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Nomenclature 
 

Cp = pressure coefficient 

Cf = skin friction coefficient 

Cw =  volume flow rate coefficient 

cr1, cr2, cr3 =   closure coefficients for RC correction 

D =  diameter 

ER = WA2017m model destruction term 

Ebb = Baldwin-Barth destruction term 

Ek-ω = old WA2017 model destruction term 

ER = expansion ratio 

FDES = characteristic length scale ratio of DES model 

fμ = WA2017m model wall-damping function 

fν1 = SA model wall-damping function 

f1 = blending function of Wray-Agarwal model 

fr1 = RC correction function 

k =  turbulent kinetic energy 

LR = turbulent length scale of WA2018-EB model 

Lvk = von Karman length-scale 

lDES = characteristic length scale of DES model 

lLES = characteristic length scale of LES model  

lRANS = characteristic length scale of RANS model  

lref = reference length scale of WA2018EB model 

M =  Mach number 

n = number of uncertain variables 
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np = oversampling ratio 

NS =   UQ sample number 

p =  order of the response surface polynomial 

Q =  volume flow rate 

R =   WA2017m model variable; k/ω 

Ri =   Richardson number 

Ri,Ro =   inner and outer radius 

Ro =   rotation number 

S =  strain rate magnitude 

Sij =  strain rate tensor 

uτ =  friction velocity 

Ub0 = upstream bulk velocity 

Ub = downstream bulk velocity 

Vr =  radial velocity  

Vz =  axial velocity   

Vθ =  tangential velocity  

Wij = vorticity tensor 

∆x = grid spacing along x direction 

∆y = grid spacing along y direction 

∆z = grid spacing along z direction 

Ω = vorticity magnitude 

χ =  undamped eddy-viscosity-to-laminar-viscosity ratio 

ε = turbulent dissipation 

νt = turbulent eddy viscosity 

ρ = density 
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τw =  wall shear stress 

ω =  specific turbulent dissipation rate 
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Abstract of the Dissertation 

Development and Application of Rotation and Curvature Correction to Wray-Agarwal 

Turbulence Model 

by 

Xiao Zhang 

Doctor of Philosophy in Mechanical Engineering 

Washington University in St. Louis, 2018 

Research Advisor: Ramesh Agarwal  

Computational Fluid Dynamics (CFD) is increasingly playing a significant role in the analysis and 

design of aircrafts, turbomachines, automobiles, and in many other industrial applications. In 

majority of the applications, the fluid flow is generally turbulent. The accurate prediction of 

turbulent flows to date remains a challenging problem in CFD. In almost all industrial applications, 

Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a turbulence model are 

employed for simulation and prediction of turbulent flows. Currently the one-equation (namely the 

Spalart-Allmaras (SA) and Wray-Agarwal (WA) and two-equation (namely the k-ε and Shear 

Stress Transport k-ω) turbulence models remain the most widely used models in industry. However, 

improvements and new developments are needed to improve the accuracy of the turbulence models 

for wall bounded flows with separation in the presence of adverse pressure gradients, and for flows 

with rotation and curvature (RC) such as those encountered in turbomachinery, centrifugal pumps 

and the rotating machinery in other industrial devices. The goal of this research is to enable the 

eddy-viscosity type turbulence models to accurately account for the rotation and curvature effects. 

To date, there have been two approaches for inclusion of RC effects in turbulence models, which 

can be categorized as the “Modified Coefficients Approach” which parameterizes the model 
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coefficients such that the growth rate of turbulent kinetic energy is either suppressed or enhanced 

depending upon the effect of system rotation and streamline curvature on the pressure gradient in 

the flow and the “Bifurcation Approach” which parameterizes the eddy-viscosity coefficient such 

that the equilibrium solution bifurcates from the main branch to decaying solution branches. In 

this research, the uncertainty quantification (UQ) is applied to examine the sensitivity of RC 

correction coefficients and the coefficients are modified based on the UQ analysis to improve the 

model’s behavior. Both these approaches are applied to the widely used turbulence models (SA, 

SST k-ω and WA) and they show some improvement in predictions of turbulent flow in all 

benchmark test cases considered, namely the flow in a 2D curved duct, flow in a 2D U-turn duct, 

fully developed turbulent flow in a 2D rotating channel, fully developed turbulent flow in a 2D 

rotating backward-facing step, flow in a rotating cavity, flow in a stationary and rotating serpentine 

channel, flow in a rotor-stator cavity and in a hydrocyclone as well as two wall-unbounded 

turbulent flow cases. All the simulations are conducted using the commercial software ANSYS 

Fluent and the open source CFD software OpenFOAM. The success of this research should 

enhance the ability of the RANS modeling for more accurate prediction of complex turbulent flows 

with rotation and curvature effects. In addition to the RANS modeling of RC effects, a new DES 

model incorporating the WA2017m-RC turbulence model (referred to as the WA2017m-RC-DES 

model) is developed and validated against experimental and DNS data. Further improvements are 

obtained with the DES model in some test cases. 
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Chapter 1: Introduction 

1.1 Background 
The Reynolds number (Re) is the single most important non-dimensional number in fluid dynamics. 

It is defined as the dimensionless ratio of the inertial forces to viscous forces. The Re allows us to 

characterize whether a flow is laminar or turbulent. Laminar flow is characterized by lower Re and 

higher diffusion over convection. Turbulent flow on the other hand is characterized by higher Re 

where inertial forces dominate considerably, resulting in largely chaotic flow. The flow may also 

undergo a transitioning phase whereby the flow exhibits neither completely laminar nor 

completely turbulent characteristics. The behavior of laminar flow is determined by a single length 

scale defined by the boundaries of the flow region. If one can accurately describe the boundaries 

of a laminar flow region, the flow behavior can be calculated precisely using the Navier-Stokes 

equation. Only for simple geometries and fully developed flows, it is possible to obtain the exact 

analytical solutions. Although the physics of turbulent flows is governed by the Navier-Stokes and 

continuity equations, turbulent flow has features that span many length and time scales. At present, 

even on the most powerful computers, it is difficult to capture all these scales by numerical 

simulations of governing equations for 3D turbulent flows past complex objects at high Reynolds 

numbers of industrial significance. Fig. 1.1 shows the transition from laminar to turbulent flow. 
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Figure 1.1 Free shear flow illustrating laminar, transition and turbulent phases [1]. 

