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Abstract 

The brain connects to, modulates, and receives information from every organ in the body.  

As such, brain-computer interfaces (BCIs) have vast potential for diagnostics, medical therapies, 

and even augmentation or enhancement of normal functions.  BCIs provide a means to explore the 

furthest corners of what it means to think, to feel, and to act—to  experience the world and to be 

who you are.   This work focuses on the development of a chronic bi-directional BCI for 

sensorimotor restoration through the use of separable frequency bands for recording motor intent 

and providing sensory feedback via electrocortical stimulation. Epidural cortical surface electrodes 

are used to both record electrocorticographic (ECoG) signals and provide stimulation without 

adverse effects associated with penetration through the protective dural barrier of brain.  Chronic 

changes in electrode properties and signal characteristics are discussed, which inform optimal 

electrode designs and co-adaptive algorithms for decoding high-dimensional information.  

Additionally, a multi-layered approach to artifact suppression is presented, which includes a 

systems-level design of electronics, signal processing, and stimulus waveforms.  The results of 

this work are relevant to a wider range of applications beyond ECoG and BCIs that involve closed-

loop recording and stimulation throughout the body.  By enabling simultaneous recording and 

stimulation through the techniques described here, responsive therapies can be developed that are 

tuned to individual patients and provide precision therapies at exactly the right place and time.  

This has the potential to improve targeted therapeutic outcomes while reducing undesirable side 

effects.  
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Introduction 

 

1.1 Brain-computer Interfaces (BCIs) 

Over recent years, there has been a growing interest in BCIs for both medical and non-

medical applications.  The brain connects to, modulates, and receives information from every 

organ in the body.  As such, connections to the brain provide vast potential for diagnostics, medical 

therapies, and even augmentation or enhancement of normal functions.  Connections to the brain 

provide a means to explore the furthest corners of what it means to think, to feel, and to act—to  

experience the world and to be who you are.    

 Connections to the brain can take many forms and can be categorized in many ways.  Brain 

interfaces can be described by the signal modality that they use, which includes electrical, 

magnetic, acoustic, chemical, optical, and more.  Brain interfaces can also be described by one-

way transmission of information to or from the brain, or bi-directional transmission.  Brain 

interfaces can also be described by their location relative to the brain and surrounding tissue, which 

may be invasive (within the brain), minimally-invasive (near to the brain), or non-invasive (outside 

of the body).  Finally, brain interfaces can be described by the application in which they are used, 

including motor, auditory, visual, memory, neuropsychiatric, and more.   

In the past, the term brain-computer interface referred to the requisite percutaneous 

connection between the brain and an external computer to provide the intensive processing for 
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both read and write functionality.  

However, recent advances in micro-

electronics, embedded processing, 

miniaturized hermetic packages, and 

telemetry have enabled next-

generation implantable and wearable 

systems that no longer resemble the 

large external computer systems of 

the past.  Accelerated advancements 

in neurotechnology will surely 

continue to re-define brain-computer 

interfaces and create new capabilities 

and applications beyond imagination.  

This body of work represents a step in 

that direction, with the aim to develop a minimally-invasive bi-directional BCI.  

This work focuses on the development of a bi-directional BCI based upon cortical surface 

electrodes with read capability to control movement in a virtual environment and write capability 

to deliver virtual sensory feedback via electrocortical stimulation.  Cortical surface electrodes are 

used to record electrocorticographic (ECoG) signals without penetrating the brain, which is an 

attractive modality for a brain interface because 1) it is minimally-invasive—located outside of the 

brain, and 2) it has the potential for high spatiotemporal resolution due to its electrical modality 

and proximity to the brain beneath the skull.  This is in contrast to other electrical modalities like 

 

Figure 1.1: Common BCI Modalities 

Illustration of three different BCI modalities that can be 

characterized as invasive (multi-unit microelectrodes), minimally-

invasive (ECoG surface electrodes), and non-invasive (EEG scalp 

electrodes).  Also illustrated are the types of signals and scale of 

spatial resolution associated with each modality. 

 

 

Figure 1.2: Common BCI Modalities 

Illustration of three different BCI modalities that can be 

characterized as invasive (multi-unit microelectrodes), 

minimally-invasive (ECoG surface electrodes), and non-

invasive (EEG scalp electrodes).  Also illustrated are the types 

of signals and scale of spatial resolution associated with each 

modality. 
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micro-electrodes, which are invasive and suffer chronic degradation due to foreign body responses, 

and electroencephalography (EEG), which is non-invasive and suffers from poor resolution.   

While the focus of this work is on ECoG and electrocortical stimulation, the results are 

broadly applicable to other modalities and uses.  For example, the ECoG electrode analyses 

presented can be applied to microelectrodes and electrodes designed for the peripheral nervous 

system.  The signal analyses presented can be applied to EEG and local field potentials (LFPs).  

The co-adaptive algorithm presented in this thesis can be applied to other BCI modalities and any 

general framework in which humans and machines must interact and learn together.  And finally, 

the approach to a bi-directional BCI can be used with other modalities in the central or peripheral 

nervous systems and can be applied to a broad spectrum of applications that involve closed-loop 

neuromodulation. 

1.2 Specific Aims 

Two specific aims were selected for examination in this dissertation.  The first aim was 

focused on examining fundamental characteristics of electrodes and their effects on chronic 

recording and stimulation, which spanned finite-element modeling, materials analysis, 

electrochemistry, and electrophysiology.  The second was focused on the development of a bi-

directional BCI system, which spanned hardware design, signal processing, hyper-dimensional 

statistics, novel algorithm development, and behavioral task design.  

Aim 1: Evaluate the effects of electrode contact size and material coating on the 

recording and stimulation capabilities of chronically implanted epidural arrays. 

Platinum electrodes of varying size (ranging from 300-1200 µm) will be coated with 



4 

 

electrodeposited films of iridium oxide (IROX) and poly-(ethylenedioxythiophene) 

(PEDOT) and implanted over macaque monkey sensorimotor cortex. A combination of 

electrophysiological and electrochemical analyses will be used to track and model changes 

in impedances at the electrode-tissue interface and evaluate the impact on recording and 

stimulation.  Results will guide the design of optimal electrode arrays for chronic bi-

directional BCIs. 

Aim 2: Assess the feasibility of a bi-directional BCI system capable of decoding 

volitional control signals in the presence of stimulation through the use of separable 

recording and stimulation frequency bands.  A multi-stage amplification system will be 

designed to remove high-frequency artifacts and used to record epidural ECoG signals in 

the presence of electrocortical stimulation.  This hardware will consist of a low-noise high-

rail pre-amplification headstage that will attenuate high frequency signals prior to 

amplification and digitization of desired low-frequency signals in a subsequent stage.  Both 

performance of the hardware and the ability to accurately decode motor control signals in 

the presence of stimulation will be evaluated 

1.3 Dissertation Organization 

The experiments conducted in support of this dissertation were performed between 2008 

and 2012 and focused on early non-human primate studies.  Results from these studies were 

subsequently used to guide two translational human studies with paralyzed volunteers: first, for 

restoration of movement through the control of a neuroprosthetic device (Wang et al., 2013), and 

second for sensory restoration through direct cortical surface stimulation (Hiremath et al., 2017).  

Additionally, results from these studies have guided the development of several advanced closed-
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loop neuromodulation systems at Draper Laboortory that will provide transformative capabilities 

beyond what I could have imagined when I began this work nearly a decade ago (Wheeler et al., 

2015).  

 The following dissertation is organized such that each chapter builds upon the results of 

previous chapters.  Chapter 2 begins with an in-depth study of the electrode-tissue interface and 

explores how electrode size and material affect stimulation and recording capabilities in chronic 

implants.  Chapter 3 builds upon chronic impedance data and models and explores how electrode 

size and material affect ECoG signal quality over time.  In addition, a series of analyses are 

performed to better characterize ECoG signals, specifically driving toward what is signal and what 

is noise.  Chapter 4 builds upon these signal characteristics to develop a motor BCI capable of 

multi-dimensional control.  A key innovation here is the development of a co-adaptive algorithm 

to accelerate learning and performance, which has broader impact in any application involving 

human-machine interactions.  Finally, Chapter 5 builds upon results from the motor BCI to 

incorporate simultaneous stimulation toward a fully bi-directional BCI.  Here, stimulation of 

sensory cortex is explored for producing virtual sensory percepts, and the design and performance 

of an artifact suppressing amplifier is described, which enables ECoG signals to be recorded during 

simultaneous stimulation.  Results from Chapter 5 extend behond neuroprosthetics with 

applications in a number of next-generation closed-loop neuromodulation therapies. 
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Chapter Title Aim 1 Aim 2 

2 – Electrodes for Epidural ECoG Recording and Stimulation X  

3 – Characteristics of Chronic ECoG Recordings  X  

4 – A Motor BCI: Multi-dimensional Control using a Coadaptive 

      Decoder 

 X 

5 – A Bi-directional BCI: Control with Sensory Feedback  X 

Table 1.1: Organization of the Dissertation Regarding Aims 

 

Chapter Title Aim 1 Aim 2 

2 – Electrodes for Epidural ECoG Recording and Stimulation X  

3 – Characteristics of Chronic ECoG Recordings  X  

4 – A Motor BCI: Multi-dimensional Control using a Coadaptive 

      Decoder 

 X 

5 – A Bi-directional BCI: Control with Sensory Feedback  X 

Table 1.2: Organization of the Dissertation Regarding Aims 
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Electrodes for Epidural ECoG Recording and 

Electrocortical Surface Stimulation 

 

2.1 Introduction 

2.1.1 An Overview of Epidural Electrodes 

Electrocorticographic recordings (ECoG) and electrocortical stimulation through surface 

electrodes have become well-established in modern clinical and research applications.  ECoG 

recordings and electrocortical stimulation were pioneered by Penfield in the 1930s to map cortex 

and identify epileptogenic foci in the treatment of epilepsy (Penfield, 1939) (Penfield & Boldrey, 

1937).  While the first documented use of ECoG recordings in a human patient utilized epidural 

electrodes, subdural electrodes have become the standard in modern intraoperative epileptic 

monitoring and mapping.  However, in recent years, epidural electrocortical stimulation has been 

increasingly used in a number of clinical applications, such as the treatment of pain (Zaghi, Heine, 

& Fregni, 2010), depression (Kopell et al., 2011; Nahas et al., 2010), aphasia (Balossier, Etard, 

Descat, & Vivien D, 2012), stroke (Brown, Lutsep, Cramer, & Weinand, 2003; M. Huang et al., 

2008; Levy et al., 2008; Yamamoto et al., 2011), and a variety of movement disorders (Katayama, 

Oshima, Fukaya, Kawamata, & Yamamaoto, 2002; Nguyen, Pollin, Fève, Geny, & Cesaro, 1998; 

Romito et al., 2007).  Likewise, epidural ECoG has gained attention as a high-resolution alternative 

to invasive intracortical and subdural recordings for brain control of neuroprosthetic devices 

(Moran, 2010; A. G. Rouse, Williams, Wheeler, & Moran, 2013; Adam G Rouse & Moran, 2009; 
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J. J. Williams, Rouse, Thongpang, Williams, & Moran, 2013) and has been the focus of next-

generation closed-loop devices capable of modulating therapies based upon real-time cortical 

recordings (A G Rouse et al., 2011; Stanslaski et al., 2012).   

A notable advantage of epidural electrodes is that they avoid disruption of the dura that 

provides a protective barrier around the central nervous system.  Penetration of the dura is 

associated with serious health risks including edema, infarction, hematomas, encephalitis, and 

infection, which may be exacerbated by cerebral spinal fluid (CSF) leakage (Fountas, 2011).  

Unlike penetrating microelectrodes that are capable of recording neural action potentials due to 

their small interfacial surface area and proximity to neural sources, larger-area epidural electrodes 

record field potentials resulting from integrated neural activity (Moran, 2010). Reactive tissue 

responses severely diminish the efficacy of indwelling microelectrodes for recording and 

stimulation by increasing electrode impedance, which consequently reduces the strength of neural 

signals, increases thermal and current noise, and requires larger voltages to drive electrical 

stimulation.  While epidural electrodes avoid many of the risks associated with penetration of the 

dura, little is known about how epidural electrode function is affected by contact size and material 

as quantified by chronic in vivo changes in impedance.  

Traditionally, surface electrodes have been constructed of platinum (Pt) metal disks 

ranging from 1 to 5 mm in diameter with interdisk spacings of 5-10 mm.  Recent advances in 

fabrication techniques have enabled the development of high-density micro-scale electrode arrays 

that are printed onto thinner, more flexible substrates with the intent of providing higher resolution 

recording and stimulation capabilities (Kim, Wilson, Williams, Microfabrication, & Arrays, 2007; 

Molina-Luna et al., 2007; Rubehn, Bosman, Oostenveld, Fries, & Stieglitz, 2009).   However, 

decreased electrode size comes at the cost of increased impedance, which adds noise to recordings 
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and decreases the range of current that can be safely applied during stimulation (Merrill, Bikson, 

& Jefferys, 2005; Shannon, 1992).  The application of conductive coatings to microelectrodes has 

been shown to dramatically reduce impedances in vitro, and for short periods in vivo (Cogan & 

Model, 2006; Rylie a Green, Lovell, Wallace, & Poole-Warren, 2008; Lu et al., 2010; Ludwig et 

al., 2011; Luo, Weaver, Zhou, Greenberg, & Cui, 2011; Venkatraman et al., 2011; Wilks, 

Koivuniemi, Thongpang, Williams, & Otto, 2009; Wilks, Richardson-burns, Hendricks, Martin, 

& Otto, 2009).  However, the long-term effectiveness and durability of coatings have not been 

assessed for larger micro- to milli-scale chronically implanted cortical surface electrodes.  

Therefore, this study aimed to quantify the effects of electrode size and material on the impedances 

of micro- to milli-scale electrodes and provide a detailed account of impedance changes associated 

with chronically implanted epidural electrode arrays.  

2.1.2 Current Exchange Across the Electrode-Tissue 

Interface 

At the electrode-tissue interface, the total current flow between the electrical device and 

surrounding tissue results from both faradaic (resistive) and non-faradaic (capacitive) processes.  

Faradaic currents involve the movement of electrons across the electrode-electrolyte interface due 

to electro-chemical redox reactions at the electrode surface.  The impedance to faradaic current 

flow is dependent upon the availability of conduction electrons in the metal electrode, the 

associated redox reaction rates, and the mass transport of reactants and products to and from the 

interface.  Non-faradaic currents result from charging and discharging the electrical “double-layer” 

formed by opposing charges on either side of the electrode-tissue interface, without the movement 

of charge across the electrode surface.  The impedance to non-faradaic current flow is directly 
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related to the effective capacitance of the electrode-tissue interface which can be influenced by 

surface adsorption or adhesion of atoms, ions, biomolecules, and gases.  Both faradaic and non-

faradaic impedances depend upon the electrode material, interactions with the surrounding media, 

and the electrochemical area available to participate in redox reactions and charge storage.   (For 

a review of the electrode-tissue interface, see Cogan 2008; Brummer et al. 1983; Geddes & Roeder 

2003). 

When a step current is applied to an electrode, the current density is initially highest at the 

corners and edges of the electrode but shifts toward the center at a rate determined by locally-

distributed time constants.  These time constants (and the non-uniform distributions) are dynamic 

and depend upon the geometry and material of the electrode, the nature of reactions mediating 

charge transfer, and the concentration gradients of reactants in solution. Analytic equations for 

distributions associated with resistive planar disk electrodes were first derived by Newman- 

 

Figure 2.1: Current and Potential Distributions on the Surface of an Electrode 

Illustrations of the evolution of the current density (A) and the potential distribution (B) across the surface of a 

disk electrode.  At 𝒕 = 𝟎, the current is highest at the edges while the potential is uniform across the electrode 

surface.  With increasing time, the high-current edge effects diminish and the potential distribution at the center 

of the disk increases relative to the edges.  As 𝒕 → ∞, and reactants are depleted at the electrode surface, the 

current distribution will become flat, and the potential will be largest in the center. Illustrations are based upon 

(Newmann 1966) and (Behrend et al. 2008). 
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(Newman, 1966a) and later by Rubinstein for recessed electrodes (Rubinstein, Spelman, Soma, & 

Suesserman, 1987).  Under the assumptions of a uniform potential across the surface of the 

electrode and negligible effects of mass-transport and reaction kinetics (these are valid for high-

frequency waveforms) the current density is described by the primary distribution.  The primary 

distribution predicts that the current density at the center of a disk electrode will be approximately 

half of the average (or global) current density, and the density at edges will approach infinity 

(Newman, 1966b).  From the primary distribution, Newman derived an asymptotic high-frequency 

solution resistance, 𝑅𝑠𝑜𝑙 = 1 4𝜎𝑟⁄ , where 𝜎 reflects the conductivity of the surrounding media and 

𝑟 is the electrode radius.  

When mass-transport and reaction kinetics cannot be ignored (i.e. for low-frequency 

waveforms) and reactants are depleted at the electrode surface, the steady-state current distribution 

will become uniform, and the potential distribution will become non-uniform.  Newman also 

analytically derived this potential distribution, which is characterized by an arched profile where 

the potential is larger in the center of the disk than the edges (Newman, 1966b).  Simulations of 

time-varying distributions associated with capacitive electrodes also show non-uniformities in 

response to voltage steps (Behrend, Ahuja, & Weiland, 2008; Myland & Oldham, 2005).  In these 

simulations, initial current densities peak near the periphery, but subsequent tangential currents 

quickly redistribute the current density toward a more uniform distribution across the surface of 

the electrode.   These results suggest that high frequency impedances should be a function of 

electrode circumference while low frequencies should be dependent upon the electrode area.  

While these predictions have been experimentally verified with bench top measurements in saline 

(Ahuja, Behrend, Whalen III, Humayun, & Weiland, 2008) it remains to be known how 
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impedances relate to electrode radius in vivo. Electrical conduction across the electrode-tissue 

interface is further detailed in the Appendix. 

2.1.3 Characteristics of Electrode Materials and 

Conductive Coatings 

Noble metals like platinum have provided suitable, reversible charge exchange for 

stimulation and low impedances for recording with large-area chronically implanted electrodes, 

but their utility for micro- and milli-scale electrodes has been limited.  Highly conductive materials 

like metal oxides and intrinsically conductive polymers are promising alternatives to platinum for 

sub-millimeter diameter electrodes, but a long-term head-to-head evaluation in chronic implants 

is lacking. When comparing different electrode materials for chronic implants, the 

biocompatibility, toxicity, and stability must be considered in addition to metrics specific to the 

utility of the electrode for stimulation and recording applications.  Electrical conduction of 

electrode materials is further detailed in the Appendix. 

The utility of an electrode material for stimulation is often assessed by the cathodal charge 

storage capacity (CSCc) determined from ramped cyclic voltammetry (CV).  The CSCc quantifies 

the amount of charge that can be delivered within the voltage limits of hydrolysis, or the “water 

window” (Cogan, 2008).  The most suitable measure of an electrode’s utility for recording is the 

electrical impedance determined from electrochemical impedance spectroscopy (EIS). Electrical 

impedances should be measured within a frequency range appropriate for the spectral content of 

the recorded signal.  Impedance measures are generally not well-suited for inferences regarding 

stimulation since they are based upon an assumption of linearity about a fixed point (typically the 

open cell potential) according to the small signal approximation.  During stimulation, voltage 
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excursions often extend well outside this linear range.  It has become standard in the literature to 

report the 1 kHz impedance of electrodes, which coincides with the dominant spectral power of 

action potentials that have widths of about 1 ms.  In far-field cortical recordings, like ECoG, signal 

power decreases at approximately 1/frequency such that the noise floor (which is determined by 

the electrodes and amplifier) prohibits signal resolution above several hundred hertz.  The 

dominant frequencies of interest for ECoG include the beta-band (15 Hz – 30 Hz) and gamma-

band (60 Hz – 120 Hz) (J. J. Williams et al., 2013).  Therefore, it is proposed that the 100 Hz 

impedance should be reported when evaluating electrodes for ECoG. 

Platinum metal is one of the most common and well-studied electrode materials and is 

standard in many implantable bioelectric interfaces (Brummer & Turner, 1975, 1977a, 1977b) .  

Platinum is a noble metal and has been shown to be non-toxic (Dymond, 1976) and non-reactive 

(Stensaas & Stensaas, 1978) in long-term implants.  Charge exchange across the platinum 

electrode occurs via faradaic (hydrogen atom plating, Pt oxide formation and reduction) and non-

faradaic (double-layer charging) processes (Cogan, 2008; Merrill et al., 2005).  The faradaic 

reactions are considered pseudo-capacitive since they are confined to a surface monolayer and are 

easily reversed so products do not accumulate in surrounding tissues.  Although platinum provides 

a very stable interface for recording and stimulation with large-area electrodes, as the electrode 

area decreases, alternative materials are necessary to maintain high charge injection capacities and 

low impedances.  

Iridium oxide (IROX) has gained popularity as a superior electrode material due to its large 

electrochemical surface area and ability to quickly and reversibly inject charge.  While 

traditionally formed by electrochemical activation of the surfaces of iridium electrodes (AIROF), 

iridium oxide films can also be applied to other metals by reactive sputtering in oxidizing plasma 



14 

 

(SIROF) or by electroplating from solution (EIROF).  Charge exchange in iridium oxide is pseudo-

capacitive and involves the transition between the Ir3+ and Ir4+ redox states within the oxide.  IROX 

has been shown to be biocompatible (Agnew, Yuen, Mccreery, & Clayton, 1986; Göbbels et al., 

2010) and offers a dramatically improved charge injection capacity and impedance characteristic 

compared to platinum (Cogan, 2008).  However, the instability of IROX following sustained 

stimulation in vitro raises questions regarding its suitability for chronic implants where stability is 

imperative (Wilks, Richardson-burns, et al., 2009).     

Poly (3,4-ethylenedioxythiophene) (PEDOT) is an intrinsically conductive polymer with a 

high electronic and ionic conductivity that can be polymerized with a wide variety of counter-ions 

and biomolecules to alter its morphology and biocompatibility.  PEDOT is most commonly 

polymerized with either poly (styrene sulfonate) (PSS) or para (toluene sulfonate) (pTS) as a 

counter-ion to enhance conductivity, solubility, and stability.  Arguments for PSS emphasize its 

larger size and molecular weight compared to pTS, which may help to physically trap the dopant 

within the polymer, and improve stability (Rozlosnik, 2009).  Arguments for pTS emphasize its 

superior biocompatibility as determined by cytotoxicity studies (R. A. Green, Poole-warren, 

Lovell, & Member, 2007).  PEDOT coatings on microelectrodes have out-performed IROX with 

respect to charge injection capacity and impedance.  In addition, coatings show moderate stability 

following sustained stimulation in saline (Wilks, Richardson-burns, et al., 2009) and after 2 weeks 

post-implantation in rat cortex without repetitive stimulation (Venkatraman et al., 2011).  Although 

PEDOT stands out as one of the most promising conductive coatings for implantable neural 

prostheses, its long-term performance in comparison to IROX and uncoated platinum remains 

unknown.  
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2.1.4 Wound-healing and the Foreign Body Response 

The biotic response to an implant involves both wound healing and immunoreactive 

processes, which are commonly referred to as the ‘foreign body response’.  Wound healing is 

initiated by the process of implantation, whereas the foreign body response implicates the presence 

of an indwelling foreign material for an extended period.  While a distinction between the cause 

and nature of these processes is apparent, they proceed simultaneously and are interactive, such 

that the severity of one may worsen the other.  Implantation of epidural arrays involves the 

disturbance of the scalp, skull, and dura, but does not breach the dural lining, as illustrated in 

Figure 2.2.  Wound healing and immunoreactive responses involving CNS-specific processes are 

expected to be minimal, if not absent from the overall biotic response.   Detailed histological 

studies of the biotic response specific to epidural cortical implants are lacking, although general 

pathologies of wound healing and immunoreactive processes are well documented.  

Comprehensive reviews have been 

provided by Stroncek & Reichert 

2008 and Anderson et al. 2009 and a 

summary as it pertains to epidural 

implants is provided here.   

Hemostasis and inflammation 

occur immediately following 

implantation and may persist for as 

long as a week post-implantation.  

During hemostasis, disrupted blood 

vessels release peripheral blood 

 

Figure 2.2: Implanted Electrode and Surrounding Tissue 

Illustration of the placement of an implanted epidural electrode array 

in relation to the underlying meningeal layers, like the dura, and 

surrounding tissues.  Expected tissue responses from wound healing 

and the foreign body response are indicated around the craniotomy 

and sub-cranial space, which include granulation, fibrosis, and dural 

scaring. 
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cells, plasma, proteins, and other molecules into the wound site created during implantation.  An 

accumulation of fluid and necrotic tissue may cause edema and pressure surrounding the implant.  

Proteins, such as albumin, fibrinogen, and others will adsorb to the surface of the implant to form 

a matrix for subsequent macrophage activity.  Macrophages that bind to the adherent protein layer 

on the implant surface often undergo cytoskeletal remodeling to form multinucleated foreign body 

giant cells (FBGC) that encapsulate the implant.  The phenotypes of FBGCs depend upon 

surrounding environmental signals.  For epidural cortical implants, FBGCs near overlying injured 

skull may express osteoclast markers, whereas FBGCs near underlying abraded dura may express 

fibroblast markers.  Prolonged adhesion of macrophages and FBGCs to the implant’s surface 

creates a harsh microenvironment between the implant and the encapsulating tissue that may lead 

to oxidation, pitting, cracking, and corrosion.  (Stroncek & Reichert 2008; Anderson et al. 2009). 

Primary tissue repair will commence within days to weeks, which includes increased cell 

proliferation, capillary budding, and the synthesis of extracellular matrix (ECM).  The ECM 

provides scaffolding for granulation cells and fibroblasts to fill voids in the tissue surrounding the 

implant. Similarly, voids in bone will be filled with osteoblasts that secrete layers of collagen and 

bone matrix that will mineralize over subsequent weeks and form lamellar bone. Following 

primary tissue repair, remodeling and secondary tissue repair will occur, where fibrotic tissue will 

progressively align and condense to reduce the wound size, and eventually form a dense fibrous 

scar that may become tightly adhered to adjacent dura and skull.  Likewise, bone will harden and 

regain its pre-injured strength. (Stroncek & Reichert 2008; Anderson et al. 2009). 
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2.1.5 Relationship Between Impedance and Tissue 

Response 

The nature and severity of the biotic response may have drastic consequences on the 

function of an implanted bioelectric device partly due to changes in the electrical properties of the 

electrode and surrounding tissue.  Changes in electrode impedance may be caused by etching due 

to the release of corrosive agents like free radicals, enzymes, and acids from macrophages and 

FBGCs via “frustrated phagocytosis” (Anderson et al., 2009), or by adsorption of ions, proteins, 

and gases to the electrode surface (Newbold et al., 2010).  Impedance changes in surrounding 

tissue may be caused by edema, accumulation of ECM, and the formation of dense fibrotic 

encapsulation tissue (J. C. Williams, Hippensteel, Dilgen, Shain, & Kipke, 2007).  The biotic 

processes which affect the impedances of electrodes and tissue will vary over the life of the 

implant, and consequently, so will the function of the implanted bioelectric device. 

Histological analyses are the standard for assessing the biotic response around electrodes, 

but the necessary methods limit evaluations of time-varying responses in living animals.  

Impedance spectroscopy provides an alternative non-destructive measure of the biotic response 

through the use of equivalent circuit models for both electrodes and tissue.  A variety of circuit 

models for each have been described and compared elsewhere (Franks, Schenker, Schmutz, & 

Hierlemann, 2005; Lempka et al., 2009; McConnell, Butera, & Bellamkonda, 2009; J. C. Williams 

et al., 2007) and generally consist of a combination of resistive and capacitive circuit elements to 

mimic the frequency-dependent (dispersive) changes in the dielectric properties of the electrode 

or biological material.  These dispersions appear as semi-circular arcs when complex impedance 

data are plotted in the Nyquist plane (reactance vs resistance).  The two dominant dispersions 
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observed in in vivo impedance spectra are the low-frequency α-dispersion, which is caused by 

counter-ion diffusion, and the high-frequency β-dispersion, which is caused by the charging of 

cellular membranes (Grimnes, Rikshospitalet, & Schwan, 2002).  The evaluation of high-

frequency β-dispersions in complex impedance data has been used to assess tissue accumulation 

around a variety of implanted electrodes (Lempka et al., 2009; McConnell et al., 2009; J. C. 

Williams et al., 2007).  Furthermore, sufficiently large stimulation through electrodes has been 

shown to reduce the presence of β-dispersions, and presumably the extent of encapsulation tissue 

through “rejuvenation” (Johnson, Otto, & Kipke, 2005; Lempka et al., 2009; Otto, Johnson, & 

Kipke, 2006).  Therefore, tracking the impedance spectra of implanted electrodes provides both a 

quantitative assessment of their bioelectric function and an indirect, non-destructive measure of 

the chronic biotic response. 

2.2 Purpose of the Study 

This study aims to provide a direct side-by-side comparison of the behavior and utility of 

electrodes of varying size and material for stimulation and recording, as determined by CSCc and 

impedance, respectively.  In vitro experiments in PBS were used to assess the effects of coating 

and size on charge exchange and impedance in the absence of the biotic response via CV and EIS 

measurements.  In vivo experiments in chronically implanted animals were used to assess the long-

term stability of coatings as well as the effects of contact size in the presence of reactive tissue 

responses via EIS.  Stimulation and CV were excluded from in vivo experiments in order to 

minimize rejuvenation effects that might alter the natural biotic response.  Collectively, these 

experiments are intended to provide a comprehensive understanding of electrode behavior with 
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respect to the conductive material, contact size, and tissue response in order to guide the 

development and use of chronically implanted bioelectric devices. 

2.3 Methods 

2.3.1 Electrode Array Design 

The thin-film electrode arrays were constructed using MEMs fabrication techniques and 

consisted of three primary layers.  The bottom and top insulation layers were constructed of 12 µm 

thick spin-coated polyimide (HD4110, HD Microsystems), and the middle layer of 50 µm wide 

interconnecting traces and electrode contacts was formed by photolithography and metal 

deposition of chromium (10 nm), gold (200 nm) and platinum (20 nm) for a total thickness of 230 

nm.  The flexible electrode arrays were based upon a folding design in which all electrode contacts 

faced downward toward the cortex and the references and ground faced upward away from the 

cortex (Figure 2.3).  The purpose of the upward-facing references and ground was to create “quiet” 

electrical references for ECoG recording, where signals generated by cortex would be largely 

silenced compared to global common-mode noise.  The downward-facing electrodes consisted of 

32 disc-shaped contacts arranged in rows of four interleaved diameters (300 µm, 600 µm, 900 µm, 

and 1200 µm). The two designated references were also disc-shaped contacts of 300 µm and 1200 

µm diameter.  A large-area (36.8 mm2) “H”-shaped pad was used to both shield the references and 

provide a stable low-impedance electrical ground.  The polyimide substrate was also punctated by 

rows of 500 µm perforations to improve the “biological transparency” of the implant by facilitating 

transport and signaling through the device.  Electrode contacts on two of the six implanted arrays 

were coated with activated iridium oxide, and another two arrays were coated with PEDOT:pTS.  
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Electrode contacts on the remaining two arrays, as well as the ground pads on all arrays, were left 

as uncoated platinum.   

2.1.1 Electrochemical Methods 

All electrochemical processes were conducted with an Autolab Potentiostat/Galvanostat 

PGSTAT12 (Eco Chemie, Utrecht, Netherlands) with a built-in frequency response analyzer 

(FRA2, Brinkmann Instruments, Westbury, NY).  In vitro electrodeposition, CV, and EIS were 

performed within a Faraday cage and utilized a three-electrode configuration, where the electrode 

 

Figure 2.4: Photographs of Electrodes with EIROF Coatings.   

Electrode sizes can be seen as well as the reference and “H” ground pad on the back.  Electrode arrays are shown 

attached to a delron chamber with a screw-on cap to protect the connector underneath.   

 

 

 

. 

 

Figure 2.3: Thin-film Electrodes for Chronic Impedance Characterization 

Thin-film polyimide arrays were constructed using MEMs fabrication processes and consisted of platinum disk 

electrode contacts printed onto a flexible polyimide substrate that was punctated by perforations for improved 

biological transparency (A).  Arrays were based upon a folding design where 32 electrode contacts of four different 

sizes faced downward toward the cortical surface and two references and a large-area ground faced upward toward 

the overlying skull as shown in (B).  Six arrays were implanted bilaterally into the epidural spaces of three macaque 

monkeys, covering primary motor (M1) and primary somatosensory (S1) cortex (C).  Two of the implanted arrays 

consisted of uncoated platinum electrodes, two with electrodes coated with EIROF, and two with coatings of 

PEDOT. 
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contact served as the working electrode (WE), a large-area platinum wire served as the counter 

electrode (CE) and an Accumet, gel-filled, KCl saturated calomel electrode (SCE) served as the 

reference electrode (RE). In vitro CV and EIS were performed in 1X phosphate buffered saline 

(PBS).  Because polyimide is known to absorb water, all arrays were soaked in PBS for at least 30 

minutes prior to testing in order to achieve steady-state hydration.  In vivo EIS utilized a two-

electrode configuration where the electrode contact served as the working electrode (WE) and the 

large-area ground served as both the counter electrode (CE) and reference electrode (RE).  CV 

data recorded for each electrode represented the mean of three cyclic voltage ramps between -0.6 

V and 0.8 V at a rate of 1 V/s.  EIS data were measured in response to voltage-controlled 25 mV 

(rms) sinusoids with logarithmically spaced frequencies spanning 3 Hz to 15 kHz. CV and EIS 

were performed on each array in PBS to assess the quality of coatings prior to implantation.  

