Muppidi and Mahesh [55] conducted the DNS of a round turbulent jet in crossflow and provided 

some insight on why the typical RANS models fail to predict this flow accurately. The jet flow 

interacts with the crossflow and undergoes a significant curvature which is the motivation to 

examine how the rotation and curvature correction to RANS models would improve their 

performance in predicting such flows. A mean flow field solution of the time-averaged behavior 

of a transverse jet is provided in Fig. 6.29, which shows results from DNS of Muppidi and Mahesh 

[55]. The contours of mean velocity show that the jet fluid bends towards the free stream crossflow 

direction and the width grows as it moves downstream. It is worth noting that the jet width is larger 

towards the leeward side than on the windward side of the centerline of the jet. Moreover, the cross 

section of the jet evolves from its circular shape to form a counter-rotating vortex pair (CVP). The 

local mean vorticity is maximum at the CVP center, which lies below the centerline. 
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Figure 6.29 The mean flow field of an incompressible transverse jet [55]. 

We follow the same computational setup as in DNS of Muppidi and Mahesh [55]. Figure 6.30 

shows a schematic diagram of the problem, where a jet issues in perpendicular direction from a 

round pipe (diameter d) into the crossflow. The crossflow is in the x-direction and the jet is in the 

y-direction. The origin is located at the center of the jet exit as shown in the figure. The velocity 

ratio is defined as 𝑟 = 𝑢𝑗/𝑢∞, where 𝑢𝑗 is the mean jet velocity obtained by averaging 𝑢𝑗 over the 

pipe cross-section and 𝑢∞ is the crossflow free stream velocity. Simulations are performed at the 

same flow conditions as in the experiment of Su and Mungal [56]. The velocity ratio (r) is 5.7 and 

the Reynolds number of the flow based on the bulk jet velocity and jet-exit diameter, is 5000. In 

the experiment, the jet exits out of a round pipe (~ 70𝑑 long) into the crossflow. Fully developed 

pipe flow conditions are reached at the jet exit (Su and Mungal). The experiment considered two 

scenarios: one where the jet exit was flushed with the wall and the other where the pipe protruded 

into the crossflow. The DNS [55] and present simulations are confined to the case of the jet exit 

flushed with the wall, as shown in the Fig. 6.30. 
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Figure 6.30 Schematic of the round turbulent jet in cross flow [55]. 

The computation domain extends 36d ×  64d ×  64d in the axial, wall-normal and span-wise 

directions (x, y and z) respectively as shown in the Fig. 6.31 (a). Fully developed turbulent flow 

field is injected from both crossflow inlet and jet inlet. The length of pipe is 2d and the crossflow 

inflow plane is located 4d upstream of the jet exit. Su and Mungal [56] have reported that the jet 

bulk velocity (𝑢𝑗) in their experiment is 16.9 m/s and the free stream crossflow velocity (𝑢∞) is 

2.95 m/s, which gives a velocity ratio (𝑟 = 𝑢𝑗/𝑢∞) of 5.7. The velocity ratio in the simulation is 

also 5.7. The Reynolds number based on the bulk jet velocity and jet exit diameter is 5000 which 

matches with the experiment. Note that in the simulation it is assumed that both the jet fluid and 

the free stream crossflow fluid have the same density. However, in the experiment, the jet fluid 

(nitrogen) is seeded with acetone vapor which gives the jet fluid a 10% higher density. Since it is 

an incompressible case, the density difference has no effect on the final results. 
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Figure 6.31 (a) Computational domain and (b) front view of the mesh with boundary types. 

Figure 6.32 compares profile of vertical velocity 𝑈𝑦  between the simulation and experiment. The 

circle symbols are the results from the Su and Mungal’s experiment [56], doted lines are from 

DNS results [55], dash lines are Reynolds Stress Model (RSM) results and colored lines are results 

obtained using various models with rotation and curvature corrections. Close to the jet exit (y = 