1.2 Objectives 
The original scalar eddy viscosity turbulence models are not capable of accounting for the system 

rotation and streamline curvature. One of the goal of this work is to apply the rotation and curvature 

corrections to the very promising one equation turbulence model based on the k-ω closure, known 

as the ‘Wray-Agarwal (WA)’ model.  The uncertainty quantification (UQ) is the quantitative 

characterization and reduction of uncertainty in computational applications via running very large 

number of calculations to characterize the effects of minor differences in the systems. Another 

objective in this thesis, is to employ UQ to determine the modification direction of the closure 

coefficients in the RC correction. The final objective is to develop a new DES model using the 

WA2017m-RC RANS model with LES. In the literature, DES models have been developed based 

on the widely used one-equation Spalart-Allmaras (SA) model [2] and the two-equation SST k-ω 

model [3], and they are known to be more accurate than RANS models especially in the presence 

of flow separation. 

1.3 Outline 
Chapter 2: Turbulence Modeling: This chapter describes some general topics related to 

turbulence modeling. Main turbulence modeling methods including Direct Numerical Simulation 

(DNS), Large-Eddy Simulation (LES) and Reynolds-Averaged Naiver-Stokes (RANS) equations 
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are described. Two widely linear used eddy viscosity turbulence models namely Spalart-Allmaras 

(SA) and SST k-ω are briefly introduced. 

Chapter 3: Development of Wray-Agarwal (WA) Turbulence Model: This chapter discusses 

the history and evolution of the one equation Wray-Agarwal (WA) turbulence model. Its 

development from version WA2017m to WA2018 and finally to WA2018EB is described. 

Chapter 4: Rotation and Curvature Correction: This chapter gives a brief introduction to the 

theory behind the two rotation and curvature correction approaches, the “Modified Coefficients 

Approach” and the “Bifurcation Approach”. 

Chapter 5: Uncertainty Quantification: A brief introduction to uncertainty quantification (UQ) 

is given and how it is employed to improve the turbulence model coefficients is discussed in this 

chapter. Closure coefficients of the RC correction are modified based on the UQ analysis. 

Chapter 6: Validation Cases: This chapter describes several benchmark test cases in two main 

categories: wall bounded flows and unbounded flows. The flows in the first category are flow in a 

2D curved duct, flow in a 2D U-turn duct, fully developed turbulent flow in a 2D rotating channel, 

fully developed turbulent flow in a 2D rotating backward-facing step, flow in rotating cavity, flow 

in a stationary and rotating serpentine channel, flow in a rotor-stator cavity and in a hydrocyclone. 

The flows in the second category are a subsonic jet and a supersonic jet in cross flow. 

Chapter 7: Detached Eddy Simulation (DES): This chapter describes a new DES model named 

WA2017m-RC-DES. It is validated against experiment and DNS data in some test cases as 

described in Chapter 6. 
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Chapter 8: Summary and Future work: This chapter provides a summary of the work 

accomplished in this thesis, including modeling and testing of the WA2017m-RC, WA2017m-

RCM, WA2017m-Arolla, WA2018-RC, WA2018EB-RC and WA2017m-RC-DES models. And 

some potential future work is also discussed. 
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Chapter 2: Turbulence Modeling 

2.1 Introduction 
Direct Numerical Simulation (DNS) solves the full three-dimensional, time-dependent Navier-

Stokes equations to obtain instantaneous flow field and then performs averaging to get the statistics. 

DNS is only feasible for very simple geometries at low Reynolds numbers. Large Eddy Simulation 

(LES) resolves only the large energy containing scales and models the effects of small scales. LES 

is possible at relatively higher Reynolds numbers for simple geometries but at a very high 

computational effort and cost. Reynolds-Averaged Navier-Stokes (RANS) equations are obtained 

by time-averaging the Navier-Stokes equations over a laboratory time scale which are discussed 

below.  

2.2 Reynolds-Averaged Navier-Stokes Equations 
Dating back to early 1900 since Osborne Reynolds, there have been three major approaches that 

have been developed to model and approximate mathematically the turbulent fluid behavior; these 

are known as RANS, LES and DNS. The oldest approach developed in early 1900 is based on 

time-averaging of the Navier-Stokes equations which results in the Reynolds-Averaged Navier-

Stokes (RANS) equations. RANS averaging results in the so called “turbulent stresses” or 

“Reynolds Stresses” which are unknown and require modeling using empiricism. Thus, RANS 

equations are not closed; it is known as the “Closure Problem” in RANS equations. Closure of 

RANS equations requires empirical models for “Reynolds Stresses”; these models are called the 

“RANS Models.” The RANS models are generally developed by using the transport equations for 

turbulent quantities such as the turbulent kinetic energy, turbulent dissipation, a characteristic 
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turbulent length scale etc. using experimental and other empirical information. The main objective 

of the turbulence models for the RANS equations is to compute the Reynolds (turbulent) stresses, 

which are modeled by the scalar eddy-viscosity models of Boussinesq type or directly by the 

transport equations for various components of Reynolds-stresses. The solutions of RANS 

equations with turbulence models to date remains the most widely used method in industry for 

solving the turbulent flows. 

2.3 Eddy Viscosity Turbulence Models 
In 1877 Boussinesq proposed relating the turbulence stresses to the mean flow to close the system 

of equations. According to the Boussinesq hypothesis the Reynolds stress terms are modeled as 

𝑢𝑖
′𝑢𝑗

′ = −2𝜈𝑡𝑆𝑖𝑗 +
2

3
𝛿𝑖𝑗𝑘 (1)  

where 𝜈𝑡 is the turbulent kinematic eddy viscosity. 