Beginning the first day post-implantation, EIS measurements were recorded 2-3 times per week at 

regularly spaced intervals throughout the lifetime of each implant. (For a review of electrochemical 

methods, refer to Cogan 2008 or Bard & Faulkner 2001).  The underlying theory of these 

electrochemical methods is further detailed in the Appendix. 

Electrodeposited iridium oxide films (EIROF) were formed from an aqueous solution of 4 

mM IrCl4, 40 mM oxalic acid, and 340 mM K2CO3 brought to a pH of about 10.3 that had rested 

in darkness for 48 hours. The iridium oxide film was formed by applying 50 cyclic voltage ramps 

between 0 V and 0.55 V (vs Ag/AgCl) at 50 mV/s followed by 1600 1 Hz pulses between the same 

voltage limits.  (Marzouk et al., 1998; Meyer, Cogan, Nguyen, & Rauh, 2001; Yamanaka, 1989).  

PEDOT was electrochemically deposited and polymerized from an aqueous monomer solution of 

0.1 M ethylenedioxythiophene (EDOT) and 0.05 M paratoluene sulfonate (pTS) dissolved in 50% 

DI water and 50% acetonitrile.  PEDOT:pTS coatings were formed by applying a galvanostatic 
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current of 2 mA/cm2 for 7.5 min.  (R a Green et al., 2013).  All electrodes were rinsed in deionized 

water, stored dry in sealed plastic containers, and sterilized in an ethylene oxide gas chamber prior 

to implantation. 

2.3.2 Epidural Implantation of Electrode Arrays 

Six electrode arrays were surgically implanted bi-laterally into three male juvenile 

macaque monkeys under anesthetic conditions and using aseptic surgical techniques.  With the 

animal’s head fixed on a standard stereotaxic frame, two 22 mm craniotomies were performed 

over each hemisphere.  Through each craniotomy, surrounding dura was carefully detached from 

the overlying skull to produce a subcranial pocket into which the arrays could be easily placed 

without damage to the applied conductive coatings or underlying cortex.  Each array was 

positioned approximately parallel to the midline and spanned primary motor (M1) to primary 

sensory (S1) cortex.  The arrays were pseudorandomly assigned to each monkey to ensure that 

each coating combination (Pt-EIROF, EIROF-PEDOT, and PEDOT-Pt) was represented within a 

monkey.  Once the arrays were implanted and the craniotomies sealed, high-density zero insertion 

force (ZIF) connectors (Tucker Davis Technologies, Alachua, FL) were used to access each 

electrode channel for regular in vivo impedance measurements. 

2.4 In Vitro Results 

2.4.1 Randles Circuit Model for the Electrode-Tissue 

Interface 

The in vitro data are well-described by the behavior of a simple Randles circuit model 

(Figure 2.5A).  Although more complex models have been described elsewhere (Geddes, 1997), 
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the simplicity of the Randles circuit allows for direct and meaningful interpretations of data.  In 

the model presented here, the series resistor, 𝑅𝑠
 , represents a spreading resistance that is equal to 

Newmann’s radius-dependent solution resistance, 𝑅𝑠𝑜𝑙
 . The parallel resistor, 𝑅𝑝

 , represents the 

impedance to faradaic current flow across the electrode interface.  The parallel capacitor, 𝐶𝑝
 , 

represents the impedance to non-faradaic current flow due to double-layer charging and 

discharging.   

Following the standard systems approach of transforming the time-varying representation of 

a system to a frequency-varying representation via the Laplace transformation, the normalized 

current expected from a voltage signal applied to the Randles circuit is given by: 

𝐼(𝑠)

𝐴
=

𝑉(𝑠)

𝐴 𝑍(𝑠)
=

𝑉(𝑠)𝐺(𝑠)

𝐴
 (2.1) 

𝐺(𝑠)

𝐴
=  

1 + 𝑠𝑅𝑝𝐶𝑝

𝐴[(𝑅𝑠 + 𝑅𝑝) + 𝑠𝑅𝑠𝑅𝑝𝐶𝑝]
 (2.2) 

where 𝐺(𝑠) is the non-normalized transfer function.  In terms of the area-normalized specific 

resistance and capacitance:  

𝑅𝑝
′ = 𝑅𝑝𝐴  and   𝐶𝑝

′ = 𝐶𝑝 𝐴⁄  (2.3) 

𝐺(𝑠)

𝐴
=  

1 + 𝑠𝑅𝑝
′ 𝐶𝑝

′

(𝐴𝑅𝑠 + 𝑅𝑝
′ ) + 𝑠𝐴𝑅𝑠𝑅𝑝

′ 𝐶𝑝
′
 (2.4) 

Assuming the series resistance is equal to Newman’s solution resistance, 𝑅𝑠 = 𝑅𝑠𝑜𝑙 = 1 4𝜎𝑟⁄  : 
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𝑅𝑠
′ = 𝑅𝑠𝐴 = 𝜋𝑟 4𝜎⁄  (2.5) 

𝐺(𝑠)

𝐴
=  

1 + 𝑠𝑅𝑝
′ 𝐶𝑝

′

(𝑅𝑠
′ + 𝑅𝑝

′ ) + 𝑠𝑅𝑠
′𝑅𝑝

′ 𝐶𝑝
′
 (2.6) 

Therefore, 𝐼/𝐴 is fully described by normalized parameters (marked by ′) where 𝑅𝑝
′  and 𝐶𝑝

′  are 

geometry-independent material properties and 𝑅𝑠
′  is proportional to the electrode radius. 

The impedance of the of the Randles circuit is given by the reciprocal of 𝐺(𝑠): 

𝑉(𝑠)

𝐼(𝑠)
= 𝑍(𝑠) =

1

𝐺(𝑠)
=

(𝑅𝑠 + 𝑅𝑝) + 𝑠𝑅𝑠𝑅𝑝𝐶𝑝

1 + 𝑠𝑅𝑝𝐶𝑝
 (2.7) 

Using systems terminology, the transfer function for impedance is in the form of a first-order low-

pass filter with a pole located at −1 𝑅𝑝𝐶𝑝⁄  and a zero located at −(𝑅𝑠 + 𝑅𝑝) 𝑅𝑠𝑅𝑝𝐶𝑝⁄ .  The 

corresponding time constant for this system is 𝜏 = 𝑅𝑝𝐶𝑝. 

Based upon these derivations, when modeling current densities, the Randles circuit is 

described by 𝑅𝑠
 ′ = 𝑎𝑟𝑒𝑎 × 𝑅𝑠𝑜𝑙, 𝑅𝑝

 ′ = 𝑎𝑟𝑒𝑎 × 𝑅𝑝
 , and 𝐶𝑝

 ′ = 𝐶𝑝
 /𝑎𝑟𝑒𝑎.  For disk electrodes, 𝑅𝑠

 ′ =

𝜋𝑟 4𝜎⁄ , which increases linearly with radius, while 𝑅𝑝
 ′ and 𝐶𝑝

 ′ are constants that represent the area-

independent specific resistance and capacitance of the electrode material.  Simulated effects on 

CV and EIS due to changes in the model’s parameters are illustrated in Figure 2.5.  These simulated 

effects are useful for both developing an intuition about the behavior of the electrode-electrolyte 

interface and interpreting the actual CV and EIS data. 
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Figure 2.5: Effects of Randles Electrode Model Parameters on CV and EIS 

Randles circuit model (A) with effects on CV (B) and EIS (C) data due to variations in the series resistance 𝑹𝒔 (row 

D), parallel resistance 𝑹𝒑 (row E), and parallel capacitance 𝑪𝒑 (row F) with all other parameters held fixed.    

 



26 

 

2.4.2 Coatings Increase Charge Exchange for Stimulation 

Electrodes  

Results from in vitro CVs show that 

EIROF and PEDOT coatings dramatically 

improve charge exchange through increased 

interfacial capacitance and decreased 

interfacial resistance.  Electrodes with 

smaller diameters were associated with 

higher normalized CSCcs as shown in Figure 

2.6.  The normalized CSCcs is the integral 

within the voltammograms in Figure 2.7, 

which are normalized by the geometric 

surface area of the electrode.  It is important 

 

Figure 2.7: Effects Coatings and Size on CSC 

Normalized CSCc for each coating and electrode diameter 

show significant increases from Pt to EIROF to PEDOT for 

all electrode sizes.  The increasingly “box-like” CV profiles 

of small-diameter electrodes resulted in larger normalized 

CSCC for all coatings as a consequence of the lower 

normalized spreading resistance (𝑹𝒔’ = 𝝅𝒓 𝟒𝝈⁄ ). 

 

 

 

 

Figure 2.6: Effects of Coatings and Size on Cyclic Voltammograms 

Plots show normalized CVs (1V/s) for each coating and electrode diameter.  Differences in CV profiles between 

materials are dominated by the effect of increased interfacial capacitance in order from Pt (A) to EIROF (B) to 

PEDOT (C). Differences in CV profiles between electrode sizes are dominated by the effect of increased spreading 

resistance with decreased electrode diameter (as illustrated in Figure 2.5).   
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to note that these results do not suggest that coatings were more effective on smaller diameter 

electrodes. Instead, the increasingly “box-like” CV profiles associated with smaller diameters are 

a result of decreased values of  𝑅𝑠
 ′ in the normalized Randles model, which correspond to increases 

in Newman’s solution resistance (see simulated CV effects in Figure 2.5).  Both EIROF and 

PEDOT coatings significantly increased the CSCc of all electrode sizes, with PEDOT providing a 

nearly 2-fold increase over EIROF.  For the  smallest diameter electrodes (300 µm), CSCc 

increased from 0.5 ± 0.2 mC/cm2 with platinum to 30.9 ± 22.1 mC/cm2 with EIROF and 55.1 ± 

10.2 mC/cm2 with PEDOT.  For the largest diameter electrodes (1200 µm), CSCc increased from 

0.4± 0.1 mC/cm2 with platinum to   15.3 ± 9.3 mC/cm2 with EIROF and 24.7 ± 11.6 mC/cm2 with 

PEDOT.  

2.4.3 Coatings Decrease Impedance Magnitudes and 

Phase Lags for Recording Electrodes 

The impedance magnitudes of coated electrodes (EIROF and PEDOT) were significantly 

lower than uncoated platinum electrodes (Figure 2.8A).  Coatings reduced impedances magnitudes 

most dramatically at low frequencies compared to high frequencies (for 300 µm diameter contacts, 

magnitudes decreased by approximately two orders of magnitude at 100 Hz vs one order of 

magnitude at 1kHz).  PEDOT impedance magnitudes were significantly lower than EIROF, but 

only by about half.  Below 1kHz, the impedance magnitudes of uncoated platinum electrodes 

showed an approximate 1/ f  (f  -0.89) relationship to frequency.  Near 10 kHz, impedance 

magnitudes of platinum flattened and approached asymptotic levels as predicted by Newman’s 

equation for solution resistance (RS).  Impedance spectra of coated electrodes were approximately 

flat compared to platinum, which indicates a very low interfacial resistance.  Interestingly, 



28 

 

asymptotic RS levels for EIROF were approximately equal to or slightly higher than platinum at 

high frequencies. 

The impedance phases of coated electrodes were significantly lower than uncoated platinum 

electrodes (Figure 2.8B).  Like impedance magnitudes, the difference in phase shifts between 

coated and uncoated electrodes was largest between 10 Hz to 1 kHz (for 300 µm diameter contacts, 

the phases lags were reduced by approximately 80 degrees at 100 Hz).  Generally, the differences 

in phase lags between PEDOT and EIROF were not large and not significantly different.  The 

phase lags of uncoated platinum electrodes transitioned from approximately -90 degrees at the 

lowest frequencies toward 0 degrees at high frequencies near 10 kHz. The phase lags of coated 

electrodes were significantly lower than uncoated electrodes across all frequencies and appeared 

to transition toward -90 degrees at low frequencies below 10 Hz.  The difference in phase spectra 

 

Figure 2.8: Effects of Coatings and Size on EIS 

Plots show impedance magnitudes (A) and phase lags (B) combined across all electrodes by coating (color) and 

size (symbol).  Coated electrodes had significantly lower impedances and phase lags than uncoated platinum 

electrodes across all contact sizes. The decrease in magnitude and leftward shift in phase lag between Pt and coated 

electrodes is characteristic of increased interfacial capacitance and lower interfacial resistance.  The separation of 

magnitudes at high frequencies is an effect of increased spreading resistance with smaller electrodes. 
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between platinum and coated electrodes was consistent with a leftward shift toward lower 

frequencies associated with an increase in the interfacial capacitance of the coated electrodes.   

2.4.4 Coatings Shift the Impedance-radius Relationship 

Toward Circumference Dependence 

The relationship between impedance magnitude and contact radius was well-described by 

a power-law relationship Z = 1/rα.  The value of the radius exponent was determined by linear 

regression of log-impedance onto log-diameter, where the slope of the line indicated the exponent 

of the power law for each material (Figure 2.9A).  Exponents were frequency-dependent and 

ranged between -1 (a 1/r relationship, indicating a circumference-dependence) and -2 (1/r2, 

 

Figure 2.9: Relationship between Electrode Radius and Impedance 

Linear regressions of log-diameter vs log-impedance (A) and frequency-dependence of regression slopes (B) for 

each material show how impedances are related to electrode diameters according to the power law: Z=1/rα. Shaded 

areas in (A) indicate 1 standard deviation around the mean impedance of each size group. Shaded areas in (B) 

indicate 95% confidence intervals of the regression slopes.  The slopes of the regression lines in log-log space are 

equal to the exponent (α) of the power-law relationship between impedance magnitude and the electrode radius.  

Platinum electrodes showed an area-dependence at frequencies below 3 kHz (exponent = -1.5) and a 

circumference-dependence at frequencies above.  The impedance magnitudes of PEDOT electrodes were 

approximately circumference dependent across all frequencies, while those of EIROF fell between platinum and 

PEDOT. 
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indicating an area-dependence) (Figure 2.9B).  For platinum, the power-law exponent indicated a 

mid-way transition (α = -1.5) at 3 kHz between area-dependence at low frequencies and a 

circumference-dependence at high frequencies.  PEDOT showed a circumference-dependence at 

all frequencies above 10 Hz.  EIROF demonstrated behavior in between platinum and PEDOT.  

Results for platinum are consistent with those reported by Ahuja  (Ahuja et al., 2008).  At high 

frequencies the capacitance of electrodes allowed current to discharge across the edges of the 

electrode-tissue interface faster than charge could accumulate tangentially toward the center of the 

electrode.  At low frequencies, current exchange across the interface was slower and allowed time 

for a more uniform current distribution to form across the electrode surface.  For EIROF, and 

particularly, PEDOT electrodes, high interfacial capacitance and low interfacial resistance likely 

facilitated very rapid current flow through the edges of electrodes even at relatively low 

frequencies. 

2.5 In Vivo Results 

Following implantation of the arrays, impedances of all electrodes were measured every 2-

3 days for the duration of the implant in order to track how impedances change during wound 

healing and in the presence of immunoreactive tissue responses.  Prior to detailed analyses, a 3-

way (size x coating x subject) ANOVA (MATLAB, anovan) was conducted to determine the 

significance and effect size of each factor.  The results of the ANOVA indicated that both size and 

coating effects were large (>10% variance explained) and significant (p < 0.01) in the first week, 

but only size was large and significant beyond the third month.  At all time points and frequencies, 

electrode size effects accounted for the largest percentage of variance.  Subject effects were 

significant at various time points but were always very small (<3% variance explained).  Therefore, 
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for detailed analyses of size and coating effects, data were grouped according to size and coating 

across subjects.  To emphasize long-term trends in impedances over day-to-day variability, 

impedance time courses were smoothed with a 3-pt filter.  All shaded regions indicate standard 

errors of the mean. 

 

 

Figure 2.10: ANOVA Analyses for Impedances Related to Diameter, Coating, and Subject 

Main and interaction terms in a 3-way ANOVA model: D = diameter, C = coating, S = subject (monkey).  The 

results show that electrode diameter accounted for the largest significant difference in impedance for tested 

frequencies of 10 Hz, 100 Hz, 1kHz, and 10kHz.  Coating was also significant, but accounted for less variance.   
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2.5.1 Coatings Provide Temporary Reductions in 

Impedance 

Coated electrodes had lower impedance magnitudes and phase lags than uncoated 

electrodes for all contact diameters investigated, but the effects did not persist beyond three months 

post-implantation. As shown by the time courses of 100 Hz impedance magnitudes (Figure 2.11A) 

and phase lags (Figure 2.11B) profiles were closely matched across subjects for arrays with the 

same coatings, and all time courses converged at about 3 months. In Figures 2.11C-E, data from 

each of the  pairs of coated arrays were combined across subjects and examined further to 

determine impedance effects across the entire frequency spectrum at week 1, month 3, and month 

9.  During the first week, the smallest diameter (300 µm) platinum, EIROF, and PEDOT electrodes 

had average 100 Hz impedances of 103.3 kΩ, 71.1 kΩ, and 11.1 kΩ, and average 100 Hz phase 

lags of -71.7 deg, -40.5 deg, and -19.9 deg, respectively.  Similarly, the largest diameter (1200 

µm) platinum, EIROF, and PEDOT electrodes had average 100 Hz impedances of 10.0 kΩ, 6.8 

kΩ, and 3.5 kΩ, with phase lags of -53.3 deg, -20.6 deg, and -11.1 deg, respectively.  During the 

first week, EIROF impedance magnitudes were only significantly lower than platinum below 100 

Hz (interestingly, EIROF impedances were slightly higher than platinum at frequencies greater 

than 1 kHz), while PEDOT impedance magnitudes were significantly lower than platinum at all 

frequencies. The phase lags of coated electrodes during the first week were significantly lower 

than platinum below 10 kHz.  By the third month, coating effects were greatly diminished for all 

electrode sizes, and by the ninth month coating effects were effectively gone, and only electrode 

size effects remained.  Therefore, the subsequent analyses of size effects focus on platinum rather 

than coated electrodes.  
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Figure 2.11: Chronic Changes in Electrode Impedances Dependent upon Coating 

Impedance magnitudes (A) and phase lags (B) measured at 100 Hz are shown from 300 µm diameter electrodes 

on all six arrays over a 9 month period.  Initially, coatings reduced both impedances and phase lags, but after 3 

months the effect was greatly diminished.  C-E) Impedance spectra combined across all arrays by coating and size 

are shown for the week 1, month 3, and month 9 time points highlighted in A and B.  Colors indicate coatings, and 

solid and dashed lines represent the smallest (300 µm) and largest (1200 µm) electrode diameters.  While all 

impedances were significantly different in week 1 (with the exception of platinum and EIROF at high frequencies), 

their differences were small at month 3, and no longer different by month 9 (with the exception of 1200 µm 

platinum and EIROF at extremely low frequencies).  At month 9, coating effects were diminished to the point that 

impedances across all coatings simply grouped according to electrode diameter alone.  
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2.5.2 Impedance Effects of Electrode Size  

Larger electrode contact sizes resulted in lower impedances throughout the duration of each 

implant, regardless of the electrode material.  As shown in Figure 2.12A, the time courses of 100 

Hz  impedance magnitudes for the two platinum arrays followed similar profiles.  Impedance 

magnitudes were clearly grouped by size, with only small variations between animals.  Size effects 

were not present in phase lags, which were closely grouped across all electrode diameters (Figure 

2.12B).  In Figures 2.12C-E, data from both platinum arrays were combined across animals and 

complete spectral data are presented for the week 1, month 3, and month 9 time points.  During 

the first week, the impedance spectra resembled pre-implantation profiles below 1 kHz, with only 

a 2-fold increase in magnitudes.  However, the high-frequency asymptote was increased nearly 9 

fold, resulting in a lower corner frequency between the 1/f behavior and frequency-independent 

behavior.  At month 3, there was a large increase in impedances between 50 Hz – 1 kHz, likely 

caused by the accumulation of encapsulation tissue.  By month 9, the increased mid-frequency 

bulge settled toward initial in vivo levels, with impedance magnitudes demonstrating slightly less 

than 1/f behavior.  
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Figure 2.12: Chronic Changes in Electrode Impedances Dependent upon Size 

Impedance magnitudes (A) and phase lags (B) measured at 100 Hz are shown for all electrode diameters from 

both of the platinum arrays over a 9 month period.  Size effects on impedance magnitudes were significant and 

robust throughout the entire 9 months (and beyond) but were not significant for phase lags.  C-E) Full impedance 

spectra combined across both arrays are shown for the week 1, month 3, and month 9 time points highlighted in 

A and B.  Generally, all impedances aligned by electrode diameter, where larger sizes had consistently lower 

impedances.   
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2.5.3 A Shift in the Power-law Relationship Between 

Impedance and Electrode Radius 

Throughout the duration of the implants, uncoated platinum electrodes demonstrated an 

approximate area-dependence at low frequencies and circumference-dependence at high 

frequencies, as was observed in vitro.  During the first week post-implantation, the exponent of 

the power law describing the radius-impedance relationship shifted to circumference- dependence 

(from -2 toward -1).  For example, the frequency where platinum electrodes showed behavior 

exactly between area- and circumference-dependence (exponent equals -1.5) shifted from  about 

3.5 kHz in vitro to about 250 

Hz in vivo.  Over the life of 

the implant, this mid-point 

frequency gradually shifted 

back to higher frequencies, 

and by month 9 was 

approximately identical to the 

in vitro frequency (Figure 

2.13).  This behavior is 

attributed to changes in the 

overall effective capacitance 

of the platinum electrode and 

tissue following implantation, 

which is supported by 

observed shifts in in vivo 

 

Figure 2.13: In Vivo Impedance Dependence on Radius 

Shifts in the power law describing both early (week 1) and late (month 9) in 

vivo impedance dependence on radius in comparison to in vitro. In the first 

week post-implantation, the curve that indicates the transition between area-

dependence and circumference-dependence was shifted toward lower 

frequencies.  In the first week post implantation, the exponent (α) of the 

power-law relationship between impedance magnitude and the electrode 

radius (1/rα) of platinum electrodes shifted toward circumference-

dependence compared to in vitro measurements in PBS.  However, by month 

9, the exponent curve transitioned to more closely align with in vitro values, 

where at 100 Hz, impedances were approximately area-dependent, and high 

frequencies above 3 kHz were circumference-dependent. (Shaded regions 

indicate 95% confidence intervals and dashed lines indicate frequencies 

corresponding to exponents equal to -1.5). 
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phase responses.  During week 1 post-implantation, the phase responses of electrodes were 

leftward shifted toward lower frequencies (corresponding to higher capacitance), but steadily 

shifted to the right over following months toward levels similar to those observed in vitro. 

2.5.4 The Stereotypical Impedance Response: Initial, 

Acute, Remodeling, and Chronic Phases 

The impedance profiles of all electrodes (regardless of electrode size or material) followed 

a stereotyped 4-phase response in the first 100 days post implantation, consisting of an initial, 

acute, remodeling, and chronic period.  Figure 2.14 shows the stereotyped 4-phase response for 

the 100 Hz impedances of all sizes on the two implanted platinum electrodes, which is centered 

within the mid- to high-gamma band commonly used in ECoG recordings.  During the first 7 days, 

 

Figure 2.14: 4-Phase Chronic Impedance Response: Initial, Acute, Remodeling, and Chronic 

The stereotypical 4-phase impedance response of all electrodes, characterized by an initial period (days 1-7), an 

acute period (days 7-30), remodeling period (days 25-45), and chronic period (beyond days 35-45) for both 

impedance magnitude (A) and phase (B).  During the initial period, impedance magnitudes were steady, but the 

phase lag increased.  Following the initial period, impedance magnitudes increased, and phase lags decreased 

during both the acute and chronic periods, which were separated by a remodeling period in which both the 

magnitude and phase temporarily shifted back toward initial levels.  This stereotyped response was observed across 

all electrodes regardless of size and coating. 
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electrode impedances demonstrated an initial response, where the impedance magnitude either 

decreased slightly or remained at a constant level as the phase lag increased.  During the acute 

response in days 7-30, the impedance magnitude increased rapidly while the phase lag decreased.  

A remodeling phase occurred during days 25-45 where magnitudes dropped, and phase lags 

increased back toward initial impedance values.  Finally, at about day 35, the chronic response 

began, during which time the impedance magnitudes and phases returned to levels previously 

observed in the acute response.  After the second month impedances in the chronic phase remained 

mostly constant with only sporadic variations between subjects.   

2.5.5 Constant Phase Element (CPE) and Cole Model for 

In Vivo Impedances 

In vivo impedances involve electrical dispersions due to both the electrode-electrolyte 

interface and the surrounding tissue.  For simplicity, the electrode is represented as a constant 

phase element (CPE), which is a generalization of a capacitive element that emerges from non-

integer derivatives (fractional calculus).  The CPE behavior of electrodes has been linked to 

adsorption, porosity, fractal surface roughness, and non-uniform current distributions (Brug, van 

den Eeden, Sluyters-Rehbach, & Sluyters, 1984; V. M.-W. Huang, Vivier, Frateur, Orazem, & 

Tribollet, 2007; McAdams, Lackermeier, McLaughlin, & Macken, 1995).  The impedance of the 

tissue can be represented as a Cole model which is a generalization of the Randles model, where 

the capacitor is replaced by a CPE (Cole, 1940; Lempka et al., 2009; McConnell et al., 2009; 

Pliquett & Pliquett, 1999).   
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 The following CPE-Cole model was used to model the electrode-tissue circuit and more 

accurately model in vivo impedance variations of the electrode and surrounding tissue.  A constant 

phase element (CPE) was used to model the electrode, where the impedance is given by: 

𝑍𝑒 = 
𝐾𝑒

(𝑗𝜔)𝛼𝑒
 (2.8) 

Here, 𝑍𝑒 is the complex impedance of the electrode, 𝐾𝑒 is a magnitude scaling factor, 𝛼𝑒 is a 

normalized fractional exponent that determines the phase angle (0<𝛼𝑒<1), 𝜔 is the angular 

frequency (rad/s), and 𝑗 = √−1.   

The impedance spectra of tissue represented in the Nyquist plane appears as a semicircular 

arc with a locus positioned below the real-axis.  Dispersive circuits that include capacitors result 

in similar arcs, but with loci positioned on the real axis.  Based upon this observation, Cole 

proposed that tissue be represented with a model similar to the Randles circuit, but with the 

capacitor replaced by a CPE (Cole, 1940).  The Cole tissue model provides added flexibility in 

fitting tissue impedance data by allowing the locus of the semicircle to drop below the real axis by 

adjusting the CPE exponent 𝛼 . The Cole model used to represent the impedance of tissue is given 

by: 

𝑍𝑡 = 𝑅∞ +
∆𝑅

1 + (𝑗𝜔)𝛼𝑡∆𝑅/𝐾𝑡
 (2.9) 

Here, 𝑍𝑡 is the complex impedance of tissue,𝐾𝑡 and 𝛼𝑡 are the magnitude and exponent of the 

parallel CPE, 𝑅∞ is the resistance at infinite frequency, and ∆𝑅 is the difference between tissue 

resistance at DC (𝑅0) and infinite frequency (𝑅∞).  In order to account for the shunt resistances 
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and capacitances of signal traces, impedances were measured from an array in PBS where each 

electrode contact was covered with a thick coating of insulating silicon.  Shunt impedances were 

added in parallel to the CPE-Cole model during subsequent parameter fitting. 

In order to determine how impedances associated with the electrode and with the tissue 

were changing over the first 100 days post-implantation, impedance data from platinum electrodes 

were fitted to the CPE-Cole model.  Values for all six model parameters were determined for each 

electrode and day via minimization of a normalized loss function (Lempka et al., 2009).  Parameter 

estimates for the model were calculated using the FMINCON function available in the MATLAB 

optimization toolbox (Mathworks, Natick, MA).  A hybrid simulated annealing approach was used 

by performing 10 searches from randomized initial conditions in order to find the global minimum 

of the loss function: 

𝐽 =  ∑
(𝑍𝑛

′ − 𝑍̂𝑛
′ )2

𝑍𝑛
′ 2 +

(𝑍𝑛
′′ − 𝑍̂𝑛

′′)2

𝑍𝑛
′′2

𝑁

𝑛=1

 (2.10) 

where 𝑛 indicates the index of a given measured frequency, 𝑁 is the total of measured frequencies, 

the superscripts ′ and  ′′  indicate the real and imaginary parts of the complex impedance, and   ̂ 

indicates the estimated impedance from the model.   

Parameters were estimated for each electrode and day in order to evaluate changes in 

impedances related to the electrode and tissue separately. Results of model-fitting show that initial 

changes in the overall impedance magnitudes were dominated by electrode effects, whereas all 

later changes were dominated by tissue effects.  Early changes in the electrode model included 

increases in both the magnitude (𝐾𝑒) and phase angle (𝛼𝑒)  of the electrode CPE.  Thereafter, the 
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electrode model parameters were mostly constant, with only a slight decrease in phase angle 

(𝛼𝑒) over time.  Alternatively, tissue model parameters varied throughout the first 100 days, with 

∆𝑅 showing the most size-specific distinctions.  A key value in the Cole model is the 𝑃𝑦 ratio  

𝐽𝑃𝑦 = ∆𝑅 (𝑅∞⁄ + ∆𝑅) (2.11) 

which has been shown to be highly correlated with cell volume fraction of suspended cells (Pliquett 

& Pliquett, 1999) (due to increased cell density or hypertrophy) and also scar tissue around 

microelectrode implants (McConnell et al., 2009). Here, 𝑃𝑦 increased both in the acute and chronic 

phases but decreased in the remodeling phase.  This result supports the assertion that the acute and 

chronic phases were associated with cellular accumulation in the vicinity of the electrode, whereas, 

during the remodeling phase, cellular tissue was temporarily broken down or removed.  
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Figure 2.15: Modeling the Electrode-Tissue Impedance with Constant Phase Elements 

Equivalent circuit models for platinum electrodes (A) and bulk tissue (B) along with their corresponding parameter 

values tracked over time.  Time courses of electrode parameters (D and G) show an initial increase in CPE 

magnitude (𝑲𝒆) for all sizes along with an increase in the phase angle (𝜶𝒆).  Time courses of tissue parameters 

(E, F, H, I) show large variations throughout the first 100 days.  The 𝑷𝒚 ratio (C) indicates an increase in cell 

volume in both the acute and chronic phases, but a temporary dip in the remodeling phase. 
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2.5.6 Broad-spectrum Impedance Changes 

Another way to look at impedance spectra is in the Nyquist plane where the imaginary 

(reactive) component is plotted against the real (resistive) component for all frequency points.  

Figure 2.16A shows Nyquist plots for an example 600 µm diameter platinum electrode at time 

points spanning the first 9 months following implantation.  In these plots, each dot represents the 

impedance at a single measured frequency.  Generally, impedances sweep from the upper right 

 

Figure 2.16: Broad-Spectrum Impedance Changes Observed in Nyquist Plots 

Complex impedance data are shown in a Nyquist plot (A), where the negative of the imaginary component 

(reactance) is plotted against the real component (resistance).  Complex impedances recorded on days spanning 

the first 9 months post-implantation (each day is marked at the top and distinguished by color) are shown for each 

measured frequency (marked as dots, where low-frequency impedances appear in the upper right corner and high-

frequency impedances appear in the lower left corner).  During the initial period (and remodeling period), Nyquist 

traces appeared as straight lines, similar to a constant phase element (CPE). During the acute and chronic periods, 

low-frequencies were still dominated by CPE behavior, but mid- to high-frequencies (70 Hz to 1 kHz) showed the 

influence of a series semicircular arc.  Temporal changes in spectral impedances are more clearly seen in polar 

coordinates (magnitude and phase) (B-C) or Cartesian coordinates (resistance and reactance) (D-E).  In polar 

coordinates, the largest change in magnitude occurred near the mid-gamma 100 Hz band often used for ECoG 

recordings, while the phase lag remained fairly constant in this frequency range.  This large change in magnitude 

was a result of the overlapping effects of low-frequency increases in resistance and high-frequency increases in 

reactance.  Note that in each of the spectral plots, the stereotyped impedance phases can be clearly distinguished. 

 

. 
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corner down to the lower left corner with increasing frequency.  In the Nyquist plane, impedances 

can be interpreted within two different coordinate systems: polar (magnitude and phase) or 

Cartesian (resistance and reactance).  During the initial phase (e.g. day 1) and remodeling phase  

(e.g. day 25), impedances showed varying magnitudes, but constant phase angles, which is 

characteristic of CPEs.  During the acute phase (e.g. day 25) and chronic phase (e.g. day 150), low 

frequencies continued to demonstrate CPE behavior, while high frequencies showed the 

appearance of a semicircular arc, which is characteristic of the tissue-related β-dispersion. The 

appearance and enlargement of this semicircular arc indicates an accumulation of cellular tissue 

around the electrode.   

In order to determine the relative temporal changes in impedances across all measured 

frequencies, both the polar and Cartesian coordinates from the Nyquist plots were considered 

separately versus both frequency and time.  Figures 2.16B-C show the relative changes in 

impedance magnitude across all frequencies (normalized by the average impedance in week 1) as 

well as the absolute change in phase angle.  The greatest relative change in impedance magnitude 

occurred between 70 Hz – 700 Hz (about a 60 % increase), which includes the important mid- to 

high-gamma frequency band surrounding 100 Hz that is typically monitored in ECoG recordings.  

Conversely, the phase change was minimal in the mid- to high-gamma band range, which 

decreases in lower bands and increases in higher bands.  These changes corresponded to large 

increases in resistance at low frequencies and reactance at high frequencies, as shown in Figures 

2.16D-E.  
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2.5.7 A Variable-parameter RC Impedance Model 

Impedances are complex numbers and are represented by the sum of a frequency-

independent resistive (real) and frequency-dependent reactive (imaginary) component.  Therefore, 

the impedance at any given frequency can be modelled by a series of a resistor and capacitor: 

𝑍 = 𝑅 − 𝑗
1

𝜔𝐶
 (2.12) 

where 𝑗 = √−1 and 𝜔 is the angular frequency (radians/sec).  This type of electrical model for the 

measured impedance can be referred to as a variable-parameter model, because the values of 

resistance and capacitance that model the impedance will vary with each measured frequency.  