0.1rd), the jet shows characteristics similar to that of turbulent flow in a pipe, velocity profile 

appears to be symmetric about x = 0. One difference from a turbulent pipe flow profile is a small 

negative velocity 𝑈𝑦  upstream of the jet (peak negative velocity is observed at x ~ -0.1rd). The 

crossflow fluid regards the jet as an obstacle, resulting in a high-pressure region upstream of the 

jet. This pressure gradient forces crossflow fluid towards the jet exit (the crossflow fluid even 

enters the pipe at sufficiently small velocity ratio), giving rise to the negative 𝑈𝑦  as observed. This 

behavior is also successfully captured by all the RANS models and RSM, but they underestimate 

the peak velocity and predict a flat profile at the center of the pipe. On the downstream of the jet 

except WA2018EB-RC, the rest of models computes a rather large region of negative velocity 

region compared to the upstream, which is not seen from the experiment and DNS data. 
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Moving away from the jet exit, the velocity profiles lose symmetry. According to the experiment 

and DNS results, at the farthest station (y = 1.0rd), velocity profile appears to be composed of two 

distinct jets, one with a higher velocity (centered at x = 0.1rd) followed by another with lower 

velocity (centered at x = 0.38rd). It is because the jet fluid on the side of the jet is deposited on the 

symmetry plane downstream of the jet, and this jet fluid possesses a vertical velocity and results 

in a “two-jet” profile as observed. However, at earlier position (y = 0.5rd), all the models have 

already predicted the “second jet” at x = 0.28rd, so the overall velocity profile is underestimated 

for the “first jet.” Furthermore, this leads to the result that all models have a complete mismatch 

with the experiment and DNS data at the farthest station (y = 1.0rd). 

 

 
Figure 6.32 Vertical velocity profiles at three locations. 

It has been mentioned by Muppidi and Mahesh [55] that this flow field is far from being in 

turbulent equilibrium, in particular near the jet exit and in the near field. Also, the flow field is 
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three-dimensional and non-isotropic. Even with rotation and curvature corrections, the RANS 

models are not able to accurately compute the velocity profiles. Reynolds Stress Model (RSM) is 

expected to account for anisotropy in the flow but in this case it also fails. In most RSM, the 

transport of turbulent kinetic energy by pressure (𝜋𝑖𝑖) is either ignored or modeled. In simple wall 

bounded flows, 𝜋𝑖𝑖  is identically zero near the walls and fairly small across the computational 

domain. However, in a jet in crossflow, 𝜋𝑖𝑖 is not negligible. Another source of uncertainty in 

RANS modeling of jet in crossflow comes from the computation grid and the domain. Since the 

profiles involve steep gradients at the jet edges, rather high resolution mesh is required to guarantee 

an accurate solution in this region. In our study, a refined mesh is applied in these regions, but still 

may not be fine enough. 

6.2.2 Glenn Jet: Supersonic Jet in Subsonic Cross Flow 

After examining a subsonic jet in crossflow, it is interesting to see how the turbulence models 

perform in case of interaction of a supersonic jet in the subsonic crossflow. The Glenn jet 

experiment (Wernet et al. [57]), conducted at the NASA Glenn Research Center, was designed to 

obtain data for a hot supersonic jet in subsonic crossflow. The experiment was conducted at the 

highest possible pressures and temperatures attainable in the test facility, with a stagnation pressure 

and temperature of 2.8×106 Pa and 750 K, respectively. The nozzle was placed in a wind tunnel 

with cold free stream air at Mach 0.3. The jet air was heated using a natural gas combustor and 

exhausted through the conical nozzle at an angle of 25 degrees relative to the freestream. The 

nozzle exit design Mach number was 3.0, but due to the under-expansion, Mach numbers 

exceeding 4.0 were seen downstream.  

The simulation follows the same setup as in the experiment. The computational domain includes 

the entire wind tunnel. Particular attention is paid to ensure sufficient resolution along the nozzle 
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lip and the mixing region. The side part comprises 9 blocks and the nozzle part comprises 36 

blocks. The whole computation domain involves a total 7×106 grid points. Figure 6.33 shows the 

grid for the Glenn jet and a zoomed-in region of nozzle. The jet inlet and outlet are treated as 

pressure inlet and outlet, and free stream inlet and side part are treated as pressure far field. 

 
Figure 6.33 Computational domain of the Glenn jet. 