2.3.1  Spalart-Allmaras (SA) Model 

The most commonly used one-equation eddy-viscosity turbulence model is the Spalart-Allmaras 

turbulence model. It was developed by Spalart and Allmaras [4] and was designed specifically for 

aerospace applications involving wall-bounded flows and has been shown to give good results for 

boundary layers subjected to adverse pressure gradients. The transport equation for an eddy-

viscosity-like variable is given by 

𝜕𝜈̃

𝜕𝑡
+ 𝑢𝑗

𝜕𝜈̃

𝜕𝑥𝑗
= 𝑐𝑏1(1 − 𝑓𝑡2)𝑆𝜈̃ − [𝑐𝑤1𝑓𝑤 −

𝑐𝑏1

𝜅2
𝑓𝑡2] (

𝜈̃

𝑑
)

2

+
1

𝜎
[

𝜕

𝜕𝑥𝑗
((𝜈 + 𝜈̃)

𝜕𝜈̃

𝜕𝑥𝑗
) + 𝑐𝑏2

𝜕𝜈̃

𝜕𝑥𝑖

𝜕𝜈̃

𝜕𝑥𝑖
] (2)  

The turbulent eddy viscosity is computed from 

 𝜈𝑇 = 𝑓𝜇𝑅 (3)  

The damping function 𝑓𝑣1 is given by: 



7 

 

𝑓𝑣1 =
𝜒3

𝜒3 + c𝜈1
3 , 𝜒 =

𝜈

𝜈
 (4)  

The additional definitions are given by the following equations: 

 𝑆̃ ≡ 𝛺 +
𝜈

𝜅2𝑑2
𝑓𝑣2 (5)  

  𝑓𝑣2 = 1 −
𝜒

1 − 𝜒𝑓𝑣1
         𝑓𝑤 = 𝑔 [

1 + 𝑐6
𝑤3

𝑔6 + 𝑐6
𝑤3

]

1 6⁄

 (6)  

 𝑔 = 𝑟 + 𝑐𝑤2(𝑟6 − 𝑟) (7)  

 𝑟 = 𝑚𝑖𝑛 [
𝜈

𝑆̃𝜅2𝑑2
, 10] (8)  

 𝑓𝑡2 = 𝑐𝑡3𝑒𝑥𝑝(−𝑐𝑡4𝜒2) (9)  

 Ω = √2𝑊𝑖𝑗𝑊𝑖𝑗     𝑊𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
−

𝜕𝑢𝑗

𝜕𝑥𝑖
) (10)  

The constants are 

𝑐𝑏1 = 0.1355 𝜎 =
2

3
𝑐𝑏2 = 0.622 𝜅 = 0.41 

𝑐𝑤2 = 0.3 𝑐𝑤3 = 2 𝑐𝑣1 = 7.1 𝑐𝑡3 = 1.2 𝑐𝑡4 = 0.5 

𝑐𝑤1 =
𝑐𝑏1

𝜅2
+

1 + 𝑐𝑏2

𝜎
 

(11)  

2.3.2  Shear-Stress-Transport k-ω Turbulence Model 

Menter’s Shear Stress Transport (SST) [5] turbulence model is also a widely used robust two-

equation eddy-viscosity turbulence model. The model combines the features of k-ω turbulence 

model and k-ε turbulence model such that the k-ω model is used in the inner region of the boundary 

layer and switches to the k-ε model in the free shear flow region. The formulation of the SST model 

is based on information from many experiments and attempts to predict solutions to typical 

engineering problems. The two-equation model is given by the following equations: 
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𝜕(𝜌𝑘)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖𝑘)

𝜕𝑥𝑗
= 𝑃 − 𝛽∗𝜌𝜔𝑘 +

𝜕

𝜕𝑥𝑗

[(𝜇 + 𝜎𝑘𝜇𝑡)
𝜕𝑘

𝜕𝑥𝑗

] (12)  

𝜕(𝜌𝜔)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖𝜔)

𝜕𝑥𝑗
=

𝛾

𝜈𝑡
𝑃 − 𝛽𝜌𝜔2 +

𝜕

𝜕𝑥𝑗

[(𝜇 + 𝜎𝜔𝜇𝑡)
𝜕𝜔

𝜕𝑥𝑗

] + 2(1 − 𝐹1)
𝜌𝜎𝜔2

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
 (13)  

𝑃 = 𝜏𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
 (14)  

The turbulence eddy viscosity is computed from: 

𝜈𝑡 =
𝜌𝑎1𝑘

𝑚𝑎𝑥 (𝑎1𝜔, Ω𝐹2)
 (15)  

Each of the constants is a blend of an inner (subscript 1) and outer (subscript 2) constant via 

𝜙 = 𝐹1𝜙1 + (1 − 𝐹1)𝜙2 (16)  

Additional functions are defined as 

𝐹1 = 𝑡𝑎𝑛ℎ(𝑎𝑟𝑔1
4) (17)  

𝑎𝑟𝑔1 = 𝑚𝑖𝑛 [max (
√𝑘

𝛽∗𝜔𝑑
,
500𝜈

𝑑2𝜔
) ,

4𝜌𝜎𝜔2𝑘

𝐶𝐷𝑘𝜔𝑑2
] (18)  

𝐶𝐷𝑘 = max (2𝜌𝜎𝜔2

1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
, 10−20) (19)  

𝐹2 = 𝑡𝑎𝑛ℎ(𝑎𝑟𝑔2
2) (20)  

𝑎𝑟𝑔2 = max (2
√𝑘

𝛽∗𝜔𝑑
,
500𝜈

𝑑2𝜔
) (21)  

The constants are 

𝛾1 =
𝛽1

𝛽∗
−

𝜎𝜔1𝜅2

√𝛽∗
 𝛾2 =

𝛽2

𝛽∗
−

𝜎𝜔2𝜅2

√𝛽∗
 

𝜎𝑘1 = 0.85 𝜎𝜔1 = 0.5 𝛽1 = 0.075 

𝜎𝑘2 = 1.0 𝜎𝜔2 = 0.856 𝛽2 = 0.0828 𝛽∗ = 0.09 𝜅 = 0.41 𝑎1 = 0.31 

(22)  
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Chapter 3: Development History of Wray-

Agarwal (WA) Turbulence Model 

3.1 WA2017m 
Wray-Agarwal (WA) model is a newly developed one-equation eddy-viscosity turbulence model 

derived from k-ω closure. In this model, a new variable R is introduced which is defined as k/ω. It 

has been applied to several canonical flows [6] and has shown improved accuracy over the SA 

model and competitiveness with the SST k-ω model. An important distinction between the WA 

model and previous one-equation models based on two equation k-ω models is the inclusion of the 

cross diffusion term in the ω-equation and a blending function which allows smooth switching 

between two destruction terms. The equations of the WA2017 turbulence model are given below. 