(Fixed-parameter models tend to be more complicated and require parameter estimation, as 

demonstrated by the CPE-Cole model described previously).  The value of the variable-parameter 

 

Figure 2.17: A Variable-Parameter RC Model of Electrode Impedance 

Values for the variable-parameter series RC models for each of the platinum electrode sizes are given as a function 

of frequency.  Each colored line indicates the equivalent series resistance (A) and capacitance (B) that can be 

combined in series to model an electrode’s impedance at any given frequency.  Values were calculated directly 

from impedances measured at 9 months, which is well into the chronic phase where impedances have generally 

plateaued.  This model provides a valuable tool for designing and evaluating hardware that is intended to interface 

with chronic surface electrodes. 

 

 

. 
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model is its simplicity—resistances and capacitances can be calculated directly, implemented with 

small electrical circuits, and easily interfaced with hardware (such as amplifiers and stimulators) 

to perform bench top tests with realistic electrode behavior.  

The values of the equivalent series resistance and series capacitance for all four electrode 

diameters are provided in Figure 2.17 as a function of frequency. These values represent 

impedances of all diameters at 9 months post implantation.  Both the series resistance and series 

capacitance decreased with increasing frequency.  The largest diameter electrodes (1200 µm) had 

the lowest series resistances, but highest series capacitances.  The combination of low resistance 

and high capacitance (which translates to low reactance due to the reciprocal relationship) results 

in an overall very low impedance magnitude.  Alternatively, smallest diameter electrodes (300 

µm) had the highest series resistance, and lowest capacitance, resulting in very high impedance 

magnitudes.  

2.6 Discussion 

2.6.1 Implications of Chronic Impedance Changes on the 

Biotic Response 

This study represents the first detailed account of the time-varying impedance 

characteristics of electrode arrays implanted epidurally over cortex.  However, the impedance 

response observed may be applicable to a broad range of applications involving similarly sized 

electrodes, such as deep-brain, cochlear, spinal, and cardiac implants.  The time-varying 

impedances reflect changes occurring both at the electrode-tissue interface and within the 

surrounding tissue. Results from the CPE-Cole model show brief changes in the impedance 
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properties of electrodes during the initial response, which may be due to ion, protein, and cell 

adsorption to the electrode surface or changes in the ionic composition of the surrounding 

electrolyte. Similar behavior has been reported for deep-brain stimulator electrodes, but with a 

decrease in 𝐾𝑒 rather than the increase observed here (Lempka et al., 2009).  Thereafter, the 

impedance properties of electrodes remain stable and contact size-dependent.  Conversely, tissue 

impedances did not change much during the initial response, but varied greatly in the acute, 

remodeling, and chronic phases.  Based upon the correlation between the 𝑃𝑦 value and cellular 

activity, the acute and chronic phases are likely associated with an increase in cellular presence 

whereas, the remodeling phase is likely associated with a brief reduction.  The increase in cellular 

presence in the chronic phase may be due to the formation of a dense fibrotic sheath surrounding 

the array, which has been reported in a variety of non-CNS chronically implanted electrodes 

ranging from epidural spinal stimulators to cochlear implants (Cicuendez, Munarriz, Castano-

Leon, & Paredes, 2012; Grill & Mortimer, n.d.; Nadol et al., 2001; Schmit & Mortimer, 1997) .  

The consistent deflection of 𝑃𝑦 in the remodeling phase is not well-described in previous literature 

but may reflect a transition from primary to secondary healing or the formation of more permanent 

tissue associated with wound healing or encapsulation.  The use of the term “remodeling” to 

describe this stereotyped phase of the impedance response reflects the assumption of cellular 

remodeling.  However, impedances are indirect measures of the biotic response.  Therefore, future 

work should focus on detailed histological analyses of the tissue response in this time period in 

order to form a more complete understanding of the cellular mechanisms that lead to the described 

impedance response. 
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2.6.2 Implications of Coatings for Chronic Implants 

Platinum, IROX, and PEDOT are among the most recognized materials for electrodes, 

however direct side-by-side evaluations have been lacking, especially with respect to their 

behavior and stability in chronic implants.  This study provides evidence that both EIROF and 

PEDOT coatings are highly effective for improving electrode characteristics for both stimulation 

and recording.  However, the advantageous effects of EIROF and PEDOT were shown to quickly 

diminish beyond 3 months post implantation.  Results from tissue and electrode modeling suggest 

that the diminishing effects of the coatings was likely due to degradation of the coatings 

themselves, not to the tissue response.  However, further work (and histology) is required to 

confirm this conclusion.  The durability of these coatings would likely have been further decreased 

if subjected to clinically-relevant levels of stimulation (often in the range of 1-5 mA) which is 

known to accelerate electrode degradation.  Currently, these coatings are best suited for use in 

acute settings, rather than chronic long-term implants.  While the properties of these coatings are 

highly desirable, future work should focus on conductive materials and coating techniques that 

provide long-term stability beyond several years in order to be relevant in chronic clinical 

applications.   

2.6.3 Implications of Size Effects for Stimulation and 

Recording 

The relationship between impedance magnitude and electrode radius was area-dependent 

at low frequencies and transitioned to circumference-dependence at high frequencies.  For 

chronically implanted platinum electrodes, the mid-way transition occurs at approximately 3 kHz.  

This means that for recording, and likely most stimulation applications, focus should be placed on 
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the area rather than diameter of electrodes.  Area-dependence means that impedances are very 

sensitive to changes in electrode diameter.  This is a concern for micro-scale arrays, where 

diameters have been reported as small as 10-100 µm.  As electrode diameters decrease, the 

impedances may become prohibitively large to allow passage of clinically-relevant currents within 

the safety limits of the water window.  Additionally, decreased electrode size (and increased 

impedance) may lead to voltage-divider effects across the input resistor of the recording amplifier 

and devastatingly large noise that will significantly impact both the quality and bandwidth of 

signals.  For example, an approximate 3 dB loss in signal will be observed from a 300 µm diameter 

platinum electrode with a typical 500 kΩ impedance at 100 Hz that is connected to an amplifier 

with a 1 MΩ input resistance versus a 0.3 dB loss from a 1200 µm diameter electrode with a 40 

kΩ impedance.  Compounding the problem, the noise floor of most commercially-available 

amplifiers attached to 300 µm electrodes severely limits the resolution of small signals (like ECoG) 

at frequencies above 100 Hz.  This is in large part due to the fact that amplifiers are typically 

designed for macro-scale electrodes associated with EEG, EMG, or ECG.  While noise from high-

impedance electrodes can be reduced by averaging over repeated measurements, this is not an 

option for “smart” implantable devices and brain-computer interfaces that depend upon high-

fidelity real-time recordings.  For real-time high-fidelity ECoG recordings from chronically 

implanted arrays, 600 µm diameter platinum electrodes should be considered a practical lower 

limit. 
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Characteristics of Chronic ECoG Recordings 

 

3.1 Introduction 

3.1.1 An Overview of Electrocorticographic (ECoG) 

Recordings 

Electrocorticographic (ECoG) recordings have become an important means of monitoring 

electrophysiological activity of the brain in acute research and clinical settings, yet little is known 

about the characteristics of chronic ECoG recordings extending from several months to years.  The 

proliferation of ECoG recordings in modern neuroelectrical methods stems from the pioneering 

work of Penfield and Jasper in the 1930s, which used epicortical recording and stimulation to map 

cortex and identify epileptogenic foci.  In their seminal work, Penfield and Jasper utilized epidural 

electrodes, which were placed over the protective dural layer of the brain.  Since then, subdural 

recordings have become standard in acute neurosurgical monitoring due to closer proximity to 

signal sources.   

Advancements in neurotechnologies over the last several decades have spurred increased 

interest in chronic neural interfaces for treating a broad spectrum of disorders and diseases.  

Rapidly growing interest in chronic neural interfaces has led to a resurgence of epidural ECoG 

recordings, which may provide a desirable balance between high spatiotemporal signal resolution 

and minimal invasiveness for chronic use. A notable advantage of epidural electrodes is that they 
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avoid disruption of the dura that provides a protective barrier around the central nervous system.  

Penetration of the dura is associated with serious health risks including edema, infarction, 

hematomas, encephalitis, and infection, which may be exacerbated by cerebral spinal fluid (CSF) 

leakage (Fountas 2011).   

3.1.2 Micro-ECoG Electrode Arrays and Effects on Non-

physiological Noise in Recordings  

Traditionally, both sub- and epidural ECoG have used surface electrodes constructed from 

Silastic-embedded platinum (Pt) metal disks ranging from 1 to 5 mm in diameter with interdiskal 

distances of 5-10 mm.  However, advanced micro-fabrication techniques have enabled high-

density milli- and micro-scale electrode arrays on thinner, more flexible substrates.  These new 

electrode arrays have the potential to both provide higher resolution recording and stimulation 

capabilities and greatly reduce the implantable volume of electrode implants (Rubehn et al. 2009; 

Molina-Luna et al. 2007; Kim et al. 2007).  However, while higher resolution ECoG recordings 

are desirable, decreased electrical contact size comes at the cost of smaller integrated neural signals 

and larger noise due to increased impedance. 

Non-physiological noise in neural recordings originates from numerous dissipative 

processes, including thermal (Johnson-Nyquist) noise of the electrodes and tissue (𝑣𝑡ℎ𝑒𝑟𝑚𝑎𝑙 =

√4𝑘𝐵𝑇𝐵𝑅𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒), current noise from amplifier input currents imparted across electrode 

impedances (𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑖𝑛𝑜𝑖𝑠𝑒𝑅𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒), and voltage noise from the amplifier circuitry 

(𝑣𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑣𝑛𝑜𝑖𝑠𝑒).  Here,  𝑘𝐵 is  Boltzmann’s constant, 𝑇 is absolute temperature, 𝐵 is amplifier 

bandwidth, 𝑅𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 is the electrode resistance (real part of the impedance), and 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 

𝑣𝑣𝑜𝑙𝑡𝑎𝑔𝑒 are specifications of the amplifier. These noise sources are typically referred to the input 
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of the amplifier (prior to amplifier gain), are assumed to be uncorrelated, and, therefore, add as the 

sum of squares.  While noise originates from dissipative processes and is linked to the real 

component of complex impedance, the imaginary component (due to capacitance) can shape the 

noise profile through signal filtering.  

 

Figure 3.1: Noise Sources in Physiological Recordings 

A generalized neural recording setup is illustrated with different dissipative noise sources that contribute to the 

overall non-physiological noise in recordings.  Noise generators include the electrodes and tissue, passive circuit 

components, and active amplifiers.  Noise from the electrodes and tissue is generated both by inherent thermal 

voltage noise, which is dependent upon the resistance of the tissue, and current noise from attached circuits that is 

driven through their resistance to create voltage noise.  Electrode and tissue capacitance does not create noise but 

shapes it through filtering effects.  Likewise, noise from passive circuit elements arises from both thermal and 

current noise driven through them.  Active circuits, like amplifiers, have both current and voltage noise associated 

with them.  Noise-reduction in a recording system is most important at the front-end stages and can be reduced by 

minimizing electrode impedance, minimizing passive resistor values, and using an amplifier technology that has 

appropriate current- or voltage-noise that is matched to electrode impedance. 
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3.1.3 Electrophysiological Origins of ECoG Signals 

Electrical signals of the brain originate from the superposition of ionic currents originating 

from current flux into and out of electro-active cells distributed throughout the brain volume.  

Regional variations in extracellular current densities within the brain produce electrical potentials 

that can be measured between any two locations with a pair of electrodes.  REDuction-OXidation 

reactions across the electrode-tissue interface transduce ionic currents in the tissue into electrical 

currents in the electrode so signals can be conditioned and recorded by electronic amplifier 

systems.  The recorded time-varying signals are dependent upon 1) the proximity of each electrode 

to different cellular signal sources, 2) non-uniformities in source densities and tissue impedances, 

3) the size of exposed electrode recording areas over which signals are integrated, and 4) the 

additive noise sources of the electrode-amplifier system.   

ECoG signals are variants of local field potentials (LFPs) and are explicitly recorded from 

the cortical surface of the brain, either below (sub-) or above (epi-) the protective dural layer. 

Dominant sources of ECoG signals include slow synaptic currents from dendritic processes, both 

fast (< 2ms) and slow (10-100 ms) non-synaptic spikes from the neuronal somas, intrinsic resonant 

currents from oscillatory neurons, and relatively long-lasting (0.5-2s) afterhyperpolarization 

currents following neuronal bursting activity.  The magnitude of ECoG scales with frequency, f, 

as 1/f n in the range of n=1-2 and depends upon both the geometric alignment and temporal 

synchrony of sources.  The origin of this power law is not well understood, but is believed to be 

linked to filtering properties of dendrites and complex network behaviors  (Buzsáki et al. 2012). 

Located further from signal sources than traditional LFPs, ECoG recordings utilize 

relatively larger-area electrodes in order to increase signal levels by integrating over regions of 
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synchronized activity.  Subdural ECoG can achieve larger signals by placing electrodes closer to 

sources (Bundy et al. 2015), but, like all dura-penetrating electrodes, they present higher risks of 

infection and adverse reactive tissue response due to disruption of the protective blood-brain 

barrier.  The spatial alignment of neurons along cortical folds affects signal levels at the surface. 

Dipoles aligned orthogonal to the surface in gyri will produce large potentials, whereas dipoles 

aligned parallel to the surface in sulci may cancel one another and produce smaller potentials.  The 

highly-aligned apical dendrites of pyramidal cells in gyri produce large dipoles along their 

somatodendritic axes which are believed to contribute substantially to ECoG signals.   

3.1.4 Signal Features of ECoG Recordings 

Acute ECoG recordings have identified delta (1-3 Hz), theta (4-8 Hz), alpha (8-12 Hz), 

beta (12-30 Hz), and gamma (30-80 Hz) band power modulation as dominant signal features 

indicative of cortical processing.  Recently, high-gamma (80-200 Hz) activity has been implicated 

as an additional important signal feature (Rouse & Moran 2009; Leuthardt et al. 2012; Miller et 

al. 2007; Crone et al. 2006). The precise mechanisms and dynamics that underlie the generation of 

these signal features is still not well understood.  Some studies have linked beta rhythms to cortico-

thalamic circuits, while gamma and high-gamma rhythms have been linked to local cortical spiking 

activity due to correlated gamma band power and firing rates (Heldman et al. 2006).  Phase-

amplitude coupling (PAC), where the phase of theta and alpha oscillations is coupled to the 

amplitude of high gamma oscillations, suggests that low-frequency oscillations may modulate 

local cortical activity. 
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3.1.5 ECoG for Chronic Neural Interfaces 

ECoG recordings are an attractive high-resolution alternative to more invasive modalities 

like intracortical microelectrode recordings and subdural ECoG recordings for monitoring brain 

activity.  Recent studies have used ECoG recordings to control motor neuroprosthetics (Rouse et 

al. 2013) and next-generation closed-loop neuromodulation devices capable of modulating 

therapies based upon real-time cortical activity (Rouse et al. 2011; Stanslaski et al. 2012; Wheeler 

et al. 2015).  Both subdural and epidural ECoG BCI studies have shown beta and gamma band 

activity to be dominant control features (Wang et al. 2013; Rouse et al. 2013; Schalk et al. 2008). 

Characterization of these signal features through the initial, acute, remodeling, and chronic phases 

is critical for optimizing ECoG for chronic applications. 

3.2 Purpose of the Study 

ECoG presents a promising recording modality for chronic neural interfaces, but a 

comprehensive evaluation of signal quality, optimal electrode size, spacing, and reference 

techniques is needed.  Optimal recording specifications for chronic ECoG recordings is dependent 

upon changes in electrode impedance and signal characteristics caused by reactive tissue responses 

to indwelling electrodes.  Chapter 2 described chronic impedance changes of ECoG electrodes of 

varying size and material coatings.  Distinct temporal changes in electrode impedances were 

characterized by a 4-phase reactive tissue response: an initial period (days 1-7), an acute period 

(days 7-30), remodeling period (days 25-45), and chronic period (beyond days 35-45).  Here, this 

work is extended to include chronic changes in ECoG signals that coincide with the previous 

impedance study.  This study combines theoretical, modeling, and electrophysiological data to 
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resolve unanswered questions regarding long-term signal quality and optimal recording techniques 

toward the goal of characterizing the viability of ECoG as a platform for a chronic neural interface.  

3.3 Methods 

3.3.1 An Analytical Recording Model 

A two-stage analytic recording model is used to develop intuition about neural recordings.  

The model is formed by first considering the generation of potentials on the cortical surface below 

recording electrodes (Figure 3.2A), and second by considering the propagation of voltage signals 

through electrodes and amplifiers (Figure 3.2B).   

In the first stage, which models signal generation, sources are approximated as a stationary 

dipole source with moment 𝐼 ∙ 𝒅 located some distance, h, below the cortical surface.  For 

simplicity, the source is assumed to be located within a homogeneous conducting volume with 

bulk conductivity σ, so that the potential at a given radius r from the dipole center is given by: 

𝛷 =
𝐼𝒅 ∙ 𝒓

4𝜋𝜎𝑟3
=

𝐼𝑑

4𝜋𝜎𝑟2
cos 𝜑 (3.1) 

where 𝜑 is the angle between the vectors r and d.  The difference in potentials on the cortical 

surface is seen as a voltage between electrodes.  The differential potential on the cortical surface 

below two electrodes is given by: 

𝛷𝑑𝑖𝑓𝑓 =
𝐼𝑑

4𝜋𝜎
(
𝑠𝑖𝑛𝜃1

𝑟1
2 −

𝑠𝑖𝑛𝜃2

𝑟2
2 ) (3.2) 

where 𝑟1 and 𝑟2 are the distances between the dipole and electrodes and 𝑠𝑖𝑛𝜃1 and 𝑠𝑖𝑛𝜃2 are angles 

formed between the vectors 𝒓1 and 𝒓2 and cortical surface. 
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In the second stage, which models signal acquisition, the focus is placed on electrodes and 

amplifiers.  The output of a differential neural amplifier is the difference between the two input 

voltages (vp – vn) compared to a common ground.  Reduction of large common-mode signals (e.g. 

EMG, EOG, motion artifacts, stimulation artifacts, and 60Hz noise) is best achieved by matched-

impedance electrodes with a low-impedance ground. When common-mode signals are not a 

problem and low noise is paramount, the reference can be tied directly to ground.  Another 

common configuration is to tie the negative inputs of multiple amplifier channels to a single 

common reference electrode that is placed away from the signal sources.  In all cases, voltage 

losses will occur between cortex and amplifier inputs due to voltage divider effects across the 

electrode impedance, Zele, (or Zref for the reference electrode) relative to the amplifier input 

impedance Zin.  Accordingly, the voltage output of the amplifier is given by: 

𝑉 = 𝛷𝑑𝑖𝑓𝑓1

𝑍𝑖𝑛

𝑍𝑒𝑙𝑒 + 𝑍𝑖𝑛
− 𝛷𝑑𝑖𝑓𝑓2

𝑍𝑖𝑛

𝑍𝑟𝑒𝑓 + 𝑍𝑖𝑛
 

(3.3) 

 

Figure 3.2: Analytical Recording Model 

Analytical recording model consisting of tissue (A) and electrode sub-models (B).  In the tissue model, the 

potential at any given point is described by the dipole equation.  The difference in potentials beneath two electrodes 

is a function of the electrode pitch, the height above the dipole source, and the bulk conductivity of tissue.  In the 

electrode model, the potential described in the tissue model undergoes a voltage-divider effect due to the electrode 

and amplifier input impedances.   
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3.3.2 A Finite Element Recording Model 

A finite-element recording model (FEM) was used to extend the previously described 

analytic recording model to account for interactions between the signal generation and acquisition 

stages, and explore more realistic conditions involving multiple non-homogeneous conducting 

layers and geometries.  A 3D cortical slab model, similar to (Wongsarnpigoon & Grill 2008), was 

used to investigate the optimal electrode size and spacing (pitch) for epidural recordings.  The 

modelled electrodes consisted of both a dural-facing recording electrode and skull-facing reference 

electrode embedded within an insulating substrate.  Tissue layer thicknesses and electrical 

properties are summarized in Figure 3.3. 

The model was built with COMSOL Multiphysics (version 3.4; Burlington, MA), and 

contained approximately 2.5M tetrahedral elements.  Smaller elements were used to represent 

spaces nearest to electrodes and current 

sources in order to improve precision in these 

areas of interest.  Average element sizes 

ranged from 7.7e-5 mm3 in electrodes, 2.4e-4 

mm3 in encapsulation, 1.3e-2 mm3 in dura, 

4.6e-2 mm3 in skull, 5.1e-2 mm3 in CSF,  3.0e-

1 mm3 in gray matter, and 11.3 mm3 in white 

matter.  Reducing the mesh size of the model 

did not appreciably affect results, where 

potentials varied by less than 0.8%.  Current 

flux continuity was preserved across internal 

 

Figure 3.3: Finite Element Recording Model 

An illustration of a finite element model (FEM) 

consisting of an epidural electrode, cortex, and dipole 

source is shown with corresponding layer thicknesses 

and conductivities.   

 

 

 

 



59 

 

boundaries and all external boundaries were set to ground (V=0), except for the top of the skull, 

which was set as an electric insulator (current density = 0).   

Signals generated by cortical macro-columns were approximated as current source/sink 

pairs (dipoles) separated by 1 mm and centered 1.5 mm from the upper surface of the gray matter 

(Nunez, 2006).  The potential difference between the recording and reference electrodes was 

measured as the source was moved outward radially from below the electrode center.  The relative 

contribution of a source to the total recorded signal was determined by normalizing each of the 

measured potential differences by the maximum observed value (occurring when the source was 

directly below the electrode).   The resulting 3D distribution, which represents a measure of the 

effective area of influence (or resolution) of the electrode, was used to determine optimal electrode 

spacing for electrodes with diameters of 300 µm, 1.2 mm, and 2 mm.  Simulations were repeated 

for CSF thicknesses of 0.5 mm, 1 mm, and 1.5 mm to account for possible compression of the CSF 

layer by the overlaying electrode and surrounding encapsulation. 

3.3.3 Electrode Array Design 

Thin-film electrode arrays were constructed using MEMs fabrication techniques and 

consisted of three primary layers.  The bottom and top insulation layers were constructed of 12 µm 

thick spin-coated polyimide (HD4110, HD Microsystems), and the middle layer of 50 µm wide 

interconnecting traces and electrode contacts was formed by photolithography and metal 

deposition of chromium (10 nm), gold (200 nm) and platinum (20 nm) for a total thickness of 230 

nm.  As shown in Figure 3.4, the flexible electrode arrays were based upon a folding design in 

which all electrode contacts faced downward toward the cortex and the references and ground 

faced upward away from the cortex.  The purpose of the upward-facing references and ground was 
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to create “quiet” electrical references for ECoG recording, where signals generated by cortex 

would be largely silenced compared to global common-mode noise.  The downward-facing 

electrodes consisted of 32 disc-shaped contacts arranged in rows of four interleaved diameters 

(300 µm, 600 µm, 900 µm, and 1200 µm). The two designated references were also disc-shaped 

contacts of 300 µm and 1200 µm diameter.  A large-area (36.8 mm2) “H”-shaped pad was used to 

both shield the references and provide a stable low-impedance electrical ground.  The polyimide 

 

Figure 3.4: Thin-film Electrodes for Chronic Impedance Characterization 

Thin-film polyimide arrays were constructed using MEMs fabrication processes and consisted of platinum disk 

electrode contacts printed onto a flexible polyimide substrate that was punctated by perforations for improved 

biological transparency (A).  Arrays were based upon a folding design where 32 electrode contacts of four different 

sizes faced downward toward the cortical surface and two references and a large-area ground faced upward toward 

the overlying skull as shown in (B).  Six arrays were implanted bilaterally into the epidural spaces of three macaque 

monkeys, covering primary motor (M1) and primary somatosensory (S1) cortex (C).  Two of the implanted arrays 

consisted of uncoated platinum electrodes, two with electrodes coated with EIROF, and two with coatings of 

PEDOT. 
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substrate was also punctated by rows of 500 µm perforations to improve the “biological 

transparency” of the implant by facilitating transport and signaling through the device.   

3.3.4 Conductive Material Coatings 

Electrode contacts on two of six implanted arrays were coated with activated iridium oxide, 

and another two arrays were coated with PEDOT:pTS.  Electrodeposited iridium oxide films 

(EIROF) were formed from an aqueous solution of 4 mM IrCl4, 40 mM oxalic acid, and 340 mM 

K2CO3 brought to a pH of about 10.3 that had rested in darkness for 48 hours. The iridium oxide 

film was formed by applying 50 cyclic voltage ramps between 0 V and 0.55 V (vs Ag/AgCl) at 50 

mV/s followed by 1600 1 Hz pulses between the same voltage limits.  (Yamanaka 1989; Marzouk 

et al. 1998; Meyer et al. 2001).  PEDOT was electrochemically deposited and polymerized from 

an aqueous monomer solution of 0.1 M ethylenedioxythiophene (EDOT) and 0.05 M paratoluene 

sulfonate (pTS) dissolved in a 50% DI water and 50% acetonitrile.  PEDOT:pTS coatings were 

formed by applying a galvanostatic current of 2 mA/cm2 for 7.5 min.  (Green et al. 2013).  All 

electrodes were rinsed in deionized water, stored dry in sealed plastic containers, and sterilized in 

an ethylene oxide gas chamber prior to implantation. 

3.3.5 Epidural Implantation of Electrode Arrays 

Six electrode arrays were surgically implanted bi-laterally into three male juvenile 

macaque monkeys under anesthetic conditions and using aseptic surgical techniques.  With the 

animal’s head fixed on a standard stereotaxic frame, two 22 mm craniotomies were performed 

over each hemisphere.  Through each craniotomy, surrounding dura was carefully detached from 

the overlying skull to produce a subcranial pocket into which the arrays could be easily placed 

without damage to the applied conductive coatings or underlying cortex.  Each array was 
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positioned approximately parallel to the midline and spanned primary motor (M1) to primary 

sensory (S1) cortex.  The arrays were pseudorandomly assigned to each monkey to ensure that 

each coating combination (Pt-EIROF, EIROF-PEDOT, and PEDOT-Pt) was represented within a 

monkey.  Once the arrays were implanted and the craniotomies sealed, high-density zero insertion 

force (ZIF) connectors (Tucker Davis Technologies, Alachua, FL) were used to access each 

electrode channel for regular in vivo impedance measurements. 

3.3.6 Neural Recordings 

Baseline epidural ECoG activity was recorded from sensorimotor cortex of 3 juvenile 

macaque monkeys beginning 2-3 days post-implantation and continuing for a period of over 250 

days.  Approximately 10 minutes of baseline data were captured 2-3 times each week, after which 

electrochemical impedance spectroscopy (EIS) measurements were performed on all electrodes.  

During each session, the monkeys sat calmly within a custom plexi-glass primate chair with their 

heads fixed stationary but otherwise unrestrained.   

Neural recordings from all 64 dural-facing electrodes (2 arrays x 32 channels per monkey) 

were acquired simultaneously using four 2-stage 16-channel TDT low-noise amplifiers (Tucker 

Davis Technologies, Alachua, FL) connected to electrodes through two high-density zero insertion 

force (ZIF) connectors .  The first amplification stage was a customized TDT headstage built with 

a pass band of 3-500 Hz, gain of 5 V/V, and input impedance of 1 MΩ for low-noise operation.  

The second amplification stage was a standard TDT Medusa pre-amp with a pass-band of 0.5 Hz-

7.5 kHz, gain of 10 V/V, 12-bit ADC sampled at 2,024 Hz, and a fiber-optic interface to transmit 

data to a monitoring station located outside of the recording room.   
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3.3.7 Physical Noise Model 

The total non-physiological noise resulting from electrode impedances and amplifiers was 

estimated from a physical RC electrode impedance model, which consisted of a resistor and 

capacitor connected in series.  Recordings were made across combinations of 7 resistance values 

(1 kΩ, 20 kΩ, 100 kΩ, 200 kΩ, 400 kΩ, 649 kΩ, and 2 MΩ) and 6 capacitance values (0.3 nF, 3.3 

nF, 15 nF, 330 nF, 1.8 µF, and 10 µF), which spanned the range of complex impedances of 

electrodes measured with EIS.  Noise recordings were analyzed similarly to neural recordings to 

yield power spectral densities for each of the resistance and capacitance combinations.  Two-

dimensional interpolation (MATLAB, interp2) across the R-C space could then be used to estimate 

the PSD of noise for any given electrode impedance and frequency.   

3.3.8 Time-frequency Analysis, Signal Statistics, and SNR 

Time-frequency analysis was applied to both neural and noise recordings to track the 

modulation of signal power over time using overlapping power spectral densities (PSD) of 500 ms 

sliding windows (epochs) sampled every 50 ms.  The PSD of each 500 ms signal epoch was 

estimated by Thomson’s adaptive multi-taper method (MATLAB, pmtm), which computes each 

epoch’s periodogram using a sequence of orthogonal tapers.  Resulting PSDs had a frequency 

resolution of 2 Hz and consisted of 512 frequency bins. 

Statistical measures were calculated from distributions formed by the combined 500 ms 

epochs to produce signal power statistics for each of the 512 2-Hz frequency bins.  Statistical 

measures included the mean, standard deviation, skewness, kurtosis, and 10th and 90th quantiles.  

The depth of modulation for a given contiguous frequency band was estimated as the difference 

between the integrated rms signal magnitudes derived from the 90th and 10th quantiles for all 
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included frequency bins.  The mean, standard deviation, skewness, and kurtosis correspond to 

Pearson’s first, second, third, and fourth moments about the mean.  The general equation for the 

nth  moment about the mean is given by: 

𝑚𝑛 =
1

𝑁
∑(𝑥𝑖 − 𝑥)𝑛

𝑁

𝑖=1

 (3.4) 

where 𝑥 is the mean of all samples 𝑥𝑖.  In this case, each sample 𝑥𝑖 is an estimate of signal power 

within a given frequency band derived from the ith 500 ms epoch of a particular day’s recording.  

Qualitatively, the mean provides a measure of the center of the distribution, the standard deviation 

measures the distribution spread, the skewness measures the lopsidedness of the distribution, and 

kurtosis measures the peakedness.  Each were calculated using MATLAB functions mean, std, 

skewness, and kurtosis. 

Estimates of signal-to-noise ratios (SNR) were calculated as (r-n)/n, where r is the recorded 

signal and n is the estimated non-physiological noise.  Signal characteristics tracked over time 

were smoothed with a 5-point moving average filter in order to emphasize global trends in the 

time-domain signals.   

3.4 Modeling Results 

3.4.1 Analytical Recording Model 

Figure 3.5A shows the effects of varying electrode pitch, d, dipole depth, h, and bulk 

conductivity, σ, on potential differences on the cortical surface below two recording electrodes.  

First, as electrode pitch increases, the potential difference become larger and then plateaus, 

indicating that larger signals will result from electrodes spaced far apart. This is the motivation 
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behind using a distant ground located away from the signal source.  Second, as the vertical distance 

between the electrodes and dipole source increases, the potential difference decreases as 

approximately1 ℎ2⁄ .  This result supports arguments for subdural over epidural recordings, where 

electrodes are placed nearer to signal sources.  Last, as bulk conductivity decreases, the potential 

difference increases.  This result explains the shunting behavior of highly conductive media, like 

CSF, which reduces signal resolution by smearing potentials across the cortical surface.  

Additionally, this result predicts that the accumulation of resistive encapsulation tissue in the 

recording region (assuming no change in the vertical distance h) should lead to a simultaneous 

increase in signal strength and decrease in correlation between recorded signals.  

Figure 3.5B shows the voltage divider effect of electrode impedance on recorded signal 

strength.  Signal loss was calculated for a 1 MΩ amplifier input impedance using impedance values 

measured from each electrode size at day 250.  Predicted signal attenuation was worse than -3 dB 

 

Figure 3.5: Expected Changes in Recorded Signals Based Upon Analytical Recording Model 

Predictions of the tissue model (A) are that the potential difference will decrease with 1) increased height, 2) 

decreased electrode pitch, and 3) decreased impedance.  A corollary of the 3rd factor is that spatial resolution will 

increase with increased bulk tissue impedance.  The impedance model predicts that signals passing through high 

impedances electrodes will be subjected to larger attenuation.  Signal attenuation due to typical impedances of 

platinum electrodes is shown in (B). 
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(50% power) in the gamma-band (70-110 Hz) and nearly -6 dB (25% power) in the beta-band (15-

30 Hz) for 300 µm electrodes.  Alternatively, signal attenuation was smaller than -0.5 dB (90% 

power) in both beta- and gamma- bands for 1200 µm electrodes.  For comparison, an amplifier 

input impedance of 5 MΩ would have resulted in approximately -1.8 dB (66% power) attenuation 

in the beta-band and better than -0.8 dB (83% power) attenuation in the gamma-band for 300 µm 

electrodes.  An amplifier input impedance of 10 MΩ would have resulted in approximately -1 dB 

(80% power) attenuation in the beta-band and better than -0.4 dB (90% power) attenuation in the 

gamma-band for 300 µm electrodes.  It is important to note that although signal attenuation is 

improved by increasing the amplifier input impedance, the overall noise contribution of the input 

impedance is also increased. The noise contribution of the 1 MΩ input impedance amplifier used 

here is considered in more detail in the following Noise Model.  