Comparisons are made for the Glenn jet with crossflow. Downstream of the jet, four locations 

perpendicular to the freestream, normalized by the jet exit diameter are of interest as indicated in 

Fig. 6.34. The four locations are at X/D = 6, X/D = 10.5, X/D = 14 and X/D = 18. To make the 

comparisons easier to see, “①” is referred to the upside of the jet downstream and “②” is referred 

to the downside of the jet.  
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Figure 6.34 Sketch of four jet locations downstream. 

Figure 6.35 shows the velocity magnitude normalized by the velocity of jet exit center at those 

four downstream locations, and compared with PIV data. At the first location X/D = 6, the velocity 

profile remains almost symmetrical and at the center region of the jet it shows a flat trend. These 

behaviors are successfully captured by all the three models (SA-RC, SST-RC and WA2017m-RC) 

in this case. But overall the simulation results predict a wider profile compared to the experimental 

data. More interestingly, all three models predict a “second stage” on both side of the flat region 

which is not seen in the experimental data. Moving farther downstream, the velocity profile lose 

the symmetry. At the second location X/D = 10.5, all the three models results show a downward 

trend in the center which have mismatch with the experiment data. The agreement between the 

simulation and experiment is better on the “① ” side than the “②” side. According to the 

experimental data, the mixing of jet fluid and freestream is enhanced on the “①” side while 

suppressed on the “②” side. This is due to the 25 degree crossflow interaction with the jet. Even 

with RC correction, the models are not able to predict it accurately. At the third location X/D = 14, 

WA2017m-RC model exhibits a “two-jet” like profile as in the previous case of subsonic jet in 
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crossflow in section 6.2.1 which is not predicted by the other two models (SA-RC and SST-RC) 

and experimental data. At the final location X/D = 18, the velocity magnitude calculated by SA-

RC and WA2017m-RC is too high because turbulent mixing in the shear layer is suppressed for 

too long. A potential reason for this behavior, when compared with the subsonic jet with crossflow, 

is that the current experiment is performed at much higher turbulent Mach numbers than in the 

previous case. The compressibility effect is dominant in this problem which is expected because 

of the high Mach numbers in the jet shear layer. 

 

 
Figure 6.35 Velocity profiles at four jet downstream locations. 

The current turbulence models have been designed and developed for low-speed and isothermal 

flows. For higher Mach number flows, the effect of compressibility on the dissipation rate of the 

turbulent kinetic energy need to be addressed. For free shear flows, this is exhibited as the decrease 

in growth rate in the mixing layer with increasing Mach number. Standard turbulence models do 
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not account for this Mach number dependence, and thus a compressibility correction is needed for 

this case. Also mentioned by Abdol-Hamid et al. [58] that standard turbulence models fail to 

capture the increase in growth rate of the mixing layer due to temperature effects observed by 

Seiner and Thomas [59, 60] in their experiment. A new correction was developed to deal with the 

temperature effect. But those corrections are not within the scope of this thesis. RC correction 

seems to have little effect on the model behavior. 

6.3 Summary of Models Performance 
This section summarizes all the WA based models’ performance for each test case as shown in 

Table 6.2. The points from “4” to “1” are given based on their agreement compared to experiment 

or DNS data. “4” represents the best while “1” represents the worst. If the models perform equally, 

then they are given the same point. The summation of points indicates the overall behavior of each 

individual model. WA2017m-RCM is only validated in the 2D curved duct case and fails when 

system rotation is enforced, so it is not included in the summary. Note that for rotating backward-

facing step all the models fail to match with the DNS data, so all of them are given “1” point. Due 

to the same reason, the two unbounded flow cases are not included in the summary. As we can see, 

WA2017m-RC scores the highest “37” points and WA2017m-Arolla is the second best scoring 

“33” points. WA2018-RC and WA2018EB-RC obtain “21” and “22” points respectively. It can be 

concluded that WA2017m-RC is the most accurate model among all the validation cases in this 

study; and it is also safe to say that WA2017m-RC should give reasonable prediction in other cases 

with system rotation and streamline curvature. 

 



77 

 

Table 6.2 Summary of models behavior in each case. 