𝜕𝑅

𝜕𝑡
+ 𝑢𝑗

𝜕𝑅

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
[(𝜎𝑅𝑅 + 𝜈)

𝜕𝑅

𝜕𝑥𝑗
] + 𝐶1𝑅𝑆 + 𝑓1𝐶2𝑘𝜔

𝑅

𝑆

𝜕𝑅

𝜕𝑥𝑗

𝜕𝑆

𝜕𝑥𝑗
− (1 − 𝑓1)𝐶2𝑘𝜀 𝑅2 (

𝜕𝑆
𝜕𝑥𝑗

𝜕𝑆
𝜕𝑥𝑗

𝑆2
) (23)  

𝑓1 = min(𝑡𝑎𝑛ℎ(𝑎𝑟𝑔1
4), 0.9) (24)  

𝑎𝑟𝑔1 =
1 + 20𝜂

1 + (
𝑑 max(√𝑅𝑆, 1.5𝑅)

20𝜈 )

2 

(25)  

𝜂 =
𝑑√𝑅𝑆

20𝜈
 (26)  

The eddy viscosity is calculated through the new variable R 

 𝜈𝑡 = 𝑓𝜇𝑅 (27)  



10 

 

Again, to account for the wall blocking effect, the damping function 𝑓𝜇  is defined in the same form 

as in the SA model. 

𝑓𝜇 =
𝜒3

𝜒3 + 𝐶𝑤
3

,        𝜒 =
𝑅

𝜈
 (28)  

While the C2kω term is active, Eq. (25) behaves as a one equation model based on the standard k-

ω equations. The inclusion of the cross diffusion term in the derivation causes the additional C2kε 

term to appear. This term corresponds to the destruction term of one equation models derived from 

standard k-ε closure. The presence of both terms allows the new model to behave either as a one 

equation k-ω or one equation k-ε model based on the switching function f1. Being a one equation 

model, it is more computationally efficient than the multi-equation models. Even though the WA 

model appears promising, it also has limitations in accuracy for computing wall bounded separated 

flows.  

The last term in Eq. (25) involves the inverse of the von Karman length-scale: 

𝐸𝑘−𝜔 = 𝑅2 (
1

𝐿𝑉𝐾
) = 𝑅2 (

𝜕𝑆
𝜕𝑥𝑗

𝜕𝑆
𝜕𝑥𝑗

𝑆2 ) (29)  

As has been pointed out previously in Ref. [7], 𝐸𝑘−𝜔 can become singular whenever S goes to zero 

leading to an infinite destruction term. In order to prevent this from happening, the last destruction 

term is limited by a multiple of the Baldwin-Barth destruction term, Ebb: 

𝐸𝑅 = 𝐶𝑚𝐸𝑏𝑏 tanh (
𝐸𝑘−𝜔

𝐶𝑚𝐸𝑏𝑏
) (30)  

with a constant Cm = 8.0. Ebb is defined as: 
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𝐸𝑏𝑏 =
𝜕𝑅

𝜕𝑥𝑗

𝜕𝑅

𝜕𝑥𝑗

 
(31)  

Eq. (30) provides a smooth transition between the two formulations whenever 𝐸𝑘−𝜔  goes to 

infinity. For majority of the flow region, 𝐸𝑘−𝜔 ≪ 𝐶𝑚𝐸𝑏𝑏  and the original formulation is recovered. 

A less smooth transition could be achieved by 𝐸𝑅 = min (𝐸𝑘−𝜔, 𝐶𝑚𝐸𝑏𝑏). For all the test cases 

considered in this paper, these two methods for 𝐸𝑘−𝜔  yield almost the same results. The constant 

Cm is calibrated by computing flow past a zero pressure gradient the flat plate and in a channel 

flow. There is major difference between the new WA2017m and the old WA2017 model. The final 

formulation of the WA2017m model becomes [8]: 

𝜕𝑅

𝜕𝑡
+ 𝑢𝑗

𝜕𝑅

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗

[(𝜎𝑅𝑅 + 𝜈)
𝜕𝑅

𝜕𝑥𝑗

] + 𝐶1𝑅𝑆 + 𝑓1𝐶2𝑘𝜔

𝑅

𝑆

𝜕𝑅

𝜕𝑥𝑗

𝜕𝑆

𝜕𝑥𝑗
− (1 − 𝑓1)𝐶2𝑘𝜀𝐸𝑅  (32)  

𝐸𝑅 = 𝐶𝑚𝐸𝑏𝑏 tanh (
𝐸𝑘−𝜔

𝐶𝑚𝐸𝑏𝑏
)    or min (𝐸𝑘−𝜔, 𝐶𝑚𝐸𝑏𝑏) (33)  

The model constants are as follows: 

𝐶1𝑘𝜔 = 0.0829    𝐶1𝑘𝜀 = 0.1127 

𝐶1 = 𝑓1(𝐶1𝑘𝜔 − 𝐶1𝑘𝜀) + 𝐶1𝑘𝜀  

𝜎𝑘𝜔 = 0.72    𝜎𝑘𝜀 = 1.0 

𝜎𝑅 = 𝑓1(𝜎𝑘𝜔 − 𝜎𝑘𝜀) + 𝜎𝑘𝜀 

𝜅 = 0.41 

𝐶2𝑘𝜔 =
𝐶1𝑘𝜔

𝜅2
+ 𝜎𝑘𝜔     𝐶2𝑘𝜀 =

𝐶1𝑘𝜀

𝜅2
+ 𝜎𝑘𝜀 

𝐶𝑤 = 8.54 

(34)  
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3.2 Wall Distance Free WA2018 Model 
In order to improve the generality and efficiency of the WA model, new formulation avoiding the 

use of wall–distance d is devised. Since the transport equation does not contain explicitly the 

distance to the wall d, it can be replaced without any rigorous modifications to the model equation. 

There is wall distance d in Eq. (25) which can create inaccuracies in flow past complex curved 

surfaces and moving boundaries. Therefore, a wall-distance free formulation WA model is 

developed and is designated as WA2018 which is described below. The transport equation of 

WA2018 is the same as WA2017m given in Eq. (32). The newly designed wall distance free 

blending function is 

𝑓1 = 𝑡𝑎𝑛ℎ(𝑎𝑟𝑔1
4) 

(35)  

𝑎𝑟𝑔1 =
𝜈 + 𝑅

2

𝜂2

𝐶𝜇𝑘𝜔
 

𝑘 =
𝜈𝑇𝑆

√𝐶𝜇

, 𝜔 =
𝑆

√𝐶𝜇

, 𝜂 = 𝑆 max (1, |
𝑊

𝑆
|) 

𝑊 = √2𝑊𝑖𝑗𝑊𝑖𝑗 , 𝑊𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
−

𝜕𝑢𝑗

𝜕𝑥𝑖
) 

(36)  

Most of the coefficients and constants are the same as in WA2017m given in Eq. (34); the only 

constant changed is 𝐶1𝑘𝜀 . 