3.4.2 FEM Recording Model 

Simulations with the FEM confirmed the results of the analytic model previously 

described—specifically the combined effects of electrode pitch, dipole depth, bulk conductivity, 

and voltage-divider effects due to electrode impedance.  In addition, the FEM was used to 

investigate how electrodes of varying size and pitch integrate signals from sources across the 

cortical surface.  Figure 3.6 shows the normalized strength of dipoles at varying distances from 

electrodes of varying sizes, which can be thought of as a spatial distribution of influence on the 

recorded signal.  Narrower curves correspond to more selective integration of nearby sources and, 

consequently, higher resolution, whereas wider curves correspond to the integration of signals 

across a larger area.  CSF thickness was also varied to account for scenarios where the electrode 

array is in closer proximity to underlying gray matter.  Generally, the spatial distributions of 
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influence of all modeled electrode 

diameters (300 µm, 1200 µm, and 2000 

µm) were similar, although 

distributions of smaller electrodes were 

slightly narrower. Increased CSF 

thickness widened all distributions, 

resulting in larger areas of integrated 

signals. By defining the boundary of 

influence as the distance where a 

dipole’s contribution falls below 10% 

of the maximum, it is observed that for 

a CSF layer of 0.5 mm, all electrode 

sizes integrate over approximately 1.1 

cm2 (radius of 6 mm).  For a CSF layer 

of 1 mm, the integration area expands to 1.8 cm2 (radius of 7.5 mm), and for a CSF layer of 1.5 

mm, the area increases to 2.5 cm2 (radius of 9 mm).   

The combined spatial distributions of influence are shown in Figure 3.7A for different 

electrode packing geometries, each with a 6 mm pitch.  When the distributions overlap, underlying 

sources will contribute to the integrated signals of multiple electrodes.  The amount of common 

signal for each packing geometry within a unit area is shown in Figure 3.7B for electrode pitches 

of 3 and 6 mm.  To determine the optimal electrode pitch for both hexagonal and rectilinear 

packing geometries, the amount of unique signal per unit area was calculated for varying electrode 

pitches.  Assuming a uniform sheet of unity strength sources, the amount of unique signal could 

 

Figure 3.6: ECoG Spatial Resolution 

The contributions from dipole sources located 1.5 mm below the 

surface of the gray matter are shown as a function of the 

horizontal radius from the electrode center.  Normalization to the 

peak contributions (distance = 0) produces spatial distributions 

that are given as a function of electrode diameter and CSF 

thickness. 
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be calculated by subtracting the total integrated common signal (shown in Figure 3.7B) from the 

total integrated signal (shown in Figure 3.7A).  

Figure 3.7C shows the optimal electrode pitches for different electrode sizes, packing 

geometries, and CSF layer thicknesses.  Results show about a 1 mm increase in optimal electrode 

pitch for 2 mm versus 300 µm diameter electrodes in all conditions, which are summarized by the 

bars at the bottom of each plot.  Use of a hexagonal rather than square packing geometry produced 

slightly better unique signal per area, but optimal electrode pitches remained nearly the same.  As 

expected, unique signal strength was greater for thinner layers of CSF which is predicted by 

analytic recording model.  For 0.5 mm CSF thickness, optimal pitches ranged between 4.75 mm 

 

Figure 3.7: Optimal Spacing of ECoG Electrodes 

A) The full spatial distributions of linearly-, hexagonally-, and rectilinearly- arranged electrodes are shown next 

to maps of the corresponding amount of common signal shared between electrodes for 3 and 6 mm electrode 

pitches within a unit area. B) The integrated unique signal remaining after subtraction of the overlapping signal is 

shown per unit area (circumscribed by a white line) for both rectilinear and hexagonal arrangements with varying 

electrode pitches.  C) The peak values of unique signal per unit area and corresponding ranges of optimal inter-

electrode distances are summarized at the bottom of each graph for each electrode size and CSF thickness. 
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to 5.75 mm; for 1 mm CSF thickness, optimal pitches ranged between 4.81 mm to 5.82 mm; and 

for 1.5 mm CSF thickness, optimal pitches ranged from 5.92 mm to 6.94 mm.   

3.4.3 Noise Model 

The construction of the amplifier-specific physical RC noise model is summarized in Figure 

3.8.  Two example power spectral densities for noise are shown in Figure 3.8A, which resulted 

from recordings from series RC combinations that represented the impedances of electrodes at a 

specific frequency.  As illustrated in Figure 3.8B, the PSDs from each RC measurement were 

combined and organized by frequency to form stacked iso-frequency “noise surfaces”.  Given the 

impedance (or series RC equivalent) of an electrode at a given frequency, the associated non-

physiological noise (from the amplifier and parallel combination of the electrode and input 

impedance) could be interpolated from the frequency-matched noise surface.  Measured noise 

 

Figure 3.8: Physical Noise Model for ECoG Recordings 

A) A physical noise model was formed by recording noise across a range of resistors and capacitors in series that 

matched the complex impedances previously reported for the same in vivo electrodes.  B) The recorded power 

spectra were combined to form a three-dimensional noise model, where the noise produced by the amplifier 

attached to a given electrode impedance could be predicted, given the electrode’s resistance, capacitance, and the 

frequency of interest.   
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plateaued with increasing series resistance due to the parallel input resistance at the amplifier front-

end.  Noise also increased with decreasing series capacitance, but this effect was only appreciable 

when both series resistance and series capacitance were very low.  Because the series resistance 

and capacitance of electrodes were observed to be inversely related and beyond the region where 

capacitive effects became appreciable, noise estimates were dominated primarily by the resistance.  

3.5 Chronic ECoG Signal Results 

3.5.1 Effects of Electrode Material and Size 

In Chapter 2, it was shown that conductive coatings significantly reduce electrode 

impedances in vivo, but effects became insignificant beyond 3 months compared to uncoated 

platinum electrodes of the same size.  One of the goals in this study was to investigate how the 

coatings affect the quality of chronic signal recordings.  However, a 3-way (subject, coating, and 

diameter) ANOVA (MATLAB, anovan) across subjects and 2-way (coating and diameter) 

ANOVA within subjects revealed that the variability of signal measurements between subjects 

was too large, and the coating effect size within subjects was too small to permit effective 

comparisons between arrays (Figure 3.9).  Both ANOVAs showed a large and significant effect of 

electrode size, which persisted throughout the duration of the implants.  Therefore, the remainder 

of this paper focuses on the chronic effects of electrode size within individual arrays, with an 

emphasis on uncoated platinum electrodes.   
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Figure 3.9: ANOVA Analyses for Signal Power Related to Diameter, Coating, and Subject 

A) Main and interaction terms in a 3-way ANOVA model: D = diameter, C = coating, S = subject (monkey).  The 

results show large and significant variations in signal power due to differences in subjects.  B) Main and interaction 

terms in a 2-way ANOVA model within a single subject.  The results show that the largest significant variation in 

signal power was due to electrode diameter.  Therefore, subsequent analyses only compare signal effects associated 

with different electrode diameters within the same electrode array, and not effects of material coating and subject. 
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3.5.2 Recorded Signal Power, SNR, and Depth of 

Modulation 

The PSDs of ECoG recordings from all 6 implanted arrays displayed characteristic 1/f2 fall-

offs in power with increasing frequency throughout the implanted duration.  An example PSD for 

a Pt array is shown in Figure 3.10A.  The recorded signal power includes contributions from both 

physiological signals of interest and non-physiological noise resulting from the combined effects 

of the amplifier and electrodes.  As shown by the traces at the bottom of Figure 3.10A, the non-

physiological noise estimated from electrode impedances and the physical RC noise model was 

greater for smaller diameter electrodes across all frequencies.  The SNR, which is a measure of the 

physiological signal compared to non-physiological noise, is shown for each electrode diameter in 

Figure 3.10B.  The SNR decreased steadily with increasing frequency for all electrode sizes but 

 

Figure 3.10: ECoG SNR Versus Electrode Size 

A) The power of recorded signals on day 250, which include both physiological signals and non-physiological 

noise, are shown with the interpolated non-physiological noise from the physical RC noise model for each 

electrode size.  B) The SNR (physiological Signal to non-physiological Noise Ratio) for each electrode size was 

estimated from the non-physiological noise interpolated from the physical RC noise model.  The SNR decreased 

with increasing frequency and was highest for larger diameter electrodes.  The SNR of 1200 um electrodes 

decreased to a level of 3 dB (where the power of the physiological signal was twice the non-physiological noise) 

at approximately 150 Hz for 300 µm electrodes and 185 Hz for 1200 µm electrodes. 
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was consistently higher for larger electrode 

diameters.  The improved SNR of larger diameter 

electrodes was consistent for all 6 implanted 

arrays and equated to broadband enhancement of 

signal quality which diminished at higher 

frequencies near to the low-pass cutoff frequency 

of the amplifier.  The 3 dB SNR level is marked in 

Figure 3.10B in order to illustrate the enhanced 

high-gamma band signal quality of recordings 

from larger diameter electrodes.  3 dB is the SNR 

level where the power of physiological signals is 

only twice the power of non-physiological noise.  

For SNR levels below 3 dB, signals become exceedingly more difficult to resolve above the noise 

floor.  At day 250, the SNR of 300 µm electrodes decreased to 3 dB at about 150 Hz, whereas the 

SNR of 1200 µm electrodes decreased to 3 dB at about 185 Hz.  At 150 Hz, the SNR of 1200 µm 

electrodes was nearly 6 dB, which corresponds to signal power that is 4 times larger than noise (a 

2X improvement in signal quality over 300 µm electrodes).  

The depths of amplitude modulation in frequency bands of interest were estimated from 

power distributions by integrating the upper (90th quantile) and lower (10th quantile) limits of 

power observed within each included frequency bin.  The depth of modulation for each frequency 

band was defined as the rms signal difference between the 90th and 10th quantiles of the 

corresponding integrated power distributions spanning the entire band.  Using this measure, the 

depth of modulation can be interpreted as the outer range of rms amplitude modulation within 

 

Figure 3.11: ECoG Depth of Modulation Versus 

Frequency Band and Electrode Size 

The power of recorded signals on day 250, which 

include both physiological signals and non-

physiological noise, are shown with the 

interpolated non-physiological noise from the 

physical RC noise model. 
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which signals remained 80% of the time.  Depths of modulation for various bands of interest are 

summarized in Figure 3.11, which are representative of levels observed for all electrodes.  Larger 

electrode sizes were associated with larger depths of modulation for all frequency bands.  For low 

frequencies, the depth of modulation was approximately 11 µVrms for 1200 µm electrodes and 

about 5 µVrms for 300 µm electrodes.  The depth of signal modulation decreased rapidly with 

increasing frequency, such that modulation of mid-gamma was about 1 µVrms and modulation of 

high-gamma was only about 500 nVrms.  Even at these higher frequencies, larger electrodes were 

associated with larger depths of modulation.  For example, in mid- and high-gamma bands, the 

depths of modulation were 1.1 µVrms and 525 nVrms for 1200 µm electrodes, and 0.9 µVrms and 

467 nVrms for 300 µm electrodes.  

3.5.3 Chronic ECoG Signal Changes 

Changes in recorded signal magnitude and SNR were tracked over a period of 250 days and 

were found to be similar across all 6 implanted arrays regardless of the subject, coating, and 

electrode size.  Example time series from a Pt array are shown in Figure 3.12, where the 

stereotypical changes over time coincide with the impedance changes resulting from the 4-phase 

reactive tissue response previously described in Chapter 2.  This 4-phase response is characterized 

by an initial period (days 1-7), an acute period (days 7-30), remodeling period (days 25-45), and 

chronic period (beyond days 35-45).  During the initial period, the electrode impedance remained 

constant, while the signal magnitude decreased.  During the acute period, both electrode 

impedance and signal magnitude increased.  During the remodeling period, both impedance and 

signal magnitude decreased to values comparable to the end of the initial period.  Finally, in the 

chronic period, signal magnitude remained generally constant, while the electrode impedance 



75 

 

slowly increased and leveled off to a steady 

level.  This 4-phase response was observed 

across all electrode sizes and coatings with 

only minor variations in the onset and 

duration of each period.   

Figure 3.13 shows the extended 

stereotyped responses of signal magnitude 

and estimated RMS from Pt electrodes in 

the beta (15-30 Hz) and gamma (70-110 Hz) 

bands up to 250 days.  In the beta band, 

signal RMS was consistently greater for 

larger diameter electrodes across all time 

periods, as was the estimated SNR.  This 

pattern was not as clear for signal RMS in 

the gamma band, where signal magnitude 

was mixed across electrode sizes.  However, 

after accounting for the estimated non-

physiological noise, the SNR showed the 

same separation between electrode sizes observed in the beta band where higher SNR was 

attributed to larger electrode diameter.  For comparison, Figure 3.14 shows similar results for 

EIROF and PEDOT electrodes at 70-110 Hz. 

 

 

Figure 3.12: 4-Phase Chronic Signal Response: Initial, 

Acute, Remodeling, and Chronic 

Comparison of the 4-phase responses observed both with 

changes in electrode impedances at 100 Hz (A) and 

recorded signal levels be 70-110 Hz (B) for a Pt electrode 

array. 
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Figure 3.13: 4-Phase Chronic SNR Response Versus Electrode Size 

A-B) The recorded signal amplitudes in beta (15-30 Hz) and gamma (70-110 Hz) bands, which include both 

physiological signals and non-physiological noise from the amplifier, are shown over the first 250 days post-

implantation for all four Pt electrode sizes.  Initially, larger electrodes had the largest signal amplitudes in both 

bands. However, in the gamma band, the smallest electrode had the largest signal amplitude after day 150.  C-D) 

The non-physiological noise for each band was removed by subtracting the signal amplitudes of non-physiological 

noise interpolated from the physical RC noise model.  The resulting signal was normalized by this noise to produce 

an estimate of the physiological SNR, which shows a clear separation between electrode sizes, where the largest 

diameters have consistently larger SNR. 
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Figure 3.14: 4-Phase Chronic SNR Response Versus Coating 

The recorded signal amplitudes and SNR in the gamma band (70-110 Hz) for Pt (A,B), EIROF (C,D), and PEDOT 

(E,F) electrodes.  Each electrode array, regardless of material coating, shows the same reduction in SNR with 

smaller-diameter electrodes. 
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3.5.4 ECoG Signal Structure 

While the previous results focus on chronic changes in the relative contributions of 

physiological signal and non-physiological noise, the following results focus on the structure of 

the physiological signal itself.   Pearson’s moment statistics corresponding to the mean, standard 

 

Figure 3.15: ECoG Signal Statistics: Mean, Stdev, Skewness, and Kurtosis 

A separation of physiological noise from physiological signal at month 9 was conducted by assessing the first four 

moments of signal power (mean (A), stdev (B), skewness (C), and kurtosis (D)).  While the mean and stdev did 

not show anything, the skewness and kurtosis showed distinct peaks corresponding to the beta and gamma bands.  

The skewness and kurtosis of all other frequencies dropped to the level expected from Gaussian white noise.  
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deviation (stdev), skewness, and kurtosis were used to characterize the distributions of power 

observed within 2-Hz frequency bins. As shown in Figures 3.15A-B, neither the mean nor standard 

deviation of recordings showed any distinct structure that might indicate a separation between 

physiological signal and noise.  However, both skewness and kurtosis showed distinct elevated 

deviations from noise in two broad bands, 8-35 Hz and 65-200 Hz with a deflection toward noise 

levels between 35-65 Hz, which was consistent across all recordings.  Careful examination of the 

magnified views in Figures 3.15C-D shows that this deflection was not simply an artifact from 60 

Hz line noise (which manifested as a narrow band notch), but instead was a consequence of some 

wider-band phenomenon.  An inflection point in the high-frequency broad-band feature around 

100 Hz suggests the possibility of two adjacent gamma band features spanning 65-100 Hz and 

 

Figure 3.16: ECoG Correlation Structure Between Frequency Bands 

 (A) The correlation of power modulation between frequency bands was assessed for signals recorded on 

individual channels.  The correlation structure shows two distinct bands: beta and gamma, as seen by the bulges 

near the diagonal.  Gamma appears to be broadly correlated beyond several hundred hertz and slowly falls to flat 

low-level correlation levels expected from noise. Beta and Gamma are also slightly anti-correlated.  (B) The 

correlation of power modulation between frequency bands was assessed between adjacent electrodes spaced 3 mm 

apart.  Correlation decreased with increasing frequency and larger diameter electrodes resulted in larger 

correlations than smaller electrodes.  This may not necessarily imply a higher spatial resolution of smaller 

electrodes, however, because increased uncorrelated noise (Gaussian white noise) on the smaller electrodes would 

produce the same effect—especially at higher frequencies where the noise floor is known to be higher for small-

diameter electrodes. 
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100-200 Hz.  No distinct inflection was observed that separated alpha and beta bands in the low- 

 

Figure 3.17: ECoG Inter-electrode Correlation Versus Distance and Size 

Correlations between power modulation in the mid-gamma band (70-110 Hz) are shown over a 250-day period 

for each electrode size and for inter-electrode spacings of 3 mm (A), 6 mm (B), and 9 mm (C).  The mean 

correlation across all electrode combinations of the same size and distance is shown at 1 week (D-F) and at month 

9 (G-I).  Overall, smaller electrodes diameters showed smaller inter-electrode correlation than larger diameters 

for all frequencies and across all time.  However, it is not clear whether the reduced correlation is a consequence 

of reduced correlation in recorded physiological signal, or if the reduction in correlation was a result of larger 

uncorrelated noise due to the higher impedance and lower SNR.  The observation that inter-electrode correlations 

were similar across all electrode sizes in week 1, gradually separated over time, suggests that the decrease in 

correlation observed with smaller electrodes may be due to noise, and not physiological signals. 
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frequency broad-band feature.  Importantly, the magnitude of separation of these features from 

noise was enhanced for increasing electrode size, providing larger features at higher frequencies 

(up to nearly 200 Hz).  

Signal structure was also evaluated by examining cross-frequency correlation of signal 

power on single electrodes.  As shown in Figure 3.16A, the 8-30 Hz and 70-170 Hz features 

appeared as two distinct broad bands.  Fluctuations in signal power within each band were highly 

correlated, as indicated by the wide-band increase in correlation along the diagonal.  Correlated 

gamma activity was most concentrated within the 70-110 Hz band with diminishing broad-band 

correlation beyond 250 Hz.  Activity across beta and gamma bands was slightly anti-correlated, 

and activity in the 30-50 Hz band between was generally uncorrelated with all bands.  The 

dominant signal bands are highlighted in Figure 3.16B and correspond to alpha-beta (8-30 Hz), 

mid-gamma (70-110 Hz), and high-gamma (130-170 Hz).  

The correlation of signal modulation between channels was tracked over time for inter-

electrode distances of 3, 6, and 9 mm, as shown in Figure 3.17. As expected, correlations were 

higher for short inter-electrode distances, as predicted by greater overlap of areas of influence.  

Additionally, correlations between electrodes decreased rapidly with increasing frequency.  Within 

the first several days post-implantation, the inter-electrode correlations for all electrode sizes were 

very similar but showed a distinct relationship between larger correlations and larger contact size 

following the first week.  This effect was not observed as strongly for lower-frequency bands. 
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3.6 Discussion 

3.6.1 Optimal Electrode Size and Spacing for ECoG 

For epidural ECoG, electrodes were estimated to be located approximately 3-4 mm from 

signal sources in macaque monkeys and perhaps as far as 4-5 mm in humans, depending upon the 

thickness of CSF and dura.  At these distances, the cortical areas over which signals are integrated 

are similar for electrode contacts in the range of 300-2000 µm, with smaller diameter electrodes 

achieving only slightly better performance in spatial resolution.  This small improvement in 

resolution is countered by a large reduction in SNR due to higher impedances that 1) reduce the 

signal magnitude at the input to the amplifier, and 2) produce non-physiological noise that is added 

to the recorded signal.  Based upon these findings, the recommended electrode contact size is in 

the range of about 1 mm diameter.    

The optimal inter-electrode distances for hexagonally- and rectilinearly-arranged arrays 

ranged from 5-7 mm, depending upon the thickness of underlying CSF.  The use of hexagonally-

arranged electrodes is recommended to optimize the amount of unique signal that can be extracted 

per area.  For the suggested 1 mm diameter electrodes, the optimal inter-electrode spacing is 

approximately 6 mm.  This inter-electrode spacing is supported by electrophysiological results 

from chronic epidural electrodes used for motor BCI control, where performance decreased 

considerably when inter-electrode distances were less than 6 mm (Rouse et al., 2013). 

The conductive CSF layer beneath electrodes has the largest effect on the area of integration, 

where thicker CSF layers shunt signals across larger areas, thereby reducing spatial resolution.  

Depending upon the thickness of implanted electrode arrays, the underlying CSF layer is expected 
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to be compressed in chronic implants, thereby reducing its shunting effect.  Accumulation of 

insulative fibrous encapsulation around the implant may also serve to reduce shunting effects.  

Antectdotally, fibrous encapsulation surrounding chronic subdural electrode arrays has been 

observed to become highly integrated with adjacent dural tissue, suggesting that subdural implants 

may perform similarly to epidural implants under chronic conditions.  

3.6.2 Effects of Noise on ECoG Signals 

Bioelectrical recordings from electrodes can be decomposed into 1) physiological signals 

of interest, 2) physiological noise, and 3) non-physiological noise.  The contributions of non-

physiological noise can be greatly reduced through careful placement of electrodes (active, 

reference, and ground) relative to the signal source.  For example, use of an upward skull-facing 

“quiet” reference and ground can minimize the amount of non-targeted neural activity picked up 

in neural ECoG recordings.  Also, the use of a reference electrode with impedance matched to the 

recording electrode will maximize the common-mode rejection of the amplifier, which will reduce 

the presence of global common-mode signals like EMG, ECG, EOG, and 60 Hz line noise.  

Reduction of non-physiological thermal, current, and voltage noise can be achieved by use of low-

impedance electrodes and low-noise amplifiers.  

Estimations of non-physiological noise were facilitated by the combination of measured 

impedances and the RC noise model.  By removing this layer of noise from recordings, 

physiological signals could be analyzed more accurately to determine differences in signal quality 

between electrode sizes and track changes in neural signals independent of the effects of electrode 

impedances. While smaller diameter electrodes produced larger total signal power at frequencies 

above 100 Hz, much of this signal power was due to non-physiological noise.  Analysis of 
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physiological signal power vs non-physiological noise revealed that larger electrode diameters 

achieved higher SNR across all bands.   

The use of low-impedance electrodes in combination with low noise amplifiers is critical 

for high-resolution measurements of ECoG.  This is particularly important in the mid- and high-

gamma bands where signal modulation depths fall below 1 µVrms.  For accurate recordings with 

SNRs above 3V/V (~10dB), combined non-physiological noise from the electrodes and amplifier 

should be less than 2 µVrms in the alpha- (8-12 Hz) and beta-bands (12-30 Hz); less than 330 nVrms 

in the mid-gamma band (70-110 Hz); and less than 160 nVrms in the high-gamma band (130-170 

Hz).  For applications that do not require real-time decoding or control, SNR can be increased by 

a factor of √𝑛  by averaging 𝑛 trials together.  However, for applications that rely on real-time 

analysis of ECoG and cannot benefit from averaging successive trials to improve SNR, use of low-

noise amplifiers is critical.  

3.6.3 Implications of Signal Changes for Chronic 

Implants 

Until recently, ECoG recordings were only observed for acute periods extending no more 

than 30 days.  Here, chronic changes in ECoG signals have been shown for up to 250 days post-

implantation.  Chronic changes in signal power and SNR were shown to coincide with the 4-phase 

reactive tissue response previously described in Chapter 2, consisting of an initial period (days 1-

7), an acute period (days 7-30), remodeling period (days 25-45), and chronic period (beyond days 

35-45).  For acute recordings, the highest SNR occurs within the first several days.  During this 

initial period, it is hypothesized that swollen tissues might press the electrodes closer to underlying 

signal sources to produce larger recordings.  Throughout the first week, SNR will drop as swelling 
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reduces.  In the second and third weeks, increased electrode impedances due to acute tissue 

encapsulation are observed.  Signal SNR increases concomitantly during this period, possibly due 

to acute encapsulation tissue filling and compressing the conductive CSF layer.  In the third and 

fourth weeks, tissue impedance decreases to near initial levels.  During this remodeling period, 

encapsulation tissue from the acute response may be broken down allowing the shunting effect of 

CSF to decrease signal levels.  Finally, during the chronic period, impedances once again increase, 

but signal SNR does not.  The lack of SNR rebound may be due to either the formation of a denser 

permanent encapsulation layer that preserves the CSF shunting layer, or the formation of a thicker 

encapsulation layer that pushes electrodes further away from signal sources.  Histological studies 

of these tissue responses is necessary to elucidate the precise mechanisms underlying these chronic 

changes. 

Chronic SNR levels of ECoG remained high and relatively stable over the reported 250 

days, with consistently higher levels associated with larger electrode diameters.  The SNRs of the 

beta- and mid-gamma-bands were steady at approximately 10V/V (20 dB) and 3V/V (9.5 dB), 

respectively, for 1200 µm electrodes.  High SNR and stable signals are of critical importance to 

chronic neural interfaces.  This study validates the use of ECoG for chronic neural interfaces, 

which could supplement, or possibly replace single-unit recordings that are prone to signal loss 

over weeks to months.     

The correlation of signal power modulation between electrodes was shown to decrease over 

time, with higher inter-electrode correlations associated with larger electrode diameters.  This 

result is predicted by the analytical model and FEM simulations due to increased bulk impedance 

between the electrodes and signal sources.  The increase in un-correlated non-physiological noise 

in recordings due to electrode impedances may also be responsible for this effect.  While the 
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uncorrelated inter-electrode signals of smaller electrode diameters are desirable, the effect may be 

caused simply by their lower SNR, particularly in higher frequency bands where physiological 

signals are very small.    

3.6.4 Implications of ECoG Signal Structure 

The structure of ECoG signals was explored using statistical measures derived from 

distributions of power observed during baseline recordings.  Measures of skewness and kurtosis 

revealed two broad frequency bands with distinct separations between signals and noise—

specifically the alpha- and beta-bands (8-35 Hz) and the mid- and high- gamma-bands (65-200 

Hz).  Measures of skewness and kurtosis may be indicative of active modulation of neural activity, 

where positive deviations of signal power from baseline are more prevalent than negative 

deviations.  Interestingly, the band between (35-65 Hz) displayed a deflection in skewness and 

kurtosis toward values expected from noise.  Careful analysis within this deflection band showed 

that it was not a result from 60 Hz noise, but, in fact, an apparent node around which ECoG 

modulation appears to operate.   

The same contiguous bands were also revealed within the cross-frequency correlation 

structure.  The correlation structure showed that mid- and high-gamma bands are broadly 

correlated up beyond 300 Hz.  These results suggest that while active modulation does occur up to 

300 Hz, mid- and high-gamma bands may be better characterized as a single broad contiguous 

band.  Cross-channel correlations showed that broad-band gamma modulation is more localized 

than alpha- and beta- modulation, which is consistent with gamma emerging from local cortical 

spiking activity, and alpha- and beta- modulations emerging from cortico-thalamic circuits. It is 

important to note that recordings were obtained while monkeys sat relatively still.  Throughout the 
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period in which data for this study was being collected, the monkeys were not performing or being 

trained on any task, which could have biased their active modulation of signals.  Therefore, while 

results from this study support a model for broad active modulation of gamma, slightly anti-

correlated modulation of gamma with alpha and beta, and a fixed, non-modulated node around 35-

65 Hz, results from trained behaving subjects may vary.  
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A Motor BCI:  

Multi-Dimensional Control using a  

Co-adaptive Decoder 

 

4.1 Introduction 

4.1.1 An Overview of Motor BCIs 

The discoveries that neurons in primary motor cortex (M1) encode intended movement 

direction (Georgopoulos et al.,, 1986) and velocity (Moran and Schwartz, 1999) resulted in 

development of motor neuroprosthetics to control cursors and later robotic arms.  While invasive 

micro-electrode recordings have yielded the most advanced control (over 10 DOF in paralyzed 

individuals) (Wodlinger, 2015), chronic use of micro-electrode BCIs has been limited by immune 

responses.  Non-invasive approaches using electroencephalography (EEG) and 

magnetoencephalography (MEG) have remained limited with sufficiently-good control of only 2 

DOF.  Significant challenges include weaker neural signals on the surface of the scalp for EEG 

and large external systems that are not readily mobile for MEG.  ECoG-based BCIs are both 

minimally invasive and have the potential to capture high-fidelity signals.  While ECoG-based 

BCIs are promising, they have yet to demonstrate dimensionality control on par with micro-

electrode-based systems.   



89 

 

4.1.2 Decoding Algorithms for Motor Control 

BCI decoding algorithms have been used to translate neural activity into the representations 

of distinct states (classifier decoders) or continuous control signals (analog decoders).  The outputs 

of these decoders can be used in diagnostics (to identify something meaningful about the subject), 

as deciders (to choose between classes of responses), or as controllers (to drive system dynamics).  

For the most part, neural decoders have emerged from studies that aim to understand the 

relationships between neural activity and behaviors.  This is often accomplished by observing 

neural activity and behavior concurrently and building statistical models to represent their 

relationships.  Decoders can then be developed to predict, classify, and measure behavior indirectly 

through observations of the neural activity alone, and through extensions of the statistical models.   

Generally, the development of a decoder starts by building a statistical model to link 

measured outputs (e.g., relevant behavior or states) back to observed neural activity, and then 

inverts the model such that desired outputs can be predicted by the neural activity alone.  This 

approach works well when desired outputs are readily observed as the neural activity is recorded.  

However, observation of desired outputs is not always possible (e.g. neuropsychiatric state or 

movement with paralyzed individuals).  In this case, proxies are required to estimate the desired 

output.  Estimates of the desired outputs may be accomplished through psychometric tasks or 

imagined outputs (e.g., imagined movement or observed movements by others).  For volitional 

control, where the subject can actively modulate activity to achieve a desired output, it is important 

to link the subject’s intent back to the neural signals to be used with the decoder.   
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 Several different types of decoders have been used in the past, some of which are listed 

below. These decoders vary in their statistical assumptions, their complexity in computation, and 

their performance in varying applications. 

1) Population Vector Algorithm (PVA) (Georgopoulos et al, 1986) 

2) Optimal Linear Estimator (OLE) (Salinas and Abbot, 1994) 

3) Kalman Filter (Brown et al., 1998) 

4) Laplace-Gaussian filter (Koyama et al., 2010) 

5) Unscented Kalman Filter (Li et al., 2009) 

As described by Zhang and Chase (2015), the performance of a decoder is also dependent both 

upon the dynamics of the system being controlled (i.e., the plant, using control systems 

terminology) and closed-loop error-correction achieved by the subject’s ability to adapt 

modulation of their neural signals.   

Careful co-design of the decoder, the plant, and 

feedback should be emphasized, when possible.  For 

example, decoding position control for movement of a 

cursor will result in undesirable jerky movement and jitter 

caused by noise in the neural signals.  Decoding velocity 

control of a cursor will provide smoother movement by 

integrating random noise but may slow movement, 

depending upon gain.  Decoding of acceleration for control 

will result in even smoother movement but will require twice 

the control bandwidth as velocity control. Regarding closed-

loop error-correction, a BCI inherently requires a subject to 

 

Figure 4.1: Control Bandwidth for 

BCIs 

Velocity signals follow a well-

characterized bell-shape curve as 

movement is initiated and then brought 

to rest.  The associated acceleration 

(the derivative of velocity) modulates 

up and down twice as fast and needs 

approximately twice the bandwidth for 

BCI control. 
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be part of the control loop, and as such, feedback to the subject and their resulting adaptation 

should be carefully considered.   

 

4.1.3 Co-adaptive Human-machine Learning  

Coadaptation refers to the ability of both the subject and decoder to change their behaviors 

in order to improve the overall performance of the BCI.  Shifts in neural tuning properties might 

occur due to adoption of new control strategies by the subject, changes in context or environment, 

competition with concurrent behavior or stimuli, or injury and disease.  Coadaptive algorithms for 

motor BCIs enable the decoder to iteratively update parameters to track these neural changes over 

time, which may include inherent non-stationarities in the signals (Taylor et al., 2002; Orsborn et 

al., 2014).  Challenges in implementing co-adaptation include 1) the need to estimate subject intent 

for training updates, 2) adjusting the learning rate of the decoder relative to subject learning, and 

3) balancing the speed of decoder updates with time required to sufficiently sample the control 

space to avoid over-fitting. 

4.2 Purpose of the Study 

ECoG presents a promising technology for implementing a chronic BCI.  One desirable 

benefit of ECoG is that surface electrodes are minimally invasive (particularly epidural ECoG 

arrays) compared to micro-electrodes.  Other desirable benefits include stable recordings over 

extended periods and signal features that are rich with information (particularly the modulation of 

power in the gamma band), as described in Chapter 3.  However, ECoG-based BCIs have not yet 

demonstrated multi-dimensional control on par with what has been achieved with micro-electrode 
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BCIs.  Toward the goal of demonstrating multi-dimensional control, previous work that 

demonstrated 2 degrees-of-freedom (DOF) was extended by developing a new learning approach, 

called co-adaptation.  Co-adaptive learning explicitly accounts for challenges in learning between 

both the BCI user and the machine, and it aims to optimize this concurrent adaptation to achieve 

higher multi-dimensional performance with less training time.  Here, the focus was placed on the 

development of a co-adaptive framework for an ECoG-based BCI that provides error-correction 

to a naïve decoder based upon the inferred intended actions of the BCI user.  This approach allows 

both the user and the decoder to converge on an optimal set of features for multi-dimensional 

control.  This study combines signal processing and co-adaptive algorithm design with a 

hyperdimensional statistical framework to resolve unanswered questions regarding the optimal 

frequency bands and locations of ECoG signals for BCI control through two 4DOF behavioral 

tasks. 