Test Case 
WA2017m-

RC 

WA2017m-

Arolla 

WA2018-

RC 

WA2018EB-

RC 

Curved Duct 3 2 1 4 

U-duct 4 3 1 2 

2D Rotating Channel 4 1 2 3 

Rotating Backward-facing Step 1 1 1 1 

Rotating Cavity - Radial Inlet 4 3 2 1 

Rotating Cavity - Axial Inlet 2 4 3 1 

Stationary Serpentine Channel 3 4 1 2 

Rotating Serpentine Channel 3 4 NA NA 

Rotor Stator - Nothrough Flow 3 4 1 2 

Rotor Stator - Centripetal Flow 4 2 3 1 

Rotor Stator - Centrifugal Flow 2 2 4 4 

Hydrocyclone 3 4 1 2 

Sum 37 33 21 22 
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Chapter 7: Detached Eddy Simulation (DES) 

7.1 Introduction 
Due to high computational cost, the Large Eddy Simulation (LES) although being more accurate 

than RANS simulation is currently not used routinely for complex industrial applications. RANS 

simulations are widely used in industry in conjunction with a turbulence model which introduces 

inaccuracies especially in wall bounded flows with separation. To address the high simulation cost 

of LES and low accuracy associated with RANS simulations, hybrid RANS/LES models have 

been developed in past couple of decades. These are often referred to as the Detached Eddy 

Simulation (DES) models. In the hybrid model, near wall region of a boundary layer is simulated 

by RANS while the flow field away from the wall region is simulated by LES. Thus DES takes 

advantage of the efficiency of RANS and the accuracy of LES to achieve more accurate and 

efficient calculation of the turbulent flow field. DES type of hybrid modeling was first proposed 

by Spalart [61].  

In 2017, Han et al. [62] successfully developed a DES model based on Wray-Agarwal (WA) 

turbulence model and showed better agreement between the experimental data and the DES results 

for several benchmark test cases compared to the RANS simulations with WA and other widely 

used turbulence models namely the Spalart-Allmaras (SA) and SST k-ω models. In previous 

chapter, Rotation and Curvature correction (RC) was applied to various versions of WA model to 

account for the frame rotation and streamline curvature. To author’s knowledge, in literature DES 

has never been applied to flows with RC correction. In this chapter, a new DES model is developed 

based on the Wray-Agarwal model with RC correction and is designated as WA2017m-RC-DES. 
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The new model is validated against experiment data and DNS results for test cases from Chapter 

6. 

7.2 WA2017m-RC-DES Model 
The transport equation of WA2017m-RC-DES model is shown in Eq. (101). The term 𝑓𝑟1 is the 

Spalart-Shur rotation and curvature function [17], which is described in Chapter 4. It is multiplied 

by the production term 𝐶1𝑅𝑆. 

𝜕𝑅

𝜕𝑡
+

𝜕𝑢𝑗𝑅

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
[(𝜎𝑅𝑅 + 𝜈)

𝜕𝑅

𝜕𝑥𝑗
] + 𝑓𝑟1𝐶1𝑅𝑆 + 𝑓1𝐶2𝑘𝜔

𝑅

𝐹𝐷𝐸𝑆
2 𝑆

𝜕𝑅

𝜕𝑥𝑗

𝜕𝑆

𝜕𝑥𝑗
− (1 − 𝑓1)𝐶2𝑘𝜀

𝐸𝑅

𝐹𝐷𝐸𝑆
2  (101)  

Characteristic length scale ratio FDES in Eq. (101) is defined similar to that in the SST k-ω DES 

model [63], in which a new constant CDES is introduced. When FDES is equal to 1, the model 

returns to RANS model, otherwise it behave likes the LES model. 

𝐹𝐷𝐸𝑆 = max (
𝑙𝑅𝐴𝑁𝑆

𝑙𝐿𝐸𝑆
, 1 ) 

𝑙𝑅𝐴𝑁𝑆 = √
𝑅

𝑆
 

𝑙𝐿𝐸𝑆 = 𝐶𝐷𝐸𝑆𝑚𝑎𝑥 (∆𝑥 , ∆𝑦, ∆𝑧) 

(102)  

The constant CDES is calibrated by the decaying isotropic turbulence (DIT) test case and the final 

value is fixed at 0.41 [62]. The switch function and other coefficients constants are kept the same 

as in WA2017m model. 
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7.3 Validation Cases 

7.3.1 Curved Duct 

This case was modeled as 2D in the previous RANS simulation by WA2017m-RC model. 