𝐶1𝑘𝜀 = 0.1284 
(37)  

The WA2018 model was extensively validated by computing a number of benchmark flows listed 

on NASA TMR website [10]. Although WA2018 gives excellent results in a large number of 

benchmark test cases, it cannot compute accurately the log layer in the turbulent boundary layer 
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compared to DNS data. This problem is addressed by including the elliptic blending/elliptic 

relaxation in the model as described in the next section. 

3.3 WA2018EB Model 
It has been shown by several investigators [11-14] that by including an elliptic relaxation model 

with a turbulence model, the anisotropic low Reynolds number near wall effects can be more 

accurately captured. The model equation for elliptic blending is generally expressed as 

−𝐿𝑅
2∇2𝑃𝑅 + 𝑃𝑅 = −𝐶3𝑘𝜔 𝑅

𝜕2𝑅

𝜕𝑥𝑗
2

+ 𝑅𝑆 (38)  

where PR is a production term which couples Eq. (38) and a modified model Eq. (39) given below. 

In Eq. (38), the diffusion/destruction term 𝐶3𝑘𝜔𝑅
𝜕2𝑅

𝜕𝑥𝑗
2 can be neglected in most cases without 

affecting the accuracy. The coupled WA model equations with elliptic blending take the form 

𝜕𝑅

𝜕𝑡
+ 𝑢𝑗

𝜕𝑅

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
[(𝜎𝑅𝑅 + 𝜈)

𝜕𝑅

𝜕𝑥𝑗
] + 𝑅𝑆(𝐶1 − 1) + 𝑃𝑅 + 𝑓1𝐶2𝑘𝜔

𝑅

𝑆

𝜕𝑅

𝜕𝑥𝑗

𝜕𝑆

𝜕𝑥𝑗
− (1 − 𝑓1)𝐶2𝑘𝜀 𝐸𝑅 

−𝐿𝑅
2∇2𝑃𝑅 + 𝑃𝑅 = 𝑅𝑆 

(39)  

It should be noted that the near-wall turbulence eddies follow the Kolmogorov scaling (i.e. the 

turbulence fluctuations depend on the laminar viscosity). Therefore, ν/S can be used for the viscous 

scaling serving as a lower bound on the turbulent length scale 𝐿𝑅. In Eq. (40), Lref is the reference 

length scale. 

𝐿𝑅
2 =

max(𝐶3𝑘𝜔 𝑅, 𝐶𝑙𝜈)

𝑆 +
𝐶𝑙𝜈

𝐿𝑟𝑒𝑓
2

 
(40)  
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The WA model given by Eq. (39) and Eq. (40) is designated as WA2018EB [9]. It is a wall distance 

free model; therefore 𝑓1 function in this model is the same as that given in Eqs. (37) and (38). The 

values of the changed and new constants in WA2018EB model are listed below. It should be noted 

that some of these constants are different from Eq. (34) and Eq. (37), and there are two additional 

constants given in Eq. (41). 

𝐶1𝑘𝜔 = 0.2    𝐶1𝑘𝜀 = 0.094 

𝐶2𝑘𝜔 = 2.63    𝐶2𝑘𝜀 = 1.24 

𝐶𝑤 = 5.97 

𝐶𝑙 = 4.0 + √𝜒 

𝐶3𝑘𝜔 = 0.17 

(41)  
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Chapter 4: Introduction to Rotation and 

Curvature Correction 

4.1 Background 
In many industrial applications, rotation and curvature effects are very important. For example, in 

a gas turbine engine, cool air taken form the middle stages of the compressor is circulated through 

the internal cooling passages inside the turbine blades to reduce temperature levels below the 

melting point of the blade material. These passages often have strongly curved surface where both 

rotation and curvature play an important role in prediction of the heat transfer. Similarly, in a 

circulation control airfoil, streamline curvature effects need to be considered to accurately 

calculate the lift coefficient. Some other applications include particle separation in a hydrocyclone, 

vortex evolution in tip clearance flow in a centrifugal pump etc. 

RANS equations with scalar turbulence closure models are still the workhorse in the industrial 

design process and will remain so far at least next few decades. However, these closure models do 

not respond well to the imposed system rotation and streamline curvature. The modifications to 

the scalar eddy viscosity models to include the effects of rotation and curvature (RC) are called 

the rotation and curvature corrections, which can be categorized into two approaches, namely the 

“Modified Coefficient Approach” and the “Bifurcation Approach”. A review of the methodology 

used in these approaches can be found in Durbin [15]. The modified coefficients approach dates 

back to 1980s. In 1997, Spalart and Shur [16] introduced a correction to the production term in a 

transport equation for eddy viscosity. They proposed a unified measure for rotation and curvature 

in terms of the material derivative of the strain rate tensor, making the model frame independent 
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and Galilean invariant. In 2000, a more detailed assessment of Spalart-Shur correction approach 

was given by Shur et al. [17]. In 1999, Reif and Durbin [18] proposed a novel approach for 

including the rotational effects in scalar turbulence models. Bifurcation analysis of Second-

Moment Closure (SMC) in rotating homogeneous shear flow forms the basis for this work. This 

model is formulated such that the equilibrium solution bifurcates from the main to the decaying 

solution branches. In 2013, Arolla [19] proposed a new and simpler form based on the work of 

Reif and Durbin [18].  

4.2 Effect of Rotation and Curvature 
First, we consider the effect of streamline curvature. The way to include the effect of streamline 

curvature in the turbulent flow is to alter the turbulent intensity. More specifically, the convex 

curvature reduces turbulent intensity while the concave curvature enhances turbulent intensity. 