4.3 Methods 

4.3.1 Task Designs for Single and Bimanual Multi-

Dimensional Control 

Two male, 6-10 kg monkeys (Macaca mulatta), I and K, were trained to perform behavioral 

tasks within a virtual environment displayed to them on a computer monitor.  Each monkey was 

first trained to perform standard center-out tasks using a joystick.  Monkey K was subsequently 

trained on 2DOF BCI tasks outside the scope of this dissertation, which focused on velocity- vs 

force-control.  Following these studies, Monkey K learned to perform the Bimanual Out-to-Center 

task described below under brain control without any prior related training.  Monkey I had never 
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performed a BCI task prior to participating in the Reach and Rotate task described below.  Tasks 

were learned through operant conditioning with liquid rewards while sitting freely in a primate 

chair.  Standard 17 inch LCD monitors positioned approximately 20 inches from the monkeys 

were used to display the tasks through a rendered 3D virtual environment. 

Two BCI tasks were designed to demonstrate and evaluate 4DOF control, based upon the 

more traditional lower-dimensional center-out task.  The first 4DOF task, Reach and Rotate, was 

focused on 4DOF control of a single cursor object within a virtual environment.  The second task, 

Bimanual Out-to-Center, was focused on simultaneous control of two 2DOF objects within a 

virtual environment.  In both tasks, cursors were moved via velocity control derived from neural 

signals.  Each trial represented a movement to one of the possible targets, which was randomly 

chosen from a set, but not repeated until all trials had been completed.  A maximum movement 

time to the target was enforced (typically less than 5 seconds) in addition to a minimum target hold 

time (1-3 seconds) when the cursor(s) reached their target(s).  Successful trials were associated 

with a liquid reward.    Unsuccessful trials were either not rewarded or associated with a reduced 

reward and were excluded from subsequent decoder updates using a co-adaptive leaning approach.   

The Reach and Rotate task was designed to mimic similar translational and rotational 

movements required to insert a key into a keyhole.  In this task, a controlled object and target 

object were represented as spherical bodies, each with a protruding stick to represent rotation.  The 

cursor sphere-and-stick object could be translated in 3D and rotated in 1D (viewed as clockwise 

and counter-clockwise rotation) for a total of 4DOF.  All movement was conducted within a large 

cube with semi-transparent walls.  The cursor object was attached to the end of two 2-segmented 

arms with joints that resembled shoulders and arms. The purpose of the armature was to provide 

improved visualization of depth within the virtual environment that was displayed on a 2D 
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computer monitor.  Depth cues were represented by linear perspective, relative size, overlap, 

angles of the armature’s joints, and position of the armature links as they cut through the semi-

transparent sides of the cube.   

The Reach and Rotate task began with the cursor in the center of the cube with the stick 

pointed up.  Next, a target appeared randomly in one of the 8 corners of the cube with either the 

stick pointing to the left (-90 degrees) or pointing to the right (90 degrees) relative to the cursor.  

This resulted in 8 corners x 2 rotations = 16 total perturbations to comprise a full set.  Following 

completion of an entire set, the decoder was updated using the co-adaptive method described later.  

The gains for each translational DOF were equal.  The rotational gain was normalized to the 

translational gains according to the maximum cube dimensions and rotational range (180 degrees).  

 

Figure 4.2: Behavioral Task for Single Object 4DOF Control: Reach and Rotate 

Screenshots of the Reach and Rotate task designed for 4DOF control of a single object, shown in the center of a 

cube with “stick” oriented upward (A).  The cursor object is attached to two armatures intended to provide 

additional depth cues in the virtual environment.  A total of 16 targets were possible, each located at a corner of 

the cube: 8 targets rotated counter-clockwise (B) and 8 targets rotated clockwise (C).  D-F) Task progression 

from target presentation, movement, and target acquisition is shown.   
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Cursors could move outside of the cube, but not outside the field of view on the screen.  Likewise, 

rotations were limited between -120 degrees to 120 degrees (30 degrees beyond each necessary 

maximum rotation).  

The Bimanual Out-to-Center task was designed to mimic movement of two arms but 

constrained to only 2DOF (x- and y- translation) of each spherical cursor.  Rather than moving 

two objects from the center to two peripheral targets (which follows the approach of the standard 

center-out task), the movement directions were reversed, from the periphery inward to a common 

central target.  The rationale for this design was that it alleviated the cognitive load associated with 

spatial attention being spread across multiple areas of the screen.  In the Out-to-Center task, it is 

possible to maintain generally focused attention near the center of the screen as both cursors move 

 

Figure 4.3: Behavioral Task for Multiiple Object 4DOF Control: Bimanual Out-to-Center 

Screenshots of the Bimanual Out-to-Center task designed for 4DOF control of two separate 2DOF objects 

(represented as a cube and an orange sphere).  A) For a given set of trials, the two cursors could start at any of the 

circled positions (black for one set of trials, and white for the next set, and so on).  In some trials, the cursors 

would be opposite from each other, in others they may be adjacent to each other, and still others, they may be in 

the same location.  B-D) A trial is shown in which both cursors appear at the bottom of the screen, the central 

target is presented, and the cursors are both moved to the target simultaneously.   E-H) Screenshots of several 

starting configurations are shown, where E and F are from a common set, corresponding to the black circles in 

A, and G and H are from a common set, corresponding to the white circles in A. 
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inward.   Different geometric shapes and colors were used to differentiate each cursor (a green 

cube, and an orange sphere). 

The Bimanual Out-to-Center task began with each cursor positioned at a fixed radius from 

the center in one of four locations.  In alternating sets, the four starting locations were rotated by 

45 degrees to more thoroughly sample the space without requiring every combination per training 

set.  For example, in the first set, the four locations were located North, East, South, and West 

from center.  In the next set, the four locations were located North-East, South-East, South-West, 

and North-West from center.  Within a set, the two cursors could start in the same location, 45 

degrees apart, or at opposite locations (which could be flipped).  This resulted in 4 starting 

locations for the first cursor x 4 locations for the second cursor = 16 total permutations to comprise 

a full set.  Following completion of an entire set, the decoder was updated using the co-adaptive 

method described later.  The gains for each translational dimension and each cursor were equal.  

Cursors were not outside the field of view on the screen.   
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4.3.2 Electrode Array Designs and Implantation 

Monkey I was bilaterally implanted with two types of custom epidural ECoG arrays placed 

over sensorimotor cortex (M1 and S1) using standard stereotaxic methods.  The first array, 

implanted over the left hemisphere, was fabricated by Ad-tech (Oak Creek, WI, USA).  The second 

array, implanted over the right hemisphere, was fabricated by PMT (Chanhassen, MN, USA).  

Both Ad-tech and PMT electrode arrays had the same design, with the exception that the Ad-tech 

array consisted of 1.5 mm diameter Pt disk recording electrodes, and the PMT array consisted of 

2 mm diameter Pt disk recording electrodes.  Both arrays contained 13 dura-facing recording 

 

Figure 4.4: Thin-film Multi-Diameter Electrode Array 

Thin-film polyimide arrays were constructed using MEMs fabrication processes and consisted of platinum disk 

electrode contacts printed onto a flexible polyimide substrate that was punctated by perforations for improved 

biological transparency (A).  Arrays were based upon a folding design where 32 electrode contacts of four 

different sizes faced downward toward the cortical surface and two references and a large-area ground faced 

upward toward the overlying skull as shown in (B).  Two arrays were implanted bilaterally into the epidural 

spaces covering primary motor (M1) and primary somatosensory (S1) cortex of the left hemisphere and M1 of 

the right hemisphere (C).   

 

A

B C
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electrodes and 2 skull-facing reference 

electrodes.  In addition, each array contained 3 

mm diameter dura- and skull-facing ground 

electrodes.  Each array was connected to a 

separate 18-channel miniature connector 

(Omnetics, Minneapolis, MN), which was 

housed and protected beneath a capped titanium 

chamber when not in use. The chamber 

assembly was permanently affixed to the skull 

with a standard acrylic headcap and bone 

screws.   

Monkey K was bilaterally implanted with two custom 32-channel thin-film arrays, similar 

to the arrays described in Chapters 2 and 3, but with Pt electrodes grouped in diameters of 300 µm, 

425 µm, 520 µm, and 600 µm.  The first electrode array was positioned over the left hemisphere 

to cover both M1 and S1.  The second electrode array was positioned over the right hemisphere to 

cover only M1.  Each flexible polyimide array was based on a folding design with 32 dura-facing 

recording electrodes, 2 skull-facing reference electrodes, and a large-area (36.8 mm2) “H”-shaped 

ground pad.  Each array was connected to miniature zero insertion force (ZIF) connector (Tucker-

Davis Technologies, Alachua, FL) which was housed and protected beneath a capped delron 

chamber when not in use. The chamber assembly was permanently affixed to the skull with a 

standard acrylic headcap and bone screws.  

 

Figure 4.5: PMT and Ad-tech Electrode Arrays 

A) Designs of the Ad-tech and PMT epidural ECoG 

arrays. B) Alignment of each array over sensorimotor 

cortex of Monkey I. 
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4.3.3 Feature Selection and Motor Decoding using 

Optimal Linear Estimation 

In order to obtain multidimensional control of a cursor, the spectral power modulation of 

recorded neural signals were transformed into multi-dimensional velocity control signals that 

drove the movement of a multi-dimensional cursor object.  Visual feedback of the control was 

provided to the monkey by integrating the velocity signals and displaying the instantaneous 

position (and rotational orientation) of the cursor within a rendered virtual environment, presented 

on a computer monitor.  The signal processing chain consisted of: 

1) Feature expansion:  The time series voltage recording from each ECoG electrode was 

expanded into five time-series features (power estimates within five separate frequency 

bands).  Power estimation was accomplished with the combination of a filter bank 

implemented with 2nd-order Butterworth bandpass filters followed by full-wave 

rectification (absolute value) and a final 2nd-order Butterworth lowpass filter. Cutoff 

frequencies for bandpass filters were: 8-15 Hz (alpha), 15-30 Hz (beta), 30-55 Hz (low 

gamma), 70-115 Hz (mid gamma), and 130-175 Hz (high gamma).  Spectral power 

near to 60 Hz harmonics, which result from mains power, were not included.   

2) Feature normalization: First, a log transform was applied to each time series feature 

in order to decrease the skewness of its distribution (as described in Chapter 3) to 

approximate a Gaussian distribution, which is preferred for the regression model upon 

which the decoder is based.  Next, each time series was normalized by subtracting its 

estimated mean and dividing by its estimated standard deviation.  Normalization of 

features permitted subsequent analyses of decoder coefficients assigned for velocity 
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control signals to understand how features contribute to control.  Estimates of both the 

mean (𝑀) and standard deviation (𝑆) were estimated online with the addition of each 

new time-series sample (𝑘) using Knuth’s computationally-efficient method: 

𝑀𝑘 = 𝑀𝑘−1 + (𝑥𝑘 − 𝑀𝑘−1)/𝑘 
(4.1) 

𝑆𝑘 = 𝑆𝑘−1 + (𝑥𝑘 − 𝑀𝑘−1)/(𝑥𝑘 − 𝑀𝑘) 
(4.2) 

This method can estimate 𝑀 and 𝑆 in a single pass and only requires memory for a 

counter (𝑘), and the last estimate of 𝑀𝑘−1 and 𝑆𝑘−1.   

3) Velocity Decode: At each time step, each of the 𝑁 normalized features, 𝑓𝑛, were 

multiplied by an assigned decoder coefficient, 𝑐𝑛, that represented the feature’s 

contribution to the overall velocity control of a particular movement dimension.  

Coefficients were assigned by an OLE decoder model, which combined multiple 

regression models for each dimension of control. A final control signal for a dimension 

resulted from the summed weighted contributions from all features and a single 

constant, 𝑐0, to account for fixed offsets in the regression model.   

𝑢[𝑘] = ∑𝑓𝑛[𝑘] ∙

𝑛

𝑐𝑛 + 𝑐0 (4.3) 

This process was repeated for each dimension of control.   

4) Velocity Threshold: Prior to applying the velocity control signal to movement, a 

thresholding function was applied to dampen spurious movements from small-signal 

noise.  The threshold function was implemented by an arctangent function: 
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𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑔𝑎𝑖𝑛 [
1

2
+

1

𝜋
atan (𝑠𝑙𝑜𝑝𝑒(𝑖𝑛𝑝𝑢𝑡 − 𝑜𝑓𝑓𝑠𝑒𝑡))] 

(4.4) 

In this representation, parameters for offset, slope, and gain provide flexibility in tuning response 

characteristics of the thresholding function.  

 The coefficients for the velocity decoder were calculated by the OLE method, which 

combines regression models that link the normalized features to each dimension of control.  

Training data sets for the OLE consisted of two aligned time series data sets organized as matrices 

of 𝑇 time samples, 𝑁 numbers of normalized features, and 𝐷 desired kinematic control signals: 

 

Figure 4.6: Signal Processing for Feature Extraction, Normalization, and Velocity Decode 

The raw signal is first expanded into five frequency bands, and then the power within each band is estimated by 

a standard envelope-detection scheme that consists of full wave rectification and then low-pass filtering.  The 

resulting estimate of power is then log transformed in order to approximate a Gaussian distribution.  The signal 

is then z-scored by subtracting the mean and dividing by its standard deviation.  Estimates of the mean and 

standard deviation are calculated by Knuth’s method in a single pass.  Velocity control signals for each dimension 

are then calculated by multiplying the signal by its unique coefficients for each dimension of control and summing 

its weighted contribution with all other channels.  Finally, a thresholding function is used to dampen low-

amplitude noise to improve the ability to hold the cursor still. 
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𝐹: [𝑇 × 𝑁] =

[
 
 
 
 
𝑓

𝑡1

𝑛1 𝑓
𝑡1

𝑛2 ⋯ 𝑓
𝑡1

𝑁

𝑓
𝑡2

𝑛1 𝑓
𝑡2

𝑛2 ⋯ 𝑓
𝑡2

𝑁

⋮ ⋮ ⋱ ⋮

𝑓
𝑡𝑇

𝑛1 𝑓
𝑇
𝑛2 … 𝑓

𝑇
𝑁
]
 
 
 
 

 
(4.5) 

 

𝐾: [𝑇 × 𝐷] =
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 (4.6) 

 

where 𝐹 and 𝐾 refer to features and desired kinematic control signals, respectively.  The OLE 

assumes that 𝐾 can be constructed by matrix multiplication of 𝐹 by a matrix of regression 

coefficients 𝐶 which represent the weighted contributions of each feature: 

𝐶: [𝑁 × 𝐷] =

[
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𝑑2 … 𝑐𝑁
𝐷 ]
 
 
 
 

 
(4.7) 

𝐾 = 𝐹𝐶 
(4.8) 

Therefore, 𝐶 is estimated by the following: 

𝐶 = 𝐹+𝐾 = ((𝐹𝑇𝐹)−1𝐹𝑇)𝐾 
(4.9) 

Where 𝐹+ is the pseudoinverse of 𝐹.  Note that in order to include a constant bias term, 𝑐0, in the 

regression models, an additional column of 1’s is added to the feature matrix such that 

𝐹: [𝑇 × 𝑁 + 1] and 𝐶: [𝑁 + 1 × 𝐷]. 
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4.3.4 Co-adaptive Human-machine Training Algorithm 

In order to train the OLE decoder, an estimate of desired control is required, in addition to 

the neural features occurring during the time of the desired control.  In past approaches, the matrix 

𝐾 has been obtained from actual or imagined movements while neural data is recorded.  Typically, 

these data sets include as many trials as possible and are very large to prevent over-fitting of the 

decoder model on trial-by-trial noise.  However, this approach is slow and limits the ability of the 

decoder and subject to learn together.   

The key idea behind co-adaptive learning is to approximate real-time error correction of 

the decoder through short and iterative updates.  This approach allows the subject to quickly alter 

their control strategy based upon their observed real-time performance.  It also provides a means 

by which the decoder can be iteratively refined to overcome over-fitting, drift, and new subject 

control strategies.   

In the co-adaptive approach, only a minimum training set is desired in order to quickly 

provide a new update to the decoder.  For the first training set, the cursor was controlled entirely 

by software, moving on its own from a central starting point to a set of targets that represented the 

full dimensional space while the subject observed.  During this “watch-only” period, the cursor 

moved in a direct path such that the desired control signals were constant. As the cursor moved, a 

normalized multi-dimensional vector that represented the direction to the desired target was logged 

and used as the desired kinematic control signal 𝐾.  Once a minimum set of targets were presented, 

the decoder was trained as described above.   
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For the next training set, the gain on BCI control of the cursor was set at a low level and at 

each time step, the software calculated the optimal trajectory to the target and assisted movement 

in the correct direction.  While moving under software assistance, the cursor was able to jitter due 

to initially poor BCI control, which could result in curved and meandering paths to the target.  At 

each time step, the assumed optimal control was recorded as the normalized direction to the target.  

However, once the cursor reached a defined proximity to the target, the desired direction vector 

was attenuated linearly, such that all vector components approached zero as the cursor reached the 

target and was held momentarily to complete the trial.  This desired control signal represented a 

“pseudo-velocity”, intended to improve the ability of the decoder to allow the subject to hold the 

cursor stationary.  Additionally, the attenuation limited noise in the training set caused by jitter in 

the cursor movement that is amplified by a direction vector as the cursor approaches the target. 

 

Figure 4.7: Co-adaptive Training Based Upon Estimated Pseudo-Velocity 

A) The initial decoder model was based upon neural activity recorded during a “watch-only” period during which 

objects moved autonomously to each target within a complete set.  As each training block progressed the monkey 

was given less assistance by the computer until block 6 when the monkey had full control of the cursor (no bias). 

B) Throughout each movement, instantaneous directions to the target (n-dimensional vectors) were recorded in 

addition to the observed neural activity.  After each block of trials, weights from the linear decode model were 

updated via the OLE (least-squares regression) and assistance was decreased as the subject’s control improved.  

C) A challenge with training the decoder based upon desired movement direction (a unit vector) is that as the 

cursor approaches the target, any undesirable noise in control (represented by the gray circle) results in larger jitter 

in the estimated desired direction to the target (highlighted in green).  D) To overcome this challenge, a pseudo-

velocity measure was used which forced the unit vector to zero as it approached and held its position at the target.  

Simulations are shown for different levels of noise in movement and the resulting jitter in the estimates of intended 

movement using both direction and the pseudo-velocity measure. 
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Following collection of the full training set, a new set of regression coefficients were 

calculated. Rather than using the newly calculated regression weights alone for the updated 

decoder, memory of past weights was also included in the update through the implementation of a 

low-pass filter: 

𝐶𝑛𝑒𝑤 = 𝛼𝐶𝑅 + (1 − 𝛼)𝐶𝑝𝑟𝑒𝑣 
(4.10) 

where 𝐶𝑛𝑒𝑤 is the new decoder, 𝐶𝑝𝑟𝑒𝑣 is the previous decoder, 𝐶𝑅 represents the newly calculated 

regression weights, and 𝛼 is a smoothing coefficient that controls the relative contributions of old 

and new information into the decoder.  At the extremes, when 𝛼 = 1, the decoder relies exclusively 

on new information, and when 𝛼 = 0, the decoder relies exclusively on old information and no 

longer learns.  Based upon observed performance, a fixed value of 𝛼 = 0.25, was used for the 

studies described here, though this remains an interesting topic to explore further in future work. 

 Over subsequent trials, this process was repeated, the software assistance was reduced, and 

BCI control was increased.  For a naïve monkey that had never performed a BCI task before, but 

was trained on the task using a joystick, BCI control was achieved in about 30 minutes.  Although 

it only took 30 minutes for a naïve monkey to learn 2D the first time, full 4D control took a month 

of daily training to master.   Once mastered, well-trained monkeys obtained 4D full control within 

three to four sets when starting with a zeroed-out decoder at the beginning of the day. 



106 

 

4.3.5 A Multi-Dimensional Statistical Framework for 

Analysis of Preferred Directions  

For each 4DOF task, the OLE decoder was used to map neural features onto velocity 

control signals described within a 4-dimensional (4D) space.  For a given control signal, this 

mapping is described by a summation of normalized features multiplied by their respective decoder 

coefficient that corresponds to a specific dimension (i.e., x-, y-, and z-translation with r-rotation).  

In this case, the combined coefficients for a feature can be described by a 4D vector, which has no 

restriction on the magnitude.  Extending this representation, the 4D decode vector can also be 

described within the framework of a weighted preferred direction: 

𝑐 = 𝑃𝐷 ∙ 𝑤 = [

𝑐𝑥

𝑐𝑦

𝑐𝑧

𝑐𝑟

]=[

𝑃𝐷𝑥

𝑃𝐷𝑦

𝑃𝐷𝑧

𝑃𝐷𝑟

] ∙ 𝑤 (4.11) 

where, here, c represents the features coefficients for each 

dimension.  Under this framework, interesting questions 

can be investigated through the analysis of the weights, 𝑤, 

that provide an indication of how much features contribute 

to control, but also through the analysis of preferred 

directions, 𝑃𝐷, that provide an indication of how aligned 

features are in their contributions to multi-dimensional 

control.  In order to understand the importance of features 

being assigned similar or different 𝑃𝐷s, a statistical 

 

Figure 4.8: Alignment Between PDs 

The angle  𝝓 describes the alignment 

between PDs assigned to separate 

features. For the 4DOF tasks, the goal is 

to similarly compare the alignment of PDs 

in a hyperdimensional space greater than 

3D. 
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framework is needed to describe how the 𝑃𝐷s of multiple features should be expected to align if 

assigned at chance.  

The following provides a generalized mathematical analysis of the expected likelihood of 

finding 𝑃𝐷s aligned by angle for multi-dimensional spaces.  First, to orient to multi-dimensional 

mathematical notation, concepts of an n-sphere and n-ball are defined, which is a generalization 

of the ordinary “sphere” and “ball” to spaces of arbitrary dimension.  For any natural number n, 

an n-sphere of radius r is defined as the set of points in (n+1)-dimensional Euclidian space, all 

located a distance r from the center, c. 

0-sphere: is a pair of points {c-r, c+r} and is the boundary of a 1-ball (line segment) 

1-sphere: is a circle of radius r centered at c, and is the boundary of a 2-ball (disk) 

2-sphere: is an ordinary 2-dimensional sphere in 3-dimensinal Euclidean space, and is the 

boundary of a 3-ball (ordinary ball) 

3-sphere: is a sphere in 4-dimensional Euclidean space and is the boundary of a 4-ball 

The set of points in (n+1) space: (x1, x2, x3, …, xn+1) that defines an n-sphere (Sn) is represented 

by: 

𝑟2 = ∑(𝑥𝑖 − 𝑐𝑖)
2

𝑛+1

𝑖=1

 

 

(4.12) 

where c is a center pint and r is the radius.  This n-sphere (𝑆𝑛) exists in (n+1)-dimensional 

Euclidean space and is an example of an n-manifold. 
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 Measures of n-spheres and n-balls are defined as follows: 

𝑆1(𝑅) =  2𝜋𝑅: 1-dimensional measure of a 1-sphere of radius R, which is the 

circumference of a circle of radius R in the Euclidean plane 

𝑉2(𝑅) =  𝜋𝑅2: 2-dimensional measure of a 1-sphere.   This is the region enclosed by the 

1-sphere, which is a disk of radius R in the Euclidean plane (The "volume" of a 2-ball) 

𝑆2(𝑅) =  4𝜋𝑅2: 2-dimensional measure of a 2-sphere.  This is the surface area of a normal 

sphere 

𝑉3(𝑅) =  
4

3
𝜋𝑅3: 3-dimensional measure of a 2-sphere.  This is the volume of a normal 

sphere (3-ball) 

In general, the volume in n-dimensional Euclidean space of an n-ball of radius R is: 

𝑉𝑛(𝑅) =  𝐶𝑛𝑅𝑛, where 𝐶𝑛 = 
𝜋

𝑛
2⁄

Γ(
𝑛

2
+ 1)

 (4.13) 

if n is even: 𝐶𝑛 = 
𝜋

𝑛
2⁄

(
𝑛

2
)!
  since Γ (

1

2
) = √𝜋 

if n is odd: 𝐶𝑛 = 
2

𝑛+1
2 𝜋

𝑛−1
2

n‼
 

The "surface area", or, properly, the (n-1)-dimensional volume of the (n-1)-sphere at the boundary 

of the n-ball is: 

𝑆𝑛−1 =
𝑑𝑉𝑛

𝑑𝑅
=  

𝑛𝑉𝑛

𝑅
= 𝑛𝐶𝑛𝑅𝑛−1 (4.14) 
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With the previous description of the concepts of n-dimensional “volumes” and “surface 

areas”, the next step is to translate the formulations above into Euclidean space.  An n-dimensional 

Euclidean space analogous to the n-dimensional spherical coordinate system consists of a radial 

coordinate, r, n-1 angular coordinates ranging from [0, 2𝜋) radians, and one angular coordinate 

ranging from [0, 𝜋): 

𝑥1 = 𝑟𝑐𝑜𝑠(𝜙1) 

𝑥2 = 𝑟 𝑠𝑖𝑛(𝜙1)𝑐𝑜𝑠(𝜙2) 

𝑥3 = 𝑟 𝑠𝑖𝑛(𝜙1)𝑠𝑖𝑛(𝜙2)𝑐𝑜𝑠(𝜙3) 

⋮ 

𝑥𝑛−1 = 𝑟 𝑠𝑖𝑛(𝜙1)⋯𝑠𝑖𝑛(𝜙𝑛−2)𝑐𝑜𝑠(𝜙𝑛−1) 

𝑥𝑛 = 𝑟 𝑠𝑖𝑛(𝜙1)⋯𝑠𝑖𝑛(𝜙𝑛−2)𝑠𝑖𝑛(𝜙𝑛−1) 

(4.15) 

 

The inverse transformations are unique, except for some special cases described below: 

𝑟 = √𝑥𝑛
2 + 𝑥𝑛−1

2 + ⋯+  𝑥2
2 + 𝑥1

2  (4.16) 

𝜙1 = 𝑎𝑟𝑐𝑐𝑜𝑡 (
𝑥1

√𝑥𝑛
2 + 𝑥𝑛−1

2 + ⋯+  𝑥2
2 
) 

𝜙2 = 𝑎𝑟𝑐𝑐𝑜𝑡 (
𝑥2

√𝑥𝑛
2 + 𝑥𝑛−1

2 + ⋯+  𝑥3
2 
) 

⋮ 

𝜙𝑛−2 = 𝑎𝑟𝑐𝑐𝑜𝑡 (
𝑥𝑛−2

√𝑥𝑛
2 + 𝑥𝑛−1

2  
) 

(4.17) 



110 

 

𝜙𝑛−1 = 2𝑎𝑟𝑐𝑐𝑜𝑡 (
√𝑥𝑛

2 + 𝑥𝑛−1
2 + 𝑥𝑛−1

𝑥𝑛
) 

If xk≠0 for some k but all of xk+1, …, xn are zero, then 𝜙k = 0 when xk > 0, and 𝜙k = 𝜋 when xk < 

0.  Also, 𝜙k for any k will be ambiguous whenever all of xn are zero; in this case 𝜙k may be chosen 

to be zero also. 

 A hyper-spherical volume element and its hyper-spherical volume integral are given as: 

𝑑ℝ𝑚𝑉 =  𝑟𝑚−1 𝑠𝑖𝑛𝑚−2(𝜙1) 𝑠𝑖𝑛
𝑚−3(𝜙2) ⋯  𝑠𝑖𝑛(𝜙𝑚−2) 𝑑𝑟 𝑑𝜙1 𝑑𝜙2  ⋯  𝑑𝜙𝑚−1 (4.18) 

𝑉𝑚 = ∫ ∫ ⋯∫ ∫ 𝑑ℝ𝑚𝑉
2𝜋

𝜙𝑚−1=0

𝜋

𝜙𝑚−2=0

𝜋

𝜙1=0

𝑅

𝑟=0

 (4.19) 

 

Recalling that 𝑆𝑛−1 =
𝑑𝑉𝑛

𝑑𝑅
= 

𝑛𝑉𝑛

𝑅
, the hyper-spherical surface integral is give as: 

𝑆𝑚−1 =
𝑚

𝑅
∫ ∫ ⋯∫ ∫ 𝑑ℝ𝑚𝑉

2𝜋

𝜙𝑚−1=0

𝜋

𝜙𝑚−2=0

𝜋

𝜙1=0

𝑅

𝑟=0

 (4.20) 

For a 3-sphere (4D): 

𝑑ℝ4𝑉 = 𝑟3 𝑠𝑖𝑛2(𝜙1)  sin(𝜙2)  𝑑𝑟 𝑑𝜙1 𝑑𝜙2 𝑑𝜙3 (4.21) 

𝑉4  =   ∫ ∫ ∫ ∫ 𝑟3 sin2(𝜙1) sin(𝜙2) 𝑑𝑟 𝑑𝜙1 𝑑𝜙2 𝑑𝜙3

2𝜋

𝜙3=0

𝜋

𝜙2=0

𝜋

𝜙1=0

𝑅

𝑟=0

  (4.22) 

𝑆3  =   4∫ ∫ ∫ ∫ 𝑟2 sin2(𝜙1) sin(𝜙2) 𝑑𝑟 𝑑𝜙1 𝑑𝜙2 𝑑𝜙3

2𝜋

𝜙3=0

𝜋

𝜙2=0

𝜋

𝜙1=0

𝑅

𝑟=0

  (4.23) 

For a unit 3-sphere, R = 1 and 𝜙3 integrates out to 2𝜋, such that: 
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𝑉4  =   
2𝜋𝑅4

4
∫ ∫ sin2(𝜙1) sin(𝜙2)  𝑑𝜙1 𝑑𝜙2

𝜋

𝜙2=0

𝜋

𝜙1=0

  (4.24) 

𝑉4 = 
2𝜋𝑅4

4
∫ sin(𝜙2)  𝑑𝜙2 [

1

2
𝜙1 − 

1

4
sin (2𝜙1)]

0

𝜋𝜋

𝜙2=0

 (4.25) 

𝑉4 =
𝜋2𝑅4

4
∫ sin(𝜙2)  𝑑𝜙2 

𝜋

𝜙2=0

 (4.26) 

𝑉4 =
𝜋2𝑅4

4
[− cos (𝜙2)]0

𝜋 = 
𝜋2𝑅4

2
 

(4.27) 

While arduous, the previous derivations provide the mathematical basis for determining 

the likelihood of two randomly assigned 𝑃𝐷s should be aligned by an angle 𝜙.  Toward this goal, 

suppose that two random unit vectors within an n-sphere are chosen from a uniform distribution 

such that there is a uniform probability that they each may point to any location on the surface of 

the n-sphere.  The goal is to determine the probability density function for the angle, 𝜙, that is 

formed between the two unit vectors, which must lie within the bounds of [0 𝜋].   

First consider the case of a 2-sphere (normal sphere) since it is easiest to visualize.  Once 

the first unit vector is chosen, imagine a circle on the surface of the sphere that is oriented normal 

to the first unit vector.  Given an angle 𝜙, this circle represents all points on the sphere's surface 

where a second unit vector may point, such that all angles formed between the two vectors must 

equal 𝜙.  As 𝜙  increases, so does the circumference of the circle, until 𝜙 =  
𝜋

2
, at which point the 

circle begins to close again.  In this way, the circumference of the circle represents the probability 

that the second randomly chosen vector will be an angle of 𝜙 from the first vector.  It is important 

to note that the angle between the vectors can be described by a rotation through a single spherical 

dimension by orienting the axes appropriately.  Therefore, to consider the probability of obtaining 
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an angle of 𝜙 across a single dimension between any two vectors, the relationship between 𝜙 and 

the n-sphere's surface measure must be defined. 

The distribution over 𝜙 for a 2-sphere (normal sphere) is given by: 

𝑓(𝜙) = C sin(𝜙) (4.28) 

where C is a constant, since all other variables are integrated out.  In order to be a proper 

distribution, the integral over 𝜙 [0 𝜋) must be equal to 1: 

𝑓(𝜙) = C sin(𝜙) (4.28) 

𝑓(𝜙) = ∫ 𝐶 𝑠𝑖𝑛(𝜙)𝑑𝜙 = 𝐶[− cos(𝜙)]0
𝜋 = 2𝐶 =  1, ∴ 𝐶 = 1

2⁄   
𝜋

𝜙=0

 (4.29) 

𝑓(𝜙) =  
1

2
sin(𝜙) , 𝜙: [0 𝜋] (4.30) 
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The distribution over 𝜙 for any n-sphere where n >1 will 

be the same as derived above since the surface integral 

will always depend upon 𝑠𝑖𝑛(𝜙) and must always 

integrate to a value of 1 (so C=1/2).  This also means that 

for a unit 0-sphere (a circle), the distribution over 𝜙 is 

uniform: 𝑓(𝜙) =  
1

2𝜋
, which can be more easily 

rationalized.   

 To summarize, these derivations provide a 

mathematical proof for why it is expected that the 

distributions between 𝑃𝐷s assigned by the OLE decoder 

should be described by equation 4.30, if they are assigned 

at random.  The resulting distribution can also be 

conceptualized graphically by observing that the 

circumference of the circle (representing all points that could be formed on the surface of a normal 

sphere at a given angle 𝜙) is dependent upon the inner radius formed by sin(𝜙).  This distribution 

is also applicable for control of higher dimensional control beyond 4DOF. 