However, the DES requires full 3D modeling and the use of transient solver in OpenFOAM. Note 

that there is only one layer in the third direction, and “front” and “back” side of the mesh in the 

third direction are treated as periodic boundaries.  All the DES simulations reported in this chapter 

are performed following this approach. 

The DES model is very sensitive to the mesh density; it switches between the RANS region and 

the LES region according to Eq. (102).  The mesh independent study was conducted for this case 

using meshes of different densities as summarized in Table 7.1. In general, the finer grid covers 

larger LES region in DES. 

Table 7.1 Densities of three meshes employed. 

Grid Type Size 

Coarse 257 × 97 × 2 

Medium 513 × 193 × 2 

Fine 1025 × 385 × 2 

Figure 7.1 shows the computed and experimental pressure coefficients along the convex wall of 

the duct. The results from three different density meshes differ a lot in the upstream and 

downstream regions of the curved duct. From Fig. 7.1, it can be noted that the medium size mesh 

matches with the experiment data best and also gives result in agreement with that obtained with 

WA2017m-RC model. Comparisons of the calculated and experimental skin friction coefficients 
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are shown in Fig. 7.2. Again, the mesh size shows significant influence on the results. However, 

in this figure, the largest difference occurs in the middle of the curved part of the duct. 

 
Figure 7.1 Comparison of pressure coefficient along the convex wall of the curved duct. 

 
Figure 7.2 Comparison of skin friction coefficient along the convex wall of the curved duct. 
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Figure 7.3 shows the comparison of velocity profiles at five locations downstream (x = 0.030 m, 

0.183 m, 0.335 m, 0.635 m, and 1.250 m). The velocity is less sensitive to the mesh size, and the 

locations of interest are in the downstream region; therefore the DES results from three types of 

meshes have little difference. For clarity, only one curve of WA2017m-RC-DES is plotted in the 

figure. WA2017m-RC-DES model shows close agreement with the experiment data, especially at 

the first location (x = 0.030 m), where other models (SA-RC, SST-RC and WA2017m-RC) do not 

match with the experimental data. In the near wall region, WA2017m-RC-DES also performs quite 

well compared to the other RANS models. 

 
Figure 7.3 Comparison of velocity profile at downstream locations in the curved duct. 

7.3.2 U-turn Duct 

Large improvements have been obtained by adding RC to eddy viscosity models [4, 5]. The results 

of WA2017m-RC-DES model are compared with experimental data, the Reynolds Stress Model 

(RSM) [35] and also with other RANS models with RC. The flow conditions correspond to the 

experiment of Monson et al. [34]. The Reynolds number of the flow is Re = 106 based on the mean 
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flow velocity and channel height. The solution was obtained on a 378 × 102 × 2 grid which is 

shown in Fig. 7.4. The simulation was conducted in OpenFOAM using the second order accurate 

PIMPLE algorithm. The results of computations are presented in Figs. 7.5-7.6. 

 
Figure 7.4 Structured mesh inside the U- duct shown in 2D. 

Figure 7.5 shows the results of pressure coefficient Cp and skin friction coefficient Cf on the outer 

and inner wall of the duct respectively. Overall, the RANS models with RC did a better job in 

predicting the Cp and Cf curves than the DES model. On the inner wall, WA2017m-RC-DES model 

more accurately captures the profile for both Cp and Cf as shown in the Fig. 7.5 (b) and 7.5 (d). 

Even though there is no experimental data between θ ~ 0 and θ ~ π, WA2017m-RC-DES matches 

with the RSM results quite well. The separation occurs near θ = π on the inner wall; there is clear 

evidence that DES model is more reliable than RANS models if there is flow separation. On the 

outer wall, WA2017m-RC-DES is not able to predict minimum value of Cp and the maximum 

value of Cf, both values are underestimated by WA2017m-RC-DES model. 
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Figure 7.5 Results for (a) Cp along the outer wall, (b) Cp along the inner wall, (c) Cf along the outer wall and 

(d) Cf along the outer wall. 