The term “convex” refers to a boundary layer along a wall with the center of curvature inside the 

surface; e.g., the outside surface of a circular arc. The boundary layer velocity profile is such that 

it increases radially outward from the center of curvature. On the other hand the “concave” wall 

curves opposite to the center of curvature outside the surface; e.g., the inside surface of a bowl, 

and the boundary layer velocity increases towards the center of curvature. A sketch of both convex 

and concave walls are shown in Fig. 4.1. To characterize the effect of curvature on a shear flow, 

two types of rotations are considered. The first one is such that, as the flow passes over a curved 

wall, the direction of the velocity vector rotates. The second one is such that, the fluid elements 

within a shear flow also rotate: they rotate clockwise if 𝑑𝑈/𝑑𝑦 > 0. The streamline curvature effect 

on turbulence is determined by these two types of rotation: along a convex wall, the velocity vector 

rotates in the same direction as fluid elements; along a concave wall the rotations are in opposite 

directions. Co-rotation suppresses turbulence, and counter-rotation enhances it. Another way to 
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analyze this problem is to compare it with flat plate, the flow over a convex wall can be regarded 

as “expanded” while over a concave wall as “shrunk”. The result of “expanded” and “shrunk” flow 

is the turbulent intensity being reduced and enhanced, respectively. 

 
Figure 4.1 Sketch of (a) convex and (b) concave wall. 

Secondly, we examine the effect of reference frame rotation. An analogy exists between system 

rotation and streamline curvature. If the frame rotation is in the same direction as the shear, 

turbulent intensity is reduced by rotation; if they are opposite turbulent intensity increases. Let us 

consider a flow configuration that a planar rotating channel with span-wise rotation shown in the 

Fig. 4.2. The direction of shear next to wall is opposite to each other; so the rotation will enhance 

the turbulence next to one wall and reduce it next to the other. Here, with a counter-clock wise 

rotation, the upper wall is on the suction side and the turbulence intensity is reduced on this side; 

it is categorized as stable side. On the other hand, the lower wall is on the pressure side and the 

turbulence intensity is enhanced; it is known as the unstable side. More fundamentally, the shear 

next to the upper wall rotates fluid elements in the counter-clock direction which is in the same 

direction as the frame rotation; while they are opposite on the lower wall. The surface shear stress 

increases on the unstable side; the shear stress decreases on the stable side.  
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Figure 4.2 Flow in a planar rotating channel. 

This effect cannot be captured by standard scalar eddy viscosity models: they are insensitive to 

rotation and predict the flow profiles that maintain symmetry about the channel centerline. In the 

following section, we discuss the inherent limitation of scalar eddy viscosity models that cause 

this problem. 

4.3 Equilibria of the k and ε Equations  
Equilibrium analysis provides insights into the properties of closure schemes, for example it shows 

how the model responds to imposed forcing. It is also the basis for a systematic derivation of 

nonlinear, algebraic constitutive formulas. The reason of choosing k-ε model is that the two 

transport variables — the turbulent kinetic energy k and turbulent dissipation ε directly reflect the 

turbulence level in the flow field. The transport equations for k and ε can be written as: 

𝜕𝑘

𝜕𝑡
+

𝜕(𝑢𝑗𝑘)

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗

[
𝜈𝑡

𝜎𝑘

𝜕𝑘

𝜕𝑥𝑗

] + 2𝜈𝑡𝑆𝑖𝑗𝑆𝑖𝑗 − 𝜀 (42)  

𝜕𝜀

𝜕𝑡
+

𝜕(𝑢𝑗𝜀)

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗

[
𝜈𝑡

𝜎𝜀

𝜕𝜀

𝜕𝑥𝑗

] + 𝐶1𝜀

𝜀

𝑘
2𝜈𝑡𝑆𝑖𝑗𝑆𝑖𝑗 − 𝐶2𝜀

𝜀2

𝑘
 (43)  

Consider the k – ε model in incompressible homogenous turbulent flow; the governing equations 

can be simplified to: 



19 

 

𝜕𝑘

𝜕𝑡
= 𝑃 − 𝜀 (44)  

𝜕𝜖

𝜕𝑡
=

𝐶1𝜀𝑃 − 𝐶2𝜀𝜀

𝑇
 (45)  

where 𝑇 = 𝑘/𝜀 is the turbulent time-scale and 𝑃 = −𝑢𝑖
′𝑢𝑗

′𝑆𝑖𝑗 is the rate of energy production. 

Following Durbin [15], Eq. (44) and Eq. (45) can be combined into  

𝜕

𝜕𝑡
(

𝜀

𝑘
) = (

𝜀

𝑘
)

2

[(𝐶1𝜀 − 1)
𝑃

𝜀
− (𝐶2𝜀 − 1)] (46)  

Equation (44) is the evolution equation for the scalar (ε/k) and it has two equilibria (𝑡 → ∞), 

obtained by setting 
𝜕

𝜕𝑡
(

𝜀

𝑘
) = 0 on the left hand side, which are 

branch 1:   
𝑃

𝜀
=

𝐶2𝜀 − 1

𝐶1𝜀 − 1
 (47)  

and 

branch 2:   
𝜀

𝑘
= 0 (48)  

Using the standard values of constant coefficients 𝐶1𝜀 = 1.44 and 𝐶2𝜀 = 1.92, 𝑃/𝜀 is equal to 2.09 

on branch 1. As for other version of k – ε model (e.g. Chien [20]), the constant coefficients 𝐶1𝜀 

and 𝐶2𝜀 are set to be 1.35 and 1.80 giving 𝑃/𝜀 equals to 2.29. In general, 𝑃/𝜀 > 1 and k grows with 

time according to Eq. (44). The equilibria is divided into two solutions, “healthy” (Eq. (47)) and 

“decaying” (Eq. (48)). On the healthy branch (Eq. (47)) turbulent energy grows exponentially in 

time. For the branch 1, we can re-write Eq. (44) and (45) as 
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𝜕𝑘

𝜕𝑡
= (𝛼 − 1)𝜀 (49)  

𝜕𝜀

𝜕𝑡
= (𝛼 − 1)

𝜀2

𝑘
 (50)  

where 𝛼 = 𝑃/𝜀 = (𝐶2𝜀 − 1)/(𝐶1𝜀 − 1). Thus, the solutions of Eq. (49) and Eq. (50) have the form 

[15]:  

branch 1:   𝑘 = 𝑘∞𝑒𝜆𝑡 ,   𝜀 = 𝜀∞𝑒𝜆𝑡  (51)  

The subscript ∞ represents the equilibrium value (t→ ∞), depending on the initial conditions. 