 

Figure 4.9: Distribution of PD Alignment 

Angles in 3D 

Illustration of why the uniform probability 

density function for the alignment of two 

vectors in a 3D space is proportional to 

𝒔𝒊𝒏(𝝓).  As 𝝓 increases, the 

circumscribed circle of all points that 

correspond to different vector possibilities 

grows with a radius equal to 𝒔𝒊𝒏(𝝓). The 

proof for equation 4.30 shows that the 

same distribution applies to all 

hyperdimensional spaces greater than 3D 
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4.4 Results 

4.4.1 4DOF Task Performance 

Both monkeys 

became proficient at their 

respective tasks within 

about a month of daily 

training.  Following a 

month, performance on 

the tasks was related more 

to motivation than to task 

difficulty.  On a typical day, monkeys performed between 25-40 sets (consisting of 16 correct trials 

each).  Movement to targets was smooth and minimum hold times on the target were increased to 

as much as 5 seconds, to demonstrate the ability to both move and stop.   Typical movement times 

to targets were about 5 seconds, and both monkeys were able to skillfully moved in each dimension 

simultaneously, resulting in the most efficient paths to the targets.  Representative averaged 

movement paths for the Reach and Rotate task are shown in Figure 4.10.   

4.4.2 Uniqueness of Frequency Bands for Control 

The description of coefficients as weighted PDs by Equation 4.11 means that PDs can be 

compared between frequency bands on a given electrode to examine how similar their 

contributions are to control.  Equation 4.30 shows that if PDs are randomly and uniformly assigned 

 

Figure 4.10: Average Reach and Rotate 4D Trajectories 

Average movement paths for the Reach and Rotate task showing smooth and 

continuous movements in all dimensions from the center to targets located at the 

corners of the cube 
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to features on an electrode, 

then the expected distribution 

of angles between PDs should 

follow a (half-)sinusoid 

distribution.   

For a given electrode 

and raw decoder update (the 

regression coefficients prior to 

smoothing by the co-adaptive 

filter), angles were measured 

between each frequency 

band’s assigned PD.  These 

measured angles were then 

grouped into pair-wise bins, 

corresponding to all possible 

combinations of frequency 

bands: alpha vs alpha, alpha vs 

beta, … beta vs beta, beta vs 

low-gamma, … low-gamma vs 

low-gamma, low-gamma vs mid-gamma, … etc. This was repeated for each electrode and raw 

decoder update (pre-smoothing).  Bins were then combined across all electrodes and decoder 

updates, and the resulting distributions of PD-angles appearing within each bin were compared 

against the distribution from Equation 4.30.  As shown in Figure 4.11, the mid- and high-gamma 

 

Figure 4.11: Alignment of PDs Assigned to Frequency Bands 

Distributions of PDs between frequency bands.  The distribution for mid- 

and high-gamma shows a significant deviation from what would be 

expected if the PDs had been assigned randomly.  The mean correlation 

between each frequency band’s signals is also shown for each pair-wise 

combination.  The correlation between mid- and high-gamma and 

assignment of closely aligned PDs indicates that these two bands were 

carrying similar information and contributing to control in a similar way.  
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had the highest alignment of assigned PDs, as indicated by the peak in the distribution that is 

shifted toward 0 degrees.   

Following a similar approach as was taken with the PDs, correlations between feature time 

series that were used to train the decoder were also calculated and compared across each bin.  The 

mean correlations between features was highest between mid- and high-gamma (r=0.69) and 

lowest between beta and mid-gamma (r=-0.30) and beta and high-gamma (r=-.28). 

4.4.3 Optimal Frequency Bands for Control 

As described by Equation 4.11, the coefficients assigned by the OLE decoder can be 

interpreted as a weighted PD.  In order to examine the relative contributions of each frequency 

band to control, weights from each training set (16 successful trials to each target) were grouped 

by frequency band and normalized by the total sum of all weights in order to calculate a 

distribution.  Figure 4.12 shows that the resulting distribution of weights across bands on 

representative days for both monkeys.  Lines and error bars represent the mean and standard error 

of the mean as calculated across the full number of training sets.  Results show that beta (15-30 

 

Figure 4.12: Optimal Frequency Bands for BCI Control 

Distribution of weights are shown by band for Monkey I, who performed the Reach and Rotate task (A) and for 

Monkey K, who performed the Multi-object Out-to-Center task (B). Both beta and mid-gamma received the 

greatest amount of weights. 

. 
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Hz) and mid-gamma (70-115 Hz) received the 

greatest amount of weights.  This result is 

consistent with the observation from Chapter 

3 (Figure 4.13), that distributions of power in 

these bands are more skewed, which further 

suggests that skewness is a measure of the 

ability to actively modulate signal power.  

Interestingly, high-gamma (130-175 Hz) was 

also assigned a large percentage of weights for 

Monkey I, but not Monkey K.  Again, 

referring to results from Chapter 3, this may 

be explained by poorer SNR from Monkey 

K’s smaller-diameter electrodes.   

4.4.4 Depth of Modulation 

Features were further examined by considering how well their activity was described by a 

traditional cosine-tuning model. Time series data for each feature during successful movement 

periods were fit to cosine tuning functions and the fit was quantified by an R2-measure.  As may 

be expected, a cosine tuning model best described features in bands that were assigned the highest 

weights by the decoder.  An example is shown in Figure 4.14 for Monkey I, with mean R2 values 

of about 0.6 and 0.7 for mid- and high-gamma, respectively.  Beta was not as well-described by 

cosine tuning, with a mean R2
 value of 0.45.   

 

Figure 4.13: Skewness Related to Active Modulation 

An analysis of signal statistics from Chapter 3 shows 

an increase in skewness in the same bands that were 

most heavily weighted by the OLE decoder.  Smaller 

diameter electrodes were associated with less 

skewness and were shown to have lower SNR. 
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The depth of modulation of fitted cosine-tuning functions was also examined for well-fitted 

features determined by R2 = 0.4 or higher.  Again, using the same dataset from Monkey I, depths 

of modulation were 7.8 µV for beta, 4.1 µV for low-gamma, 2.8 µV for mid-gamma, and 1 µV for 

high-gamma.  Analyses from Chapter 3 estimated modulation for 1.2 mm diameter electrodes to 

be 5.7 µV for beta, 2.1 µV for low-gamma, 1.1 µV for mid-gamma, and 525 nV for high-gamma.  

The increase in modulation calculated in this current analysis, may be due to: 1) here signals were 

combined from 1 mm and 2 mm electrodes here versus 1.2 mm electrodes in Chapter 3, and 2) 

here signals were recorded during an active task versus signals recorded while monkeys sat calmly 

in Chapter 3. 

4.4.5 Preferred Cortical Regions for Control 

Preferential electrodes and cortical regions that were used for control were also analyzed 

by summing the decoder weights across all frequency bands for each electrode, normalizing its 

total weight by summation of all electrode weights, and mapping the electrode to the estimated 

region of cortex over which it was implanted.    Monkey I did not show any preferential assignment 

 

Figure 4.14: Depth of Modulation Versus Frequency Band During BCI Control 

A) The fit of cosine tuning function to features and the corresponding goodness-of-fit for each frequency band.  

B) The depth of modulation of fitted cosine tuning functions, where only functions with a fit better than R2 > 0.4 

were included.  The depths of modulation here correspond well to estimates from Chapter 3. 
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of weights to electrodes within any given region of the electrode array or cortex.  However, a 

unique distribution was observed with Monkey K.  Figure 4.15 shows the distribution of 

normalized electrode weights specific to each controlled DOF (the number indicates the object and 

letter indicates the X-Y dimension).  It is possible to see that there is a preferential weighting of 

electrodes located on the leftmost (frontal) region of the left-hemisphere array. The weighting 

appears to be more spread out on the right-hemisphere array.  When the total summed weights of 

all electrodes on the left hemisphere are compared against the total summed weights of all 

electrodes on the right hemisphere, a pattern emerges.  As shown in Figure 4.15, the left 

hemisphere accounted for approximately 1/3 of the total weights, and the right hemisphere 

accounted for approximately 2/3 of the total weights.  This was consistent across all controlled 

DOF.    

Considering the regions over which the electrode arrays were implanted, roughly ½ of the 

left hemisphere array covered M1, whereas all of the right hemisphere array covered M1.  The 

result suggests that the majority of control came from M1, not S1.  As such, 1/3 of the total amount 

of M1 cortex (combined across hemispheres) was aligned under the left hemisphere array, and 2/3 

of the total amount of M1 cortex was aligned under the right hemisphere array.  This indicates that 

while S1 can be used to contribute to control, M1 is preferred.   
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Figure 4.15: Preferred Cortical Regions for BCI Control 

Normalized weights for each dimension of control are shown superimposed on each 

electrode.  The relative total amount of weights on the left versus the right electrodes 

is approximately 1 
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4.4.6 Learning Rate for Co-Adaptive Training 

The co-adaptive learning rate, α, sets the speed at which decoder coefficients change with 

each update.  It also controls the amount of memory in the system by adjusting the relative 

contributions of newly calculated coefficients versus coefficients that were used in the past.  

Setting α=1 means that there is no memory in the system and each update to the decoder will equal 

the raw regression coefficients from the OLE decoder.  Alternatively, setting α=0 means that there 

is no learning of new information and each update to the decoder will be equal to the previous 

coefficients.  The goal is to adjust the learning rate such that the decoder can balance rapid learning 

with consistent de-noised weights from the past.   

As shown in Figure 4.16A, the raw 

regression coefficients from the OLE decoder were 

noisy from update to update, but general trends in 

the weights can be seen.  Figure 4.16B shows the 

smoothed weights from the co-adaptive filter 

corresponding to a single degree of freedom 

controlled during the 4DOF BCI task.  In the dataset 

shown, the learning rate was chosen based upon 

previous experience (α=0.25).  The decoder began 

without any prior knowledge of weights to use, 

which can be seen by the top row of white (zeros 

across all features).  Over time, the consistent 

weights were emphasized while spurious noisy 

weights were zeroed. Additionally, some features 

 

Figure 4.16: Effects of the Co-adaptive 

Learning Algorithm on Decode Weights Over 

Time 

Raw regression weights (A) and smoothed 

decoder weights (B)  
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were emphasized temporarily but went away (e.g., features 1-10 between blocks 10 and 20).  This 

may indicate a change in the control strategy being used by the monkey.  It is difficult to predict 

how performance may have been changed due to variations in the learning rate parameter.  

Optimization of the learning rate, which could be variable over time, remains an interesting topic 

for future work. 

4.5 Discussion 

4.5.1 Optimal Features for Decode 

Beta, mid-gamma, and high-gamma bands were most heavily weighted by the naïve 

decoder for control.  However, mid- and high-gamma were not observed to be distinct in the 

information they carried.  The similarity in information was shown both by their correlation and 

their assigned PDs for control, which were highly aligned.  This suggests that the two bands could 

be combined into one single band, or that high-gamma could be excluded from the BCI, such that 

control would be derived from signals less than 115 Hz.  Reducing the bandwidth required for 

control could be advantageous for a bi-directional BCI with low-frequency bands for control and 

high-frequency bands for stimulation.  While this result is specific to recordings over sensorimotor 

cortex used for neuroprosthetic control, it would be interesting to investigate if the result holds for 

other cortical areas, including deep-brain local field potentials (LFP), which may be more relevant 

to other closed-loop therapies. 

Greater use of beta, mid-gamma, and high-gamma for control also aligns with predictions 

from Chapter 3.  In Chapter 3, these bands showed the greatest amount of skewness and kurtosis, 

which were interpreted as active modulation.  The skewness and kurtosis analyses also showed 
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little modulation of low-gamma (30-55 Hz) which did not contribute to control in the motor BCI 

tasks here.  Mid-gamma (70-115 Hz) contributed the most to control in both monkeys, but high-

gamma (130-175 Hz) contributed less in Monkey K.  This result is consistent with the reduced 

SNR that was observed in Chapter 3, due to the smaller electrode size. As shown in Figure 3.10, 

the SNR dropped to 3 dB at approximately 150 Hz for 300 µm diameter electrodes, and at 

approximately 185 Hz for 1200 µm diameter electrodes.  This suggests that for real-time BCI 

applications, where signal averaging isn’t an option to lower noise, larger electrodes (with lower 

impedance and higher SNR) may be ideal.  For applications in which multiple measures can be 

made and averaged, which reduces noise by a factor of 1 √𝑛⁄  (where n is the number of 

measurements), electrodes with diameters less than 600 µm may work well.  However, for real-

time applications where averaging is not possible, electrodes greater than 600 µm appear to be 

best.   

4.5.2 Challenges with Multi-Dimensional Control 

More than one strategy could be employed to teach a user multi-dimensional control with 

a BCI.  One strategy could be to teach them one DOF first, then two, and three… and so on.  

Another strategy could be to teach them to control every DOF at the same time, but with assistance 

that is gradually reduced.  While the results from this study cannot suggest which of the approaches 

is optimal, it does highlight several challenges in learning control.  For example, using the analogy 

of local minima from optimization problems, teaching one DOF at a time could lead to biases that 

are difficult to overcome as more dimensions are added – resulting in sub-optimal performance 

around a local minimum.  Alternatively, training on all dimensions at the same time, might allow 

the user to overcome biases with prior learning, but could also be more challenging.    
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Feedback was observed to be of critical importance in early learning.  In this task, monkeys 

relied upon visual feedback in order to make movement corrections.  In the Reach and Rotate task, 

feedback was less clear for movement in depth (into the screen) than left-right, up-down and 

rotational movement.  This was the reason for adding additional depth cues like the jointed arms 

and semi-transparent cube sidewalls. Upon early learning, the monkey adopted a strategy of 

moving quickly first in the dimensions with greatest feedback and then slowly pushed the cursor 

forward or backward until the target was hit, such that more time was spent moving in depth than 

the other dimensions.  The result was that when this training data was used in the next decoder 

update, regression weights became preferentially larger for the depth dimension.  This effect makes 

sense because the depth component of the pseudo-velocity signal remained closer to ±1 for a longer 

duration, resulting in a larger rms signal to be fit by the decoder.  With practice, this bias was 

reduced and decoder weights became normalized.  How feedback and biased training affects 

learning rate and performance over time remains an interesting topic for future study.  For example, 

it would be interesting to study how augmented feedback may improve learning and performance.  

Additionally, these issues emphasize the importance of co-designing both the controller and 

system to be controlled, with special attention to control bandwidth and subject feedback. 

Other challenges with multi-dimensional control are the size of training sets required to 

fully sample the space for decoder development and the size of verification movements required 

to demonstrate independent control of each DOF.  For a 2 DOF task, there are 4 permutations on 

movement; for a 3 DOF task, there are 6 (though in this study, using the corner of the cube created 

8), and for a 4 DOF task, there are 8 (though in this study, using the cube and rotation created 16); 

and so on.  Ideally, these movements should be relatively straight and equal in time in order to 

avoid training data set biases previously discussed.  As the dimensionality grows, so too does the 
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time required to train.  Additionally, demonstrating independent control of all dimensions requires 

a similarly growing set of trials.  For small dimensional control, this may not be an issue, but for 

much larger dimensionality, this brute-force method may prove to become more challenging.  An 

area of future study could be to reduce the size of these sets through approximations of a fully-

sampled space, or by rotating through sub-sets of the space for each decoder update and adjusting 

the memory of a co-adaptive decoder to include previous training. 

4.5.3 Co-adaptive Algorithms 

The use of co-adaptive training was observed to accelerate learning and performance with 

the BCI, which enabled an increase in the number of dimensions that could be controlled.  

Anectodelly, past methods that updated decoders once a day based upon a previous day’s data 

would require roughly a month to train a monkey to achieve proficient control of 2 DOF.  The first 

time that the co-adaptive decoder was used was with an untrained monkey who had never 

performed a BCI task.  The time it took to achieve equivalent performance was less than an hour.  

The effect of the co-adaptive decoder had on performance was clear, but how exactly it improved 

learning and performance was not as well-studied and remains an interesting topic for future work.   

The fundamental idea behind the co-adaptive algorithm is to provide approximate real-time 

error-correction to the decoder, similar to the way feedback in a control system corrects for output 

errors.  In order to provide a measure of the error, an estimate of the desired output must be 

determined.  For the tasks described here, the desired output was known because the monkeys 

were trained to move the cursor to the target for a liquid reward.  Within a controlled-environment 

this works well, and error-correction can be provided to the decoder.  However, if a subject were 

to be allowed to use the BCI unsupervised in a free-play mode, then it would be difficult to know 
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what their intent is and error-correction would no longer be possible.  Therefore, the key to co-

adaptation is to accurately estimate subject intent and provide error-correction as quickly as 

possible.   

Estimating user intent is an exciting area of study with broad applicability in human-

machine interfaces.  In fact, neural signals used for control should also be considered to be 

estimates of user intent.  Future work may seek to combine multiple methods of estimating user 

intent with BCIs in order to provide enhanced cooperative control.  For example, estimates of user 

intent could be derived from eye-tracking: if a subject is fixated on objects in their environment, 

they are likely intending to interact with them.  Cognitive load and attentional signals could also 

be used to inform a cooperative BCI: perhaps providing an indication of subject interest in objects 

in the environement or signaling a need to shift relative contributions over control to other signals 

when the users attention is challenged.  Additionally, context-dependent behavioral models could 

also provide predictions of the user’s intent based upon previous experiences.  By combining 

multiple estimates of user intent, a more accurate prediction of intent might be possible that could 

enable error-correction of the decoder outside of constrained tasks and in real-world use. 

Like feedback in a control system, the gain on error-correction must also be carefully 

adjusted such that the subject and decoder do not become unstable.  For the co-adaptive algorithm 

described in this work, decoder updates were provided after the completion of an entire training 

set, but updates could have been provided more often.  One of the benefits of the OLE decoder is 

that coefficients can be quickly calculated.  Recent interest in deep learning has shown promising 

results for neural decoders, but training large multi-layer networks can be time-consuming.  Future 

work might explore how these advanced decoding techniques might be accelerated such that they 

could be included in a co-adaptive feedback loop.  In this study, the parameter α controlled the 
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learning rate (or amount of memory) of the decoder.  Future work might investigate optimal 

learning rates, or even adaptive learning rates, to enhance performance in the context of BCIs, but 

also in broader applications involving human-machine interactions. 
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A Bi-directional BCI:  

Control with Sensory Feedback 

 

5.1 Introduction 

5.1.1 An Overview of Bi-directional BCIs 

A bi-directional BCI combines the ability to both record and stimulate neural tissue, which 

enables advanced closed-loop functionality beyond what can be achieved with record-only or 

stimulate-only technologies.  Examples of potential closed-loop applications include: 1) providing 

more effective therapies for disease and disorders through responsive stimulation, 2) repairing or 

re-organizing neural connectivity through induced neuroplasticity, 3) improving learning, 

memory, and sleep through event-triggered stimulation, and 4) restoring or augmenting 

sensorimotor functionality through motor control and sensory feedback.  In the past, open-loop 

stimulation therapies, like deep brain stimulation (DBS) have required manual titration and fine-

tuning through multiple visits to clinicians, likely resulting in sub-optimal effects.  Open-loop 

motor prosthetics have relied upon visual feedback and suffered from lack of refined gripping 

force and of loss of control when subjects aren’t visually attending to the prosthetic.  Despite the 

need for closed-loop BCIs, work in this area has only recently emerged and has been limited.  
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Work on micro-electrode motor BCIs has recently been extended to include 

microstimulation for sensory feedback by interleaving recording and stimulation (O’Doherty, 

2011).  In order to reduce the latency of recording post-stimulation, advances in amplifier design 

have included “fast-settle” functionality that effectively zeroes the output of the amplifier to 

quickly recover from ringing caused by stimulation artifacts exceeding the input dynamic range.  

(Harrison, 2003).  Using communications nomenclature, this approach uses time-division 

multiplexing, which requires separate non-overlapping time slots for recording and stimulation.  

This approach has been used to demonstrate a closed-loop sensorimotor BCI, but suffers from lost 

control information while stimulating.  For chronic applications, loss of motor control signals is 

exacerbated by immunoreactive responses and signal degradation common with all micro-

electrode systems.   

Other work has focused on recording low-frequency local field potentials (2-40 Hz) during 

DBS by filtering out stimulation artifact with a high-order low-pass filter (Rossi, 2007).  Using 

communications nomenclature, this approach uses frequency-division multiplexing, where 

recording and stimulation are allocated non-interfering frequency bands.  Use of separable bands 

has the advantage that recording and stimulation can occur simultaneously, which could improve 

BCI performance and reduced closed-loop response time.  While promising, real-time closed-loop 

control has yet to be demonstrated using this approach.  Additionally, it remains unknown whether 

or not high-frequency stimulation can provide perceivable sensory feedback without interfering 

with recordings of mid-gamma (70-115 Hz) which was previously shown to be important for 

control. 
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5.1.2 Separable Bandwidths for Recording and 

Stimulation 

The strategy employed here for a bi-

directional BCI with cortical surface electrodes is 

to use frequency-division multiplexing with 

frequency bands assigned to recording and 

stimulation.  This approach is similar to spectrum 

allocation by the FCC to limit interference between 

different radio communication technologies.  

Results from previously described studies showed that beta (15-30 Hz) and gamma (75-115 Hz) 

are ideal for BCI motor control.  These bands showed the greatest apparent active modulation of 

power, as measured by skewness and kurtosis, and received the greatest influence over multi-

dimensional control from a naïve decoder, as measured by assigned regression weights.  Therefore, 

a reasonable spectrum allocation for a bi-directional BCI is to assign frequency bands below 120 

Hz for control and frequency bands above 120 Hz for stimulation.  Unlike time-division 

multiplexing of data, in which recording and stimulation periods must be interleaved in time, this 

frequency-division multiplexing approach allows for simultaneous recording and stimulation 

without interference. 

5.1.3 Stimulus Waveforms 

Considerations for stimulus waveforms include: 1) safety, 2) threshold current levels, and 

3) spectral overlap with frequency bands used for control.  Pulse trains are the most common 

waveforms used for neural stimulation, although sinusoids, Gaussians, and other types of 

 

Figure 5.1: Separable Bands for a Bi-directional 

BCI 

The dotted line represents a low-pass filter to 

remove stimulation artifacts from recordings. 
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waveforms have also been explored. (Reilly, 1998). Non-pulsatile waveforms have been shown to 

provide desirable low-energy characteristics that are less damaging to electrodes and can 

potentially extend the battery lifetime of implantable neuromodulation systems (Wongsarnpigoon, 

2009).  Sinusoids are attractive at first glance for limiting spectral overlap with recording 

bandwidths due to their narrow spectral bandwidth compared to pulses (this is discussed more 

later).  In all cases, the waveforms are typically biphasic, with equal charge in both the anodic and 

cathodic phases.  Charge-balanced waveforms help to mitigate the accumulation of 

electrochemical products that mediate charge transfer across the electrode-tissue interface (which 

are discussed in Chapter 2).  Unbalanced waveforms can lead to degradation of both the electrode 

and surrounding tissue over time. 

In addition to balanced charge, both the total amount of charge per phase and charge per 

electrode area should be limited to avoid tissue damage.  An empirical formula for determining 

safe levels of stimulation was provided by Shannon (1992) and is often referred to as the “Shannon 

Criteria”.  Shannon developed a model for describing thresholds for unsafe stimulation based upon 

stimulation parameters and histology collated from a large body of experimental reports.  This 

model is dependent upon both the total injected charge within a phase, Q, the area of the electrode, 

A, and the normalized charge per area, D.  The parameter k represents a threshold for tissue 

damage.  Stimulation parameters near k=2 resulted in tissue damage, whereas parameters near k=1, 

did not.  Therefore, a value of k=1.5 is the generally accepted threshold over which stimulation 

parameters are considered unsafe.  Shannon’s Criteria relates these parameters as follows: 

log(𝐷) = 𝑘 − log (𝑄) 
(5.1) 

For pulses with a phase duration 𝑇 and peak current 𝐼 the integrated charge per phase is: 
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𝑄 = 𝐼𝑇 (pulse)   
(5.2) 

For sinusoids, the corresponding phase duration, 𝑇, can be related to frequency, 𝑓, by 𝑇 = 1/(2𝑓).  

Again, with peak current 𝐼, the integrated charge per phase is: 

𝑄 =
𝐼

2𝑓
 (sine)   

(5.3) 

Assuming the electrode is a disk with diameter, 𝑑, and area, 𝐴 = 𝜋𝑑2 4⁄ : 

𝐷 =
𝑄

𝐴
=

4𝐼𝑇

𝜋𝑑2
 (pulse) 

 

 

(5.4) 

𝐷 =
𝑄

𝐴
=

2𝐼

𝜋𝑓𝑑2
 (sine)  

 

 

(5.5) 

For a given electrode diameter and pulse width (or frequency for sinusoids), the maximum safe 

current can be calculated by: 

𝐼𝑚𝑎𝑥 =
𝑑

2𝑇
√𝜋𝑘 (pulse) 

 

 

(5.6) 

𝐼𝑚𝑎𝑥 =
𝜋𝑓𝑑

2
√𝜋𝑘 (sine) 

 

 

(5.7) 

Figure 5.2 shows corresponding maximum safe currents for a range of pulse widths and 

frequencies of interest for the implementation of the bi-directional BCI under consideration.  For 
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a 2 mm diameter electrode driven 

by sinusoids in the frequency range 

of 200-500 Hz, safe current 

amplitudes are about 1-1.5 mA.  

Pulse stimuli can be driven at the 

same frequencies, but with shorter 

phase durations, typically in the 

range of 200 µs -1,000 µs.  Within 

this pulse width range, safe current 

amplitudes increase to a range of 1-

5 mA.     

Both simulations and 

behavioral experiments have been 

used to study the differences 

between waveforms to elicit 

responses.  For example, Reilly 

used a computational model of an 

electrode and axon to investigate 

differences between monophasic 

pulses, biphasic pulses, and 

biphasic sinusoids.  Results are 

reconstructed in Figure 5.3, which 

shows both the threshold current 

 

Figure 5.2: Maximum Safe Currents Based Upon Shannon's Criteria 

Maximum currents are plotted based upon Shannon’s Criteria (k=1.5) 

for pulses and sinusoids through electrodes of either 600 µm or 2 mm 

diameter.  The phase duration and frequency of pulse waveforms are 

not linked the way that they are for sinusoids, allowing for narrow 

pulse widths and larger currents for a given frequency.  The lower 

frequency axis maps the frequency of stimulation onto the 

corresponding pulse width for comparison between pulse and 

sinusoidal waveforms. 

comparison between pulse and sinusoidal waveforms. 

 

Figure 5.3: Threshold Currents for Pulses and Sinusoids 

Adapted from Reilly (1998).  Threshold activation current levels for 

monophasic, biphasic, and sinusoidal waveforms are plotted against 

stimulus phase duration for a simulated point electrode and axon 

model.   
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and corresponding charge of multiple waveforms plotted against their phase duration.  Threshold 

currents for biphasic waveforms are greater than for monophasic waveforms, though they 

converged to the same level for pulse durations exceeding several hundred microseconds.  Though 

it is difficult to translate the threshold stimulation values from Reilly’s simulation results for 

micro-stimulation to cortical surface macro-stimulation, it is informative to note the general trend 

that thresholds for sinusoids are greater than both monophasic and biphasic waveforms.   

Stimulation artifact in recording bands must also be minimized to ensure high-fidelity and 

uninterrupted control from the BCI.  Stimulation artifact can result from two dominant sources: 1) 

saturation of the recording amplifier due to the large dynamic range of stimulation signals relative 

to neural signals of interest, and 2) spectral power overlap from stimulus waveforms into the 

recording frequency bands used for control.  Regarding the first source of artifact, just as neural 

recordings can be described by electrical potentials arising from current sources within the volume-

 

Figure 5.4: Comparison of Spectral Power from Pulse and Sinusoid Waveforms 

A) Simulations of pulse trains and sinusoids were conducted to explore the spectral overlap with recording bands 

(less than 115 Hz).  B) Closer view of pulses and sinusoids that emphasizes the dependence of phase duration and 

frequency for sinusoids.  Pulse trains of the same frequency can have shorter phase durations that result in reduced 

injected charge per phase.  C) The stimulation waveforms were LP filtered at 115 Hz, and bandpass filtered into 

5 bands of interest for recording: 8-15 Hz, 15-30 Hz, 30-55 Hz, 70-90 Hz, and 90-115 Hz.  The maximum peak-

to-peak amplitudes within each band were calculated for a range of pulse widths and stimulation train frequencies.  

Results were similar across all bands.  The relative increases in artifacts resulting from sinusoids (sinep-p – pulsep-

p)/pulsep-p for various pulse widths and frequencies is shown for the 70-90Hz range.  The relative size of artifacts 

was best for pulse trains with small pulse widths and low frequencies.  For large pulse widths and high frequencies, 

pulses and sinusoids became more similar.    
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conducting body (as described in Chapter 

3), artifacts in recordings caused by 

stimulation are proportional to the 

stimulation current. Therefore, currents 

should be kept to a minimum possible level, 

and the amplifier should be designed to not 

saturate at the resulting voltage levels.  

Regarding the second source of artifact, 

waveforms should have minimal spectral 

overlap with the recording bands.   

While sinusoids may appear to be 

desirable due to their very narrow 

bandwidth (a single frequency), the onset 

and offset of the stimulus (which is a pulse 

function) also has an associated bandwidth 

that is convolved with the stimulus 

waveform in the frequency domain.  The 

frequency response of a pulse is described 

by a sync function that spreads spectral power over a wide range.  Compared to short repetitive 

biphasic pulses, sinusoids have more power located at the stimulation frequency.  When that 

concentrated power is convolved with the onset/offset pulse function, much of it is shifted into the 

nearby recording frequency bands.  On the other hand, biphasic pulse trains also have peak power 

at the given stimulation frequency, but the overall power is much lower (due to the smaller pulse 

 

Figure 5.5: Simulated Artifacts from Pulses and Sinusoids 

in Control Bands 

Time-domain stimulation artifacts are shown in each 

recording band caused by sinusoidal and pulse waveforms of 

equal amplitude (frequency = 200 Hz, pulse width = 300 µs). 

Stimulation is marked by the black bar. The dominant 

artifact occurs at the onset and offset of stimulation.  This 

effect is due to spectral spreading caused by the time-domain 

multiplication of each stimulus waveform by a pulse (with 

duration equal to the length of the stimulation train), which 

is equivalent to convolution of a wide-spectrum sync 

function with the stimulus waveform’s spectral power 

distribution in the frequency domain.  Onset/offset artifact 

can be reduced by smoothly transitioning into and out of the 

onset and offset (e.g., using a ramp, Gaussian, or sinusoid). 
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width) and spread out over much higher frequencies.  When spectral power of the pulse train is 

convolved with the onset/offset pulse function, much less power ends up in the recording bands.  

This explains the larger peak-to-peak artifact summarized in Figure 5.4A, which is further detailed 

in Figure 5.5.  Here, you can see that the largest artifacts from stimulation do not occur during the 

stimulation train, but, instead, at the onset and offset of stimulation.   This effect is analogous to 

windowing in spectral power estimation (e.g., Hamming, Hann, and multi-taper).   

To summarize, sinusoids are associated with reduced maximum safe currents, potentially 

higher thresholds for eliciting responses, and have greater artifact than bi-phasic pulses.  Therefore, 

this study restricted stimulation to the use of biphasic pulses.  The design of optimal waveforms 

remains a topic beyond the scope of this work.   

5.2 Purpose of the Study 

Implementation of a bi-directional BCI using separable control and stimulation bandwidths 

requires the design of a low-frequency artifact-suppressing amplifier for control and the design of 

stimulus waveforms to limit spectral interference in low frequencies.  Again, using the analogy of 

radio communications, a spectral mask (or channel mask) defines limits on power in adjacent 

bands in order to limit adjacent-channel interference.  Likewise, the aim here is to create a spectral 

mask by implementing a sharp low-pass filter in the artifact suppressing amplifier to limit the 

unwanted stimulation power modulation in the control bands.  Similarly, low-frequency 

components of stimulation spectral power can be limited by designing high-frequency pulse trains 

with smoothed onset and offset ramping functions.  This study combines signal processing theory, 

analog electronics design, and a psychometric task to demonstrate the feasibility of a bi-directional 

BCI that combines ECoG control with electrocortical stimulation feedback. 
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5.3 Methods 

5.3.1 Electrode Array Designs and Implantation 

A 32-channel epidural ECoG array was fabricated from an array of 600 µm Pt/Ir micro-

wires embedded in an insulative acrylic mold formed from poly(methyl methacrylate).  Micro-

wires were arranged in a hexagonal pattern with 3 mm inter-electrode pitch at the lower surface of 

the array where contact was made with the epidural surface of the brain.  Microwires were soldered 

to a PCB that provided a breakout to two Omnetics connectors (18 Position Nano-Miniature 

Connector, Omnetics Connector Corp) for ease of connection to the amplifier via a connector 

 

Figure 5.6: Electrode Array Designs Used In Stimulation Studies 

A-D) An array of 600 µm diameter Pt/Ir electrodes with 3 mm hexagonal spacing fabricated from micro-wire 

embedded in an acrylic substrate.  Attached PCBs provided a re-distribution layer to break out electrodes to 

jumpers for selecting references and miniature Omnetics connectors.  The acrylic sub-assembly was sealed within 

a titanium chamber with a stainless steel lower ring that aligned to a standard craniectomy.  The electrodes 

protruded slightly to make contact with the dura through the craniectomy.  E) A PMT electrode array with 1 mm 

diameter contacts (similar to the arrays described in Chapter 4).  Monkey G was implanted unilaterally with the 1 

mm electrode array placed subdurally above S1 and M1 (F) and Monkey L was implanted unilaterally with the 

600 µm electrode array placed epidurally above S1 and M1 (G). 
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cable.  In addition, six of the electrodes were broken out to headers such that any two could be 

used as a recording reference for two 16-channel amplifiers.  The electrode was fashioned to fit 

within a stainless steel recording chamber that was attached to an 18-mm diameter titanium collar 

designed to sit atop a standard 18-mm craniotomy.  The metal chamber assembly served both to  

shield the electrodes and connector PCB as well as provide a body ground for the recording system.  