The velocity profiles are shown in Fig. 7.6. At sections θ = 0 and θ = π/2 of the U-duct, the results 

obtained from all the models have slight differences but overall are in reasonable agreement with 

the experimental data. After flow separation at θ = π section, the results deviate significantly from 

each other, and none of the models accurately determines the velocity profile. From the bottom 

right plot in Fig. 7.6, where the flow is at θ = π+2, it can be seen that all models overestimate the 

length of the recirculation region and predict a very slow recovery after reattachment. Although 

WA2017m-RC-DES model gives results closest to the experiment data, there is no significant 

improvement in velocity profiles by applying the DES model. 
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Figure 7.6 Velocity profiles at different sections of the U-duct. 

7.3.3 Rotating Channel 

In current study, SRFPimpleFoam solver in OpenFOAM is used to perform the simulation. The 

grid size for DES is 400 × 200 × 2 in x, y and z directions, which is sufficient to ensure a grid 

independent numerical solution. DES result is compared with RANS models SA-RC, WA2017m-

RC and SST-RC as shown in Fig. 7.7. At low Ro, all the models except SST-RC almost predict 

the same profile, but at high Ro (e.g. Ro = 0.5) only WA2017m-RC-DES result best matches with 

the DNS data on both the suction side and pressure side of the channel compared to the other three 

RANS models. 
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Figure 7.7 Velocity distribution in the rotating channel at different rotation numbers. 

7.3.4 Rotating Backward-facing Step 

Figure 7.8 shows the mean velocity profile at x/h = 0, 1, 2, 4, 7 and 24 for Ro = 0.05 and 0.2 from 

the computations using the SST-RC, WA2017m-RC and WA-2017m-RC-DES models.  The SST-

RC and WA2017m-RC models completely fail in computing the reattachment location and predict 

a very slow recovery. At low rotation number (Ro = 0.05), as shown in Fig. 7.8 (a), WA2017m-

RC-DES successfully captures the flow separation on the bottom wall, and accurately calculates 

the velocity profile, which is not obtained with RANS models. Furthermore, in the recovery region 

at x/h = 7, WA2017m-RC-DES result is in reasonable agreement with the DNS data. At moderately 
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high rotation number (Ro = 0.2) in Fig. 7.8 (b), DNS data shows a separation bubble on the upper 

wall, opposite to the step, which is due to the stabilizing effect of rotation on that wall. The 

turbulence is suppressed on this surface and hence the flow is susceptible to separation. The 

WA2017m-RC-DES model again successfully captures the separation at the right location on both 

sides of the walls and in the recovery region it matches the DNS data perfectly. At location x/h = 

7, even though the velocity profile doesn’t ideally match with the DNS data, the overall trend is 

close. In general, the WA2017m-RC-DES model not only accurately predicts the velocity profile 

but also the separation and reattachment points which the RANS models are unable to do. 

 (a) 

 
(b) 

 
Figure 7.8 Comparison of mean velocity profile at (a) Ro = 0, (b) Ro = 0.05, and (c) Ro = 0.2 at multiple 

locations x/h = 0, 1, 2, 4, 7 and 24 on the backward facing step. 
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7.3.5 Stationary and Rotating Serpentine Channel 

The grid size for DES is 1670 × 169 × 2 in x, y and z directions. Special refinement of the mesh 

is adopted after the U-turn part. In the stationary case, the qualitative trends are predicted well by 

all the models as shown in the Fig. 7.9. Except at the Station 2, 6 and Station 3, 7, SST-RC predicts 

a recirculation region near the outer wall, which is not seen in the DNS and other models. At the 

first two stations, WA2017m-RC almost duplicates the DNS results while WA2017m-RC-DES 

model performs slightly worse than WA2017m-RC model. However, at the latter stations, 

WA2017m-RC model can only predict the velocity profile trend while underestimates the peak 

value. WA2017m-RC-DES accurately calculates the peak value and the overall profile matches 

with the DNS data quite well. Especially at the station 4, 8 shown in Fig. 7.9 (d), WA2017m-RC-

DES is the only model that is capable of predicting the reverse flow. The flow separation is a key 

feature of this case; therefore WA2017m-RC-DES model can be regarded as a significant 

improvement. 
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Figure 7.9 Mean velocity profile in stationary serpentine channel. 