Substituting these solutions (Eq. (51)) into Eq. (49) or Eq. (50) gives 

𝜆 = (𝛼 − 1) (
𝜀

𝑘
)

∞
=

𝐶2𝜀 − 𝐶1𝜀

𝐶1𝜀 − 1
(

𝜀

𝑘
)

∞
 (52)  

All the linear eddy viscosity turbulence models are based on Boussinesq assumption. Thus, the 

linear constitutive relationship Eq. (53) can be used. 

𝑢𝑖
′𝑢𝑗

′ = −2𝜈𝑡𝑆𝑖𝑗 +
2

3
𝛿𝑖𝑗𝑘 (53)  

With Eq. (53), the rate of energy production becomes 

𝑃 = 2𝜈𝑡|𝑆|2 (54)  

where |S| is the magnitude of the strain rate. The eddy viscosity for k – ε model is 𝜈𝑡 = 𝐶𝜇𝑘2/𝜀, 

thus 

𝑃

𝜀
= 2𝐶𝜇|𝑆|2 (

𝑘

𝜀
)

2

 (55)  
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Substituting it into Eq. (47) yields the equilibrium value 

(
𝜀

𝑘|𝑆|
)

∞

= √2𝐶𝜇√
𝐶1𝜀 − 1

𝐶2𝜀 − 1
 (56)  

Then the exponential growth rate 𝜆 in Eq. (52) becomes 

𝜆 =
𝐶2𝜀 − 𝐶1𝜀

√(𝐶1𝜀 − 1)(𝐶2𝜀 − 1)
√2𝐶𝜇|𝑆|2 

(57)  

It is always positive by applying the standard coefficient constants, which matches with the 

observation for the healthy branch. For the second branch, the solution has the power law form 

[15]:  

branch 2:   𝑘 = 𝐴∞𝑡𝑚 ,    𝜖 = 𝐵∞𝑡𝑚−1 (58)  

In this case, 𝜀/𝑘 ∝ 1/𝑡 → 0 as 𝑡 → ∞. Again substituting these solutions into Eq. (44) and Eq. (45) 

gives  

𝜕𝑘

𝜕𝑡
= 𝑃 − 𝜖 = 𝐴∞𝑚𝑡𝑚−1 (59)  

𝜕𝜀

𝜕𝑡
=

𝐶1𝜀𝑃 − 𝐶2𝜀𝜀

𝑇
= 𝐵∞(𝑚 − 1)𝑡𝑚−2 (60)  

where 𝑇 = 𝑘/𝜀 = (𝐴∞/𝐵∞)𝑡. Solving for m, we obtain:  

𝑚 =

𝑃
𝜀

− 1

(𝐶2𝜀 − 1) −
𝑃
𝜀

(𝐶1𝜀 − 1)
 (61)  
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If 𝑃/𝜀 < 1, the exponent m has negative value and turbulent energy decays, which is also indicated 

in Eq. (44). After examining the two branches of solutions, it can be concluded that within the 

scalar eddy viscosity assumption, the rotation is not able to stabilize or destabilize the solution 

since the rotation does not appear in the equations of the k-ε model. In the next two sections, we 

introduce two approaches, “Modified Coefficients Approach” and “Bifurcation Approach” that are 

designed to overcome this deficiency. 

4.4 Modified Coefficients Approach 
It has been proposed in the literature that the coefficients of the k-ε model should be given a 

parametric dependence on the rotation number 

𝑅𝑜 ≡ −2Ω𝐹/(∂U/ ∂y) (62)  

so that the turbulent kinetic energy decays in the stabilization region and grows in the 

destabilization region. According to Eq. (52), the exponential growth rate 𝜆 is a function of 𝐶1𝜀 

and 𝐶2𝜀 which are constants in the standard k-ε model. The basic idea of “Modified Coefficients 

Approach” is to make either 𝐶1𝜀 or 𝐶2𝜀 or both functions of rotation and strain rate so that growth 

rate 𝜆 becomes negative in stable regions.  

An early proposal to model rotational stabilization was [21] 

𝐶2𝜀 = 𝐶2𝜀
0 (1 − 𝐶𝑠𝑐𝐵𝑟) (63)  

The Bradshaw number Br is defined as: 

𝐵𝑟 ≡ 𝑅𝑜(𝑅𝑜 + 1) (64)  
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The critical Bradshaw number Brcrit is defined when 𝑃/𝜖 = 1, which is found from 𝐶1𝜀 = 𝐶2𝜀, 

according to Eq. (47). 

𝐶1𝜀 = 𝐶2𝜀 = 𝐶2𝜀
0 (1 − 𝐶𝑠𝑐𝐵𝑟crit) 

𝐵𝑟crit =
𝐶2𝜀

0 − 𝐶1𝜀

𝐶2𝜀
0 𝐶𝑠𝑐

 
(65)  

If Br > Brcrit, which corresponds to 𝐶1𝜀 > 𝐶2𝜀 from Eq. (52), the exponential growth rate 𝜆 becomes 

negative. With the standard k-ε model coefficients 𝐶1𝜀 = 1.44, 𝐶2𝜀
0  = 1.92 and 𝐶𝑠𝑐 = 2.5, Brcrit is 

equal to 0.1; substituting into Eq. (64) we obtain Ro > 0.0916 or Ro < -1.091. This is the range in 

which the rotation stabilizes turbulence. 

Another example of the “Modified Coefficients Approach” is the work by Spalart and Shur [16]. 

Before their work, proposals were made based on the streamline curvature, but streamlines are not 

Galilean invariant, since they are referred to axes aligned with the velocity. For this reason, efforts 

to literally represent streamline curvature have been replaced by a method that unifies rotation and 

curvature via the rate of rotation of the principal axes of the strain rate tensor (Spalart and Shur 

[16]). 

The strain rate tensor is symmetric, so it can be expressed as [15] 

𝐒 = ∑ 𝜆𝛼

3

𝛼=1

𝐞𝛼𝐞𝛼  (66)  

where the e’s  are unit eigenvectors and 𝜆’s are eigenvalues. Unit vectors can only be changed by 

rotation. 
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𝐷𝐞𝛼

𝐷𝑡
= 𝛀𝛼𝛽

𝑆 𝐞𝛽  (67)  

The rotation rate tensor 𝛀𝛼𝛽
𝑆  can be computed from the mean velocity field. During a computation, 

the eigenvector of the strain rate tensor must be evaluated at each time step and at every grid point. 