The bottom surface of the electrode protruded slightly from the bottom of the assembly and was 

polished to ensure a smooth interface with underlying tissue.  The array was aligned over both 

primary motor (M1) and primary somatosensory (S1) cortex and the assembly was permanently 

affixed to the skull with a standard acrylic headcap and bone screws.  A removable cap was placed 

on the top of the assembly to protect the underlying connectors when the animal was not 

conducting experiments.   

5.3.2 Task Design for Evaluating Stimulus Thresholds  

Two male, 6-10 kg monkeys (Macaca mulatta), G and L, were trained to perform a 

psychophysical stimulus detection task within a virtual environment displayed to them on a 

computer monitor.  Monkey G received subdural electrocortical surface stimulation from 2 mm 

diameter electrodes, and Monkey L received epidural electrocortical stimulation from 600 µm 

diameter electrodes.  The task was learned through operant conditioning while sitting freely in a 

primate chair.  A standard 17-inch LCD monitor positioned approximately 20 inches from the 

monkey was used to display the task through a rendered 3D virtual environment.  A joystick 

(APEM 9000 Series, www.digikey.com) was used to move a cursor to perform the task.  Sensory 

stimulation from a miniature vibrating disk motor (VPM2, www.robotshop.com) taped to the arm 
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was used during training and was replaced by electrical stimulation applied to cortical electrodes 

over S1 during actual experiments.   

The stimulus detection task was based upon a conditioned avoidance behavioral paradigm 

first described by Heffner and Heffner (1995).  In their original task, a water-scheduled animal 

initiates a detection trial as soon as they make contact with a metal drink tube. Following a random 

time interval, a stimulus is presented as a warning, and soon after a mild electrical shock is applied 

through the drink tube.  By exploiting the natural tendency of animals to avoid aversive stimuli, 

the animal quickly learns to break contact with the drink tube as soon as the warning stimulus is 

detected.  Stimuli which do not result in a break with the drink tube may be considered sub-

threshold. 

In the task used here, monkeys were trained to use a joystick to move a cursor on a computer 

screen to interact with displayed targets in order to both initiate trials and indicate when they detect 

the presence of electrocortical stimuli.  Rather than using negative reinforcement, monkeys were 

motivated with liquid rewards for correctly indicating whether or not a stimulus was presented.  

Trials were initiated at the monkey’s leisure by moving a cursor to a target sphere located on the 

center of the screen.  Upon acquiring the central target, a ring appeared around the cursor.  The 

monkey was trained to quickly move the cursor to touch the ring only following the presentation 

of a stimulus.  After a random period of 0.5-4 seconds following initiation of a trial, an 

electrocortical stimulus pulse train was initiated.  Following the stimulus, the monkey was given 

2 seconds to respond by moving the cursor to the ring.  Using the terminology of signal detection 

theory, correct responses to stimulation are considered “hits” and incorrect responses are “misses”.  

Sham trials, in which no stimulation was presented, were interleaved randomly with stimulation 
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trials.  If the monkey incorrectly touched the ring during a sham trial, the response was considered 

a “false alarm”.  If the monkey correctly remained within the ring during a sham trial, the response 

was a “correct rejection”.  The inclusion of sham trials helped to mitigate the bias of guessing that 

would occur if stimulation was provided in every trial, since there would be little to lose for 

guessing incorrectly and much to gain if the guess was correct.    

Stimulus parameters were presented according to the adaptive staircase method 

(Koivuniemi, 2011) which is more susceptible to subject biases than the method of constant stimuli 

but can be conducted in less time.  In the method of constant stimuli, a fixed number of parameter 

values are tested by randomly presenting them to the subject repeatedly.  The detection 

 

Figure 5.7: Behavioral Task for Determining Threshold Current Levels for Detection 

A psychometric stimulus detection task was used to determine threshold current amplitudes corresponding to 

detection of the stimulus 50% of the time.  A joystick-controlled cursor (orange sphere) was moved to the central 

target to initiate a trial.  After initiation, a ring appeared around the cursor.  Upon stimulation, the monkey was 

trained to quickly move the cursor to touch the ring, but otherwise hold the cursor still.  Stimulus trials were 

interwoven with sham trials in a ratio of 1:5 to mitigate “guess” trials.  Thresholds were investigated for a number 

of stimulus pulse train patterns ranging in frequency and pulse width.  This paradigm is based upon Heffner and 

Heffner (1995), but without negative reinforcements.  It also readily lends itself to signal detection theory through 

the Trial-Type and Subject-Response categories shown.  An adaptive staircase method was used to decrease the 

amount of time required for threshold estimation (Koivuniemi et al., 2011). 
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probabilities are often corrected for guessing and fit by a psychometric curve.  Through 

extrapolation, the threshold and sensitivity can be calculated.  While this method provides a good 

estimate of both the threshold and sensitivity, experiments can be long due to the large number of 

repetitions necessary for accurate measurements of detection probabilities.  The adaptive stair-case 

method is designed to decrease the number of trials necessary for estimating thresholds by 

adjusting the tested parameter values based upon previous performance (Leek, 2001).  For 

example, the parameter value is increased following incorrect responses and decreased following 

incorrect responses so that the test values are concentrated near threshold levels.   

In a given test series, the amplitude current of biphasic pulse trains was varied between trials 

(according to the staircase method) while pulse width, pulse frequency, and pulse train duration 

were kept constant.  A series of detection trials would run until 9 reversals were observed, and the 

threshold was estimated by averaging an even number of previous values at which reversals 

occurred.  The resulting threshold estimate corresponds to the value in which the stimulus is 

detected 50% of the time.  Sham trials, in which no stimulation occurred, were included to reduce 

guessing.  Blocks of trials in which the false alarm rate exceeded 20% were excluded from analyses 

and repeated later.  Current amplitude thresholds were determined for a range of high frequency 

pulses (between 200 Hz and 500 Hz) and pulse widths (between 200 µs and 1 ms).  These ranges 

of frequency and pulse width were chosen based upon their candidacy for later use in the a bi-

directional BCI, where limited low-frequency spectral components was desired.   
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5.3.3 Artifact-suppressing Amplifier Design 

A front-end amplifier was designed to replace an existing pre-amplifier module 

commercially available from Tucker Davis Technologies (TDT).  The TDT 2-stage amplifier 

system consists of 1) a low-noise pre-amplifier module that provides an initial 5X gain on input 

signals, and 2) an RA16PA Medusa digitization module that provides an additional 10X gain on 

input signals prior to digitization using a 16-bit analog-to-digital converter (ADC).  The two 

modules connect to each other via a standard DB25 connector and are powered by lithium ion 

batteries in order to provide electrical isolation from potential 60-Hz mains electrical noise.  

Additional electrical noise immunity is achieved by an electro-optical converter in the RA16PA 

for optical communication back to a Base Station that contains DSPs for signal processing.  For 

the bi-directional BCI recording system, the TDT digitizer and Base Station were used un-

modified, but the analog pre-amp was replaced with a custom artifact-suppressing amplifier with 

a larger dynamic input range (+/- 6V), lower bandwidth (2-120 Hz), and higher-order low-pass  

filter (8th-order).  Specifications for the TDT pre-amp, TDT digitizer, and custom amplifier are 

provided in Table 5.1. 

 

Figure 5.8: Circuit Topology of the Artifact Suppressing Amplifier 

General circuit design for each amplifier channel.  The reference was buffered and shared as the inverting input 

to all INAs.  A first-order high-pass filter was implemented by an active integrator that provided feedback to the 

reference of the INA.  An 8th order low-pass filter was implemented by four 2nd-order cascaded filter stages 

designed in a Sallen-Key configuration.   
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The custom amplifier was designed for single-ended recording and consists of multiple 

stages: an initial unity-gain buffer stage for the reference signal, an INA stage with 5V/V gain, an 

active 1st-order high-pass filter stage implemented as a feedback reference to the INA, and four 2nd 

order low-pass filter stages.  This active filtering topology was chosen over a front-end passive 

filter due to the signal loss and noise performance associated with the passive elements.  Passive 

front-end filters elements can add noise and reduce signals through voltage-divider effects which 

lowers the signal-to-noise ratio (SNR).  The topology was replicated for a total of 16 channels 

which were all referenced to a common reference channel.   

Input impedances to signal channels and the reference channel were matched with a 5 

MOhm resistor (+/- 1%) for optimal common-mode rejection ration (CMRR).  A value of 5 MOhm 

was chosen to balance low noise operation with voltage divider effects caused by chronic electrode 

Specification TDT Pre-amplifier Custom Amplifier Medusa Digitizer 

Input Impedance 1 MOhm 5 MOhm 100 kOhm 

High-pass  0.1 Hz 1st-order 2 Hz 1st-order 2.2 Hz 1st-order 

Low-pass  500 Hz 2nd-order 120 Hz 8th-order 7.5 kHz 1st-order 

Gain 5 V/V 5 V/V 10 V/V 

Input Range +/- 4 mV +/- 6V +/- 4 mV 

Table 5.2: Specifications of the TDT and Custom Amplifier Systems  

 

Rin R1 R2 R3 R4 R5 

5 MOhm 27 kOhm 2.87 kOhm 2.43 kOhm 1.65 kOhm 576 Ohm 

C1 C2 C3 C4 C5 C6 

2.2 µF 500 nF 470 nF 680 nF 1.5 µF 10 µF 

      

Table 5.1: Resistor and Capacitor Values for the Artifact Suppressing Amplifier 
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impedances on the order of 30-300 kOhm at 100 Hz (as reported in Chapter 2). While each signal 

channel was connected directly to the non-inverting input of an instrumentation amplifier 

(INA111, Texas Instruments, USA), the reference channel was first buffered (OPA140, Texas 

Instruments, USA) before splitting to the multiple inverting inputs of the INAs.  This configuration 

overcomes voltage divider effects and reduced CMRR that could occur if the reference was directly 

fed into multiple parallel input resistors on the INAs, which would collectively result in an 

effective input resistance of 5/16 MOhms to the reference.   

A high-pass filter was implemented by an active feedback integrator that fed differential 

and common dc signals back into the INA’s reference pin.  A gain of 5 V/V from the INA was set 

by an external resistor (Rg = 12 kOhm), according to the INA’s datasheet.  Subsequent low-pass 

filter stages were cascaded in a Sallen-Key configuration to approximate an 8th-order Butterworth 

filter.  All active filters were implemented with low-noise precision amplifiers (AD8674, Analog 

Devices, USA).  Implementation of a Butterworth filter with Sallen-Key topology was chosen for 

its maximally flat passband and ease of implementation with minimal components.  However, the 

same topology could have implemented a Chebyshev filter, which would have provided a steeper 

low-pass roll-off, but more ripple in the passband. Resistor and capacitor values for the filter stages 

are provided in Table 5.2. 

 A conservative supply voltage of 12 Vpp was chosen in order to allow enough dynamic 

range to record stimulation artifacts, which were estimated to be less than +/- 1V at the input to 

the amplifier. A 12 V DC external re-chargeable battery was used in conjunction with a virtual 
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ground circuit (TLE2426, Texas Instruments, USA) to provide a stable midpoint for system ground 

at ½ of the supply voltage.  A diode protection circuit was used to protect the amplifier from 

potential reverse currents caused by incorrect connection of the battery, and a large capacitor was 

used to buffer large spurious currents for a stable system ground.  This resulting virtual ground 

ensured that the amplifier was always capable of a maximum symmetric swing even as the battery 

discharged.  The amplifier was housed in an extruded aluminum enclosure that provided EMI 

shielding for immunity to external noise.  Two DB25 connectors on either end of the enclosure 

allowed easy connection to electrodes at the input and to the TDT Medusa digitization stage at the 

output. 

 

 

Figure 5.9: Photographs of the Artifact Suppressing Amplifier 

The electronics assembly consisted of a mother board with 16 channels, power conditioning, and connectors.  Two 

additional daughter boards could be attached for 16 additional amplifier channels.  The electronics assembly was 

housed within an extruded aluminum frame designed to attach directly to the TDT Medusa digitization stage.  
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5.3.4 In Vivo Measurement of Stimulus Artifact 

In order to investigate the recorded voltage levels of typical stimulus artifacts, stimulation 

from a current-controlled stimulus isolator (MS16, Tucker-Davis Technologies, USA) was applied 

between two electrodes while recordings were obtained from nearby electrodes.  For this 

experiment, only the front end of the custom amplifier was used (without the 8th-order LP filter) 

and signals were digitized using an ADC integrated into the TDT Base Station (~250 kHz and 24-

bit resolution).  Biphasic pulse trains with a magnitude of +/-750 µA and 1 ms durations were 

driven between two electrodes spaced ~5.2 mm apart.  Peak-to-peak measurements of the resulting 

recorded artifact were recorded for each electrode.   

Stimulus artifacts were also recorded with the complete custom amplifier (including the 

8th-order LP filter) to investigate the effects of stimulation waveforms on recorded signals.  

Stimulus waveform shapes were varied by adjusting the frequency of pulses and the use of a linear 

gating functions (ramps) to smooth onset and offset.  Spectral power was estimated in multiple 

frequency bands from the recorded signals in both stimulation and non-stimulation trials. A two-

sample Kolmogorov-Smirnov test was used to test the null hypothesis that the data from both sets 

came from the same continuous distribution—the alternative hypothesis being that stimulation 

artifact caused a significant variation in the recorded signal power. 

5.3.5 Decoding Algorithms for Motor Control 

Decoding algorithms for the bi-directional BCI are described in detail in Chapter 4. To 

summarize, an optimal linear estimator (OLE) decoder was used in conjunction with co-adaptive 
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learning methods to train the decoder.  Time series signals from each electrode were expanded into 

features comprising power modulation in four frequency bands: 8-15 Hz (alpha), 15-30 Hz (beta), 

30-55 Hz (low gamma), 70-115 Hz (mid gamma).  Features were log-transformed and normalized 

by estimates of the running mean and standard deviation using Knuth’s method.  Co-adaptive 

decoder learning was only used during an initial center-out training period, and the decoder was 

held fixed for the subsequent bi-directional task.  Neural signals were transformed into 2DOF 

velocity control signals, thresholded using an arctan function, and applied to cursor movement.  

5.3.6 Task Design for Closed-loop Sensorimotor Control 

One male, 6-10 kg monkey (Macaca mulatta), L, was trained to perform a two-alternative 

forced-choice task (2AFC) within a virtual environment displayed to them on a computer monitor.  

The task was learned through operant conditioning with liquid rewards while sitting freely in a 

 

Figure 5.10: Closed-loop Diagram of the Bi-directional BCI Setup 

Velocity control of a cursor was obtained during stimulation through the use of the custom artifact-suppressing 

amplifier.  Signals were digitized and fed to a bank of DSPs to perform feature extraction.  Signals were then 

converted to control by a decoder on a PC.  Feedback to the monkey included the visual display of the virtual 

environment and real-time electrocortical stimulation through current-controlled electrostimulation.   
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primate chair.  A standard 17-inch LCD monitor positioned approximately 20 inches from the 

monkey was used to display the task through a rendered 3D virtual environment. The monkey was 

first trained to perform the task using a joystick (APEM 9000 Series, www.digikey.com) to move 

the cursor and with sensory stimulation from a miniature vibrating disk motor (VPM2, 

www.robotshop.com) taped to the arm.  Next, the vibrating disk motor was replaced by electrical 

stimulation applied to cortical electrodes over S1 (MS16 isolated current-controlled stimulator, 

Tucker-Davis Technologies, USA).  Finally, the joystick was replaced by full BCI control.   

The 2AFC task was designed to demonstrate a bi-directional BCI and included both neural 

control of cursor movement and virtual sensory feedback via direct electrocortical stimulation.  In 

order to initiate a trial, the cursor would need to move to a “start” target pseudo-randomly 

positioned at any of 4 locations on the screen.  Each start target location was positioned a fixed 

 

Figure 5.11: Behavioral Task for Demonstrating a Bi-directional BCI 

A closed-loop 2AFC BCI task was used to assess the ability to simultaneously control cursor movement in the 

presence of electrocortical stimulation.  In this task, the monkey moved the cursor under brain control.  Once a 

trial was initiated, the monkey was trained to move through a central “test” object.  In some trials, the monkey 

would receive suprathreshold stimulation and would indicate the presence of stimulation by moving to the ring 

target.  In other trials, no stimulation would be provided, and the monkey would indicate that no stimulation was 

present by moving to the sphere target. The direction of movement, from trial start to target selection, was rotated 

pseudo-randomly in 4 different orientations in order to eliminate biases in target selection based upon ease of 

movement in specific directions.  Additionally, the relative sphere and ring positions were switched, resulting in 

4 directions x 2 ring-sphere orientations = 8 possible trials within a set. 
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distance away from the screen center.  Upon successful movement to the start target, the start 

object would disappear, and 3 new objects would appear: a large semi-transparent “test” target in 

the center of the screen, and two “decision” targets on the opposite side of the screen.  The subject 

learned to move through the test target, at which time they would either receive stimulation (stim 

trial) or receive no stimulation (no stim trial) and then proceed to one of the decision targets to 

indicate whether stimulation was given or not.  The decision target objects consisted of a ring to 

indicate that stimulation was detected, and a sphere to indicate no stimulation was detected.  A 

given trial was aborted if the start target was not engaged within a minimum amount of time (about 

30 seconds), if the test target was not engaged, and if neither decision target was chosen within a 

minimum amount of time (about 30 seconds).  Additional stimulation could be triggered by re-

engaging with the test object without penalty.  The flow of movement was designed from one side 

of the screen to the other but was rotated in 4 different directions to remove bias associated with 

movement in a particular direction.  Each trial was associated with a different direction, randomly 

chosen, and not repeated until all trials within set had been completed.  
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5.4 Results 

5.4.1 Stimulus Detection Thresholds 

Stimulation thresholds determined from the adaptive staircase method are shown in Figure 

5.12 for both Monkey G (subdural implant with 2 mm diameter electrodes) and Monkey L 

(epidural implant with 600 µm diameter electrodes).  Threshold levels of stimulation were all 

within safe levels estimated by the Shannon Criteria for Monkey G, but not Monkey L.  For 

Monkey L, thresholds for short pulse widths near 200 µs were observed to be approximately 700 

µA, which is below the estimated safe maximum of about 1.4 mA.  However, thresholds for pulse 

widths exceeding 600 µs were observed to exceed safety levels predicted by the Shannon Criteria.  

The elevated levels for Monkey L could have been due to a thin layer of bone regrowth observed 

below the epidural array post-explanation.  Additionally, shunting effects of the CSF may have led 

 

Figure 5.12: Stimulus Detection Thresholds for Subdural (left) and Epidural Electrode Arrays (right). 

Stimulus thresholds for Monkey G (subdural 1 mm electrodes) and Monkey L (epidural 600 µm electrodes).   Black 

spheres represent the mean of 5 trials and the bar represents the standard error of the mean.  In general, lower 

frequencies and smaller widths required the largest currents.  Thresholds for subdural stimulation with 1 mm 

electrodes were roughly 400 µA less than epidural stimulation with 600 µm electrodes).   
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to greater dispersion of current from the epidural electrode across the cortical surface.  While direct 

comparisons between the two monkeys are difficult due to their differences in electrode size and 

location, the results demonstrate that stimuli can be detected below 1 mA.   

 

5.4.2 In Vivo Artifact Size 

Based upon the result that threshold amplitudes for stimulation detection are near or below 

1 mA, a stimulus amplitude of 750 µA was chosen to assess the size of artifact observed in cortical 

surface recordings.  Stimulation was driven between two electrodes spaced approximately 5.2 mm 

apart at the edge of the array while recordings were taken from all remaining electrodes.  Signals 

were referenced to an electrode located on the opposite side of the array and lying near to the 

isopotential line formed 

between the stimulation 

electrodes.  The resulting map 

of peak-to-peak voltages show a 

pattern similar to what would be 

expected from a dipole source.  

The maximum artifact occurred 

closest to the electrodes and off 

of the predicted isopotential 

line.  The maximum value 

observed was approximately 70 

µVp-p.  Artifacts remained 

 

Figure 5.13: In Vivo Measurements of Artifact Size 

A map of peak-to-peak stimulation artifact size was created by recording 

signals while stimulating nearby with 750 µA biphasic pulses.  The 

resulting map corresponds well to the potential distribution predicted by 

bipolar stimulation.  
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below 25 µVp-p beyond 6 mm perpendicular from the stimulation electrodes.  This result confirms 

that the optimal placement of recording electrodes is along the ispotential line formed 

perpendicular and through the center of the stimulation dipole.  In many cases, however, placement 

of electrodes may not be as easily controlled relative to stimulation.  For these scenarios, amplifiers 

must be designed with an appropriately wide dynamic range to permit the large artifacts without 

saturation.  The resulting map can also be used to estimate the size of artifact for other levels of 

stimulation by scaling the artifact proportionally to the change in stimulation size.    

5.4.3 Amplifier Performance 

Performance of the amplifier 

was determined by measuring the 

frequency response, phase lag, group 

delay, and noise referred to input.  As 

shown in Figure 5.14, the amplifier 

has a passband gain of 14 dB (or 

5V/V) with corner frequencies of 5 

and 120 Hz.  The filter rolls off at 

high frequencies at approximately -

160 dB/decade.  This is expected 

performance from the 8th-order 

Butterworth filter.  A harder corner 

could have been achieved with a 

Chebyshev filter, but at the expense 

 

Figure 5.14: Amplifier Frequency Response 

The response shows a 1st order high pass at 5 Hz, pass-band gain of 14 

dB, and 8th-order low pass at 120 Hz.   
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of more ripple in the passband. Phase delay also 

showed expected behavior, transitioning from a 90° 

lead at low frequencies (due to the 1st-order high-pass 

filter) to -630° lag at high frequencies (due to the 8th-

order low-pass filter).  While phase delay describes 

the lag in time of the phase at a given frequency, 

group delay describes the lag in time of the amplitude 

envelope at a given frequency.  This is particularly 

important because control signals are derived from 

estimates of the envelope around each band.  The 

group delay was measured to be approximately 10 ms, 

with greater delays near the corner frequencies. 

The common-mode rejection ratio (CMRR) of the amplifier was 74 dB.  CMRR was 

determined by driving both recording channels and reference with the same input signal (70 Hz, 

1Vp-p) and comparing the common-mode gain Gcm to the differential gain Gd observed when the 

reference was grounded (CMMR = 20log[Gd/Gcm]).  The noise performance of the artifact- 

suppressing amplifier was measured with inputs shorted together, which provides a measure of the 

voltage-noise of the system.  As described by the physical noise model in Chapter 3, measurements 

that include current and thermal noise can be achieved by tying the amplifier input to resistor and 

capacitor values that approximate electrode impedances.  Noise measurements were divided by 

the gain of the amplifier, resulting in noise referred to the input of the amplifier.  Figure 5.15 shows 

the spectral power density of input-referred noise compared to the original TDT system.  As can 

be seen, the noise performance is improved by the custom amplifier.   Integrated input-referred 

 

 

 

Figure 5.15: Amplifier Noise Performance 

Noise performance (referred to input) is shown 

compared to the TDT system (dotted lines).  

Signal power (solid lines) was similar for both 

devices.  
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noise in each recording band was measured to be: 149 nV (8-15 Hz), 122 nV (15-30 Hz), 126 nV 

(30-55 Hz), 126 nV (70-90 Hz), and 157 nV (90-115 Hz).  The corresponding spot noise is: 56.3 

nV/√Hz (at 11.5 Hz), 31.5 nV/√Hz (at 22.5 Hz), 25.2 nV/√Hz (at 42.5 Hz), 28.2 nV/√Hz (at 80 

Hz), and 31.4 nV/√Hz (at 102.5 Hz).  The spectral power of recorded neural signals was also 

compared between systems. As shown in Figure 5.15, recorded signal power was equivalent.  

However, SNR was improved with the custom amplifier due to the lower  noise floor.  

5.4.4 Recording through Stimulation 

The ability to record ECoG signals during stimulation was evaluated for a variety of 

stimulus frequencies, pulse widths, and amplitudes.  For each set of parameters, 50 trials were 

performed with stimulation, and 50 “sham” trials were performed without stimulation.  Recorded 

signals were divided into the five frequency bands allocated for control.  The difference between 

stim vs sham trials was determined by a non-parametric two-sample Kolmogorov-Smirnov test 

(p<0.01) that compared the distributions of stim vs sham trials within a sliding 50 ms window.  

The results show that stimulation as low as 150 Hz did not produce an effect on recordings in any 

of the control bands.  Interestingly, some higher frequencies (e.g. 400 Hz) did produce a significant 

effect at the onset and offset of stimulation.  This result was predicted by the simulations shown 

in Figure 5.5.  The onset/offset artifact was effectively removed by applying a 250 ms linear ramp 

gating function both at the beginning and end of the stimulation train.  This gating function acted 

as a simplified windowing function, similar in effect to a Hamming or Hann window.     
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Figure 5.16: ECoG Recordings During Simultaneous Stimulation 

Examples of signals recorded through stimulation are shown for various stimulation parameters (columns) and in 

different recording bands (rows).  Each plot shows the mean and standard error of the mean corresponding to 50 

stimulus trials and 50 sham (no stimulus) trials.  Stimulation is marked by the black bar at the bottom of each plot.  

Regions of time when stimulus trials were significantly different from sham trials are highlighted in yellow.  

Significance was determined by a two-sample Kolmogorov-Smirnov test (p<0.01).  The first column shows that 

150 Hz stimulation did not have a significant effect on recordings (highlighted regions precede stimulation and 

likely occurred due to chance).  The second column shows that increasing the frequency of stimulation moved the 

associated dominant power further away from the amplifier cutoff but created onset/offset artifacts.  The third 

column shows that artifacts were removed by linearly ramping the amplitude of stimulation for 250 ms at the onset 

and offset of the pulse train.  Recordings were taken from an electrode located approximately 9 mm away from 

the stimulation electrode pair and off of the predicted isopotential line.  The stimulation (red), recording (green), 

and reference (black) electrodes are marked on the electrode array map in the upper left-hand corner. 
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5.4.5 Bi-directional BCI Performance 

Monkey L trained for more than 6 months on the 2AFC task, first using joystick control 

with vibrotactile stimulation applied to the forearm and later with brain control and electrocortical 

surface stimulation.  The 2AFC task combined aspects of both the center-out and stimulus 

detection tasks, requiring selection of one of two targets based upon whether or not stimulation 

was detected.  As such, this task was found to be more challenging than previous tasks and required 

a longer training period to learn.  Under joystick control with vibrotactile stimulation, typical 

performance was around 80%.  Under brain control with electrocortical surface stimulation, typical 

performance was lower, around 70%.  For the 2AFC task, chance performance was 50%, so the 

monkey’s performance indicates that, although challenged, they were not simply guessing, but 

were engaged and attempting to respond to stimulus cues.   

Suprathreshold parameters were used for electrocortical stimulation to help ensure that the 

monkey detected the stimulation.  All stimulation patterns consisted of symmetric biphasic pulse 

trains without an inter-phase interval.  Typical stimulation parameter ranges include: amplitude 

(750-2200 µA), pulse width (400-750 µs), frequency (300-450 Hz), duration (1.5-4 seconds), ramp 

onset/offset (250-1500 µA).  Parameters were adjusted to balance detectability with minimal 

interference with simultaneously recorded control signals.   

Cursor movements obtained under brain control are shown in Figure 5.17 from a session 

that took place after approximately 8 months of training.  In this session, the monkey performed 

172 trials and achieved 67% performance.  Once a trial was initiated by the monkey, the time to 

interact with the “test” object and make a decision, took 5.9 ± 2.6 seconds for stim trials and 5.6 ± 

2.4 seconds for no-stim trials. As shown by the comparison between stimulation and no-



157 

 

stimulation trials, cursor trajectories were not noticeably affected by the presence of stimulation.  

For comparison, Figure 5.17 also shows cursor movements obtained under joystick control.  For 

the joystick-controlled data set, the monkey achieved a performance of 78% over 124 trials.  As 

shown, movements are similar, though cursor trajectories were slightly smoother and a bit faster 

under joystick control than brain control.  Under joystick control, the movement time for 

stimulation trials was 5.6 ± 1.0 seconds and 5.3 ± 1.0 seconds for no-stim trials.  

5.4.6 Optimal Features for Bi-directional Control 

Only 16 of the 32 electrodes were used for brain control for the bi-directional task.  The 

electrode array was split into two connector ports, where electrodes located proximal to sensory 

cortex (1-16) were used for stimulation, and electrodes located proximal to motor cortex (17-32) 

were used for recording.  Stimulation was provided between two electrodes located on the opposite 

side of the array from recording electrodes in order to limit stimulation artifact.  All recordings 

were referenced to designated 600 µm diameter electrode located along the theoretical isopotential 

line created by the stimulation electrodes and on the opposite side of the electrode array. 

Prior to initiating the 2AFC task under brain control, a naïve OLE decoder was trained over 

approximately 10-20 sets of a standard 2-D center-out task using the co-adaptive method described 

in Chapter 4.  Once satisfactory brain control was achieved, the decoder was fixed for the 

remainder of subsequent 2AFC task.  Importantly, the decoder was not trained during stimulation, 

though this remains an interesting topic for further investigation.   
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Figure 5.17: Cursor Movements in Bi-directional Task 

Cursor trajectories are shown for each direction of movement.  Movements are organized by stimulation versus 

non-stimulation trials (columns) and by joystick control versus brain control (rows).  Under Stim columns, 

corresponding stimulation trajectories are shown in black and overlay light gray non-stimulation trajectories.  In 

the adjacent No Stim column, corresponding non-stimulation trajectories are shown in black and overlay light gray 

stimulation trajectories.  The center circle represents the “test” object and the two adjacent circles represent the 

“decision” targets.  During the actual task, one decision was a ring, corresponding to stimulation, and the other 

was a sphere, corresponding to no stimulation. 
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Chapter 4 described the theoretical 

background and analysis of interpreting coefficients 

assigned by the OLE decoder to each feature as a 

weighted preferred direction.  In order to examine 

the relative contributions of each frequency band to 

control, weights from each center-out training set 

were grouped by frequency band and normalized by 

the total sum of all weights in order to calculate a 

distribution.  Figure 5.18 shows the distribution of 

weights assigned across bands, where lines and error 

bars represent the mean and standard error of the mean as calculated across the full number of 

training sets.  Results show that beta (15-30 Hz) and mid-gamma (70-90 Hz and 90-115 Hz) 

received the greatest amount of weights.  This result supports similar findings from 4DOF tasks 

(Chapter 4) and predictions from signal statistics (Chapter 3).   

The relative contribution of individual electrodes was also analyzed by summing the 

decoder weights across all frequency bands for each electrode and normalizing its total weight by 

the maximum observed value.  As shown in Figure 5.19, control was distributed across all of the 

electrodes used for recording.  The amount of stimulation artifact observed on electrodes was 

analyzed by comparing the average signal power observed in each control band during movements 

grouped by trials either with or without stimulation.  Stimulation parameters for the dataset shown 

are: amplitude = 1.5 mA, pulse width = 400 µs, frequency = 400 Hz, duration = 4 s, ramp 

onset/offset = 1.5 s.  Figure 5.20 shows the absolute change in power between stimulation and 

non-stimulation conditions for each control band and mapped onto each electrode position.  Here, 

 

Figure 5.18: Optimal Frequency Bands for Bi-

directional BCI Control 

Both beta and mid-gamma received the greatest 

amount of weights. 
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it can be seen that the greatest changes in signal 

power occurred off of the theoretical isopotential 

line, as predicted by Figure 5.13. More detailed plots 

are shown in Figures 5.21-5.25, which show the 

calculated mean power for each condition along with 

the standard error of the mean.  Results show that 

changes in signal power were small.  In the lower 

control bands, stimulation trials tended to show 

slightly more power than non-stimulation trials, but 

this pattern was reversed in upper control bands.   

 

Figure 5.19: Electrode Locations for Bi-

directional BCI Control 

Control is distributed across all electrodes used 

for recording on the right side of the array.  The 

left side of the array was used for stimulation.  

In all sessions, stimulation was through the 

electrodes marked in red. 

  

 

Figure 5.20: Absolute Change in Power Between Stim and No-Stim Trials 

Normalized signal power from recording channels are shown on the right half of the array.  The left of the array 

was used for stimulation.  The stimulation electrodes used are shown in red.  While changes in signal power were 

small, electrodes at the top and bottom edges of the array (off of the theoretical isopotential line) showed the 

largest changes. 
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Figure 5.21: Alpha (8-15 Hz) Changes in Power Between Stim (Dark) and No-Stim (Light) Trials 

 

 

Figure 5.22: Beta (15-30 Hz) Changes in Power Between Stim (Dark) and No-Stim (Light) Trials 
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Figure 5.23: Low-gamma (30-55 Hz) Changes in Power Between Stim (Dark) and No-Stim (Light) Trials 

 

 

 

Figure 5.24: Mid-gamma (70-90 Hz) Changes in Power Between Stim (Dark) and No-Stim (Light) Trials 
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5.5 Discussion 

5.5.1 Multi-layered Approach to Artifact Rejection  

This study demonstrates the feasibility of recording high-quality ECoG recordings while 

simultaneously providing electrocortical surface stimulation.  Unlike other modalities that depend 

upon time-domain analyses of signals with large bandwidths (e.g. multi-unit recordings), the 

ability to capture information from relatively narrow frequency ECoG bands enables frequency-

multiplexed bi-directional information to and from the brain.  In order for this separable-band 

scheme to work, a multi-layered approach to artifact rejection was employed through the co-design 

of the amplifier, signal processing chain, and stimulus waveforms.  This systems-level method of 

 

Figure 5.25: Mid-gamma (90-115 Hz) Changes in Power Between Stim (Dark) and No-Stim (Light) Trials 
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development aimed to balance design specifications such that recorded signals could be effectively 

used for control while stimulation patterns could be readily detected as sensory feedback.  

The electronics development for stimulus artifact rejection included the design of a wide 

dynamic input range amplifier that could pass large-signal stimulus artifacts without saturating.  