For the serpentine channel with span-wise rotation, the addition of orthogonal mode rotation 

results in a strong asymmetry between U-bend 1 and U-bend 2. At station 4, WA2017m-RC-DES 

model captures the flow separation but the separation bubble size is largely underestimated. The 

situation becomes better at station 8; the separation bubble size is accurately calculated as well as 

the overall velocity profile. Again, RANS models with RC correction are not capable of predicting 

the mean flow for the coupled curvature and rotation effect in a serpentine channel. Only a 

qualitative agreement is obtained by WA2017m-RC model. On the other hand, WA2017m-RC-

DES exhibits a stronger ability to predict the mean flow field in better agreement with DNS data. 
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Figure 7.10 Mean velocity profiles in rotating serpentine channel at Ro = 0.32. 
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Chapter 8: Summary and Future Work 

8.1 Summary 
This thesis provides an introduction to the evolution of the one-equation eddy viscosity Wray-

Agarwal turbulence model. It is developed from the first version designated WA2017 to 

WA2017m which is designed to overcome the problem of kink at the centerline of the velocity 

profile for flow in a planar channel and then to a wall distance free version WA2018.  Finally   

WA2018EB version is developed by coupling an elliptic relaxation model with WA2018 model. 

The system rotation and streamline curvature are widely encountered in industrial applications. 

The effect of rotation and curvature are discussed respectively using two simple geometries. In 

flows with curvature, turbulent intensity is reduced along the convex curvature while it is enhanced 

along the concave curvature. In case of flows with rotation, turbulent intensity is increased on the 

unstable side while it is decreased on the stable side. The inability to account for system rotation 

and streamline curvature in k-ε turbulence model is discussed through the equilibrium analysis of 

the model. This deficiency is resolved by addition of the dependence of rotation in the turbulence 

model via two approaches, the “Modified Coefficients Approach” and the “Bifurcation Approach”. 

By applying the uncertainty quantification to WA2017m-RC model, the closure coefficients in RC 

correction were improved and the optimal closure coefficients were determined for WA2017m-

RC model which are cr1 = 1.0, cr2 = 0.5 and cr3 = 0.6. From simulations of flow in the curved duct, 

U-turn duct and rotating channel, it was found that the rotation and curvature corrections to the 

turbulence models certainly improved the performance of the original SA, SST and WA2017m 

models. For other test cases which were more complex, models with RC and Arolla corrections 
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provided better and more reasonable predictions than the original models. Overall, by analyzing 

the results for various test cases, WA2017m-RC model was found to be the best model among all 

the models, namely SA-RC, SST-RC, WA2017m-RC, WA2017m-RCM, WA2017m-Arolla, 

WA2018-RC and WA2018EB-RC. 

A hybrid RANS/LES model based on WA2017m-RC RANS model was also developed which is 

designated as WA2017m-RC-DES. In DES approach, by analyzing the results of various test cases, 

namely the curved duct, U-duct, rotating channel, rotating backward-facing step and rotating 

serpentine channel, it was found that the RC correction enables the DES model to more accurately 

capture the effect of system rotation and streamline curvature compared to the RANS models with 

rotation and curvature corrections. Although DES results are dependent upon mesh size but by 

properly choosing a dense enough mesh, DES with RC correction can provide better accuracy 

compared to RANS models when compared to the DNS or experimental data. This thesis presents 

the DES calculations with RC correction in various turbulence models for the first time in the 

literature. Further research is needed to improve the DES models for flows with rotation and 

curvature. Nevertheless the test cases and results shown in this thesis can serve as a good starting 

point for future research. 

8.2 Future Work 
As mentioned in the summary section, WA2017m-Arolla model performs reasonably well overall. 

Therefore, it is worth investigating further by applying the Arolla correction to WA2018 and 

WA2018EB models. 

To overcome the high grid-dependency of DES model, a new improved delayed detached eddy 

simulation (IDDES) model was developed by Gritskevich et al. [64]. In 2018, Han et al. [65] 
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developed the WA-IDDES model and showed good agreement with the experimental data for 

many test cases. It may be worthwhile to apply the rotation and curvature corrections to WA-

IDDES model. 
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