Then their substantial derivative (D/Dt) can be computed. This process usually takes high 

computational cost. On the grounds of computational efficiency, Spalart and Shur [16] proposed 

to replace the eigenvector by the full rate of strain tensor and introduced the Spalart-Shur tensor:  

𝐖ss ≡
𝐒 ∙ (𝐷𝐒/𝐷𝑡) − (𝐷𝐒/𝐷𝑡) ∙ 𝐒

2|𝐒|2
 (68)  

Wallin and Johansson [22] derived the connection of the Spalart-Shur tensor to rotation of the 

principal axes in three dimensions. If rotation vectors are introduced via 𝜔𝑖
SS =

1

2
𝜀𝑖𝑗𝑘 𝑊𝑗𝑘

SS for the 

Spalart-Shur tensor and Ω𝑖𝑗
S = 𝜀𝑖𝑗𝑘𝜔𝑘

S  for the rotation of eigenvector, then the exact relation 

between the Spalart-Shur tensor and the rotation rate of the principal axes is  

𝜔𝑖
SS = 𝜔𝑖

S −
3𝑆𝑖𝑗

2

2|𝐒|2
𝜔𝑗

S (69)  

Notice that, in two dimensions, 𝜔S is in the 𝑥3 direction, so that 𝛀S = 𝐖ss. This surrogate for 

curvature and rotation represents a unification of rotation and curvature, because in a rotating 

reference frame, 𝛀S includes the system rotation tensor. In this way, any model that was designed 

for system rotation is devised into a model for both rotation and streamline curvature by replacing 

coordinate frame rotation 𝛀F by rotation of the principal axes of the strain rate 𝛀S [23].  

For example, the absolute rotation tensor is defined as 
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7.3 Validation Cases 

7.3.1 Curved Duct 

This case was modeled as 2D in the previous RANS simulation by WA2017m-RC model. 

However, the DES requires full 3D modeling and the use of transient solver in OpenFOAM. Note 

that there is only one layer in the third direction, and “front” and “back” side of the mesh in the 

third direction are treated as periodic boundaries.  All the DES simulations reported in this chapter 

are performed following this approach. 

The DES model is very sensitive to the mesh density; it switches between the RANS region and 

the LES region according to Eq. (102).  The mesh independent study was conducted for this case 

using meshes of different densities as summarized in Table 7.1. In general, the finer grid covers 

larger LES region in DES. 

Table 7.1 Densities of three meshes employed. 

Grid Type Size 

Coarse 257 × 97 × 2 

Medium 513 × 193 × 2 

Fine 1025 × 385 × 2 

Figure 7.1 shows the computed and experimental pressure coefficients along the convex wall of 

the duct. The results from three different density meshes differ a lot in the upstream and 

downstream regions of the curved duct. From Fig. 7.1, it can be noted that the medium size mesh 

matches with the experiment data best and also gives result in agreement with that obtained with 

WA2017m-RC model. Comparisons of the calculated and experimental skin friction coefficients 
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Figure 7.10 Mean velocity profiles in rotating serpentine channel at Ro = 0.32. 
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Chapter 8: Summary and Future Work 

8.1 Summary 
This thesis provides an introduction to the evolution of the one-equation eddy viscosity Wray-

Agarwal turbulence model. It is developed from the first version designated WA2017 to 

WA2017m which is designed to overcome the problem of kink at the centerline of the velocity 

profile for flow in a planar channel and then to a wall distance free version WA2018.  Finally   

WA2018EB version is developed by coupling an elliptic relaxation model with WA2018 model. 

The system rotation and streamline curvature are widely encountered in industrial applications. 

The effect of rotation and curvature are discussed respectively using two simple geometries. In 

flows with curvature, turbulent intensity is reduced along the convex curvature while it is enhanced 

along the concave curvature. In case of flows with rotation, turbulent intensity is increased on the 

unstable side while it is decreased on the stable side. The inability to account for system rotation 

and streamline curvature in k-ε turbulence model is discussed through the equilibrium analysis of 

the model. This deficiency is resolved by addition of the dependence of rotation in the turbulence 

model via two approaches, the “Modified Coefficients Approach” and the “Bifurcation Approach”. 

By applying the uncertainty quantification to WA2017m-RC model, the closure coefficients in RC 

correction were improved and the optimal closure coefficients were determined for WA2017m-

RC model which are cr1 = 1.0, cr2 = 0.5 and cr3 = 0.6. From simulations of flow in the curved duct, 

U-turn duct and rotating channel, it was found that the rotation and curvature corrections to the 

turbulence models certainly improved the performance of the original SA, SST and WA2017m 

models. For other test cases which were more complex, models with RC and Arolla corrections 



92 

 

provided better and more reasonable predictions than the original models. Overall, by analyzing 

the results for various test cases, WA2017m-RC model was found to be the best model among all 

the models, namely SA-RC, SST-RC, WA2017m-RC, WA2017m-RCM, WA2017m-Arolla, 

WA2018-RC and WA2018EB-RC. 

A hybrid RANS/LES model based on WA2017m-RC RANS model was also developed which is 

designated as WA2017m-RC-DES. In DES approach, by analyzing the results of various test cases, 

namely the curved duct, U-duct, rotating channel, rotating backward-facing step and rotating 

serpentine channel, it was found that the RC correction enables the DES model to more accurately 

capture the effect of system rotation and streamline curvature compared to the RANS models with 

rotation and curvature corrections. Although DES results are dependent upon mesh size but by 

properly choosing a dense enough mesh, DES with RC correction can provide better accuracy 

compared to RANS models when compared to the DNS or experimental data. This thesis presents 

the DES calculations with RC correction in various turbulence models for the first time in the 

literature. Further research is needed to improve the DES models for flows with rotation and 

curvature. Nevertheless the test cases and results shown in this thesis can serve as a good starting 

point for future research. 

8.2 Future Work 
As mentioned in the summary section, WA2017m-Arolla model performs reasonably well overall. 

Therefore, it is worth investigating further by applying the Arolla correction to WA2018 and 

WA2018EB models. 

To overcome the high grid-dependency of DES model, a new improved delayed detached eddy 

simulation (IDDES) model was developed by Gritskevich et al. [64]. In 2018, Han et al. [65] 
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developed the WA-IDDES model and showed good agreement with the experimental data for 

many test cases. It may be worthwhile to apply the rotation and curvature corrections to WA-

IDDES model. 
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