The custom amplifier was designed to achieve low-noise performance while filtering out high-

frequency stimulation artifacts without constraints on power consumption or size.  Chapter 2 

presented the upper limits on noise required to achieve an SNR of 3V/V for each band: noise was 

specified to be less than 2 µV for beta (15-30 Hz) and 330 nV for mid-gamma (70-115 Hz).  The 

custom amplifier exceeded these noise specifications and achieved estimated SNRs of 50V/V for 

beta and 6V/V for mid-gamma.  The custom amplifier is well-suited for percutaneous use outside 

of the body, but for implantable applications, alternative amplifier architectures will be required 

and likely involve an ASIC design.  A JFET input stage was used for the custom amplifier, which 

provided balanced low 1/f voltage and current noise, each matched to the electrode impedances 

and signal bandwidth.  However, CMOS is a more popular choice for mixed-signal applications 

that incorporate analog-to-digital converters (ADC) and registers for programmable recording 

parameters (e.g., bandwidth, gain, channel shut-down).  CMOS is also more readily scalable to 

high-channel counts with miniaturized feature sizes.  Future work may seek to develop CMOS 

amplifier architectures that can balance low 1/f noise with low-power operation and miniaturized 

size.  Based upon the artifacts observed here, a dynamic range of ±40 mV is sufficient to permit 

recording within 1 cm of surface stimulation electrodes with currents as high as 1.5 mA.  For deep-

tissue stimulation where conductivities around the electrodes are more isotropic compared to 

surface electrodes placed right under the skull, current will spread more uniformly and artifacts 
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may be smaller in magnitude than observed here.  Therefore, for most neuromodulation 

applications, a dynamic range of ±20 mV should be sufficient. 

Provided that the amplifier performance is sufficient to pass large-signal stimulation 

artifacts, subsequent filtering stages can be used to reduce unwanted signals.  Here, an 8th-order 

low-pass filter was used to reduce high-frequency artifacts prior to signal digitization.  A 

consequence of using a high-order hardware filter is that increased phase lag and group delay can 

lead to unwanted signal distortion and envelope delays.  In many cases, hardware filters can be 

implemented with lower power consumption than digital designs.  However, digital designs often 

provide more flexibility in signal processing—for example, filters with zero lag.  In a multi-stage 

mixed-signal design, artifacts only need to be reduced sufficiently to avoid saturation of secondary 

amplifier stages and the dynamic range of the ADC.  Once the signal is digitized, a wide variety 

of signal processing techniques may be employed, including template subtraction.  Future work 

may seek to develop signal processing designs that span both analog and digital domains and 

optimize for power consumption for use in implantable systems. 

Stimulation waveforms must be designed carefully in order to shape artifacts such that they 

can be rejected during recording but without compromising the stimulation effect.  Here, 

stimulation waveforms needed to be detectable but not interfere with the low-frequency recordings 

bands.  Attention must be paid not only to the pulse shape (or alternative shapes like sinusoids or 

Gaussians), but also ramping functions at the onset and offset of stimulus trains.  Here, a simple 

linear ramp function was used at the onset and offset of pulse trains, but other functions may further 

improve performance.  While this work focused on bi-polar stimulation from a single pair of 

electrodes, other applications may require stimulation on many more channels.  The resulting 

artifacts from multi-channel stimulation in recorded signals will be equal to the superposition of 
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artifacts from each individual stimulation source.  Therefore, in scaled-up applications, stimulation 

waveform shaping must take into account the total effect of all stimulation channels.  Future work 

may seek to optimize waveforms for balanced activation efficacy, power consumption, and artifact 

rejection, and may also seek to develop stimulus waveform shaping algorithms for multi-channel 

applications.   

5.5.2 Implications for Sensorimotor BCIs 

This study demonstrated both motor control and sensory feedback through a bi-directional 

BCI, which could be used to restore sensorimotor function to people with paralysis or an 

amputation.  Unlike other bi-directional BCI approaches that must interleave recording and 

stimulation in time, the approach presented here was able to achieve both simultaneously and 

without interruptions.  Additionally, the bi-directional BCI was achieved without penetrating the 

dura, which reduces risks to the subject.  Based upon the stability of epidural ECoG signals 

presented in Chapter 3, this type of minimally-invasive BCI could be well-suited for chronic 

applications extending beyond time periods currently achievable using more invasive penetrating 

electrode technologies. 

Sensory information was encoded by electrocortical surface stimulation, and threshold 

amplitudes for detecting the stimulation were shown to vary with stimulation frequency and pulse 

width.  Subdural stimulation produced lower thresholds than epidural, as expected, but results were 

confounded by different electrode diameters.  Epidural stimulation might have resulted in 

activation of small-diameter pain fibers in the dura rather than the underlying sensory cortex, 

although this seems unlikely.  Studies using epidural motor cortex stimulation (MCS) have 

reported that patients can tell when and over which associated body part stimulation occurs, which 
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indicates that underlying cortical neurons are being activated (Fujioka et al., 2018).  Future studies 

with human subjects could more easily investigate the subjective experience associated with 

different patterns of stimulation.  Future studies may also explore the discriminability between 

sensory stimulation patterns in order to understand how much stimulation parameters must be 

modulated in order to create a “just noticeable difference” to the subject.  Similar to Weber’s Law, 

the relationship between stimulation parameter change and perceptual change could be nonlinear.  

Understanding this mapping will help to establish the bandwidth required to encode diverse 

sensory perceptions.   

Similar to results from motor BCI studies in Chapter 3, the optimal frequency bands for 

control with the bi-directional BCI included beta (15-30 Hz) and mid-gamma (70-115 Hz).  

However, the current study further demonstrates that BCI control can be achieved with as few as 

16 electrodes and narrower bandwidth.  The decoder was trained based upon data from a center-

out task that did not include stimulation.  In the future, the decoder training paradigm might be 

adjusted to also include stimulation.  Decoder optimization could be designed to minimize the 

weights on features that contain artifact so that they have less effect on control.  Alternatively, the 

decoder could be trained to recognize artifact and adjust control accordingly, and in real-time.  

Finally, the co-adaptive approach to training the decoder might also be adapted to train a 

stimulation encoder.  By providing real-time error correction to the encoder based upon the 

discriminability of stimuli or subjective perception, the encoder could be tuned to optimally adjust 

stimulation patterns to enhance the SNR of encoded information.  Similarly, co-adaptive 

algorithms could be used to optimize many other aspects of closed-loop performance with the bi-

directional BCI to improve human-machine interactions. 
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5.5.3 Implications for Broad Closed-Loop Applications 

The results of this study extend beyond sensorimotor BCIs and are relevant to a wider range 

of applications that involve closed-loop therapies.  Future applications may include medical 

therapies as well as augmented or enhanced performance.  Epidural (and even subdural) ECoG is 

an attractive alternative to penetrating electrodes for chronic applications.  In many ways the low-

frequency content of ECoG signals is similar to local field potentials (LFP) recorded from micro- 

and macro-electrodes both in cortical and deep-brain regions.  LFP and other relatively low-

frequency signals in the body, including electromyography (EMG), may also be suitable for 

closed-loop systems that employ a similar separable band strategy.  By enabling simultaneous 

sensing and stimulation through the techniques described here, responsive therapies can not only 

be tuned to individual patients, but also provide precision therapies at exactly the right place and 

time.  This has the potential to improve targeted outcomes while reducing undesirable side effects.  
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Appendix 

A.1 Electrical Conduction Within Electrodes 

 In solid metal conductors, atoms align in three-dimensional lattices and their atomic 

orbitals merge to form molecular orbitals which can be traversed by electrons as their energy levels 

change.  Electrons in the energetically lower valence band are less mobile than the energetically 

higher conduction band.  At normal temperatures above T=0 Kelvin, electrons move stochastically 

between levels as they are excited by thermal energy.  Higher temperatures excite electrons into 

higher energy orbitals as described by the Fermi-Dirac distribution that links the energy of 

electrons to thermal energy by the Boltzmann constant.  Electrical conductivity of metallic solids 

decreases with increasing temperature because of random thermal motion which makes electrons 

less efficient in transporting charge due to increased collisions with neighboring atoms.  This 

phenomenon results in thermal-electrical noise referred to as Jonhson-Nyquist noise. (Andreas 

Elschner et al., 2011). 

 In saturated polymers like polyethylene, all valence electrons are used in covalent σ-bonds 

which results in a large energy gap between the valence and conduction bands, and the material 

shows insulating properties.  However, in conjugated polymers, a π system is formed along the 

polymer backbone where electrons not involved in σ-bonds reside in π bands that are either 

completely filled or completely empty.  Since there are no partially filled bands, pure conjugated 

polymers behave as semiconductors.  Unlike doping in semiconductors, where a foreign atom is 

introduced into the host’s lattice, doping in conductive polymers refers to a chemical reaction 

(oxidation or reduction) that alters the number of available charges in the polymer’s chain.  The 
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relationship between temperature and conductivity in intrinsically conducting polymers follows 

the pattern of normal semiconductors. (Andreas Elschner et al., 2011). 

A.2 Electrical Conduction Across Electrodes 

In a bioelectric interface, the total flow of current between the electrical device and 

surrounding tissue results from both faradaic and non-faradaic (capacitive) processes.  Faradaic 

currents involve the movement of electrons across the electrode-electrolyte interface due to 

electro-chemical redox reactions at the electrode surface.  Non-faradaic currents result from the 

coupled movement of electrons in metal and charged ions and molecules in solution toward and 

away from a capacitively charged electrode-electrolyte interface without an exchange of electrons 

across the electrode surface.  Within a metal electrode, current is passed by the movement of free 

electrons in the molecular conduction band relative to the fixed atomic lattice. The bulk of 

biological tissue is an electrolytic solution and electrical current arises from the flow of free 

electrons, ions (anions- and cations+), and charged molecules.  Charge transfer across the electrode-

tissue interface is mediated by redox (REDuction-OXidation) reactions through which the 

reactants change their oxidative state by accepting (reduction) or donating (oxidation) electrons.  

Therefore, the movement of negatively charged electrons is responsible for electrical current flow 

in the metal electrode and across the electrode-electrolyte interface, and the movement of both 

positive and negative charges is responsible for electrical current flow in the bulk electrolytic 

solution.  In a two electrode electro-chemical configuration, reduction reactions take place at the 

cathode- which attracts cations+ in the electrolyte solution.  Oxidative currents occur at the anode+ 

which attracts anions- in the solution.  Using the definition of convention electrical current flow 
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(the direction of positive charge movement) current flows out into the electrolyte solution from 

the anode and returns through the cathode. 

A.3 Faradaic (Non-capacitive) Currents 

 Oxidation and reduction currents are faradaic, which requires the movement of electrons 

across the electrode-electrolyte interface via changes in valency of surface-bound reactants.  

Reactants may include metal ions from the electrode itself, or dissolved analytes in the surrounding 

solution.  The impedance to faradaic current flow at the electrode-electrolyte interface is dependent 

upon the availability of conduction electrons in the metal electrode, the associated redox reaction 

rates, and the mass transport of reactants and products to and from the interface.  Impedances that 

arise from each of these limiting factors result in over-potentials that polarize the electrode-

electrolyte interface when current is actively driven.   Over-potential refers to any potential beyond 

the equilibrium resting potential (𝐸𝑒𝑞) that naturally exists at the interface between any dissimilar 

materials when current is not actively driven.   

 The activation overpotential (𝜂𝑎) is the voltage drop at the electrode-electrolyte interface 

necessary to maintain current flow due to redox reactions and is described by the  Butler-Volmer 

equation: (Bard & Faulkner, 2001) 

𝐼 = 𝐴 ∙ 𝑖0 [
𝐶𝑜𝑥(0, 𝑡)

𝐶𝑜𝑥
∗

𝑒−
𝛼𝑛𝐹𝜂𝑎

𝑅𝑇 −
𝐶𝑟𝑒𝑑(0, 𝑡)

𝐶𝑟𝑒𝑑
∗ 𝑒

(1−𝛼)𝑛𝐹𝜂𝑎
𝑅𝑇 ] (A.1) 

Here,  𝐼 is current (amps), 𝐴 is the electrochemical surface area (meters2), α is a charge transfer 

coefficient (dimensionless), 𝑛 is the number of electrons involved in the reaction, 𝐹 is Faraday’s 

constant, 𝑅 is the universal gas constant, and 𝑇 is absolute temperature (Kelvin).  𝑖0 is the exchange 
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current density (A·meters-2) that reflects the intrinsic electron exchange rate between an analyte 

and electrode at equilibrium.  Although the equilibrium net current is equal to zero, faradaic 

activity is still in progress at the electrode surface, with equal magnitudes of anodic and cathodic 

currents.  The exchange current is an important kinetic parameter, where a large exchange current 

facilitates fast reaction kinetics.  𝐶𝑜𝑥(0, 𝑡) and 𝐶𝑟𝑒𝑑(0, 𝑡) represent the time-dependent 

concentrations of the oxidized and reduced species at zero distance from the electrode surface, and 

𝐶𝑜𝑥
∗  and 𝐶𝑟𝑒𝑑

∗  are the bulk concentrations.  When recording bioelectric potentials, 𝜂𝑎 is very small 

and the concentrations of the oxidized and reduced species at the electrode surface are equal to the 

bulk concentrations.  Under these conditions,  the Butler-Volmer equation simplifies to linear 

relationship: (Bard & Faulkner, 2001) 

𝐼 = 𝐴 ∙ 𝑖0
𝑛𝐹

𝑅𝑇
𝜂𝑎 (A.2) 

From this linear relationship, the charge transfer resistance 𝑅𝑐𝑡 can be defined, which is a useful 

parameter for modeling electrochemical impedance spectroscopy (EIS) data: (Bard & Faulkner, 

2001) 

𝑅𝑐𝑡 =
𝜂𝑎

𝐼
=

1

𝐴
∙

𝑅𝑇

𝑖0𝑛𝐹
 (A.3) 

When stimulating tissue, 𝜂𝑎 is very large and the net current is dominated by either the anodic or 

cathodic reactions so that one of the terms in the Butler-Volmer equation goes to zero.  Under 

these conditions and ignoring mass transport effects, the Butler-Volmer simplifies to the 

logarithmic Tafel Equations: (Bard & Faulkner, 2001) 



173 

 

𝜂𝑎
𝑟𝑒𝑑 = (−

𝑅𝑇

𝛼𝑛𝐹
) ln(𝐼𝑟𝑒𝑑) + (

𝑅𝑇

𝛼𝑛𝐹
) ln(𝐴𝑖0) (A.4) 

𝜂𝑎
𝑜𝑥 = (

𝑅𝑇

(1 − 𝛼)𝑛𝐹
) ln(𝐼𝑜𝑥) − (

𝑅𝑇

(1 − 𝛼)𝑛𝐹
) ln(𝐴𝑖0) (A.5) 

The Tafel equation for oxidation (or reduction) is only valid when currents attributed to the reverse 

reaction contribute less than 1% to the total current.   

 Tafel behavior assumes that reactions are not transport limited, but this assumption is not 

valid when large prolonged currents deplete the electroactive species at the electrode surface.  In 

this case, the redox reaction rates (and necessarily current) will depend upon diffusion of reactants 

between the electrode surface and the bulk solution.  When a specific redox reaction is mass-

transport limited, the current associated with that reaction will become independent of the applied 

potential.  Independence of current and voltage for a particular redox reaction does not mean that 

an increase in potential will not result in more net faradaic current, however, as the redox potentials 

for other reactions may be reached and result in an additional source of charge transfer.   The 

movement of an electroactive species under diffusion control is described by Fick's laws of 

diffusion, and the relationship between electrode potential and current under potentiostatic 

conditions is given by the Cotrell equation.  For a planar electrode, the Cotrell equation is given 

by: (Bard & Faulkner, 2001) 

|𝑖| =  
𝑛𝐹𝐴𝐶∗√𝐷

√𝜋𝑡
 (A.6) 

where 𝐶∗is the concentration of the electroactive species,  𝐷 is the diffusion constant, and 𝑡 is time.  

From this equation, it is observed that when a large voltage step is applied to an electrode, a large 
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initial faradaic current will result that will deplete the surface concentration of the reactant after 

which additional reactant will arrive as fast as diffusion will permit, but will slow as the reactant 

is reduced in the surrounding diffusion region.  Even if the reaction does not consume all reactant 

at the electrode surface, the concentration will still be reduced compared to bulk solution and 

Cotrell behavior will be observed.  The Cotrell equation is fundamental to potentiostatic 

experiments in which current is measured in response to a known voltage.  In cyclic voltammetry 

experiments, current is measured in response to repeated voltage ramps applied to the electrode, 

which reveals peaks in anodic and cathodic currents corresponding to forward and reverse redox 

reactions.  The up-slopes of the current peaks (as voltage moves away from the electrodes 

equilibrium potential) are a result of dominant Tafel behavior, whereas the down-slopes result 

from mass-transport limited Cotrell behavior.  While the Cotrell equation describes the current-

diffusion relationship of a mass transport-limited reaction under potentiostatic conditions, the 

Sands equation describes this relationship under amperostatic (or galvanostatic) conditions, where 

current is the controlled variable: (Bard & Faulkner, 2001) 

𝑖 =  
𝑛𝐹𝐴𝐶∗√𝜋𝐷

2√𝜏
 (A.7) 

Here, 𝜏 is the transition time for the reaction, which represents the time at which the concentration 

of the reactant at the electrode-electrolyte is depleted.  At the time of depletion, the fixed current 

can no longer be supported by the redox reaction and so the potential must shift to the redox 

potential of another electron transfer reaction.  For rapid and reversible (Nernstian) redox reactions 

under amperostatic control, the potential (E) is given by: (Bard & Faulkner, 2001) 
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𝐸 = 𝐸0 −
𝑅𝑇

2𝑛𝐹
ln (

𝐷𝑜𝑥

𝐷𝑟𝑒𝑑
) +

𝑅𝑇

𝑛𝐹
ln (

√𝜏 − √𝑡

√𝜏
) (A.8) 

 Collectively, the Butler-Volmer, Cotrell, and Sands equations provide a comprehensive 

description of the activation overpotential (𝜂𝑎) necessary to maintain faradaic current flow across 

an electrode-electrolyte interface.  As current is passed, a concentration gradient will be setup by 

the transport of electroactive species in response to the redox reactions at the electrode-electrolyte 

interface.  The electrical potential resulting from this gradient is termed the overpotential (𝜂𝑐).  The 

concentration profile can be modeled by a convective region far from the electrode surface and a 

thin Nernst diffusion layer very near to the electrode surface.  In the convective region, the 

concentration of an electroactive species is assumed constant (𝐶∗) with respect to the distance from 

the electrode because of sufficient mixing by convective currents.  In the diffusion region, the 

concentration is assumed to decrease linearly with distance from 𝐶∗ at the convective boundary to 

 

Figure A.1: Relationships Between Current and Potential Across the Electrode Interface 

A) The Butler-Volmer equation characterizes the relationship between current and the overpotential when 

reactants are readily available and mass transport kinetics are negligible.  For small potentials, the current-potential 

relationship is nearly linear.  For large potentials, the current-potential relationship becomes logarithmic and is 

described by the Tafel equation .  B) When a constant potential is applied and reactants are consumed at the 

electrode-electrolyte interface, the reactions mediating charge transfer become mass-transport limited, and the 

current will progressively decrease as described by the Cotrell equation.  C) When a constant current is applied 

under diffusion-limited  conditions, reactants will be depleted within a time, τ, and the potential will shift to the 

redox potential of a new reaction in order to sustain the necessary charge transfer rate.  Figures adapted from Bard 

& Faulkner, 2001. 
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a concentration of 𝐶𝑆 at the electrode surface. Under these assumptions, 𝜂𝑐 can be estimated using 

a variation of Nernst’s Equation: (Bard & Faulkner, 2001) 

𝜂𝑐 = ±
𝑅𝑇

𝑛𝐹
ln (

𝐶∗

𝐶𝑆
) (A.9) 

where the positive(+) form is used for anodic (oxidative) reactions and the negative (-) form is 

used for cathodic (reduction) reactions. 

 The concept of an ideal non-polarizable electrode is used to describe a hypothetical setup 

in which all current that is passed across the electrode-electrolyte interface is faradaic and the 

redox reactions that mediate the required charge transfer occur readily enough that the activation 

overpotential is infinitesimally small. In this case, the electrode does not become polarized as 

electrical current is passed.  This stable behavior is favorable for a reference electrode when 

recording biopotentials because the voltage signal recorded between the active and reference 

electrode will be dominated by electrical activity local to the active recording site.  The use of a 

non-polarizable reference is also critical for electrochemical experiments that require a precise 

measurement of the potential on an electrode in solution.  Common electrode materials that 

demonstrate near non-polarizable behavior are silver/silver-chloride (Ag/AgCl) and saturated 

calomel. 

A.4 Non-faradaic (Capacitive) Currents 

 In contrast to an ideal non-polarizable electrode, an ideal polarizable electrode describes a 

setup in which no charge is transferred across the electrode-electrolyte interface, regardless of the 

imposed potential.  In this case, charge is stored along the electrode surface, which is countered 
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by oppositely charged ions in solution, leading to an 

electrical "double-layer".  Just the presence of an electrode 

in solution introduces interactions between the solid and 

electrolyte that are considerably different than those in 

solution, even when no potential is applied to the electrode.  

These interactions involve adsorption, or adhesion, of 

atoms, ions, biomolecules, and gases that are dissolved in 

the solution, typically due to weak van der Waals forces and 

electrostatic attraction.  Helmholtz envisaged a thin double 

layer in which charges on the metal are neutralized by a 

monomolecular layer of ions of opposite charge.  The 

Helmholtz model predicts a linear change in electrical 

potential across the double-layer.  Gouy and Chapman later 

introduced a diffuse model of the double-layer in which, ions in solution are not rigidly held to the 

electrode surface, but form a cloud of diffuse charge in solution that produces a potential gradient 

that counters the charge on the electrode.  The kinetic energy of the counter ions affects the 

thickness of the diffuse double layer and the concentration of the ions near the electrode surface 

follows the Boltzman distribution.  Stern combined the Helmhotz and Gouy-Chapman models in 

his theory of the double-layer.  According to the Stern model, the finite size of ions prevents them 

from approaching the electrode surface within a few nm so that a small Helmholtz plane is formed 

by a molecular layer of water and adsorbed ions, followed by a diffuse layer that extends out into 

solution.  Therefore, the Stern model predicts that the potential will drop linearly across the tightly 

packed Helmholtz layer and decay exponentially out into solution.  More detailed versions of the 

 

Figure A.2 Capacitive Double-layer 

Capacitive double-layer formed by the 

thin Helmholtz layer and diffuse Gouy-

Chapman layer.  The thick black line 

represents the falloff of potential 

predicted by the Stern model.   
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Stern model include a molecular water layer at the electrode surface, followed by an inner and 

outer Helmhotz layer at which electron transfer of redox reactions is proposed to occur, and finally 

a diffuse layer.   

 Capacitive charging that results from the separation of charges described by the Helmhotz, 

Gouy-Chapman and Stern models is termed electrostatic.  Electrolytic capacitive charging results 

from the storage of charge across a thin, high-dielectric-constant oxide film on the electrode 

surface.  Oxide films may form naturally on exposed electrode surfaces or may be applied directly 

using electrodeposition and sputtering techniques.  In both types of capacitors, the separation of 

charges across small distances results in a large capacitance across the electrode-electrolyte 

boundary.  This high capacitance produces large capacitve currents with relatively small changes 

in potential without any direct exchange of electrons across the electrode-electrolyte interface.  The 

relationship between capacitance current and applied voltage is given by: 

𝑑𝑉

𝑑𝑡
=  𝐼 ∙ (

1

𝐶𝐻
+

1

𝐶𝐺𝐶
) =

𝐼

𝐶
  (A.10) 

where 𝑑𝑉 𝑑𝑡⁄  is the rate of voltage change, 𝐼 is current, 𝐶𝐻 and 𝐶𝐺𝐶 are the effective capacitances 

contributed by the Helmholtz and Gouy-Chapman layers, respectively and 𝐶  is the total 

capacitance across the electrode-electrolyte interface.  In potentiostatic conditions, the current is 

given by: 

𝐼(𝑡) =
𝑉

𝑅
𝑒−

𝑡
𝑅𝐶   (A.11) 

where R is a series resistance that may include the resistances of the bulk solution and metal 

conductor.  Under amperostatic conditions, it is clear that the capacitive voltage must vary as a 
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ramp function, where the slope is directly proportional to the magnitude of current.  This property 

of capacitors is exploited in cyclic voltammetric  experiments where the controlled voltage is 

ramped up and down at a fixed rate so that any variations in current can be attributed to faradaic 

reactions alone since the capacitive current will be constant.  

 Due to the direct relationship between capacitance and the area over which charge is 

separated, etchings and coatings that increase the electrochemical surface area (ESA) beyond that 

of the geometric surface area (GSA) of an electrode can drastically improve capacitive current 

injection performance.  However, under high current density conditions, porous electrodes with a 

high ESA/GSA ratio may not have access to their full ESA due to limitations of electrolyte 

resistance and capacitance on the interior surfaces of the pores, which forms a delay-line with a 

time constant defined by the pore geometry, electrolyte resistivity, and interfacial double-layer 

capacitance. (Cogan, 2008)  Platinum, Platinum/Iridium alloys, and titanium nitride are common 

electrode materials used for capacitive bio-electrodes because of their low reactivity in biological 

tissue.   

A.5 Pseudo-capacitive Currents 

 If a product of a faradaic reaction diffuses away from the electrode surface so that it cannot 

participate in the reverse redox reaction, the reaction is termed irreversible and can have adverse 

effects on the electrode due to corrosion and also surrounding tissue as byproducts are 

accumulated.  Alternatively, if the products remain close to the electrode surface so that the 

reactions can be reversed, the reaction is termed reversible.  For noble metal electrodes like Pt and 

Pt-Ir alloys, the redox reactions are confined to a thin surface monolayer so that there is a faradaic 

transfer of electrons across the interface, but the separation of charge across the monolayer 
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produces capacitive behavior.  These types of reactions are described as pseudocapacitive.  

Dielectric coatings like tantalum oxide and iridium oxide films are common materials for 

producing pseudocapacitive electrodes.  (Cogan, 2008) 

A.6 Mixed Currents 

 Most electrodes employ both faradaic and non-faradaic charge transfer mechanisms when 

transmitting electrical signals across the electrode-electrolyte interface.  The ratio of faradaic to 

non-faradaic charge transfer depends upon properties of the electrode, such as material, size, and 

roughness, properties of the electrolyte, like concentrations of electroactive species and the 

associated redox potentials, and also on the magnitudes of current and voltage imposed at the 

electrode-electrolyte interface.  Generally, at low potentials and low current densities, the majority 

of current will arise from capacitive charge exchange, but as the potential is increased, faradaic 

currents will become dominate.  At sufficiently high voltages, stimulation currents may emerge 

from the electrolysis of water, which is virtually limitless in biological tissue.  Near the cathode, 

injected electrons will be accepted by hydrogen cations to form hydrogen gas: 

2𝐻2𝑂(𝑙) + 2𝑒− → 𝐻2(𝑔) + 2𝑂𝐻−(𝑎𝑞) (A.12) 

Near the anode, electrons stripped from water molecules will result in the production of oxygen 

gas: 

 2𝐻2𝑂(𝑙) →  𝑂2(𝑔) + 4𝐻+(𝑎𝑞) + 4𝑒− (A.13) 

The operating region within the potential limits at which electrolysis of water occurs is called the 

"water window" and operation outside this region should be avoided.   
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 Two common measures of the total amount of 

charge per unit GSA that is available from an electrode 

operated within the water window are the charge-

injection capacity (Qinj) and the charge-storage capacity 

(CSC).  Qinj is determined by the time integral of a current 

pulse that is associated with a voltage excursion that just 

meets the limits defined by the water window, which for 

platinum electrodes is -0.6 V to +0.8 V.  The width of 

pulses used to determine Qinj vary in literature, but are 

typically around 200 µsec in length.  Qinj is a practical 

measure of the amount of charge available from an 

electrode because it is measured directly from current pulsing, which is the most common 

waveform for stimulating active tissue.  CSC is calculated from time integral of total current 

observed in cyclic voltammetry measurements in which the potential of an electrode is repeatedly 

ramped between the limits of the water window.  It is common to report only the portion of the 

CSC resulting from cathodic currents (CSCC) in a slow sweep rate, which is normally in the range 

of 50 mV/s.  CSC is an estimate of the total charge available from an electrode when limitations 

imposed by mass transport are negligible.  In practice, the full CSC is not accessible when 

stimulating with fast current pulses. (Cogan, 2008) 

 

Figure A.3: Water Window 

The cyclic voltammogram was measured at 

50 mV/s between -1 and 1.5 volts applied to 

a 300 µm diameter platinum disk electrode.  

The water window for platinum is defined 

between -0.6 and 0.8 volts.  Beyond these 

limits, the current displays Tafel behavior as 

a virtually limitless supply of water is 

hydrolized.   
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A.7 Potential and Current Distributions On 

Disk Electrode Surfaces 

 When current is passed across an electrode, the current density is often highest at the 

corners and edges of the electrode.  The non-uniform distribution of current is dependent upon the 

geometry and material of the electrode, the nature of reactions mediating charge transfer, and the 

concentration gradients of reactants in solution.  One of the most commonly encountered 

electrodes in electrophysiology is the metal disk electrode, and an analytic equation for its current 

density was provided by the pioneering work of John Newman in 1966 (Newman, 1966).  

Newman’s equations were derived by solving Laplace's equation, ∇2𝛷 = 0, in elliptical 

coordinates for a disk electrode embedded in a plane of insulation.  Newman made two important 

assumptions (that defined boundary conditions): 1) the potential is uniform across the surface of 

the electrode, and 2) mass-transport and reaction kinetics could be ignored. The resulting current 

distribution is called the primary distribution and is given by: (Newman, 1966a) 

𝑖 =  
2𝑘𝛷0

𝜋√𝑎2 − 𝑟2
 (A.14) 

where 𝑖 is the linear current density (A/m), 𝑘 is the solution conductivity, 𝛷0 is the uniform 

potential on the electrode surface, 𝑎 is the radius of the disk, and 𝑟 is the radial distance from the 

center. This equation shows the current density at the center of the electrode is near half of the 

average (or global) current density for the electrode and that the current density approaches infinity 

at the edge.  Dividing the potential by the integrated current across the electrode surface gives the 

access resistance 𝑅𝑠: (Newman, 1966a) 
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𝑅𝑠 = 
1

4𝑘𝑎
 (A.15) 

which is seen to be inversely proportional to the electrode radius, 𝑎. Newman’s equation for the 

access resistance assumes that the potential falls to zero at an infinite distance from the electrode.  

Therefore, the equation is valid when a distant reference is used.  The accuracy of Newman's 

equations for the primary distribution and access resistance has been verified experimentally under 

conditions fitting the assumptions made by Newman (Ahuja, et al., 2008).  In particular, these 

assumptions are met for small, high-frequency signals where the double layer capacitance behaves 

as a short-circuit.  An important consequence of this is that at high frequencies, the impedance of 

an electrode should approach that of the access resistance, and therefore, the impedance magnitude 

should be inversely proportional to the electrode radius.  Ahula, et al. confirmed this result for 

platinum electrodes ranging from 11-325 µm. (Ahuja, et al., 2008) 

When large current steps or low-frequency signals are applied to an electrode, mass-

transport and reaction kinetics can’t be ignored and the current density may no longer be described 

by the primary distribution.  Under the extreme condition that all reactants are depleted at the 

electrode surface, the steady-state current distribution will become uniform (Levich, 1942).  In this 

extreme case, the potential distribution will become non-uniform.  Newman analytically derived 

equations to describe this distribution as well (Newman, 1966b).  Under these conditions, the 

impedance magnitude should be inversely porportional to the electrode area, which was also 

confirmed by Ahula, et al. for platinum electrodes.   
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In the study by Ahula, et al., the dependence of impedance magnitude on electrode radius 

was well fit by a power-law.  At high frequencies, the impedance was proportional to 1/R1, but as 

the frequency decreased, the impedance became proportional to 1/R2.  At intermediate frequencies, 

the impedance showed a gradual shift between edge dependence and area dependence.  This result 

fits the predicted shift in current distributions proposed by Behrend, et al. based upon finite element 

models and simulations (Behrend and Weiland, 1966).  Behrend showed that when a disk electrode 

is subjected to a voltage step, the primary current distribution predicted by Newman occurs at t=0.  

Thereafter, capacitance across the electrode boundary will cause charge to accumulate.  The 

accumulation of charge will occur at a faster rate at the electrode edges due to the primary current 

A B 

 

Figure A.4: Newman's Primary and Secondary Distributions 

A) Newman's equation gives the primary current distribution that is characterized by large edge effects for a disk 

electrode at the onset of an applied potential.  The primary distribution is maintained as long as reaction and 

mass-transport kinetics are very fast and the electrode's double layer capacitance is negligible.  If mass-transport 

kinetics are non-negligible, secondary current distributions will occur.  When reactants are fully depleted at the 

electrode-electrolyte interface, the current density will be uniform, but the potential distribution will not.  (figure 

adapted from [6]).  B) When the double layer is non-negligible, the primary distribution will cause non-uniform 

charging of the double layer, which will result in a time-dependent current density that shifts from the primary 

distribution to a uniform distribution at a rate characterized by the global time constant (τ=RCdl) of the electrode. 

Figure adapted from Newman, 1996b. 
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distribution, which will necessarily cause a disruption of the initially uniform potential field.  As 

the potential field becomes more non-uniform, the edge effects will begin to diminish and the 

current distribution will tend toward uniformity across the electrode surface.  The speed at which 

this shift in the current distribution occurs is dependent upon the global time constant of the 

electrode, which is a function of the lumped resistance and capacitance across the interface, τ=RC. 
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